
Bachelorarbeit
Johannes Wilken

Dynamic context-based execution control of Applications on
mobile devices

Fakultï¿½t Technik und Informatik
Studiendepartment Informatik

Faculty of Engineering and Computer Science
Department of Computer Science

Johannes Wilken

Dynamic context-based execution control of Applications on
mobile devices

Bachelorarbeit eingereicht im Rahmen der Bachelorpruefung

im Studiengang Bachelor of Science Angewandte Informatik
am Department Informatik
der Fakultï¿½t Technik und Informatik
der Hochschule fï¿½r Angewandte Wissenschaften Hamburg

Betreuender Prï¿½fer: Prof. Dr. WesthoU
Zweitgutachter: Prof. Dr. Martin Huebner

Eingereicht am: 15. August 2012

Johannes Wilken

Thema der Arbeit
Dynamic context-based execution control of Applications on mobile devices

Stichworte
Smartphone, Android, Apps, Watchdog, MTM, Contextbasiert, Dynamisch, AusfÃ¼hrungskontrolle

Kurzzusammenfassung
Diese Arbeit zeigt eine Möglichkeit die Ausführung von Programmen auf mobilen Endgeräten

auf Basis eines vordeVnierten Kontexts zu kontrollieren. Hierbei kommt ein MTM zum Einsatz,

welches die Basis der Architekture bildet.

Johannes Wilken

Title of the paper
Dynamic context-based execution control of Applications on mobile devices

Keywords
Smartphone, Android, Apps, Watchdog, MTM, context-based, dynamic, execution-control

Abstract
This thesis shows a possibility to control the execution of application on mobile devices based

on predeVned contexts. A MTM is used as it provides the base of the architecture.

Contents

1 Introduction 1
1.1 Thesis Characterisation . 1
1.2 Motivation . 1
1.3 Goal . 2

2 Mobile Trusted Module 3
2.1 Mobile Local-Owner Trusted Module . 4
2.2 Mobile Remote-Owner Trusted Module . 4
2.3 Secure Boot . 4
2.4 Reference Integrity Metric CertiVcate . 6

2.4.1 Keys . 6
2.4.2 Counters . 7

3 Security Architecture 9
3.1 Security Goal . 9
3.2 Secure Startup . 10
3.3 Program CertiVcation . 10
3.4 Program VeriVcation . 11
3.5 Program Execution Control and VeriVcation at Runtime 11
3.6 Context Recognition . 11

4 Android OS 13
4.1 Android Architecture . 13

4.1.1 Linux Kernel . 13
4.1.2 Libraries . 14
4.1.3 Android Runtime . 14
4.1.4 Application Framework . 14
4.1.5 Application . 14

4.2 Boot Sequence . 15
4.3 Dalvik Virtual Machine . 16

4.3.1 Memory Optimizations . 17
4.3.2 CPU Optimizations . 17

4.4 Starting an Application . 18
4.4.1 Zygote Process . 18

4.5 Binder . 18
4.5.1 AIDL . 19

iv

Contents

4.5.2 Java API . 19
4.5.3 Middleware . 19

5 Implementation of the Security Architecture 21
5.1 Security Architecture . 21

5.1.1 Architecture Modules . 23
5.1.2 System Integration . 25

5.2 Implementation . 27
5.2.1 Security Architecture Modules . 27
5.2.2 Kernel ModiVcations . 29
5.2.3 DVM ModiVcations . 30

6 Implementation of the Context Recognition 31
6.1 Security Architecture . 31
6.2 Architecture Modules . 32

6.2.1 Context Recognition Service . 32
6.2.2 Context Observer . 33
6.2.3 Context . 33
6.2.4 Context Group . 33
6.2.5 User Interface . 33

6.3 Implementation . 34
6.4 Context Recognising Service . 36

6.4.1 Context . 36
6.4.2 Context Group . 37
6.4.3 Context Observer . 37
6.4.4 Context Provider . 37
6.4.5 Boot Complete Receiver . 38
6.4.6 Binder Interface . 38
6.4.7 Context . 39
6.4.8 Context Group . 39
6.4.9 Context Observer . 40

6.5 Library Implementation . 40
6.6 Module ModiVcations . 40
6.7 WorkWow . 41

6.7.1 Start of the architecture . 41
6.7.2 Context Management . 42
6.7.3 Context Recognition . 44

7 Security Analysis 46

8 Evaluation 48
8.1 Development Assumptions . 48

8.1.1 Implementation . 48

v

Contents

8.1.2 Kernel ModiVcations . 49
8.1.3 Management Application . 50

8.2 Performance Evaluation . 56
8.3 Conclusion . 58
8.4 Outlook . 58

Glossary 60

vi

1 Introduction

Nowadays, mobile devices are widely used in many diUerent situations. However, not in all

these situations it’s welcomed to use such a mobile device for some activities.

1.1 Thesis Characterisation

This thesis describes an approach on how to control the execution of certain applications

based of a context a mobile device is in. A context may be deVned by anything suitable, such

as a wireless network or by GPS1, for locations, or a timeframe, e.g. from 8 am to 4 pm. When

the device enters a prior deVned context, it prevents the execution and terminates running

applications which are not allowed in that context.

The Vrst chapter describes the motivation of this thesis, as well as the preliminary work.

The second chapter introduces the Mobile Trusted Module (MTM)

The third chapter covers the security architecture.

The fourth chapter shows the Android OS.

The Vfth chapter describes the implementation of the security architecture.

The sixth chapter describes the implementation of the context recognition.

The seventh chapter provides a security analysis.

The eighth chapter evaluates the architecture and gives an outlook to future work.

The work at the security architecture, the implementation and management application are

attributed to the BMBF Project SKIMS.

1.2 Motivation

Mobile devices, like smartphones, are able to serve a lot of purposes, not limited to making

phone calls and mobile internet. They can be used as assistant in many ways, like guiding

people to their destination or oUering additional information via augmented reality. As an

1(Global Positioning System), a space-based satellite navigation that provides location and time information
(Wikipedia, 2012h)

1

1 Introduction

example, a company, or similar institute, could use a smartphone to stay in touch with their

employees and distribute work among or communicate with them in a very simple way.

However, due to their many capabilities, an employee might be distracted by his smartphone

and instead of assist him during work it impedes him. To avoid such a situation, a company

may want to disable certain applications while the employee is somewhere on the company

area. This would allow to give smartphones as work assistant to them without being concerned

about them getting distracted.

Another important use case is preventing an employee to use a mobile device for taking

pictures or creating copies of secret, company intern documents. This could be done by

controlling the execution of a camera application during the time of work. Some employers

may want to prevent their employees to communicate with each other using a mobile device

during a certain time, like an examination. In that case, an employer could set up a context for

the examination and prevent the communication by disabling services like SMS or calling.

1.3 Goal

The proposed solution provides the ability to disable launching applications not welcomed in

a particular location. Furthermore, if such an application is already running when entering,

this application will be terminated gracefully. This is to prevent data loss due to pending work,

e.g. I/O-Operations. A disabled application should never run and the solution should not be

possible to be bypassed in any way.

2

2 Mobile Trusted Module

The hardware base for this thesis is a MTM1, a Mobile Trusted Module. This module was

speciVed by the Trusted Computing Group (TCG)2 and its main concept will be covered in this

chapter. The speciVcation describes the MTM as an aggregation of functions and commands

to ensure trustworthiness. It was speciVed to provide a comparable solution for this problem

as does the Trusted Platform Module (TPM)3 for laptops and PCs. In detail, a MTM consists of

two separate parts, the MRTM4 and MLTM5, which will be covered in the following sections.

This module is capable of taking and storing metrics from hardware as well software, such

as hash values, and compare them with reference values. These values are stored inside the

MTM and, due to complete separation from any other hardware of the device, can’t be altered

or manipulated in any way. Hence, it is possible to securely use these values to ensure the

integrity of the device. In order to protect the MTM itself from being manipulated, which

would possibly break the security granted by it, it is able to measure and conVrm its own

integrity. To secure the measurements for discrete integrity, a Platform ConVguration Register

(PCR) is used. A PCR is a shielded location inside the MTM to which only the module has

access. The speciVcation of the MTM contains to core domains, which are Vtted for diUerent

stakeholders. The diUerence between these two lies in utilisation and accessibility to the device

that is used. The Vrst stakeholder is the local-owner, which is, as usual, the user of the device

and thus has physical access, meaning he can execute and load any software he wishes. The

other stakeholder is the remote-owner, which does not have physical access to the device, but

provides services to it and needs to ensure that their engines are functioning properly. This is

done through a secure boot process, which is elaborated later in this chapter. The conVguration

of the MTM is done during manufacturing with a set of conVguration data matching the data

1(Mobile Trusted Module), a module that provides security features to mobile devices, such as platform integrity
and device authentication (Trusted Computing Group, 2010, p. 14)

2(Trusted Computing Group), an international industry standard group that develops speciVcation for trusted
computing (Trusted Computing Group, 2012)

3(Trusted Platform Module), a module to provide basic security features
4(Mobile Remote-Owner Trusted Module), a MTM that provides a subset of the commands speciVed by the TPM
version 1.2 and additionally mobile speciVc commands (Trusted Computing Group, 2010, p. 14)

5(Mobile Local-Owner Trusted Module), a MTM that provides a subset of the commands speciVed by the TPM
version 1.2 and optionally additional commands (Trusted Computing Group, 2010, p. 14)

3

2 Mobile Trusted Module

from the stakeholders’ scope, either inside the Mobile Local-Owner Trusted Module (MLTM)

or inside the Mobile Remote-Owner Trusted Module (MRTM). (Trusted Computing Group,

2010, p. 13)

2.1 Mobile Local-Owner Trusted Module

This module covers the local-owner, usually the user of the device. It has to support a subset

of the commands of a TPM version 1.2 and thus provides comparable features to the mobile

device as the TPM provides to PCs. The MLTM is designed to support remote veriVcation,

like remote attestation. This can be used by a software company which provides software for

that security is crucial, e.g. online banking software, to detect if the user of the device has

tampered with the software in any way to corrupt the security. In addition, the MLTM can

also be used to provide local veriVcation as a request of a local owner. In this case, the local

owner can also be a software that is used to take the measurements of other software that is

currently running and compares them to stored measurements. (Trusted Computing Group,

2010, p. 13-15, 38, 62)

2.2 Mobile Remote-Owner Trusted Module

Contrary to the MLTM this module is designed for a scenario in which the owner is a remote

party and thus does not have physical access to the device. This means that physical presence

authorisation must not be supported in the MRTM, however it must be supported in a MLTM.

Another diUerence between a MRTM and a MLTM is that the latter does not have to provide

mobile speciVc commands and the MRTM contains additional capabilities to support a secure

boot process. However, just as the MLTM, a MRTM must support a subset of the TPM v1.2

commands. In order to support local veriVcation, a MRTM is required to support commands to

install RIMs6 and to verify them. These commands are optional for a MLTM. This means, that

a MRTM is able to generate internal RIM certiVcates from an external RIM certiVcate. (Trusted

Computing Group, 2010, p. 13-15, 38)

2.3 Secure Boot

The MTM is used to store reference values for a secure boot procedure. This procedure ensures

that the device is starting from power-on in a trustworthy state and later these reference values
6(Reference Integrity Metrics), is a reference value to compare a measurement against, for instance a SHA256
hash of a software image Trusted Computing Group (2010)

4

2 Mobile Trusted Module

are also used to shut the device down in a trustworthy state. The secure boot establishs the

chain of trust. If any of the checks during the secure boot fails, the boot process is terminated.

The Vgure 2.1 illustrates the secure procedure, which consists of the following steps:

Figure 2.1: The MTM secure boot procedure (Trusted Computing Group, 2010, p. 15)

1. The MTM Vrstly measures its own integrity and veriVes it by executing a piece of code

stored inside the MTM.

2. The modules involved in this are the Root-of-Trust-for-VeriVcation (RTV) and the Root-

of-Trust-for-Measurement (RTM). The latter calculates metrics of itself and the RTV,

which then veriVes these metrics from the RTM. Lastly, the bootloader is measured is

veriVed by these modules.

3. To verify the bootloader an actual metric from the bootloader is taken by these modules

and is compared to a reference value. The reference value was also taken from the

bootloader, when it was in a secure, trustworthy state, for example at manufacture

time. When the actual metric and the stored reference value are matching, it veriVes the

bootloader to be in a secure and trustworthy state.

4. When it’s ensured that the bootloader can be trusted, any further measuring task is

delegated to it.

5

2 Mobile Trusted Module

5. The bootloader then measures the integrity of the OS kernel.

6. These measurements are passed to the MTM for comparison.

7. The MTM compares the measurement it received from the bootloader with a reference

measurement again taken in a trustworthy state. The result is then passed back to the

bootloader.

8. When the kernel is veriVed by the MTM, the bootloader starts the kernel.

2.4 Reference Integrity Metric CertiVcate

To provide reference metrics and additional information for a entity, such as a binary of an

application, a Reference Integrity Metric (RIM) is used. As shown in the last section, reference

metrics are used to verify the integrity by measuring entities and comparing them to already

taken reference metrics. These reference metrics are called RIMs. To protect a RIM against

manipulation, it is stored inside a PCR. A PCR is a secured storage only accessible by the MTM.

To ensure that the RIM origins from a trustworthy source, it is certiVed before it is stored

inside a PCR. These RIM certiVcates can be a signed hash of the RIM itself plus additional

information containing data of the origin and the trust of this certiVcate, like a shared secret.

RIM certiVcates can be generated in two ways, inside the MTM and outside. As the MTM

can be considered trustworthy, as it would fail the secured boot procedure check otherwise,

certiVcates generated inside the MTM are automatically considered trustworthy. Additionally,

RIMs generated inside a MTM are bound to this speciVc MTM and cannot be used in a diUerent

one. This restriction does not aUect external generated RIM certiVcates, these can be used

across multiple platforms, however, they can be converted to internal RIM certiVcates if

needed. External RIM certiVcates are needed to be veriVed by internal RIM certiVcates or other

authentiVcation methods before they can be accepted. (Trusted Computing Group, 2010, p.

18-19)

2.4.1 Keys

RIM certiVcates are secured by several keys used by the MTM. The used keys are described

here.

6

2 Mobile Trusted Module

VeriVcation Key

The veriVcation key is a public key and can only be used by the MTM for veriVcation purposes.

A veriVcation key can be represented in a hierarchical authorisation. The root key in this

hierarchy is called Root VeriVcation Authority IdentiVer. This key enables to verify other

veriVcation keys in the hierarchy.

Endorsement Key

This key is used to sign RIM certiVcates. It is the private key of a private-public-key-pair with

the public key being the veriVcation key. This key is unique to each MTM and is only known

to authorised parties which are allowed to create RIM certiVcates. Depending on the mode of

the MTM, whether it’s in MRTM or MLTM conVguration, this key is stored in a PCR, outside

the MTM or both. (Trusted Computing Group, 2010), (Trusted Computing Group, 2007)

Storage Root Key

This key is sealed inside the MTM and bound to an owner. When the owner changes, a new

SRK is generated for the new owner (Trusted Computing Group, 2007). It is used to sign

certiVcates that provide new veriVcation keys (Trusted Computing Group, 2010).

Attestation Identity Keys

This key is used by the MTM to sign measured PCR values. The signed values are used to

verify an intact integrity of the transmitted values to a remote service. This service is then

able to verify and trust the integrity of the values and treat them as a trusted measurement

(Trusted Computing Group, 2010, p. 8).

2.4.2 Counters

Additional to the keys, the MTM is protected by counters. Both of these counters are placed

in PCRs to protect them against manipulation and are only increased when all operations

aUecting the counter values were performed successfully.

counterRIMprotect

This counter protects the internal RIM-certiVcates against re-Washing. A RIM certiVcate

provides a "counter-stamp" Veld that is compared to the actual counterRIMprotect counter

value to ensure the freshness of the certiVcate. The counter is monotonic, it can only be

7

2 Mobile Trusted Module

increased, and its proposed limit is 4095. Any RIM certiVcate having a lower value to the actual

counterRIMprotect counter value become outdated and thus untrusted (Trusted Computing

Group, 2010, p. 34).

CounterBootstrap

This counter protects the device against installing a new Vrmware. Like the counterRIMprotect

counter, this counter is as well monotonix and outdates RIM certiVcates for the old Vrmware

image. The new Vrmware is validated by an external RIM certiVcate that comes with it. The

proposed limit for this counter is 31.

8

3 Security Architecture

The security is provided by the concept architecture introduced in this chapter. The concept

is orthogonal to the system installed on the mobile device, however it has requirements and

boundaries which are discussed as well. The architecture consists of Vve major parts creating

a working architecture. These major parts are:

• Secure Startup

• Program CertiVcate VeriVcation

• Program Execution Control

• Program CertiVcation

• Context Recognition

This extends the security architecture proposed in (Landsmann, 2011) by the element of context

recognition. Similar concepts are introduced in (Trusted Computing Group, 2010) and (Ugus

und WesthoU, 2011).

3.1 Security Goal

The security architecture provides a secure startup, to start a mobile device in a secure and

trustworthy state. This is done to prevent uncertiVed code from execution. Applications that

have been altered in any way, even by an update, as these can change the behaviour of an

application, can be detected by this architecture and prevented from running. In addition, this

architecture creates certiVcates and handling of these directly on the device, which makes

them uniquely usable with it (Landsmann, 2011). As this architecture is intended to secure the

device from malicious software, only legitimated users, such as administrators, are allowed to

request program certiVcation. Furthermore, this certiVcation should be impossible to bypass.

In addition, the architecture should be hardware based and provide a secure key storage

to secure the keys against manipulation or extraction. Also, to reduce any computational

9

3 Security Architecture

overhead, it should aid the security mechanism of the present system. This lowers the power

consumption of the mobile device compared to other solutions like anti-malware programs,

which often use scanning to detect malicious software (Landsmann, 2011).

3.2 Secure Startup

The Vrst stage of the architecture is a secure startup. This ensures that the mobile device boots

in a well-known and trustworthy state and provides a trust anchor. This means a chain of trust

is established directly at the start of the device. The Vrst step is to check the hardware for any

manipulations. Secondly, the Wash image of the device has to be checked for manipulations as

well as the bootloader for the OS on the device as the third step. These checks are performed

by using metrics that were taken and calculated earlier in a secured and trustworthy state and

comparing them to metrics the system takes at startup from the Washed image, bootloader and

operating system. The trustworthy metrics are stored inside a secured, immutable storage,

protecting them against manipulation and only accessible once the secure startup has Vnished

and the device is in a trustworthy state. To further enhance the security, the metrics are

encrypted, protecting them against recreation of equal entries to allow malicious application

to run. This procedure requires a hardware module to be present that is capable of taking

metrics, providing measuring and cryptography as well as a secure storage to save these values.

This hardware would hence establish the chain of trust, independed from the system running

on the mobile device, as it conVrms that the mobile device hardware, as well as the software

participating in the boot process (e.g. the bootloader and the OS itself) is trusted (Landsmann,

2011).

3.3 Program CertiVcation

To determine which applications are allowed to run on a mobile device the architecture

provides program certiVcation. This is exclusively allowed to the administrator of the mobile

device, so only a administrator is granted the control of which application are allowed to be

executed. This requires the hardware to provide authentication and veriVcation to ensure

only these person can certiVcate programs for the mobile device. A program is certiVcate

by providing data to represent the program, for example a hash of the binary, and other

information about the program to the cryptographic hardware. The hardware then uses the

provided information to created a certiVcate and signs it with its private key. This key, as well

as the public key, is sealed inside the hardware module. However, the public key is revealed

10

3 Security Architecture

only after the secure startup was successful to be used at runtime for program veriVcation.

(Landsmann, 2011)

3.4 Program VeriVcation

A program is veriVed by computing its hash value. If the program was previously certiVed

by an administrator, it’s certiVcate will be found in the list of all available certiVcates on the

device. As all the certiVcates are signed with the private key from the hardware module,

the certiVcates can be stored inside unprotected storage. When altering these certiVcate,

they would become invalid and the corresponding program won’t be executed anymore.

This requires the algorithm used to sign the certiVcates with the module’s private key to be

cryptographic strong so it is not possible to manipulate or recreate certiVcates successfully.

Once the corresponding certiVcate is found on the device, the program is veriVed using its

hash value and comparing it to the certiVcate, which is temporarily decrypted with the public

key. (Landsmann, 2011)

3.5 Program Execution Control and VeriVcation at Runtime

As the device is wanted to be kept in a trustworthy state, the chain of trust established with the

secure startup needs to kept valid. This is done through veriVcation at runtime. The OS handles

every program execution and thus has to verify programs before executing them. Only if the

veriVcation was successful, the OS is allowed to execute the program, otherwise the executed

will be aborted immediately. As the veriVcation is unsuccessful when no corresponding

certiVcate was found, meaning the program has either not been certiVed by an administrator

or was altered since the certiVcation, this prevents malicious programs from being executed

on the device and thus protecting it (Ugus und WesthoU, 2011).

3.6 Context Recognition

The last part in this architecture covers the ability to make the security context sensitive.

This means, that programs can be certiVed for speciVc contexts. Contexts can be bound to

lists of certiVed programs which are allowed to be executed in the context. As with program

certiVcation, the context creation is only granted to the device administrator. A context can

be anything the device administrator considers Vtting, the architecture does not put any

11

3 Security Architecture

restriction on this. This means, a context can be deVned with a wireless network, a speciVc

time, an incoming call, a check-in at a NFC station or a combination of multiple types.

12

4 Android OS

The Android OS1 is designed for mobile devices. It’s build upon a Linux2 kernel3, however, it

has stricter energy policies due to battery limitations. As well as the Linux kernel, the Android

kernel is open source software4 and can be obtained and modiVed. This is the main reason

why the Android OS is chosen for an example implementation since we need to modify the

kernel to implement some of the needed features.

4.1 Android Architecture

The Architecture of the Android OS is parted in 5 layers, the Linux kernel itself as the bottom-

most layer, on top of that is the library layer, next to the android runtime, the application

framework layer and the application layer are the top-most layers in this architecture. The

Linux kernel and the library layer are both implemented in a low-level programming language,

like C programming language5 orC++ programming language6, whereas the other 3 layers are

implemented in Java programming language7.

4.1.1 Linux Kernel

Core services, like security, memory and process management, network stack and driver

model, are provided by the Linux kernel version 2.6. This also serves as an abstraction layer

between the actual hardware of the device and the rest of the software stack.

1(operating system), a set of software that manages computer hardware and provides services for other software
(Wikipedia, 2012q)

2a modular, open source software OS (Wikipedia, 2012o)
3the main component of a OS, a bridge between applications and actual data processing at hardware level
(Wikipedia, 2012n)

4computer software that is available in source code form (Wikipedia, 2012p)
5a low level, general-purpose programming language (Wikipedia, 2012e)
6a low level, general purpose and object oriented programming language (Wikipedia, 2012d)
7an object oriented programming language(Wikipedia, 2012m)

13

4 Android OS

Figure 4.1: Android OS Architecture (Google Inc., 2008a)

4.1.2 Libraries

This layer provides essential libraries to the software stack, such as various media libraries

or implementations to render graphics or fonts. These libraries are implemented in the C

programming language or the C++ programming language and are used by various components

of the Android system.

4.1.3 Android Runtime

The Android runtime executes the various application that may be installed on a devices. It

contains the DVM8 and a set of core libraries which provides most of the functions available

in the core libraries in the Java programming language. An application will always run in its

own Process9 and within its own DVM.

4.1.4 Application Framework

This layer provides the libraries from the library layer as various Java frameworks to the user.

4.1.5 Application

The top-most layer includes the applications installed on the device. All these applications are

written in the Java programming language and are executed in the DVM.

8(Dalvik Virtual Machine), a stack-based virtual machine for Java programming language used in the Android OS
(Wikipedia, 2012f)

9an abstract instance of a computer program that is currently running (Wikipedia, 2012r)

14

4 Android OS

4.2 Boot Sequence

Since the Android OS is based on the Linux kernel, the boot sequence is similar to that of

the standard Linux kernel. At Vrst, a bootloader will initialise very low-level systems before

loading the actual Linux kernel. This kernel then initialises the hardware, driver and Vles.

Figure 4.2: Android OS Boot Sequence (Google Inc., 2008a)

1. At Vrst, the bootloader loads the Linux kernel and starts the Init process.

2. The Init process then starts Linux daemons10, e.g. the daemon for the Android Debug

Brigde (ADB).

3. After the daemons are started, Init starts the Zygote process.
10A daemon is a low level process sitting on top of the hardware abstraction layer and establishing communication

with the hardware

15

4 Android OS

4. Next, Init starts the runtime process.

5. The runtime process starts the Service Manager and registers this as the default service

manager.

6. After the runtime Vnished the initialisation it sends a request to the Zygote to start the

system server process.

7. Receiving the request, Zygote forks itself and starts the System Server as the Vrst process

running inside the DVM.

8. The System Server starts the Audio and Surface Flinger to be able to control the display

and audio output device.

9. These register themselves at the Service Manager so they can be used by other higher

level applications.

10. After this, the System Server starts the Core and Hardware Services.

11. These register themselves then to the Service Manager as well.

After this, the system is ready to execute the Vrst activity. This activity is the home application,

which shows the home screen. This is done by the activity manager, that sends a request to

Zygote to start the home application.

4.3 Dalvik Virtual Machine

The DVM is the main part of the Android runtime environment. It was designed to Vt the

needs of a mobile device, which means it’s capable of running on a slow CPU11, little RAM12

and doesn’t necessarily need swap space13. Another constraint was the need to be able to

run on battery power only, as this is the power source of all mobile devices, as of now. In

order to meet these constraints, the DVM itself is optimized, as well as the compiled Java

binary.(Google Inc., 2008b)

11(Central Processing Unit), the main part of a computer that computes information and commands of applications
(Elektronik-Kompendium.de, 2012a)

12(Random Access Memory), memory to store the data of running applications in (Elektronik-Kompendium.de,
2012b)

13memory that is used when the RAM is full

16

4 Android OS

4.3.1 Memory Optimizations

At the beginning of the development of the DVM it was speciVed that it should be able to

run on any mobile device which oUers at least 64MB of RAM. However, as the system kernel

itself and the system services needs RAM as well, the DVM needs to be able to run with as

less than 20MB of RAM. Additionally, due to the Android security model, which relies on

process separation, meaning that each application is running as a separate process with its

own address space and preventing applications to interact or interfere each other at memory

level, the DVM needs to manage this as well. (Google Inc., 2008b) One step to reduce the

needed memory was a new Vle format called .dex Vle. A .dex Vle is a Dalvik executable which

consumes less memory than a standard Java .class Vle. This is achieved by storing multiple

classes14 inside a single .dex Vle and sharing identical values as opposed to having a .class Vle

for each class with possible redundant data inside them.(Google Inc., 2008b) Another step that

was taken was to share libraries between applications. This means, that a library is loaded

only once in the memory of the device to be used by any other application that will be running.

Following that, the DVM implements a copy-on-write policy, which means that as soon as an

application writes something to shared data, the data is copied into the local application heap

and modiVed there. This reduces not only memory consumption, but also time consumption

as data is only copied when needed.(Google Inc., 2008b) The garbage collector15 of the DVM is

optimized as well. As the DVM shares as much data between processes as possible, the garbage

collector must consider this. However, since every application is running as a separate process

with separate heap16 and in its own instance of a DVM, each app has its own, independent

garbage collector that must respect sharing. To achieve this, the mark bits17 of the objects in

memory are stored separately instead of with the objects. (Google Inc., 2008b)

4.3.2 CPU Optimizations

To minimize CPU work time, an application is optimized when it’s installed on the device.

These optimizations include byte-swapping and padding, to improve the memory layout which

allows faster memory access. Static linking is also done during install-time, which means that

symbolic links to method may become a simple oUset in a virtual function table18, as well as

14an entity in object oriented programming
15an algorithm that manages memory in programming languages such as the Java programming language. It

automatically deletes memory that isn’t used anymore
16memory with a dynamic size used by an application
17used by a garbage collector to mark objects that are in use
18a table used by object oriented programming languages to determine which function has to be called in case of

inheritance

17

4 Android OS

inlining19 native functions, so that function calls can be saved. Another optimizing is pruning

of empty methods to avoid calling these.(Google Inc., 2008b)

4.4 Starting an Application

When the system needs to start an application (e.g. because the user of the device starts an

application), the system Vrst checks, whether this application is already running and just

brings it to top if it is. Otherwise, the system needs to create a new process for the new

application. In order to save performance, it’s Vrst checked if a unused process is already

available, which is then used. When there’s no unused process available, the system needs to

create a new one, which is done using the "zygote process". After starting, every application is

executed in its own user-space, with its own, unique username.

4.4.1 Zygote Process

As mentioned in the last section, the Android system starts an process called "zygote". This

process is the DVM, which is part of the Android runtime and used to execute other applica-

tions. However, this process is a blank instance of the DVM, as it doesn’t execute anything.

Instead, it is used to created new instances of the DVM for execution by forking20 the "zygote"

process and loading the application data into the newly created process. (Google Inc., 2008a)

The newly forked process shares its heap with the zygote process. This saves the system from

reserving heap space for an application that doesn’t write data to the heap or alter the data

on it. As soon as this happens, the heap is copied and the new process gets his own heap, on

which the application can write and modify data. Since the memory pages are directly copied

from the zygote process, the memory layout remains the same. (Google Inc., 2008a)

4.5 Binder

The Android system provides an interface called binder interface, which is used to establish

IPC between applications. This interface is a low level implementation inside the kernel

space21 of the Android system. The Binder interface used in the Android system origins

from the OpenBinder project, which runs under Linux to extend the existing IPC22.The

19an optimisation where the call to a function is replaced by the code of the function that would have been called,
thus saving the actual function call

20creation of a new process using the fork() system call
21memory area in which the kernel and its modules are operating, opposite to user-space
22(Interprocess Communication), a method to exchange data between processes (Wikipedia, 2012j)

18

4 Android OS

Binder framework consists of 3 layers. The highest layer represents the API23 for Android

applications and is located inside the Java layer of the Android system. The next layer is a

middleware, which is the user-space implementation and the lowest layer is a driver in kernel

spaceSchreiber (2011).

4.5.1 AIDL

The AIDL allows developers to deVne a programming interface that both, the client and the

service, agree upon to communicate with each other to using IPC. Since processes cannot

access the memory of other processes, the data must be decomposed into data the glsOS can

understand, such as primitive data types, and be marshalled by it to the other process. To

simplify this, the AIDL is used to generate the necessary code to handle the marshalling.

4.5.2 Java API

As the top layer, the Java API oUers the features of the Binder to the applications inside the

DVM. The kernel itself, as mentioned in the last section, cannot handle Java class objects,

which have to be decomposed. In order to achieve this, the Binder framework provides a Java

interface called Parcelable. Any Java class that has to be send through a Binder interface has

to implement this interface. When data is send through a Binder, this is called a transaction.

During a transaction, the data sent from one application to another, the data is composed inside

parcels. The Parcelable interface requires the implementation of a function and a CREATOR

interface. The function is used when an object of that class needs to be decomposed into

primitive data. This data is then, also by this function, saved inside the parcel, so the object

can be sent to the receiver. When the receiver receives the parcel and wants to retrieve the

sent object from it, the CREATOR interface of the objects class is called. This interface has to

be implement to retrieve the primitive data from the parcel an build the Java object from it.

4.5.3 Middleware

The user-space facilities are implemented inside the middleware using the C++ programming

language. This middleware is used by the Java API through the JNI. The middleware imple-

ments the marshalling and unmarshalling for transforming object information to a parcel

of data. In Addition, the middleware also implements interaction with the Binder kernel

driver and the shared memory Schreiber (2011). Since the middleware is implemented in C++,

23(Application Programming Interface), a speciVcation intended to be used by software to communicate with each
other or to provide services to other applications (Wikipedia, 2012b)

19

4 Android OS

programmers can also use the Binder interface when they are using JNI instead of pure Java to

create their applications. However, they have to relinquish features of the Java API layer in

that case.

20

5 Implementation of the Security
Architecture

This chapter covers the security architecture in detail as well as its sample implementation. At

Vrst, the security architecture will be introduced, with its functionality and the work-Wow of

the components in it. Following that, an implementation of this architecture is shown with

the modiVcations that were made to any kernel modules and coverage of new modules added

to the kernel.

5.1 Security Architecture

The security architecture that will be proposed in this section follows closely the assumptions

made in chapter 3. A MTM, that were introduced in chapter 2, will cover the hardware

requirements of the architecture. Even though no MTM has been manufactured as of now,

it can be expected that MTM hardware implementations will possible emerge in the near

future. As discussed in chapter 2, the security architecture relies on a chain of trust which

is established when the device starts. This makes a secure boot necessary as this ensures

that the hardware as well as software was not tampered with and the device will be in a

well-known trustworthy state after the boot. This requires the MTM to be set up in to MRTM

mode at manufacturing time, as a MRTM performs a secure boot procedure when the device is

activated. In addition, a MRTM allows to sign RIM certiVcates, that are used to control the

execution of applications. The secure boot procedure of the MRTM meets the requirement

of the secure startup mentioned in chapter 2. However, as this check only occurs at the

activation of the device, any threats and manipulations happening during runtime will not be

detected by the MTM until the next boot. As a mobile device has only limited computational

power and its power source is usually a battery installed in the device, a continuous scan for

threats is not suitable. Establishing a black-list1 to mark malicious software and block the

execution of it when the software is started would avoid having a continuous scan. However,

1a list of entries indicating not accepted entries, contrary to a white-list

21

5 Implementation of the Security Architecture

as new malicious software arises, the black-list will have to be updated every time. In addition,

when the black-list is corrupted in any way or missing, the security architecture would be

nulliVed. Therefore, a white-list approach is chosen to be used for veriVcation. Only if a

application is listed in the white-list it will be allowed to be execute. Any other software

will be prevented from execution. The white-list consists of entries which in turn consists

of a RIM certiVcate of the corresponding software signed by the MRTM on the device. This

white-list represents a trusted application list TAPL2 that is maintained by the administrator

of the mobile device (Landsmann, 2011). The device administrator can request the MRTM to

create a RIM certiVcate for a software using previously calculated hash which is then used as

reference. This corresponds to the security architecture proposed in chapter 2. This reference

hash is used to verify the software before it is started on the device. The TAPL is looked up

to Vnd the corresponding RIM certiVcate in it, when the certiVcate is found, the hash of the

software is calculated at load-time and compared to the reference hash of the certiVcate. Only

if the hash value matches the reference value, the software is allowed to be executed. As

shown in chapter 2, the MRTM needs to be extended to perform this runtime veriVcation to

keep the chain of trust valid as well as the OS, in this case the Android OS, has to support the

MRTM attestation abilities. This means that every execution request of a software needs to

hook up an attestation. As every execution of an application leads to the creation of a new

process (cf. Chapter 4), the attestation is done at this point. Every process is also created

as a child of the calling process. When a new process is created, not only the certiVcate of

the program that will be executed is veriVed, but the calling process is veriVed by another

function as well. This prevents applications that slip through the Vrst attestation from creating

child processes. Additionally, to avoid uncertiVed software from being executed, the scheduler

veriVes a process before giving resources to it. Chapter 4 introduced the Android OS as based

on the Linux kernel with modiVcations for Android and mobile devices. It was also stated,

that Android applications are running inside the DVM, by creating a new process, created

by the kernel, so that every application is running in its own process. The process creation

is secured by providing attestation functions inside the kernel and inside the DVM. Both

attestation point are secured by the secure boot procedure of the MTM, as this would detect

an manipulations that would allow bypassing the veriVcation. The veriVcation, attestation

and management for the security architecture are mainly implemented as kernel modules.

These modules also provide an interface to interact with them. This is necessary because the

applications started inside the DVM are not handled by the kernel, but by the Android OS by

providing functions to load and start an application inside the DVM. To secure this, the DVM

2(Trusted Application List), a list that contains trusted applications that are allowed to run on the device

22

5 Implementation of the Security Architecture

is extended with functions which interact with the kernel modules when an application is

to be started. Creation of native processes are still fully handled be the kernel and directly

veriVed by the security architecture modules. This allows the security architecture to protect

all possible process creations, whether natively or through the DVM, on the Android OS.

(Landsmann, 2011)

5.1.1 Architecture Modules

The introduced security architecture is implemented based on Google Inc.s Android OS in the

version 2.3, commonly known as "Gingerbread". The following Vgure shows the modules of

security architecture as well as their interaction inside the OS.

Figure 5.1: Security architecture modules location and interaction (Landsmann, 2011)

23

5 Implementation of the Security Architecture

Security Architecture Keys

This section shows the keys and security primitives the security architecture relies on as

described in (Landsmann, 2011):

• KeyMTMAuth: In the proposed security architecture, this key is used to authenticate

requests from an administrator of the MTM.

• KeyHMAC: This key is used for authentication and veriVcation by PAM and PVM.

• KeyPubSig: This key is used by the AVM to request the MTM to verify a hash against the

signed TAPL entries.

• KeyPrivSig: This key is sealed inside the MTM and never released as it’s exclusively usable

and accessible by it. The MTM uses this key to sign a given hash value.

MRTMWrapper

During creation of this thesis, no MTM hardware implementation is currently available.

To decouple the security architecture from a real MTM hardware, a kernel module was

implemented. This module acts as a substitute for a real MRTM and provides the necessary

interfaces to the security architecture. The kernel loads this module at power-on together with

the rest of the OS. This substitution Vts the requirements made in chapter 3 as it makes the

keys from the key hierarchy accessible within the kernel and provides cryptographic functions

needed for the signing and veriVcation mechanisms. (Landsmann, 2011)

Trusted App List

The TAPL contains the RIM certiVcates of the trusted applications. This module provides

function to interact with this list, such as adding and removing RIM certiVcates from it and

handing out the TAPL to a requesting entity like a kernel module.

Application VeriVcation Module

This modules veriVes the computed hash value of the software against the RIM certiVcates

contained in the TAPL. For this, the MTM requested to verify the calculated hash value against

the RIM certiVcates. The module then returns an error code in the case of veriVcation failure,

otherwise a success code is returned.

24

5 Implementation of the Security Architecture

Process Authentication Module

The PAM computes the HMAC using the PID of the process. This is done by using a secret

key KeyHMAC stored inside the MTM.

Process VeriVcation Module

The HMAC computed by the PAM of the process is used by this module to verify the process.

This is done by computing the HMAC of the process again, in the same fashion as done in

the PAM. If both HMACs match, the process is allowed to be scheduled and to create child

processes.

User Interface

The user interface provides the features of the security architecture to the administrator. It

passes signing request containing the hash of a program and the authentication key of the

administrator to the MTM. If the authentication was successful, the MTM returns a RIM

certiVcate which is added to the TAPL. It’s also capable of managing request targeted at the

TAPL.

5.1.2 System Integration

The integration of this security architecture into the system is based on four steps, the

creation of new processes, starting of new applications, the boot sequence and, to allow the

administrator to interact with the architecture, an UI. This integration is shown here as it’s

described in (Landsmann, 2011).

Boot Sequence

After the MTM has successfully Vnished the secure boot procedure up to the state 8 in the

Vgure above, the kernel modules of the security architecture are loaded into the kernel. The

kernel then starts the INIT process, which calls the do_fork() function. The PVM is hooked

into this function to verify processes before allowing them to be forked. As the INIT process

is the Vrst process being created and its PID is 1, the PVM can identify this process and

skip the veriVcation. The PAM then computes and endorses the INIT process with a HMAC

and returns a success code. After the INIT process is started, no veriVcation is skipped to

ensure the trustworthiness of the device. The OS repeats this procedure until it’s fully loaded.

(Landsmann, 2011)

25

5 Implementation of the Security Architecture

Process Creation

As mentioned in chapter 4, process creation is done using the fork() system call. This function

calls the do_fork() function for the actual process creation. The PVM is hooked into the

function to verify the creation of new processes. For this. it requests the KeyHMAC from the

MTM and computes an actual HMAC from the PID of the process using this key. The module

then compares the computed HMAC with the endorsed HMAC. If both values match, a new

process is created. The PAM now requests the KeyHMAC from the MTM as well. It’s used to

compute a HMAC for the newly created child process and endorse it with it. (Landsmann,

2011)

Starting a Software

Chapter 3 shows that the start of a software is handled diUerent by Android compared to

Linux. To further ensure the trustworthiness of the device, the security architecture has to be

hooked into both mechanisms.

Linux After a new process is created according to the mechanism described in the last

section, the exec() system-call is called. At this point, the binary of the application is used to

calculate a hash value and the AVM requests the KeyPubSig from the MTM as well as the TAPL

from the TAPL module. The MTM is then called to verify each entry using the previously

requested key. If the veriVcation is successful, meaning the TAPL contains an entry for the

application, the exec() call is continued, resulting in starting the software. Otherwise the

system-call is aborted resulting in termination of the execution. (Landsmann, 2011)

Android An Android application is executed inside a DVM. A new DVM process is created

as described in the previous section. The DVM then receives the information about the

application that is started. Similar to the native start of an application in Linux, a hash of the

binary is calculated inside the DVM and passed to the AVM. The AVM then again requests

the KeyPubSig from the MTM and the TAPL from the TAPL module. The MTM is then called to

verify each entry using the previously requested key. If the veriVcation is successful, the DVM

is allowed to execute the application, otherwise the start is terminated. (Landsmann, 2011)

Administration The administration is done using the character device provided by the

architecture. This device passes requests from the administrator, when the KeyMTMAuth is used,

to the AppSigningUI module. This module calls the MTM to verify the administrator using the

26

5 Implementation of the Security Architecture

KeyMTMAuth. On a successful veriVcation, the AppsSigningUI module continues processing the

request. A request can be one of the following:

• Receiving the TAPL

• Signing and adding the signed value to the TAPL

• Removing a signed value from the TAPL

If the authentication fails, the AppSigningUI passes the error code to the character device

which the administrator can receive it from. (Landsmann, 2011)

5.2 Implementation

Martin Landsmann implemented the security architecture described in the last section. His

implementation closely follows the modules presented previously and partly ties up with (Ugus

und WesthoU, 2011). The implementation is targeted at Android OS version 2.3.3, commonly

known as "Gingerbread", running on a Linux kernel version 2.6.35. He modiVed the DVM to

support the security architecture as well as the kernel. These modiVcations will be covered in

this section. In addition, several new kernel modules were added to implement the security

architecture. (Landsmann, 2011)

5.2.1 Security Architecture Modules

To implement the security architecture, Martin Landsmann implemented several modules

resembling the modules described in the previous section. These kernel modules are introduced

here.

MTMModule

This module represents the interface between the security architecture and a real hardware

MTM. Upon loading, the module Vrst performs an integrity check if the OS and compares it

with the previously MTM computed values by asking it to handout the corresponding RIM.

Once the check is successful, the module retrieves the keys from the MTM and is able to provide

it functions, letting the MTM sign and verify SHA256 values, to the other modules. Otherwise,

if the check fails, this module unloads itself. As there is currently no MTM hardware available

in mobile devices, these checks are skipped and assumed to be successful.

27

5 Implementation of the Security Architecture

Key Storage Module

The Keys KeyPubSig and KeyHMAC are provided to the security architecture by this module.

When this module is loaded, it requests the MTMModule to reveal the keys and later arbitrates

these keys to the other modules.

TAPL Module

The TAPL module manages all TAPL entries. Each entry consists of a signed SHA256 value

and the Vlename of the corresponding binary Vle. As no MTM hardware is available yet, no

genuine RIM certiVcates can be used. This module also provides the interface to interact with

the TAPL.

Autoload Module

This module provides the TAPL module with the information of the stored TAPL on the

device. It reads the Vle containing the information and uses the interface provided by the

TAPL module to add the entries to the TAPL.

AVMModule

This module provides the veriVcation of a given SHA256 value. The key storage module is

requested to handout the KeyPubSig and the TAPL is requested from the TAPL module. The

SHA256 values contained in the TAPL are then veriVed against the given SHA256 value using

the MTM module. After the veriVcation, the result is returned to the caller.

UI Module

This module provides an interface for the administrator to interact with the security archi-

tecture. Communication between the security architecture and the administrator is done by

connecting to the character Vle /dev/sec_device and using the ioctl(...) system call. Requests are

marshalled into a special format and is send to the character device. This device unmarshalles

the request and returns the result in the same way. This module supports commands to:

1. sign a SHA256 value and add it to the TAPL

2. remove a entry from the TAPL

3. receive the content of the TAPL

These commands are identiVed by command numbers also passed to the character device.

28

5 Implementation of the Security Architecture

Verify Bridge Module

5.2.2 Kernel ModiVcations

To implement the security architecture, the kernel has to support the features provided by the

previously presented modules. This was done by Martin Landsmann with kernel modiVcation

which will be shown in this section. (Landsmann, 2011)

Process Creation

The creation of new process has been modiVed in a way that the PAM and PVM modules

are used by the fork() system call. These modules are used to perform authentication and

veriVcation operations. This new behaviour is illustrated in the following Vgure and described

with the bullet points 1 to 7.

Figure 5.2: Visualisation of the Process Creation (Landsmann, 2011)

29

5 Implementation of the Security Architecture

1. The process creation is invoked by a process, the creation is performed inside the

do_fork() function

2. Before the caller process is cloned, the HMAC of the calling process is veriVed by the

PVM

3. The do_fork() function continues when the veriVcation is successful

4. The child process is cloned

5. The HMAC for the child process is computed by the PAM

6. This HMAC is stored inside the child process’ task_struct

7. The child process is successfully created and returned by the fork() system call

If the veriVcation of the parent process’ HMAC fails, the function returns with -EACCESS

error code and the creation of the child process is terminated. This procedure is done for all

process creations except the INIT process. This process is veriVed by the secure boot and is

assumed to be trustworthy automatically. However, as with the other processes, the HMAC is

still computed and stored inside the task_struct. (Landsmann, 2011)

Binary Execution

The kernel was extended to calculate a SHA256 value of the binary inside the exec() system

call. This value is then passed to the AVM for veriVcation. If the veriVcation is successful, the

execution of the binary is continued, otherwise it’s terminated with an error code. (Landsmann,

2011)

5.2.3 DVMModiVcations

The DVM was also extended with a veriVcation function. When the DVM loads a binary,

it’s SHA256 value is computed and passed through the veriVcation bridge to the security

architecture. The security architecture then veriVes the SHA256 value utilising the AVM.

At a successful execution the application is executed as normal. When the veriVcation fails,

an exception is thrown within the DVM, which terminates the loading of the application.

(Landsmann, 2011)

30

6 Implementation of the Context
Recognition

The security architecture introduced in the last chapter is now extended to be context sensitive.

This chapter shows the architecture as well as the implementation of this extension. The

implementation also covers further modiVcations done to the modules created for the basic

security architecture.

6.1 Security Architecture

The security architecture proposed in this chapter extends the architecture described in

the last chapter with an element to act in regard of deVned contexts. To ensure the most

Wexibility, a context may be deVned in any suitable way with the only restriction that it must

be recognisable, e.g. a wireless network or a gps location. This mechanism, the recognition

of contexts and acting upon it, is decoupled from the rest of the security architecture. This

provides advantages such as being able to easily change the underlying security architecture.

The main advantages however is, that a corrupted context recognition does not aUect the

security architecture it is based upon. The context sensitivity is provided by multiple TAPLs.

These TAPLs are managed by the security architecture, the context recognition cannot alter

them in any way, it is not able to add or remove entries from any TAPL stored in the security

architecture. This is done by a management application that provides this functionality to the

user, as described in the previous chapter. This extension to the architecture is only capable of

managing contexts and switching the current active TAPL in case of a context change. Similar

to the security architecture, the architecture of the context recognition provides an interface

to manage the contexts. The device administrator can send requests to the architecture to:

• Add a context

• Remove a context

• Retrieve all contexts

31

6 Implementation of the Context Recognition

• Retrieve the currently active context

The device administrator can create an arbitrary amount of contexts and add them to the

context recognition. Additionally, he is able to create an arbitrary amount of TAPLs as well.

The amount of created TAPLs and contexts does not have to be equal. A context can then

be connected with a TAPL and, upon recognition, the connected TAPL will be set as active.

This has the eUect, that only applications listed in the currently active TAPL will be able to

start. This mechanism is provided by the security architecture. In addition, when the TAPL is

switched, the architecture checks if any application that is running needs to be terminated.

This is the case when the application is not listed in the TAPL, as this means that the software

is not allowed to run in this context. This architecture can be implemented in many ways

as low-level access is only needed to communicate with the kernel. Depending on how the

architecture is implemented, advantages and disadvantages are gained. Implementing the

architecture as a low-level software, e.g. a kernel module, can improve the performance and

security. However, the implementation can be harder to maintain and extend. On the other

hand, implementing this on a higher level might make it easier to bypass the architecture, but

also easier to maintain and expand.

6.2 Architecture Modules

Similar to the security architecture, the context recognition is based upon Google Inc.s Android

OS version 2.3. The context recognition consists of mulitple modules which are introduced

and described in this section as well as their communication between each other and the rest

of the security architecture.

6.2.1 Context Recognition Service

The context recognition service is the central part of this architecture. It communicates with

the rest of the security architecture in case of contexts changes and loads up the context

recognition itself as well. Upon startup, the service reads a Vle containing the context data

stored on the mobile device and loads the contents of it. The loaded contexts from this Vle will

be added to context observers. This Vle is only read on startup, once loaded, the service only

saves new contexts to the Vle, always completely overwriting it. After the initial startup is

Vnished, the service waits for notiVcation from the context observers that a new context is

active and switch the TAPL. This service is the only part of the context recognition that will

ever communicate the security architecture implemented in the kernel.

32

6 Implementation of the Context Recognition

6.2.2 Context Observer

A context observer is a module to observe speciVcally one type of context. These modules

are independent from each other and from the service. An arbitrary amount of contexts can

be added to an observer of the matching type, e.g. a context for wireless networks is added

to an observer for these contexts, not to an observer of a diUerent kind. Once the observer

recognises one context to be active, it notiVes this context about it state change. Additionally,

a context observer may be implemented in any way that seems suitable Vtting for the use case.

The only restriction is that is has to inform the corresponding contexts about state changes.

6.2.3 Context

A context represents an abstract deVnition of any environmental information the mobile device

can be, or is, in. These may be based on any information that the mobile device can collect or

otherwise compute, e.g. a wireless network or the current GPS location. A context may only

be added to a matching observer. Furthermore, a context is always contained in at least one

context group. Once the context is notiVed by the observer that its active state has changed, it

delegates this notiVcation to every context group it is contained in.

6.2.4 Context Group

An arbitrary amount of contexts can be grouped to a single entity inside this architecture.

This oUers the possibility to deVne a context that is only active, when multiple sub-contexts

are active. A use case for this might be a location at a certain time. Instead of deVning a new

context with a new observer Vtting only this requirement, it is possible to group a location

context and a time context to a single entity. To keep the communication between the modules

simple without any exceptions, a context which can be represented by a single information is

stored inside a context group as well. When a context group receives a notiVcation from one

the contexts contained by it, it is checked if the context group is active by receiving the active

state of all context inside this group. Only when all contexts are in an active state, the group is

active as well. Once the group receives a notiVcation that a single context inside this group

has became inactive, the whole group becomes inactive. The context group also contains the

id of the TAPL it is bound to and will become active when the context group becomes active.

6.2.5 User Interface

As the contexts and contexts groups are stored inside the architecture, an interface is needed

to manage these. Only the device administrator is able to do this, as the security architecture

33

6 Implementation of the Context Recognition

can be corrupted when an attacker changes the data inside the architecture. The user interface

provides the following functionality:

• Adding of contexts

• Removing of contexts

• Creating context groups

• Deletion of context groups

• Adding contexts to groups

• Removing contexts from groups

• Retrieve all contexts

• Retrieve current active context

• Save data

• Authorising

• Deauthorising

This allows the device administrator to control and manage the contexts and groups inside the

architecture. The user interface however does not expose the original data stored inside the

architecture to the administrator, it always creates copies which are then passed through. In

addition, incoming data, such as new contexts, are also copied. This decouples the architecture

from external changes due to exposing or receiving original data.

6.3 Implementation

The Implementation of the previous introduced concept is splitted into two parts. One

part covers the necessary work done in the kernel modules, such as preventing unwanted

applications to be executed by the system, the other part covers the CRS, which is observing

the environment for possible context changes. This example implementation is targeted at

the Android OS version 4.0, which means, that the kernel modules are implemented using

the C programming language, whereas the CRS is implemented using the Java programming

language. This Vgure shows the communication inside the CRS and to other applications.

The two separated boxes visualise two separate application on the same mobile device. The

34

6 Implementation of the Context Recognition

Figure 6.1: The communication model

right application is the implementation of the CRS, the left box stands for any application

that needs to communicate with it. As shown, the communication to other applications goes

through the binder interface, which oUers several features for extern applications to interact

with the CRS. The core of the service communicates with context observers, which report

back as soon as a context change has happened to inform the service about this. An observer

itself doesn’t communicate with other observers. When the core receives an update from an

observer, it sends a broadcast intent to the android system to inform extern application that

the context changed. The decision to implement the architecture at a higher level, inside the

Android runtime was made due to maintainability reason. A implementation like this can be

easily upgraded and patched over the air. If the implementation would have made using kernel

modules, the mobile device would have to be Washed with a new image each time an update

needs to be installed.

35

6 Implementation of the Context Recognition

6.4 Context Recognising Service

This service is implement by using modules for observing the enviroment and ensuring

communication to other applications using the Android binder interface. The service itself is

implemented as an Android service and thus runs as a background process. It is started after

the device Vnished its boot procedure and initialises itself and loads a speciVc Vle from its

directory. During the initialisation, all available context observers are added to an internal

list. The Vle, which is loaded next, contains the information of all contexts, which were added

for observing to the service. The contexts are loading one after another and are added to the

correct observer, when a Vtting observer was found during initialisation. If none observer for

a context is found, the service prints a warning to the ADB and ignores the context. During

runtime of the service, a management application may connect to it to add new contexts, get

all contexts or get the current active context. This is done using the binder interface.

6.4.1 Context

Contexts are used to deVne certain environmental states, such as existing wiV-networks, GPS

coordinates or times. This example implementation implements two diUerent contexts:

• A context representing wireless networks, calledWiVContext

• A context representing a time-frame, called TimeContext

The WiVContext represents a wireless network by its broadcasted SSID and is valid when

the mobile device is within the range of a wireless network with the speciVed SSID. The

TimeContext uses a start time and an end time to represent a time-frame. The context is

active in between these two times. A special case of a context is the implementation of a

common context. This is a context, that is always valid and is added to the service as soon

as it’s launched, either by an external application or by the boot complete receiver. It was

implemented in order to have always at least one valid context, even if there aren’t any

other contexts in the server or if none other context is valid at the moment. This eliminates

the requirement to handle the special case of having no valid contexts. However, as the

common context is always valid, it can not be sent through the Binder interface, as this would

allow extern applications to create situations in which a context, that would allow unwanted

applications to run, would be valid.

36

6 Implementation of the Context Recognition

6.4.2 Context Group

To establish a possible logical AND relation between any given number of diUerent contexts,

context groups are able to group contexts to a single semantic entity. Context groups, like

contexts, are identiVed with an unique name and can hold an arbitrarily number of contexts.

A context will, as soon as the respective context observer changes their valid state, notify all

groups it is in. The group will then check to see if the other contexts inside the group are

valid as well and if they are, it will set it’s own valid state to true and notify the service about

this. A context group is only valid when all the contexts it contains are valid as well, as long

as there is at least one invalid context, the whole group will be invalid. Context groups also

contain the TAPLID, which is used to identify the TAPL inside the low level libraries of the

implementation. Contexts which shall not stay in a logical AND relation with other contexts,

are added to groups that only contain that single context. An example of this is the common

context. As already stated, that context is used to have a valid context at any given time. At

the start of the service, the common context is added to a context group as its only element.

This context group thus is always valid. In addition, this special context group has a special

TAPLID that allows the mobile device to run normally without any restrictions.

6.4.3 Context Observer

A context observer provides an abstract interface to the CRS, the purpose of this class is

to observe the environment and check if a context is entered or left. Upon start of the

service, all available context observers are loaded and will receive contexts to observe. Every

implementation of a context observer has to expose the kind of context it is able to observe,

so that the CRS can choose the correct observer for a context. The main part of a context

observer, the observing of contexts, can be implement independ from the rest of the service or

other context observers.

6.4.4 Context Provider

When the context recognising service loads the Vle containing the context and context group

data, this Vle is loaded per line. Each line is describes one element that needs to be created. The

context recognising service passes the line to the context provider which extracts the necessary

information from it. Through reWection, the class representing the context or context group is

found and the describing elements are passed to the constructer of this class. The constructor

then creates the class using the description from the context provider. This simpliVes adding

new contexts to the implementation as it reduces the amount of work needed to do this. When

37

6 Implementation of the Context Recognition

a new context needs to be added, it only has to be able to store a text-based description of it

inside a Vle and provide a constructor that is able to recreate the context from this description.

In addition, a context observer needs to be added for this context.

6.4.5 Boot Complete Receiver

The boot complete receiver is an essential part of the service. As shown earlier, the Android

system sends various broadcast intents through the system, which can be received by appli-

cations using broadcast receivers. The service comes with a broadcast receiver, which waits

for the BOOT_COMPLETED broadcast intent sent by the system after the device Vnished its

booting procedure. Upon receiving this intent, the boot complete receiver starts the CRS. As

of version 4.0 of the Android system. the behaviour of receiving the BOOT_COMPLETED

broadcast intent has changed. Prior to version 4.0, this intent was always received by an

broadcast receiver that was registered for it. This however, made it possible for malware to

be started at system start without notice by the user. To prevent this, all applications newly

installed on the device are in the internal pause status, which is only changed when the user

starts the application on its own. The BOOT_COMPLETED intent however, is not received by

broadcast receivers which belong to an application that is in the pause status. This causes the

boot complete receiver of the service to fail by not receiving the broadcast intent unless the

service was started by the user once. This doesn’t need to be done by the user directly, instead

it is also possible that an application, that was started by the user, starts the service.

6.4.6 Binder Interface

The Android system provides various ways to implement IPC, the binder interface is a low

level implementations of this. The CRS uses this interface to establish a communication with

an external application, such as an management application. Through this interface, it’s

possible to add new contexts and context groups to the service as well as remove existing

contexts and context groups from the service, receive all currently added contexts and groups

from the service and receive the current active context group from the CRS as well as adding or

removing contexts to or from groups. The modiVng requests require the device adminstrator to

be authorised before being executed. To avoid exposing the original inside the service and thus

making modiVcations possible, this interface only returns copies of the data, never the original

hold in the service. In addition, an application that wants to connect with the CRS during its

execution time has to ask the user for permission to do this before installing. This makes it

possible to warn the user that the application that is about to be installed, may connect to the

38

6 Implementation of the Context Recognition

service and add or remove contexts. If that permission is not granted, an exception is thrown

by the Android system.

6.4.7 Context

Contexts are used to deVne certain environmental states, such as existing wiV-networks, GPS

coordinates or times. The example implementations demonstrates the use of such a context

class by implementing wiV-contexts and time-contexts. WiV-contexts are recognized by the

SSID broadcasted by wiV-networks in the surroundings and is valid as soon as a wiV-network

with the speciVed SSID is found, whereas time-contexts are deVned with a start-time and an

end-time in which between the context is valid. A context has a unique name, which is used

to distinct diUerent contexts and is also used by the Binder interface to retrieve a context from

the service. A special case of a context is the implementation of a common context. This is a

context, that is always valid and is added to the service as soon as it’s launched, either by an

external application or by the boot complete receiver. It was implemented in order to have

always at least one valid context, even if there aren’t any other contexts in the server or if

none other context is valid at the moment. This eliminates the requirement to handle the

special case of having no valid contexts. However, as the common context is always valid, it

can not be sent through the Binder interface, as this would allow extern applications to create

situations in which a context, that would allow unwanted applications to run, would be valid.

6.4.8 Context Group

To establish a possible logical AND relation between any given number of diUerent contexts,

context groups are able to group contexts to a single semantic entity. Context groups, like

contexts, are identiVed with an unique name and can hold an arbitrarily number of contexts.

A context will, as soon as the respective context observer changes their valid state, notify all

groups it is in. The group will then check to see if the other contexts inside the group are

valid as well and if they are, it will set its own valid state to true and notify the service about

this. A context group is only valid when all the contexts it contains are valid as well, as long

as there is at least one invalid context, the whole group will be invalid. Context groups also

contain the TAPLID, which is used to identify the TAPL inside the low level libraries of the

implementation. Contexts which shall not stay in a logical AND relation with other contexts,

are added to groups that only contain that single context. An example of this is the common

context. As already stated, that context is used to have a valid context at any given time. At

the start of the service, the common context is added to a context group as its only element.

39

6 Implementation of the Context Recognition

This context group thus is always valid. In addition, this special context group has a special

TAPLID that allows the mobile device to run normally without any restrictions.

6.4.9 Context Observer

A context observer provides an abstract interface to the CRS, the purpose of this class is

to observe the environment and check if a context is entered or left. Upon start of the

service, all available context observers are loaded and will receive contexts to observe. Every

implementation of a context observer has to expose the kind of context it is able to observe,

so that the CRS can choose the correct observer for a context. The main part of a context

observer, the observing of contexts, can be implement independent from the rest of the service

or other context observers.

6.5 Library Implementation

This part covers the implementation to control the execution of applications on the mobile

device. When a context change happens, the service notices this and calls the low level library

implementation to handle this context change. The id of the now valid TAPL is passed as a

parameter from the service. The low level implementation then sends a message to the kernel

module that handles the current set of TAPLs with the new id received from the service. Upon

receiving such a message, the module switches the current TAPL, which controls the execution

of applications that will be started in the future. However, as it can occur that application

that are prevented from executing are already running, a check is necessary to Vnd these

applications. If a blocked application is running at that time, the library tries to terminate

it gracefully by sending it the Linux term signal. This is done to prevent data loss due to

ungracefully deleting a application from the process list before it can persist any mandatory

data from the system RAM.

6.6 Module ModiVcations

To make TAPL switches possible, the corresponding kernel module in the security architecture

needed to be modiVed. These modiVcation consist of adding functionality to show the content

of speciVc TAPL by providing an id to identify this TAPL as well as add and remove entries

from a speciVc TAPL in the same manner. Additionally, functions were added to create new,

empty TAPLs. In this case, the module passes the id of the new TAPL back to the user interface.

Finally, the module is also able to switch the current active TAPL to a new one and to terminate

40

6 Implementation of the Context Recognition

unallowed applications in this case. Additionally, a TAPL is introduced that is bound to the

common context inside the context recognition architecture. Therefore, this TAPL is active,

when the device is in no deVned context or the context recognition is not being executed. This

is a fallback mechanism that allows the device administrator to deVne what applications are

allowed to be executed when no context is deVned, the device is in no deVned context or when

the context recognition is not being executed by the system because it has been corrupted by

an attacker.

6.7 WorkWow

This section describes the workWow of the context recognition in detail. At Vrst, the workWow

for automatically starting the context recognition is shown, secondly the context management

and Vnally the context recognition is described.

6.7.1 Start of the architecture

The start of the application is done after the device Vnished the secure boot procedure and

the boot procedure by the Android device. As the Vrst steps were already described in the

corresponding chapters, they will be skipped here. Figure 6.2 visualises the workWow of the

start procedure.

1. After the Android OS has Vnished it’s boot procedure as described in chapter 3, the

system sends a BOOT_COMPLETE broadcast intent. This intent is received by the Boot

Complete Receiver.

2. Upon receiving the BOOT_COMPLETE intent, the Context Recognising Service is started

by the receiver.

3. The Context Recognising Service initialises itself by Vrst loading the available Context

Observer implementation. Following that, the Context Recognising Service reads the

stored context data.

4. This data is parsed by and passed to the Context Provider, which recreates the stored

Contexts and Context Groups.

5. Finally the Context Recognising Service adds the Contexts created by the Context Provider

to the corresponding Context Observer

With these Vve steps the context recognition is set up and already starts observing the state of

the contexts.

41

6 Implementation of the Context Recognition

Figure 6.2: WorkWow of the architecture start

6.7.2 Context Management

The device administrator is able to manage the contexts and contexts groups by using a

management application that connects to the service through the provided binder interface.

The communication is described in this section.

1. The Management Application connects to the provided Binder Interface. When the

connection is established, the application can send new created contexts or context

groups to this. When a new Context should be added to the service, the Context has to

be preconstructed by the Management Application. This simpliVes the procedure as a

Context can be very complex. A Context Group however is only identiVed by its name,

so it’s suXcient to send this to the service.

2. The request is now send to the Binder Interface. A request may be any of the operations

introduced in section 6.2.5., providing the necessary data.

3. If the Binder Interface receives a request to add a new Context to the service, it recreates

a new, independent Context from the data provided by the Management Application.

42

6 Implementation of the Context Recognition

Figure 6.3: WorkWow of the context management

4. The received data, e.g. a new Context or a Context Group are now passed to the Context

Recognition Service, according to the request.

5. The Context Recognising Service processes the request coming through the Binder Inter-

face. If the request is to receive data, such as an Context, the request is handled by the

service directly. It sends the requested data through the Binder Interface in the same

manner as the Management Application does.

6. If the request was to either add or remove a Context from observing, the Context

Recognising Service handles the interaction with the corresponding Context Observer and

removes the Context or adds it.

7. When a Context is requested to be added to or removed from a Context Group, the

Context Recognising Service interacts with the corresponding Context Group. To identify

the Context and Context Group unique names are used.

8. The Context Group handles the removal and addition of Contexts to it. This is done by

Vrstly adding the Context to the Context Group and then passing the Context Group to

the Context so it can send update notiVcations.

43

6 Implementation of the Context Recognition

6.7.3 Context Recognition

The main part of the architecture is visualised and described in detail in this section. This

workWow is started directly after the architecture has initialised itself.

Figure 6.4: WorkWow of the context recognition

1. The Context Observers start monitoring arbitrary information suitable to recognise the

speciVc Context. The implemented WiVObserver scans the environment for available

wireless networks every 5 seconds. Similar, the implemented TimeObserver takes the

time every 5 seconds.

2. When a Context was recognised, the respective context receives a notiVcation from the

Context Observer. Respective, when a Context is left, a notiVcation is sent as well.

3. The Context will then inform the Context Group about the state change. As a Context

can be contained in an arbitrary amount of Context Group, every Context Group has to

be notiVed.

44

6 Implementation of the Context Recognition

4. Upon receiving a notiVcation that one of the Contexts inside the Context Group, the state

of every other Context contained in the Context Group. If all Contexts are active, the

Context Group becomes active as well. Otherwise it will be inactive.

5. When the active state of a Context Group is changed, the corresponding Context Group

notiVes the Context Recognising Service about this. Depending on the state change of the

Context Group, the Context Recognising Service handles this notiVcation diUerently. If the

Context Group becomes active, the Context Recognising Service pushes the Context Group

at the top of an internal stack. Otherwise, the Context Group is removed from this stack.

6. After the Context Recognising Service receives an update from a Context Group and

this update causes a diUerent Context Group on top of the internal stack, the Security

Architecture is notiVed with the ID bound to the now active Context Group.

7. The Security Architecture now switches the TAPL to the one identiVed by the id passed

from the Context Recognising Service. After the switch is done, the Security Architecture

checks whether the running processes are allowed to be executed in this now active

Context. If an application is not allowed to be executed, it is terminated.

8. Additionally the Context Recognition Service sends a broadcast intent to the Android OS

in case the Context has changed.

9. An external application can now receive this broadcast intent and react in its own way

on this Context change.

45

7 Security Analysis

The implementation of a software that controls the execution of application on mobile devices

needs to be as secure as possibly. When such a software is used to prevent employees from

making photos of sensitive documents, the possibility arises that an employee is interested

in breaking this mechanism. In this sample implementation, the service is the main target

of attacks, as it controls everything and needs to expose itself so third party application

can communicate with it. One possible attack would be retrieving vital data stored in the

service and used by it in order to manipulate that data. Through IPC it is possible to get the

data used by the service, however the original data isn’t retrieved by this. By using the IPC

implementation by the service, the data is copied to the calling process. However, since a

management application needs as much control over the data contained in the service, such

an application may need to add or even remove existing data to accommodate the service to

new situations. The IPC implementation oUers this functionality to third party applications.

To secure this from misusing, every application that interacts with the service needs to ask

for permission. The device administrator is informed about this permission in the moment he

installs the application. Once this permission is granted, the application can interact with the

service. The security of this IPC can be further enhanced by adding a password that needs

to be entered before the other features become available. The Android system prevents third

party applications from accessing the memory owned by the service. This is accomplished

by separating applications by process, whereas each process has it own memory which can’t

be accessed by other applications that are executed in other processes. Another attack can

be trying to manipulate the Vle that is used by the service to persist the context information

on the local device. This Vle contains all the data that is used by the service during runtime

and thus is a possible security risk. The Android system supports the protection of this Vle

with mechanics of the Linux kernel. Every application is installed using a unique user account,

created during installation for the application. This provides an application with it’s own

user directory in which it can store Vles to persist data. Files stored to this directory using

the provided API of the Android system can only be accessed by the application to which the

Vle belongs. This is done using the right management implemented in the Linux kernel, this

46

7 Security Analysis

prevents third party applications from manipulating this vital Vle or deleting it. However, a

possible attacker, as the user of the mobile device, has direct hardware access to this device

by using a computer and the tools provided by Google Inc. to access the device and the data

stored on it directly. This means, a possible attacker can connect the device to a computer

and manipulate and access every Vle stored on the device. This opens a possible risk for

security related applications installed on a mobile device. For instance, in the case of the

sample implementation of the service, the attacker can connect an active mobile device to a

computer und delete or manipulate the Vle containing the important data about the contexts

used by the service. However, the service won’t load any data from that Vle during runtime.

This means that any changes made to that Vle during runtime won’t take any eUect on the

service already running on the device. Moreover, the service will overwrite any changes made

to that Vle once the service shuts down. As the service is constantly running as a background

process, this usually only happens when the device shuts down as well and thus terminating

the service as well. This means all changes made by an attacker will be overwritten by the

service when the device is shutting down. When the attacker then starts the device again,

right after the boot procedure is Vnished the service starts again and directly loads the data

persisted in the Vle. After this is done, the service doesn’t read from that Vle again unless

the device was shutted down and started up again. The biggest security issue however is

the removal of any part used by the service, including the service itself. While removing the

management application or other third party application won’t aUect the service in any way,

with having access to the device the attacker can also remove the service from it. However,

even removing underlying structures, like kernel modules used by the service, will render the

service useless.

47

8 Evaluation

This chapter discusses the assumptions made for this thesis as well as a conclusion and an

outlook to future work relying on this research.

8.1 Development Assumptions

The security architecture proposed by this thesis was assumed to run on a mobile device

utilizing the Linux kernel and being protected by an MTM. At the time of researching this,

MTMs were speciVed, however not build into mobile devices yet, this was well-known

while writing this thesis. However, TPM is widely built into laptops and PCs nowadays and

implemented software, such as the Microsoft Bitlocker Drive Encryption, uses it to secure data

on these device when lost or stolen. Thus, the assumption is made, that MTMs are going to be

used in mobile devices soon as well.

Since the implementation was assumed to run on a Linux kernel, the Android OS was

chosen to implement the security architecture. The assumption to run on a Linux kernel

was made because is was necessary to modify the kernel. Due to its open-source nature, the

Linux kernel, and thus the Android OS, met this requirement perfectly. Using the Android

OS, there were mainly three ways to implement this security architecture. The Vrst option

was to use the abstraction provided by the OS to implement the context observation combined

with low-level libraries to react on changes of contexts. The second option was to set the

abstractions aside and implement the architecture completely as a low-level module loaded by

the kernel at startup of the device. Lastly, the security architecture could have implemented

directly inside the kernel as well.

8.1.1 Implementation

As already discussion in chapter 5, the implementation was done using the abstraction

layer provided by the Android OS for observing the contexts and using low-level libraries

to implement the TAPL switching. This oUers the possibility to easily install this security

architecture on a device as any other application as well. Furthermore, it can be extended,

48

8 Evaluation

for instance, new context observers can be added, and the update of can be spread to the

device automatically. Implementating the architecture as a kernel module makes it harder to

extend the architecture, as the abstraction of the Android OS are not available. In addition,

the automatic update of application isn’t possible here, which means the updated module

has to be brought to each device and activated there manually. This is a downside when

dealing with many devices. Also, it may be necessary to recompile the module if a device

uses a diUerent hardware, so that an employer needs to maintain multiple compilations of

the same module, one for each target hardware. However, a huge drawback of both these

implementation, whether using the abstraction or building a kernel module, is the possibility

that an attacker can remove this from the device. When using the abstraction, the security

architecture is installed like any other application on the device, but it can also be removed

from the device like any other application. The same is valid for modules. Even if a module

is currently in use by the kernel, it is possible to remove it by using the ADB. However, the

device administrator can prevent applications that are able to uninstall other applications

from running and thus making avoid the uninstallation of the implementation from the device.

Furthermore, he can also disable the ADB for the device and preventing the preferences

application from execution so that a possible attacker cannot change the settings made by the

administrator. Implementing the security architecture directly into the kernel avoids having to

deal with the removal of the security. However, the attacker can still Wash the device to install

a diUerent kernel, which would also remove the architecture. Moreover, having a diUerent

kernel implementation becomes troublesome when the architecture needs to be updated or a

new kernel updates are published, as the employer needs to maintain its own kernel.

8.1.2 Kernel ModiVcations

The data, including the Vle that contains the TAPL entries and binary data of the processes

calling the exec() system-call which is used in computing the SHA256 hash value of the binary

is read directly from the Vlesystem of the kernel space. Such tasks should be performed by a

deamon providing the necessary abilities, in this case reading the data from the Vles. However,

such a deamon must be started directly after the INIT process has Vnished and before any

other process has started. Additionally, it has to be prevented that such a deamon can be

replaced or bypassed during runtime. To eliminate these problems, the Vle is loaded within the

kernel space. Note however, that this behaviour conWicts with the principle that kernel-space

tasks may not be performed in user-space and vice versa.

49

8 Evaluation

8.1.3 Management Application

To test the implemented security architecture, Martin Landsmann developed an application

that connects and allows the device administrator to interact with the security architecture.

This application provides the capability of adding and removing applications from the TAPL.

With the extension of the security architecture to provide context based execution control, the

application was extended as well to support the new features. This software will be shown in

this section.

Figure 8.1: The startup screen of the application

Figure 8.1 shows the application as it appears right after the start. Shown are the information

available for every user of the device, these are:

1. The mode the user is in, currently set to "User". A tap on this switches to administrator

mode.

2. A list of applications installed on the device. Each entry consists of the icon of the

application along with its name and in between an icon that visualises if the application

is signed by the device administrator or not. When the user taps on the symbol, the

application is started when it’s signed.

50

8 Evaluation

3. An informational text about the current context the device is currently in.

At this point, the application has already connected to the context architecture running in

the background and retrieves information from it, such as the current context the device is

in. When the user switches to administrator mode, more options are added to the screen, as

Vgure 8.2 shows.

Figure 8.2: The admin screen of the application

Most noticable, the screen colour has changed from a blue shade to an orange one. This

helps the user to easily identify whether the application is in the user or administrator mode.

Additionally, a dialog shows asking to enter the device administrator password for the context

architecture. When entered, access to manipulating requests, like adding or deleting context,

is granted. Otherwise these requests will be ignored.

1. The list of application is still shown as before, however, the behaviour has slightly

changed. When tapping on an entry in this mode, the device administrator is asked if

the application should be signed. When conVrmed, the device administrator has to enter

the passwort and the application will be signed. Otherwise, long tapping on an entry

causes this application to be unsigned.

51

8 Evaluation

2. This button is only visible when the application is in administrator mode. It allows the

device administrator to interact with the context architecture.

3. The second button is, as well as the other one, only visible when in administrator mode.

It opens a screen for creating new and modify existing TAPLs.

The application list shown in this main view, whether the application is in administrator

mode or not, always shows the applications which are signed in the current context, which is

shown right of the list. All modiVcation will be done to the TAPL that is bound to the active

context. To modify a diUerent TAPL, the administrator has to open the TAPL View.

When the device administrator taps on the button labeled with Manage TAPLs the TAPL

View of the application is show:

Figure 8.3: The TAPL View

This oUers the device administrator to sign and unsign applications for a speciVc TAPL as

well as creating new TAPLs. The elements shown in this view are:

1. A list of TAPLs known to the application, identiVed by name.

52

8 Evaluation

2. The list of installed applications on the device. Again, as in the Main View of the

application, each entry consists of the icon and name of the application, as well as an

icon to indicate if the application is signed or not.

3. A button to create a new TAPL in the security architecture.

When the device administrator taps on an entry in the TAPL list, the application list

automatically update to show which applications are signed in the selected TAPL. By tapping

on a application, the device administrator can now sign an unsigned application or unsign a

singed application in the selected TAPL.

By tapping on the button labeled New... the device administrator is able to create a new

TAPL. For this, a name must be provided to the dialog appearing shown in the following Vgure:

Figure 8.4: Creation of a new TAPL

The application then sends a request to the security architecture to create a new TAPL.

As the security architecture identiVes a TAPL with an unique integer id, this id is returned

to the application. The application then binds the name entered by the administrator to the

id returned by the security architecture. This helps to manage the TAPLs as it provides the

possibility to give meaningful names to TAPLs instead of numbers.

When the device administrator taps on the button labeled Manage Context on the Main

View, the Context View is shown. This view provides direct interaction with the context

architecture running on the device. The elements of this view are described below as well as a

visualisation of the view:

The Context View is parted into two halfs, the left one covers available interactions with

context groups, whereas the right one interacts with the contexts inside the architecture.

1. This Vrst list shows all available context groups inside the architecture.

53

8 Evaluation

Figure 8.5: The Context View

2. The second list on the left half shows the context contained within a context group

3. The last list shows all context available in the context architecture.

4. This button enables the device administrator to create a new, empty context group and

bind it to a existing TAPL.

5. When tapping this button, the device administrator deletes a previous from the list

selected context group.

6. The last button on the right side allows the administrator to create a new context.

By tapping on the button labeled New on the left side of the screen, a dialog opens for

creating a new dialog.

Here, the device administrator has to enter two names. The Vrst one is the name of the

group. As the context architecture identiVes the groups by their names, this has to be unique.

The second name is the name of the TAPL that will be bound to the group. Upon tapping

on create, a request will be sent through the binder interface to the service running in the

background with the provided data. To delete a group, the administrator simply taps on the

54

8 Evaluation

Figure 8.6: The new group dialog

group he wants to delete Vrst and then a tap on the button labeled delete Group will send a

request to the service to remove and delete that group.

The administrator can also use this Context View to add new contexts to the service run-

ning in the background. To do this, a tap on the button labeled New... on the right hand side of

the screen opens a dialog based assistent. The Vrst dialog that is shown is presented below:

Figure 8.7: The creation of a new context

This Vrst dialog presents the type of contexts available. The implementation currently

only supports contexts based on wireless networks, WiVContexts, and contexts based on time,

TimeContexts, but can be extended to support more kinds of contexts. The device administrator

55

8 Evaluation

can now select which type of context to create. After tapping on the corresponding entry, the

next dialog shows and asks for the neccessary data:

Figure 8.8: Creating aWiVContext

This illustrates the creation of a new WiVContext. The application asks the device adminis-

trator to enter the SSID the wireless network is identiVed by. Additionally, the context needs

to have a name as well. As with the context groups, the service identiVes the diUerent contexts

by their name, so these must be unique. After tapping on Create the application will create the

context and sends it to the service. The context will then be copied and added.

The last step is to add the context to a context group. This is done by selecting a context

group from the list on the left side and then long tapping on the context that is wished to be

added. This will send a request to the service to add the context to the group.

8.2 Performance Evaluation

The performance overhead caused by the security architecture has been measured in (Lands-

mann, 2011). The measurements were taken in the OMAP4430 Panda Board. The OS and all

application were loaded from an SDCard of Class 6. An ext3 type partition was used to install

the OS. The kernel and bootloader were stored on a FAT32 type partition. Time measurements

were performed using the kernel’s high resolution timer deVned in linux/hrtimer.h and were

placed closely around the hooks from the security architecture. These measurements resulted

in an overhead of ≈23.7s at startup. (Landsmann, 2011)

As the context recognition architecture is activated after startup, it does not aUect the

boot time in any way. The time needed to recognise a context depends on the procedure

56

8 Evaluation

implemented to recognise this context. The implementation in this thesis polls every 5s for

new environmental information. This means, after the mobile device is in a deVned context, it

takes between 1 and 5 seconds for it to recognise this. Additionally, during the termination

of unsigned application in the new context, no SHA256 hash has to be computed. According

to (Landsmann, 2011), computation of SHA256 for Android applications are taking 0.58 µs
byte .

The only computation needed to terminate unsigned application is iterating over the running

application and comparing the names of the applications with the names in the currently

active TAPL. In worst case, given N running applications and M applications in the TAPL, this

results in comparing N times M string comparisions.

Another important factor is the power consumption of the mobile device. As the context

recognition needs to be active at all times, the CPU can not suspend and save battery power.

Moreover, depending on which kind of contexts are deVned and how the observers are

implemented, additional energy is used for recognition. The implementation presented in

chapter 6 was tested on a Galaxy Nexus. The display of the mobile device was turned oU,

but GPS, WLAN and mobile connections were activ. The battery of the device has a capacity

of 6.48Wh and was fully loaded at the beginning of the test. The active observers in the

architecture were the WiVObserver and TimeObserver introduced in chapter 6. These observers

are polling for new information every 5 seconds. In case of theWiVObserver, this means that

every 5 seconds a scan for new networks is done. The TimeObserver gets the current time from

the system every 5 seconds. The measurements were taken hourly and after each hour the

capacity was reduced by 1% compared to the last measurement, meaning the capacity was

reduced to 97% after 3 hours of testing.

6480 mWh total battery cap.× 3% energy usage = 194.4 mWh energy usage in 3 hours

194.4 mWh energy usage in 3 hours÷ 3 hours of testing = 64.8 mWh

With the context recognition enabled and running in the background, the device consumes

64.8 mWh in stand-by. The power consumption was measured again on the same device but

without the context recognition running. After 3 hours, the device used 2% of the battery

capacity.

6480 mWh total battery cap.× 2% energy usage = 129.6 mWh energy usage in 3 hours

129.6 mWh energy usage in 3 hours÷ 3 hours of testing = 43.2 mWh

64.8 mWh − 43.2 mWh = 21.6 mWh

57

8 Evaluation

This shows, that the device uses roughly 21.6 mWh additional when the context recognition

as implemented in chapter 6 is running.

8.3 Conclusion

The basic security architecture proposted by Martin Landsmann is capable to detect code

manipulations after the installation of the code. To be able to tell if any code was manipulated,

the SHA256 hash value from a binary is computed and signed to protect it against manipulation.

When a binary was modiVed the SHA256 hash value diUers from the one computed before und

thus the manipulation is sucessfully detected. The manipulated binaries are then prevented

from execution. Native Linux programs crucial to run the device are veriVed by the security

architecture during the call to the exec() system-call. Android applications however, as they

don’t use the native Linux exec system-call, are veriVed using a hook inside the DVM. These

two veriVcation points cover all application starts on a mobile device using the Android

OS and protect it against manipulation. This security architecture however is not able to

verify any runtime loaded library or code that is already being executed by the device. It can

detect any manipulation done to veriVed binaries without having knowledge about the type of

manipulation and possible malicious behavior.

This thesis extends the basic security architecture by using environmental information to

determine whether an application is allowed to run. To detect environmental changes, the

security architecture uses a background process that observs the environment with through

the hardware built inside the mobile device. A device administrator can use the environmental

data to deVne several contexts which are then recognized by the device during runtime.

Additional, multiple TAPLs can be created and linked with a deVned context to control the

execution of applications based on the context the device is in. Third party applications can be

used to communicate with the background process to manage contexts and TAPL.

This security architecture proposes a whitelist approach to determine which application is

allowed to be executed on the device. The whitelist is usually a subset of all the applications

runable on the device.

8.4 Outlook

The context recognition can be secured against being stopped or interrupted by other applica-

tions or the device user.

58

8 Evaluation

The context recognition can be extended to allow remote administration with an application

that receives data from a server and conntects to the recognition architecture.

The architecture can be extended by implementing additional context observer, e.g. making

possible to have device users to check in via NFC before the mobile device can be used.

It may be possible to implement the context observation inside the kernel to reduce the

additional power consumption.

59

Glossary

ADB (Android Debug Bridge), a versatile command line tool which enables the user to

communicate with the Android emulator or with a device conntected to the PC (Google

Inc., 2008a) 15, 36, 49

AIDL (Android Interface DeVning Language), an IDL for the Android system that allows to

deVne an interface for IPC (Google Inc., 2008b) 19

Android a Linux based OS for mobile devices created by Google Inc. (Wikipedia, 2012a) 1,

13–17, 22, 23, 26, 27, 32, 34, 35, 41, 45, 60, 61

API (Application Programming Interface), a speciVcation intended to be used by software to

communicate with each other or to provide services to other applications (Wikipedia,

2012b) 19, 46

augmented reality a live view of real-world environment whose elements are elements are

augmented by computer-generated input (Wikipedia, 2012c) 1

AVM (Application VeriVcation Module), a module used in the security architecture to verify

an application 26, 30

black-list a list of entries indicating not accepted entries, contrary to a white-list 21, 22, 63

broadcast intent an intent broadcasted by Android or other applications on the mobile

devices. that can be received by other applications 35

C programming language a low level, general-purpose programming language (Wikipedia,

2012e) 13, 14, 34, 61

C++ programming language a low level, general purpose and object oriented programming

language (Wikipedia, 2012d) 13, 14, 19, 61

class an entity in object oriented programming 17

60

Glossary

CPU (Central Processing Unit), the main part of a computer that computes informations and

commands of applications (Elektronik-Kompendium.de, 2012a) 16, 17, 57

CRS (Context Recognising Service), the service located in the Java layer to recognise context

changes 34, 35, 37, 38, 40

DVM (Dalvik Virtual Machine), a stack-based virtual machine for Java programming language

used in the Android OS (Wikipedia, 2012f) 14, 16–19, 22, 23, 26, 27, 30, 58

emulator a hardware or software that emulates the functions of a diUerent computer system

(Wikipedia, 2012g) 60

forking creation of a new process using the fork() system call 18

garbage collector an algorithm that manages memory in programming languages such

as the Java programming language. It automatically deletes memory that isn’t used

anymore 17, 62

Google Inc. an american IT company that provides Internet-related products (Wikipedia,

2012i) 23, 32, 47, 60

GPS (Global Positioning System), a space-based satellite navigation that provides location

and time information (Wikipedia, 2012h) 1, 33, 57

heap memory with a dynamic size used by an application 17, 18

HMAC (Keyed-Hashing for Message Authentication), a mechanism for message authenti-

cation using cryptographic hash functions (Network Working Group, 1997) 25, 26,

30

IDL (Interface DeVning Language), a speciVg language to describe interfaces of software

components (Wikipedia, 2012k) 60

inlining an optimisation where the call to a function is replaced by the code of the function

that would have been called, thus saving the actual function call 18

intent a signal to Android to perform a speciVed action 60

IPC (Interprocess Communication), a method to exchange data between processes (Wikipedia,

2012j) 18, 19, 38, 46, 60

61

Glossary

Java programming language an object oriented programming language(Wikipedia, 2012m)

13, 14, 17, 34, 61

JNI (Java Native Interface), a interface for the Java programming language that allows such

programs to call to and to be called by native application and library written in languages

such like the C programming language or the C++ programming language (Wikipedia,

2012l) 19, 20

kernel the main component of a OS, a bridge between applications and actual data processing

at hardware level (Wikipedia, 2012n) 6, 13, 15, 17, 22–25, 27, 29, 30, 56, 59

kernel space memory area in which the kernel and its modules are operating, oposite to

user-space 18, 19, 49, 63

Linux a modular, open source software OS (Wikipedia, 2012o) 13, 15, 22, 26, 27, 60

mark bit used by a garbage collector to mark objects that are in use 17

MLTM (Mobile Local-Owner Trusted Module), a MTM that provides a subset of the com-

mands speciVed by the TPM version 1.2 and optionally additional commands (Trusted

Computing Group, 2010) 3, 4, 7

MRTM (Mobile Remote-Owner Trusted Module), a MTM that provides a subset of the com-

mands speciVed by the TPM version 1.2 and additionally mobile speciVc commands

(Trusted Computing Group, 2010) 3, 4, 7, 21, 22, 24

MTM (Mobile Trusted Module), a module that provides security features to mobile devices,

such as platform integrity and device authentication (Trusted Computing Group, 2010)

1, 3–7, 21, 22, 24–28, 48, 62

open source software computer software that is available in source code form (Wikipedia,

2012p) 13, 62

OS (operating system), a set of software that manages computer hardware and provides

services for other software (Wikipedia, 2012q) 1, 6, 10, 11, 13–15, 22–25, 27, 32, 34, 41,

45, 56, 60–62

PAM (Process AuthentiVcation Module), a module used in the security architecture to authen-

tiVcate an application 25, 26, 29, 30

62

Glossary

PCR 3, 7

process an abstract instance of a computer program that is currently running (Wikipedia,

2012r) 14–19, 45

PVM (Process VeriVcation Module) 25, 26, 29, 30

RAM (Random Access Memory), memory to store the data of running applications in

(Elektronik-Kompendium.de, 2012b) 16, 17, 40, 63

RIM (Reference Integrity Metrics), is a reference value to compare a measurement against,

for instance a SHA256 hash of a software image Trusted Computing Group (2010) 4, 7, 8,

21, 22, 24, 25, 27, 28

SHA256 A iterative, one-way hash function that can process a message to produce a con-

densed representation called a message digest (National Institute of Standards and

Technology (NIST), 2002) 4, 27, 28, 30, 49, 57, 63

SMS (Short Message Service), a text messaging service of mobile communication devices

(Wikipedia, 2012s) 2

SSID (Service Set IdentiVer), the name of a wireless network, according to the 802.11 standard

36, 39, 56

swap space memory that is used when the RAM is full 16

TAPL (Trusted Application List), a list that contains trusted applications that are allowed to

run on the device 22, 24–26, 28, 31–33, 37, 39–41, 45, 48–50, 52–54, 57, 58

TCG (Trusted Computing Group), an international industry standard group that developes

speciVcation for trusted computing (Trusted Computing Group, 2012) 3

TPM (Trusted Platform Module), a module to provide basic security features 3, 4, 48, 62

user-space memory area in which user mode applications are working, contrary to kernel

space (Wikipedia, 2012t) 18, 19, 62

virtual function table a table used by object oriented programming languages to determine

which function has to be called in case of inheritance 17

white-list a list of entries indicating accepted entries, contrary to a black-list 21, 22, 60

63

Bibliography

[Elektronik-Kompendium.de 2012a] Elektronik-Kompendium.de: CPU. July 2012. –

URL http://www.elektronik-kompendium.de/sites/com/0309161.htm. – visited:

2012/07/28

[Elektronik-Kompendium.de 2012b] Elektronik-Kompendium.de: RAM. July 2012. –

URL http://www.elektronik-kompendium.de/sites/com/0309191.htm. – visited:

2012/07/28

[Google Inc. 2008a] Google Inc.: Anatomy and Physiology of an Android. June 2008. –

Google I/O 2008

[Google Inc. 2008b] Google Inc.: Dalvik Virtual Machine Internals. June 2008. – Google I/O

2008

[Landsmann 2011] Landsmann, Martin: Evaluating an MTM based security concept for

Linux-kernel grounded mobile systems. 2011

[National Institute of Standards and Technology (NIST) 2002] National Institute of

Standards and Technology (NIST): Secure Hash Standard. August 2002

[Network Working Group 1997] Network Working Group: RFC 2104: HMAC: Keyed-

Hashing for Message Authentication. February 1997

[Schreiber 2011] Schreiber, Thorsten: Android Binder. October 2011

[Trusted Computing Group 2007] Trusted Computing Group: TPM Main Part 1 Design

Principles. July 2007. – SpeciVcation Version 1.2, Level 2 Revision 103

[Trusted Computing Group 2010] Trusted Computing Group: Mobile Trusted Module

Specifaction. April 2010. – Revision 7.02

[Trusted Computing Group 2012] Trusted Computing Group: About TCG. July 2012. –

URL http://www.trustedcomputinggroup.org/about_tcg. – visited: 2012/07/28

64

http://www.elektronik-kompendium.de/sites/com/0309161.htm
http://www.elektronik-kompendium.de/sites/com/0309191.htm
http://www.trustedcomputinggroup.org/about_tcg

Bibliography

[Ugus und WesthoU 2011] Ugus, Osman ; Westhoff, Dirk: An MTM based Watchdog

for Malware Famishment in Smartphones. In: Eichler, Gerald (Hrsg.) ; KÃ¼pper, Axel

(Hrsg.) ; Schau, Volkmar (Hrsg.) ; Fouchal, HacÃ¨ne (Hrsg.) ; Unger, Herwig (Hrsg.):

IICS Bd. P-186, GI, 2011, S. 251–262. – URL http://dblp.uni-trier.de/db/conf/iics/

iics2011.html#UgusW11. – ISBN 978-3-88579-280-2

[Wikipedia 2012a] Wikipedia: Android (operating system). July 2012. – URL http:

//en.wikipedia.org/wiki/Android_%28operating_system%29. – visited: 2012/07/28

[Wikipedia 2012b] Wikipedia: Application programming interface. July 2012. – URL

http://en.wikipedia.org/wiki/Application_programming_interface. – visited:

2012/07/28

[Wikipedia 2012c] Wikipedia: Augmented reality. July 2012. – URL http://en.wikipedia.

org/wiki/Augmented_reality. – visited: 2012/07/28

[Wikipedia 2012d] Wikipedia: C++. July 2012. – URL http://en.wikipedia.org/wiki/

C%2B%2B. – visited: 2012/07/28

[Wikipedia 2012e] Wikipedia: C (programming language. July 2012. – URL http://en.

wikipedia.org/wiki/C_%28programming_language%29. – visited: 2012/07/28

[Wikipedia 2012f] Wikipedia: Dalvik (software). July 2012. – URL http://en.wikipedia.

org/wiki/Dalvik_%28software%29. – visited: 2012/07/28

[Wikipedia 2012g] Wikipedia: Emulator. July 2012. – URL http://en.wikipedia.org/

wiki/Emulator. – visited: 2012/07/28

[Wikipedia 2012h] Wikipedia: Global Positioning System. July 2012. – URL http://en.

wikipedia.org/wiki/Global_Positioning_System. – visited: 2012/07/28

[Wikipedia 2012i] Wikipedia: Google. July 2012. – URL http://en.wikipedia.org/

wiki/Google_Inc.. – visited: 2012/07/28

[Wikipedia 2012j] Wikipedia: Inter-process communication. July 2012. – URL http:

//en.wikipedia.org/wiki/Inter-process_communication. – visited: 2012/07/28

[Wikipedia 2012k] Wikipedia: Interface description language. July 2012. – URL http:

//en.wikipedia.org/wiki/Interface_description_language. – visited: 2012/07/28

65

http://dblp.uni-trier.de/db/conf/iics/iics2011.html#UgusW11
http://dblp.uni-trier.de/db/conf/iics/iics2011.html#UgusW11
http://en.wikipedia.org/wiki/Android_%28operating_system%29
http://en.wikipedia.org/wiki/Android_%28operating_system%29
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Augmented_reality
http://en.wikipedia.org/wiki/Augmented_reality
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/Dalvik_%28software%29
http://en.wikipedia.org/wiki/Dalvik_%28software%29
http://en.wikipedia.org/wiki/Emulator
http://en.wikipedia.org/wiki/Emulator
http://en.wikipedia.org/wiki/Global_Positioning_System
http://en.wikipedia.org/wiki/Global_Positioning_System
http://en.wikipedia.org/wiki/Google_Inc.
http://en.wikipedia.org/wiki/Google_Inc.
http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/Interface_description_language
http://en.wikipedia.org/wiki/Interface_description_language

Bibliography

[Wikipedia 2012l] Wikipedia: Java Native Interface. July 2012. – URL http://en.

wikipedia.org/wiki/Java_Native_Interface. – visited: 2012/07/28

[Wikipedia 2012m] Wikipedia: Java (programming language). July 2012. – URL http://

en.wikipedia.org/wiki/Java_%28programming_language%29. – visited: 2012/07/28

[Wikipedia 2012n] Wikipedia: Kerne (computing). July 2012. – URL http://en.wikipedia.

org/wiki/Kernel_%28computing%29l. – visited: 2012/07/28

[Wikipedia 2012o] Wikipedia: Linux. July 2012. – URL http://en.wikipedia.org/

wiki/Linux. – visited: 2012/07/28

[Wikipedia 2012p] Wikipedia: Open-source software. July 2012. – URL http://en.

wikipedia.org/wiki/Open-source_software. – visited: 2012/07/28

[Wikipedia 2012q] Wikipedia: Operating System. July 2012. – URL http://en.wikipedia.

org/wiki/Operating_system. – visited: 2012/07/28

[Wikipedia 2012r] Wikipedia: Process (computing). July 2012. – URL http://en.

wikipedia.org/wiki/Process_%28computing%29. – visited: 2012/07/28

[Wikipedia 2012s] Wikipedia: Short Message Service. July 2012. – URL http://en.

wikipedia.org/wiki/SMS. – visited: 2012/07/28

[Wikipedia 2012t] Wikipedia: User space. July 2012. – URL http://en.wikipedia.org/

wiki/User_space. – visited: 2012/07/28

66

http://en.wikipedia.org/wiki/Java_Native_Interface
http://en.wikipedia.org/wiki/Java_Native_Interface
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Kernel_%28computing%29l
http://en.wikipedia.org/wiki/Kernel_%28computing%29l
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Open-source_software
http://en.wikipedia.org/wiki/Open-source_software
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Process_%28computing%29
http://en.wikipedia.org/wiki/Process_%28computing%29
http://en.wikipedia.org/wiki/SMS
http://en.wikipedia.org/wiki/SMS
http://en.wikipedia.org/wiki/User_space
http://en.wikipedia.org/wiki/User_space

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig verfasst und

nur die angegebenen Hilfsmittel benutzt habe.

Hamburg, 15. August 2012 Johannes Wilken

	1 Introduction
	1.1 Thesis Characterisation
	1.2 Motivation
	1.3 Goal

	2 Mobile Trusted Module
	2.1 Mobile Local-Owner Trusted Module
	2.2 Mobile Remote-Owner Trusted Module
	2.3 Secure Boot
	2.4 Reference Integrity Metric Certificate
	2.4.1 Keys
	2.4.2 Counters

	3 Security Architecture
	3.1 Security Goal
	3.2 Secure Startup
	3.3 Program Certification
	3.4 Program Verification
	3.5 Program Execution Control and Verification at Runtime
	3.6 Context Recognition

	4 Android OS
	4.1 Android Architecture
	4.1.1 Linux Kernel
	4.1.2 Libraries
	4.1.3 Android Runtime
	4.1.4 Application Framework
	4.1.5 Application

	4.2 Boot Sequence
	4.3 Dalvik Virtual Machine
	4.3.1 Memory Optimizations
	4.3.2 CPU Optimizations

	4.4 Starting an Application
	4.4.1 Zygote Process

	4.5 Binder
	4.5.1 AIDL
	4.5.2 Java API
	4.5.3 Middleware

	5 Implementation of the Security Architecture
	5.1 Security Architecture
	5.1.1 Architecture Modules
	5.1.2 System Integration

	5.2 Implementation
	5.2.1 Security Architecture Modules
	5.2.2 Kernel Modifications
	5.2.3 DVM Modifications

	6 Implementation of the Context Recognition
	6.1 Security Architecture
	6.2 Architecture Modules
	6.2.1 Context Recognition Service
	6.2.2 Context Observer
	6.2.3 Context
	6.2.4 Context Group
	6.2.5 User Interface

	6.3 Implementation
	6.4 Context Recognising Service
	6.4.1 Context
	6.4.2 Context Group
	6.4.3 Context Observer
	6.4.4 Context Provider
	6.4.5 Boot Complete Receiver
	6.4.6 Binder Interface
	6.4.7 Context
	6.4.8 Context Group
	6.4.9 Context Observer

	6.5 Library Implementation
	6.6 Module Modifications
	6.7 Workflow
	6.7.1 Start of the architecture
	6.7.2 Context Management
	6.7.3 Context Recognition

	7 Security Analysis
	8 Evaluation
	8.1 Development Assumptions
	8.1.1 Implementation
	8.1.2 Kernel Modifications
	8.1.3 Management Application

	8.2 Performance Evaluation
	8.3 Conclusion
	8.4 Outlook

	Glossary

