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Abstract 

The multi-axis shaker is often used for the dynamic qualification of aerospace structures. The vibration 
test data can also be used for extracting of modal parameters like eigenfrequencies, mode shapes and 
damping. This thesis presents such identification method called ISSPA (Identification of Structural 
Systems Parameters) that disregards the unsolicited motions of the shaker during the vibration test. 
These unwanted motions are the consequence of the interaction (cross-talk) between the shaker and 
the test structure. To understand a dynamic behaviour of the test structure because of cross-talk effects 
a 3D demo structure is programmed with MATLAB and simulated in the frequency domain. The ana-
lytical acceleration responses and geometry properties of the demo structure are retained as input data 
to check the ability of the ISSPA that is implemented in MATLAB. Finally, the identification proce-
dures are applied to the real vibration test data of an aircraft section in order to identify the modal pa-
rameters that can be used for the validation of analytical models.   
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Aufgabenstellung 

In der Arbeit sollen analytische Methoden zur experimentellen Modalanalyse untersucht und imple-
mentiert werden, wobei der Fokus  auf der modalen Identifikation im Frequenzbereich liegt. Dabei 
sind insbesondere mehrachsigen Basisbeschleunigungen als Strukturanregung  zu berücksichtigen, wie 
sie bei hydraulischen Schütteltischen auftreten. Messungen haben gezeigt, dass eine einachsige An-
regung der Schütteltische oft zu einer mehrachsigen Basisbeschleunigung führt, was auf die dyna-
mischen Eigenschaften des Tisches selbst zurückzuführen ist. Die korrekte Identifikation des Prüflings 
wird hierdurch erschwert. Insbesondere ist die ISSPA Methode zu betrachten, die von der Universität 
Kassel in Zusammenarbeit mit dem DLR entwickelt und erprobt wurde.  

Das Ziel der Arbeit ist die modale Identifikation einer realen Flugzeug-Sektion auf Basis experimen-
tell ermittelter Vibrationsdaten. Die Methodik soll zunächst an einem virtuellen Demonstrations-
Modell erprobt werden, welches typischen Leichtbaustrukturen der Luftfahrt hinsichtlich Frequen-
znachbarschaften und Dämpfungskopplung ähnelt. Die daraus gewonnenen Erkenntnisse sind dann 
auf reale Messdaten eines Vibrations-Großversuches anzuwenden. Hierbei ist von besonderem Inter-
esse, ob die Eigenschwingungsformen der Flugzeug-Sektion identifizierbar und frei von offen-
sichtlichen dynamischen Eigenschaften des Schütteltisches sind.  
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1 Introduction 
 

The aircraft industry is constantly seeking for improving the quality of vibration tests. Most important 
objectives are the reduction in the testing times and the accuracy of the vibration test data. Vibration 
tests on a multi-axial shaking table are often used for the dynamic qualification to control if a structure 
is able to resist a vibration environment in its service life. In most cases the additional information on 
the structural modal parameters like eigenfrequencies, mode shapes, generalized mass, stiffness and 
damping can be extract from the same vibration test data. The identified modal parameters within the 
same test set-up enable the validation of analytical models. 

The test structure has to be attached on a shaker table and excited with harmonic excitation in all spa-
tial degrees of freedom (DOF). The measured data are the multi-axial base acceleration and the struc-
tural responses. The shaker table interacts with the structure during the test that results in an unsolic-
ited motion of the shaker. The influence of this cross-talk has to be considered by modal identification 
methods. The identification method ISSPA (Identification of Structural System Parameters) represents 
an opportunity to the modal survey test where the cross-talk effects can be disregarded. 

The object of this thesis is the implementation of such identification method (ISSPA) with MATLAB-
environment and applying at first to the analytical demo-structure and finally to real vibration data of 
the original aircraft section. The test data are descended within the frame of an Airbus research and 
technology project. 

In chapter 2 the Hamilton’s principle for the single mass is introduced. The Hamilton approach is used 
for the derivation of the simplified equation of motion for base excited multi degree-of-freedom 
(MDOF) systems. The equation of motion forms the basis for the theoretical modal analysis.  

Chapter 3 describes the experimental test environments in details. Beginning with some important 
dynamical components of the shaker the interaction between the test structures is presented. Subse-
quently the identification method (ISSPA) is in details explained. The theory is implemented with the 
MATLAB-function identification.m that allows the calculation of the eigenfrequencies, mode shapes 
and damping. 

Chapter 4 covers the architecture of the three-dimensional (3D) base excited demo-structure. The fi-
nite-element (FEM) procedures like derivation of system matrices and reduction of redundant DOFs 
are performed with programmed MATLAB-function demostructure.m. The additional programmed 
function response_analysis.m accomplishes the simulation of the base excitation of the demo structure. 
Especially the crass-talk effects are investigated. The demo-structure will be retained for the check of 
the ability of ISSPA.  

Chapter 5 firstly presents the application of identification.m to the analytical acceleration response 
data of the demo-structure. The sensitivity and accuracy of ISSPA with respect to conditions that rep-
resent many practical test situations is checked. Finally identification.m is applied to the vibration test 
data of the original aircraft section in order to identify the modal parameter. 
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2 Basic Formulations for Base Excited Structures 

This chapter is focused at first on derivation of equation of motion for base-excited structures. Begin-
ning with the single mass the classical mechanical principles like Newtonian law, d’Alembert’s prin-
ciple and Hamilton’s principle are introduced.  

The formulations for the single mass may to be extended for multi-degree-of-freedom (MDOF) sys-
tems. The Hamilton’s principle is applied to the base-excited MDOF systems to derive the equation of 
motion.  

At last the equations of motion give the basis to introduce the fundamentals of theoretical modal 
analysis. Modal analysis is a process of determining the inherent dynamic characteristics of a system 
in forms of eigenfrequencies, damping factors and mode shapes, and using them to formulate a 
mathematical model for its dynamic behaviour [10]. The theoretical equation of acceleration responses 
of MDOF systems is shown because these magnitudes are measured in the following vibration test. 

2.1 Single Mass 

The intrinsic physical properties of any linear elastic structural system subjected to an external source 
of excitation are its mass, elastic properties, and energy-loss mechanism or damping. Each of these 
properties is assumed to be concentrated in a single physical element [10]. 

2.1.1 Newtonian law  

The equation of motion of the single mass represents expressions of Newton’s second law of motion, 
which defines that the rate of change of momentum of mass particle m is equal to a force acting on it.  
This relationship can be expressed mathematically by the differential equation [2] 

 ሼ݂ሽ ൌ
݀
ݐ݀
ቆ݉

݀ሼݑሽ
ݐ݀

ቇ (2.1) 

where ݂ is the time dependent applied force vector and ሼݑሽ is the time dependent position vector of 
single mass m. For most problems in structural dynamics it may be assumed that mass does not vary 
with time, in which case eq. (2.1) may be written as 

ሼ ݂ሽ ൌ ݉
݀ଶሼݑሽ
ଶݐ݀

ൌ ݉ሼݑሷ ሽ (2.2) 

where the dots represent differentiation corresponding to time. 

2.1.2 D ‘Alembert’s principle   

The eq. (2.2) can be reformulated as follows 
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 ሼ݂ሽ െ ݉ሼݑሷ ሽ ൌ 0 (2.3) 

where the second term is called the inertial force resisting the acceleration of the mass. The eq. (2.3) is 
the expression of the d ‘Alembert’s principle that says that the addition of the inertial force to the other 
acting forces evokes equilibrium [2].  

The requirement for the equilibrium is that the total virtual work of all forces vanishes. This require-
ment contains virtual displacements, and is thus equally appropriable to mass at rest and to mass in 
motion. D ‘Alembert’s principle can be now rephrased as follows: the total virtual work of the im-
pressed forces, amplified by the inertia forces, vanishes for reversible displacements [2] 

ܹߜ  ൌ ሺሼ݂ሽ െ ݉ሼݑሷ ሽሻݑߜ ൌ 0 (2.4) 

A given system of impressed forces will generally not be in equilibrium. This requires the satisfaction 
of special conditions. The total virtual work of the impressed forces will usually be different zero. In 
that case the motion of the system makes up for the deficiency. The mass moves in such a way that the 
additional inertial forces, caused by the motion, bring the balance up to zero. In this case d’Alembert’s 
principle gives the equation of motion of an arbitrary single mass [12]. 

2.1.3 Hamilton’s princi e pl

By multiplying eq. (2.4) by ݀ݐ and an integration with respect to the time  

 න ݐܹ݀ߜ
௧మ

௧భ
ൌ න ሺሼ݂ሽ െ ݉ሼݑሷ ሽሻݐ݀ݑߜ

௧మ

௧భ
ൌ 0 (2.5) 

the total virtual work done by the impressed forces and forces of inertia can be transformed into a true 
variation [12]. D’Alemebert’s principle can thus be mathematically reformulated as Hamilton’s prin-
ciple. This requires that a definite integral 

ܬ  ൌ න ሺܮ ൅ ௡ܹ௖ሻ݀ݐ
௧మ

௧భ
 (2.6) 

of the Lagrangian function  

ܮ  ൌ ௞௜௡ܧ െ  ௣௢௧ (2.7)ܧ

where ܮ is the difference between the kinetic and potential energies of the single mass in addition with 
the work of non conservative forces ௡ܹ௖, shall be stationary for arbitrary possible variations of the 
configurations of the mass: 

ܬߜ  ൌ ߜ න ሺܧ௞௜௡ െ ௣௢௧ܧ ൅ ௡ܹ௖ሻ݀ݐ
௧భ

௧బ
ൌ 0 (2.8) 

where the initial and final configurations of the mass must be prescribed 
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2.2 Multi­Degree­of­Freedom Systems 

In aforementioned sections Newton’s law, virtual-work approach and Hamilton’s principle were intro-
duced. These methods can be used to derive the equation of motion of MDOF system. For many me-
chanical and structural systems, more than one coordinate is needed to describe its motion and vibra-
tion sufficiently. The result is a MDOF model. Such a model characterizes a system in terms of mass, 
stiffness and damping matrices [10]. 

The following section is focused on the derivation of the equation of motion under the base excitation 
using Hamilton’s principle according to [7] and [11]. Subsequently a theoretical modal analysis for 
MDOF systems will be presented according to [4] and [10]. 

2.2.1 Base excita  tion

The system matrices ሾܯሿ, ሾܭሿ and ሾܥሿ of the MDOF system as shown in Figure 2.1 can be found after 
the discretization of the continuum body using a finite element method [7]. The vector ሼ݂ሽ contains 
external loads that are moving with the base.  

 

Figure 2.1. Base excitation 

The kinetic energy ܧ௞௜௡ under the base excitation depends on the absolute velocity ሼݑሶ ሽ 

௞௜௡ܧ  ൌ
1
2
ሼݑሶ ሽ்ሾܯሿሼݑሶ ሽ (2.9) 
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The potential energy ܧ௣௢௧  only consists of deformation energy of the system that can be described 
using relative motion ሼݒሽ  

௣௢௧ܧ  ൌ
1
2
ሼݒሽ்ሾܭሿሼݒሽ (2.10)

The work done by non-conservative forces is given by 

 ௡ܹ௖ ൌ ሼݒሽ்ሼ݂ሽ െ ሼݒሽ்ሾܥሿሼݒሶሽ (2.11)

One notices that the kinetic energy of the system depends on the whole motion, while the potential 
energy and the work done by the non conservative forces depend on the relative motion alone. Since 
the absolute motion of non deformed system is always known, the variation of the energy terms in-
volved in Hamilton’s principle must be followed with respect to the relative motion. For the variation 
of the potential energy follows 

௣௢௧ܧߜ  ൌ ሽ்ݒሼߜ
௣௢௧ܧ߲
߲ሼݒሽ

ൌ ሽݒሿሼܭሽ்ሾݒሼߜ  (2.12)

Because the whole velocity variation is equal to the relative motion variation ߜሼݑሶ ሽ் ൌ  ሶሽ் for theݒሼߜ
variation of the kinetic energy follows 

௞௜௡ܧߜ  ൌ ሶݑሼߜ ሽ்
௣௢௧ܧ߲
߲ሼݑሶ ሽ

ൌ ሶݑሿሼܭሶሽ்ሾݒሼߜ ሽ (2.13)

The variation of the work done by non conservative forces gives 

ߜ  ௡ܹ௖ ൌ ሽ்ݒሼߜ
߲ ௡ܹ௖

߲ሼݒሽ
ൌ ߲ሼݒሽ்ሺሼ݂ሽ െ ሾܥሿሼݒሶሽሻ (2.14)

 Substituting the equations  (2.12), (2.13) and (2.14) into the eq. (2.8) gives 

 න ሷݑሿሼܯሽ்ሺെሾݒሼߜ ሽ െ ሾܥሿሼݒሶሽ െ ሾܭሿሼݒሽ ൅ ሼ݂ሽሻ݀ݐ ൌ 0
௧మ

௧భ
 (2.15)

For the equations of motion of the MDOF system under base excitation and external loads follows 

 ሾܯሿሼݑሷ ሽ ൅ ሾܥሿሼݒሶ ሽ ൅ ሾܭሿሼݒሽ ൌ ሼ݂ሽ (2.16)

2.2.2 General equation of motion of base­excited MDOF systems 

The overall displacement of the structure consists of the absolute displacement of non-deformed struc-
ture due to the support motion and elastic structural deformations. Since the dynamical behaviour of 
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the structure depends on the time motions of the structural deformations that are significant to the sys-
tem moving with the structure, it is necessary to introduce a relative system as shown in Figure 2.2 
that moves with the support. 

 

 

Figure 2.2: MDOF structure and relative system 

The vector ሼݑ௕ሽ involves the absolute displacement of the relative system on the base, i.e. the origin of 
the relative coordinate system. The vector ሼߗሽ describes the rotation of the basis. The position of an 
arbitrary discrete structural node ݆ of the deformed structure is given by the vector ൛ݎ௝ൟ. The location of 
a general structural node ݆ is given for the deformed structure by 

 ൛ݑ௝ൟ ൌ ሼݑ௕ሽ ൅ ൛ݎ௝ൟ (2.17)

The derivation of eq. (2.17) gives the velocity in matrix formulation 

 ൛ݑሶ௝ൟ ൌ ሼݑሶ ௕ሽ ൅ ௝ൟݎ෨൧൛ߗൣ ൅ ൛ݎሶ௝ൟ (2.18)

where  

෨൧ߗൣ  ൌ ቎
0 െߗ௭ ௬ߗ

௭ߗ    0 െߗ௫
െߗ௬ ௫ߗ 0

቏ (2.19)
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For all structural nodes ݆ ൌ 1,2, …  follows ݌

 ቐ
ሼݑሶଵሽ
ڭ

൛ݑሶ ௣ൟ
ቑ ൌ ൥

ۂܫڿ
ڭ
ۂܫڿ
൩ ሼݑሶ ௕ሽ ൅ ቎

෨൧ߗൣ ሾ0ሿ ሾ0ሿ
ሾ0ሿ ڰ ሾ0ሿ
ሾ0ሿ ሾ0ሿ ෨൧ߗൣ

቏ ቐ
ሼݎଵሽ
ڭ

൛ݎ௣ൟ
ቑ ൅ ቐ

ሼݎሶଵሽ
ڭ

൛ݎሶ௣ൟ
ቑ (2.20)

or in generally form 

 ሼݑሶ ሽ ൌ ሾܧሿሼݑሶ ௕ሽ ൅ ሾߗሿሼݎሽ ൅ ሼݎሶሽ (2.21)

The vectors ሼݑሶ ሽ, ሼݎሽ and ሼݎሶሽ contain parts of all structural nodes, the matrix ሾܧሿ expands the base ve-
locities ሼݑሶ ௕ሽ to all structural nodes and the matrix ሾߗሿ expands the velocities due to the base rotation 
to all structural nodes. 

The derivation of eq. (2.21) gives the acceleration 

 ሼݑሷ ሽ ൌ ሼݎሷሽ ൅ ሾܧሿሼݑሷ ௕ሽ ൅ ሶߗൣ ൧ሼݎሽ ൅ ሾߗሿሾߗሿሼݎሽ ൅ 2ሾߗሿሼݎሶሽ (2.22)

The vector ൛ݎ௝ൟ can be composed of the vector of the structural node ݆  in the relative coordinate sys-
tem ൛ ௝݀ൟ and by the deformation of the structure ൛ݒ௝ൟ: 

 ൛ݎ௝ൟ ൌ ൛ ௝݀ൟ ൅ ൛ݒ௝ൟ (2.23)

Because of ൛ ௝݀ൟ ൌ  for the derivations follows .ݐݏ݊݋ܿ

 ൛ݎሶ௝ൟ ൌ ൛ݒሶ௝ൟ ܽ݊݀ ൛ݎሷ௝ൟ ൌ ൛ݒሷ௝ൟ (2.24)

Due to the very small structural deformations, the vector ൛ݒ௝ൟ can be disregarded when compared with 
൛ ௝݀ൟ 

 ൛ݎ௝ൟ ൌ ൛ ௝݀ൟ ൅ ൛ݒ௝ൟ ൎ ൛ ௝݀ൟ (2.25)

Expanding of equations (2.23), (2.24) and (2.25) for all structural nodes ݆ ൌ 1,2, …  and substituting ݌
them into eq. (2.22) gives the expression 

 ሼݑሷ ሽ ൌ ሼݒሷሽ ൅ ሾܧሿሼݑሷ ௕ሽ ൅ ሶߗൣ ൧ሼ݀ሽ ൅ ሾߗሿሾߗሿሼ݀ሽ ൅ 2ሾߗሿሼݒሶሽ (2.26)

This equation contains relations of the relative kinematics for all structural nodes. The absolute accel-
erations of arbitrary structural nodes consist of 

• the relative acceleration ሼݒሷ ሽ, 
• the acceleration of the origin ordinates of the relative system ሾܧሿሼݑሷ ௕ሽ, 
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• the tangential acceleration ൣߗሶ ൧ሼ݀ሽ, 
• the centripetal accelerati ሿሼ݀ሽ and on ሾߗሿሾߗ
• the Coriolis acceleration 2ሾߗሿሼݒሶ ሽ.   

Substituting of equations (2.26) into eq. (2.16)  and sorting gives the general equation of motion for 
base-excited MDOF systems 

 ሾܯሿሼݒሷ ሽ ൅ ሺ2ሾߗሿሾܯሿ ൅ ሾܥሿሻሼݒሶ ሽ ൅ ሾܭሿሼݒሽ ൌ ሼ݂ሽ െ ሾܯሿ൫ሾܧሿሼݑሷ ௕ሽ ൅ ሶߗൣ ൧ሼ݀ሽ ൅ ሾߗሿሾߗሿሼ݀ሽ൯ (2.27)

2.2.3 Simplified equation of motion of base­excited MDOF systems 

As shown in [7], in most practical cases where the rotational velocity remains small, the Coriolis ac-
celeration as well as the centripetal acceleration can be disregarded. For the absolute acceleration of 
the structure follows 

 ሼݑሷ ሽ ൌ ሼݒሷ ሽ ൅ ሾܧሿሼݑሷ ௕ሽ ൅ ሶߗൣ ൧ሼ݀ሽ (2.28)

or of the arbitrary structural node ݆ 

 ൛ݑሷ௝ൟ ൌ ൛ݒሷ௝ൟ ൅ ሼݑሷ ௕ሽ ൅ ቂߗሶ෨ቃ ൛ ௝݀ൟ (2.29)

where 

 ቂߗሶ෨ቃ ൛ ௝݀ൟ ൌ ൦
0 െߗሶ௭ ሶ௬ߗ

ሶߗ    ௭ 0 െߗሶ௫
െߗሶ௬ ሶ௫ߗ 0

൪ ቐ
௝݀௫

௝݀௬

௝݀௭

ቑ (2.30)

 can be rewritten as follows 

 ቂߗሶ෨ቃ ൛ ௝݀ൟ ൌ ቎
0 ௝݀௭ െ ௝݀௬

െ ௝݀௭ 0 ௝݀௫

௝݀௬ െ ௝݀௫ 0
቏ ቐ
ሶ௫ߗ
ሶ௬ߗ
ሶ௭ߗ

ቑ (2.31)

or in generally form 

 ቂߗሶ෨ቃ ൛ ௝݀ൟ ൌ ሾܦ௝ሿ൛ߗሶ ൟ (2.32)

With the vector of angular velocity ሾߗሿ that constitutes the derivations of the base rotational motions 
ሼ߮ሽ  



2   Basic Formulations for Base Excited Structures 9 
 

 ሾߗሿ ൌ ቐ
௫ߗ
௬ߗ
௭ߗ
ቑ ൌ ቐ

ሶ߮ ௕௫
ሶ߮ ௕௬
ሶ߮ ௕௭
ቑ ൌ ሼ ሶ߮ ௕ሽ (2.33)

eq. (2.29) can be written as 

 ൛ݑሷ௝ൟ ൌ ൛ݒሷ௝ൟ ൅ ሼݑሷ ௕ሽ ൅ ሾܦ௝ሿሼ ሷ߮ ௕ሽ (2.34)

 Expanding eq. (2.34) for all structural nodes on the structure ݆ ൌ 1,2, …  gives ݌

 ቐ
ሼݑሷଵሽ
ڭ

൛ݑሷ ௣ൟ
ቑ ൌ ቐ

ሼݒሷଵሽ
ڭ

൛ݒሷ௣ൟ
ቑ ൅ ቎

ۂܫڿ ሾܦଵሿ
ڭ ڭ
ۂܫڿ ሾܦ௣ሿ

቏ ൜
ሼݑሷ ௕ሽ
ሼ ሷ߮ ௕ሽ

ൠ (2.35)

or in generally form 

 ሼݑሷ ሽ ൌ ሼݒሷሽ ൅ ሾܩሿሼݑሷ ଴ሽ (2.36)

where  

•   is the absolute acceleration vector for all structural nodes, ሼݑሷ
ሼ
ሽ

•   is the relative acceleration ector for all struct o es, ݒሷሽ  v ural n d
• ሾܩሿ is the time independent geometry matrix that transforms the predefined rigid motions 

cause of base acceleration ሼݑሷ ଴ሽ into acceleration ሾܧሿሼݑሷ ௕ሽ of the relative origin ordinates and 
tangential acceleration ሾܦሿሼ ሷ߮ ௕ሽ to all structural nodes. It means that the all structural nodes 
contain the components of the rigid body motion producing by the shaker! The columns of ሾܩሿ 

e interpreted as rigid body displacements due to the translational and rotational base mo-
. 

can b
tions

• ሼݑሷ ଴ሽ is the base acceleration vector. 

Substituting of equations (2.36) into eq. (2.16) gives the simplified equation of motion for base-
excited MDOF systems  

 ሾܯሿሼݒሷ ሽ ൅ ሾܥሿሼݒሶሽ ൅ ሾܭሿሼݒሽ ൌ ሼ݂ሽ െ ሾܯሿሾܩሿሼݑሷ ଴ሽ ൌ ൛ܨ௘௙௙ൟ (2.37)

This equation shows that the structural vibrations are induced by inertia forces which caused by the 
multi-axis base excitation ሼݑሷ ଴ሽ and external loads. The vibrations occur as motions relative to the co-
ordinate system, which is moving with the relative vibration table. 

2.2.4 Modal analysis of base­excited MDOF systems 

Considering the undamped free vibration solution of the eq. (2.37) in order to determine the normal 
modal properties and assuming that a solution exists of the form ሼݒሺݐሻሽ ൌ ሼݒሺ߱ሻሽ݁௜ఠ௧   where 
ሼݒሺ߱ሻሽ ൌ ሼݒሽ  is a vector of time-independent amplitudes, leads to [7]  
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 ሺሾܭሿ െ ߱ଶሾܯሿሻሼݒሽ݁௜ఠ௧ ൌ ሼ0ሽ (2.38)

The eigenvalue problem [10] 

 ሺሾܭሿ െ ߱଴
ଶሾܯሿሻሼܻሽ ൌ 0 (2.39)

yields ݌ undamped eigenfrequencies where ݌ is the number of degree of freedoms. Substituting any 
one of these back into the eq. (2.38) yields a corresponding set of relative mode shapes ሼܻሽ௝. The 
complete solution of two ሺ݌, ሻ-eigenmatrices can be expressed as ൣ߱଴௝݌

ଶ൧
௣,௣

 and ሾܻሿ௣,௣ where ߱଴௝
ଶ is 

the ݆௧௛eigenvalue and ሼܻሽ௝   is the corresponding eigenvector. While the eigenvalues are uniquely 
quantities, the eigenvectors are subject to an indeterminate scaling factor which does not affect the 
shape of the vibration mode, only its amplitude. 

The modal model possesses orthogonality properties  

 ሾܻሿ்ሾܯሿሾܻሿ ൌ ௚൧ܯൣ ൌ ݀݅ܽ݃ሺ݉௚ଵ …݉௚௝ …݉௚௣ሻ (2.40)

 ሾܻሿ்ሾܭሿሾܻሿ ൌ ௚൧ܭൣ ൌ ݀݅ܽ݃ሺ݇௚ଵ …݇௚௝ …݇௚௣ሻ (2.41)

 ሾ߱଴
ଶሿ ൌ ௚൧ܯ௚൧ൣܭൣ

ିଵ
 (2.42)

where ሾܯ௚ሿ and ൣܭ௚൧are called the diagonal modal or generalized mass and stiffness matrices. Because 
the eigenvector matrix is subject to an arbitrary scaling factor, the values of ሾܯ௚ሿ and ൣܭ௚൧ are not 
unique and it is inadvisable to refer to the generalised mass or stiffness of a particular mode. Among 
the many scaling or normalization processes – the mass-normalization has most relevance to modal 
testing. The mass-normalized eigenvectors are written as ሾ߶ሿ and have particular property that [10] 

 ሾ߶ሿ்ሾܯሿሾ߶ሿ ൌ ሾܫሿ (2.43)

and thus 

 ሾ߶ሿ்ሾܭሿሾ߶ሿ ൌ ሾ߱଴
ଶሿ (2.44)

The mass-normalized mode shape matrix can be found from 

 ሾ߶ሿ ൌ ሾܻሿൣܯ௚൧
ିభమ  (2.45)

In approaching the more general case of damped systems, it is convenient to consider first a special 
type of damping called proportional damping which has the advantage of being particularly easy to 
analyze. In effect, it is possible to derive the modal properties of a proportionally damped system by 
analyzing in full the undamped version and then making a correction for the presence of the damping. 
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The definition of proportional damping is [4] 

 ሾܥሿ ൌ ሿܭሾߙ ൅ ሿ (2.46)ܯሾߚ

The damping matrix can be pre- and post-multiplied by the eigenvector matrix for the undamped sys-
tem ሾܻሿ  

 ሾܻሿ்ሾܥሿሾܻሿ ൌ ௚൧ܭൣߙ ൅ ௚൧ܯൣߚ ൌ ௚൧ܥൣ ൌ ݀݅ܽ݃ሺܿ௚ଵ … ܿ௚௝ … ܿ௚௣ሻ (2.47)

where ൣܥ௚൧ is the generalized diagonal damping matrix that  represents the generalized damping fac-
tors ܿ௚௝ and various modes of the system. Each mode has a complex eigenvalue. The imaginary or 
oscillatory part is the damped eigenfrequency [10] 

 ߱ௗ௝ ൌ ߱଴௝ට1 െ ௝ଶ (2.48)ߞ

The real part of the complex eigenvalue represents the deca  constant y

௝ߞ      ൌ
ܿ௚௝

2ඥ ௝݇ ௝݉ ൌ
ܿ௚௝

2߱଴௝ ௝݉
 (2.49)

The accelerance frequency response function (FRF) of M tem is given [10] DOF sys

ܨܴܨ ൌ ሾܪሺ߱ሻሿ ൌ
݁ݏ݊݋݌ݏܴ݁
 ݊݋݅ݐܽݐ݅ܿݔܧ

The square and symmetric accelerance FRF matrix describes the relation between the excitation and 
acceleration response. An element of ݏ௧௛ row and ݇௧௛ column amounts to [7] 

௦௞ሺ߱ሻܪ   ൌ
ሷ௦ݒ

௘௙௙௞ܨ
ൌ෍

െ߱ଶ
௦ܻ௝ ௞ܻ௝

௝݇ െ ߱ଶ
௝݉ ൅ ݅߱ ௝ܿ

௣

௝ୀଵ

 (2.50)

and presents the relation between the excitation on the dof  ݇ and the acceleration response on dof  ݏ. 
A dynamical relative acceleration response ሼݒሷ ሽ of the MDOF system in the case of pure base excita-
tion ሺሼ݂ሽ ൌ 0ሻ can be rewritten as [7] 

 ሼݒሷሽ ൌ ෍
߱ଶሼܻሽ௝ሼܻሽ௝

்ሺሾܯሿሾܩሿሼݑሷ ଴ሽሻ

௝݇ െ ߱ଶ
௝݉ ൅ ݅߱ ௝ܿ

௣

௝ୀଵ

 (2.51)
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3 Identification  of  System  Parameters  from  Vi­
bration Test Data 

The vibration test data of the test structure can be used for the identification of its modal parameters 
like eigenfrequencies, mode shapes and damping. The test structures can be excited by different types 
of vibration exciter. Aerospace structures are sometimes investigated on electrohydraulic shaker tables. 
These exciters significantly interact with the structure under the test [7] and [18]. This interaction or 
cross-talk results in an unsolicited motion of the shaker table during the test. The consequence is that 
the frequency response functions (FRFs) cannot be calculated for this interaction frequency range [7]. 
The influence of the cross-talk has to be considered by the modal identification methods. The follow-
ing chapter presents such identification method called ISSPA (Identification of Structural System Pa-
rameters) that identifies modal parameters without calculating FRFs.  

The following chapter consists of two main parts. The first part introduces several typical technical 
configurations of electrohydraulic shakers. It is shown how to compute the cross-talk frequency range 
where FRFs cannot be determined. Finally the calculation of the measured base accelerations and 
relative responses is described. In the second part the identification method ISSPA is in details pre-
sented to illustrate the modal identification by means of multi-axis base excitation.  

3.1 Vibration Test Environment 

For the purpose of modal identification by base excitation, the overall test structure has to be mounted 
on a shaker table and excited in all spatial degrees of freedom. The multi-axis base acceleration (input) 
and the structural responses (output) have to be measured. If also the interface forces between the test 
structure and the shaker table are measured in addition, it is also possible to identify modal and effec-
tive mass [6]. 

The base excitation can be introduced by different types of base exciters. For large aerospace struc-
tures it is convenient to use electrohydraulic exciters. In order to measure the structural accelerations, 
the test structure needs to be equipped with a sufficient number of accelerometers. These accelerome-
ters measure the absolute accelerations. It is shown how to calculate the relative acceleration signals of 
the accelerometers at the base and at the test structure [6]. 

3.1.1 Multi­axis base exciter 

The multi-axis base exciter like the shaker is an electrohydraulic exciter that is generally used for low 
frequency excitation environments that require large amounts of force and relatively low velocities. 
The frequency range varies from near 0 Hz on the low end to 100 Hz on the high end. The parameters 
and a typical configuration for exciter are given in Table A.1. The multi-axis shaking table is normally 
used for earthquake simulation and the dynamic qualification of structures. In most cases the same set-
up can also be used for the modal identification of the tested structure [6].  
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3.1.2 Measured base acceleration 

For reliable determination of the base acceleration vector ሼݑሷ ଴ሽ, it is required to adequately place a 
sufficient number of accelerometers at the base of the structure [6]. As example Figure 3.1 shows the 
typical shaker table with four shaker sensors ݆. It has to be assumed that there are no elastic deforma-

tions during the test ቀ൛ݒሷ௝ൟ௦௛௔௞௘௥ ൌ 0ቁ on the shaker.  According to eq. (2.34) the acceleration of an 

arbitrary base sensor ݆௦௛௔௞௘௥ in relative system is given by 

 ൛ݑሷ௝ೞ೓ೌೖ೐ೝൟ ൌ ሼݑሷ ௕ሽ ൅ ቂߗሶ෨ቃ ൈ ൛ ௝݀ೞ೓ೌೖ೐ೝൟ (3.1) 

or according to eq. (2.34) 

 ൛ݑሷ௝ೞ೓ೌೖ೐ೝൟ ൌ ൛ݒሷ௝ೞ೓ೌೖ೐ೝൟ ൅ ሼݑሷ ௕ሽ ൅ ௝ೞ೓ೌೖ೐ೝ൧ሼܦൣ ሷ߮ ௕ሽ (3.2) 

Expanding eq. (3.1) for all base sensors ݆௦௛௔௞௘௥ ൌ 1,2, …  ௦௛௔௞௘௥ gives݌

 ቐ
ሼݑሷଵሽ
ڭ

൛ݑሷ ௣ೞ೓ೌೖ೐ೝൟ
ቑ ൌ ቎

ۂܫڿ ሾܦଵሿ
ڭ ڭ
ۂܫڿ ሾܦ௣ೞ೓ೌೖ೐ೝሿ

቏ ൜
ሼݑሷ ௕ሽ
ሼ ሷ߮ ௕ሽ

ൠ (3.3) 

or in generally form 

 ሼݑሷ ሽ௦௛௔௞௘௥ ൌ ሾܩሿ௦௛௔௞௘௥ሼݑሷ ଴ሽ (3.4) 

                

Figure 3.1: Determination of base excitation 

The calculation of the six base accelerations ሼݑሷ ଴ሽ at the base should be performed by using an overde-
termined set of equations. Solving the overdetermined set of equations with a least-squares approach 
reduces the effect of measurement noise signals [7]: 

 ሼݑሷ ଴ሽ ൌ ൫ሾܩሿ௦௛௔௞௘௥் ሾܩሿ௦௛௔௞௘௥൯
ିଵሾܩሿ௦௛௔௞௘௥் ሼݑሷ ሽ௦௛௔௞௘௥ (3.5) 
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3.1.3 Measured relative acceleration 

The accelerometers on the tested structure measure the absolute accelerations. Therefore, the relative 
accelerations have to be determined. They can be calculated from measured data by employing rear-
ranged equation (2.36): 

 ሼݒሷሽ ൌ ሼݑሷ ሽ௦௧௥௨௖௧ െ ሾܩሿ௦௧௥௨௖௧ ሼݑሷ ଴ሽ (3.6) 

As this equation contains the previously calculated base accelerations ሼݑሷ ଴ሽ and the coordinates of the 
structural accelerometers in matrixሾܩሿ௦௧௥௨௖௧, any inaccuracy of these data results in errors for the rela-
tive accelerations [7]. 

3.1.4 Cross­talk freque ge ncy ran

To extract the FRF matrix ሾܪሺ߱ሻሿ it is convenient to drive each base axis by a suitable random or 
sinusoidal excitation signal. As experience in modal identification testing has shown, a sine sweep is 
best in most cases [7]. The measured data can then be employed for the determination of the base ac-
celeration input ሼݑሷ ଴ሽ and the relative acceleration ሼݒሷ ሽ of the structure, as outlined above. The input-
output relationship can be rewritten in the more general formulation [7]: 

  ሼݒሷሺ߱ሻሽ ൌ ሾܪሺ߱ሻሿሼݑሷ ଴ሺ߱ሻሽ (3.7) 

where ሾܪሺ߱ሻሿ is a rectangular FRF matrix. If the multi-axis vibration test facility is capable of realiz-
ing an excitation precisely in the direction of each base axis, the determination of the FRF matrix 
ሾܪሺ߱ሻሿ is straightforward. Driving the translational and rotational axes one after other, the related 
columns of matrix ሾܪሺ߱ሻሿ can be determined by simply dividing the relative accelerations ሼݒሷሺ߱ሻሽ by 
the acceleration ݑሷ ሺ߱ሻ଴௞ of the active base axis. Whenever six linearly independent base accelerations 
can be realized, the complete FRF matrix can be computed. Inserting measured data into eq.(3.7) re-
sults in [7] 

 ሾሼݒሷ ሺ߱ሻሽଵ … ሼݒሷሺ߱ሻሽ଺ሿ ൌ ሾܪሺ߱ሻሿሾሼݑሷ ଴ሺ߱ሻሽଵ … ሼݑሷ ଴ሺ߱ሻሽ଺ሿ (3.8) 

or in general form 

 ሾܵ௩ሺ߱ሻሿ௣,଺ ൌ ሾܪሺ߱ሻሿሾܵ௨ሺ߱ሻሿ଺,଺ (3.9) 

The base acceleration vector ሼݑሷ ଴ሺ߱ሻሽଵ represents the frequency-domain data from the first test run, 
and vector ሼݒሷ ሺ߱ሻሽଵ comprises the related structural responses. The FRF matrix can then be calculated 
from  

 ሾܪሺ߱ሻሿ ൌ ሾܵݒሺ߱ሻሿሾܵ ሺ߱ሻሿെ1 ݑ

A requirement for the matrix inversion is the fact that ሾܵ௨ሺ߱ሻሿ is regular [7]. Most of the multi-axis 
vibration test facilities exhibit a more or less strong cross-talk of base axes. This is because the transla-

(3.10)
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tional table motions are often coupled with table rotation [18]. In this case the matrix ሾܵ௨ሺ߱ሻሿ be-
comes singular because the six base axes perform linearly dependent motions. The degree of singular-
ity can be checked and visualized by a suitable condition number [7]: 

 
ܿு ൌ

ሺ߱ሻሿݑሾܵݐ݁݀

∏ ට∑ ܵ௨௞௟ܵ௨௞௟כ଺
௟ୀଵ

଺
௞ୀଵ

 (3.11)

Plotting the condition number versus frequency reveals those frequency ranges which are not suitable 
for further analysis. The FRFs can be computed only for frequency ranges with a high condition num-
ber. For that reason the identification method has to be accomplished without using FRFs. It will be 
shown in the following sections that the identification method ISSPA needs only measured base exci-
tation ሼݑሷ ଴ሽ   and measured relative responses ሼݒሷ ሽ  data that can be obtained from equations (3.5) 
and (3.6). 
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3.2 Identification Method 

The identification method ISSPA can be applied to vibration test data in order to identify modal pa-
rameters [13], [14], [15], [16] and [17]. The ISSPA method needs only measured excitation ሼݑሷ ଴ሽ and 
measured relative response data ሼݒሷ ሽ that can be inserted into the equation of motion (2.37)  for base 
excited MDOF systems in order to extract mass modified stiffness and damping matrices. These sys-
tem matrices enable the identification of eigenfrequencies, mode shapes and damping. 

This section firstly covers how to derive the identification equation from the equation of motion (2.37) 
using incomplete vibration test data. Incomplete data means that the number ݎ of significantly excited 
modes or effective degrees of freedom is smaller than the number ݌ of the measurement D ݎ) ሻ.  OF݌ ൏

In the reality the identification equation have no rank defect matrices ሺݎ ൌ ݎሻ. As result ሺ݌ െ  ሻ noise݌
eigenvalues will be computed. So the number ݎ of significantly excited modes has to be found. Proce-
dures for rank estimation are presented. Estimated rank ݎ enables to condens the identification equa-
tion. The following condensed eigenvalue problem of identified condensed system matrices gives the 
eigenvalues where the noise eigenvalues are eliminated. The backtransformation to the physical coor-
dinates allows plotting the mode shapes and comparing them with analytical mode shapes. It is also 
possible to compute the recalculating responses and compare them with the measured responses.  

3.2.1 Identification equation 

The equation of motion (2.37) of a discrete MDOF structure whose danamic behaviour and geometry 
is assumed to g be linear is iven by 

ሼݒሷሺݐሻሽ ൅ ሾܥሿሼݒሶሺݐሻሽ ൅ ሾܭሿሼݒሺݐሻሽ ൌ ሼ݂ሺݐሻሽ െ ሾܯሿሾܩሿሼݑሷ ଴ሺݐሻሽ ൌ ൛ܨ௘௙௙ሺݐሻൟ ሾܯሿ

where ሾܩሿ ൌ ሾܩሿ௦௧௥௨௖௧ is the known time independent geometry matrix of the structure. 

Transformation of eq. (2.37) into the frequency domain by use of the steady state response solution, in 
the case of harmonic (sinusoidal) excitation, yields 

  ሺെ߱²ሾܯሿ ൅ ݅߱ሾܥሿ ൅ ሾܭሿሻሼݒሷሺ݅߱ሻሽ ൌ െ߱²൛ܨ௘௙௙ሺ݅߱ሻൟ (3.12)

where ൛ܨ௘௙௙ሺ݅߱ሻൟ is the effective force vector  

 ൛ܨ௘௙௙ሺ݅߱ሻൟ ൌ ሺሼ݂ሺ݅߱ሻሽ െ ሾܯሿሾܩሿሼݑሷ ଴ሺ݅߱ሻሽሻ (3.13)

Premultipying eq. (3.12) with the inverse mass matrix ሾܯሿିଵ yields 

 ሺെ߱²ሾܫሿ ൅ ݅߱ሾכܥሿ ൅ ሾכܭሿሻሼݒሷሺ݅߱ሻሽ ൌ െ߱²ሺሾܯሿିଵሼ݂ሺ݅߱ሻሽ െ ሾܫሿሾܩሿሼݑሷ ଴ሺ݅߱ሻሽሻ (3.14)

where 

 ሾܫሿ ൌ ሾܯሿିଵሾܯሿ  (3.15)
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is the unit matrix, 

 ሾכܥሿሺ௣,௣ሻ ൌ ሾܯሿିଵሾܥሿ (3.16)

is the mass modified damping matrix and 

 ሾכܭሿሺ௣,௣ሻ ൌ ሾܯሿିଵሾܭሿ (3.17)

is the mass modified stiffness matrix with ݌ being the number of measured DOF on the test structure.  

In the vibration test the amplitude and phase of ݌ measuring points at ݊௧௛ excitation frequency ߱௡ are 
calculated from measured data from eq. (3.6) and transformed to the real part ሼݒሷ ሽோ௘ and imaginary part 
ሼݒሷ ሽூ௠ of the complex response 

 ሼݒሷሺ݅߱ሻሽ௡ ൌ ሼݒሷሺ߱ሻሽ௡,ோ௘ ൅ ݅ሼݒሷሺ߱ሻሽ௡,ூ௠ ሺ݊ ൌ 1,2…݉ሻ (3.18)

where ݉ is the total number of excitation frequencies. Using the measured complex acceleration re-
sponse (3.18) and complex excitation vector ൛݂݂݁ܨሺ݅߱ሻൟ௡ ൌ ൛݂݂݁ܨሺ߱ሻൟ௡,ோ௘ ൅ ݅൛݂݂݁ܨሺ߱ሻൟ௡,ூ௠  the fol-

lowing identification equation can be derived by separating eq. (3.14) into real and imaginary parts 
and assembling at ߱௡ ሺ݊ ൌ 1,2…݉ሻ frequency points: 

 ሾܣሿሾכܭሿ் െ ሾ߱ሿሾܤሿሾכܥሿ் ൅ ሾ߱ଶሿሼ݂ሽோ௘ሾܯሿିଵ ൌ ሾ߱ଶሿሾܣ௨ሿ்ሾܩሿ௦௧௥௨௖௧் ൅ ሾ߱ଶሿሾܣሿ (3.19)

 ሾܤሿሾכܭሿ் ൅ ሾ߱ሿሾܣሿሾכܥሿ் ൅ ሾ߱ଶሿሼ݂ሽூ௠ሾܯሿିଵ ൌ ሾ߱ଶሿሾܤ௨ሿ்ሾܩሿ௦௧௥௨௖௧் ൅ ሾ߱ଶሿሾܤሿ (3.20)

where 

 ሾܣሿሺ௠,௣ሻ, ሾܤሿሺ௠,௣ሻ ൌ

ۏ
ێ
ێ
ێ
ۍ
ሷଵሺ߱ଵሻݒ … ሷ௝ሺ߱ଵሻݒ … ሷ௣ሺ߱ଵሻݒ

ڭ ڭ ڭ ڭ ڭ
ሷଵሺ߱௡ሻݒ … ሷ௝ሺ߱௡ሻݒ … ሷ௣ሺ߱௡ሻݒ

ڭ ڭ ڭ ڭ ڭ
ሷଵሺ߱௠ሻݒ … ሷ௝ሺ߱௠ሻݒ … ےሷ௣ሺ߱௠ሻݒ

ۑ
ۑ
ۑ
ې

ோ௘,ூ௠

 (3.21)

is ሺ݉, -ሻ- measured rectangular real and imaginary part relative acceleration frequency response ma݌
trix; 

 ሾܣ௨ሿ்,  ሾܤ௨ሿ் ൌ

ۏ
ێ
ێ
ێ
ۍ
ሷݑ ௕௫ሺ߱ଵሻ ሷݑ ௕௬ሺ߱ଵሻ ሷݑ ௕௭ሺ߱ଵሻ ሷ߮ ௕௫ሺ߱ଵሻ ሷ߮ ௕௬ሺ߱ଵሻ ሷ߮ ௕௭ሺ߱ଵሻ

ڭ ڭ ڭ ڭ ڭ ڭ
ሷݑ ௕௫ሺ߱௡ሻ ሷݑ ௕௬ሺ߱௡ሻ ሷݑ ௕௭ሺ߱௡ሻ ሷ߮ ௕௫ሺ߱௡ሻ ሷ߮ ௕௬ሺ߱௡ሻ ሷ߮ ௕௭ሺ߱௡ሻ

ڭ ڭ ڭ ڭ ڭ ڭ
ሷݑ ௕௫ሺ߱௠ሻ ሷݑ ௕௬ሺ߱௠ሻ ሷݑ ௕௭ሺ߱௠ሻ ሷ߮ ௕௫ሺ߱௠ሻ ሷ߮ ௕௬ሺ߱௠ሻ ሷ߮ ௕௭ሺ߱௠ሻے

ۑ
ۑ
ۑ
ې

ோ௘,ூ௠

 (3.22)

is ሺ݉, 6ሻ- measured real and imaginary part base excitation matrix that can be calculated from eq.(3.5), 
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 ሼ݂ሽோ௘,ூ௠ ൌ

ۏ
ێ
ێ
ێ
ۍ
݂ሺ߱ଵሻଵ … ݂ሺ߱ଵሻ௝ … ݂ሺ߱ଵሻ௣

ڭ ڭ ڭ ڭ ڭ
݂ሺ߱௡ሻଵ … ݂ሺ߱௡ሻ௝ … ݂ሺ߱௡ሻ௣

ڭ ڭ ڭ ڭ ڭ
݂ሺ߱௠ሻଵ … ݂ሺ߱௠ሻ௝ … ݂ሺ߱௠ሻ௣ے

ۑ
ۑ
ۑ
ې

ோ௘,ூ௠

 (3.23)

is ሺ݉,  ,ሻ- measured force excitation matrix݌

 ሾ߱ሿ ൌ

ۏ
ێ
ێ
ێ
ۍ
߱ଵ 0 0 0 0
0 ڰ 0 0 0
0 0 ߱௡ 0 0
0 0 0 ڰ 0
0 0 0 0 ߱௠ے

ۑ
ۑ
ۑ
ې

 (3.24)

is the ሺ݉,݉ሻ- diagonal excitation frequency matrix.  

From equations (3.19) and (3.20) it follows that in the case of pure base excitation ൫ሼ݂ሽோ௘,ூ௠ ൌ 0൯only 
the mass modified stiffness ሾכܭሿ and damping ሾכܥሿ matrices can be identified. The result is the follow-
ing extension of the identification equation  

 ሾܣሿሾכܭሿ் െ ሾ߱ሿሾܤሿሾכܥሿ் ൌ ሾ߱ଶሿሾܣ௨ሿ்ሾܩሿ௦௧௥௨௖௧் ൅ ሾ߱ଶሿሾܣሿ (3.25)

 ሾܤሿሾכܭሿ் ൅ ሾ߱ሿሾܣሿሾכܥሿ் ൌ ሾ߱ଶሿሾܤ௨ሿ்ሾܩሿ௦௧௥௨௖௧் ൅ ሾ߱ଶሿሾܤሿ (3.26)

or in matrix notation 

 ൤
ሾܣሿ െሾ߱ሿሾܤሿ
ሾܤሿ ሾ߱ሿሾܣሿ ൨ ൤

ሾכܭሿ்
ሾכܥሿ்

൨ ൌ ቈ
ሺሾ߱ଶሿሾܣ௨ሿ்ሾܩሿ௦௧௥௨௖௧் ൅ ሾ߱ଶሿሾܣሿሻ
ሺሾ߱ଶሿሾܤ௨ሿ்ሾܩሿ௦௧௥௨௖௧் ൅ ሾ߱ଶሿሾܤሿሻ

቉ (3.27)

3.2.2 Number of effective degrees of freedom 

Since the measurements are performed within a given finite frequency range only those eigenmodes 
with eigenfrequencies lying in this interval have an influence on the structure’s response. The number 
of these eigenmodes is equal to the rank of the response matrices ሾܣሿ and ሾܤሿ if all these eigenmodes 
contribute significantly to the response [15].  

The limited number of eigenmodes with eigenfrequencies lying within the measured frequency range 
and with significant contributions to the response is called the number of effective DOF. This number 
is equal to the rank ݎ of the response matrices ሾܣሿ and ሾܤሿ [15].  

3.2.3 Computational eigenvalues 

The vibration test will be denoted as incomplete when the number ݎ of excited modes is smaller than 
the number of measurement degree of freedoms ݌ ሺݎ ൏  ሿܣሻ. In this case the measurement matrices ሾ݌
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and ሾܤሿ theoretically must have the rank ݎ ൏  However, in practical measurements no rank defect of .݌
measured ሾܣሿ and ሾܤሿ will be detected because of [16] 

• measurement noise, 
• the inadequacy of the linearity assumption  

Identification equation (3.27) that presents then a set of overdetermined equations could now be 
solved by standard least square procedures with respect to the parameter matrices ሾכܭሿ்and ሾכܥሿ் [16] 
and [13]. When procedure will be applied to real measurement data severe limitations could be experi-
enced due to the incompleteness of measured data. The consequence is that a complete set of ݌ modes 
would be calculated from ሾכܭሿ and ሾכܥሿ including ݌ െ  noise or computational modes. In other words ݎ
the following eigenvalue solution [16] 

 ሾכܭሿሼܻሽ ൌ ߱଴
ଶሼܻሽ (3.28)

of the identified mass stiffness matrix ሾכܭሿ yields the additional undamped ݌ െ  noise eigenvalues ݎ
and ݌ െ  eigenvectors. Similarly, the eigenvalue solution of [13] ݎ

 ൜ߣ ൤
ሾכܥሿ ሾܫሿ
ሾܫሿ ሾ0ሿ൨ ൅ ൤

ሾכܭሿ ሾ0ሿ
ሾ0ሿ െሾܫሿ൨ൠ ൜

ሼܻሽ
ሼܻሽൠߣ ൌ ൤ሾ0ሿሾ0ሿ൨ (3.29)

yields the additional ݌ െ ݌ the damped (complex) noise eigenvalues and ݎ െ  eigenvectors. Practical ݎ
experience revealed that computational and structural modes could not always be separated and influ-
enced each other. Any successful direct matrix identification procedure therefore has to account for the 
incompleteness condition, i.e. the effect of computational modes has to be extracted from the identifi-
cation equation, otherwise the method will fail for real world applications [16].   

3.2.4 Procedures for rank estimation 

In this following subsection two procedures for rank estimation will be described. The method is based 
on singular value decomposition of measurement matrix ሾܤሿ (ሾܣሿ accordingly) [16]: 

 ሾܤሿሺ௠,௣ሻ ൌ ,௣ሻ ௣,௣ሾ ஻ܸሿሺ௣,௣ሻ்  ሾܷ஻ሿሺ௠ ሾܵ஻ሿ

where ሾܷ஻ሿ represents the modal matrix of ሾܤሿሾܤሿ், ሾ ஻ܸሿ represents the modal matrix of ሾܤሿ்ሾܤሿ and 
ሾܵ஻ሿ contains the square of the eigenvalues or singular values of ሾܤሿ்ሾܤሿ: 

(3.30)

 ሾܵ஻ሿ ൌ ݀݅ܽ݃ሺݏଵ … ௥ݏ ௥ାଵݏ … ௣ሻ (3.31)ݏ

Depending on the amount of measurement errors the magnitude errors of the singular values will drop 
more or less significantly beyond ݎ  . A typical curve obtained from measurement data is shown 
in Figure 3.2 for the ratio ݏ௝/ݏ௝ାଵ of consecutive singular values where the rank is indicated by a sig-
nificant peak of that ratio.  

Practical applications revealed that rank determination according to Figure 3.2 was not sufficient to 
obtain a rank leading to good identification results. Therefore a second procedure was introduced. 
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With ݎ estimated either from the first step or by number of frequency response peaks the singular 
value matrix is reduced to [16]  

 ൣ ሚܵ஻൧ ൌ ݀݅ܽ݃ሺݏଵ … ௥ሻݏ  (3.32)

by artificially setting ݏ௝ ൌ 0 for ݆ ൌ ݎ ൅  .݌…,1

 

Figure 3.2: Rank estimation 

Introducing ൣ ሚܵ஻൧ into eq. (3.69)  instead of ሾܵ஻ሿ a modified substitute measuring matrix ሾܤ෨ሿ (ൣܣሚ൧ ac-
cordingly) of rank ݎ ൏  :is obtained ݌

 ሾܤ෨ሿ ൌ ൣ ෩ܷ஻൧ൣ ሚܵ஻൧ሾ ෨ܸ஻ሿ் (3.33)

where ൣ ෩ܷ஻൧ and ሾ ෨ܸ஻ሿ are submatrices of ሾܷ஻ሿ and ሾ ஻ܸሿ belonging to the non-zero values of ሾܵ஻ሿ. 

A numerical criterion for the determination of the effective mode number ݎ is derived from the nu-
merical deviation between the substitute measuring matrices and the original data. The criterion used 
in ISSPA is the root mean square (rms) error at the ݆௧௛ degree of freedom 

௝ݏ݉ݎ ൌ ඨ
∑ ൫ܤ෨௡௝ െ ௡௝൯ܤ

ଶ
௡

∑ ௡௝ଶ௡ܤ
(3.34)  

Practical experience showed that the identification was successful even when the ݏ݉ݎ௝ -deviations 
were very large at some measurement DOF depending on the magnitude of the signal [16]. Therefore 
the ݏ݉ݎ-values of the complete matrix was also used 
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ݏ݉ݎ ൌ ඨ
∑ ∑ ൫ܤ෨௡௝ െ ௡௝൯ܤ

ଶ
௝௡

∑ ∑ ௡௝ଶ௝௡ܤ
(3.35)  

where the influence of large errors on small signals is not so pronounced.  

The ݏ݉ݎ-values are equal to zero in the case of ideal measurement data without noise and systematic 
errors when the singular values b nd ݎ are equal to zero eyo

For real measurement data the ݏ݉ݎ-values will be non-zero. If plotted versus differently estimated 
rank numbers ݎ as shown in Figure 3.3, the minimal number required to obtain a reasonable substitute 
measurement can be derived from the steepest change of slope of that curve [16]. 

 

 

Figure 3.3: rms-deviation of substitute measurement rank of measurement matrix 

3.2.5 Condensed ident ation uationific  eq  

The measurement matrices ሾܣሿ and ሾܤሿ of rank ݌ in eq. (3.27) should be replaced by substitute meas-
urement matrices ൣܣሚ൧ and ሾܤ෨ሿ of estimated rank [15] ݎ. These matrices are incomplete because the 
influence of the higher modes is eliminated [13]. It is essential to introduce the following properties of 
pseudo-unit matrices for the substitute measurement matrices ൣܣሚ൧ and ሾܤ෨ሿ [13]: 

ሾܫሚሿ ൌ ሾܣሚሿାൣܣሚ൧ ൌ ሾܤ෨ሿାሾܤ෨ሿ ൌ ሾ ෨ܸ஺ሿሾ ෨ܸ஺ሿ் ൌ ሾ ෨ܸ஻ሿሾ ෨ܸ஻ሿ் (3.36) 

The pseudo-unit matrix ሾܫሚሿ has the rank ݎ and the properties: 

ሚ൧ܣൣ ൌ ሚሿܫሚ൧ሾܣൣ ൌ ሚ൧ሾܣൣ ෨ܸ஻ሿሾ ෨ܸ஻ሿ் (3.37) 
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and 

 ሾܤ෨ሿ ൌ ሾܤ෨ሿሾܫሚሿ ൌ ሾܤ෨ሿሾ ෨ܸ஺ሿሾ ෨ܸ஺ሿ் (3.38)

The substitute measurement matrices can now be transformed to ݎ principal coordinates by the ሺ݌, -ሻݎ
transformation matrix ሾ ෨ܸ ሿ ൌ ሾ ෨ܸ஻ሿ. Introducing the properties (3.37) and (3.69)  into eq. (3.27) and 
right-multiplying by the transformation matrix ሾ ෨ܸ ሿ leads to a condensed regular identification equation 
[13]:  

 ቈ
መ൧ܣൣ െሾ߱ሿൣܤ෠൧
෠൧ܤൣ ሾ߱ሿൣܣመ൧

቉ ൥
൧்כ෡ܭൣ

൧்כመܥൣ
൩ ൌ ቈ

൫ሾ߱ଶሿሾܣ௨ሿ்ሾܩሿ௦௧௥௨௖௧் ሾ ෨ܸ ሿ ൅ ሾ߱ଶሿൣܣመ൧൯
൫ሾ߱ଶሿሾܤ௨ሿ்ሾܩሿ௦௧௥௨௖௧் ሾ ෨ܸ ሿ ൅ ሾ߱ଶሿൣܤ෠൧൯

቉ (3.39)

where 

መ൧௠,௥ܣൣ  ൌ ሚ൧௠,௣ܣൣ
ሾ ෨ܸ ሿ௣,௥ (3.40)

and 

෠൧௠,௥ܤൣ  ൌ ሾܤ෨ሿ௠,௣ሾ ෨ܸ ሿ௣,௥ (3.41)

with respect to the condensed parameter matrices 

൧ሺ௥,௥ሻכ෡ܭൣ  ൌ ሾ ෨ܸ ሿ்ሾכܭሿሺ௣,௣ሻሾ ෨ܸ ሿ (3.42)

and 

൧ሺ௥,௥ሻכመܥൣ  ൌ ሾ ෨ܸ ሿ்ሾכܥሿሺ௣,௣ሻሾ ෨ܸ ሿ (3.43)

that can be calculated by the least square procedures [13]. 

3.2.6 Determination of the real modal data from condensed matrices 

Solving the condensed right undamped eigenvalue [13] 

൧൛כ෡ܭൣ  ෠ܻൟ ൌ ߱଴
ଶ൛ ෠ܻൟ (3.44)

yields the ݎ angular eigenfrequencies ߱଴ and ݎ condensed eigenmodes ൛ ෠ܻൟ of the undamped test struc-
ture (real data) within measured frequency range.  

Solving the condensed left eigenvalue problem  
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൧்כ෡ܭൣ  ൛ ෠ܺൟ ൌ ߱଴
ଶ൛ ෠ܺൟ (3.45)

yields ݎ unnormalized condensed left eigenmodes ൛ ෠ܺൟ. The condensed right hand matrix ൣ ෠ܻ൧ and con-
densed unnormalized left matrix ൣ ෠ܺ൧ in the principal coordinates can be back transformed to the meas-
ured physical coordinates by premultiplying with the transformation matrixሾ ෨ܸ ሿ [13]: 

 ሾܻሿሺ௣,௥ሻ ൌ ሾ ෨ܸ ሿሺ௣,௥ሻൣ ෠ܻ൧ሺ௥,௥ሻ (3.46)

  ሾܺሿሺ௣,௥ሻ ൌ ሾ ෨ܸ ሿሺ௣,௥ሻൣ ෠ܺ൧ሺ௥,௥ሻ (3.47)

3.2.7 Determination of the comp ta from condensed matrices lex modal da

In the case of pure base excitation, i.e. ሼ݂ሺ݅߱ሻሽ ൌ 0, it is also possible to use the extended eigenvalue 
solution (3.29) in principal coordinates [13]: 

 ሼߣሾܧሿ ൅ ሾܨሿሽ ቊ
൛ ෠ܻൟ
൛ߣ ෠ܻൟ

ቋ ൌ ൤ሾ0ሿሾ0ሿ൨ (3.48)

where 

 ሾܧሿ ൌ ቈൣܥ
መכ൧ ሾܫሿ
ሾܫሿ ሾ0ሿ

቉ (3.49)

and 

 ሾܨሿ ൌ ቈൣܭ
෡כ൧ ሾ0ሿ
ሾ0ሿ െሾܫሿ

቉ (3.50)

Eq. (3.48) yields ݆ ൌ 1,…  complex eigenvalues ݎ

௝ߣ  ൌ ோ௘,௝ߣ ൅ ூ௠,௝ (3.51)ߣ

with corresponding complex eigenvectors ሾ ෨ܻሿ௥,௥ and ݎ conjugate complex eigenvalues 

כ௝ߣ   ൌ ோ௘,௝ߣ െ ூ௠,௝ (3.52)ߣ

with corresponding conju te complex eigenvectors ൣ ෠ܻ ൧௥,௥. gaכ

Any complex eigenvalue ߣ௝ can be expressed as [13] 
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௝ߣ  ൌ െߞ௝߱଴௝ ൅ ݅߱଴௝ට1 െ ௝ଶ (3.53)ߞ

The real part of ߣ௝, calling decay constant or damping coefficient ߜ௝, is the negative product of damp-
ing ߞ௝ and eigenfrequency߱଴௝ 

ோ௘,௝ߣ  ൌ ௝ߜ ൌ െߞ௝߱଴௝ (3.54)

The imaginary part of ߣ௝ is equal to damped eigenfrequency ߱ௗ௝ 

ூ௠,௝ߣ  ൌ ߱ௗ௝ ൌ ට߱଴௝
ଶ െ ோ௘,௝݌ ൌ ߱଴௝ට1 െ ௝ଶ (3.55)ߞ

 The angular eigenfrequency ߱଴௝ can be written as 

 ߱଴௝ ൌ ටߣோ௘,௝ଶ ൅ ூ௠,௝ߣ
ଶ  (3.56)

The eigenfrequency is given by 

 ௝݂ ൌ
߱଴௝

ߨ2
 (3.57)

Substituting equations (3.56) and (3.55) into (3.54) gives the damping 

 
௝ߞ ൌ

หߣோ௘,௝ห

ටߣோ௘,௝ଶ ൅ ூ௠,௝ߣ
ଶ

 (3.58)

3.2.8 Condensed generalized equation of motion 

Since left and right condensed eigenvectors are orthogonal, the relation  

 ൣ ෠ܻ൧்ൣ ෠ܺ൧ ൌ ൣ ෠ܺ൧்ሾ ෠ܻሿ ൌ ഥ௚൧ܯൣ ൌ ݀݅ܽ݃ሺ ഥ݉௚ଵ … ഥ݉௚௥ஸ௚ ሻ ௣

holds [13]. Since ሾܻሿ and ሾܺሿ, may be normalized arbitrarily, the matrix ൣܯഥ௚൧ is not identical with the 
generalized matrix ൣܯ௚൧ whi o r .

(3.59)

ch f llows f om eq  (2.40) 

ሾܻሿ்ሾܯሿሾܻሿ ൌ ௚൧ܯൣ ൌ ݀݅ܽ݃ሺ݉௚ଵ …݉௚௥ஸ௚௣ሻ 

The matrices ൣܯഥ௚൧ and ൣܯ௚൧ can be made equal my normalizing the left eigenvectors ሾܺሿ  by a diago-
nal matrix ሾߢሿ: 



3   Identification of System Parameters from Vibration Test Data 25 
 

௚൧ሺ௥,௥ሻܯൣ  ൌ ሿߢഥ௚൧ሾܯൣ ൌ ሾܻሿ்ሾܺሿሾߢሿ ൌ ሾ ෠ܻሿ்ሾ ෠ܺሿሾߢሿ (3.60)

But in the case of pure base excitation it is not possible to calculate the ߢ factors [14]. 

The generalized damping matrix follows from 

ҧ௚൧ሺ௥,௥ሻܥൣ  ൌ ሾ ෠ܺሿ்ൣܥመכ൧ሾ ෠ܻሿ (3.61)

The generalized damping matrix ൣܥҧ௚൧ is neither symmetric nor diagonal. The off-diagonal elements 
represent the coupling of the generalized DOF. 

Generalized condensed equation of motion in the case of pure base excitation can be obtained by using 
the modal transformation in principal coordinates: 

 ൛ݒሷ෠ൟ௡ ൌ ሾ ෠ܻሿ൛ݍሷ෠ൟ௡ (3.62)

and premultiplying eq. (3.14) with the condensed left modal matrix ൣ ෠ܺ൧்  

 ൫െ߱௡ଶൣܯഥ௚൧ ൅ ݅߱௡ൣܥҧ௚൧ ൅ ഥ௚൧ሾ߱଴ܯൣ
ଶሿ൯ሼݍሷ ሺ݅߱ሻሽ௡ ൌ ߱௡ଶሾ തܺ௭ሿ்ሾܩሿ௦௧௥௨௖௧ሼݑሷ ଴ሺ݅߱ሻሽ௡ (3.63)

where ሾ߱଴
ଶሿ is the diagonal matrix of the eigenfrequencies. Eq. (3.63) is decoupled with respect to the 

eigenmodes only in case ൣܥҧ௚൧ ൌ ݀݅ܽ݃൫ܿҧ௚௝௝൯ [17].  

3.2.9 Recalculating responses 

In order to check the eigenfrequencies, the eigenmodes and damping matrices these data can be used 
to calculate the dynamic response and compare it with the original measured response. The agreement 
between these responses is regard easure for the accuracy of extracted data [17]. ed as a m

The generalized response vector ሼݍሷ ሺ݅߱ሻሽ௜ for the excitation frequency ߱௜ is obtained from eq. (3.63). 
Splitting of eq. (3.63) into real and imaginary parts yields in the general case  ൣܥҧ௚൧ ് ݀݅ܽ݃൫ܿҧ௝௝൯  

 ቈ
     ሾܽሿ௡ െ߱௡ൣܥҧ௚൧
߱௡ൣܥҧ௚൧          ሾܽሿ௡

቉ ቊ
ሼݍሷ ሽோ௘,௡
ሼݍሷ ሽூ௠,௡

ቋ ൌ ቊ
߱௡ଶሾ തܺ௭ሿ்ሾܩሿ௦௧௥௨௖௧ሼݑሷ ଴ሺ݅߱ሻሽோ௘,௡
߱௡ଶሾ തܺ௭ሿ்ሾܩሿ௦௧௥௨௖௧ሼݑሷ ଴ሺ݅߱ሻሽூ௠,௡

ቋ (3.64)

where the diagonal matrix 

 ሾܽሿ௡ ൌ ൫െ߱௜
ଶሾܫሿ ൅ ሾ߱଴

ଶሿ൯ൣܯഥ௚൧ (3.65)

The real and imaginary parts of the condensed dynamic response in principal coordinates follow from 
eq. (3.62): 
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 ൛ݒሷ෠ൟோ௘,௡ ൌ ሾ ෠ܻሿ൛ݍሷ෠ൟோ௘,௡ (3.66)

 ൛ݒሷ෠ൟூ௠,௡ ൌ ሾ ෠ܻሿ൛ݍሷ෠ൟூ௠,௡ (3.67)

The back transformation to the physical coordinates follows by premultiplying with the transformation 
matrix ሾ ෨ܸ ሿ: 

 ሼݒሷሽோ௘,௡ ൌ ሾ ෨ܸ ሿሺ௣,௥ሻ൛ݒሷ෠ൟோ௘,௡ (3.68)

 ሼݒሷሽூ௠,௡ ൌ ሾ ෨ܸ ሿሺ௣,௥ሻ൛ݒሷ෠ൟூ௠,௡ (3.69)
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4 Demo Structure 

Prior to applying the ISSPA method to complex base-excited structures it is necessary to test it on 
simpler model or demo structure [20].  

This chapter is firstly devoted to the derivation of the reduced system matrices of such simplified 
MDOF demo structure that consists of three-dimensional (3D) beam elements. When the 3D elements 
are assembled to the entire demo structure, the number of redundant DOF has to be eliminated. A 
popular method of reduction of the size of redundant DOF - the Static Condensation Method applied 
to dynamic problems - is introduced. Also it is offered to considering the inertial properties for a dy-
namic system because of lumped mass. The procedures of reducing the system matrices are imple-
mented into the MATLAB-function demostructure.m. 

The second part of this chapter is focused on the multi-axis base excitation simulation of the demo 
structure. The reduced generalized system matrices, geometry matrix and base excitation vector in 
eq. (2.51) enable to calculate the relative acceleration responses. It will be possible to analyze the in-
fluence of the cross-talk effects. The MATLAB-function response_analysis.m is programmed for 
these goals.  

4.1 Characteristics of the Demo Structure 

The 3D demo structure is taken from [1]. The 3D demo structure consists of four rectangular blades of 
different lengths mounted perpendicularly on a hollow central mast (Figure 4.1). The overall height is 
about 1.6 m and the total mass amounts to about 191 kg. The sizes and distribution of weight, stiffness 
and damping are summarized in the Table B.1. 

 

 

Figure 4.1: Three-dimensional test structure 



4   Demo Structure 28 
 

4.2 Finite­Element Description 

The finite-element method (FEM) is an effective numerical method that is used to provide approxima-
tions to solutions of static and dynamic problems for continuous systems. Application of the finite-
element method requires the system to be divided into a finite number of elements [8]. 

4.2.1 Local matrices 

In this case it is assumed that the demo structure already consists of separate elements. These are 3D 
beam elements as shown in   Figure 4.2 which resist axial force, transverse shear force in each of two 
directions, bending about each principal axis of the cross section, and torque about longitudinal axis 
member. Following [3] they contain stiffness qualities of truss-, torsion- and beam elements. Truss 
elements are hinged at connection points and resist only axial force; torsion moments resist axial mo-
ments and beam elements are welded together at connection points and resist transverse forces and 
bending moments. 

            

  Figure 4.2: 3D beam element: DOF 

The effective local force vector acting on nodal points ݅ and ݆ of the 3D beam element contains the 
difference between external loads and d’Alembert’s inertia forces because of the base excitation 

൛ܨ෨௘௙௙ൟ ൌ ൛ ሚ݂ൟ െ ෨൧ܩ෩൧ൣܯൣ ൜
ሼݑሷ ௕ሽ
ሼ ሷ߮ ௕ሽ

ൠ (4.1)  

where ൛ ሚ݂ൟ is the local external loads vector as shown in Figure 4.3 
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൛ ሚ݂ൟ ൌ ൛ ௜ܵଵ  ௜ܵଶ  ௜ܵଷ ௜ଵܯ ௜ଶܯ ௜ଷܯ ௝ܵସ ௝ܵହ ௝ܵ଺ ௝ସܯ ௝ହܯ ௝଺ܯ ൟ
்

 (4.2)  

 

     Figure 4.3: 3D external loads 

and ൣܯ෩൧ is the local lumped mass matrix. The simplest method for considering the inertial properties 
of the demo structure is to assume that the mass of the structure is lumped at the nodal coordinates as 
shown in Figure 4.1. The inertial effect associated with any rotational degree of freedom is then as-
sumed to be zero [19]. The local lumped mass matrix ൣܯ෩൧ is: 

෩൧ܯൣ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
݉௜ 0 0 0 0 0 0 0 0 0 0 0
0 ݉௜ 0 0 0 0 0 0 0 0 0 0
0 0 ݉௜ 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 ௝݉ 0 0 0 0 0
0 0 0 0 0 0 0 ௝݉ 0 0 0 0
0 0 0 0 0 0 0 0 ௝݉ 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (4.3)  

The local time independent geometry matrix ൣܩ෨൧ has the following form: 

෨൧ܩൣ ൌ

ۏ
ێ
ێ
ۍ
ሾܫሿ ሾܦ௜ሿ
ሾ0ሿ ሾ0ሿ
ሾܫሿ ሾܦ௝ሿ
ሾ0ሿ ሾ0ሿ ے

ۑ
ۑ
ې
 (4.4)  

where ሾܦ௜ሿ and ሾܦ௝ሿ are given in eq. (2.30): 

ሾܦ௝ሿ ൌ ቎
  0 ௝݀௭ െ ௝݀௬
െ ௝݀௭ 0 ௝݀௫

௝݀௬  െ ௝݀௫ 0
቏ 

One has 

൛ܨ෨௘௙௙ൟ ൌ ෤ሽݒ෩൧ሼܭൣ ൅ ሾܯ෩ሿ൛ݒሷ෨ൟ (4.5)  
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 where ሼݒ෤ሽ contains the displacements and rotations of the structural nodal points ݅ and ݆ 

 ሼݒ෤ሽ ൌ ൛ݒ௜ଵ ݒ௜ଶ ݒ௜ଷ ߮௜ଵ ߮௜ଶ ߮௜ଷ ௝ସݒ ௝ହݒ ௝଺ݒ ߮௝ସ ߮௝ହ ߮௝଺ ൟ
்

 (4.6) 

and ሾܭሿ෪ is the element stiffness matrix of the 3D beam element. The element stiffness matrix is given 
by [5]: 

 ሾܭ෩ሿ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
ܣܧ
ܮ 0 0 0 0 0 െ

ܣܧ
ܮ 0 0 0 0 0

0
௭ܫܧ12
ଷܮ 0 0 0

௭ܫܧ6
²ܮ

0 െ
௭ܫܧ12
ଷܮ 0 0 0

௭ܫܧ6
²ܮ

0 0
௬ܫܧ12
ଷܮ 0 െ

௬ܫܧ6
²ܮ

0 0 0 െ
௬ܫܧ12
ଷܮ 0 െ

௬ܫܧ6
²ܮ

0

0 0 0
௫ܫܩ
ܮ 0 0 0 0 0 െ

௫ܫܩ
ܮ 0 0

0 0 െ
௬ܫܧ6
²ܮ

0
௬ܫܧ4
ܮ 0 0 0

௬ܫܧ6
²ܮ

0
௬ܫܧ2
ܮ 0

0
௭ܫܧ6
²ܮ

0 0 0
௭ܫܧ4
ܮ 0 െ

௭ܫܧ6
²ܮ

0 0 0
௭ܫܧ2
ܮ

െ
ܣܧ
ܮ 0 0 0 0 0

ܣܧ
ܮ 0 0 0 0 0

0 െ
௭ܫܧ12
ଷܮ 0 0 0 െ

௭ܫܧ6
²ܮ

0
௭ܫܧ12
ଷܮ 0 0 0 െ

௭ܫܧ6
²ܮ

0 0 െ
௬ܫܧ12
ଷܮ 0

௬ܫܧ6
²ܮ

0 0 0
௬ܫܧ12
ଷܮ 0

௬ܫܧ6
²ܮ

0

0 0 0 െ
௫ܫܩ
ܮ 0 0 0 0 0

௫ܫܩ
ܮ 0 0

0 0 െ
௬ܫܧ6
²ܮ

0
௬ܫܧ2
ܮ 0 0 0

௬ܫܧ6
²ܮ

0
௬ܫܧ4
ܮ 0

0
௭ܫܧ6
²ܮ

0 0 0
௭ܫܧ2
ܮ 0 െ

௭ܫܧ6
²ܮ

0 0 0
௭ܫܧ4
ܮ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (4.7) 

where ܧ is a modulus of elasticity, ܩ is a shear modulus and ܮ is a length of 3D beam element 

4.2.2 Global matrices 

The assembly of global stiffness and mass matrices requires that each of the element stiffness equation 
be referred to the global axes. The geometric transformation contains a rotation through the angles ߙ, 
 as shown in   Figure 4.2. The corresponding transformation is given in [5] as ߛ and ߚ

 ሾܶሿ ൌ

ۏ
ێ
ێ
ێ
ሾۍ
෨ܶሿ ሾ0ሿ ሾ0ሿ ሾ0ሿ
ሾ0ሿ ሾ ෨ܶሿ ሾ0ሿ ሾ0ሿ
ሾ0ሿ ሾ0ሿ ሾ ෨ܶሿ ሾ0ሿ
ሾ0ሿ ሾ0ሿ ሾ0ሿ ሾ ෨ܶሿے

ۑ
ۑ
ۑ
ې
 (4.8) 

where 

 ሾ ෨ܶሿ ൌ ൥
cos ߚ cos ߛ cos ߚ sin ߛ െ sin ߚ

sin ߙ sin ߚ cos ߛ െ cos ߙ sin ߚ sin ߙ sin ߚ sin ߚ ൅ cos ߙ cos ߛ sin ߙ cos ߚ
cos ߙ sin ߚ cos ߛ ൅ sin ߙ sin ߛ cos ߙ sin ߚ sin ߛ െ sin ߙ cos ߛ cos ߙ cos ߚ

൩ (4.9) 

The element stiffness matrix ൣܭ෩൧ and local mass Matrix ൣܯ෩൧ are transformed to the global coordinates 
by 
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෩ଷ஽൧ܭൣ  ൌ ሾܶሿ்ൣܭ෩൧ሾܶሿ (4.10)

෩ଷ஽൧ܯൣ  ൌ ሾܶሿ்ൣܯ෩൧ሾܶሿ (4.11)

The transformed local mass ൣܯ෩ଷ஽൧ and stiffness matrices ൣܭ෩ଷ஽൧ are assembled into global matrices. 
After the elimination of the fixed degrees of freedom according to the support the global system matri-
ces ൣܭ௚௟௢௕௔௟൧ and ൣܯ௚௟௢௕௔௟൧ get the dimension ݌, ݌ ൌ 60,60.  

4.2.3 Static Condensation 

In the case of pure base excitation the eq. (4.5) becomes the following form:  

 െሾܯ෩ሿ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
1 0 0 0 ௝݀௭ െ ௝݀௬
0 1 0 െ ௝݀௭ 0 ௝݀௫
0 0 1 ௝݀௬ െ ௝݀௫ 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 ௝݀௭ െ ௝݀௬
0 1 0 െ ௝݀௭ 0 ௝݀௫
0 0 1 ௝݀௬ െ ௝݀௫ 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ە
ۖ
۔

ۖ
ۓ
ሷݑ ௕௫
ሷݑ ௕௬
ሷݑ ௕௭
ሷ߮ ௕௫
ሷ߮ ௕௬
ሷ߮ ௕௭ۙ
ۖ
ۘ

ۖ
ۗ

ൌ ෩൧ܭൣ

ە
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۓ
௜ଵݒ
௜ଶݒ
௜ଷݒ
߮௜ଵ
߮௜ଶ
߮௜ଷ
௝ସݒ
௝ହݒ 
߮௝ସ
߮௝ହ
߮௝଺ۙ

ۖ
ۖ
ۖ
ۖ
ۘ

ۖ
ۖ
ۖ
ۖ
ۗ

൅ ሾܯ෩ሿ

ە
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۓ
௜ଵݒ
௜ଶݒ
௜ଷݒ
߮௜ଵ
߮௜ଶ
߮௜ଷ
௝ସݒ
௝ହݒ 
߮௝ସ
߮௝ହ
߮௝଺ۙ

ۖ
ۖ
ۖ
ۖ
ۘ

ۖ
ۖ
ۖ
ۖ
ۗ

 (4.12)

The lumped mass matrix structure results in a diagonal mass matrix and contains zeros in its main 
diagonal due to assumed zero rotational inertial moments. The local geometry matrix also contains 
zeros corresponding to rotational degrees of freedom ߮௜and ߮௝. These facts enable the elimination by 
static condensation of the rotational degrees of freedom thus reducing the dimension of the dynamic 
problem [19].  

A practical method of accomplishing the reduction of the stiffness matrix is to identify those degrees 
of freedom to be condensed as dependent or secondary degrees of freedom and express them in the 
term of the remaining independent or primary degrees of freedom [9], [19]. In this case the transla-
tional degrees of freedom should be condensed and rotational must be eliminated. The stiffness equa-
tion for the test structure may be written as 

 ቈ
ሾܭ௦௦ሿ ௦௣൧ܭൣ
௣௦൧ܭൣ ௣௣൧ܭൣ

቉ ቊ
ሼ߮௦ሽ
൛ݒ௣ൟ

ቋ ൌ ቊ
ሼ0ሽ
൛ܨ௣ൟ

ቋ (4.13)

where ሼ߮௦ሽ is the rotational vector corresponding to the ݏ degrees of freedom to be reduced and ൛ݒ௣ൟ is 
the displacement vector corresponding to the remaining ݌ independent degrees of freedom. It is as-
sumed that the external forces were zero at the dependent degrees of freedom. A multiplication of the 
matrices on the left side of eq. (4.13) expands this equation into two matrix equations 

 ሾܭ௦௦ሿሼ߮௦ሽ ൅ ௣ൟݒ௦௣൧൛ܭൣ ൌ ሼ0ሽ (4.14)
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௣௦൧ሼ߮௦ሽܭൣ  ൅ ௣ൟݒ௣௣൧൛ܭൣ ൌ ൛ܨ௣ൟ (4.15)

Equation (4.14) is equivalent to 

 ሼ߮௦ሽ ൌ ሾ ෨ܶ௦௖ሿ൛ݒ௣ൟ (4.16)

where ሾ ෨ܶ௦௖ሿ is the transformation matrix given by  

 ሾ ෨ܶ௦௖ሿ ൌ െሾܭ௦௦ሿିଵൣܭ௦௣൧ (4.17)

Substituting eq. (4.16) and using eq. (4.17) in eq. (4.15) results in the reduced stiffness equation relat-
ing forces and displacements at the primary coordinates 

 ሾܭሿ൛ݒ௣ൟ ൌ ൛ܨ௣ൟ (4.18)

where ሾܭሿ is the reduced stiffness matrix given by 

 ሾܭሿ ൌ ௣௣൧ܭൣ െ ௦௣൧ (4.19)ܭ௦௦ሿିଵൣܭ௣௦൧ሾܭൣ

The static relationship between the secondary coordinates ሼ߮௦ሽ and primary coordinates ൛ݒ௣ൟ may be 
written using the identity ൛ݒ௣ൟ ൌ ሾܫሿ൛ݒ௣ൟ as 

 ቊ
ሼ߮௦ሽ
൛ݒ௣ൟ

ቋ ൌ ൜ሾ
෨ܶ௦௖ሿ
ሾܫሿ ൠ ൛ݒ௣ൟ (4.20)

With  

 ሾ ௦ܶ௖ሿ ൌ ൤ሾ
෨ܶ௦௖ሿ
ሾܫሿ ൨ (4.21)

 the reduced stiffness matrix can be written as 

 ሾܭሿ ൌ ሾ ௦ܶ௖ሿ்ൣܭ௚௟௢௕௔௟൧ሾ ௦ܶ௖ሿ (4.22)

4.2.4 Static Condensation Applied to Dynamic Problems 

In order to reduce the mass matrix, it is assumed that the same static relationship between secondary 
and primary degrees of freedom remains valid in the dynamic problem [2]. Hence the same transfor-
mation based on static condensation for the reduction of the global stiffness matrix is also used for 
reducing the global mass matrix. In general this method of reducing the dynamic problem is not exact. 
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In this case the discretization of the mass results in a number of massless rotational degrees of freedom 
selected to be condensed. Thus it is only necessary to carry out the static condensation of the global 
stiffness matrix and to delete from the global mass matrix the rows and columns corresponding to the 
massless rotational degrees of freedom. 

The static Condensation Method in this case does not alter the original problem, and thus results in an 
equivalent eigenproblem without introducing any error. In the general case involving the condensation 
of degrees of freedom to which the discretization process has allocated mass, the reduced mass is ob-
tained using transformations analogues to eq.(4.22) 

ሾܯሿ ൌ ሾ ௦ܶ௖ሿ்ൣܯ௚௟௢௕௔௟൧ሾ ௦ܶ௖ሿ (4.23) 

The theory presented in aforementioned sections was implemented with MATLAB (demostructure.m) 
in order to get the reduced system matrices ሾܭሿ  and  ሾܯሿ  of the demo structure. The                          
Figure 4.4 summarizes the all steps of the derivation of reduced system matrices in the demostruc-
ture.m.  

 

                         Figure 4.4: Procedures of the reduction of the system matrices of the demo structure 
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4.3 Response Analysis 

The response analysis was implemented with the programmed Matlab-function response_analysis.m 
that accomplishes the eigenvalue problem of the demo structure, plots the mode shapes and simulates 
the unsolicited motions of the shaker. The input parameters as shown in Figure 4.5 are the reduced 
system matrices of the demo structure that were derived in the aforementioned sections. The reduced 
system matrices of the demo structur lution eq. (2.38) e are used in the eigenvalue so

ሺሾܭሿ െ ߱ଶሾܯሿሻሼݒ ݁௜ఠ௧ ൌ ሼ0ሽ ሽ

that yields as output parameters the eigenfrequencies ݂ and eigenvectors ሼܻሽ. Additional function plots 
the mode shapes of the demo structure. Manipulating of the base excitation vector ሼݑሷ ଴ሽ  allows simu-
lating the base excitation and investigating corresponding responses of virtual sensors (DOF). 

 

                       

Figure 4.5: Input and output data of the response_analysis.m 
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4.3.1 Eigenvalues of the d o struct  em ure

The reduced system matrices ሾܭሿଷ଴,ଷ଴ and ሾܯሿଷ଴,ଷ଴ have the dimension ݌, ݌ ൌ 30,30 so that 30 eigen-
frequencies and mode shapes can be found (Table B.2). There are 16 eigenfrequencies up to 100 Hz. 
The lowest eigenfrequency is  ଵ݂ ൌ  The corresponding mode shape is a pendulum motion of .ݖܪ9,37
the central mast about its x-axis as shown in Figure 4.6. The corresponding mode shape to the second 
eigenfrequency  ଶ݂ ൌ  contains the pendulum motion of the central mast about its y-axis. The  ݖܪ 11,86
corresponding mode shape to the third eigenfrequency   ଷ݂ ൌ  contains the oscillating motion ݖܪ 12,01
about its z-axis. 

        

Figure 4.6: Mode shapes of the demo structure 

4.3.2 Base excitation simulation 

The dynamical acceleration response for base-excited structures is given by eq. (2.51): 

ሼݒሷ ሽ ൌ ෍
߱ଶሼܻሽ௝ሼܻሽ௝

்ሺሾܯሿሾܩሿሼݑሷ ଴ሽሻ

௝݇ െ ߱ଶ
௝݉ ൅ ݅߱ ௝ܿ

௣

௝ୀଵ

 

It permits considering the analysis of a situation where the system is simultaneously excited in fre-
quency domain by pure base excitation ሼݑሷ ଴ሺ߱ሻሽ [4]. So the base acceleration vector  ሼݑሷ ଴ሽ଺,ଵ contains 
maximum acceleration amplitudes. It has to be multiplied with the product of the reduced lumped 
mass matrix ሾܯሿଷ଴,ଷ଴ and transformation matrix ሾܩሿଷ଴,଺ that is given in Table B.3.   
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Table 4.1: List of sensors and channels 

     
     

sensor x- channel  y-channel z-channel 

A 1 2 3 

B 4 5 6 

C 7 8 9 

D 10 11 12 

E 13 14 15 

F 16 17 18 

G 19 20 21 

H 22 23 24 

I 25 26 27 

J 28 29 30 
      

 

Table 4.1 shows the list of sensors A-J that virtually “measure” the responses in x-, y- and z-directions. 
To introduce the response analysis the sensor C  is chosen. The “measured” frequency band was lim-
ited at 25 Hz. At first a base excitation in only x-direction ሼݑሷ ଴ሽ ൌ ሾ1 0 0 0 0 0ሿ் was applied to demo 
structure. Figure 4.7 shows the imaginary parts of “measurements” of corresponding channels.   

Obviously only the second mode is excited where the first and the third modes are not excited. In ac-
cordance with Figure 4.6 where the second mode shape is plotted the sensors “measure” the response 
amplitudes only in x- and z-direction. 

 

Figure 4.7: Excitation in x-direction 
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To introduce the cross-talk effect that results in unsolicited motion it is necessary to add the rotational 
parts to the base excitation vector ሼݑሷ ଴ሽ. Figure 4.8 shows the ancillary effect of an unsolicited rotation 
about x-axis of the virtual shaker ሼݑሷ ଴ሽ ൌ ሾ1 0 0 0.5 0 0ሿ்.  According to equations (2.31) and (2.37) 
the rotational acceleration part  ሷ߮ ௕௫ ൌ 0.5 has to be multiplied with y- and z-position components of 
all sensors. The rotational part leads to an additional excitation of the 1.mode that is “measured” by y-
channel.  

 

Figure 4.8: Excitation in x- and rotational part about x-axis 

Comparison with pure base excitation in y-direction only  ሼݑሷ ଴ሽ ൌ ሾ0 1 0 0 0 0ሿ்  shows in Figure 4.9 
that y-channels “measure” the response amplitudes in y-direction due to the first mode where the cen-
tral mast oscillates about the x-axis as shown in Figure 4.6. 

 

Figure 4.9: Excitation in y-direction 
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To analyze the unsolicited motion the rotational excitation part   ሷ߮ ௕௬ ൌ 0.5 was added to the base exci-
tation vector ሼݑሷ ଴ሽ ൌ ሾ0 1 0 0 0.5 0ሿ். As shown in Figure 4.10 the second mode by side of the first 
mode is excited.         

 

Figure 4.10: Excitation in y-direction with rotational part about y-axis 

Figure 4.11 presents the responses where the base excitation in y-direction becomes two rotational 
acceleration parts   ሷ߮ ௕௬ ൌ 0.5 and   ሷ߮ ௕௭ ൌ 0.5 . Overall three modes are excited. The third mode is 
“measured” by y-channel and represents the vibration as shown in Figure 4.6 where the rectangular 
blades oscillate about z-axis.  

 

Figure 4.11: Excitation in y-direction with two rotations part 
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5 Applications 

The presented theory in chapter 3 is implemented into a MATLAB-function identification.m which 
includes the post-processing of the vibration test data.  The identification procedures are shown 
in Figure 5.1. The input data are the time-independent geometry, measured frequency excitation and 
relative response matrices. In the first instance the number of effective modes ݎ that is equal to the 
rank of the identified condensed stiffness and damping matrices is estimated. After solving of the con-
densed eigenvalue problem (equations (3.44) and (3.48)) and backtransformation to the measured 
physical coordinates (eq. (3.46)) the eigenvalues will be identified and the mode shapes can be plotted.      

                      

Figure 5.1: Input and output data of identification.m 
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At first demo structure presented in aforementioned chapter was used to test the sensitivity and accu-
racy of the identification procedure (ISSPA). Subsequently the MATLAB-function identification.m 
was applied to the vibration test data of the original aircraft section in order to demonstrate system 
identification. 

5.1 Application of ISSPA on Demo Structure 

The 30-DOF demo structure presented in the chapter 4 was used to test the sensitivity and accuracy of 
the identification procedure (ISSPA). The reason for the use of simulated test data is the possibility of 
investigating all influences on the accuracy of the identification method separately [14]. The following 
influences were investigated 

• incomplete frequency range input 
• cross-talk  
• number of effective degrees of freedom 
• measurement errors, by adding random data to the analytical model response 
• weakly excited modes 

5.1.1 Incomplete frequency range and influence of the cross­talk effect 

To render the identification even more difficult the “measured” frequency band was truncated at 
݌ to establish the incompleteness condition that the MDOF number ݖܪ 24 ൌ 30 is larger than the 
effective mode number ݎ. The base excitation in the y-direction includes unsolicited rotational parts 
about y-axis and z-axis ሼݑሷ ଴ሽ ൌ ሾ0 1 0 0 0.5 0.5ሿ். Figure 5.2 shows the “measured” imaginary parts of 
acceleration responses. The experimental test environment was performed by adding of the random 
data of 10% to the analytical response data.  

 

Figure 5.2: Digitized measured frequency response curves 
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The ratios of consecutive singular values of the imaginary part measurement matrix ܤ (݉ ൌ 1011 
frequency points, ݌ ൌ 30 MDOF) plotted in Figure 5.3 clearly indicate that at least ݎ ൌ 3 effective 
modes are active in that frequency range.  

 

Figure 5.3: Ratios of consecutive singular values 

To prove the ݏ݉ݎ – deviations at the substitute measurement matrix ሾܤ෨ሿ according to eq. (3.35) have 
been calculated for different estimates of ݎ. The plot in Figure 5.4 indicates some changes of slope of 
curve. The steepest change could be at ݎ ൌ 4. 

 

  Figure 5.4: rms-deviation of substitute measurement matrix 

So a major problem is the determination of the number of the effective degrees of freedom which is 
equal to the rank of the response matrices. Depending on the individual application it is necessary to 
run the ISSPA-identification with two or more different numbers of effective degrees of freedom. The 
best number is then decided on by comparing the measured response data with the recalculated re-
sponse data using the identified parameters [17].  
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Figure 5.5 shows the comparison of the recalculated responses as given in eq. (3.67) and “measured” 
responses at sensor C. The responses for ݎ ൌ 4 are recalculated with high accuracy whereas the re-
sponses for ݎ ൌ 3 drift from the “measured” responses.  

 

Figure 5.5: Exact and identified responses at channel y8 

The identified and analytical mode shapes are correlated by the Modal Assurance Criterion (MAC). 
The MAC measures the scatter of points between the identified mode shape ሼܻሽ and the predicted 
mode shape ሼ߰ሽ [21]: 

ܥܣܯ ൌ
ሾሼܻሽ்ሼ߰ሽሿଶ

ሾሼܻሽ்ሼܻሽሿሾሼ߰ሽ்ሼ߰ሽሿ  (5.1) 

(3.57)Equation  implemented into identification.m yield four eigenfrequencies. The following ratios of 
exact (Table B.2) to identified eigenfrequencies were extracted by comparing of MAC values [7]: 

௘݂௫

௜݂ௗ
ൌ ሾ1.000 1.000 1.000ሿ 

(3.58)Equation  also implemented into identification.m yields three corresponding damping values. 
The ratios of exact (Table B.2) to identified damping values give: 

௘௫ߞ
௜ௗߞ

ൌ ሾ1.000 1.000 1.000ሿ 
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Table 4.1summarizes the comparison between exact and identified parameters.  

Table 5.1: Identified parameters  

mode 

r 

EXACT ISSPA  

        ࡯࡭ࡹ
ሾ%ሿ 

            ௥ࢌ
ሾݖܪሿ 

࢘ࣀ            
ሾെሿ        

௥ࢌ            
ሾݖܪሿ 

࢘ࣀ            
ሾെሿ 

1 9.377 0.029 9.378 0.029 100 

2 11.856 0.037 11.860 0.037 100 

3 18.012 0.057 18.010 0.056 100 

The results indicate that the ISSPA-method identifies modal parameters within incomplete frequency 
range with high accuracy even if the base excitation vector includes rotational parts. 

5.1.2 Influence of number of effective degrees of freedom 

In a next step the question was investigated how increasing the matrix rank beyond ݎ ൌ 4 would influ-
ence the identified parameters. The results presented in Table 5.2 for the eigenfrequencies and re-
sponse compliance indicate that 

• increasing the rank es yond ݎ ൌ 3 yields pure computational modes timate be
• the eigenfrequencies values of the 3 effective mod  be found and remain stable whereas 

random deviations of 89.16% were identified betw e recalculated and exact responses. 
es can
een th

• The best response compliance is at estimated rank ݎ ൌ 4 

Table 5.2: Identified eigenfrequencies and MAC with respect to different rank estimates r 

Rank 

 

 ࢘

Eigenfrequencies  ሾࢠࡴሿ 

 

 ૜ࢌ                    ૛ࢌ                  ૚ࢌ      

Damping [-]                         

  

૜ࣀ                    ૛ࣀ                    ૚ࣀ               

Response     
compliance   
all Sensors 

Number 
of noise 
modes 

(value entheses ation to e olution )s in par : devi xact s  

3 9.476       
ሺെ0.099ሻ 

11.904      
ሺെ0.048ሻ 

18.008       
ሺ൅0.004ሻ

0.021       
ሺ൅0.09ሻ

0.036        
ሺ൅0.002ሻ

0.058       
ሺെ0.001ሻ

3.949 
ሺെ96.051ሻ 

- 

4 9.381       
ሺെ0.004ሻ 

11.859      
ሺെ0.003ሻ 

18.009       
ሺ൅0.003ሻ

0.029       
ሺേ0.000ሻ

0.037        
ሺേ0.000ሻ

0.056       
ሺേ0.000ሻ

93.111 
ሺ൅6.889ሻ 

1 

5 9.379       
ሺെ0.002ሻ 

11.858      
ሺ൅0.002ሻ 

18.011       
ሺെ0.001ሻ

0.029      
ሺേ0.000ሻ

0.037      
ሺേ0.000ሻ

0.056      
ሺേ0.000ሻ

 87.729 
ሺ൅12.270ሻ 

2 

6 9.380 
ሺെ0.003ሻ 

11.856      
ሺെ0.003ሻ 

18.010       
ሺ0.002ሻ

0.029       
ሺേ0.000ሻ

0.037        
ሺേ0.000ሻ

0.056       
ሺേ0.000ሻ

 92.966 
ሺ൅7.034ሻ 

3 

7 9.379 
ሺെ0.002ሻ 

11.860      
ሺെ0.003ሻ 

18.005       
ሺ0.006ሻ

0.029       
ሺേ0.000ሻ

0.037        
ሺേ0.000ሻ

0.056       
ሺേ0.000ሻ

 91.611 
ሺ൅8.389ሻ 

4 
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5.1.3 Measurement errors, by adding random data to the analytical response 

The vibration test data always include noise. In a next step the question was investigated how the dif-
ferent levels of noise influence the identified parameters for estimated rank ݎ ൌ 4. The noise was ap-
plied by adding uniformly distributed random numbers to the analytical response. Table 5.3 shows the 
results obtained by the ISSPA for various noise levels. 

Table 5.3: Influence of noise 

Noise  

 

Eigenfrequencies  ሾࢠࡴሿ Damping ࢘ࣀ [-] 

 

૛ࢌ                 ૚ࢌ         ૜ࢌ                

  

૜ࣀ                 ૛ࣀ                 ૚ࣀ                  

MAC [%]                      

mode shapes 

      1                   2                 3 

(values ntheses ve devi exact on in %

9.37       
ሺെ0.03ሻ 

in pare

11.85       
ሺെ0.02ሻ 

: relati

18.02       
ሺ൅0.03ሻ 

ation to 

0.029       
ሺേ0.000ሻ

 soluti

0.037       
ሺേ0.000ሻ

) 

0.057       
ሺേ0.000ሻ

100       

 

100        100      zero 

10%  9.38       
ሺ൅0.01ሻ 

11.86       
ሺ൅0.01ሻ 

18.01       
ሺെ0.01ሻ 

0.029       
ሺേ0.000ሻ

0.037       
ሺേ0.000ሻ

0.057       
ሺേ0.000ሻ

100       99.98 99.93 

20%  9.39       
ሺ൅0.21ሻ 

11.86       
ሺ൅0.01ሻ 

18.01       
ሺെ0.01ሻ 

0.027      
ሺെ0.068ሻ

0.037      
ሺേ0.000ሻ

0.056       
ሺെ0.034ሻ

99.99 99.99  99.95 

30% 9.40        
ሺ൅0.29ሻ 

11.88       
ሺ൅0.22ሻ 

18.00       
ሺെ0.05ሻ 

0.026       
ሺെ11.389ሻ

0.036       
ሺെ3.410ሻ

0.056       
ሺെ0.034ሻ

99.99 99.97 99.96 

40% 9.43       
ሺ൅0.52ሻ 

11.88       
ሺ൅0.22ሻ 

17.95       
ሺെ0.32ሻ 

0.025       
ሺെ15.96ሻ

0.036       
ሺെ3.410ሻ

0.055       
ሺെ2.707ሻ

99.99 99.89 99.93 

The modal parameters remain stable up to a noise level of 20%. So the ISSPA method can be applied 
under experimental test environment to identify modal parameters. 

5.1.4 Weakly excited modes 

In order to study the ability of the identification procedure to extract weakly excited modes caused by 
increased damping or cross-talk effects the same base excitation vector becomes weakly rotational part 
about z-axis:ሼݑሷ ଴ሽ ൌ ሾ0 1 0 0 0.5 0.03ሿ். Figure 5.6 shows the very small response peak that is “meas-
ured” by channel 8ݕ. To perform the experimental test environment the random data of 10% were 
added to analytical response data. 

 

Figure 5.6: Weakly excited mode 
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The ratios of consecutive singular values as shown in Figure 5.7 clearly indicate that at least ݎ ൌ 2 
effective modes are “active” in that frequency range. To prove this the rms-deviations at the substitute 
measurement matrix have been calculated for different estimates of ݎ.  

 

Figure 5.7: The ratios of consecutive singular values in the case of weakly excited mode 

To prove the ݏ݉ݎ – deviations at the substitute measurement matrix ሾܤ෨ሿ according to eq. (3.35) have 
been calculated for different estimates of ݎ. The plot in Figure 5.8 indicates steepest change at ݎ ൌ 4. 

 

Figure 5.8: rms- deviation in the case of weakly excited mode 

Figure 5.9 shows the comparison of the recalculated responses as given in eq. (3.67) and “measured” 
responses at sensor C. The responses for ݎ ൌ 4 are recalculated with high accuracy whereas the re-
sponses for ݎ ൌ 2 drift from the “measured” responses.   
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Figure 5.9: Recalculating responses in the case of weakly excited mode 

The next investigated question was whether changing the matrix rank beyond ݎ ൌ 4 would either al-
low the identification of the “hidden” mode or would only produce additional modes. The results pre-
sented in  

Table 5.4 for the eigenfrequencies and damping values indicate that 

• the weakly excited mode cannot be extracted 
• increasing rank beyond ݎ ൌ 2 produces noise modes 
• only two eigenmodes can be extracted from no s ise mode
• the best response compliance of all responses (93.10 %ሻ is at estimated rank ݎ ൌ 4   

 

Table 5.4: Identified parameters in the case of weakly excited mode 

Rank   

 

Eigenfrequencies  ሾࢠࡴሿ Damping ࢘ࣀ [-] 

 

 ૜ࢌ               ૛ࢌ               ૚ࢌ       

  

૜ࣀ                ૛ࣀ              ૚ࣀ                

Response compliance 
[%]                    

 

9.509     
ሺെ0.132ሻ 

11.916     
ሺ ሻ 

(values in pa es: dev act solution )renthes

0.021      
ሺ൅0.008ሻ

iation to ex

0.037      
ሺ൅0.001ሻ

85.391                 
ሺ൅14.609ሻ െ0.060

2 -          -        

93.108                 
ሺ ሻ 

4  9.382 
ሺെ0.005ሻ 

11.858     
ሺ ሻ െ0.002

noise 0.029      
ሺേ0.000ሻ

0.037      
ሺേ0.000ሻ ൅6.892

noise 

85.391                 
ሺ൅14.609ሻ 

7 9.379  
ሺെ0.002ሻ 

11.859     
ሺെ0.003ሻ 

noise 0.029      
ሺേ0.000ሻ

0.037      
ሺേ0.000ሻ

noise 
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5.2 Application of ISSPA to Vibration Test Data from the Aircraft  
Section  

In order to demonstrate the parameter identification method, the MATLAB-function identification.m 
was applied to the vibration test data of the original aircraft section. The vibration test was accom-
plished on the electrohydraulic exciter. 

Figure 5.10 shows the principle test set-up. The test fixture is an adapter system that was connected to 
the test specimen and the shaker table. It has its first eigenfrequency above the investigated frequency 
range. Four tri-axial accelerometers were placed on the shaker table to measure input excitation accel-
eration. The sensors on the section measure the absolute acceleration responses. 

 

 

Figure 5.10: Aircraft section 

The real and imaginary acceleration response data were available from a sinusoidal sweep base excita-
tion at 101 measurement degrees of freedom digitised at 1188 frequency points. Only ݌ ൌ 77 degrees 
of freedom were retained for the ISSPA identification. The frequency range of investigation is normal-
ized to unity. The real part data are assembled in the matrix ሾܣሿ, the imaginary part data in the 
trixሾܤሿ. Each column of these matrices represents the frequency response curve of one measuring de-
grees of freedom that are also normalized to unity.   

5.2.1 Identification in the case of base excitation in y­direction 

In a first step the identification-method was applied to the vibration test data in the case of base excita-
tion in the y-direction. Figure 5.11 shows the measured unsolicited motions of the shaker because of 
crass-talk effects. 
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Figure 5.11: Unsolicited motions of the shaker 

Figure 5.12 shows the imaginary part of normalized acceleration response at channel no. 55 that 
measures the response in y-direction. 

 

Figure 5.12: Normalized imaginary acceleration response at channel 55 

Due to unknown measurement errors sources and non-linearity effects the ratios of consecutive singu-
lar values of the measurement matrices plotted in Figure 5.13 show several definite peaks whereas the 
magnitudes at ݎ ൌ 3 and ݎ ൌ 6 are  most significant. 
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Figure 5.13: Ratios of consecutive singular values 

The rms-deviation in Figure 5.14 also indicates several changes of slope of that curve. Whereas the 
change at ݎ ൌ 6 shows to be the steepest. 

 

Figure 5.14: rms-deviation of substitute measurement matrix 

Table 5.5 shows the ry of the accomplished rank analysis summa

• Estimate of ݎ ves no noise modes and reasonable eigenfrequency ratios but no clear 
ce be the recalculated and measured responses ሺ72.04%ሻ. 

ൌ 3 gi
complian tween 

• Estimate of ݎ ൌ 6  gives three noise modes. The response compliance accounts for  
81.35%. Three eigenfrequencies could be extracted by comparing of corresponding identified 
and analytical mode shapes. The extracted eigenfrequency ratios are also plausible. 

• Tee best response compliance accounts for 89.52% for estimate rank ݎ ൌ 5. 
• The clear statement about the damping is impossible because the analytical damping model is 

not present but all identified damping values are in the plausible range ሺ0.06% െ 2.87%ሻ.  
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Table 5.5: Rank analysis 

eigenfrequency ratio ࢊ࢏ࢌ/࢓࢏࢙ࢌ] ࢘ࢌሿrank damping  ζ [%] resp.compl. noise 

 

 ૝࢘ࢌ              ૛࢘ࢌ               ૚࢘ࢌ      

 

 ૝ࣀ    ૛ࣀ    ૚ࣀ                                

[%] mode 

   

1.04 1.16 1.29 1.39 0.96 0.49 7  2.0363       - 

1.07 1.16 1.34 0.67 1.05 0.37 0.987 4                                   1 

1.07 1.17 1.31 0.06 1.13 2.87 89.5215                                    2 

1.08       1.16       1.34       0.33 1.03       1.91       81.346 6 3 

However, from comparing the recalculated and the measured responses as shown in Figure 5.15, the 
best agreement was obtained using the rank estimate ݎ ൌ 5.  

 

Figure 5.15: Comparison of recalculating responses 

It should be denoted out that ISSPA, in contrast to other exciting modal identification methods, is not 
a response curve fitting method, i.e. good agreement between the measured and recalculated response 
must also be a measure of the accuracy of the physical system matrix ሾכܭሿ, which is not identified in 
standard curve fitting procedures [14]. Figure 5.16 shows the real and imaginary part responses of an 
arbitrary DOF ݊݋. 55 that were recalculated with high accuracy. 
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Figure 5.16: DOF no.55: real and imaginary part responses 

 summarizes the identified modal parameters for the rank estimate ݎ ൌ 5 and Table 5.6 Figure 5.17 
represents the corresponding mode shapes that were identified. 

Table 5.6: Identified modal parameters for rank r = 5 in the case of y-excitation 

Mode 
no. 

 

Eigenf y atio ࢘ࢌ requenc r

ሾࢊ࢏ࢌ/࢓࢏࢙ࢌሿ 

Damping ζ MAC 

[%] [%] 

 

1.07 0.06 97.711    

2

4 

1.16

1.31

1.13

2.87

82.49

82.76 

  

 

 

  

Figure 5.17: Identified mode shapes for estimate rank r = 5 in the case of y-excitation 
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5.2.2 Identification in the case of base excitation in z­direction  

In the next step the identification in the case of the base excitation in z-direction using the selected 
frequency band is accomplished. The Figure 5.18 shows the selected frequency range around the dis-
tinct peak in which the identification will be performed. Cutting out of this frequency band should 
minimize noise effects.   

 

Figure 5.18: Identification frequency band 

 

Comparison of the recalculated and measured responses as shown in Figure 5.19 indicates the best 
decision is to use the rank ݎ ൌ 5.  

 

Figure 5.19: DOF no.37: real and imaginary part responses 
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As shown in Table 5.7 three eigenvalues and eigenmodes are identified from the selected frequency 
band.  

Table 5.7: Identified modal parameters for estimate rank r = 5 in the case of z-excitation 

Mode 
no. 

 

Eigenf y atio ࢘ࢌ requenc r

ሾࢊ࢏ࢌ/࢓࢏࢙ࢌሿ 

Damping ζ MAC 

[%] [%] 

 

2 1.11 0.32 81.16    

3

4 

1.14

1.29 

1.32

1.22 

95.35

84.34 

  

 

The identified mode shapes are presented in Figure 2.1 

 

  

Figure 5.20: Identified mode shapes for estimate rank r = 5 in the case of z-excitation 

 

5.2.3 Results overview 

The programmed MATLAB-function identification-m is effective applied to the vibration test data of 
the original aircraft section. In the first step the test data from the lateral excitation (y-direction) are 
used. First, second and fourth predicted eigenfrequencies are identified for estimate rank ݎ ൌ 5. The 
identified mass-modified system matrices enable to recalculate the responses with high accuracy. In 
the next step the test data from the z-excitation are used. The identification frequency band is selected 
to minimize the noise errors. Second, third and fourth predicted eigenfrequencies are identified for 
estimate rank ݎ ൌ 5.  
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6 Conclusion and Outlook 

The objective of this thesis was the application of the identification method to real vibration data in 
order to identify modal parameters like eigenfrequencies, mode shapes and damping. The identifica-
tion method has to consider the interaction between the multi-axis shaker and the test specimen. The 
identified modal parameters are essential for the following validation of FEM-models and can conclu-
sively improve the design of the investigated structures.  

The correct equation of motion for multi-axial base excited MDOF-systems is a requirement for the 
modal analysis of such structures that are excited by shakers. The thorough derivation of the equation 
of motion was discovered in [6] and [11]. After the research of the best applicable identification meth-
ods, the method called ISSPA (Identification of Structural System Parameters), developed by M.Link, 
was detected in [13], [14], [15], [16] and [17]. The theory was extracted and implemented with MAT-
LAB: identification.m 

In order to check the sensitivity and accuracy of the function identification.m with respect to condi-
tions that represent many practical test situations a virtual 3D demo structure was required. The demo 
structure was specially designed with MATLAB-tool demostructure.m that constructs system matrices, 
eliminates redundant DOFs and accomplishes the eigenvalue problem. The material properties of the 
demo structure were obtained in [1]. An additional programmed MATLAB-function re-
sponse_analysis.m enables the forced response analysis where effects of unsolicited motions of the 
virtual shaker can be simulated. 

Finally the function identification.m was successful applied to the measured frequency test data of the 
original aircraft section. The test data were extracted for the base excitation in y-direction where the 
unsolicited motions of the shaker in directions of all the rest DOFs were also ascertained. The original 
measurement matrices were modified such that their rank was equally to the number ݎ of effective 
modes. Without this modification there would be no rank defect in the original measurement matrices 
due to measuring errors and unavoidable non-linearities. The difficulty was the investigation of the 
correct number of effective modes. There are many different procedures to extract the effect of noise 
modes from the identification equation. From comparing the recalculated and the measured responses 
best agreement was obtained using the rank ݎ ൌ 5. By comparing of MAC values three eigenfrequen-
cies and modes and three computational modes have been identified. These eigenvalues were pre-
dicted by analytical model and can be used for its validation.  

Furthermore ISSPA yields not only modal data but also physical system matrices that can be used for 
updating analytical models in order to identify those areas on the structure where modifications of the 
physical stiffness, mass, and damping parameter have to be applied. Comparison of the finite element 
and identified dynamic matrices makes it possible to identify deviations of the mathematical model in 
physical coordinates. It should be denoted that the comparison for the mass modified system is possi-
ble only in case of known base reactions forces which have to be measured during the test.  

ISSPA is the frequency-domain identification. But it is also reasonable to apply the time-domain iden-
tification to the same vibration test data in time-domain to identify the modal parameter that can be 
compared with the results of the frequency-domain identification ISSPA. 
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A Electrohydraulic Exciter 
 

Table A.1: Typical technical parameters of electrohydraulic exciter 

Feature Parameters

Size of table platform 4.0݉ ൈ 4.0݉

Table mass ~ 2  2 000݇݃

Lowest eigenfrequency ൐ 100 ݖܪ

Number of vertical  actuators 4 

Number of horizontal actuators 4 

Number of hydraulic pumps 5 

Power rating 1000ܸ݇ܣ

Maximum oil flow 17  50 ݈/݉݅݊

Maximum play load 15000݇݃

Maximum way 0 െ  :ݖܪ 2 േ 70  ݏ/݉݉

Maximum velocity 2 െ  :ݖܪ 10 േ 0.8 ݏ/݉

Maximum acceleration: empty table   േ60 ²ݏ/݉ ሺ݈ܽܿ݅ݐݎ݁ݒሻ; േ35݉/ݏଶሺ݄݈ܽݐ݊݋ݖ݅ݎ݋ሻ

Maximum acceleration: maximum play load  േ34 ²ݏ/݉ ሺ݈ܽܿ݅ݐݎ݁ݒሻ; േ22݉/ݏଶሺ݄݈ܽݐ݊݋ݖ݅ݎ݋ሻ 
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B Demo Structure Properties  

B.1 Material and geometry properties 

Table B.1: Material properties of a demo structure 

Beam-
element 

Final 
weight 
mi [kg] 

Length      
a [m] 

Reference 
axis u 

Bending 
stiffness 
EIu 
10ହ Nm² 

Reference 
axis v 

Bending 
stiffness 
EIv 
10ହ Nm² 

Torsion 
stiffness 
GId          
10ହ Nm² 

Stress 
stiffness 
EA        
10଼ N 

1-2 60 0,8 x 4,16 y 7,04 4,43 5,12 

2-3 40 0,7 x 4,16 y 7,04 4,43 5,12 

2-4 14 0,8 y 1,28 z 1,92 1,48 1,92 

2-5 17 0,5 x 1,28 z 1,92 1,48 1,92 

2-6 9 0,8 y 1,28 z 1,92 1,48 1,92 

2-7 17 0,5 x 1,28 z 1,92 1,48 1,92 

3-8 9 0,5 y 1,28 z 1,92 1,48 1,92 

3-9 11 0,5 x 1,28 z 1,92 1,48 1,92 

3-10 9 0,5 y 1,28 z 1,92 1,48 1,92 

3-11 11 0,5 x 1,28 z 1,92 1,48 1,92 

B.2 Eigenvalues 

Table B.2: Eigenfrequencies and damping values 

Mode Nr. Eigenfrequency [Hz] Damping ζ Mode Nr. Eigenfrequency [Hz] Damping ζ 

1 9,38 0,0295 16 92,21 0,2897 

2 11,86 0,0372 17 108,65 0,3413 

3 18,01 0,0566 18 113,24 0,3558 

4 36,22 0,1138 19 132,89 0,4175 

5 36,79 0,1156 20 135,05 0,4243 

6 38,44 0,1208 21 380,30 1,1947 

7 39,74 0,1248 22 658,96 2,0702 

8 51,50 0,1618 23 756,42 2,3764 

9 54,57 0,1714 24 801,21 2,5171 

10 60,87 0,1912 25 940,40 2,9542 

11 66,19 0,2079 26 948,40 2,9795 

12 67,32 0,2115 27 953,35 2,9950 

13 83,04 0,2609 28 1039,60 3,2660 

14 83,28 0,2616 29 1172,18 3,6825 

15 90,85 0,2854 30 1253,16 3,9369 
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B.3 Transformation matrix 

Table B.3: Transformations matrix 

1 0 0 0  0.8  0 

0 1 0 -0.8 0  0 

0 0 1 0 0 0 

1 0 0 0 1.5 0 

0 1 0 -1.5 0 0 

0 0 1 0 0 0 

1 0 0 0 0.8 0 

0 1 0 -0.8 0 0.8 

0 0 1 0 -0.8 0 

1 0 0 0 0.8 0.5 

0 1 0 -0.8 0 0 

0 0 1 -0.5 0 0 

1 0 0 0 0.8 0 

0 1 0 -0.8 0 -0.8 

0 0 1 0 0.8 0 

1 0 0 0 0.8 -0.5 

0 1 0 -0.8 0 0 

0 0 1 0.5 0 0 

1 0 0 0 1.5 0 

0 1 0 -1.5 0 0.5 

0 0 1 0 -0.5 0 

1 0 0 0 1.5 0.5 

0 1 0 -1.5 0 0 

0 0 1 -0.5 0 0 

1 0 0 0 1.5 0 

0 1 0 -1.5 0 0.5 

0 0 1 0 0.5 0 

1 0 0 0 1.5 -0.5 

0 1 0 -1.5 0 0 

0 0 1 0.5 0 0 
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C MATLAB scripts 

C.1 Main design 

 
% MAIN DESIGN 
% Author: Dimitrij Shulkin, 2012 
% ========================================================================= 
clc; close all; clear all; 
[properties] = demo_structure_properties 
%========================================================================== 
%                      REDUCED STIFFNESS AND MASS MATRICES 
%========================================================================== 
[K M G]                  =   demostructure(properties); 
%========================================================================== 
%                        BASE EXCITATION SIMULATION  
%========================================================================== 
%                         translational  rotational 
%                           x   y   z    x   y   z 
                      ub = [1   0   0    1   0   0]'; 
[X wr sr plotnumber]     =   response_analysis(K,M,G,ub,properties) 
%========================================================================== 
%                                   ISSPA 
%========================================================================== 
%                                 INTERFACE 
% Analytical data of demo structure 
[A B Au Bu Omega]        =   interface(X,wr,sr,ub);   
                               
%                              IDENTIFICATION 
% Choose effective dof: 
effdof                   = 2; 
[frr drr]                = identification(A,B,Au,Bu,G,Omega,plotnumber,effdof) 
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C.2 demostructure.m 

 
function [K M G] = demostructure(properties) 
%========================================================================== 
% Procedures of the reduction of the system matrices of the demo structure 
% INPUT DATA      : material and gemoetry properties of demo structure 
% Author          : Dimitrij Shulkin 2012  
% ========================================================================= 
% Parameters of demo structure 
m                       =   properties.m;    % mass [kg] 
L                       =   properties.L;    % lengths [m] 
EA                      =   properties.EA;   % length stiffness [N] 
EIx                     =   properties.EIx;  % bending stiffness, reference axis x 
EIy                     =   properties.EIy;  % bending stiffness, reference axis y 
EIz                     =   properties.EIz;  % bending stiffness, reference axis z  
GI                      =   properties.GI;   % torsional stiffness 
alfa                    =   properties.alfa; % alfa rotation of beams 
beta                    =   properties.beta; % beta rotation of beams 
gama                    =   properties.gama; % gama rotation of beams 
n                       =   properties.n;    % quantity of beams 
dof                     =   properties.dof;  % global degrees of freedom 
G                       =   properties.G; 
% Incidence table                                       % beam number 
inz     =   [1 2 3 4 5 6 37 38 39 7 8 9;...             %   1-2 
             37 38 39 7 8 9 40 41 42 10 11 12;...       %   2-3 
             37 38 39 7 8 9 43 44 45 13 14 15;...       %   2-4 
             37 38 39 7 8 9 46 47 48 16 17 18;...       %   2-5 
             37 38 39 7 8 9 49 50 51 19 20 21;...       %   2-6 
             37 38 39 7 8 9 52 53 54 22 23 24;...       %   2-7 
             40 41 42 10 11 12 55 56 57 25 26 27;...    %   3-8 
             40 41 42 10 11 12 58 59 60 28 29 30;...    %   3-9 
             40 41 42 10 11 12 61 62 63 31 32 33;...    %   3-10 
             40 41 42 10 11 12 64 65 66 34 35 36];      %   3-11 
% Initialisation 
Kglob   =   zeros(dof,dof);      
% Assemblage of global stiffness matrix 
for i   =   1:n 
    Kglob(inz(i,:),inz(i,:)) = Kglob(inz(i,:),inz(i,:)) + ... 
    elementstiff-
ness(EA(i),EIx(i),EIy(i),EIz(i),GI(i),L(i),alfa(i),beta(i),gama(i),i);     
end; 
% Elemination of fixed dof (1 2 3 4 5 6) 
Kred    =   Kglob(7:66,7:66); 
 
%========================================================================== 
%                        STATIC CONDENSATION METHOD 
%========================================================================== 
% Paz M., Leigh W. – Structural Dynamics, Theory and Computation, 2004 
% secondary rotational degrees of freedom to be reduced 
us      =   1:30; 
% primarary translational degrees of freedom 
um      =   31:60; 
Ks      =   Kred(us,us); 
Kp      =   Kred(us,um); 
% transformation matrix 
T       =   -inv(Ks)*Kp; 
T       =   [T;eye(30)]; 
% reduced sitffness matrix 
K       =   T'*Kred*T; 
%========================================================================== 
%                               LUMPED MASS 
%========================================================================== 
% Paz M., Leigh W. – Structural Dynamics, Theory and Computation, 2004 
M       =   diag([m(2) m(2) m(2) m(3) m(3) m(3) m(4) m(4) m(4) m(5) m(5) m(5)...  
                  m(6) m(6) m(6) m(7) m(7) m(7) m(8) m(8) m(8) m(9) m(9) m(9)... 
                  m(10) m(10) m(10) m(11) m(11) m(11)])  
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C.2.1 Input data for demostructure.m 

 
function [properties] = demo_structure_properties 
%========================================================================== 
% OUTPUT DATA:  material and geometry properties of the 3D demo structure 
% Taken from:   Breitbach E.J. – Experimentelle Simulation  
%               Dynamischer Lasten an 
%               Raumfahrtsystemen mittels modaler Erregerkraftkombinationen,  
%               Habilitationsschrift, 1988 
% Author:       Dimitrij Shulkin, 2012 
%========================================================================== 
% mass [kg] 
properties.m    =   [0 60 40 14 17 14 17 9 11 9 11]; 
% lengths [m] 
properties.L    =   [0.8 0.7 0.8 0.5 0.8 0.5 0.5 0.5 0.5 0.5];   
% length stiffness [N] 
properties.EA   =   10^8*[5.12 5.12 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92];  
% bending stiffness, reference axis x 
properties.EIx  =   10^5*[4.16 4.16 0 1.28 0 1.28 0 1.28 0 1.28]; 
% bending stiffness, reference axis y 
properties.EIy  =   10^5*[7.04 7.04 1.28 0 1.28 01.28 01.28 0 1.28 0]; 
% bending stiffness, reference axis z 
properties.EIz  =   10^5*[0 0 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92]; 
% torsional stiffness 
properties.GI   =   10^5*[4.43 4.43 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48];   
% rotation of beams 
properties.alfa =   [0 0 0 0 0 0 0 0 0 0];  
properties.beta =   [pi/2 pi/2 0 0 0 0 0 0 0 0]; 
properties.gama =   [0 0 0 pi/2 pi -pi/2 0 pi/2 pi -pi/2];   
% quantity of beams 
properties.n    =   10; 
% global degrees of freedom 
properties.dof  =   66; 
% Geometric transformation matrx 
properties.G = [1 0 0 0 -0.8  0;   0 1 0 0.8 0  0;     0 0 1  0   0    0;... 
                1 0 0 0 -1.5  0;   0 1 0 1.5 0  0;     0 0 1  0   0    0;... 
                1 0 0 0 -0.8  0;   0 1 0 0.8 0  0.8;   0 0 1  0  -0.8  0;... 
                1 0 0 0 -0.8 -0.5; 0 1 0 0.8 0  0;     0 0 1  0.5 0    0;... 
                1 0 0 0 -0.8  0;   0 1 0 0.8 0 -0.8;   0 0 1  0   0.8  0;... 
                1 0 0 0 -0.8  0.5; 0 1 0 0.8 0  0;     0 0 1 -0.5 0    0;... 
                1 0 0 0 -1.5  0;   0 1 0 1.5 0  0.5;   0 0 1  0  -0.5  0;... 
                1 0 0 0 -1.5 -0.5; 0 1 0 1.5 0  0;     0 0 1  0.5 0    0;... 
                1 0 0 0 -1.5  0;   0 1 0 1.5 0 -0.5;   0 0 1  0   0.5  0;... 
                1 0 0 0 -1.5  0.5; 0 1 0 1.5 0  0;     0 0 1 -0.5 0    0]; 
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C.2.2 Sub­function of demostructure.m 

 
function [K] = elementstiffness(EA,EIx,EIy,EIz,GI,L,alfa,beta,gama,i) 
%========================================================================== 
% Elementstiffness matrix and transformation  
% Author:  Dimitrij Shulkin, 2012 
%========================================================================== 
if i <= 2 
   EIz = EIx; % Symmetry 
elseif (i == 4) || (i == 6) || (i == 8) || (i == 10) 
    EIy = EIx; % Symmetry 
end; 
  
% Element stiffness matrix  
% Freymann R. - Strukturdynamik, Ein Anwendungsorientiertes Lehrbuch, 2011 
Kb = [EA/L 0 0 0 0 0 -EA/L 0 0 0 0 0;...                                %u1 
      0 12*EIz/L^3 0 0 0 6*EIz/L^2 0 -12*EIz/L^3 0 0 0 6*EIz/L^2;...    %u2     
      0 0 12*EIy/L^3 0 -6*EIy/L^2 0 0 0 -12*EIy/L^3 0 -6*EIy/L^2 0;...  %u3     
      0 0 0 GI/L 0 0 0 0 0 -GI/L 0 0;...                                %u4 
      0 0 -6*EIy/L^2 0 4*EIy/L 0 0 0 6*EIy/L^2 0 2*EIy/L 0;...          %u5 
      0 6*EIz/L^2 0 0 0 4*EIz/L 0 -6*EIz/L^2 0 0 0 2*EIz/L;...          %u6 
     -EA/L 0 0 0 0 0 EA/L 0 0 0 0 0;...                                 %u7 
      0 -12*EIz/L^3 0 0 0 -6*EIz/L^2 0 12*EIz/L^3 0 0 0 -6*EIz/L^2;...  %u8  
      0 0 -12*EIy/L^3 0 6*EIy/L^2 0 0 0 12*EIy/L^3 0 6*EIy/L^2 0;...    %u9 
      0 0 0 -GI/L 0 0 0 0 0 GI/L 0 0;...                                %u10    
      0 0 -6*EIy/L^2 0 2*EIy/L 0 0 0 6*EIy/L^2 0 4*EIy/L 0;...          %u11         
      0 6*EIz/L^2 0 0 0 2*EIz/L 0 -6*EIz/L^2 0 0 0 4*EIz/L];            %u12     
  
% Transformation matrix 
% Freymann R. - Strukturdynamik, Ein Anwendungsorientiertes Lehrbuch, 2011 
tb = [cos(beta)*cos(gama) cos(beta)*sin(gama) -sin(beta);... 
      sin(alfa)*sin(beta)*cos(gama)-cos(alfa)*sin(gama)... 
      sin(alfa)*sin(beta)*sin(gama)+cos(alfa)*cos(gama) sin(alfa)*cos(beta);... 
      cos(alfa)*sin(beta)*cos(gama)+sin(alfa)*sin(gama)... 
      cos(alfa)*sin(beta)*sin(gama)-sin(alfa)*cos(gama) cos(alfa)*cos(beta)]; 
  
O  = [0 0 0;... 
      0 0 0;... 
      0 0 0]; 
  
Tb = [tb O O O;... 
      O tb O O;... 
      O O tb O;... 
      O O O tb]; 
% Transformation of element stiffness matrix 
K  =   Tb'*Kb*Tb; 
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C.3 Base excitation simulation 

 
function[X wr sr s plotnumber] = response_analysis(K,M,G,ub,properties) 
%========================================================================== 
% INPUT DATA:   reduced system matrices and geometry matrix 
% OUTPUT DATA:  eigenvalues, mode shapes and responses 
% Author:       Dimitrij Shulkin, 2012 
%========================================================================== 
%                                EIGENVALUES 
%========================================================================== 
[x la]      =       eig(K,M);    
ff          =       sqrt(la)/(2*pi); 
freq        =       zeros(1,30); 
for i = 1:30                     
    freq(i) = ff(i,i); 
end; 
[f_sort,id] =       sort(freq); 
x_sort      =       x(:,id); 
f_sort 
% Mode Shapes 
L           =       properties.L; 
dof         =       30; 
for s = 1:dof 
    plotshapes(x_sort(:,s),L,s,f_sort(s)); 
end; 
b           =       0.001;          % Rayleigh-Damping 
Mgen        =       x'*M*x;         % Generalized mass matrix 
Ph          =       x*Mgen^(-0.5);  % Mass-normilized eigenvector 
%========================================================================== 
%                        BASE EXCITATION SIMULATION  
%========================================================================== 
F           =       -M*G*ub;        % Effective force vector 
wr          =       32:0.1:158;     % Limited frequency band 
sr          =       length(wr); 
% Reduced FRF 
Hr          =       zeros(dof,dof*sr); 
for j = 1:dof 
    for k = 1:dof 
        hr   = zeros(dof,sr); 
        for n = 1:dof 
            hr(n,:)    = hr(n,:)+ wr.^2*(Ph(j,n)*Ph(k,n))./... 
                (la(n,n) - wr.^2 + sqrt(-1)*b*la(n,n)*wr); 
            Hr(j,((k-1)*sr+1):k*sr)  = Hr(j,((k-1)*sr+1):k*sr)+ hr(n,:); 
        end; 
    end; 
end; 
% Reduced acceleration responses 
X           =       zeros(dof,sr); 
qr          =       zeros(dof,sr); 
for j = 1:dof 
    for k = 1:dof 
    X(j,:) = X(j,:) + F(k)*Hr(j,((k-1)*sr+1):k*sr); 
    end; 
end; 
%========================================================================== 
% Presentation of responses: SENSORS C and E 
f = wr/(2*pi); 
plotnumber = dof+1; 
figure(plotnumber); 
plot(f,abs(X(7,:)),f,abs(X(8,:)),f,abs(X(9,:)),... 
     f,abs(X(13,:)),f,abs(X(14,:)),f,abs(X(15,:)),'linewidth',2); 
hold on;xlabel('excitation frequency [Hz]');ylabel('abs. acceleration resonse 
[m/s²]'); 
legend('x7','y8','z9','x13','y14','z15');grid;title('responses'); 
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C.3.1 Figures of mode shapes 

 
function plotshapes(x,L,j,freq) 
%========================================================================== 
% Figures of mode shapes 
% Author: Dimitrij Shulkin, 2012 
%========================================================================== 
%                               ORIGINAL FIGURE 
%========================================================================== 
% X1, Y1, Z1 matrices, plots one or more lines in 
% three-dimensional space through the points whose coordinates are the 
% elements of X1, Y1, and Z1 
X       =       [0 0;0 0;0 L(3);0 0;0 -L(5);0 0;0 L(7);0 0;0 -L(9);0 0]; 
Y       =       [0 0;0 0;0 0;0 L(4);0 0;0 -L(6);0 0;0 L(8);0 0;0 -L(10)]; 
Z       =       [0 L(1);L(1) (L(1)+L(2));L(1) L(1);L(1) L(1);L(1) L(1);... 
                 L(1) L(1);L(1)+L(2) L(1)+L(2);L(1)+L(2) L(1)+L(2);... 
                 L(1)+L(2) L(1)+L(2);L(1)+L(2) L(1)+L(2)]; 
figure(j) 
for i = 1:10 
    plot3(X(i,:),Y(i,:),Z(i,:),'LineWidth',1,'Color',[0.7 0.7 0.7],... 
                'MarkerEdgeColor',[0 0 0],... 
                'MarkerFaceColor',[0 0 0],... 
                'MarkerSize',5); 
            hold on; 
end; 
%========================================================================== 
%                                 MODE SHAPES 
%========================================================================== 
x1 = 0.2*x; % Scaling 
X1 = [0      x1(1);          x1(1)   x1(4);... 
      x1(1)  L(3)+x1(7);     x1(1)   x1(10);... 
      x1(1) -L(5)+x1(13);    x1(1)   x1(16);... 
      x1(4)  L(7)+x1(19);    x1(4)   x1(22); 
      x1(4) -L(9)+x1(25);    x1(4)   x1(28)];  
             
Y1 = [0     -x1(2);          -x1(2)       -x1(5);... 
      -x1(2) -x1(8);          -x1(2)   -L(4)-x1(11);... 
      -x1(2) -x1(14);         -x1(2)    L(6)-x1(17);... 
      -x1(5) -x1(20);         -x1(5)   -L(8)-x1(23);... 
      -x1(5) -x1(26);         -x1(5)    L(10)-x1(29)]; 
   
    
Z1 = [0                 L(1)-x1(3);         L(1)-x1(3)      L(1)+L(2)-x1(6);... 
      L(1)-x1(3)        L(1)-x1(9);         L(1)-x1(3)      L(1)-x1(12);... 
      L(1)-x1(3)        L(1)-x1(15);        L(1)-x1(3)      L(1)-x1(18);... 
      L(1)+L(2)-x1(6)   L(1)+L(2)-x1(21);   L(1)+L(2)-x1(6) L(1)+L(2)-x1(24);... 
      L(1)+L(2)-x1(6)   L(1)+L(2)-x1(27);   L(1)+L(2)-x1(6) L(1)+L(2)-x1(30)]; 
  
  
  
  
% Mode shapes 
for i = 1:10 
    plot3(X1(i,:),Y1(i,:),Z1(i,:),'--ko','LineWidth',2,... 
                'MarkerEdgeColor','k',... 
                'MarkerFaceColor',[0 0 0],... 
                'MarkerSize',5); 
    hold on; 
    title([num2str(j) '.mode:  ' num2str(freq) ' Hz']); 
    %xlabel('x'); 
    %ylabel('y'); 
    %zlabel('z'); 
    axis equal; 
 end; 
%[num2str(freq) ' Hz'] 
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C.4 identification.m 

 
function [frr drr]  =   identification(A,B,Au,Bu,G,Omega,plotnumber,effdof) 
%========================================================================== 
% INPUT DATA:  Measured matrices, geometry matrix, frequency matrix, rankr 
% OUTPUT DATA: Eigenfrequenies, mode shapes and damping 
% Author:      Dimitrij Shulkin, 2012 
%========================================================================== 
 
sr      =   length(Omega); 
dof     =   length(G); 
wr      =   zeros(1,sr); 
for ii  =   1:sr 
    wr(ii)  =   Omega(ii,ii); 
end;     
%========================================================================== 
%                      PROCEDURES OF RANK ESTIMATION  
%========================================================================== 
% Singular value decomposition 
[UB SB WB]  =   svd(B,0); 
[UA SA WA]  =   svd(A,0); 
% Plot of the ratios vs consecutive singular values 
ratiob      =   zeros(1,(dof-1)); 
for i = 1:(dof-1) 
    ratiob(i) = (SB(i,i)+1)/(SB((i+1),(i+1))+1); 
end; 
figure(plotnumber+2) 
plot(1:(dof-1),ratiob,'linewidth',3); 
hold on; 
grid; 
title('Ratios of consecutive singular values vs. singular value no.'); 
xlabel('singular value number'); 
ylabel('ratio Sj/Sj+1'); 
  
% Substitute measuring matrix 
effb = 1:dof; 
Beff = zeros(dof*sr,dof);  
for i = 1:dof 
    SBeff=0;UBeff=0;WBeff=0; 
    SBeff = SB(1:effb(i),1:effb(i)); 
    UBeff = UB(:,1:effb(i)); 
    WBeff = WB(:,1:effb(i)); 
    Beff((i-1)*sr+1:i*sr,:)= UBeff*SBeff*WBeff'; 
end; 
  
% RMS 
rms = zeros(1,dof); 
for r = 0:dof-1 
    zb=0;nb=0; 
        for i = 1:sr 
            for j = dof 
            zb = zb + (Beff(r*sr+i,j) - B(i,j))^2; 
            nb = nb + B(i,j)^2; 
            end; 
        end; 
    rms(r+1) = sqrt(zb/nb); 
end; 
rms = rms*100; 
figure(plotnumber+3) 
plot(1:dof,rms,'linewidth',2); 
hold on; title('rms-deviation of substitute measurement rank'); 
xlabel('estimated rank numbers r');ylabel('rms [%]');grid; 
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%========================================================================== 
%                        IDENTIFICATION EQUATION 
%========================================================================== 
SA(effdof+1:dof,effdof+1:dof)   =       0; 
SB(effdof+1:dof,effdof+1:dof)   =       0; 
Aeff                            =       UA*SA*WA'; 
Beff                            =       UB*SB*WB'; 
WBeff                           =       WB(:,1:effdof); 
% LEFT SIDE OF EQUATION 
LEFT    = [Aeff*WBeff -Omega*Beff*WBeff;... 
           Beff*WBeff Omega*Aeff*WBeff]; 
% RIGHT SIDE OF EQUATION -->> Bu = 0 
RIGHT   = [(Omega.^2*Au*G'+Omega.^2*Aeff)*WBeff;... 
           (Omega.^2*zeros(sr,6)*G'+Omega.^2*Beff)*WBeff]; 
%Lest square 
MID     =   LEFT\RIGHT;            
% Condensed system matrices 
KT      =   MID(1:effdof,:);          Krr     =   KT'; 
CT      =   MID(effdof+1:2*effdof,:); Crr     =   CT'; 
%========================================================================== 
%                       UNDAMPED CONDENSED EIGENPROBLEM  
%========================================================================== 
[yc Wy] =   eig(Krr);       % right-hand eigenvalue problem 
[xc Wx] =   eig(Krr');      % left-hand eigenvalue problem 
freqeff =   sqrt(Wy)/(2*pi);% identified eigenfrequencies 
% back transformation to physical coordinates 
Yc      = WBeff*yc; 
Xc      = WBeff*xc; 
%========================================================================== 
%                           DAMPED EIGENPROBLEM 
%========================================================================== 
DD      = [zeros(effdof,effdof) -eye(effdof);Krr Crr]; 
[ksi p] = eig(DD); 
%========================================================================== 
%                        DAMPING AND EIGENFREQUENCY 
%========================================================================== 
wrr = zeros(1,2*effdof); 
drr = zeros(1,2*effdof); 
for i = 1:2*effdof 
    wrr(i) = sqrt(real(p(i,i))^2+imag(p(i,i))^2); 
    drr(i) = sqrt(real(p(i,i))^2)/wrr(i); 
end; 
frr = wrr/(2*pi) 
%========================================================================== 
%                          RECALCULATING RESPONSES 
%========================================================================== 
mue             = xc'*yc; 
beta            = xc'*Crr*yc; 
rir             = zeros(dof,sr); 
rim             = zeros(dof,sr); 
for k = 1:sr 
    ai      =   (-wr(k)^2*eye(effdof)+Wy)*mue; 
    fire    =   -wr(k)^2*Xc'*G*Au(k,:)'; 
    fiim    =   -wr(k)^2*Xc'*G*Bu(k,:)'; 
    Links   =   [ai -wr(k)*beta;wr(k)*beta ai]; 
    Rechts  =   [fire;fiim]; 
    Mitte   =   Links\Rechts; 
    qreel   =   Mitte(1:effdof); 
    qimag   =   Mitte(effdof+1:2*effdof); 
    rir(:,k)= Yc*qreel; 
    rim(:,k)= Yc*qimag; 
end; 
f = wr/(2*pi);figure(plotnumber+4);     
plot(f,rim(7,:),'--',f,rim(8,:),'--',f,rim(9,:),'--',f,B(:,7),... 
            f,B(:,8),f,B(:,9),'linewidth',2); 
hold on;xlabel('excitation frequency [Hz]');ylabel('acceleration response [m/s²]'); 
grid;title('forced responses');legend('x7-ISSPA','y8-ISSPA','z9-ISSPA',... 
    'x7-EXACT','y8-EXACT','z9-EXACT'); 
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C.4.1 Interface 

 
function [A B Au Bu Omega] = interface(X,wr,sr,ub) 
%========================================================================== 
% Generating of analytical input data of the demo structure for identification 
% Author: Dimitrij Shulkin, 2012 
  
dof             =   30; 
X1              =   real(X);            % Real part  
X2              =   imag(X);            % Imaginary part 
A               =   zeros(sr,dof);      % Real matrix 
B               =   zeros(sr,dof);      % Imaginary matrix 
Au              =   zeros(sr,6);        % Real part excitation matrix 
Bu              =   zeros(sr,6);        % Imaginary part excitation matrix 
Omega           =   diag(wr);           % Excitation frequency 
for j = 1:dof 
    A(:,j) = X1(j,:); 
    B(:,j) = X2(j,:); 
end; 
for i = 1:sr 
    Au(i,:) = ub'; 
end; 
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