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Abstract

The multi-axis shaker is often used for the dynamic qualification of aerospace structures. The vibration
test data can also be used for extracting of modal parameters like eigenfrequencies, mode shapes and
damping. This thesis presents such identification method called ISSPA (Identification of Structural
Systems Parameters) that disregards the unsolicited motions of the shaker during the vibration test.
These unwanted motions are the consequence of the interaction (cross-talk) between the shaker and
the test structure. To understand a dynamic behaviour of the test structure because of cross-talk effects
a 3D demo structure is programmed with MATLAB and simulated in the frequency domain. The ana-
lytical acceleration responses and geometry properties of the demo structure are retained as input data
to check the ability of the ISSPA that is implemented in MATLAB. Finally, the identification proce-
dures are applied to the real vibration test data of an aircraft section in order to identify the modal pa-
rameters that can be used for the validation of analytical models.
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Aufgabenstellung

In der Arbeit sollen analytische Methoden zur experimentellen Modalanalyse untersucht und imple-
mentiert werden, wobei der Fokus auf der modalen Identifikation im Frequenzbereich liegt. Dabei
sind insbesondere mehrachsigen Basisbeschleunigungen als Strukturanregung zu berticksichtigen, wie
sie bei hydraulischen Schitteltischen auftreten. Messungen haben gezeigt, dass eine einachsige An-
regung der Schitteltische oft zu einer mehrachsigen Basisbeschleunigung flhrt, was auf die dyna-
mischen Eigenschaften des Tisches selbst zuruickzufiihren ist. Die korrekte Identifikation des Pruflings
wird hierdurch erschwert. Insbesondere ist die ISSPA Methode zu betrachten, die von der Universitat
Kassel in Zusammenarbeit mit dem DLR entwickelt und erprobt wurde.

Das Ziel der Arbeit ist die modale Identifikation einer realen Flugzeug-Sektion auf Basis experimen-
tell ermittelter Vibrationsdaten. Die Methodik soll zundchst an einem virtuellen Demonstrations-
Modell erprobt werden, welches typischen Leichtbaustrukturen der Luftfahrt hinsichtlich Frequen-
znachbarschaften und D&mpfungskopplung ahnelt. Die daraus gewonnenen Erkenntnisse sind dann
auf reale Messdaten eines Vibrations-GrofRversuches anzuwenden. Hierbei ist von besonderem Inter-
esse, ob die Eigenschwingungsformen der Flugzeug-Sektion identifizierbar und frei von offen-
sichtlichen dynamischen Eigenschaften des Schitteltisches sind.
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1 Introduction 1

1 Introduction

The aircraft industry is constantly seeking for improving the quality of vibration tests. Most important
objectives are the reduction in the testing times and the accuracy of the vibration test data. Vibration
tests on a multi-axial shaking table are often used for the dynamic qualification to control if a structure
is able to resist a vibration environment in its service life. In most cases the additional information on
the structural modal parameters like eigenfrequencies, mode shapes, generalized mass, stiffness and
damping can be extract from the same vibration test data. The identified modal parameters within the
same test set-up enable the validation of analytical models.

The test structure has to be attached on a shaker table and excited with harmonic excitation in all spa-
tial degrees of freedom (DOF). The measured data are the multi-axial base acceleration and the struc-
tural responses. The shaker table interacts with the structure during the test that results in an unsolic-
ited motion of the shaker. The influence of this cross-talk has to be considered by modal identification
methods. The identification method ISSPA (Identification of Structural System Parameters) represents
an opportunity to the modal survey test where the cross-talk effects can be disregarded.

The object of this thesis is the implementation of such identification method (ISSPA) with MATLAB-
environment and applying at first to the analytical demo-structure and finally to real vibration data of
the original aircraft section. The test data are descended within the frame of an Airbus research and
technology project.

In chapter 2 the Hamilton’s principle for the single mass is introduced. The Hamilton approach is used
for the derivation of the simplified equation of motion for base excited multi degree-of-freedom
(MDOF) systems. The equation of motion forms the basis for the theoretical modal analysis.

Chapter 3 describes the experimental test environments in details. Beginning with some important
dynamical components of the shaker the interaction between the test structures is presented. Subse-
guently the identification method (ISSPA) is in details explained. The theory is implemented with the
MATLAB-function identification.m that allows the calculation of the eigenfrequencies, mode shapes
and damping.

Chapter 4 covers the architecture of the three-dimensional (3D) base excited demo-structure. The fi-
nite-element (FEM) procedures like derivation of system matrices and reduction of redundant DOFs
are performed with programmed MATLAB-function demostructure.m. The additional programmed
function response_analysis.m accomplishes the simulation of the base excitation of the demo structure.
Especially the crass-talk effects are investigated. The demo-structure will be retained for the check of
the ability of ISSPA.

Chapter 5 firstly presents the application of identification.m to the analytical acceleration response
data of the demo-structure. The sensitivity and accuracy of ISSPA with respect to conditions that rep-
resent many practical test situations is checked. Finally identification.m is applied to the vibration test
data of the original aircraft section in order to identify the modal parameter.
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2 Basic Formulations for Base Excited Structures

This chapter is focused at first on derivation of equation of motion for base-excited structures. Begin-
ning with the single mass the classical mechanical principles like Newtonian law, d’Alembert’s prin-
ciple and Hamilton’s principle are introduced.

The formulations for the single mass may to be extended for multi-degree-of-freedom (MDOF) sys-
tems. The Hamilton’s principle is applied to the base-excited MDOF systems to derive the equation of
motion.

At last the equations of motion give the basis to introduce the fundamentals of theoretical modal
analysis. Modal analysis is a process of determining the inherent dynamic characteristics of a system
in forms of eigenfrequencies, damping factors and mode shapes, and using them to formulate a
mathematical model for its dynamic behaviour [10]. The theoretical equation of acceleration responses
of MDOF systems is shown because these magnitudes are measured in the following vibration test.

2.1 Single Mass

The intrinsic physical properties of any linear elastic structural system subjected to an external source
of excitation are its mass, elastic properties, and energy-loss mechanism or damping. Each of these
properties is assumed to be concentrated in a single physical element [10].

2.1.1 Newtonian law

The equation of motion of the single mass represents expressions of Newton’s second law of motion,
which defines that the rate of change of momentum of mass particle m is equal to a force acting on it.
This relationship can be expressed mathematically by the differential equation [2]

d d{u}
{f1= %<m ?> (2.1)

where f is the time dependent applied force vector and {u} is the time dependent position vector of
single mass m. For most problems in structural dynamics it may be assumed that mass does not vary
with time, in which case eq. (2.1) may be written as

{f}=m d;g} = m{ii} (2.2)

where the dots represent differentiation corresponding to time.

2.1.2 D ‘Alembert’s principle

The eq. (2.2) can be reformulated as follows
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{f}-mli}=0 (2.3)

where the second term is called the inertial force resisting the acceleration of the mass. The eq. (2.3) is
the expression of the d ‘Alembert’s principle that says that the addition of the inertial force to the other
acting forces evokes equilibrium [2].

The requirement for the equilibrium is that the total virtual work of all forces vanishes. This require-
ment contains virtual displacements, and is thus equally appropriable to mass at rest and to mass in
motion. D ‘Alembert’s principle can be now rephrased as follows: the total virtual work of the im-
pressed forces, amplified by the inertia forces, vanishes for reversible displacements [2]

W = {f} —m{i})éu=0 (2.4)

A given system of impressed forces will generally not be in equilibrium. This requires the satisfaction
of special conditions. The total virtual work of the impressed forces will usually be different zero. In
that case the motion of the system makes up for the deficiency. The mass moves in such a way that the
additional inertial forces, caused by the motion, bring the balance up to zero. In this case d’Alembert’s
principle gives the equation of motion of an arbitrary single mass [12].

2.1.3 Hamilton’s principle

By multiplying eq. (2.4) by dt and an integration with respect to the time

Fswde = () - m{i)sudt = 0 (2.5)
ty

t1

the total virtual work done by the impressed forces and forces of inertia can be transformed into a true
variation [12]. D’Alemebert’s principle can thus be mathematically reformulated as Hamilton’s prin-
ciple. This requires that a definite integral

[
J = (L +W,)dt (2.6)

ty

of the Lagrangian function
L = Eyin — Epot (2.7)

where L is the difference between the kinetic and potential energies of the single mass in addition with
the work of non conservative forces W,,., shall be stationary for arbitrary possible variations of the
configurations of the mass:

t1
6] =6 (Exin — Epot + Wye)dt =0 (2.8)

to

where the initial and final configurations of the mass must be prescribed
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2.2 Multi-Degree-of-Freedom Systems

In aforementioned sections Newton’s law, virtual-work approach and Hamilton’s principle were intro-
duced. These methods can be used to derive the equation of motion of MDOF system. For many me-
chanical and structural systems, more than one coordinate is needed to describe its motion and vibra-
tion sufficiently. The result is a MDOF model. Such a model characterizes a system in terms of mass,
stiffness and damping matrices [10].

The following section is focused on the derivation of the equation of motion under the base excitation
using Hamilton’s principle according to [7] and [11]. Subsequently a theoretical modal analysis for
MDOF systems will be presented according to [4] and [10].

2.2.1 Base excitation

The system matrices [M], [K] and [C] of the MDOF system as shown in Figure 2.1 can be found after
the discretization of the continuum body using a finite element method [7]. The vector {f} contains
external loads that are moving with the base.

-

Figure 2.1. Base excitation

The Kinetic energy Ey;, under the base excitation depends on the absolute velocity {u}

Euin = 5 (7 IM() 29)
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The potential energy E,,. only consists of deformation energy of the system that can be described
using relative motion {v}

1
Epor = E{v}T [K]{v} (2.10)
The work done by non-conservative forces is given by

Wae = 0} {f} — (w37 [C1{w} (211)

One notices that the Kkinetic energy of the system depends on the whole motion, while the potential
energy and the work done by the non conservative forces depend on the relative motion alone. Since
the absolute motion of non deformed system is always known, the variation of the energy terms in-
volved in Hamilton’s principle must be followed with respect to the relative motion. For the variation
of the potential energy follows

0Epo¢
6Epor = 5{v}TTI;} = 6{v}"[K]{v} (2.12)

Because the whole velocity variation is equal to the relative motion variation §{u}” = §{v}" for the
variation of the kinetic energy follows

0Epor

O0Ekin = 5{u}T a{u}

S{v}" [K]{u} (2.13)
The variation of the work done by non conservative forces gives

ad
Wye = 50}" % =AY ((f} — 1)) (2.14)

Substituting the equations (2.12), (2.13) and (2.14) into the eq. (2.8) gives

t;
§{v}' (=M} - [Cl{w} — [K]{v} + {fDdt =0 (2.15)

t1

For the equations of motion of the MDOF system under base excitation and external loads follows

[M]{i} + [CH{} + [K]{v} = {f} (2.16)

2.2.2 General equation of motion of base-excited MDOF systems

The overall displacement of the structure consists of the absolute displacement of non-deformed struc-
ture due to the support motion and elastic structural deformations. Since the dynamical behaviour of
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the structure depends on the time motions of the structural deformations that are significant to the sys-
tem moving with the structure, it is necessary to introduce a relative system as shown in Figure 2.2
that moves with the support.

deformed structure

relative system \ '

inertial system
y

X

Figure 2.2: MDOF structure and relative system

The vector {u,} involves the absolute displacement of the relative system on the base, i.e. the origin of
the relative coordinate system. The vector {02} describes the rotation of the basis. The position of an
arbitrary discrete structural node j of the deformed structure is given by the vector {r]} The location of
a general structural node j is given for the deformed structure by

{w} =} +{r;} (2.17)

The derivation of eq. (2.17) gives the velocity in matrix formulation

(i} = {up} + [2]{n} + {7} (2.18)
where
0o -0,
[2]=| 2, 0 -0, (2.19)
-0, 0, 0
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For all structural nodes j = 1,2, ... p follows

w}) i [2] [0 [01](tr}) ()
.E = [ : ]{ub}+ [0] - [0] P+ .S (2.20)
{w}) L ] fo [l ()
or in generally form
{u} = [ENup} + [21{r} + {7} (2.21)

The vectors {u}, {r} and {r} contain parts of all structural nodes, the matrix [E] expands the base ve-
locities {u;,} to all structural nodes and the matrix [2] expands the velocities due to the base rotation
to all structural nodes.

The derivation of eg. (2.21) gives the acceleration
{u} = ("} + [E]{iip) + [2] () + [2][Q]{r) + 2[Q] () (2.22)

The vector {r;} can be composed of the vector of the structural node j in the relative coordinate sys-
tem {d;} and by the deformation of the structure {v;}:

i} ={d;} + {v} (2.23)

Because of {d;} = const. for the derivations follows

{1} ={v} and {1} = (v} (2.24)

Due to the very small structural deformations, the vector {v;} can be disregarded when compared with

{d;}

() ={d} + v}~ {¢}) (2.25)

Expanding of equations (2.23), (2.24) and (2.25) for all structural nodes j = 1,2, ... p and substituting
them into eq. (2.22) gives the expression

{u} = (0} + [ENi} + [Q[{d} + [21[2]{d} + 2[2]{v} (2.26)

This equation contains relations of the relative kinematics for all structural nodes. The absolute accel-
erations of arbitrary structural nodes consist of

e the relative acceleration {i},
e the acceleration of the origin ordinates of the relative system [E]{ii; },
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e the tangential acceleration [2]{d},
e the centripetal acceleration [2][2]{d} and
e the Coriolis acceleration 2[2]{v}.

Substituting of equations (2.26) into eq. (2.16) and sorting gives the general equation of motion for
base-excited MDOF systems

[MI{@} + 2[21[M] + [CD{} + [K1{v} = {f} — IMI([E]{it} + [2]{d} + [2][02]{d}) (2.27)

2.2.3 Simplified equation of motion of base-excited MDOF systems

As shown in [7], in most practical cases where the rotational velocity remains small, the Coriolis ac-
celeration as well as the centripetal acceleration can be disregarded. For the absolute acceleration of
the structure follows

{u} = (0} + [E]{ii,} + [Q]{d} (2.28)
or of the arbitrary structural node j
(i} = (v} + (i} + | ] {a;) (2.29)

where
4]{a;} = 8, 0 —0|{dy (2.30)

can be rewritten as follows

) 0 dy  —dy] (e
[a[{a}=|-d. 0 dn [{a, (2.31)
diy —dix 0 [\g,

or in generally form

2] {a;} = (D1{e2} (2.32)

With the vector of angular velocity [£2] that constitutes the derivations of the base rotational motions

{0}
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~Qx (/:)bx
[2] =0y ¢t = Pvy ¢ = {Pp} (2.33)
‘QZ ¢bz
eg. (2.29) can be written as
(i} = (9} + G} + (D165} (2.34)

Expanding eq. (2.34) for all structural nodes on the structure j = 1,2, ... p gives

{ﬁil} _ {i];l} N [{J [Dsl] {{fi_b}} (2.35)
G}) @) |11 [, '9s

or in generally form

{u} = (¥} + [G]{io} (2.36)

where

e {ii} is the absolute acceleration vector for all structural nodes,

e {i¥} isthe relative acceleration vector for all structural nodes,

e [G] is the time independent geometry matrix that transforms the predefined rigid motions
cause of base acceleration {ii,} into acceleration [E]{ii,} of the relative origin ordinates and
tangential acceleration [D]{@;,} to all structural nodes. It means that the all structural nodes
contain the components of the rigid body motion producing by the shaker! The columns of [G]
can be interpreted as rigid body displacements due to the translational and rotational base mo-
tions.

e {iiy} is the base acceleration vector.

Substituting of equations (2.36) into eqg. (2.16) gives the simplified equation of motion for base-
excited MDOF systems

[M1{©} + [CH{w} + [K]{v} = {f} — [M][G]{iio} = {Feyy} (2.37)

This equation shows that the structural vibrations are induced by inertia forces which caused by the
multi-axis base excitation {iiy} and external loads. The vibrations occur as motions relative to the co-
ordinate system, which is moving with the relative vibration table.

2.2.4 Modal analysis of base-excited MDOF systems

Considering the undamped free vibration solution of the eq. (2.37) in order to determine the normal
modal properties and assuming that a solution exists of the form {v(t)} = {v(w)}e!“t where
{v(w)} = {v} is a vector of time-independent amplitudes, leads to [7]
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([K] = w?[M]D){v}e'* = {0} (2.38)
The eigenvalue problem [10]
(K] — w§[MD{Y} =0 (2.39)

yields p undamped eigenfrequencies where p is the number of degree of freedoms. Substituting any
one of these back into the eq. (2.38) yields a corresponding set of relative mode shapes {Y};. The

complete solution of two (p, p)-eigenmatrices can be expressed as [a)ojz]p'p and [Y],, where wojz is

the j.peigenvalue and {Y}; is the corresponding eigenvector. While the eigenvalues are uniquely
quantities, the eigenvectors are subject to an indeterminate scaling factor which does not affect the
shape of the vibration mode, only its amplitude.

The modal model possesses orthogonality properties

[YIT[M][Y] = [M,] = diag(my; ... myj ... myp) (2.40)
[YITIKI[Y] = [Ky] = diag(kgy ... kg ... kgp) (2.41)
[wo?] = [K,][M,] ™" (2.42)

where [M,] and [K, ]are called the diagonal modal or generalized mass and stiffness matrices. Because
the eigenvector matrix is subject to an arbitrary scaling factor, the values of [M;] and [Kg] are not

unique and it is inadvisable to refer to the generalised mass or stiffness of a particular mode. Among
the many scaling or normalization processes — the mass-normalization has most relevance to modal
testing. The mass-normalized eigenvectors are written as [¢] and have particular property that [10]

[p1" [M][¢] = [1] (2.43)
and thus
(91" [K][$] = [wo?] (2.44)

The mass-normalized mode shape matrix can be found from

[¢] = [Y] [Mg]_§ (2.45)

In approaching the more general case of damped systems, it is convenient to consider first a special
type of damping called proportional damping which has the advantage of being particularly easy to
analyze. In effect, it is possible to derive the modal properties of a proportionally damped system by
analyzing in full the undamped version and then making a correction for the presence of the damping.
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The definition of proportional damping is [4]

[C] = alK] + B[M] (2.46)

The damping matrix can be pre- and post-multiplied by the eigenvector matrix for the undamped sys-
tem [Y]

YIT[CIIY] = alK,| + B[M,] = [C,] = diag(cgy - cgj - cgp) (2.47)

where [Cg] is the generalized diagonal damping matrix that represents the generalized damping fac-
tors ¢, and various modes of the system. Each mode has a complex eigenvalue. The imaginary or
oscillatory part is the damped eigenfrequency [10]

a)dj = (1)0]' 1- (]2 (248)

The real part of the complex eigenvalue represents the decay constant

_ G _ Cgj
=3 . Zagm, (2.49)

The accelerance frequency response function (FRF) of MDOF system is given [10]

Response
FRF = |H _
[H (w)] = Excitation

The square and symmetric accelerance FRF matrix describes the relation between the excitation and
acceleration response. An element of st” row and k" column amounts to [7]

YsiYej
effk k —w?m; + iwg;
Jj=

Hg (w) = (2.50)

and presents the relation between the excitation on the dof k and the acceleration response on dof s.
A dynamical relative acceleration response {i’} of the MDOF system in the case of pure base excita-
tion ({f} = 0) can be rewritten as [7]

p 2 T .
o N {Y3AYY; (IM]G]G})
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3 Identification of System Parameters from Vi-
bration Test Data

The vibration test data of the test structure can be used for the identification of its modal parameters
like eigenfrequencies, mode shapes and damping. The test structures can be excited by different types
of vibration exciter. Aerospace structures are sometimes investigated on electrohydraulic shaker tables.
These exciters significantly interact with the structure under the test [7] and [18]. This interaction or
cross-talk results in an unsolicited motion of the shaker table during the test. The consequence is that
the frequency response functions (FRFs) cannot be calculated for this interaction frequency range [7].
The influence of the cross-talk has to be considered by the modal identification methods. The follow-
ing chapter presents such identification method called ISSPA (ldentification of Structural System Pa-
rameters) that identifies modal parameters without calculating FRFs.

The following chapter consists of two main parts. The first part introduces several typical technical
configurations of electrohydraulic shakers. It is shown how to compute the cross-talk frequency range
where FRFs cannot be determined. Finally the calculation of the measured base accelerations and
relative responses is described. In the second part the identification method ISSPA is in details pre-
sented to illustrate the modal identification by means of multi-axis base excitation.

3.1 Vibration Test Environment

For the purpose of modal identification by base excitation, the overall test structure has to be mounted
on a shaker table and excited in all spatial degrees of freedom. The multi-axis base acceleration (input)
and the structural responses (output) have to be measured. If also the interface forces between the test
structure and the shaker table are measured in addition, it is also possible to identify modal and effec-
tive mass [6].

The base excitation can be introduced by different types of base exciters. For large aerospace struc-
tures it is convenient to use electrohydraulic exciters. In order to measure the structural accelerations,
the test structure needs to be equipped with a sufficient number of accelerometers. These accelerome-
ters measure the absolute accelerations. It is shown how to calculate the relative acceleration signals of
the accelerometers at the base and at the test structure [6].

3.1.1 Multi-axis base exciter

The multi-axis base exciter like the shaker is an electrohydraulic exciter that is generally used for low
frequency excitation environments that require large amounts of force and relatively low velocities.
The frequency range varies from near 0 Hz on the low end to 100 Hz on the high end. The parameters
and a typical configuration for exciter are given in Table A.1. The multi-axis shaking table is normally
used for earthquake simulation and the dynamic qualification of structures. In most cases the same set-
up can also be used for the modal identification of the tested structure [6].
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3.1.2 Measured base acceleration
For reliable determination of the base acceleration vector {iiy}, it is required to adequately place a

sufficient number of accelerometers at the base of the structure [6]. As example Figure 3.1 shows the
typical shaker table with four shaker sensors j. It has to be assumed that there are no elastic deforma-

tions during the test ({vj} = 0) on the shaker. According to eq. (2.34) the acceleration of an

shaker
arbitrary base sensor js,qxer i relative system is given by

{ufshaker} = {ub} + [é] X {djshaker} (31)

or according to eq. (2.34)

{ﬁ'jshaker} = {ﬁjshaker} + {u’b} + [Djshaker]{¢b} (32)

Expanding eq. (3.1) for all base sensors jspaker = 1,2, ... Dshaker 9IVES

{ufl} = [gj [Dil] {{i.'f”}} (3.3)
lpaert) 1 [Ppyper]] 1903
or in generally form
(it} shaker = [6lshaker {ilo} (3.4)

y relative -

base
4 4 system

sensor {af'f}

40

{Ub}

inertial system
y

Figure 3.1: Determination of base excitation

The calculation of the six base accelerations {ii,} at the base should be performed by using an overde-
termined set of equations. Solving the overdetermined set of equations with a least-squares approach
reduces the effect of measurement noise signals [7]:

{iio} = ([G]ghaker [G]shaker)_1 [G]ghaker{u}shaker (3'5)
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3.1.3 Measured relative acceleration

The accelerometers on the tested structure measure the absolute accelerations. Therefore, the relative
accelerations have to be determined. They can be calculated from measured data by employing rear-
ranged equation (2.36):

{U} = {ﬁ}struct - [G]struct {uo} (3-6)

As this equation contains the previously calculated base accelerations {ii,} and the coordinates of the
structural accelerometers in matrix[G]g¢ruce, @NY iNaccuracy of these data results in errors for the rela-
tive accelerations [7].

3.1.4 Cross-talk frequency range

To extract the FRF matrix [H(w)] it is convenient to drive each base axis by a suitable random or
sinusoidal excitation signal. As experience in modal identification testing has shown, a sine sweep is
best in most cases [7]. The measured data can then be employed for the determination of the base ac-
celeration input {ii,} and the relative acceleration {7} of the structure, as outlined above. The input-
output relationship can be rewritten in the more general formulation [7]:

{U(@)} = [H(w)[{iig(w)} 3.7

where [H(w)] is a rectangular FRF matrix. If the multi-axis vibration test facility is capable of realiz-
ing an excitation precisely in the direction of each base axis, the determination of the FRF matrix
[H(w)] is straightforward. Driving the translational and rotational axes one after other, the related
columns of matrix [H(w)] can be determined by simply dividing the relative accelerations {i’(w)} by
the acceleration ii(w) Of the active base axis. Whenever six linearly independent base accelerations
can be realized, the complete FRF matrix can be computed. Inserting measured data into eq.(3.7) re-
sults in [7]

[{F(w)} - {F(@)}e] = [H@)][{ig(@)}r . {ilg(®@)]e] (3.8)

or in general form

[Sv(w)]p,6 = [H(w)] [Su(w)]6,6 (3.9)

The base acceleration vector {ii,(w)}; represents the frequency-domain data from the first test run,
and vector {i’(w)}; comprises the related structural responses. The FRF matrix can then be calculated
from

[H()] = [Sy(@)][Sy(@)]™! (3.10)

A requirement for the matrix inversion is the fact that [S, (w)] is regular [7]. Most of the multi-axis
vibration test facilities exhibit a more or less strong cross-talk of base axes. This is because the transla-
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tional table motions are often coupled with table rotation [18]. In this case the matrix [S, (w)] be-
comes singular because the six base axes perform linearly dependent motions. The degree of singular-
ity can be checked and visualized by a suitable condition number [7]:

det[Sy(w)]
3.11

Plotting the condition number versus frequency reveals those frequency ranges which are not suitable
for further analysis. The FRFs can be computed only for frequency ranges with a high condition num-
ber. For that reason the identification method has to be accomplished without using FRFs. It will be
shown in the following sections that the identification method ISSPA needs only measured base exci-
tation {ii,} and measured relative responses {¥’} data that can be obtained from equations (3.5)
and (3.6).

Cy =
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3.2 Identification Method

The identification method ISSPA can be applied to vibration test data in order to identify modal pa-
rameters [13], [14], [15], [16] and [17]. The ISSPA method needs only measured excitation {ii,} and
measured relative response data {’} that can be inserted into the equation of motion (2.37) for base
excited MDOF systems in order to extract mass modified stiffness and damping matrices. These sys-
tem matrices enable the identification of eigenfrequencies, mode shapes and damping.

This section firstly covers how to derive the identification equation from the equation of motion (2.37)
using incomplete vibration test data. Incomplete data means that the number r of significantly excited
modes or effective degrees of freedom is smaller than the number p of the measurement DOF (r < p).

In the reality the identification equation have no rank defect matrices (r = p). As result (r — p) noise
eigenvalues will be computed. So the number r of significantly excited modes has to be found. Proce-
dures for rank estimation are presented. Estimated rank r enables to condens the identification equa-
tion. The following condensed eigenvalue problem of identified condensed system matrices gives the
eigenvalues where the noise eigenvalues are eliminated. The backtransformation to the physical coor-
dinates allows plotting the mode shapes and comparing them with analytical mode shapes. It is also
possible to compute the recalculating responses and compare them with the measured responses.

3.2.1 Identification equation

The equation of motion (2.37) of a discrete MDOF structure whose danamic behaviour and geometry
is assumed to be linear is given by

[M1{5(0)} + [CHv ()} + [KI{v()} = {f ()} — MI[G]{iio ()} = {Ferr (D)}
where [G] = [G]s¢ruce 1S the known time independent geometry matrix of the structure.

Transformation of eq. (2.37) into the frequency domain by use of the steady state response solution, in
the case of harmonic (sinusoidal) excitation, yields

(—w?*[M] + iw[C] + [KD{B(iw)} = —w*{F.s;(iw)} (3.12)
where {Feff(iw)} is the effective force vector

{Fers (i)} = ({f (i)} — IMI[GT{ito (iw)}) (3.13)

Premultipying eq. (3.12) with the inverse mass matrix [M]~? yields

(—w?[I] + iw[C*] + [K*D{F(iw)} = —w®([M]™Hf (i)} — [1[G]{i (iw)}) (3.14)

where

[1] = [M]~[M] (3.15)
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is the unit matrix,

(€] = [MI7H[C] (3.16)
is the mass modified damping matrix and

[K*](p,p) = [M]_I[K] 3.17)

is the mass modified stiffness matrix with p being the number of measured DOF on the test structure.

In the vibration test the amplitude and phase of p measuring points at n,;, excitation frequency w,, are
calculated from measured data from eq. (3.6) and transformed to the real part {i’}z, and imaginary part
{¥};,, of the complex response

B(i0)}y = H(@)nre + iB@Im ~ (R=12..m) (3.18)
where m is the total number of excitation frequencies. Using the measured complex acceleration re-

sponse (3.18) and complex excitation vector {Feff(iw)}n = {Feff(w)}n e T i{Feff(“’)}mm the fol-

lowing identification equation can be derived by separating eq. (3.14) into real and imaginary parts
and assembling at w, (n = 1,2 ...m) frequency points:

[AIIK"]" = [@][BIC*]" + [0?){f3}re[M]™" = [0?][Au]" [C]Struce + [@?][A] (3.19)
[BILK™]" + [w][AIC*]" + [w?){f}im[M] ™" = [@?1[Bu]" [G]5truce + [@?][B] (3.20)

where

Vi(w1) o Tj(wy) . Up(wq)
(Al Blangy = | 5100 o Bj@n) o By@n) (3.21)
By (0n) e Ty @m) e Ty (@) cerm

is (m, p)- measured rectangular real and imaginary part relative acceleration frequency response ma-
trix;
ubx(a)l) uby(wl) ubz(a’l) bex((lh) (pby(a)l) (pbz(a)l)
[Au]T, [Bu]T = ubx(wn) uby(wn) ubz(wn) (bbx(wn) ¢by(wn) ¢bz(wn) (322)

ﬁbx(‘wm) uby(‘wm) ﬁbz(‘wm) (bbx('wm) (pby('wm) (pbz('wm) Re,Im

is (m, 6)- measured real and imaginary part base excitation matrix that can be calculated from eq.(3.5),
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[f(w1)1 f(wl)j f(w1)p]
| : : ; P

{f}Re,1m=If(afn)1 o fl@n)) f(afn)pl (3.23)
f@mi - f@n)y — f@mply,,,

is (m, p)- measured force excitation matrix,

w, 0 0 0 0
0 0 0 O
[w]=l0 0 w, 0O O (3.24)
o o o0 =~ 0
0 0 0 0 w,

is the (m, m)- diagonal excitation frequency matrix.

From equations (3.19) and (3.20) it follows that in the case of pure base excitation ({f}Re,,m = 0)only
the mass modified stiffness [K*] and damping [C*] matrices can be identified. The result is the follow-
ing extension of the identification equation

[AIK*]T = [l [BIC*]" = [w?][Au]" [Glstruce + [w?][A] (3.25)
[BIIK™T" + [w][AIC*]" = [0*][Bu]" [G]Struce + [w?][B] (3.26)

or in matrix notation

41 Lol [1K°17) _ [ AT G e + [07114D -
(8] fwlla] Hic]] ™ [(@?)BT (61 e + [w?1[BD |

3.2.2 Number of effective degrees of freedom

Since the measurements are performed within a given finite frequency range only those eigenmodes
with eigenfrequencies lying in this interval have an influence on the structure’s response. The number
of these eigenmodes is equal to the rank of the response matrices [A] and [B] if all these eigenmodes
contribute significantly to the response [15].

The limited number of eigenmodes with eigenfrequencies lying within the measured frequency range
and with significant contributions to the response is called the number of effective DOF. This number
is equal to the rank r of the response matrices [A] and [B] [15].

3.2.3 Computational eigenvalues

The vibration test will be denoted as incomplete when the number r of excited modes is smaller than
the number of measurement degree of freedoms p (r < p). In this case the measurement matrices [A]



3 Identification of System Parameters from Vibration Test Data 19

and [B] theoretically must have the rank r < p. However, in practical measurements no rank defect of
measured [A] and [B] will be detected because of [16]

e measurement noise,
o the inadequacy of the linearity assumption

Identification equation (3.27) that presents then a set of overdetermined equations could now be
solved by standard least square procedures with respect to the parameter matrices [K*]Tand [C*]" [16]
and [13]. When procedure will be applied to real measurement data severe limitations could be experi-
enced due to the incompleteness of measured data. The consequence is that a complete set of p modes
would be calculated from [K*] and [C*] including p — r noise or computational modes. In other words
the following eigenvalue solution [16]

[K*1{Y} = wi{Y} (3.28)

of the identified mass stiffness matrix [K*] yields the additional undamped p — r noise eigenvalues
and p — r eigenvectors. Similarly, the eigenvalue solution of [13]

bl ol (o “olln} = ol @29

yields the additional p — r the damped (complex) noise eigenvalues and p — r eigenvectors. Practical
experience revealed that computational and structural modes could not always be separated and influ-
enced each other. Any successful direct matrix identification procedure therefore has to account for the
incompleteness condition, i.e. the effect of computational modes has to be extracted from the identifi-
cation equation, otherwise the method will fail for real world applications [16].

3.2.4 Procedures for rank estimation

In this following subsection two procedures for rank estimation will be described. The method is based
on singular value decomposition of measurement matrix [B] ([A] accordingly) [16]:

[Blimp) = [Uslmp)[SElpp [VB]’{p,p) (3.30)

where [Ug] represents the modal matrix of [B][B]”, [Vg] represents the modal matrix of [B]7[B] and
[Sg] contains the square of the eigenvalues or singular values of [B]T[B]:

[Sgp]l = diag(sy ... Sy Sy41 - Sp) (3.31)

Depending on the amount of measurement errors the magnitude errors of the singular values will drop
more or less significantly beyond r. A typical curve obtained from measurement data is shown
in Figure 3.2 for the ratio s;/s;,, of consecutive singular values where the rank is indicated by a sig-
nificant peak of that ratio.

Practical applications revealed that rank determination according to Figure 3.2 was not sufficient to
obtain a rank leading to good identification results. Therefore a second procedure was introduced.
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With r estimated either from the first step or by number of frequency response peaks the singular
value matrix is reduced to [16]

[S5] = diag(s; . sp) (3.32)

by artificially settings; = 0 forj =7 + 1, ... p.
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Figure 3.2: Rank estimation

Introducing [Sg] into eq. (3.69) instead of [Sz] a modified substitute measuring matrix [B] ([4] ac-
cordingly) of rank r < p is obtained:

[E] = [UB][SB][VB]T (3-33)

where [Ug] and [V5] are submatrices of [Ug] and [V;] belonging to the non-zero values of [Sg].

A numerical criterion for the determination of the effective mode number r is derived from the nu-
merical deviation between the substitute measuring matrices and the original data. The criterion used
in ISSPA is the root mean square (rms) error at the j;, degree of freedom

~ 2
o |En(Baj ~ Bn) (3.34)
] 2
ZTL Bn]
Practical experience showed that the identification was successful even when the rms;-deviations

were very large at some measurement DOF depending on the magnitude of the signal [16]. Therefore
the rms-values of the complete matrix was also used
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_ Zan(Enj_an)z 3.35
rms-\/ ZanBTZU- ( . )

where the influence of large errors on small signals is not so pronounced.

The rms-values are equal to zero in the case of ideal measurement data without noise and systematic
errors when the singular values beyond r are equal to zero

For real measurement data the rms-values will be non-zero. If plotted versus differently estimated
rank numbers r as shown in Figure 3.3, the minimal number required to obtain a reasonable substitute
measurement can be derived from the steepest change of slope of that curve [16].

100

80

alll

s [%5]

40

20

1 2 r-1 r r+1 p-1
estimated rank numbers r

Figure 3.3: rms-deviation of substitute measurement rank of measurement matrix

3.2.5 Condensed identification equation

The measurement matrices [A] and [B] of rank p in eq. (3.27) should be replaced by substitute meas-
urement matrices [/T] and [B] of estimated rank r [15]. These matrices are incomplete because the
influence of the higher modes is eliminated [13]. It is essential to introduce the following properties of
pseudo-unit matrices for the substitute measurement matrices [4] and [B] [13]:

[71 = [A]*[A] = [B]*[B] = [VAl[Va]" = [Vs][Vs]" (3.36)

The pseudo-unit matrix [I] has the rank r and the properties:

[4] = [A][T] = [A][V5][Vs]" (3.37)
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and

[B] = [BIII] = [BI[VAl[Va]" (3.38)

The substitute measurement matrices can now be transformed to r principal coordinates by the (p, r)-
transformation matrix [VV] = [V/3]. Introducing the properties (3.37) and (3.69) into eq. (3.27) and
right-multiplying by the transformation matrix [V/] leads to a condensed regular identification equation
[13]:

4] —tel[BT[[R]"] _ [([wZ][Au]T[G]Lm (71 + [w*][4]) (3.39)
8] [wl[A] 1|[e]"] Ll )Bul[G)Eeruce [7] + [2][B]) |
where
4], = 4], , V], (3.40)
and
[B],,, = [Blnp[V]yr (3.41)
with respect to the condensed parameter matrices
[K°] .0y = VI IK T [V (3.42)
and
€] .y = V1T [C N o V] (3.43)
that can be calculated by the least square procedures [13].
3.2.6 Determination of the real modal data from condensed matrices
Solving the condensed right undamped eigenvalue [13]
[R*]{7} = wi{7} (3.44)

yields the r angular eigenfrequencies w, and r condensed eigenmodes {?} of the undamped test struc-
ture (real data) within measured frequency range.

Solving the condensed left eigenvalue problem
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& () = w3(%)

(3.45)

yields r unnormalized condensed left eigenmodes {X}. The condensed right hand matrix [¥] and con-

densed unnormalized left matrix [X] in the principal coordinates can be back transformed to the meas-

ured physical coordinates by premultiplying with the transformation matrix[V] [13]:
Ven = Wenl?],

Xler = Venl£],

3.2.7 Determination of the complex modal data from condensed matrices

(3.46)

(3.47)

In the case of pure base excitation, i.e. {f (iw)} = 0, it is also possible to use the extended eigenvalue

solution (3.29) in principal coordinates [13]:

where

and

[F] = [[l?*] [0] ]
o] 1]

Eq. (3.48) yields j = 1, ...r complex eigenvalues
A = Age,j + Aimj

with corresponding complex eigenvectors [¥],. . and  conjugate complex eigenvalues
A; = /1Re,j - Alm,j

with corresponding conjugate complex eigenvectors [17*]”.

Any complex eigenvalue A; can be expressed as [13]

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)
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The real part of A;, calling decay constant or damping coefficient §;, is the negative product of damp-
ing ¢; and eigenfrequencywy;

/1Re,j = 5] = —(ja)oj (354)

The imaginary part of 4; is equal to damped eigenfrequency wg;

Aim,j = Waj = /ng ~ PRe,j = Woj Il - Cf (3.55)

The angular eigenfrequency w,; can be written as

woj = (B, + 2o, (3.56)

The eigenfrequency is given by

_ Loj
fi=52 (3.57)

Substituting equations (3.56) and (3.55) into (3.54) gives the damping

(i = |’1Re,j|
J 3.58
A%, + A% (3:58)

Re,j Im,j

3.2.8 Condensed generalized equation of motion

Since left and right condensed eigenvectors are orthogonal, the relation
51T 1o 51T 1o _ . _ _
(7] [X] = [X]"[¥] = [M,] = diag(igy .. Tigy<gp) (3.59)

holds [13]. Since [Y] and [X], may be normalized arbitrarily, the matrix [Mg] is not identical with the
generalized matrix [M, ]| which follows from eq. (2.40)

[Y]T[M][Y] = [Mg] = diag(mgyy ... Myr<gp)

The matrices [M;] and [M,] can be made equal my normalizing the left eigenvectors [X] by a diago-
nal matrix [x]:
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[M],,.,, = [Mg]lx] = [Y]"[X][xk] = [71"[X][x] (3.60)

But in the case of pure base excitation it is not possible to calculate the k factors [14].

The generalized damping matrix follows from

~ A

[Col, .y = IKTT[C7]IP] (3.61)

The generalized damping matrix [Cg] is neither symmetric nor diagonal. The off-diagonal elements
represent the coupling of the generalized DOF.

Generalized condensed equation of motion in the case of pure base excitation can be obtained by using
the modal transformation in principal coordinates:

{8} =171a}, (3.62)
and premultiplying eq. (3.14) with the condensed left modal matrix [X]T

(_wrzl[Mg] + iwy [C_g] + [Mg] [w(z)]){q(lw)}n = (1)721 [XZ]T[G]struct{ﬁO (iw)}n (3-63)

where [w3] is the diagonal matrix of the eigenfrequencies. Eq. (3.63) is decoupled with respect to the
eigenmodes only in case [C; | = diag(c,;;) [17].

3.2.9 Recalculating responses

In order to check the eigenfrequencies, the eigenmodes and damping matrices these data can be used
to calculate the dynamic response and compare it with the original measured response. The agreement
between these responses is regarded as a measure for the accuracy of extracted data [17].

The generalized response vector {¢(iw)}; for the excitation frequency w; is obtained from eq. (3.63).
Splitting of eq. (3.63) into real and imaginary parts yields in the general case [(fg] + diag(Ejj)

wn[ ]] {{Q}Re,n} — {wrzl [ _z]T[G]struct{ﬁO (iw)}Re,n} (3 64)
Wy [Cg] {G}imn Wi [X 1[G seruce Lito (@)} imn .
where the diagonal matrix
= (—w?[I] + [a)(z)])[IVIg] (3.65)

The real and imaginary parts of the condensed dynamic response in principal coordinates follow from
eg. (3.62):
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Pl pen = 1{d}, (3.66)

{{;}Im,n = [?] {a}lm,n (3'67)

The back transformation to the physical coordinates follows by premultiplying with the transformation
matrix [V]:

Wren = [Nopn (P} e (3.68)

{ﬁ}lm,n = [V](p,r){{;}lm'n (369)
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4 Demo Structure

Prior to applying the ISSPA method to complex base-excited structures it is necessary to test it on
simpler model or demo structure [20].

This chapter is firstly devoted to the derivation of the reduced system matrices of such simplified
MDOF demo structure that consists of three-dimensional (3D) beam elements. When the 3D elements
are assembled to the entire demo structure, the number of redundant DOF has to be eliminated. A
popular method of reduction of the size of redundant DOF - the Static Condensation Method applied
to dynamic problems - is introduced. Also it is offered to considering the inertial properties for a dy-
namic system because of lumped mass. The procedures of reducing the system matrices are imple-
mented into the MATLAB-function demostructure.m.

The second part of this chapter is focused on the multi-axis base excitation simulation of the demo
structure. The reduced generalized system matrices, geometry matrix and base excitation vector in
eg. (2.51) enable to calculate the relative acceleration responses. It will be possible to analyze the in-
fluence of the cross-talk effects. The MATLAB-function response_analysis.m is programmed for
these goals.

4.1 Characteristics of the Demo Structure

The 3D demo structure is taken from [1]. The 3D demo structure consists of four rectangular blades of
different lengths mounted perpendicularly on a hollow central mast (Figure 4.1). The overall height is
about 1.6 m and the total mass amounts to about 191 kg. The sizes and distribution of weight, stiffness
and damping are summarized in the Table B.1.

P10 @

P @

®-:

Figure 4.1: Three-dimensional test structure
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4.2 Finite-Element Description

The finite-element method (FEM) is an effective numerical method that is used to provide approxima-
tions to solutions of static and dynamic problems for continuous systems. Application of the finite-
element method requires the system to be divided into a finite number of elements [8].

4.2.1 Local matrices

In this case it is assumed that the demo structure already consists of separate elements. These are 3D
beam elements as shown in  Figure 4.2 which resist axial force, transverse shear force in each of two
directions, bending about each principal axis of the cross section, and torque about longitudinal axis
member. Following [3] they contain stiffness qualities of truss-, torsion- and beam elements. Truss
elements are hinged at connection points and resist only axial force; torsion moments resist axial mo-

ments and beam elements are welded together at connection points and resist transverse forces and
bending moments.

@5 @;

=

3D beam element
{d;}

V(D P

Y q

relative system Z’] q
X

shaker

Figure 4.2: 3D beam element: DOF

The effective local force vector acting on nodal points i and j of the 3D beam element contains the
difference between external loads and d’Alembert’s inertia forces because of the base excitation

(Furs} = (7} - 1161 {23} @)

where {f} is the local external loads vector as shown in Figure 4.3
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{f} = {Si1 Siz Siz Miy My; My3 Sy Sjs Sjs Mjs Mjs Mg }

M;s Mje
C_’) M;, (.:) Mo
3:3 q S; q .
" _J:/ = . N
‘1’] Sa m; 3D beam element m; " (J .

Figure 4.3: 3D external loads

(4.2)

and [1\71] is the local lumped mass matrix. The simplest method for considering the inertial properties
of the demo structure is to assume that the mass of the structure is lumped at the nodal coordinates as
shown in Figure 4.1. The inertial effect associated with any rotational degree of freedom is then as-

sumed to be zero [19]. The local lumped mass matrix [1\71] is:

....
-

—

7] =

cococcocococococool
coocococococococol o
cococococococol oo
cCoococococococoooo
cooccocococoocooo
coococococoococoooo
cocoocoocooSococococoo
cocooS cocococoo
cood coocococoococoo

The local time independent geometry matrix [G] has the following form:

1 (g
41={1 1,
0] [0]
where [D;] and [D;] are given in eq. (2.30):
0 di, —djy

d]'y _djx 0

One has

{Ferr} = [0} + [M]{D}

[=NelNeleolelololeoloNeNe N

S OO O oo oo oocooo

CoOoOC OO 00000 OO

(4.3)

(4.4)

(4.5)
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where {7} contains the displacements and rotations of the structural nodal points i and j

~ T
{7} = {vil Viz Vi3 Qi1 Piz i3 Vja Vjs Vjg Pja Pjs Pje } (4.6)

and [K] is the element stiffness matrix of the 3D beam element. The element stiffness matrix is given
by [5]:

EA EA
- 0 0 0 0 0 -— 0 0 0 0 0
12E1, 6El, 12E1, 6El,
0 E 0 0 0 e 0 -7 0 0 0 B
12E1 6El 12E1 6E1.
Yy Y Yy Yy
0 0 E 0 -0 0 0 0 R 0 -0 0
Gl Gl
0 0 0 TX 0 0 0 0 0 —T" 0 0
6EI 4E1 6El 2EI
0 0 - Lzy 0 Ty 0 0 0 Lzy 0 Ly 0
6EI 4E1 6EI 2E1
N 0 Lzz 0 0 0 LZ 0o - Lzz 0 0 0 LZ
w=| A (4.7)
-4 0 0 0 0 0 — 0 0 0 0 0
12E1, 6El, 12E1, 6El,
0 -] 0 0 0 -0 I 0 0 T
12E1 6E1, 12E1 6EI
Yy Yy Yy Yy
0 -0 0 B 0 0 0 E 0 B 0
Gly Gl
0 0 0 -5 0 0 0 0 0 - 0 0
6EI 2EI 6El 4E1
0 0 - Lzy 0 Ly 0 0 0 Lzy 0 Ly 0
6El, 2E1, 6El, 4E1,
0 5 0 0 0 T 0 -0 0 0 0 T

where E is a modulus of elasticity, G is a shear modulus and L is a length of 3D beam element

4.2.2 Global matrices

The assembly of global stiffness and mass matrices requires that each of the element stiffness equation
be referred to the global axes. The geometric transformation contains a rotation through the angles a,
B and y as shown in Figure 4.2. The corresponding transformation is given in [5] as

[T]1 [o] [o] [0]
_|lol [T] [o] [o]
=10 o 1 (o] 2
Lol [0 o] (7]
where
cos S cosy cos S siny —sinf
[T] = |sinasinB cosy —cosasinf sinasinfsinf + cosacosy sinacosf (4.9)

cosasinfcosy +sinasiny cosasinfsiny —sinacosy cosacosf

The element stiffness matrix [K] and local mass Matrix [#] are transformed to the global coordinates
by
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[Rsp] = [T17[R][T] (4.10)
[Msp] = [T1"[M]T] (4.11)

The transformed local mass [Msp] and stiffness matrices [Ksp| are assembled into global matrices.
After the elimination of the fixed degrees of freedom according to the support the global system matri-
ces [Kyiopa] and [My10pa:] get the dimension p, p = 60,60.

4.2.3 Static Condensation

In the case of pure base excitation the eg. (4.5) becomes the following form:

rl 0 0 0 d]Z —d]’y—
01 0 —d 0 d Vi1 Vi1
001 d. -d. o0 Viz via
jy  x . Vi3 Vi3
000 0 0 0 (T Pix ®ix
000 O 0 0 || by b @,
mlo 00 0 0o inl_y o 0] o (4.12)
—[M] .. = i3 p+ i3 .
1 0 0 0 d]Z _d]y (be Vj4 U]'4
010 —dy 0  dy||P Vs Vs
0 0 1 d]y _d]X 0 Dbz (P]4 (p]4-
000 O 0 0 ®js ®js
000 O 0 0 ®js ®j6
o 0 0 O 0 0

The lumped mass matrix structure results in a diagonal mass matrix and contains zeros in its main
diagonal due to assumed zero rotational inertial moments. The local geometry matrix also contains
zeros corresponding to rotational degrees of freedom ¢;and ¢;. These facts enable the elimination by
static condensation of the rotational degrees of freedom thus reducing the dimension of the dynamic
problem [19].

A practical method of accomplishing the reduction of the stiffness matrix is to identify those degrees
of freedom to be condensed as dependent or secondary degrees of freedom and express them in the
term of the remaining independent or primary degrees of freedom [9], [19]. In this case the transla-
tional degrees of freedom should be condensed and rotational must be eliminated. The stiffness equa-
tion for the test structure may be written as

) el e

where {¢,} is the rotational vector corresponding to the s degrees of freedom to be reduced and {vp} is

the displacement vector corresponding to the remaining p independent degrees of freedom. It is as-
sumed that the external forces were zero at the dependent degrees of freedom. A multiplication of the
matrices on the left side of eq. (4.13) expands this equation into two matrix equations

[Kss]{(ps} + [Ksp]{vp} = {O} (4-14)
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[Kpsl{os} + [Kpp[{vp} = {F>} (4.15)
Equation (4.14) is equivalent to
{05} = [Tocl{vp} (4.16)
where [T;.] is the transformation matrix given by
[Toc] = —[Kss] 7 [Ksp] (4.17)

Substituting eg. (4.16) and using eq. (4.17) in eq. (4.15) results in the reduced stiffness equation relat-
ing forces and displacements at the primary coordinates

[K1{v,} = {F,} (4.18)
where [K] is the reduced stiffness matrix given by
[K] = [Kpp] - [KPS][KSS]_l[KSP] (4.19)

The static relationship between the secondary coordinates {¢,} and primary coordinates {vp} may be
written using the identity {v,} = [I]{v,} as

{os ([T
{{vp}} =i ) (4.20)
With
— [~SC]
[Tsc] = [ % ] (4.21)

the reduced stiffness matrix can be written as

[K] = [Tsc]T[Kglobal][Tsc] (4-22)

4.2.4 Static Condensation Applied to Dynamic Problems

In order to reduce the mass matrix, it is assumed that the same static relationship between secondary
and primary degrees of freedom remains valid in the dynamic problem [2]. Hence the same transfor-
mation based on static condensation for the reduction of the global stiffness matrix is also used for
reducing the global mass matrix. In general this method of reducing the dynamic problem is not exact.
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In this case the discretization of the mass results in a number of massless rotational degrees of freedom
selected to be condensed. Thus it is only necessary to carry out the static condensation of the global
stiffness matrix and to delete from the global mass matrix the rows and columns corresponding to the
massless rotational degrees of freedom.

The static Condensation Method in this case does not alter the original problem, and thus results in an
equivalent eigenproblem without introducing any error. In the general case involving the condensation
of degrees of freedom to which the discretization process has allocated mass, the reduced mass is ob-
tained using transformations analogues to eq.(4.22)

[M] = [Ty )" [Mgiopar] [Tsc] (4.23)

The theory presented in aforementioned sections was implemented with MATLAB (demostructure.m)
in order to get the reduced system matrices [K] and [M] of the demo structure. The
Figure 4.4 summarizes the all steps of the derivation of reduced system matrices in the demostruc-
ture.m.

e,
o

Input: material and geometry
properties

demostructure.m
[R ]1:.1: [‘1?]1: 12

Geometric
transformation

[KT]1:.1: [‘1:-'*]1:.1:
Assemblage and

elimination of
fixed DOF

[‘r? ]E.E-.GE- [-'1’_]1-]6&.6&

Static
condensation

Quiput: reduced system matrices: [K]lspse [Mlzoz0

Figure 4.4: Procedures of the reduction of the system matrices of the demo structure
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4.3 Response Analysis

The response analysis was implemented with the programmed Matlab-function response_analysis.m
that accomplishes the eigenvalue problem of the demo structure, plots the mode shapes and simulates
the unsolicited motions of the shaker. The input parameters as shown in Figure 4.5 are the reduced
system matrices of the demo structure that were derived in the aforementioned sections. The reduced
system matrices of the demo structure are used in the eigenvalue solution eq. (2.38)

(K] = w?[MD{v}e'* = {0}

that yields as output parameters the eigenfrequencies f and eigenvectors {Y'}. Additional function plots
the mode shapes of the demo structure. Manipulating of the base excitation vector {ii,} allows simu-
lating the base excitation and investigating corresponding responses of virtual sensors (DOF).

Input: reduced system matrices
[K 3030 [M]ag.30

response_analysis.m

Eigenvalue m—— eigenfrequencies,
problem = damping

E"/TZ
Mode shapes ST =

Base
excitation Output responses

simulation

Figure 4.5: Input and output data of the response_analysis.m
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4.3.1 Eigenvalues of the demo structure

The reduced system matrices [K]30,30 and [M]sq,30 have the dimension p, p = 30,30 so that 30 eigen-
frequencies and mode shapes can be found (Table B.2). There are 16 eigenfrequencies up to 100 Hz.
The lowest eigenfrequency is f; = 9,37Hz. The corresponding mode shape is a pendulum motion of
the central mast about its x-axis as shown in Figure 4.6. The corresponding mode shape to the second
eigenfrequency f, = 11,86 Hz contains the pendulum motion of the central mast about its y-axis. The
corresponding mode shape to the third eigenfrequency f; = 12,01 Hz contains the oscillating motion
about its z-axis.

] % Sy
T
i “/L*y H/.\)J

1.mode; 93769 Hz Z.mode: 11.8558 Hz 3.mode; 18012 Hz

Figure 4.6: Mode shapes of the demo structure

4.3.2 Base excitation simulation

The dynamical acceleration response for base-excited structures is given by eq. (2.51):

(5} = Z w?(Y};{¥};" (IMI[G]{iio})

k —w m]+lwc]

It permits considering the analysis of a situation where the system is simultaneously excited in fre-
quency domain by pure base excitation {ii,(w)} [4]. So the base acceleration vector {iiy}¢, contains
maximum acceleration amplitudes. It has to be multiplied with the product of the reduced lumped
mass matrix [M]s 30 and transformation matrix [G ]3¢ ¢ that is given in Table B.3.
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Table 4.1: List of sensors and channels

sensor | x- channel | y-channel | z-channel

A 1 2 3

B 4 5 6

C 7 8 9

D 10 11 12
E 13 14 15
F 16 17 18
G 19 20 21
H 22 23 24
1 25 26 27
J 28 29 30

H
)
[
sensor C: iﬁ‘) A
chatnel =7
C

channel v&  x7 ¥8
chatinel =9

Table 4.1 shows the list of sensors A-J that virtually “measure” the responses in x-, y- and z-directions.
To introduce the response analysis the sensor C is chosen. The “measured” frequency band was lim-
ited at 25 Hz. At first a base excitation in only x-direction {ii,} = [1 0 0 0 0 0]7 was applied to demo

structure. Figure 4.7 shows the imaginary parts of “measurements” of corresponding channels.

Obviously only the second mode is excited where the first and the third modes are not excited. In ac-
cordance with Figure 4.6 where the second mode shape is plotted the sensors “measure” the response
amplitudes only in x- and z-direction.

imag. acceleration resonse [més?]

e oadi
[ R
(g}

_________________________________________

channels:

uE

4

excitation frequency [Hz]

Figure 4.7: Excitation in x-direction
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To introduce the cross-talk effect that results in unsolicited motion it is necessary to add the rotational
parts to the base excitation vector {ii,}. Figure 4.8 shows the ancillary effect of an unsolicited rotation
about x-axis of the virtual shaker {iiy} = [1 00 0.50 0]7. According to equations (2.31) and (2.37)
the rotational acceleration part ¢,, = 0.5 has to be multiplied with y- and z-position components of

all sensors. The rotational part leads to an additional excitation of the 1.mode that is “measured” by y-
channel.

% e e
I i N S
-:u : :
o 1 b _ o ___ _
= T hl
=] : :
o 1
e e R R R el e R R ' Ead
= channels:
.E 1 '
E """""""""""""""""" A %7 7
R 3. - — 8
m ! z9
e = o G e e SN | [ e A CrAp e [ Cr e e _
A i i
£ ; :

Ry i i i i

5 10 15 20 25 30

excitation frequency [Hz]

Figure 4.8: Excitation in x- and rotational part about x-axis

Comparison with pure base excitation in y-direction only {ii;} =[01 00 00]” shows in Figure 4.9
that y-channels “measure” the response amplitudes in y-direction due to the first mode where the cen-
tral mast oscillates about the x-axis as shown in Figure 4.6.

B 1 1 : 1
E 1 1 i 1
E R TRl | B s T b Lt A Y b b At
) 1.mode
E v 938 Hr i :
. S CEEEERES iRtk ek SRS ik ek ety : .
E " k ! channels:
2 5 5 5 7
% R R b T T T S T =
2 : : 29
- '
%' =I. ___________
= :

By i | i i

5 10 15 20 25 a0

excitation frequency [Hz]

Figure 4.9: Excitation in y-direction
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To analyze the unsolicited motion the rotational excitation part ¢, = 0.5 was added to the base exci-

tation vector {ii,} = [0 10 0 0.5 0]7. As shown in Figure 4.10 the second mode by side of the first
mode is excited.

imag. acceleration resonse [m/s®]

5 10 15 20 25 30
excitation frequency [Hz]

Figure 4.10: Excitation in y-direction with rotational part about y-axis

Figure 4.11 presents the responses where the base excitation in y-direction becomes two rotational
acceleration parts ¢, = 0.5 and ¢,, = 0.5. Overall three modes are excited. The third mode is

“measured” by y-channel and represents the vibration as shown in Figure 4.6 where the rectangular
blades oscillate about z-axis.

imag. acceleration resonse [mis®]

] 10 15 20 25 30
excitation frequency [Hz]

Figure 4.11: Excitation in y-direction with two rotations part
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5 Applications

The presented theory in chapter 3 is implemented into a MATLAB-function identification.m which
includes the post-processing of the vibration test data. The identification procedures are shown
in Figure 5.1. The input data are the time-independent geometry, measured frequency excitation and
relative response matrices. In the first instance the number of effective modes r that is equal to the
rank of the identified condensed stiffness and damping matrices is estimated. After solving of the con-
densed eigenvalue problem (equations (3.44) and (3.48)) and backtransformation to the measured
physical coordinates (eg. (3.46)) the eigenvalues will be identified and the mode shapes can be plotted.

Input: [G][4.] [B,]1[4] [B] [2]

identification
(ISSPA)

noise

Rank estimation
procedures

Condensed
eigenvalue
problem

Backtransformation

Qutput: eigenfrequencies
mode shapes
damping

Figure 5.1: Input and output data of identification.m
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At first demo structure presented in aforementioned chapter was used to test the sensitivity and accu-
racy of the identification procedure (ISSPA). Subsequently the MATLAB-function identification.m

was applied to the vibration test data of the original aircraft section in order to demonstrate system
identification.

5.1 Application of ISSPA on Demo Structure

The 30-DOF demo structure presented in the chapter 4 was used to test the sensitivity and accuracy of
the identification procedure (ISSPA). The reason for the use of simulated test data is the possibility of

investigating all influences on the accuracy of the identification method separately [14]. The following
influences were investigated

¢ incomplete frequency range input

e cross-talk

e number of effective degrees of freedom

e measurement errors, by adding random data to the analytical model response
e weakly excited modes

5.1.1 Incomplete frequency range and influence of the cross-talk effect

To render the identification even more difficult the “measured” frequency band was truncated at
24 Hz to establish the incompleteness condition that the MDOF number p = 30 is larger than the
effective mode number r. The base excitation in the y-direction includes unsolicited rotational parts
about y-axis and z-axis {iio} = [0 1 0 0 0.5 0.5]7. Figure 5.2 shows the “measured” imaginary parts of
acceleration responses. The experimental test environment was performed by adding of the random
data of 10% to the analytical response data.

imag. acceleration resonse [m/s?]

0 10 20 30 40 50 60
excitation frequency [Hz]

Figure 5.2: Digitized measured frequency response curves
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The ratios of consecutive singular values of the imaginary part measurement matrix B (m = 1011
frequency points, p = 30 MDOF) plotted in Figure 5.3 clearly indicate that at least r = 3 effective
modes are active in that frequency range.
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Figure 5.3: Ratios of consecutive singular values

To prove the rms — deviations at the substitute measurement matrix [B] according to eq. (3.35) have
been calculated for different estimates of r. The plot in Figure 5.4 indicates some changes of slope of
curve. The steepest change could be atr = 4.
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Figure 5.4: rms-deviation of substitute measurement matrix

So a major problem is the determination of the number of the effective degrees of freedom which is
equal to the rank of the response matrices. Depending on the individual application it is necessary to
run the ISSPA-identification with two or more different numbers of effective degrees of freedom. The
best number is then decided on by comparing the measured response data with the recalculated re-
sponse data using the identified parameters [17].
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Figure 5.5 shows the comparison of the recalculated responses as given in eq. (3.67) and “measured”
responses at sensor C. The responses for r = 4 are recalculated with high accuracy whereas the re-
sponses for r = 3 drift from the “measured” responses.
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Figure 5.5: Exact and identified responses at channel y8

The identified and analytical mode shapes are correlated by the Modal Assurance Criterion (MAC).
The MAC measures the scatter of points between the identified mode shape {Y} and the predicted
mode shape {y} [21]:

W
MAC = T T @] ®.1)

Equation (3.57) implemented into identification.m yield four eigenfrequencies. The following ratios of
exact (Table B.2) to identified eigenfrequencies were extracted by comparing of MAC values [7]:

& = [1.000 1.000 1.000]

fia
Equation (3.58) also implemented into identification.m yields three corresponding damping values.
The ratios of exact (Table B.2) to identified damping values give:

Sex _ 11,000 1.000 1.000]

Cia
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Table 4.1summarizes the comparison between exact and identified parameters.

Table 5.1: Identified parameters

mode EXACT ISSPA
r fr ¢ fr . MAC
[Hz] (=] [Hz] =] [%]
1 9.377 0.029 9.378 0.029 100
2 11.856 0.037 11.860 0.037 100
3 18.012 0.057 18.010 0.056 100

The results indicate that the ISSPA-method identifies modal parameters within incomplete frequency
range with high accuracy even if the base excitation vector includes rotational parts.

5.1.2 Influence of number of effective degrees of freedom

In a next step the question was investigated how increasing the matrix rank beyond r = 4 would influ-
ence the identified parameters. The results presented in Table 5.2 for the eigenfrequencies and re-
sponse compliance indicate that

e increasing the rank estimate beyond » = 3 yields pure computational modes

o the eigenfrequencies values of the 3 effective modes can be found and remain stable whereas
random deviations of 89.16% were identified between the recalculated and exact responses.

e The best response compliance is at estimated rank r = 4

Table 5.2: Identified eigenfrequencies and MAC with respect to different rank estimates r

Rank Eigenfrequencies [Hz] Damping [-] Response Number
compliance of noise
all Sensors modes

r f1 i) f3 $1 ¢z $

(values in parentheses: deviation to exact solution )

3 9.476 11.904 18.008 0.021 0.036 0.058 3.949 -
(=0.099) (—0.048) (+0.004) (+0.09) (+0.002) (—=0.001)  (—96.051)

4 9.381 11.859 18.009 0.029 0.037 0.056 93.111 1
(—=0.004) (—0.003) (+0.003) (£0.000) (£0.000) (£0.000) (+6.889)

5 9.379 11.858 18.011 0.029 0.037 0.056 87.729 2
(=0.002) (40.002) (—0.001) (£0.000) (£0.000) (£0.000) (+12.270)

6 9.380 11.856 18.010 0.029 0.037 0.056 92.966 3
(=0.003) (—0.003) (0.002) (£0.000) (£0.000) (£0.000) (+7.034)

7 9.379 11.860 18.005 0.029 0.037 0.056 91.611 4
(=0.002) (=0.003) (0.006) (£0.000) (£0.000) (£0.000) (+8.389)
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5.1.3 Measurement errors, by adding random data to the analytical response

The vibration test data always include noise. In a next step the question was investigated how the dif-
ferent levels of noise influence the identified parameters for estimated rank r = 4. The noise was ap-
plied by adding uniformly distributed random numbers to the analytical response. Table 5.3 shows the
results obtained by the ISSPA for various noise levels.

Table 5.3: Influence of noise

Noise Eigenfrequencies [Hz] Damping {,. [-] MAC [%]
mode shapes

f1 f2 f3 ¢ ¢ {3 1 2 3

(values in parentheses: relative deviation to exact solution in %)

zero 9.37 11.85 18.02 0.029 0.037 0.057 100 100 100
(-0.03)  (=0.02)  (+0.03)  (+0.000) (+0.000) (+0.000)

10% 9.38 11.86 18.01 0.029 0.037 0.057 100 99.98 99.93
(+0.01)  (+0.01)  (=0.01)  (£0.000) (+0.000) (+0.000)

20% 9.39 11.86 18.01 0.027 0.037 0.056 99.99 99.99 99.95
(+021)  (+0.01)  (=0.01) (—=0.068) (+0.000) (—0.034)

30% 9.40 11.88 18.00 0.026 0.036 0.056 99.99 99.97 99.96
(+029)  (+0.22)  (—0.05) (—11.389) (—3.410) (—0.034)

40% 9.43 11.88 17.95 0.025 0.036 0.055 99.99 99.89 99.93

(+0.52)  (+0.22)  (=032) (—1596) (—3.410) (—2.707)

The modal parameters remain stable up to a noise level of 20%. So the ISSPA method can be applied
under experimental test environment to identify modal parameters.

5.1.4 Weakly excited modes

In order to study the ability of the identification procedure to extract weakly excited modes caused by
increased damping or cross-talk effects the same base excitation vector becomes weakly rotational part
about z-axis:{iio} = [0 1 00 0.5 0.03]7. Figure 5.6 shows the very small response peak that is “meas-
ured” by channel y8. To perform the experimental test environment the random data of 10% were
added to analytical response data.
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Figure 5.6: Weakly excited mode
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The ratios of consecutive singular values as shown in Figure 5.7 clearly indicate that at least r = 2
effective modes are “active” in that frequency range. To prove this the rms-deviations at the substitute
measurement matrix have been calculated for different estimates of r.
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Figure 5.7: The ratios of consecutive singular values in the case of weakly excited mode

To prove the rms — deviations at the substitute measurement matrix [B] according to eq. (3.35) have
been calculated for different estimates of . The plot in Figure 5.8 indicates steepest change at r = 4.

B ' ' : : ;
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Figure 5.8: rms- deviation in the case of weakly excited mode

Figure 5.9 shows the comparison of the recalculated responses as given in eq. (3.67) and “measured”
responses at sensor C. The responses for r = 4 are recalculated with high accuracy whereas the re-
sponses for r = 2 drift from the “measured” responses.
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Figure 5.9: Recalculating responses in the case of weakly excited mode

The next investigated question was whether changing the matrix rank beyond r = 4 would either al-
low the identification of the “hidden” mode or would only produce additional modes. The results pre-
sented in

Table 5.4 for the eigenfrequencies and damping values indicate that

Rank

2

4

7

the weakly excited mode cannot be extracted

increasing rank beyond r = 2 produces noise modes
only two eigenmodes can be extracted from noise modes
the best response compliance of all responses (93.10 %) is at estimated rank r = 4

Table 5.4: Identified parameters in the case of weakly excited mode

Eigenfrequencies [Hz]

Damping ¢, [-]

Response compliance

[%o]
f1 [2 [3 $ ¢ §!
(values in parentheses: deviation to exact solution )

9.509 11.916 - 0.021 0.037 - 85.391
(—=0.132) (—0.060) (+0.008) (4+0.001) (+14.609)
9.382 11.858 noise 0.029 0.037 noise 93.108
(—=0.005) (—0.002) (£0.000) (£0.000) (+6.892)
9.379 11.859 noise 0.029 0.037 noise 85.391
(—=0.002) (—0.003) (£0.000) (£0.000) (+14.609)
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5.2 Application of ISSPA to Vibration Test Data from the Aircraft
Section

In order to demonstrate the parameter identification method, the MATLAB-function identification.m
was applied to the vibration test data of the original aircraft section. The vibration test was accom-
plished on the electrohydraulic exciter.

Figure 5.10 shows the principle test set-up. The test fixture is an adapter system that was connected to
the test specimen and the shaker table. It has its first eigenfrequency above the investigated frequency
range. Four tri-axial accelerometers were placed on the shaker table to measure input excitation accel-
eration. The sensors on the section measure the absolute acceleration responses.

response accelerometers

section \

test fixture

shaker base accelerometers

Figure 5.10: Aircraft section

The real and imaginary acceleration response data were available from a sinusoidal sweep base excita-
tion at 101 measurement degrees of freedom digitised at 1188 frequency points. Only p = 77 degrees
of freedom were retained for the ISSPA identification. The frequency range of investigation is normal-
ized to unity. The real part data are assembled in the matrix [A], the imaginary part data in the
trix[B]. Each column of these matrices represents the frequency response curve of one measuring de-
grees of freedom that are also normalized to unity.

5.2.1 Identification in the case of base excitation in y-direction

In a first step the identification-method was applied to the vibration test data in the case of base excita-
tion in the y-direction. Figure 5.11 shows the measured unsolicited motions of the shaker because of
crass-talk effects.
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Figure 5.12: Normalized imaginary acceleration response at channel 55

Due to unknown measurement errors sources and non-linearity effects the ratios of consecutive singu-
lar values of the measurement matrices plotted in Figure 5.13 show several definite peaks whereas the

magnitudes at r = 3 and r = 6 are most significant.
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Figure 5.13: Ratios of consecutive singular values

The rms-deviation in Figure 5.14 also indicates several changes of slope of that curve. Whereas the
change at r = 6 shows to be the steepest.

s [%]

estimated rank numbers r

Figure 5.14: rms-deviation of substitute measurement matrix

Table 5.5 shows the summary of the accomplished rank analysis

e Estimate of r = 3 gives no noise modes and reasonable eigenfrequency ratios but no clear
compliance between the recalculated and measured responses (72.04%).

e Estimate of r =6 gives three noise modes. The response compliance accounts for
81.35%. Three eigenfrequencies could be extracted by comparing of corresponding identified
and analytical mode shapes. The extracted eigenfrequency ratios are also plausible.

e Tee best response compliance accounts for 89.52% for estimate rank r = 5.

e The clear statement about the damping is impossible because the analytical damping model is
not present but all identified damping values are in the plausible range (0.06% — 2.87%).
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Table 5.5: Rank analysis
rank | eigenfrequency ratio f. [fsim/fial damping ¢ [%] resp.compl. | noise
[%] mode
frl frZ fr4 (1 (2 (4-
3 1.04 1.16 1.29 1.39 0.96 0.49 72.036 -
4 1.07 1.16 1.34 0.67 1.05 0.37 0.987 1
5 1.07 1.17 1.31 0.06 1.13 2.87 89.521 2
6 1.08 1.16 1.34 0.33 1.03 1.91 81.346 3

However, from comparing the recalculated and the measured responses as shown in Figure 5.15, the
best agreement was obtained using the rank estimate r = 5.

norm. imnag.acceleration response

1111

r=3155FA
r=6I155PA

rmeasured
1

I S R
3 i i i i i i i

0.4 0.5

norm. excitation frequency

Figure 5.15: Comparison of recalculating responses

08 1

It should be denoted out that ISSPA, in contrast to other exciting modal identification methods, is not
a response curve fitting method, i.e. good agreement between the measured and recalculated response
must also be a measure of the accuracy of the physical system matrix [K*], which is not identified in
standard curve fitting procedures [14]. Figure 5.16 shows the real and imaginary part responses of an
arbitrary DOF no. 55 that were recalculated with high accuracy.
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Figure 5.16: DOF no.55: real and imaginary part responses

Table 5.6 summarizes the identified modal parameters for the rank estimate r = 5 and Figure 5.17
represents the corresponding mode shapes that were identified.

Table 5.6: Identified modal parameters for rank r =S in the case of y-excitation

Mode Eigenfrequency ratio f, Damping ¢ MAC
no.
[fsim/fid] [%] [%]
1 1.07 0.06 97.71
2 1.16 1.13 82.49
4 1.31 2.87 82.76

Figure 5.17: Identified mode shapes for estimate rank r =5 in the case of y-excitation
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5.2.2 Identification in the case of base excitation in z-direction

In the next step the identification in the case of the base excitation in z-direction using the selected
frequency band is accomplished. The Figure 5.18 shows the selected frequency range around the dis-
tinct peak in which the identification will be performed. Cutting out of this frequency band should
minimize noise effects.
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Figure 5.18: Identification frequency band

Comparison of the recalculated and measured responses as shown in Figure 5.19 indicates the best
decision is to use the rank r = 5.
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Figure 5.19: DOF no.37: real and imaginary part responses
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As shown in Table 5.7 three eigenvalues and eigenmodes are identified from the selected frequency
band.

Table 5.7: Identified modal parameters for estimate rank r =5 in the case of z-excitation

Mode Eigenfrequency ratio f, Damping ¢ MAC
no.
[fsim/fid] [%l [%l
2 1.11 0.32 81.16
3 1.14 1.32 95.35
4 1.29 1.22 84.34

The identified mode shapes are presented in Figure 2.1

Figure 5.20: Identified mode shapes for estimate rank r =5 in the case of z-excitation

5.2.3 Results overview

The programmed MATLAB-function identification-m is effective applied to the vibration test data of
the original aircraft section. In the first step the test data from the lateral excitation (y-direction) are
used. First, second and fourth predicted eigenfrequencies are identified for estimate rank r = 5. The
identified mass-modified system matrices enable to recalculate the responses with high accuracy. In
the next step the test data from the z-excitation are used. The identification frequency band is selected
to minimize the noise errors. Second, third and fourth predicted eigenfrequencies are identified for
estimate rank r = 5.



6 Conclusion and Outlook 54

6 Conclusion and Outlook

The objective of this thesis was the application of the identification method to real vibration data in
order to identify modal parameters like eigenfrequencies, mode shapes and damping. The identifica-
tion method has to consider the interaction between the multi-axis shaker and the test specimen. The
identified modal parameters are essential for the following validation of FEM-models and can conclu-
sively improve the design of the investigated structures.

The correct equation of motion for multi-axial base excited MDOF-systems is a requirement for the
modal analysis of such structures that are excited by shakers. The thorough derivation of the equation
of motion was discovered in [6] and [11]. After the research of the best applicable identification meth-
ods, the method called ISSPA (ldentification of Structural System Parameters), developed by M.Link,
was detected in [13], [14], [15], [16] and [17]. The theory was extracted and implemented with MAT-
LAB: identification.m

In order to check the sensitivity and accuracy of the function identification.m with respect to condi-
tions that represent many practical test situations a virtual 3D demo structure was required. The demo
structure was specially designed with MATLAB-tool demostructure.m that constructs system matrices,
eliminates redundant DOFs and accomplishes the eigenvalue problem. The material properties of the
demo structure were obtained in [1]. An additional programmed MATLAB-function re-
sponse_analysis.m enables the forced response analysis where effects of unsolicited motions of the
virtual shaker can be simulated.

Finally the function identification.m was successful applied to the measured frequency test data of the
original aircraft section. The test data were extracted for the base excitation in y-direction where the
unsolicited motions of the shaker in directions of all the rest DOFs were also ascertained. The original
measurement matrices were modified such that their rank was equally to the number r of effective
modes. Without this modification there would be no rank defect in the original measurement matrices
due to measuring errors and unavoidable non-linearities. The difficulty was the investigation of the
correct number of effective modes. There are many different procedures to extract the effect of noise
modes from the identification equation. From comparing the recalculated and the measured responses
best agreement was obtained using the rank r = 5. By comparing of MAC values three eigenfrequen-
cies and modes and three computational modes have been identified. These eigenvalues were pre-
dicted by analytical model and can be used for its validation.

Furthermore ISSPA vyields not only modal data but also physical system matrices that can be used for
updating analytical models in order to identify those areas on the structure where modifications of the
physical stiffness, mass, and damping parameter have to be applied. Comparison of the finite element
and identified dynamic matrices makes it possible to identify deviations of the mathematical model in
physical coordinates. It should be denoted that the comparison for the mass modified system is possi-
ble only in case of known base reactions forces which have to be measured during the test.

ISSPA is the frequency-domain identification. But it is also reasonable to apply the time-domain iden-
tification to the same vibration test data in time-domain to identify the modal parameter that can be
compared with the results of the frequency-domain identification ISSPA.
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A Electrohydraulic Exciter
Table A.1: Typical technical parameters of electrohydraulic exciter

Feature Parameters
Size of table platform 4.0m x 4.0m
Table mass ~22000kg
Lowest eigenfrequency > 100 Hz
Number of vertical actuators 4
Number of horizontal actuators 4
Number of hydraulic pumps 5
Power rating 1000kVA
Maximum oil flow 1750 I/min
Maximum play load 15000kg

Maximum way
Maximum velocity

Maximum acceleration: empty table

Maximum acceleration: maximum play load

0—2Hz: £ 70mm/s
2—10Hz: +0.8m/s
+60 m/s* (vertical); +35m/s?(horizontal)
+34 m/s* (vertical); +22m/s?(horizontal)
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B Demo Structure Properties
B.1 Material and geometry properties
Table B.1: Material properties of a demo structure
Beam- Final Length Reference Bending  Reference Bending  Torsion Stress
element  weight a [m] axis u stiffness axis v stiffness stiffness stiffness
mi [kg] Elu Elv Gld EA
105 Nm? 10° Nm* 10°Nm? 108N
1-2 60 0,8 X 4,16 7,04 4,43 5,12
2-3 40 0,7 X 4,16 7,04 4,43 5,12
2-4 14 0,8 y 1,28 1,92 1,48 1,92
2-5 17 0,5 X 1,28 z 1,92 1,48 1,92
2-6 9 0,8 y 1,28 z 1,92 1,48 1,92
2-7 17 0,5 X 1,28 z 1,92 1,48 1,92
3-8 9 0,5 y 1,28 z 1,92 1,48 1,92
3-9 11 0,5 X 1,28 z 1,92 1,48 1,92
3-10 9 0,5 y 1,28 z 1,92 1,48 1,92
3-11 11 0,5 X 1,28 z 1,92 1,48 1,92
B.2 Eigenvalues
Table B.2: Eigenfrequencies and damping values
Mode Nr. Eigenfrequency [Hz] Damping{ Mode Nr. Eigenfrequency [Hz] Damping

1 9,38 0,0295 16 92,21 0,2897

2 11,86 0,0372 17 108,65 0,3413

3 18,01 0,0566 18 113,24 0,3558

4 36,22 0,1138 19 132,89 0,4175

5 36,79 0,1156 20 135,05 0,4243

6 38,44 0,1208 21 380,30 1,1947

7 39,74 0,1248 22 658,96 2,0702

8 51,50 0,1618 23 756,42 2,3764

9 54,57 0,1714 24 801,21 2,5171

10 60,87 0,1912 25 940,40 2,9542

11 66,19 0,2079 26 948,40 2,9795

12 67,32 0,2115 27 953,35 2,9950

13 83,04 0,2609 28 1039,60 3,2660

14 83,28 0,2616 29 1172,18 3,6825

15 90,85 0,2854 30 1253,16 3,9369
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B.3 Transformation matrix

Table B.3: Transformations matrix

o o b OO0 bpOO P OO PP OO OO PP OO PP OO P OO P, O O B

o rp OO0 b OO bpP OO OOpP OO OO OO OO b O O — O

b O O b OO0 b OO0 P OO0 kP OO P OO P OO P OO P O O F—, O O

S 2 o
a1 [00)
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C MATLAB scripts

C.1 Main design

% MAIN DESIGN
% Author: Dimitrij Shulkin, 2012

%
clc; close all; clear all;

[properties] = demo_structure_properties
/S

% REDUCED STIFFNESS AND MASS MATRICES
0y
[K M G] = demostructure(properties);
0y
% BASE EXCITATION SIMULATION
7S
% translational rotational
% X y z X y z
ub=[1 0 O 1 0 0]°;
[X wr sr plotnumber] = response_analysis(K,M,G,ub,properties)
0y
% 1SSPA
/S
% INTERFACE
% Analytical data of demo structure
[A B Au Bu Omega] = interface(X,wr,sr,ub);
% IDENTIFICATION
% Choose effective dof:

effdof
[frr drr]

2;
identification(A,B,Au,Bu,G,0mega, plotnumber,effdof)
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C.2 demostructure.m

function [K M G] = demostructure(properties)
04

% Procedures of the reduction of the system matrices of the demo structure
% INPUT DATA : material and gemoetry properties of demo structure

% Author : Dimitrij Shulkin 2012

%
% Parameters of demo structure

m = properties.m; % mass [kdg]
L = properties.L; % lengths [m]
EA = properties.EA; % length stiffness [N]
Elx = properties.Elx; % bending stiffness, reference axis x
Ely = properties.Ely; % bending stiffness, reference axis y
Elz = properties.Elz; % bending stiffness, reference axis z
Gl = properties.Gl; % torsional stiffness
alfa = properties.alfa; % alfa rotation of beams
beta = properties.beta; % beta rotation of beams
gama = properties.gama; % gama rotation of beams
n = properties.n; % quantity of beams
dof = properties.dof; % global degrees of freedom
G = properties.G;
% Incidence table % beam number
inz = [1234563738397809;... % 1-2
37 38 39 7 8 9 40 41 42 10 11 12;... % 2-3
37 38 39 7 8 9 43 44 45 13 14 15;... % 2-4
37 38 39 7 8 9 46 47 48 16 17 18;... % 2-5
37 38 39 7 8 9 49 50 51 19 20 21;... % 2-6
37 38 39 7 8 9 52 53 54 22 23 24;... % 2-7
40 41 42 10 11 12 55 56 57 25 26 27;... % 3-8
40 41 42 10 11 12 58 59 60 28 29 30;...- %  3-9
40 41 42 10 11 12 61 62 63 31 32 33;... %  3-10
40 41 42 10 11 12 64 65 66 34 35 36]; % 3-11
% Initialisation
Kglob = zeros(dof,dof);
% Assemblage of global stiffness matrix
for i = 1:n
Kglob(inz(i,:),inz(i,:)) = Kglob(inz(i,:),inz(i,z)) + ...
elementstiff-

ness(EA(1),EIx(1),Ely(i),El1z(i),GI(i),L(i),alfa(i),beta(i),gama(i),i);
end;

% Elemination of fixed dof (1 2 345 6)

Kred = Kglob(7:66,7:66);

%
% STATIC CONDENSATION METHOD

0

% Paz M., Leigh W. — Structural Dynamics, Theory and Computation, 2004
% secondary rotational degrees of freedom to be reduced

us = 1:30;

% primarary translational degrees of freedom
um = 31:60;

Ks = Kred(us,us);

Kp Kred(us,um);

% transformation matrix

T = -inv(Ks)*Kp;

T = [T;eye(30)];

% reduced sitffness matrix

K = T"*Kred*T;

04

% LUMPED MASS

04
% Paz M., Leigh W. — Structural Dynamics, Theory and Computation, 2004

M = diag(Im(2) m(2) m(2) m(3) m(3) m(3) m(4) m(4) m(4) m(5) m(5) m(5)...
m(6) m(6) m(6) m(7) m(7) m(7) m(8) m(8) m(8) m(9) m(9) m(9)--.

m(10) m(10) m(10) m(11) m(11) m(ADD
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C.2.1 Input data for demostructure.m

function [properties] = demo_structure_properties
04

% OUTPUT DATA: material and geometry properties of the 3D demo structure

% Taken from: Breitbach E.J. — Experimentelle Simulation

% Dynamischer Lasten an

% Raumfahrtsystemen mittels modaler Erregerkraftkombinationen,
% Habilitationsschrift, 1988

% Author: Dimitrij Shulkin, 2012

0y s p——————

% mass [ka]

properties.m = [0 60 40 14 17 14 17 9 11 9 11];

% lengths [m]

properties.L = [0.8 0.7 0.8 0.5 0.8 0.5 0.5 0.5 0.5 0.5];

% length stiffness [N]

properties.EA = 107M8*[5.12 5.12 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92];
% bending stiffness, reference axis X

properties.Elx = 10"5*[4.16 4.16 0 1.28 0 1.28 0 1.28 0 1.28];

% bending stiffness, reference axis y

properties.Ely = 10"5*[7.04 7.04 1.28 0 1.28 01.28 01.28 0 1.28 0];

% bending stiffness, reference axis z

properties.Elz = 107"5*[0 0 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92];

% torsional stiffness

properties.Gl = 10"5*[4.43 4.43 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48];

% rotation of beams

properties.alfa = [OOOOO0OO0OO0OOO0O0]:;

properties.beta = [pi/2 pi/2 0 0 0 0 0 0 0 0];

properties.gama = [O O O pi/2 pi -pi/2 0 pi/2 pi -pi/2];

% quantity of beams

properties.n = 10;

% global degrees of freedom

properties.dof = 66;

% Geometric transformation matrx

properties.G = [1 0 0 O -0.8 O; 0100.80 O0; 001 O 0 0;..
1000 -1.5 O0; 0101.50 O; 001 0 O 0;--
1000 -0.8 0; 0100.80 0.8; 001 0 -0.8 O0;-.
1000 -0.8-0.5; 0100.80 O0; 001 0.50 0;.--
1000 -0.8 O0; 0100.80 -0.8; 001 0O 0.8 O0;--
1000 -0.8 0.5; 0100.80 O; 001-0.50 0;.--
1000 -1.5 O0; 0101.50 O0.5; 001 0 -0.5 O0;-.
1000-1.5-0.5; 0101.50 O; 001 0.50 0;.-.
1000 -1.5 O0; 0101.50 -0.5; 001 0 0.5 O0;-.
1000-1.5 0.5; 0101.50 O; 001-0.50 o1;
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C.2.2 Sub-function of demostructure.m

function [K] = elementstiffness(EA,EIX,Ely,El1z,Gl,L,alfa,beta,gama,i)
/S

% Elementstiffness matrix and transformation
% Author: Dimitrij Shulkin, 2012
0:\ s ————————————
ifi<=2
Elz = EIx; % Symmetry
elseif (i == 4) || (i = 6) || (i = 8) || (1 == 10)
Ely = EIX; % Symmetry
end;

% Element stiffness matrix

% Freymann R. - Strukturdynamik, Ein Anwendungsorientiertes Lehrbuch, 2011
= [EA/L OO O OO -EA/L O OO0 O O;... %ul
0 12*E1z/L"3 0 O O 6*Elz/L"2 O -12*E1z/L"3 0 O O 6*Elz/L"2;... %u2
0 0 12*Ely/L~"3 0 -6*Ely/L"2 0 0 O -12*Ely/L"3 O -6*Ely/L"2 0;... %u3
00O0GI/LOOOOO -GI/L 0 O;..- %ud
0 0 -6*Ely/L~2 0 4*Ely/L 0 0 O 6*Ely/L"2 0 2*Ely/L O;... %u5
0 6*E1z/L"2 0 0 0 4*El1z/L 0 -6*El1z/L"2 0 O O 2*Elz/L;... %u6
-EA/LOOOOOEA/LOOOOO;... %u7
0 -12*E1z/L"3 0 0 O -6*El1z/L"™2 O 12*Elz/L"3 0 O O -6*Elz/L"2;... %u8
0 0 -12*Ely/L"3 0 6*Ely/L"2 0 O O 12*Ely/L"3 0 6*Ely/L"2 0O;... %u9
000 -GI/LOOOOOGI/LOO;.-- %ul0
0 0 -6*Ely/L~2 0 2*Ely/L 0 0 O 6*Ely/L"2 0 4*Ely/L O;... %ull
0 6*El1z/L"2 0 O O 2*Elz/L O -6*E1z/L"2 O O O 4*Elz/L]; %ul2

% Transformation matrix

% Freymann R. - Strukturdynamik, Ein Anwendungsorientiertes Lehrbuch, 2011

tb = [cos(beta)*cos(gama) cos(beta)*sin(gama) -sin(beta);...
sin(alfa)*sin(beta)*cos(gama)-cos(alfa)*sin(gama). - .
sin(alfa)*sin(beta)*sin(gama)+cos(alfa)*cos(gama) sin(alfa)*cos(beta);
cos(alfa)*sin(beta)*cos(gama)+sin(alfa)*sin(gama). ..
cos(alfa)*sin(beta)*sin(gama)-sin(alfa)*cos(gama) cos(alfa)*cos(beta)];

O =[000;...
000;...
0 0 0];
Tb = [tb 0 0 0;.
O tbh 0 0;.
00 th O;.
00 0 tb];

% Transformation of element stiffness matrix
K = Tb**Kb*Tb;
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C.3 Base excitation simulation

function[X wr sr s plotnumber] = response_analysis(K,M,G,ub,properties)
04

% INPUT DATA: reduced system matrices and geometry matrix
% OUTPUT DATA: eigenvalues, mode shapes and responses
% Author: Dimitrij Shulkin, 2012
73 s
% EIGENVALUES
O s
[x 1a] = eig(K,M);
L = sqre(la)/(2*pi);
freq = zeros(1,30);
for i = 1:30
freq(i) = FF(i,10);
end;
[f_sort,id] = sort(freq);
X_sort = x(z,id);
f_sort
% Mode Shapes
L = properties.L;
dof = 30;

for s = 1:dof
plotshapes(x_sort(:,s),L,s,f_sort(s));

end;
b = 0.001; % Rayleigh-Damping
Mgen = X" *M*X; % Generalized mass matrix
Ph = x*Mgen™(-0.5); % Mass-normilized eigenvector
O s
% BASE EXCITATION SIMULATION
73 s
F = -M*G*ub; % Effective force vector
wr = 32:0.1:158; % Limited frequency band
sr = length(wr);
% Reduced FRF
Hr = zeros(dof,dof*sr);
for j = 1l:dof
for k = 1:dof
hr = zeros(dof,sr);
for n = 1:dof
hr(n,:) = hr(n, )+ wr."2*(Ph(g,n)*Ph(k,n))./. ..
(la(n,n) - wr.”2 + sqrt(-1)*b*la(n,n)*wr);
Hr(g, ((k-1)*sr+1):k*sr) = Hr(,((k-1)*sr+1):k*sr)+ hr(n,:);
end;
end;
end;
% Reduced acceleration responses
X = zeros(dof,sr);
qr = zeros(dof,sr);
for j = 1:dof
for k = 1:dof
X(,2) = XAd,:) + FA*Hrd , ((k-1)*sr+1) :k*sr);
end;
end;

% Presentation of responses: SENSORS C and E
f = wr/(2*pi);
plotnumber = dof+1;
Ffigure(plotnumber);
plot(f,abs(X(7,:)),f,abs(X(8,:)),f,abs(X(9,:)),---
f,abs(X(13,:)),f,abs(X(14, :)),f,abs(X(15,:)), "linewidth",2);
hold on;xlabel("excitation frequency [Hz]");ylabel("abs. acceleration resonse
[m/s=]");
legend("x7","y8","z9","x13","y14" ,"z15");grid; title("responses”);
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C.3.1 Figures of mode shapes

function plotshapes(x,L,j,freq)
04

% Figures of mode shapes
% Author: Dimitrij Shulkin, 2012

% ORIGINAL FIGURE

% X1, Y1, Z1 matrices, plots one or more lines in
% three-dimensional space through the points whose coordinates are the
% elements of X1, Y1, and Z1

X = [0 0;0 0;0 L(3);0 0;0 -L(5);0 0;0 L(7);0 0;0 -L(9):;0 0];
Y = [O 0;0 0;0 0;0 L(4);0 0;0 -L(6);0 0;0 L(8);0 0;0 -L(10)1;
z = [0 L(1);L(1) (LC+L(2));L(1) L(1);L(1) L(1);L(1) L();---
L(1D) LA);L)+L(2) LD)+L@);L(D)+L(2) L(D)+L(2);---
L(D+L(2) L(1)+L(2);L(1)+L(2) L(1)+L(2)];
Ffigure()
for i = 1:10
plot3(X(i,:),Y(i,:),Z2(i,:), "LineWidth",1,"Color",[0.7 0.7 0.7],---
"MarkerEdgeColor®,[0 O 0], ---
“MarkerFaceColor®,[0 O 0], ---
"MarkerSize*",5);
hold on;
end;
% MODE SHAPES
x1 = 0.2*x; % Scaling
X1 = [O x1(1); x1(1) x1(4);---
x1(1) LEBY+X1(7); x1(1) x1(10); ...
x1(1) -L(B)+x1(13); x1(1) x1(16); ...
x1(4) L(™M)+x1(19); x1(4) x1(22);
x1(4) -L(9)+x1(25); x1(4) x1(28)];
Y1 = [O -x1(2); -x1(2) -x1(5); - --
-x1(2) -x1(8); -x1(2) -L(4)-x1(11);.-.
-x1(2) -x1(14); -x1(2) L(6)-x1(17);. - -
-x1(5) -x1(20); -x1(5) -L(8)-x1(23);--.
-x1(5) -x1(26); -x1(5) L(10)-x1(29)1;
Z1 = [O L(1)-x1(3); L(1)-x1(3) L(D)+L(2)-x1(6);---
L(1)-x1(3) L(1)-x1(9); L(1)-x1(3) L(1)-x1(12);- -
L(1)-x1(3) L(1)-x1(15); L(1)-x1(3) L(1)-x1(18);---

L(L)+L(2)-x1(6)  L(L)+L(2)-x1(21); L(+L(2)-x1(6) L(1)+L(2)-x1(24);. ..
L(D+L()-x1(6)  L(1)+L(2)-x1(27); L(1+L(2)-x1(6) L(1)+L(2)-x1(30)1;

% Mode shapes

for i = 1:10

plot3(X1(1,:),Y1(i,:),Z1(i,:), " --ko", "LineWidth",2, ...
“MarkerkdgeColor™,"k=", ...
“MarkerFaceColor®,[0 0 O], ---
"MarkerSize*®,5);

hold on;

title([num2str() "-mode: " num2str(freq) ° Hz"]):

%xlabel (*x");

%ylabel ("y*");

%zlabel("z%);

axis equal;

end;

%[num2str(freq) " Hz"]
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C.4 identification.m

function [frr drr] = identification(A,B,Au,Bu,G,0Omega,plotnumber,effdof)
/S

% INPUT DATA: Measured matrices, geometry matrix, frequency matrix, rankr
% OUTPUT DATA: Eigenfrequenies, mode shapes and damping

% Author: Dimitrij Shulkin, 2012
0/ s ——
sr = length(Omega) ;
dof = length(G);
wr = zeros(1,sr);
for i1 = 1:sr
wr(ii) = Omega(ii,ii);
end;
03 s —
% PROCEDURES OF RANK ESTIMATION
O s —
% Singular value decomposition
[UB SB WB] = svd(B,0);
[UA SA WA] = svd(A,0);
% Plot of the ratios vs consecutive singular values
ratiob = zeros(1, (dof-1));

for i1 = 1:(dof-1)
ratiob(i) = (SB(i,1)+1)/(SB((i+1),(i+1))+1);
end;
Ffigure(plotnumber+2)
plot(1l:(dof-1),ratiob, "linewidth",3);
hold on;
grid;
title("Ratios of consecutive singular values vs. singular value no.");
xlabel ("singular value number®);
ylabel(“ratio Sj/Sj+17);

% Substitute measuring matrix

effb = 1:dof;

Beff = zeros(dof*sr,dof);

for 1 = 1:dof
SBeff=0;UBeff=0;WBeff=0;

SBeff = SB(l:effb(i),l:effb(i));
UBeff = UB(:,l:effb(i));
WBeff = WB(:,l:effb(i));
Beff((i-1)*sr+1l:i*sr,:)= UBeff*SBeff*WBeff";
end;
% RMS

rms = zeros(l,dof);
for r = O0:dof-1

zb=0;nb=0;

for i

zb + (Beff(r*sr+i,j) - B(i,j))"2;
nb + B(i,j)"2;

end;

rms(r+1) = sqrt(zb/nb);
end;
rms = rms*100;
Ffigure(plotnumber+3)
plot(l:dof,rms, "linewidth",2);
hold on; title("rms-deviation of substitute measurement rank®);
xlabel ("estimated rank numbers r*);ylabel("rms [%]");grid;
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f=—=———————————————————=—————————=———=——=———————=—————=————————————————————————-=

% IDENTIFICATION EQUATION

04 s ——————————————
SA(effdof+1:dof,effdof+1:dof) = 0;

SB(effdof+1:dof,effdof+1:dof) = 0;

Aeff = UA*SA*WA* ;

Beff = UB*SB*WB* ;

WBeff = WB(:,1l:effdof);

% LEFT SIDE OF EQUATION

LEFT = [Aeff*WBeff -Omega*Beff*WBeff;...

Beff*WBeff Omega*Aeff*WBeff];
% RIGHT SIDE OF EQUATION -->> Bu = 0O
RIGHT = [(Omega.”2*Au*G"+Omega.” 2*Aeff)*WBeff; ...
(Omega.~2*zeros(sr,6)*G"+Omega. 2*Beff)*WBeff];
%Lest square

MID = LEFT\RIGHT;
% Condensed system matrices
KT = MID(1:effdof,:); Krr = KT*";
CT = MID(effdof+1:2*effdof,:); Crr = CT=;
0y s ———
% UNDAMPED CONDENSED EIGENPROBLEM
0y s p———
[yc wy] = eig(Krr); % right-hand eigenvalue problem
[xc Wx] = eig(Krr®); % left-hand eigenvalue problem
freqeff = sqrt(Wy)/(2*pi) ;% identified eilgenfrequencies
% back transformation to physical coordinates
Yc = WBeff*yc;
Xc = WBeff*xc;
0/ s —————————
% DAMPED EIGENPROBLEM
/S s ——————————————
DD = [zeros(effdof,effdof) -eye(effdof);Krr Crr];
[ksi p] = eig(DD);
O s
% DAMPING AND EIGENFREQUENCY
L7 s
wrr = zeros(1,2*effdof);
drr = zeros(1,2*effdof);
for i = 1:2*effdof
wrr(i) = sqrt(real(p(i,i))"2+imag(p(i,i))"2);
drr(i) = sqrt(real(p(i,i))™2)/wrr(i);
end;
frr = wrr/(2*pi)
0/ s —————————
% RECALCULATING RESPONSES
04 s —————————
mue = Xc"*yc;
beta = Xc"*Crr*yc;
rir = zeros(dof,sr);
rim = zeros(dof,sr);
for k = 1:sr
ai = (-wr(k)"2*eye(effdof)+Wy)*mue;
fire = -wr (k)"2*Xc"*G*Au(k, )" ;
fiim = —wr(k)M2*Xc"*G*Bu(k,:)";
Links = [ai -wr(k)*beta;wr(k)*beta ai];
Rechts = [fire;fiim];
Mitte = Links\Rechts;
greel = Mitte(1:effdof);
qimag = Mitte(effdof+1:2*effdof);

rir(:,k)= Yc*greel;
rim(:,k)= Yc*qgimag;
end;
T = wr/(2*pi);figure(plotnumber+4);
plot(f,rim(7,:),"--",F,rim(8,:),"--",f,rim(9,:),"—-",F,B(:,7), - .-
f,B(:,8),f,B(:,9), " linewidth",2);
hold on;xlabel("excitation frequency [Hz]");ylabel("acceleration response
grid;title("forced responses®);legend("x7-1SSPA","y8-1SSPA","z9-1SSPA", ...
"X7-EXACT", "y8-EXACT", "z9-EXACT");

[m/s=]1");
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C.4.1 Interface

function [A B Au Bu Omega] = interface(X,wr,sr,ub)

0

% Generating of analytical input data of the demo structure for identification

% Author: Dimitrij Shulkin, 2012

dof = 30;

X1 = real(X);

X2 = imag(X);

A = zeros(sr,dof);
B = zeros(sr,dof);
Au = zeros(sr,6);
Bu = zeros(sr,6);
Omega = diag(wr);

for j = 1:dof
AC:.3) = X1(, )
B(:.1) = X24.,3):
end;
for 1 = 1:sr
Au(i,:) = ub";
end;

%
%
%

%
%

Real part

Imaginary part

Real matrix

Imaginary matrix

Real part excitation matrix
Imaginary part excitation matrix
Excitation frequency
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