
Bachelorarbeit
Moritz	Uhlig

A Type	Class	Based	Approach	for	Modeling	Transformations	of

Abstract	Petri	Nets

Fakultät Technik und Informatik
Studiendepartment Informatik

Faculty of Engineering and Computer Science
Department of Computer Science

Moritz Uhlig

A Type Class Based Approach for Modeling Transformations
of Abstract Petri Nets

Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung

im Studiengang Bachelor of Science Angewandte Informatik
am Department Informatik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Julia Padberg
Zweitgutachter: Prof. Dr. Friedrich Esser

Eingereicht am: 28. August 2012

Moritz Uhlig

Thema der Arbeit
A Type Class Based Approach for Modeling Transformations of Abstract Petri Nets
Stichworte
Petri-Netze, Abstrakte Petri-Netze, Funktionale Programmierung, Scala, Netztransfor-
mationen, Kategorientheorie, Typklassen, Netzklassen
Kurzzusammenfassung
Abstrakte Petri-Netze bieten einen einheitlichen Ansatz zur Beschreibung von Struktur
und Semantik unterschiedlicher Arten von Petri-Netzen. Kategorientheorie stellt ein
allgemeines Modell zur Beschreibung von Phänomenen bereit, die in unterschiedlichen
Zweigen der Mathematik und Wissenschaft aufzufinden sind. Diese stellt die Basis für
die Theorie der Abstrakten Petri-Netze dar, findet aber auch Anwendung in der funk-
tionalen Programmierung. Diese Arbeit erläutert kategorielle Konzepte und deren
Zusammenhang mit Abstrakten Petri-Netze sowie der funktionalen Programmierung.
Sie stellt ein Softwaredesign vor, für das diese Konzepte die Grundlage bilden.
Moritz Uhlig

Title of the paper
A Type Class Based Approach for Modeling Transformations of Abstract Petri Nets
Keywords
Petri nets, Abstract Petri Nets, functional programming, Scala, net transformations,
category theory, type classes, net classes
Abstract
Abstract Petri Nets offer a unified approach to describing the structure and seman-
tics of different kinds of Petri nets. Category provides a common model for describing
phenomena found in multiple branches of mathematics and science. It acts as the foun-
dation for the theory of Abstract Petri Nets but also has applications in in functional
programming. This thesis explains categorical concepts and their relation to both func-
tional programming and the theory of Abstract Petri Nets. A software design for im-
plementing transformations of Petri nets based on these concepts will be presented.

Contents

1. Introduction 1
1.1. Motivation and Goals . 1
1.2. Structure of the Thesis . 3

2. Categorical	Foundations 4
2.1. Categories . 4
2.2. Duality . 6
2.3. Functors . 7
2.4. Free Functor . 7
2.5. Natural Transformations . 8
2.6. Products and Coproducts . 9
2.7. Adjoints . 12
2.8. Monads . 14

3. Functional	Programming	in	Scala 17
3.1. Functional Programming . 17
3.2. Referential Transparency and Pure Functions 17
3.3. Concepts in Scala . 18
3.4. Types . 19

3.4.1. Classes, Traits and Objects . 19
3.4.2. Companion Objects and Case Classes 21
3.4.3. Polymorphic Expressions . 22
3.4.4. Generic Types . 24
3.4.5. Function Types . 25
3.4.6. Algebraic Data Types and Pattern Matching 27
3.4.7. Higher Kinds . 29
3.4.8. Type Aliases and Type Members 30
3.4.9. Implicit Parameters . 33
3.4.10. Structural Types and Type Lambdas 38

3.5. Type classes . 40
3.6. Type Hierarchy . 42
3.7. The Category of Scala Types . 43

3.7.1. Products in Scala . 44
3.7.2. Coproducts in Scala . 44
3.7.3. Endofunctors in Scala . 45

iv

Contents

3.7.4. Natural Transformations in Scala 46

4. Abstract	Petri	Nets 48
4.1. Petri Nets . 48

4.1.1. Elementary Nets . 48
4.1.2. Place/Transition Nets . 50

4.2. Low-Level Abstract Petri Nets . 52
4.3. High-Level Petri Nets . 54

4.3.1. Typed Algebraic High-Level Nets 54
4.4. Transformation of Petri Nets . 56

4.4.1. Net Class Transformations . 57
4.4.2. Petri Net Transformations Based on Morphisms 58

5. Design	and	Implementation 60
5.1. Type Classes . 60

5.1.1. Type Classes as Evidence . 62
5.1.2. Net Structure as Data Type . 64

5.2. Categorical View of Data Structures . 64
5.3. Data Types . 70
5.4. Syntax Layer . 77

6. Conclusion	and	Prospects 80
6.1. Discussion . 80
6.2. Applicability to High-Level Nets . 81

A. Appendix 84
A.1. Sets and Classes . 84
A.2. Semigroups, Monoids and Groups . 84
A.3. Grothendieck Group . 85
A.4. Free Commutative Monoid . 85

Bibliography 87

v

1. Introduction

1.1. Motivation	and	Goals

Petri nets are used to model and analyze concurrent processes with a wide range of
applications in chemistry, business and computer science. Based on the original def-
inition there exist numerous variations of Petri nets reaching from low level nets like
elementary nets to various high level nets with typed, distinguishable tokens. Abstract
Petri nets define a mathematical model for uniformly describing the structure of dif-
ferent classes of Petri nets and transformations between them. When viewed from an
implementor’s perspective this enables a generic design as it is possible to abstract over
the elements describing structure and operations. When looking at the tools for model-
ing Petri nets it appears that most of them concentrate on graphical modeling and are
often limited in the types of Petri nets they support. These types of Petri nets are also in
many cases restricted to low level Petri nets, sometimes offering one type of high-level
Petri net. There also exist more extensive tools like CPN Tools that are not restricted
to graphical modeling but are also extensible via a programming interface. These are
by far more expressive than simple graphical editing tools but are still restricted to one
certain type of high-level nets. In the case of CPN Tools this is a special form of Col-
ored Petri nets incorporating a custom dialect of the programming language ML for
definition of behaviour.

Category theory is an abstract branch of mathematics that is used to examine ab-
stract properties of mathematical concepts. It offers a toolset for describing the general
abstract structures in mathematics. Category theory focusses on relations between el-
ements - called objects - instead of the elements themselves. It provides abstractions
that are useful in many branches of mathematics and science and defines a common lan-
guage when working across boundaries of these disciplines. In recent years category
theory has also gained importance in both functional programming and the theory of
Petri nets. Having a common foundation for modeling the problem domain and struc-
turing a program that implements the model can be a valuable asset. As the concept of

1

1. Introduction

functional programming is based on treating computations as the evaluation of mathe-
matical functions it is a good fit for implementing solutions to mathematical problems.

Scala is a multi-paradigm programming language for the Java Virtual Machine that
incorporates many features from functional as well as object oriented languages. It has
a very expressive type system that allows encoding much more information in types
than is possible in other languages. This has lead to efforts to port libraries that are
based on categorical concepts from the functional programming language Haskell to
Scala. Libraries like Scalaz1 allow expressing axioms in the type system and implement
programs that act as proofs for these axioms. Influences from other programming lan-
guages also lead to patterns to emulate a construct called type classes in the Scala lan-
guage. Type classes are a type level construct for implementing polymorphism that sep-
arates data types and operations. The use of type classes often results in more modular
and more extensible code. It also limits code duplication as in combination with other
Scala features a higher level of abstraction can be reached. Especially when modeling
mathematical concepts in type classes this also leads to a higher degree of reusability.

This thesis takes a code centric approach to modeling Petri nets opposed to the more
traditional graphical approach to modeling. In particular the goals of this thesis are
the following:

1. We show how Scala’s programming language features and its type system can be
used to model categorical concepts.

2. We analyze how the common foundation of both functional programming and
Abstract Petri Nets given by category theory can be leveraged to provide mean-
ingful abstractions usable for the implementation.

3. We inspect how transformations both between two net classes and inside one
class of Petri nets can be implemented.

To answer these questions, we perform an in-depth analysis of the Scala program-
ming language. We design and implement a softwares model for the given problem
domain and evaluate it in terms of usability and general applicability.

In summary, the contributions of this thesis can be summarized as follows:

• We analyze category theory, functional programming and Abstract Petri Nets as
well as the relationships between these disciplines.

1Documentation Available at http://code.google.com/p/scalaz/

2

http://code.google.com/p/scalaz/

1. Introduction

• We try to leverage the common underlying ideas of category theory to deliver
an abstraction applicable to multiple instantiations to multiple types of Abstract
Petri Nets.

• We design a framework for modeling and transforming Abstract Petri Nets and
evaluate the model in terms of applicability and extensibility.

1.2. Structure	of	the	Thesis

The thesis starts off by introducing the categorical concepts used in both the theory of
Abstract Petri Nets and functional programming. It continues by explaining fundamen-
tal concepts of functional programming along with the Scala programming language.
Advanced type system constructs of Scala that are used to implement features not pos-
sible in many other languages will be discussed in more detail. Petri nets will be intro-
duced by defining the properties of two distinct classes of Petri nets before the notion
of Abstract Petri Nets will be presented. Two different notions of transformation on
Petri nets will also be introduced in this section. The implementation part starts with
showing the relationship between the concepts involved and continues by implement-
ing data structures and operations. The thesis is closed by a discussion an evaluating
the applicability of the model concerning high-level Petri nets and gives some ideas
how extension to the model could be implemented for improved support of high-level
nets.

Due to the strong coherence of the fundamental theories involved and due to the
abstract nature of the problem it is inevitable to also include forward references.

3

2. Categorical	Foundations

Category theory is a branch of mathematics that exists since the 1940s. It is an effort to
use a convenient symbolism and common language to describe precisely many similar
phenomena. Additionally it provides the means to simultaneously investigate con-
structions with similar properties that occur in different fields of mathematics and re-
lated fields such as computer science and physics.

2.1. Categories

A category A consists of

• a class of objects (A, B, …),

• morphisms (also called arrows) between objects (f , g, …),

• for each object A an identity morphism 1A called the identity and

• a composition law for morphisms.

For each pair (A,B) of objects of a category A there is a set hom (A,B) whose mem-
bers are called A-morphisms from A to B. The sets hom (A,B) are pairwise disjoint
(Adamék et al., 2009, 3.1). The source of each morphism f : A −→ B is called domain,
denoted dom (f) = A, the target is called codomain denoted cod (f) = B.

Morphisms f, g are can be composed whenever cod (f) = dom (g) yielding a new
morphism h = g ◦ f with domain dom (h) = dom (f) and codomain cod (h) = cod (g).
Composition is associative, i.e. given any morphisms f : A −→ B, g : B −→ C and
h : C −→ D the equation

h ◦ (g ◦ f) = (h ◦ g) ◦ f

holds.
The identities are A-morphisms from an object A to itself and have to also act as

identities with respect to composition:

4

2. Categorical Foundations

1B ◦ f = f = f ◦ 1A.

Example 2.1.1. Set is the category whose objects are sets and the morphisms are func-
tions between the sets. The identity is the identity function and composition is given
by function composition.

Example 2.1.2. Every monoid (M, ·, e), i.e. a semigroup with unit (see Section A.2) can
be seen as category with the underlying set M as only object and

hom (M,M) =M, 1M = e, y ◦ x = y · x.

Example 2.1.3. The category of a functional programming language L consists of the
types of the programming language as objects and the computable functions as mor-
phisms. As in Example 2.1.1 the identity is given the identity function, composition is
given by the composition of functions.

A common way to represent objects and morphisms graphically are commutative di-
agrams. These are directed graphs with the objects as nodes and morphism as edges.
Commutative diagrams are not only used for visualization but also for proofs. The
technique used is often called diagram chasing as it is possible to follow the arrows in
the diagram to examine certain properties of the morphisms and their compositions.
Figure 2.1 shows a diagram with three objects A, B, and C and morphisms f , g and h
between them. Saying that this diagram commutes is equivalent to saying h = g ◦ f .

..
..A ..B

. ..C

.

f

.
h
. g

Figure 2.1.: Commutative diagram

Another commonly used notation for categories is the tuple notation. A category A
can be written as the quadruple A = (OA,homA, id, ◦) where OA denotes the objects
of the category, hom the hom-set, id the identity morphisms and ◦ the composition.

Category theory concentrates on inpecting the morphisms between objects instead
of focussing on the objects of a category.

5

2. Categorical Foundations

One very important kind of morphism is called an isomorphism which plays a central
role in category theory. A morphism f : A −→ B is called an isomorphism if there exists
a morphism g : B −→ A such that f ◦ g = 1B and g ◦ f = 1A.
g is then called the inverse of f and can also be written as f−1. If an isomorphism exists
between objects A and B we say A is isomorphic to B written A ∼= B.

Example 2.1.4. In Set isomorphisms are bijective functions between sets. All singleton
sets are isomorphic as there exists a unique, trivial morphism between any two of them.

Example 2.1.5. Every category with a set of morphisms is isomorphic to one in which
the objects are sets and the morphisms are functions (Awodey, 2010, Theorem 1.6). This
is in fact a very important theorem in the context of this thesis. Together with exam-
ple 2.1.3 this can be used to formally verify that the approach we take later is correct.

Due to the abstract nature of category theory the notion of equality is not of much
use in proofs or ideas in general. When examining properties of categories it is often
sufficient to check if these properties hold up to isomorphism. This means just that the
property does not neccesseraly hold for exactly the objects examined but for objects
isomorphic to them. A commonly used concept is uniqueness up to isomorphism which
says that a certain object or morphism may not be uniquely determined but all other
possible choices are isomorphic to it.

2.2. Duality

Duality is one important concept in category theory. Given any category A = (O,homA,

id, ◦) there exists a dual category Aop = (O, homAop , id, ◦op). This dual (or oppsoite)
category has the same objects and same identity morphisms. It also has the same mor-
phisms, except for their direction. Informally the dual category can be constructed by
reversing the arrows of the original category.

Example 2.2.1. Preordered classes can be considered as a category. The category A =

(X,≤) has as objects the elements of the underlying class X and a morphism between
any two objects for that the ordering relation holds. The dual category of this is Aop =

(X,≥).

For every property of an A-object X PA (X) we have an associated property Pop
A (X)

that holds in Aop.

6

2. Categorical Foundations

2.3. Functors

Functors can be viewed as structure preserving morphisms between categories. A func-
tor F : C −→ D is a mapping from category C into category D that assigns to each
C-object C a D-object F (C) and to each C-morphism f : C −→ C ′ a D-morphism
g : F (C) −→ F (C ′) in such a way that

• F preserves identities:

∀X ∈ C : F (1X) = 1F (X)

• F preserves composition:

∀f : X −→ Y, g : Y −→ Z ∈ C : F (g ◦ f) = F (g) ◦ F (f) .

A functor that maps a category to itself is called an endofunctor.

Example 2.3.1. The (covariant) power-set functor P : Set −→ Set sends each set A to
its powerset, i.e. the set of all subsets PA of A. For each subset X ⊂ A, Pf (X) is the
image f [X] of X under f .

Example 2.3.2. The Grothendieck group construction (see A.3) is a functor from the cat-
egory of commutative semigroups to the category Ab of abelian groups. A morphism
f : S −→ T induces a morphism K (f) : K (S) −→ K (T) which sends an element
(s+, s−) to an element (f (s+) , f (s−)).

2.4. Free	Functor

The free functor is a generalization of the concept of free constructs known from algebra.
These constructs include amongst others free monoids, free groups and free lattices. In
terms of category theory these can be expressed as constructs over concrete categories.

As an example we will inspect how the free monoid can be constructed in Set. For
any set A we can create the Kleene Closure of a given by

A∗ = {words over A}

7

2. Categorical Foundations

Together with the concatenation operation ∗, defined by w ∗w′ = ww′ and the empty
word ε as unit this set forms the free monoid. All elements ofA can be viewed as words
of length one, giving rise to a function i : A −→ A∗ defined as i (a) = a.

As every monoidN has an underlying set |N | and every monoid morphism f : N →
M has an underlying function |f | : |N | → |M | it can easily be seen that this is a functor.
The name of this functor is forgetful functor as it sends each object with a structure to
another object forgetting parts of this structure.

With this we can define the universal mapping property of the free monoid M (A)

over a set A.
Having a function i : A → |M (A)| and given any monoid N together with any

function f : A → |N | there exists a unique monoid homomorphism f̄ : M (A) → N

such that
∣∣f̄ ∣∣ ◦ i = f as in the following diagrams:

in Mon:
....M (A) ..N. f̄

in Set:

..
..|M (A)| ..|N |

..A .

.

∣∣f̄ ∣∣
.i .f

2.5. Natural	Transformations

For categories C, D and functors F,G : C −→ D a natural transformation ν : F −→ G

is a family of morphisms in D

(νC : FC −→ GC)C∈C

such that for every f : C −→ C ′ ∈ C the naturality condition

νC′ ◦ F (f) = G (f) ◦ νC

holds, i.e. the following diagram commutes:

8

2. Categorical Foundations

..
..FC ..GC

..FC ′ ..GC ′

.

νC

.Ff . Gf.
νC′

Figure 2.2.: The naturality square

A natural transformation whose components are isomorphisms is called a natural
isomorphism (Awodey, 2010, Lemma 7.11).

Example 2.5.1. Considering the free monoid M (X) on a set X we define a natural
transformation η : 1Set −→ UM denoted as the insertion of generators, i.e. the function
that for every set S takes every x ∈ S to itself considered as a word.

..
..X ..UM (X)

..Y ..UM (Y)

.

ηX

.f . UM (f).

ηY

This is natural because the homomorphismM (f) is completely determined by what
f does to the generator.

Natural transformations can also be viewed as morphisms between functors and in fact
there also exists a category Fun (C,D) with functors from C to D as objects and natu-
ral transformations as morphisms. Isomorphisms in this category are natural isomor-
phisms (Awodey, 2010, section 7.5).

2.6. Products	and	Coproducts

Products are a well known concept in many areas of mathematics. One example of
products are Cartesian products of sets. The Cartesian product of two sets A,B is a set
A×B of pairs given by

A×B = {(a, b) |a ∈ A, b ∈ B} .

There are so called coordinate projections π1, π2

9

2. Categorical Foundations

....A ..A×B ..B.π1 . π2

with

π1 (a, b) = a

π2 (a, b) = b.

In category theory this can be generalized to products. A product diagram for objects
A andB in a category C consists of an object P and morphisms p1 : P −→ A, p2 : P −→
B satisfying the universal mapping property that given any diagram of the shape

....A ..X ..B.x1 . x2

there exists a unique morphism u such that x1 = p1u and x2 = p2u, i.e. the diagram

..
. ..X .

..A ..P ..B

.x1 .u. x2.

p1

.

p2

commutes.
From this definition follows that products are unique up to isomorphism. Consider-

ing the diagram

..

. ..P .

..A ..Q ..B

. ..P .

.
p1

.
i

.
p2

.
q1

.
q2

.

j

.

p1

.

p2

it can easily be shown that P and Q are isomorphic by

10

2. Categorical Foundations

p1 ◦ j ◦ i = p1 (2.1)
p2 ◦ j ◦ i = p2 (2.2)

j ◦ i = 1P . (2.3)

Binary products can also be defined as an functor × : C × C −→ C as described
in the diagram below. In order for this diagram to commute we define f × f ′ =

⟨f ◦ p1, f ′ ◦ p2⟩.

..
..A ..A×A′ ..A′

..B ..B ×B′ ..B′

.

p1

.

p2

.f × f ′.

q1

.

q2

.f . f ′

The dual of a product is called a coproduct. Following the informal way of “reversing
the arrows” to get to the dual definition leads to the following diagram

..
. ..Z .

..A ..Q ..B

.
i1

.f .
i2

. g.u

The morphisms i1 : A→ A+B and i2 : B → A+B are called injections. They are not
necessarily injective but are called this way as they can be used to lift values into the
coproduct. As coproducts are dual to products, for any product defined in a category
A, there exists a product in Aop.

Example 2.6.1. In Set the coproduct of sets A,B is the tagged union

A+B = {(a, 1) | a ∈ A} ∪ {(b, 2) | b ∈ B}

Given any two functions f, g as in

11

2. Categorical Foundations

..
. ..Z .

..A ..Q ..B

.
i1

.f .
i2

. g. [f, g]

we define

[f, g] (x, δ) =

{
f(x) δ = 1

g(x) δ = 2

2.7. Adjoints

Comparing the properties of two categories and inpecting their relation to each other
is often beneficial. Consider categories C and D and functors F and G between them:

....C ..D.F.
G

C and D are said to be isomorphic if the following conditions hold:

1C = GF

FG = 1D

As stated in the beginning of this section instead of proving that two objects are iden-
tical it is often sufficient to show that they are isomorphic. This leads to the weaker
definition of equivalence of categories. Categories C and D as given above are equiva-
lent if

1C ∼= GF

FG ∼= 1D.

One way to describe the difference to the situation when C and D were isomorphic is
to say that the identity natural transformations have been replaced with natural isomor-
phisms. Thus equivalence could be described as “isomorphism up to isomorphism”.

12

2. Categorical Foundations

An even more lenient way to describe the relation of to categories is called adjunction.
F ⊣ G (read “F is left adjoint to G”) means that there are two natural transformations

η : 1C =⇒ GF (called unit)
ε : FG =⇒ 1D (called counit)

satisfying the triangle identites, i.e. making the following diagram commute:

..
..F ..FGF

. ..F

.
1F

.

Fη

. εF ..
..G ..GFG

. ..G

.
1G

.

ηG

. Gε

Figure 2.3.: Triangle identities

While this definition provides us with tools (the natural transformations) it is not
immediately clear what their use is. Fortunately another definition makes this more
easily understandable.

An adjunction consists of functors

....F : C ..D : G

and a natural isomorphism

ϕ : homD (FC,D) ∼= homC (C,GD) : ψ.

The existence of the natural isomorphism can be interpreted in that for every mor-
phism t : FC −→ D in D there exists a unique morphism t : C −→ GD in C.

Unit and counit can be constructed via

ηC = ϕ (1FC)

εD = ψ (1GD) .

13

2. Categorical Foundations

Example 2.7.1. The free functor F is left adjoint to the forgetful functor U which can
be expressed as follows:

....Set ..Mon.F .
U

In this case the unit η sends an element a of a set A to a monoid structure in Mon
containing the word a of length one. The counit ε then maps each monoid structure
(A∗, ∗) to the underlying set of words A∗ in Set.

Concerning adjoint situations it is generally more interesting to inspect the relations
between the functors than the relations between the categories involved. In fact adjoint
situations may even arise between endofunctors as in the following example 2.7.2.

Example 2.7.2. The covariant power-set functor P is left adjoint to the identity functor
I , written P ⊣ I .

....Set ..Set.P.
I

As P sends each set to its power set the resulting object is again a set, thus clearly in
Set.

2.8. Monads

Monads are a construct to describe abstract algebras. A monad on a category C is
a triple (T, η, µ) consisting of an endofunctor T , and two natural transformations η :

1C → T and µ : T 2 → T satisfying the following diagrams:

..
..T 3 ..T 2

..T 2 ..T

.

µT

.Tµ . µ.

µ

..
..T ..T 2 ..T

. ..T .

.

Tη

.
1T

.

ηT

.
1T

.µ

Figure 2.4.: The monad laws

14

2. Categorical Foundations

leading to the two monad laws

µ ◦ µT = µ ◦ Tµ (associativity law)
µ ◦ ηT = 1 = µ ◦ Tη (unit law)

Given any adjoint situation C : F ⊣ G : D there is an associated monad (T, η, µ) with
T = G ◦ F .

The natural transformation η is called the unit of the monad, µ is called multiplication.
The unit enables us to lift objects into the context of the monad and the multiplication
can be used to flatten a nesting of functors. What is meant by flattening can differ
depending on the properties of the adjunction.

Example 2.8.1. The adjoint situation P ⊣ I from example 2.7.2 can be expressed as a
monad (T, η, µ) in the following way:

T : Set → Set T = P

ηX : X → P (X) ηX (x) = {x}

µX : P (P (X)) → P (X) µX (α) =
∪
α

Here the unit ηX constructs an element of P (X) by generating a set containing a
single element of X . The multiplication µ can be used to flatten a nested power set
structure by generating the union of all set elements.

The monad is valid as both monad laws are satisfied. The unit law holds as creating
a singleton set from a set and generating the union of all subsets yields the set itself,
as does wrapping each element of the set and generating the unit of these. For the
associativity law to hold it has to be shown that given a set x ∈ P (P (P (X))) we can
apply the multiplication twice to generate a set x′ ∈ P (X) and that this set is uniquely
determined no matter if we start by creating the union from the outermost level or the
innermost level, which can be expressed as the following equation∪∪

{α1, . . . , αn} =
(∪

α1

)
∪ . . . ∪

(∪
αn

)
As the union operator is associative the condition expressed by this equation clearly
holds.

Example 2.8.2. The adjoint situation F ⊣ U between free and forgetful functor has an
associated monad. Given words α, β, γ ∈ X∗

15

2. Categorical Foundations

α = α1 ∗ . . . ∗ αi

β = β1 ∗ . . . ∗ βj
γ = γ1 ∗ . . . ∗ γk

it is possible to generate a word x ∈ (X∗)∗ which is a word where the characters
themselves are words. The question that immediately arises is how the structure is gen-
erated just given the functor and natural transformations. Mapping a set to a monoid
structure lets us perform the actions of the monoid given as morphism in the cate-
gory Mon. In this case it is possible to generate the words of length one and using
the monoid operation to concatenate them. The forgetful functor can then be used to
forget about the monoid structure and map the results to the underlying set.

x = α ∗ β ∗ γ x ∈ (X∗)∗

µX(x) = α1 ∗ . . . ∗ αi ∗ β1 ∗ . . . ∗ βj ∗ γ1 ∗ . . . ∗ γk µX (x) ∈ X∗

It is immediately clear that the monad given by the adjunction F ⊣ U satisfies the
monad laws. The unit law holds as mapping each character of a word to a word of
length one and then concatenating the resulting words produces the word itself. Gen-
erating a one character word containing the wordw and applying the multiplication to
the resulting word also yields the word x. Also the associativity law is satisfied given
the fact that the concatenation operation itself is associative. For a nested structure gen-
erated by the free monoid the resulting word is the same no matter if the concatenation
is performed starting with the innermost words and concatenating these results or if
the multiplication is performed twice starting from the outermost word.

16

3. Functional	Programming	in	Scala

3.1. Functional	Programming

Today there are many definitions of what a functional programming language is. The
only property that is shared by all definitions is that functions are treated as first class
values in that language. In this thesis we will focus on the features outlined in (Hudak,
1989). We will also see that Scala does not necessarily enforce certain features stated
as a requirement for being a functional programming language in that definition but
encourages the programmer to satisfy them.

3.2. Referential	Transparency	and	Pure	Functions

An expression is said to be referentially transparent if it can be replaced by its value
without changing the behavior of the program. This implies also that referentially
transparent expressions may not cause side effects. Side effects include changing global
state in a program, changing a program’s control flow by for example throwing excep-
tions or performing input/output operations. Clearly all constants in a program are
referentially transparent. Variables that can be mutated are not referentially transpar-
ent as their value changes over time and thus it is impossible to replace all of their
occurrences with their respective value. For every external input the same is true as
the value of an expression reading from a source depends on the current contents of a
file or in the case of user input from what exactly the user enters.

Related to the concept of referential transparency is the notion of pure functions. A
function is said to be pure if it is referentially transparent for all referentially trans-
parent parameters. In practice this means that the output of a function is completely
determined by its input arguments. Problems arise when there are side effects that
cannot be avoided. Input and output of a program are side effects that actually make
a program do something useful. Additionally a library might be impure because it car-

17

3. Functional Programming in Scala

ries internal state. There are numerous techniques how a program can structured to
separate pure from impure code.

Monads are one elegant solution to this problem. We will see in Section 5.2that mon-
ads can be used to represent computations. In purely functional programming lan-
guages there are techniques for building a structure that represents an impure compu-
tation but that is constructed in a pure context. This structure then has to be evaluated
in an impure context to perform the unsafe operations. The type system of these lan-
guages can be used to clearly separate pure and import contexts.

Another solution are so called effect systems. These are mainly of interest in the context
of impure languages. A programmer can express the need for certain parts of the code
to be referentially transparent. The compiler will then use the effect tracking system
to ensure that these requirements are met. While being more complex, effect tracking
systems offer the ability to locally use impure code which can lead to a better overall
performance. An effect tracking system will ensure that the impure code does not affect
any global state in the program thus eliminating global side effects. The guaranteed
absence of side effects in parts of a program also enables compilers to perform more
aggressive optimizations.

Scala is an impure language and while it encourages the programmer to use concepts
from purely functional programming languages it does not enforce them. In Section 5.2
we will see that it is possible to implement monads in Scala. Nevertheless it is also up
to the implementor to guarantee the absence of side effects. Currently there are efforts
to implement a combined type-and-effect system in Scala (Lukas Rytz, 2012) but at the
time there is no possible way to enforce referential transparency.

3.3. Concepts	in	Scala

Scala combines features of object oriented languages with features known from func-
tional programming. It was designed as a scalable language in the sense that it should
be easily extensible by library code. Scala is an object-oriented or - more precisely
- a class-oriented programming language where inheritance is achieved by defining
classes of objects. Like in many functional languages, everything in Scala is an expres-
sion, for example even an if-then-else-statement yields a value.

Many of its features also aim to provide syntactical flexibility and extension points
for developers to integrate different concepts in a natural way. Examples for this kind
of integration are the actor libraries, various domain specific languages and also the

18

3. Functional Programming in Scala

type classes introduced in this thesis. The flexible syntax allows developers to make
the usage of code provided as library appear as if that code was implemented as a
language feature.

3.4. Types

3.4.1. Classes, Traits	and	Objects

Classes in Scala are similar to classes in Java with some important differences. Besides
the syntactic differences the main difference is that a class has exactly one primary
constructor that has to be called by all secondary constructors.

A sample class definition in Scala could look like the one given in Listing 1.

class A(x: Int, val y: Int) {

def this() = this(0, 0)

val sum = x + y

def addSum(q: Int) = q + sum

println(”Initialized”)
}

Listing 1: A simple Scala class

Constructor parameters can be made class members by prefixing them with the key-
word val for an unmodifiable or var for a modifiable value member. All statements
inside the body of a class are promoted to the constructor of the class.

There are two different types of fields in Scala. Member values are immutable fields
that cannot be changed after they are initialized and are declared using the val key-
word. Variables declared using the keyword var on the other hand can be mutated
after initialization.

Methods in Scala are introduced with the keyword def. The head of a method can
either be followed by a block or by an equals-sign ’assigning’ the method body to the
head of the method. In the first case the method’s return type will be Unit which is sim-
ilar to Java’s void type. An important conceptual distinction has to be made between
these types. A method declaring void as a return type does not return a value at all.

19

3. Functional Programming in Scala

This is opposed to Scala’s concept of treating everything as an expression. Like many
functional programming languages, Scala thus defines the Unit data type of which ex-
actly one instance, namely () exists. When the method is declared by assigning a body
to it the right hand side can be an arbitrary expression. The methods return type can
be defined by adding a type ascription to the method’s head. A type ascription is not
necessary though if the type of the expression on the right can be determined by the
compiler. Scala supports type inference, which means that in many cases the compiler
is able to type an expression correctly without the programmer needing to supply any
type information. Methods in Scala usually do not explicitly return a value unless it is
needed, for example when type inference is impossible or the inferred type is to nar-
row.

In contrast to Java, Scala supports multiple parameter lists for a method. This is one
important feature that lets the programmer implement methods which when invoked
are visually similar to control structures.

Like Java classes, Scala classes can be marked abstract by using the keyword abstract.
Abstract members are introduced only as declaration of the member without assign-
ment of a value or body in case of methods. In contrast to other languages the abstract

keyword is not used for member declaration.
Multiple inheritance in Scala is supported via traits. Traits are similar to interfaces

but they may also contain implementations of methods or value members. Traits can
be composed using the with keyword.

Both traits and classes can specify a self-type to express a dependency on another type
being part of the resulting type. Technically specifying a self type is done by typing the
self reference of a type. This self reference is just an identifier at the beginning of a
type’s body followed by the characters => and is used to define an alias for the value
identified by this. A self type is then defined as a type ascription on the self type. It is
common to use the identifiers this or self for the self reference but any name can be
used. A trait or class with a self type declaration may only be instantiated if the types
are mixed in. This can either be done by explicitly creating a subtype that either that
includes the required type in a with-clause or by dynamically mixing in required traits
upon instance creation. The first method is shown in class C in Listing 2, the second
method is used at the initialization of the value x. Trait E shows another use case for
self references by making the outer instance accessible inside the traits body via the
name outer.

20

3. Functional Programming in Scala

trait A { def foo: Int }

trait B { this: A =>
def bar = foo + 1

}

class C extends A with B { def foo = 0 }

trait D { def foo = 2 }

val x = new A with B with D

trait E { outer: A with B =>
class Innner { inner =>

val foo = 23
def bar = outer.foo + inner.foo

}
}

Listing 2: Self types

Scala is completely object oriented and does not have a notion of static members. As
a replacement for these Scala has singleton objects. Singleton objects are declared using
the keyword object and the compiler will automatically generate the code necessary
to implement the singleton pattern correctly. Being real instances singleton objects can
extend classes and traits. Static members defined in Java code can be used without
restrictions in Scala.
object Util extends SomeTraitOrClass {

val prefix = ”x.y.z”

def add(x: Int, y: Int) = x+y
}

Listing 3: A singleton object

3.4.2. Companion	Objects	and	Case	Classes

A special case of objects are companion objects. A companion object for a class is an
object with the same name as the class, specified in the same compilation unit. Com-

21

3. Functional Programming in Scala

panion objects share the scope of the class and thus can access private members of the
class and the class (called companion class) can access private members of the compan-
ion object. They are often used for defining constants or utility and factory methods
for classes.

As classes are often used for defining record types, Scala has a special construct called
case classes for facilitating the definition of immutable record types. When a class dec-
laration is prefixed with the keyword case the compiler will generate additional code
for this class. The first difference to regular classes is that all constructor arguments are
stored as fields in the class and public accessors are generated. The compiler generates
toString, equals and hashCode methods based on the costructor parameters and also
a method called copy that can be used to create a modified version of the instance. In
addition, a companion object defining an apply method for creating instances and an
unapply method that is used for pattern matching is automatically generated. Listing 4
shows a definition of a case class and an example use. The keyword new is not necessary
when creating an instance as the call to Person(...) is dispatched to the apply-method
of the companion object. The second assignment shows the use of the generated copy-
method. This method supplies default values for all of its parameters. Scala supports
named arguments which means that the parameters can be given in any order when
prefixed with their names and the = sign. These two features combined allow the use
of the copy-method in the listing.

case class Person(lastName: String, firstName: String, age: Int)

val peter = Person(”Lustig”, ”Peter”, 75)
val petra = peter.copy(firstName = ”Petra”, age = 73)

Listing 4: Case classes

3.4.3. Polymorphic	Expressions

Polymorphism allows handling of different data types using a uniform interface. In
this subsection we will inspect three different kinds of polymorpisms in programming
languages, namely subtype polymorphism, parametric polymorphism and ad-hoc polymor-
phism. While the first two kinds of polymorphism should be familiar to the reader the
latter is not that commonly known.

Java, until version 1.5 had only one user controllable feature for implementing poly-
morphism, namely subtype polymorphism. In 1996 Martin Odersky and Philip Wadler

22

3. Functional Programming in Scala

initiated a project called Pizza that had the goal to bring some of the features of func-
tional programming to the Java Platform. About one year later Gilad Bracha and David
Stoutamire approached them and expressed their interest in the language’s support for
parametric polymorphism and they decided to start another project called GJ. Most of the
work on parameteric polymorphism done in Pizza was incorporated into GJ which
later became the generics in Java 1.5. Pizza also included some other concepts from
functional programming and parts of that became the foundation of what we know as
Scala today.

Subtype	Polymorphism

Subtype polymorphism is commonly used in object oriented programming languages.
Formally it defines substitution rules via an ordering relation <: on the types used in
the programming language. Any term of type T can be safely substituted by a term of
type S whenever S <: T holds. So S is a subtype of T . Behaviour of subtypes can be
adjusted by overriding methods in the subtype. In most object oriented programming
languages like Java and Scala the technique used to implement subtype polymorphism
is called dynamic dispatch. As a compiler may not be able to determine the method
being called statically it generates code that dispatches the method call dynamically at
runtime.

Parametric	Polymorphism

As mentioned parametric polymorphism is commonly used in statically typed, func-
tional programming languages. It enables the programmer to define generic functions
and generic datatypes by adding type parameters to their respective declarations. Generic
functions and datatypes can in general handle all types that are supplied as arguments.
The code being executed is generally shared for all types and this is in contrast with ad-
hoc polymorhism. While that code is shared the integration of parametric polymorphism
with subtype polymorphism is difficult. One significant problem arising immediately
is the loss of the ability to decide whether or not the rules for substitutionability hold.
For example, given types A <: B and a type constructor type F[X] no assumptions
about the relation between F[A] and F[B] can be made. When there is no relation the
type parameter X of type F[X] is said to be invariant. We can actually express the fact
that for all types A <: B either F[A] <: F[B] or F[B] <: F[A] holds. In the first case
our type parameter would need to be covariant as in type F[+X] and contravariant in the

23

3. Functional Programming in Scala

second case, denoted type F[-X] respectively. The +/- signs are called variance annota-
tions and a type parameter is invariant when they are omitted. This feature is one of
the more important differences between the Java and the Scala type system. Java only
allows the variance annotations at call site as a generic wildcard, while Scala supports
variance annotations at definition site.

Ad-hoc	Polymorphism

Ad-hoc polymorphism is a kind of polymorphism where the code executed when eval-
uating an expression depends on the types of the parameters.

Many readers will have already been exposed to it when writing code in a language
like Java and will know it as method overloading in that context. This allows the def-
inition of multiple methods with the same name differing only in the types of their
parameters. The compiler will then choose the correct implementation. The Java com-
piler also has builtin support for ad-hoc polymorphism regarding the operators defined
in the Java Language. As an example we choose the operator + as its behaviour is over-
riden in multiple ways. Considering the expression a + b, its type clearly depends on
the types of a and b. If one of both is of type String, the expression will also be typed
as String and string concatenation will be performed. When both arguments are nu-
meric types the compiler will generate code that performs the addition specific to that
primitive type. In case both arguments are of different type it will also generate code
to convert one of the two parameters to the other as defined by the rules for numeric
widening in the Java Specification. All of this behaviour is built into the compiler and
thus not extensible by a user in application code.

There are other languages though that do not support subtype polymorphism but
that support ad-hoc polymorphism. Clearly these languages must provide other means
of defining operations for types. One possible solution are type classes that are intro-
duced later in Section 3.5.

3.4.4. Generic	Types

Generic types, as already known from Java are used to implement parameteric poly-
morphism in Scala. Classes, traits and methods may be parameterized by type. Type
parameters are enclosed in square brackets and may be restricted by defining bounds
on the parameters. In contrast to Java, Scala supports variance annotations at defini-
tion site of a type parameter. An upper bound U on a type parameter A, written A <:

24

3. Functional Programming in Scala

U restricts the type parameter to subtypes of U, a lower bound L as in A >: L to super-
types of L accordingly. When no variance annotations are present on a type parameter
this type parameter is treated as invariant. Whenever there are two types T[A], T[B] no
subtype relation between the two types exists, unless of course both A and B are the
same type. Covariance is expressed by prefixing the type parameter with a +-sign, con-
travariance by prefixing it with a --sign. If a type parameter is marked as covariant as
in class T[+X] this means that for types A, B with A <: B also T[A] <: T[B] holds. A
type parameter that is declared contravariant like in class V[-X] results in V[A] being a
supertype of V[B] (written V[A] >: V[B]) whenever A <: B. Type parameters for classes
and methods can be further restricted by view bounds or context bounds introduced in
section3.4.9.

3.4.5. Function	Types

Being a functional programming language, Scala of course supports function types.
As a Scala program is compiled to Java bytecode and the Java Virtual Machine has no
notion of function types these are represented as Java classes at runtime. The Scala stan-
dard library defines traits Function1 to Function22 where the number at the end of the
name represents the arity of the function. The limit of 22 parameters is arbitrarily cho-
sen as it is sufficient for most use cases and has no technical reasons. Every FunctionN

trait is parameterized by type with one type parameter for the return type and one type
parameter for every argument type. Each of these traits defines a method called apply

with given arity.
Given two types A and B the type of a function from A to B is denoted by A => B. n-

ary function types are denoted by enclosing the argument types in parentheses as in
the type (A,B,C,C) => A. The compiler will resolve these types to the corresponding
FunctionN trait.

Defining functions can be done in several ways in Scala. Listing 5 shows some com-
monly used styles. The first four functions defined in that example simple convert
an integer value into a string. The first two examples use type ascription to tell the
compiler the type of the parameters of the function. A function literal can be given by
specifying a parameter list followed by the symbols => and the body of the function. If
the body consists of more than one expression the function literal has to be enclosed
in braces as is done for functions f and h. A commonly used abbreviation is to use an
underscore in a function literal that marks the position where the parameter shall be
inserted.

25

3. Functional Programming in Scala

val f: Int => String = { x => x.toString }
val g: Int => String = _.toString
val h = { (x: Int) => x.toString }
val k = (_:Int).toString

val add = (x: Int, y: Int) => x + y
val addThree = add(3, _:Int)

Listing 5: Different definitions of functions

Scala distinguishes between methods and functions. Methods are no first class ob-
jects so that they cannot be stored in a field or passed to a function as a parameter.
There is however a way of converting methods into functions called η-expansion. List-
ing 6 shows two examples of η-expansions by converting the method foo to a function
and storing it as a value. This conversion can be triggered in multiple ways. An ex-
pression referencing a method will be converted to a function whenever the compiler
has sufficient information about the expressions expected type. The value f in the ex-
ample code shows exactly this case. In the case where there is not enough information
about the expected type it is possible to trigger η-expansion by suffixing the expression
referencing the method with an underscore as it is done in the initialization of value g.

def foo(x: Int) = x.toString
val f: Int => String = foo
val g = foo _

Listing 6: η-expansion

In Scala, values that are not functions but define a method called apply can be used
as if they were functions. The compiler will translate the function application to a call
to the value’s apply method.
object NotAFunction {

def apply(x: Int) = x + 1
}

println(NotAFunction(12)) // prints 13

Listing 7: Apply method

26

3. Functional Programming in Scala

3.4.6. Algebraic	Data	Types	and	Pattern	Matching

Algebraic data types are composite types that are commonly found in functional pro-
gramming languages. As already mentioned most functional programming languages
do not support subtype polymorphism. For practical reasons of course they have to of-
fer the ability to define custom data types.

Algebraic data types fall into two categories, namely product types and sum types.
Product types can be used to describe record types or tuples. Sum types offer the abil-
ity to define a type given by multiple data constructors. The name stems from the fact
that a sum type can be viewed as a tagged union of types. It is important to stress out
that in most languages supporting algebraic data types as a language feature there is
no subtype relation required between these types.

Scala has no direct support for algebraic data types but its features can be used to
emulate them. Product types can simply be implemented as case classes. Sum types
can be implemented using sealed class hierarchies.
Example 3.4.1. A linked list can be expressed as an algebraic data type. The list has
two data constructors: the empty list as a constant and the Cons data constructor that
takes an element and a list to construct a new list. With this recursive definition the
data type list is fully described. This definition can also be considered as sum type: a
list is either the empty list or a non-empty list, written List(A) = Nil + (A× List(A)).
trait List[+A]
case object Nil extends List[Nothing]
case class Cons[A](head: A, tail: List[A]) extends List

Listing 8: List data type in Scala

Algebraic data types are not directly supported by Scala but can be emulated using
case classes for implementing product types and subtype polymorphism for imple-
menting sum types. Pattern matching is a useful feature when working with algebraic
data types. Visually similar to switch-case statement it appears similar but has some
important differences. The clauses inside a pattern matching expression are not re-
stricted to constants but can also contain so called extractor patterns. It is possible to
declare variables inside an extractor pattern that will be bound to the corresponding
values when the expression matches the supplied type. Examples of the syntax of pat-
tern matching in Scala is given in Listing 3.4.2. Following the rule that everything is an
expression, a match-case-block returns a value.

27

3. Functional Programming in Scala

Example 3.4.2. Using the list data type as defined in example 3.4.1 we can define several
operations on that data type.

def length[A](list: List[A]): Int = list match {

case Nil => 0

case Cons(_, tail) => 1 + length(tail)

}

The length is computed by recursively traversing the list. Two cases are contained in
the match-clause: the case handling the empty list that yields the value 0 and the case
handling a nonempty list. In this case 1 is added to the length of the list’s tail. This
case is written using an extractor pattern binding the list’s tail to the name tail and
ignoring the value of the list’s head by providing an underscore in the pattern.

def headOption[A](list: List[A]): Option[A] = list match {

case Nil => None

case Cons(x, _) => Some(x)

}

The method headOption provides a safe way of accessing the list’s head. Some and None

are the only subtypes of a trait called Option that represents an optional result. Pattern
matching is performed to check if the argument is a non-empty list and in that case
the value Some(x) is returned, where x is bound to the list’s head. The value None is
returned in case an empty list is passed.

Example 3.4.3. A binary tree with values in the branches can be defined as an abstract
data type in the following way:

sealed trait Tree[+A]

case object Empty extends Tree[Nothing]

case class Branch[+A](value: A, left: Tree[A], right: Tree[A]) extends Tree[A]

The keyword sealed ensures that the class hierarchy can only be extended in the file
that defines the trait. There are two data constructors defined for the tree, the constant
Empty that describes the empty tree and the case class Branch, a ternary tuple containing
the value and two child nodes.

The variance annotation on type parameter A tells us that for any two types T, U for
which T <: U holds, also holds Tree[T] <: Tree[U] (see Subsection 3.4.3).

28

3. Functional Programming in Scala

def traverse[A,B](t: Tree[A], f: A => B) = {

def exec(t: Tree[A], ys: List[B]): List[B] = t match {

case Empty => ys

case Branch(x, l, r) =>

exec(r, exec(l, f(x) :: ys))

}

exec(t, Nil).reverse

}

It should be noted that the examples involving recursive definitions used in this chap-
ter are for illustrative purposes only. As recursive invocation of the methods uses linear
stack space this implementations will fail for highly nested data structures. The meth-
ods can alternatively be given as a tail-recursive definition, which means that the last
call inside the method is a call to itself. In this case an optimization technique called
tail-call-elimination can be used to transform the code into an equivalent loop.

3.4.7. Higher	Kinds

Higher kinds are another example of type constructs that do not exist in languages
like Java. For a better understanding of the idea behind this concept we first need to
introduce the notion of type constructors. A type constructor can be used to generate
a new type by applying type parameters to it, just like a value constructor is used to
construct a new value by applying it to value parameters Moors et al. (2008).

The most prominent example for type constructors are generic collection types. For
example a generic list type that is parameterized by the type of its elements is not a type
by itself but a type constructor. So List[String] is a type while List is the type constructor.

Scala supports higher kinded type parameters, meaning that type parameters can be
type constructors. An example application is shown in Listing 9. A type constructor
can be specified as a type parameter by chaging the parameters’ occurrences to an un-
derscore. Type constructors of arbitrary arity are supported, for example unary type
constructors are written F[_], binary type constructors F[_,_] and so on. Inside the
body of the parameterized type the type constructor can be applied to a given type as
can be seen in the method lift in the example. It is also possible to restrict the type con-
structors further by adding variance annotations like for example M[-_,+_] expresses

29

3. Functional Programming in Scala

that the first parameter of the type constructor is contravariant while the second is co-
variant.
trait Lift[F[_]] {

def lift[A](x: A): F[A]
}

object LiftList extends Lift[List] {
def lift[A](x: A) = x :: Nil

}

Listing 9: Higher kinded type parameters

3.4.8. Type	Aliases	and	Type	Members

In Scala objects may not only have value members but in addition to that they can have
type members. Just like value members can be used to store a reference to a value, or
for primitive types the value itself, type members reference another type. Also like
value members, they can either be abstract or concrete. Abstract type members can
be overridden in subtypes . But once a type member is fixed it cannot be overridden
anymore. Implementing an abstract type declaration is either done by aliasing another
type (Listing 10, trait X and object B) or by adding a concrete type named exactly like
the type member to the extending type (Listing 10, trait Baz and object A).

It seems confusing at first that there is no subtype relation between the traits declar-
ing the type member and those defining the type. This example is chosen on purpose
to point out that such a relation does not have to exist. The declaration of the type
member only expresses that it can be set somewhere in a subtype but does not spec-
ify where. Type members can be fixed by any type that is mixed in and may even be
defined in a structural refinement (see Section 3.4.10).

Scala adds the notion of path-dependent-types, which are types associated to a value
that also depend on the selection path of that value. The implications are best explained
using the simple example from Listing 11

The listing defines a class A with a nested case class Value and a mutable field value

of that type. Two instances called a and b are created. The code in the next line that
tries to set b’s value into a will cause the compiler to raise a type error. This is due to
the fact that inner classes in Scala are path-dependent types.

30

3. Functional Programming in Scala

trait Foo {
type Bar
val theValue: Bar

}

trait X {
type Bar = Int

}

trait Baz {
case class Bar(i: Int)

}

object A extends Foo with Baz {
override val theValue = Bar(12)

}

object B extends Foo with X {
override val theValue = 0

}

Listing 10: Abstract type members

Paths are not types themselves but can be part of named types. In the example code
a is not only of type A but also carries more specific type information, namely the type
Program.a.type. The most specific type of the value b is Program.b.type. Inner types
of the instances are members of these types respectively leading to the aforementioned
type error. In the code above the field a.value is of type Program.a.Value.type while
b.value is of type Progran.b.Value.type. Even if both values a and b are initialized to
exactly the same instance the compiler will refuse to typecheck the assignment opera-
tion unless a type ascription is added to the declaration of the referencing value like for
example val b: a.type = a. In that case b would be of both mentioned path dependent
types.

The last line of that listing gives an example of a type projection to reference the type
disregarding the selection path.

As type declarations and type members can be equipped with a type parameter
clause they can be used for type level programming. Listing 12 shows some example
uses of this feature.

31

3. Functional Programming in Scala

class A {
case class Value(x: Int)
var value: Value = Value(0)

}

object Program {
val a = new A
val b: a.type = a

a.value = b.value // type error!

val x: A#Value = a.value
}

Listing 11: Path dependent types

object Example {

type paM[A,B] = Map[B,A]

type StringMap[A] = Map[String,A]

type IdObjectMap[A <: AnyRef] = Map[A,A]

type Id[A] = A
}

Listing 12: Type aliases

The first declaration shows that it is possible to swap the type parameters of a higher
kind using type aliases. This is useful when working with higher kinds and the kind
to be used as a type parameter only differs in order of the type parameters.

The second declaration StringMap shows an example of partial application of type
parameters. A unary type constructor is created by fixing the first type parameter of
the binary type constructor Map to String.

The type alias IdObjectMap restricts the type parameter to be a subtype of AnyRef, thus
referring to a class type. The type parameter is then inserted for both type parameters
of the Map type constructor, thus yielding a type that describes a map that maps objects
of a certain type to objects of the same type.

32

3. Functional Programming in Scala

The declaration of type alias Id deserves some special attention. This declaration is
called the identity type constructor which for any type just ‘constructs’ the type itself.
We will later see that by using higher kinds we are able to lift the level of abstraction in
parts of our code. By having the identity type constructor some of the operations that
normally require a higher kind as a type parameter can be performed to simple types
by introducing the identity type constructor.

3.4.9. Implicit	Parameters

A very powerful concept used in the Scala Language are implicit parameters. As their
name suggests these are parameters that are not explicitly passed by the programmer
but inserted implicitly by the compiler. For this to work the value of the parameter has
to be fully determined by its type. A parameter can be marked implicit by prefixing it
with the keyword implicit. The implicit parameters always have to be specified in the
last parameter list of a function and the list may also only contain implicit parameters.
Members labeled with the keyword implicit are eligible for being passed as an implicit
parameter by the compiler.

Types of implicit parameters can also include any type in the surrounding scope.
This includes type parameters of the method and type members or type parameters of
the enclosing classes.

Implicit parameters are made available to the compiler by importing them directly
or by placing them in the implicit scope of their type. The implicit scope of a type T
consists of all companion objects that are a part of type T . The parts of a type T are
defined as

• for a compound type T1with . . . Tn the union of all types T1, . . . , Tn and T itself

• for a parameterized type S[T1, . . . , Tn] the union of the types S, T1, . . . Tn

• for a singleton type p.type the parts of the type p

• for a type projection S#U the parts of S and T itself

• in all other cases just T itself

Implicit values defined at call site of a method or explicitly imported always have
higher priority. Whenever there are multiple eligible arguments in scope the most spe-
cific one with regards to overloading resolution is chosen (Odersky, 2011, 6.26.3). If the

33

3. Functional Programming in Scala

compiler cannot uniquely determine an implicit argument to a function it will generate
an error.

Generally it is considered good style to declare the implicit values or methods inside
of a companion object. The priority of an implicit value can be lowered by declaring
it in a super type of the companion object. This enables library users to override the
values in their own code without having to resort to importing the implicit declarations
explicitly.

Implicit	Conversions	and	View	Bounds

Unary functions as implicit parameters can be used by the Scala compiler to implement
implicit conversions. Implicit conversions are used by the compiler in some cases when
an expression does not typecheck. Given an expression e of type A there are two cases
that trigger the compiler to try to implicitly convert this expression. The first case is
when the expression is used in an incompatible way, for example when the expression
is passed as a parameter to a function that takes a parameter of a different type B would
cause the compiler to check whether an implicit conversion A => B is present. The
second case is when a selection to a member is performed, like in e.x where type A

does not define a member x. This is the more complex case as in this case the compiler
has to check all implicit conversions from A to any other type to determine whether
there is exactly one type defining a member x. When there are multiple conversions to
different types defining that member the compiler generates an error.

Implicit conversions can either be defined as an implicit value of the function type
or even as a method. The latter also enableds the programmer to define generic con-
versions by parameterizing the method on parameter or return type. It is also possible
for methods that provide implicit conversions to take implicit parameters.

View bounds offer an abbreviated way of expressing a dependency to an implicit
conversion. Instead of adding an implicit parameter of type A => B it is possible to add
view bounds to the parameter list. This kind of dependency would be expressed by
restricting the type parameter A with the view bound A <% B. Internally the compiler
translates this to the exact same signature as before.

The implicit conversions are of course eligible for being passed as an implicit param-
eter inside the methods body. Furthermore the compiler will try to apply the implicit
conversion if inside the body a selection of a member not present on the value is per-
formed or if the value is used in a way that is not compatible to the parameter’s type.

34

3. Functional Programming in Scala

Example 3.4.4. Given the method declaration of foo as follows

def foo[A <% String](x: A, y: A) = x concat y

the compiler will translate the method to a method with the following signature

def foo[A](x: A, y: A)(implicit evidence$1: A => String): String

As no information about type A is available to the compiler it cannot find a method
named concatdefined on that type. It will apply the conversion to String as that defines
a method with that name. This method only accepts an instance of type String as an
argument, leading to the conversion to be also performed for parameter y. The body
of the method foo would thus be rewritten to

evidence$1(x).concat(evidence$1(y))

One main use of implicit conversions is to add methods to existing types. Technically
these methods are not added to the type itself but defined in a wrapper class. The
wrapper class holds a reference to the value that is converted from and implements the
method that shall be added. This technique is also known as enrich-my-library pattern.
The automatic conversion that is triggered by selection of undefined members will then
create the wrapper class and invoke the method on it. It is however not possible to
overwrite or even overload methods using this pattern as the compiler will not attempt
to convert a value when the selection refers to an existing member. An example adding
the method square to the Int type can be seen in Listing 13.

class RichInt(x: Int) {
def square = x*x

}

implicit def enrich(x: Int) = new RichInt(x)

println(12.square) // prints 144

Listing 13: Enrich-my-library pattern

Type	Classes	and	Context	Bounds

Implicit parameters can be used to model the concept of type classes known from other
programming languages, Haskell being the most prominent example. Type classes are

35

3. Functional Programming in Scala

a technique for seperating data type definitions from operations. A type class can be
considered a set of operations defined for a certain data type.

For a simple example we will explain the concept of a monoid modelled as a type
class. A monoid M = (A, ·, e) on a set A with the binary operation · : A → A and unit
e ∈ A can be modelled as the trait in Listing 14. The set A is represented by the type
parameter A, unit and operation are defined as methods. This trait is the definition of
the type class but to make use of it we will need an instance for a fixed data type. One
possible instance would be the monoid for integer addition (Z,+, 0) as implemented
by the class IntAdditionMonoid.

trait Monoid[A] {
def unit: A
def append(x: A, y: A): A

}

object Monoid {
implicit def intAddition: Monoid[Int] = new Monoid[Int] {

def unit = 0
def append(x: Int, y: Int) = x + y

}
}

Listing 14: Monoid type class and instance for integer addition

In this example the method for supplying values eligible as implicit parameters that
was introduced in 3.4.9. By adding the declaration of intAddition to the companion
object Monoid it is globally available to the compiler.

We encounter one problem with the aproach of using type classes for implementing
monoid operations right here. The type signature of the Monoid type class instance
contains only the underlying set of the monoid, i.e. Int representing the set of integers
Z but no information about the operation of the monoid. Adding this information to
the datatype can be done in several ways - the easiest being to introduce a wrapper
class. An example can be seen in Listing 15 where a new type IntMultiplication is
introduced for integer multiplication.

36

3. Functional Programming in Scala

case class IntMultiplication(value: Int)

object Monoid {
// ...
implicit def intMultiplication: Monoid[IntMultiplication] =

new Monoid[IntMultiplication] {
def unit = 1
def append(x: IntMultiplication, y: IntMultiplication) =

IntMultiplication(x.value + y.value)
}

}

Listing 15: Monoid type class for integer multiplication

For expressing the dependency to the type class instances we simply declare them
as implicit parameters to the methods that use the type class. The methods can also
abstract over the actual type of the parameter now. This is exactly the type of ad-hoc
polymorphism that was mentioned before. An example usage can be seen in Listing 16.
The method foldLeft used in this example takes two arguments: a start value and a
binary function. This function will be called for every element, passing the result of the
previous computation and that element of the list. As the name of the method already
suggests it is used to compute the sum of the given list using the Monoid instance.

implicit def sum[A](xs: List[A])(implicit m: Monoid[A]) =
list.foldLeft(m.unit) { (a,b) => m.append(a, b) }

Listing 16: Usage of the monoid type class

Context bounds offer an alternative syntax for declaring a dependency on an implicit
parameter of a type that results from a type constructor application. Context bounds
are mainly used when the implicit parameter is not used directly but only needed as
an implicit parameter for other method invocations. To add a context bound to a type
parameter the parameter is suffixed with a colon and the name of a unary type con-
structor. The following Listing 17 shows an example use.

def sums[A : Monoid](xs: List[List[A]]) = xs map sum

Listing 17: Context bounds

37

3. Functional Programming in Scala

The compiler translates this code into a method taking an implicit parameter of type
Monoid[A]. As it is eligible for being passed as an implicit parameter inside the method
it will be passed to the method sum from Listing 16.

Context bounds can also be used for expressing the intent of the implicit parameter
to be used as a type class. Scala’s standard library defines the method implicitly[A]

that takes an implicit parameter of type A and simply returns that value. This method
can be used to access implicit parameters inside a method with context bounds.

3.4.10. Structural	Types	and	Type	Lambdas

Although Scala mainly uses nominal typing it has limited support for structural typing
as well. Structural types are type refinements describing the structure of a type.

type HasActMethod = {

def act(): Unit

}

type HasCloseMethod = {

def close(): Unit

}

def safeAct(ac: HasActMethod with HasCloseMethod) =

try { ac.act() } finally { ac.close() }

Using instances of structural types in programs should generally be avoided. Struc-
tural types are only available at compile time. Programs performing runtime checks
against structural types can be compiled emitting a warning but will fail at runtime.
Secondly from a performance perspective as member access is implemented using re-
flection and thus is always slower than using static calls.

Structural types have other uses in Scala though. As the refinement part of a struc-
tural type can be arbitrarily complex they are useful when programming in the type
system. The techniques used are the same that we have seen in part 3.4.8 but offer more
flexibility. A common use case is to implement partial application of type parameters
using structural types as shown in Listing 18.

38

3. Functional Programming in Scala

type FixOne[M[_,_],A] = {
type Apply[B] = M[A,B]
type Swap[B] = M[B,A]

}

trait X[F[_]]

class A extends X[FixOne[Map,String]#Apply]
class B[M[_,_]] extends X[FixOne[M,Int]#Swap]

Listing 18: Partial application of types using structural types

Nested type declarations inside of the structural refinement can refer to the abstract
types parameter and perform partial application and switch parameters just as is possi-
ble when using type declarations. The difference is though, that structural types can be
used to define libraries on a type level as the nested types can be viewed as something
similar to functions but on a type level.

In the example class A extends the trait X with the type parameter F set to type con-
structor Map with the first type parameter set to String, the second one unset yielding
a unary type constructor. This could also be implemented using type declarations, the
difference being only that one declaration has to be added for each application. The
second example is more interesting as it shows functionality not possible with just type
declarations. Here a higher kinded type is ‘passed‘ to the FixOne type and at the same
time the parameters are swapped in that type. The result is that B extends X with the
parameter F set to the provided type constructor M with the first parameter unset and
the second one fixed to the type Int.

This concept was even extended to implement a feature called type lambdas. The idea
behind type lambdas is that for partial application it should not be necessary to have
to define a type declaration for every combination of types possible. Type lambdas
define an anonymous structural type that declares the type member representing the
kind. This type member is by convention often called λ. A type lambda can be passed
directly as a type parameter and can refer to all types defined in the current scope
including the type parameters given to a class. An example application setting can be
seen in Listing 19. Here the type lambda is used to fix the first parameter of the Map

type constructor to the class’ parameter T yielding a unary type constructor.

39

3. Functional Programming in Scala

trait Functor[F[_]] {
def map[A,B](t: F[A], f: A => B): F[B]

}

class MapFunctor[T] extends Functor[({type λ[α] = Map[T,α]})#λ] {
def map[A,B](t: Map[T,A], f: A => B) = t.mapValues(f)

}

Listing 19: Type Lambda

3.5. Type	classes

Type classes are a type level construct that supports implementing ad-hoc polymor-
phism. For the reader to see why type classes are useful, we first need to take a look
at the concept of ad-hoc polymorhism. This kind of polymorphism allows a value
to exhibit different behaviour when viewed at different types. In object oriented pro-
gramming languages this can be achieved by overloading methods, which is done by
providing multiple versions of the method with different type signatures. At compile
time the correct method will be resolved and thus the correct implementation for that
type is chosen.

There are some problems connected to this way of implementing ad-hoc polymor-
phism though. In impure object oriented languages the concept of encapsulation is
used to limit the effects to operations inside a type’s scope. Data hiding is another
paradigm that is applied to narrow the scope of data mutations even further. These to
concepts lead to the fact that it is determined at design time whether or not the data
type is extensible.

In addition to these problems there is a technical problem concerning overloading
resolution when combined with parametric polymorphism. Many languages perform
type erasure at compile time which means that the compiled code does not retain all
information of the programs type parameters. When a method signature contains a
parameterized type this information will be replaced by a more generic type in the
compiled code.

An alternative way of implementing ad-hoc polymorphism are the so called type
classes. In programming languages like for example Haskell they are the default con-
struct used for implementing ad-hoc polymorphism. To understand how they work

40

3. Functional Programming in Scala

without an introduction to Haskell we will just look at the concepts used in the lan-
guage around type classes.

We can avoid the problems of ad-hoc polymorphism mentioned before by only allow-
ing immutable data structures and by keeping the definitions of operations separate
from the data type definitions. A type class is basically a set of operations supported
for a given type. In Scala this we can define something like this as a parameterized
trait. All operations that are supported by this type class are just methods declared
inside the trait. The operations can then be implemented in an object.
case class Point(x: Int, y: Int)

trait Eq[A] {
def equal(x: A, y: A): Boolean

}

object EqPoint extends Eq[Point] {
def equal(p: Point, q: Point) = (p.x == q.x) && (p.y == q.y)

}

Listing 20: A type class for defining equality

With just this declaration and instance definition we have yet no way for the compiler
to resolve the correct type class for a given type and no means of expressing a depen-
dency on a type class. For this we use the implicits feature discussed in Section 3.4.9.
We can make a type class instance available to the compiler by creating an implicit def-
inition. A good place for this is the companion object of either the data type or the trait
defining our type class. As implicit definitions are searched in the companion objects
of all parts of the type of the implicit parameter this is sufficient. Should the need arise
to override the behaviour of a certain type class the implicit definition that should be
used instead can be explicitly imported. Another common use case is to define opera-
tions for data types that the programmer has no control over. Type class instances can
then be defined anywhere in the code and explicitly imported in the current scope. An
explicitly imported type class instance always has higher priority than one defined in
the implicit scope of a type and thus may also be used to override the operations in the
current context.

41

3. Functional Programming in Scala

// Companion object for point
object Point {

implicit def eq: Eq[Point] = EqPoint
}

object EqTests {
def testSymmetric[A](a: A, b: A)(implicit eq: Eq[A]) =

!(eq.equal(a, b) ^ eq.equal(b, b))

def testIdentity[A : Eq](a: A) = implicitly[Eq[A]].equal(a, a)
}

Listing 21: Implicit definition of type class instance

3.6. Type	Hierarchy

Not only with regards to the next chapter it is reasonable to further inspect Scala’s
type hierarchy. As Scala tries to unify the type system it adds a common supertype
for objects and primitive values. This super type is called Any and has two subtypes
AnyVal and AnyRef. AnyVal is a common super type to all primitive values, namely Int,
Short, Long, Float, Double, Char and Unit. It does not define any operations however
as there is simply no meaningful way to do so. AnyRef is the common supertype of all
class types.

In terms of type theory the type Any as super type of all of Scala’s types is called the
top type, denoted ⊤. We have already seen the type Nothing in the definition of the List

data type in example 3.4.1. This type is called bottom type, denoted ⊥ and is a subtype
of all types in the Scala type system. It is impossible to create an instance of this type
as it simply is not possible to define an instance that satisfies all conditions implied by
that.

A type is called inhabited whenever a value of that type exists, so in other words we
say that the type Nothing is uninhabited. Every singleton Scala object has a singleton
type associated that is singly inhabited, as exactly one instance of this type exists.
Nothing is not the only bottom type that exists. Scala also defines the type Null that is

the bottom type of the AnyRef type hierarchy. This type is singly inhabited by the value
null which leads to a problem when working with class types in Scala. Every function
that defines a class type as return type can by the substitution rules just return null.

42

3. Functional Programming in Scala

In theory this turns every total function into a partial function as this escape route is
offered. For this reason it is reasonable to avoid using the value null in programs.

The reasons for having an uninhabited bottom type might not be clear to the reader
immediately so we will have a look at some examples of proper uses of the type Nothing.
Every expression that does not terminate normally can be typed as Nothing. This ap-
plies to both expressions that upon evaluation throw an exception as well as expres-
sions that do not return at all. The use case that we have seen before is using Nothing as
an argument for a covariant type parameter for a type describing the empty structure.
Being a subtype of every other type it follows that this empty structure is a subtype of
every type describing that structure. Operations for accessing members of this struc-
ture can never terminate and thus has the return type Nothing.

def forever(f: () => Any): Nothing = {
f()
forever(f)

}

def err(msg: String): Nothing = throw new IllegalArgumentException(msg)

trait Seq[+A] { def head: A }
object EmptySeq extends Seq[Nothing] {

def head = throw new UnsupportedOperationException(”Head on empty seq”)
}

Listing 22: Bottom type as return value

3.7. The	Category	of	Scala	Types

As mentioned in example 2.1.3 a functional programming language gives rise to a cate-
gory. In this section we will inspect the properties of the category Scala with the Scala
types as objects and the pure functions as morphisms.

• Objects: data types of the Scala language

• Morphisms: pure functions expressable in the Scala Language

• Composition: function composition

• Identity: the identity function returning its argument

43

3. Functional Programming in Scala

As functions and composition are just a model of mathematical functions and math-
ematical function composition the required laws of associativity and unit hold.

3.7.1. Products	in	Scala

The category Scala has n-ary products. More exactly there are even two ways of defin-
ing products. First, there are the record types which clearly are products. The classes
Tuple1 through Tuple22 define generic products of given arity. Custom products can
be defined as case classes. In fact all case classes in Scala extend the trait Product that
makes this even more clear.

There is another construct in Scala that can be used to construct products, namely sub-
typing combined with multiple inheritance. Given traitsA,B,C the productA×B×C
can be defined by creating a new type that extends these traits. This way of defining
products will not be considered in this thesis as it introduces various problems.

3.7.2. Coproducts	in	Scala

Categorical coproducts are often implemented so called sum types in programming
languages. Scala offers no direct support for sum types but it is possible to use its
object oriented features for implementing something similar. The standard technique
to implement coproducts is to create a common super trait for all choices. This trait
is marked as sealed so that it cannot be extended outside the file that defines the type
itself.
sealed trait Tree[+A]
case class Node[A](left: Tree[A], right: Tree[A]) Tree[A]
case class Leaf[A](value: A) extends Tree[A]

Listing 23: Tree data type as sealed class hierarchy

There is a generalized form for binary coproducts of the shape A+B in Scala’s stan-
dard library called Either[+A,+B]. Either is implemented as shown above with the two
subtypes Left[+A,+B] and Right[+A,+B] that represent the both possible cases. Each of
this classes is implemented as a single parameter case class that can store a value. This
type is often used as a result of computations that might fail and provide an error mes-
sage or a value describing the reason for the failure. By convention a value wrapped
in Left describes the case of failure while a value inside a Right represents the result of
the computation.

44

3. Functional Programming in Scala

Another commonly needed type is representable by the coproduct 1 + A. This type,
called Option[+A] in Scala describes an optional value. Using it as a return type for a
function clearly marks it as a partial function.

3.7.3. Endofunctors	in	Scala

Both covariant and contravariant endofunctors can be expressed in the Scala Language.
For defining a functor we need a mapping from objects to objects, i.e. from Scala

types to Scala types and a mapping from morphisms to morphisms, i.e. Scala functions
to Scala functions.

According to the definition of a functor given in Section 2.3 a mapping of objects
F (A) −→ F (B) . This can be expressed in Scala by using a type constructor and
applying it to the given types. The actual action that will be performed is given a
function f : A → B we create the function F (f) : F (A) −→ F (B). So we have to
provide a function or method with the signature (A => B) => (F[A] => F[B]). For
practical reasons we rewrite this to a method and define that in the trait Functor given
in Listing 24. In addition to implementing this interface the implementor has to ensure
that functor laws hold.
trait Functor[F[_]] {

def fmap[A,B](fa: F[A], f: A => B): F[B]
}

trait ContravariantFunctor[F[_]] {
def comap[A,B](fa: F[A], f: B => A): F[B]

}

Listing 24: Functors as traits

It is not immediately clear from the code how the methods implement mapping of
morphisms. The signature (A => B) => (F[A] => F[B]) describes a function that
given a function A => B returns a function F[A] => F[B]. This has some performance
implications as every call to this function would lead to a new function object being
allocated. The signature defined in the Functor trait above is isomorphic to this signa-
ture though. The techniques used to transform the signature are called currying and
uncurrying respectively. Currying transforms a function taking multiple arguments
as in (A×B) → C into a chain of functions taking one argument each - in this case
A→ B → C. Uncurrying is the reverse transformation.

45

3. Functional Programming in Scala

We can define the following isomorphic representations of the given siganture:

(A −→ B) −→ (F (A) −→ F (B))

≡ (A −→ B) −→ F (A) −→ F (B)

≡ ((A −→ B)× F (A)) −→ F (B)

In the second line currying was applied to the function on the right hand side of the
signature. In the third line uncurrying is applied to the first two functions in the chain.
After changing the order of the arguments this signature is identical to the signature
given in the code example.

Having defined the interface we will now have a look at possible implementations.
Most collection types can be treated as a functor. In fact the data type Set models the
power-set functor P from example 2.7.2.

Example 3.7.1. The type constructor List as most collection type constructors has a co-
variant functor associated with it. The implementation of fmap will in this case generate
a new list by applying the given function to each element of the source list. Applying it
to the identity function will build the same list thus mapping it to the identity function
for the given list type. It also preserves composition as building an intermediate list
by applying each element to the first function before building the result list by apply-
ing the second function yields the same result. This obviously satisfies both required
functor laws.

3.7.4. Natural	Transformations	in	Scala

Section 2.5 states two different definitions of natural transformations. For the imple-
mentation in Scala we will treat them as a family of morphisms between the objects
constructed by a functor. The functors kinds are fixed for a natural transformation and
thus can be added as type parameters to a trait. We need to be able to universally quan-
tify over the type parameter passed to the type constructor described by these kinds.
This means nothing more that the method implementing the natural transformation
has a type parameter.

46

3. Functional Programming in Scala

trait Natural[F[_],G[_]] {
def apply[A](fa: F[A]): F[A]

}

Listing 25: Natural transformations in Scala

Example 3.7.2. Considering all sequence types in Scala, like for example List, Vector
and Array there exists a natural isomorphism between each two of them. This is because
the structure represented by each of the implementations just refers to a sequence of
elements.

Example 3.7.3. Lifting a value inside a functor is a natural transformation from the iden-
tity functor to the concrete functor. Given the identity type constructor type Id[A] = A

it is possible to define an instance of this type class that wraps the element given in a
data structure like a list, a set or for example in Some to create an Option instance from
the value.

47

4. Abstract	Petri	Nets

4.1. Petri	Nets

Petri nets offer both a mathematical model as well as a graphical model for describ-
ing and analyzing processes. The graphical representation of A Petri net is a directed,
bipartite graph. The nodes represent either transitions, denoted as squares or places,
denoted as circles. Based on the original model that is now known as elementary nets
there are various extensions. This section will introduce two the concrete instances of
Petri nets and their respective algebraic representation.

4.1.1. Elementary	Nets

Generally an elementary net is defined as a triple N = (P, T, F) with

• the set of places P

• the set of transitions T

• F ⊆ (P × T) ∪ (T × P) called the flow relation

The set P of places and the set T of transitions are disjoint. Every element x ∈ P ∪ T
has an associated pre-domain •x and post-domain x•. Graphically the pre domain
denotes the nodes from which there is an incoming connection, the post domain the
nodes to which there is an outgoing arc respectively. For every set of elements X ∈
{P, T} there exist sets

•X =
∪
x∈X

•x and X• =
∪
x∈X

x•

For each elementary netN a markingM ⊆ P can be given. A transition t ∈ T is called
enabled under the marking M , written M [t⟩ if •t ⊆ M and t• ∩M = ∅. The follower
marking M ′ that results from firing t, denoted M [t⟩M ′ is defined as M ′ = (M\•t)∪ t•.

48

4. Abstract Petri Nets

Petri nets also allow parallel firing of multiple transitions. A set U ⊆ T of transitions
is enabled if •U ⊆M and U• ∩M = ∅.

An alternative definition of an elementary net in universal algebraic representation
is given by N = (P, T, pre, post), where

• the set of places P

• the set of transitions T

• the function pre : T → P (P), which describes the pre-domain of the transitions

• the function post : T → P (P), which describes the post-domain of the transitions

This definition does not explicitly include the pre and post domain of places. It is an
isomorphic representation as the flow relation can be reconstructed by

F =
∪
t∈T

{(p, t) | p ∈ pre (t)} ∪ {(t, p) | p ∈ post (t)}

Conversely the pre and post domain can be extracted from the flow relation in the
following way:

pre (t) = {p | (p, t) ∈ F}

post (t) = {p | (t, p) ∈ F}

Example 4.1.1. The elementary net N in Figure 4.1 can be described as follows:

T = {t1}

P = {p1, p2, p3, p4, p5, p6}

pre (t1) = {p1, p2, p3}

post (t1) = {p4, p5, p6}

m = {p1, p2, p3}

The transition t1 is enabled under markingmwith follower markingm′ = {p4, p5, p6},
as in m [t1⟩m′.

49

4. Abstract Petri Nets

...
t1

...p1 ...

p2

...

p3

..

p4

.. p5..

p6

..
t1

.. p1..

p2

..

p3

...

p4

... p5...

p6

. m [t1⟩m′

Figure 4.1.: A firing rule for an Elementary net

The class of elementary nets together with elementary net morphisms form a cate-
gory. Given elementary nets Ni = (Pi, Ti, prei, posti) , i ∈ {1, 2} an elementary net
morphism f = (fP , fT) : N1 → N2 is a pair of functions fT : T1 → T2, fP : P1 → P2,
such that the following diagram commutes:

..
..T1 ..P (P1)

..T2 ..P (P2)

.

pre1

.
post1

.
pre1

.

post1

.fT . P (fP)

The category EN = (OEN,homEN, ◦EN, idN) is given by

• OEN = {N | N is an elementary net}, the class of elementary nets

• homEN the family of sets of elementary net morphisms with elements

homEN (N1, N2) = {f : N1 → N2 | f is an elementary net morphism}

• the composition ◦EN defined as

∀f : N1 → N2, g : N2 → N3 : (g ◦EN f) (x) = g (f (x))

• the identity idN = (idP , idT), defined componentwise on P and T for an elemen-
tary net N = (P, T, pre, post)

4.1.2. Place/Transition	Nets

Place/transition nets are an extension of elementary nets in that they allow multiple
tokens to be present in a place and add weights to the arcs. The arc weights denote

50

4. Abstract Petri Nets

the minimal number of tokens that have to be present on the connected place in the
pre-domain for the transition to be enabled. When a transition is fired the respective
number of tokens is removed from the places in the pre-domain. The weights on the
outgoing arcs denote how many tokens will be placed in the connected place in a firing
step. Another view at the relation between elementary and place/transition nets is that
elementary nets are a special case of place/transition nets where the arc weights are
always one.

A place/transition net is given by N = (P, T, pre, post) consisting of

• the set of places P

• the set of transitions T

• the function pre : T → P⊕, which describes the pre-domain of the transitions

• the function post : T → P⊕, which describes the post-domain of the transitions

where P⊕ denotes the free commutative monoid over the set P .
As for elementary nets morphisms between netsNi (Pi, Ti, prei, posti) , i ∈ {1, 2} are

defined as a pair of functions (fP , fT) with fP : P1 → P2 and fT : T1 → T2 such that
the following diagram commutes:

..
..T1 ..P⊕

1

..T2 ..P⊕
2

.

pre1

.
post1

.
pre1

.

post1

.fT . f⊕
P

The obvious difference to the definition of elementary nets is that every occurrence
of the power set functor P is replaced with the free commutative monoid.

Example 4.1.2. Consider the place/transition net N = (P, T, pre, post) given in Fig-
ure 4.2 with two markings m0, m1.

51

4. Abstract Petri Nets

....p1 ..
t1

..

p2

....

p3

..
t2

...
p4

. 1.
2

.

1

.
2

.

3

. 1.

1

..
p1

..
t1

....

p2

.....

p3

..
t2

... p4. 1.
2

.

1

.
2

.

3

. 1.

1

. m0 [t1⟩m1

Figure 4.2.: A place/transition net

This net is described by

T = {t1, t2} P = {p1, p2, p3, p4}

pre (t1) = p1 pre (t2) = 2p2 + 3p3

post (t1) = 2p2 + p3 post (t2) = p1 + p4

and the markings

m0 = p1 + 2p3 + p4 m1 = 2p2 + 3p3 + p4

4.2. Low-Level	Abstract	Petri	Nets

Abstract Petri Nets(Padberg, 1996) are an effort to provide a unified view at different
kinds of Petri nets. Abstract Petri Nets are an effort to provide a uniform approach
to Petri nets. The notion of Abstract Petri Nets offers a universal description of the
concepts and structures present in the theory of Petri nets. Results achieved on the
conceptual level of Abstract Petri Nets can be instantiated on many kinds of net classes.
The algebraic descriptions of both kinds of nets presented in the last section shared
some resemblance and this section will illustrate how this relates to Abstract Petri Nets.
This section will summarize the findings in the area of Abstract Petri Nets related to
low-level net classes.

The structure of a net is determined by an adjoint situation Sets : F ⊣ G : Struct.
The endofunctor Net = G ◦F : Set → Set resulting from the composition of both func-
tors is called net structure functor. Furthermore the category Struct, called category of
structure is restricted to being a subcategory of the category CSGroup of commutative
semigroups.

A low-level Abstract Petri Net is N = (P, T, pre, post) is given as

52

4. Abstract Petri Nets

• the set of places P ,

• the set of transitions T ,

• the function pre : T → Net (P) called precondition and

• the function post : T → Net (P) called postcondition.

Every morphism f : T → G◦F (P) has a unique extension f̄ : F (P) → F (T). Given
this it is possible to define marking, enabling and firing:

• The marking of an Abstract Petri net is given by m ∈ F (P).

• A transition vector is defined by v ∈ F ({t}).

• v ∈ F ({t}) is enabled under m ∈ F (P) if there exists a unique extension m̄ ∈
F (P) such that m = m+ pre (v).

• A follower marking m′ resulting from firing v under m is given as m′ = m +

post (v).

Example 4.2.1. Given Struct = PSet and the adjunction F ⊣ G as P ⊣ I where P is
the power set functor as in Example 2.3.1 and I denotes the identity functor. The net
structure functor is given as Net = I ◦ P = P leading to the definitions of elementary
nets as

....E = (T ..P). pre.
post

This definition of elementary nets is referred to as unsafe elementary nets as this defi-
nition does not account for tokens in the post-domain. Contextual elementary nets solve
this problem by defining the net structure as Pd ⊣ Id. Pd is the power set functor with
distinct union that defines the union of a two sets as empty when they are not disjoint.
This makes it impossible to assign two tokens to the same place in the post-domain.

Example 4.2.2. Place/transition nets as defined in Subsection 4.1.2 can be expressed
in terms of Abstract Petri Nets. Let Struct = CMon, the category of commutative
monoids together with the adjunction Set : (_)⊕ ⊣ U : CMon, where (_)⊕ is the
functor that sends every set X to the free commutative monoid (see A.4). X⊕ and U

denotes the forgetful functor assigning each structure to its underlying set.

53

4. Abstract Petri Nets

4.3. High-Level	Petri	Nets

High-level Petri nets are an enhancement to low-level Petri nets in that they add struc-
ture to the tokens. They can add the notion of types and provide the means to express
the enabling of a transition dependent on the tokens in its pre-domain. Two examples
of high-level Petri nets are algebraic high-level nets ((Ramin and Kolagari, 2002)) and
coloured Petri nets ((Jensen, 1991)). Coloured Petri nets define colour sets that act as a
type for the tokens. The programming language ML is used to encode specifications
in coloured Petri nets. In this section we will give an overview of algebraic high-level
nets that take a similar approach but base it on algebraic specifications.

4.3.1. Typed	Algebraic	High-Level	Nets

A typed algebraic high-level net N = (SPEC,P, T, pre, post, cond, type,A) is given by

1. SPEC = (S,OP,E,X), an algebraic specification with equations E and a family
of variables X over the signature (S,OP),

2. a set of places P ,

3. a set of transition T ,

4. the pre-domain of the transitions pre : T → (TOP (X)⊗ P)⊕,

5. the post-domain of the transitions post : T → (TOP (X)⊗ P)⊕,

6. a function cond : Pfin (Eqns (S,OP,X)), assigning to each transition t ∈ T a
finite set cond (t) of equations over the signature (S,OP) with a family of sets of
variables X ,

7. a function type : P → S, assigning to each place p ∈ P a sort type (p) ∈ S, and

8. a SPEC-algebra A =
(
(As)s∈S , (fA)f∈OP

)
.

TOP (X) is the set of terms with variables X .
Given a typed algebraic high-level net (Ramin and Kolagari, 2002)

N = (SPEC,P, T, pre, post, cond, type,A) ,

54

4. Abstract Petri Nets

a marking of N is an element of

PV =

((⊎
s∈S

As

)
⊗ P

)⊕

with
((⊎

s∈S
As

)
⊗ P

)
=
{
(a, p) | a ∈ Atype(p), p ∈ P

} and ⊎
s∈S

is the disjoint union.
Firing a transition t is only possible when its related variables are assigned in a way

that the conditions with respect to t are satisfied. This is expressed in the consistent
transition agreements. The set of consistent transition agreements is defined as

CT =

{
(t, asg) | t ∈ T, asg : V ar (t) →

⊎
s∈S

AS

}
,

such that the equations cond (t) are satisfied by data elements in ⊎s∈SAS in the assign-
ment asg. These transition assignments are used to define functions that provide the
data items consumed in the pre-domain and produced in the post domain.

Example 4.3.1. The algebraic high-level shown in Figure 4.3 (Ramin and Kolagari, 2002)
models a reader-writer net with an arbitrary set of reading and writing processes. The
specification RW − SPEC, set of variables X and algebra A are given as

RW − SPEC = sorts : nat, process, type

opns : succ : nat→ nat

0 :→ nat

w :→ type

r :→ type

ptype : process→ type

X = {n : nat, p : process}

A = (N,N× {rs, wr} , {rs, wr} , succA, 0A, wA, rA)

55

4. Abstract Petri Nets

with

succA (x) = x+ 1

rA := rs

wA := wr

0A := 0 ∈ N

ptypeA =

{
rs p = (n, rs) ,

wr else.

...
process

.
Enter

..

nat

.

Exc

..

process

.

Writing

..

process

.

Reading

.

WBeg

.

ptype(p) = w
n = 0

.

RBeg

.

ptype(p) = r

.

WEnd

..

REnd

..

p

.

p

.

n

.

p

.

p

.

n

.

succ(n)

.

p

.

0

.

p

.

succ(n)

.

n

.

p

.

p

Figure 4.3.: Reader-writer net

Algebraic high-level nets together with algebraic high-level net morphisms form the
category AHL.

4.4. Transformation	of	Petri	Nets

In this section we will introduce two distinct notions of transformations possible on
Petri nets.

56

4. Abstract Petri Nets

4.4.1. Net	Class	Transformations

Every net class gives rise to a category. Transformations between net classes can be
expressed as functors.

..PT.

EN

. AHL.

EAHL

.

WeightEN

.

CausalityPT

.

WeightEAHL

.

CausalityAHL

.

DataEN

.

SkeletonEAHL

. DataEN.
SkeletonAHL

Figure 4.4.: Functors between categories of net classes

One possible view at the relation between categories EN and PT was that every ele-
mentary net is a place/transition net with arc weights of one. This relation is expressed
as the functor WeightEN that is defined as follows:

Given an elementary net N = (PN , TN , preN , postN), WeightEN (N) = N ′ is defined
as the place/transition net N ′ = (PN ′ , TN ′ , preN ′postN ′) with

• PN ′ = PN ,

• TN ′ = TN ,

• preN ′ (t) =
⊕

p∈preN (t)

p, t ∈ TN ′ , and

• postN ′ (t) =
⊕

p∈postN (t)

p, t ∈ TN ′ .

The mapping of an elementary net morphism f = (fP , fT) : N1 → N2 between elemen-
tary netsN1, N2, to a place/transition net morphism f ′ is given byWeightEN (f) = f ′ :

WeightEN (N1) →WeightEN (N2) with

f ′P (p) = fP (p) for all p ∈ PN ′
1

f ′T (t) = fT (t) for all t ∈ TN ′
1 .

57

4. Abstract Petri Nets

The functor CausalityPT : PT → EN is defined in the opposite direction. Given a
place/transition netN = (PN , TN , pren, postn) the elementary netN ′ = CausalityPT (N)

is given by N ′ = (PN ′ , TN ′ , preN ′ , postN ′) with

• PN ′ = PN ,

• TN ′ = TN ,

• preN ′ (t) = {p ∈ PN ′ | p ≤ preN (t)} , t ∈ TN ′ , and

• postN ′ (t) = {p ∈ PN ′ | p ≤ postN (t)} , t ∈ TN ′ .

While both functors WeightEN and CausalityPN are defined between categories EN
and PT with opposite direction it is important to note that there is no adjoint situation
involving both functors.

The functors describing transformations involving the high-level net classes will not
be discussed in detail and are just mentioned for the sake of completeness. The category
EAHL of elementary algebraic high-level nets was not introduced in this thesis. It can
be considered the high-level equivalent of elementary nets in that the net structure is
given by the powerset functor instead of the free commutative monoid as for algebraic
high-level nets and place/transition nets. The functors DataEN and DataPT assign a
single data type to all of the tokens to transform a low-level net into a high-level net.
The functors in the opposite direction - SkeletonEAHL and SkeletonAHL - discard data
types, operations and equations thus transforming a high-level net into a low-level net.
The functorsWeightEAHL andCausalityAHL represent the high-level equivalents of the
functors introduced in this subsection.

4.4.2. Petri	Net	Transformations	Based	on	Morphisms

In this subsection we will inspect the transformations of Petri nets inside a net class.
While there exist more advanced approaches to transformations of Abstract Petri Nets
like rule based refinement (Padberg, 1996), this thesis will take a more basic approach
in using the net morphisms to construct new nets. We will present a representation of
the net morphisms that is more easily transferable to functional programming and can
act as a foundation for implementing more advanced transformation rule systems on
top of it.

The problems with the algebraic representation in Section 4.2 becomes obvious when
some of the possible transformations of Petri nets are defined in terms of morphisms.

58

4. Abstract Petri Nets

As a morphism is defined as a pair of functions (fP , fT) that maps one place to one
place and one transition to one transition it is not possible to derive a function on this
to delete places or transitions from a net or to insert places or transitions into a net. The
mathematical definition for this is sound because the absence of a morphism is valid.

For the morphisms to be applied in a constructive way we define the morphism as a
bijective map on the power sets of the places and transitions.

f̃P : P (P1) → P (P2)

Then transformations can then be expressed in the following way:

f̃ ({p}) =∅ deletion of place p ∈ P1

f̃ (∅) = {p, q, r} insertion of places p, q, r ∈ P2

f̃ ({p, q}) = {r} multiple places p, q ∈ P1 to one place r ∈ P2

f̃ ({p}) = {q} one place p ∈ P1 to one place q ∈ P2

f̃ ({p}) = {q, r} one place p ∈ P1 to several places q, r ∈ P2

The nonexistence of a morphism is expressed by the equations that include the empty
set by assigning the empty domain or codomain respectively. The practical use of this
approach is still limited as for an evaluation of the function requires generation of all
2n subsets for a set of length n. Avoiding the generation of the subsets can be achieved
by associating the images of the sets to the elements of the sets.

gX : X → P (Y) gX (x) = {α ∈ P (X) | x ∈ α}

f̃ ′X : X → P (Y) f̃ ′X (x) =
∪

α∈gX(x)

f̃X (α)

Given these functions together with a set α0 that represents the elements inserted it is
possible to implement transformations of Petri nets that support deletion and addition
of places purely based on morphisms.

59

5. Design	and	Implementation

5.1. Type	Classes

In this section we model our software library using type classes. Some of the type
classes that will be used in our model have already been mentioned in the examples in
previous chapters but we will reiterate them here to also point out their respective use
in the design. Most of the type classes and their instances are already implemented in
a Scala Library called Scalaz. Scalaz is heavily inspired by Haskell and the type classes
present in its standard library. It also includes some concepts that are beyond the scope
of this thesis and as such this chapter will provide a simplified view on the type classes.

We have seen the definition of the Functor type class in Section 3.7.3. As mentioned
in that section the implementor of a Functor instance has to make sure that the laws for
functors hold for the implementation provided.

Example 5.1.1. The identity endofunctor can be implemented as a type class instance.
The type part sending each object to itself can be expressed as the identity type construc-
tor described in 3.7.3. As any morphisms is also mapped to itself the implementation
of fmap will just apply the supplied function to the given value parameter. Proving that
the functor laws hold is trivial as composition is effectively unchanged and thus just
follows the general rules.

object IdFunctor extends Functor[({type λ[α]=α})#λ] {
def fmap[A,B](a: A, f: A => B) = f(a)

}

Listing 26: Identity functor in Scala

In 3.7.4 we have seen how we can define type classes for natural transformations.
One of the most commonly used natural transformation is a natural transformation of
the shape 1 =⇒ F where F represents some higher kinded type. In fact it is so common

60

5. Design and Implementation

that many type class libraries provide a distinguished type class for that called pure or
sometimes also point.
trait Pure[F[_]] {

def pure[A](a: A): F[A]
}

Listing 27: Pure type class

Another commonly used type class is the Flatten type class. Technically this refers to
a natural transformation T 2 =⇒ T just like the monad multiplication in Section 2.8.

trait Flatten[F[_]] {

def flatten[A](tt: F[F[A]]): F[A]

}

In Section 2.8 we have seen that some additional properties of adjoint situations can
be expressed by the fact that every adjunction has a monad associated with it. A monad
(T, η, µ) can also be expressed as a type class. For any kind T[_] for which type class
instances of types Functor[T], Flatten[T] and Point[T] exist we have all it takes to
define the monad operations. As computing resources are limited the problem with
this approach is building an entire structure in memory just for flattening it afterwards.
To avoid this we will also provide a type class for an operation called monadic binding
named Bind and express the monad laws in the following way(Wadler, 1992, 2.10):

f(a)==bind(pure(a), f) ∀a, f

a==bind(a, x => pure(x)) ∀a

bind(a, x => bind(f(x), g))==bind(bind(a, f), g) ∀a, f, g

As all operations required by the monad type class are already defined in other
type classes we can write a generic method constructing a monad instance for a given
higher kinded type. We express the dependencies on other type classes as context
bounds which the compiler will transform into an implicit parameter declaration for
the method. The flatten operation can be expressed by means of the bind operation
and the bind operation can be implemented using a Functor instance and the flatten

operation. This leads to two possible factory methods for a monad instance inside of
the Monad companion object.

61

5. Design and Implementation

def fromFunctorPureBind[T[_] : Functor : Pure : Bind]: Monad[T] =
new Monad[T] {

val pureInstance: Pure[T] = implicitly
val functorInstance: Functor[T] = implicitly
val bindInstance: Bind[T] = implicitly

def fmap[A,B](t: T[A], f: A => B) = functorInstance.fmap(t, f)
def pure[A](a: A) = pureInstance.pure(a)
def bind[A,B](t: T[A], f: A => T[B]) = bindInstance.bind(t, f)
def flatten[A](t: T[T[A]]) = bind(t, identity)

}

def fromFunctorPureFlatten[T[_] : Functor : Pure : Flatten] : Monad[T] =
new Monad[T] {

val pureInstance: Pure[T] = implicitly
val functorInstance: Functor[T] = implicitly
val flattenInstance: Flatten[T] = implicitly

def fmap[A,B](t: T[A], f: A => B) = functorInstance.fmap(t, f)
def pure[A](a: A) = pureInstance.pure(a)
def bind[A,B](t: T[A], f: A => T[B]) = flatten(fmap(t, f))
def flatten[A](t: T[T[A]]) = flattenInstance.flatten(t)

}

Listing 28: Construction of monad instances from other type classes

5.1.1. Type	Classes	as	Evidence

Type classes can not only be used for defining operations but also to provide evidence
for a certain property of a type. One interesting application is to encode axioms for
types in types. An important notion in category theory in general is the notion of an
isomorphism. Listing 29 shows the type class definition for such an isomorphism and
an example application.

62

5. Design and Implementation

trait Iso[A,B] {
def apply(a: A): B
def reverse: Iso[B,A]

}

object Iso {
implicit def idIso[A]: Iso[A,A] = new Iso {

def apply(a: A) = a
def reverse = this

}
}

def applyEndo[A,B](a: A, f: B => B)(
implicit iso: Iso[A,B]

): A =
iso.reverse(f(iso(a)))

Listing 29: Type class for expressing isomorphisms

A natural isomorphism can be encoded in a similar way. The two type parame-
ters are replaced with two higher kinded types and exactly as implemented in the
NaturalTransformation trait a type parameter is added to the apply method. The nat-
ural isomorphism between data types List and Vector mentioned in Example 3.7.2 is
given as a type class instance in Listing 30.

implicit val listVectorIso: NatIso[List,Vector] =
new NatIso[List,Vector] { outer =>

def apply[A](xs: List[A]) = Vector.empty ++ xs
val reverse = new NatIso {

def apply[A](xs: Vector[A]) = xs.toList
def reverse = outer

}
}

Listing 30: Natural isomorphism between sequences

63

5. Design and Implementation

5.1.2. Net	Structure	as	Data	Type

Section 3.7.3 showed that endofunctors can be defined for data structures like lists, sets
and multisets. Thus it is important to first look at the relation between data structures
in Scala and abstract structures in category theory.

The net structure functor is an endofunctor in Set that is given by composition G ◦F
of two adjoint functors F ⊣ G : Struct −→ Set. As mentioned in Section 3.7.3 F and G
are not representable in Scala’s type system but G ◦ F being an endofunctor is.

The covariant power-set functor is used for describing the structure of an Elementary
Net (see Example 4.2.1). To implement a data type representing an Elementary Net in
a Scala program we thus need to express the values of pre and post domain as a data
type. For any set A ∈ Set, P (A) is the set containing all subsets of A. The data type
that represents the power set for a data type A is Set[A].

5.2. Categorical	View	of	Data	Structures

An important part of the implementation is to express how some of the categorical
concepts in the Scala Language. Our design will exploit the fact stated in example 2.7.2
that every category where the morphisms are sets can be expressed as a category where
the objects are sets and the morphisms are functions between them. This means that
every time we leave the category Set we have to ensure that the functions and types
of our implementing code correctly reflect the situation expressed in the categorical
concept.

We have also seen that the model for Abstract Petri Nets defines the net structure as
a functor. In the definition of Abstract Petri Nets the net structure functor was defined
as

Net =G ◦ F : Set −→ Set

where F ⊣ G : Struct −→ Set, and Struct being a subcategory of the category
CSGroup of commutative semigroups.

This immediately leads to the question how the concept of an adjunction relates to
the types involved in the program. In a first step we will discard all additional require-
ments and just consider the free monoid from example 2.7.1. We can express an adjoint
situation F ⊣ U : Mon −→ Set between the free functor F , sending each object in Set to
a word of length one in Mon and the forgetful functor U sending the monoid to the un-

64

5. Design and Implementation

derlying set. This adjunction can be used to generate words of arbitrary length in the
category of monoids and map the result to the underlying set by forgetting everything
about the structure of the monoid.

In functional programming the data structure representing a word is a list, so we
should be able to define

• an endofunctor F : Scala −→ Scala,

• a natural transformation 1 =⇒ F ,

• a corresponding monad.

The functor part has to map a List[A] to a List[B] given a function of type A => B.
There is only one intuitive way to achieve that, that is by generating a new list by ap-
plying the function to each item of the list. Fortunately the Scala Collection Library
defines this method for all collection types as a method called map that just takes the
mentioned function. Writing the functor as a type class instance we end up with the
code in Listing 31.

implicit def ListFunctor: Functor[List] = new Functor[List] {
def fmap[A,B](t: List[A], f: A => B) = t map f

}

Listing 31: Functor type class instance for List type

Next we need a natural transformation that turns a single object into a list. Following
our intuition again we assume that this can be no other operation than creating a one
element list out of it. Having unit and functor part of a monad we now only lack the
multiplication part. In our example we need an operation that turns a List[List[A]]

into a List[A] for any given A. Here we will assume that we get the expected result by
simply flattening the list. It is important to note that monads in functional program-
ming are not only used for representing data structures but offer a general abstraction
for representing computations. The monads related to data structures can be seen as a
special case where the result of a computation is a data structure.

Until now the implementations are only assumptions so we now check if the functor
and monad laws hold. For this we will have a look at what the functor laws actually
mean when applied to this example. The first monad law states that µ◦µT = µ◦Tµ. In
terms of lists this means that having a nested list with depth of three we can flatten it

65

5. Design and Implementation

twice to get a flat list. The additional requirement expressed in this law is that the result
is in the same list independent from whether one starts flattening from the outside or
the inside.

The second monad law requires that µ ◦ ηT = 1T = µ ◦ Tη.
This in the context of lists describes the fact that wrapping a list in a list and flattening

it again yields the input list itself and the same holds for constructing a nested list by
wrapping each element individually and flattening that.

Expressed as code the laws could be written as follows:

def validateFirstLaw[A](xs: List[List[List[A]]]) =
xs.flatten.flatten == xs.map(_.flatten).flatten

def validateSecondLaw[A](xs: List[A]) =
List(xs).flatten == xs && xs.map(x => List(x)).flatten == xs

Listing 32: Monad laws for List

We can now define our type class instances for our list as in Listing 33. As List is
defined in the Scala standard library and thus it is not possible to include the instance
definitions in the companion object they are added to the Functor companion object.
This way they are globally available to the compiler but may be overridden in the local
scope when needed (see Subsection 3.4.9). In this example the type classes are imple-
mented as anonymous inner classes. The type ascriptions are necessary in this case as
otherwise the compiler infers a compound type making it harder to override the value
(see Subsection 3.4.9). The monad instance can be defined in means of the other type
classes using the method definitions from Listing 28.

66

5. Design and Implementation

implicit def ListPure: Pure[List] = new Pure[List] {
def pure[A](x: A) = x :: Nil

}

implicit def ListFunctor: Functor[List] = new Functor[List] {
def fmap[A,B](t: List[A], f: A => B) = t map f

}

implicit def ListFlatten: Flatten[List] = new Flatten[List] {
def flatten[A](list: List[List[A]]) = list.flatten

}

implicit def ListBind: Bind[List] = new Bind[List] {
def bind[A,B](list: List[A], f: A => List[B]) = list flatMap f

}

implicit def ListMonad = Monad.fromFunctorPureBind[List]

Listing 33: Type class instances for List

Having defined the required type class instances we can now provide a more generic
version of our code to check the monad laws. Instead of operating on the concrete
type List[A] it is possible to express the generals structure using a higher kinded type
parameter T[_] and applying it to the type parameter A as seen in Listing 34.

def validateFirstLaw[T[_],A](t: T[T[T[A]]])(implicit m: Monad[T]) =
m.flatten(m.flatten(t)) == m.flatten(m.fmap(t, m.flatten)

def validateSecondLaw[T[_],A](t: T[A])(implicit m: Monad[T]) =
m.flatten(m.pure(t)) == m.flatten(m.fmap(t, m.pure))

Listing 34: Checking monad laws for type class

These checks can now be executed for every kind T[_] for which a monad instance
is available to the compiler. However, the resulting code is not idiomatic Scala code.
In Section 5.4 we will provide a syntax layer that allows using type class instances in
a way that the resulting code is indistinguishable from ordinary object oriented Scala
code.

The definition of a place/transition-net given in Subsection 4.1.2 defines the net struc-
ture via the free commutative monoid P⊕ over the places (see Subsection 4.2). For this

67

5. Design and Implementation

we have to provide a functorial definition of the net structure functor Net = F ⊣ G

that describes the structure. The free commutative monoid can be modeled as a multi-
set. While it is possible to implement an optimized data structure we exploit the fact
that the data type multiset over a set A is isomorphic to a map with keys of type A
and as values non-negative integers. The difference between both are the operations
defined for each. In Listing 15 a similar situation arose for the two monoids over the
set of integers which differed only in the operations defined. Following the same pat-
tern the multiset will be implemented as a wrapper class that defines the operations
and acts as a type parameter for type class instances. An outline of the implementa-
tion is given in Listing 35. It defines the methods map and flatMap thus the type class
instances are implemented similarly to the ones for List in Listing 33. In contrast to
the type class instances for the List data type the instances for Multiset can be defined
in the companion object of Multiset for making them available to the compiler.

68

5. Design and Implementation

final case class Multiset[A](values: Map[A,Int]) {
def freq(a: A) = values.getOrElse(a, 0)

def map[B](f: A => B): MultiSet[B] = {
def elements = for {

(x,n) <- values.iterator
y = f(x)

} yield (y,n)

MultiSet(elements.foldLeft(Map.empty[B,Int]) {
case (m,(x,n)) => m.updated(x, m.getOrElse(x, 0) + n)

})
}

def flatMap[B](f: A => MultiSet[B]) = {
def elements = for {

(x,n) <- values.iterator
(y,k) <- f(x).values.iterator

} yield (y, n*k)

MultiSet(elements.foldLeft(Map[B,Int]()) {
case (m,(x,n)) =>

m.updated(x, m.getOrElse(x, 0) + n)
})

}
// ...

}

Listing 35: Example of a Multiset implementation

The operations defined above together with the monad unit that takes every value
a ∈ A to a ∈ A⊕ a monad instance can be defined. The monad laws hold for this
representation. This follows immediately from the representation as linear sums. The
free commutative monoid A⊕ over a set A can be represented as

A⊕ =
∑
a∈A

λaa.

Due to the associativity of sums the results are identical whether the sum is evaluated
inside out or starting from the outside.

69

5. Design and Implementation

5.3. Data	Types

Being a tuple, an Abstract Petri Net N = (P, T, pre, post) can be expressed in Scala as a
case class. In the design introduced in the following pages we will treat the data type
describing a Petri net as a marked net that is the marking is also included in the data
type. A first attempt to define the data type for a Petri net can be seen in Listing 36.
Net structure and marking are given as higher kinded type parameters but there are
yet no restriction imposed upon these concerning the existence of type class instances
implementing the categorical concepts. It is important to note that two distinct higher
kinded parameter for both net structure functor and for representation of markings are
given. This is due to the fact that the marking of an Abstract Petri Net is given as F (P)
while the net structure functor is defined as Net = G ◦ F . The functor F can not be
expressed for all choices of functors as in many cases F will not be an endofunctor. It is
possible that a second adjoint situation is needed for expressing the marking in Scala.
One example that defines markings in terms of a different adjunction are constructions
of S-Graphs based of Abstract Petri Nets (Padberg, 1996, Example 2.4.5).

case class Net[P,T,Net[_],Mark[_]](
places: Set[P],
transitions: Set[T],
pre: T => Net[P],
post: T => Net[P],
marking: Mark[P]

)

Listing 36: Case class representing a Petri net

While in general we tried to avoid subtyping for ad-hoc polymorphisms in our code
we will make use of it when defining our Net Classes. Traits can not only be viewed as
a blueprint for classes but can also be used to define a structure of a module.

70

5. Design and Implementation

trait NetClass {
type Place
type Transition
type Net[X]
type Mark[X]

case class PetriNet(
places: Set[Place],
transitions: Set[Transition],
pre: Transition => Net[Place],
post: Transition => Net[Place],
marking: Mark[Place]

)
}

Listing 37: Trait representing a net class

Using traits for the definition also allows composing traits that act as a feature of the
net class. In Listing 38 two traits are presented that implement such features. The trait
Labeled implements the feature of labeled places and transitions by providing imple-
mentations of the types representing these. The basic feature of an elementary net is
implemented in the trait Elementary by defining the kinds representing the functors
used for net structure and marking. A labeled elementary net is then defined by com-
posing both traits with the net class trait in the object LabeledElementaryNets.

trait Labeled { self: NetClass =>
case class Place(label: String)
case class Transition(label: String)

}

trait Elementary { self: NetClass =>
type Net[X] = Set[X]
type Mark[X] = Set[X]

}

object LabeledElementaryNets extends NetClass
with Elementary
with Labeled

Listing 38: Modular composition of net class features

71

5. Design and Implementation

This implementation already determines the operations to be used as when provided
via type classes they are dependent on the types and kinds involved. Changing the
functor used to describe the net structure is done by changing the type members Net

and Mark to represent the type constructor that is associated to the functor to use. En-
abling of transitions and firing can be implemented by using the operations defined by
the type classes.

The functors describing transformations between net classes described in Subsec-
tion 4.4.1 are not modeled as classes implementing the Functor trait as in this con-
text they represent operations. Instead they can be implemented as functions work-
ing on the type constructors that define the net structure and marking. The functors
are defined componentwise on the elements describing the Petri net and as such the
implementation provides a way of specifying the transformation of every component.
They are fully defined by the way they map the net structure and marking and as such
are implemented as a morphism between these functors. While the interface to de-
fine these kinds of transformations is already given by the trait NaturalTransformation
it has to be pointed out that this interface cannot be used in this context. The trait
NaturalTransformation does not only define the interface on the language level but
also encodes that instances of this trait can be used as a natural transformation. The
transformation performed by the functors is not necessarily a natural transformation
though.

Example 5.3.1. A valid natural transformation has to satisfy the naturality condition
expressed in the naturality square in Figure 2.2. The naturality condition states that

νC′ ◦ F (f) = G (f) ◦ νC .

An example for a transformation performed by a functor between net classes that
acts as a counterexample is the functor WeightEN : EN → PT. The transformation
constructs a free commutative monoid from the power set for all pre-domains and post-
domains thus defines a transformation P → (_)⊕. This transformation is not natural.
Consider the following example: Let A = {1, 2, 3} , B = {x} and f(a) = x, a ∈ A. The
left hand side of the naturality condition evaluates to νB ◦ F (f) = x while the right
hand side evaluates to G (f) ◦ νC = f(1)⊕ f(2)⊕ f(3) = 3x.

For this reason a second trait called Arrow[F[_],G[_]] is defined that represents a
morphism between these functors but does not imply naturality. The transformation
operations are then defined as in Listing 39. The definitions are given as methods for

72

5. Design and Implementation

brevity but in the actual code they are implemented inside the apply-method of the
corresponding Arrow-implementation.

def weightEN[A](d: Set[A]): Multiset[A] =
Multiset(d.map(x => (x,1)).toMap)

def causalityPT[A](d: Multiset[A]): Set[A] =
d.values.entrySet

Listing 39: Implementations of net class transformations

When performing a net class transformation the type parameter A is fixed to the
type representing the places. The functions representing pre-domain and post domain
are constructed via function composition as in Listing 40. The transform-method has
three parameter lists. The first parameter list takes the two objects representing the net
classes. The second parameter list takes the Petri net to be transformed and the Arrow

instances describing the transformations. As the type members act as path-dependent-
types (see Subsection 3.4.3) they are accessible in the following parameter lists as mem-
bers of the NetClas instances. The third parameter list takes two implicit parameters
that act as an evidence that places and transitions are represented as the same type in
both net classes. These instances are provided in the Scala library inside the Predef-
object whose members are automatically imported. It is also safe to instead depend
on the type class instances representing an isomorphism presented in Listing 29 and
convert all instances of places and transitions to the isomorphic representation used in
the other net class.

73

5. Design and Implementation

def transform(dom: NetClass, cod: NetClass)(
net: dom.Petrinet,
tn: Arrow[dom.Net,cod.Net],
tm: Arrow[dom.Marking,cod.Marking]

)(implicit sp: (dom.Place =:= cod.Place),
st: (dom.Transition =:= cod.Transition)

) = new cod.Petrinet(
places = net.places,
transitions = net.transitions,
pre = net.pre compose (tn(_:dom.Place)),
post = net.post compose (tn(_:dom.Place)),
marking = tm(net.marking)

)

Listing 40: Performing a net class transformation

The transformations arising from endomorphisms are modeled based on the repre-
sentation of morphisms in Subsection 4.4.2. The signature of the method implementing
class of transformations has to include the following parameters:

• the net class description as an instance nc of type NetClass,

• the Petri net to be transformed as an instance of nc.PetriNet,

• the morphism to be used, given as two functions fp: nc.Place => Set[nc.Place],
ft: nc.Transition => Set[nc.Transition],

• the values describing inserted nodes p0: Set[nc.Place], t0: Set[nc.Transition],

• an initial marking m0: nc.Marking[nc.Place] describing the marking of inserted
places and

• pre-domain as well as post-domain values for the inserted elements as functions
pre and post of type nc.Transition => nc.Net[nc.Place].

The operations on the types and kinds defined in the net class are accessible via a type
class passed as an implicit value. This value ops is an instance of a trait NetClassOperations
that is introduced to simplify the methods signature and contains the required type
class instances as members.

Pre-domains and post-domains are given as functions pre, post : Ti → Net(Pi), i ∈
{1, 2} and transitions are mapped via the part ft : T1 → T2 of the morphism. Creating

74

5. Design and Implementation

a function representing pre-domain and post-domain requires a function f t : T2 → T1

so that the pre-domain of the resulting net is represented as pre2 = Net(fp) ◦ pre1 ◦ f t
and the post-domain accordingly. This situation is expressed in the following diagram:

..T2.

T1

. Net(P2).

Net(P1)

.

pre1

.

post1

. pre2.
post2

.

f t

.

ft

.

Net(fp)

Figure 5.1.: Construction of pre-domain and post-domain

Exploiting the fact that the operations are defined on finite sets it is possible to gen-
erate a function representing f t by generating pairs (v, t) with t ∈ T1, v ∈ f̃t (t). A
generic method implementing this will be called invert. It takes a parameter of type
Set[A] and a function A => Set[B] as an argument and returns a function B => Set[A].

75

5. Design and Implementation

def endo(nc: NetClass)(
// parameters omitted - see description

)(implicit ops: NetClassOperations[nc.type]): nc.PetriNet = {
import nc._, ops._

val ftInv = invert(net.transitions, ft)

def mapConditions(pDom: Transition => Net[Place],
pCod: Transition => Net[Place]) =

{ t: Transition =>
netMonoid.append(netMonad.bind(includeNet(ftInv(t)), net.pre), pCod(t))

}

nc.PetriNet(
places = p0 ++ net.places.flatMap(fp),
transitions = t0 ++ net.transitions.flatMap(ft),
pre = mapConditions(net.pre, pre0),
post = mapConditions(net.post, post0),
marking = markMonoid.append(

bindMark.bind(net.marking, (p: Place) => includeMark(fp(p))),
m0)

)
}

Listing 41: Implementation of morphism-based transformations

Listing 41 shows the implementation in detail. It is important to note that the type
parameter to the NetClassOperations trait is parameterized with the path-dependent
type of the net class instance. This is due to the fact that the type members describ-
ing the net class are part of the instance and thus only accessible via the path. The
function mapConditions is used to compute the functions representing pre-domain and
post-domain of the resulting net. This is implemented by mapping the transition t ∈ T2

to a set of transitions v ⊆ T1. The set is transformed to an instance of the data type rep-
resenting net structure using an instance of Arrow[Set,Net] and the pre-domain of the
original net is computed and flattened. The monoid type class instance for the type
Net[Place] is then used to add the pre-domain defined in the transformation to the re-
sulting structure. Places and transitions are mapped by applying the functions fp and
ft respectively to each element via the method flatMap. This method implements the
monadic bind operation described in Section 5.1 and thus returns the union of all sets

76

5. Design and Implementation

that result from application of the function passed as an argument to the elements of the
set. The marking of the resulting Petri net is also computed using the monadic bind op-
eration. As the implementation of monadic binding depends on the kind representing
the data structure, an instance of the type class Bind[Marking] is used to compute the
transformed marking. The result of this operation is a marking that does not include
places deleted in the transformation.

5.4. Syntax	Layer

For now we have implemented several operations for our data types as type classes.
Using the defined operations is currently still cumbersome as all operations are defined
as methods on the type class instances. In this section we will introduce a pattern for
making the use of these operation more natural in Scala.

Subsection 3.4.9 introduced the concept of implicit conversions and provided an ex-
ample how the enrich-my-library pattern can be used to add operations to arbitrary
data types.

Example 5.4.1. Making the operations defined on ordinary types (as opposed to kinds)
available as members on instances is done by introducing a class Syntax[A] that wraps
an instance of type A. The operations are defined in traits that are then composed to the
final wrapper class as shown in Listing 42. These traits can be located inside the source
code files of the respective type classes that implement the operations. The trait Wrapped
carries the type of the wrapped instance and the reference to the wrapped instance. A
call to the method ⊕ on an integer value triggers the implicit conversion to Syntax[Int].

77

5. Design and Implementation

trait Wrapped {
type Self
val value: Self

}

trait MonoidSyntax { self: Wrapped =>
def ⊕(that: Self)(implicit m: Monoid[Self]) =

m.append(value, that)
}

trait PureSyntax { self: Wrapped =>
def pure[M[_]](implicit p: Pure[M]) =

p.pure(value)
}

class Syntax[A](val value: A) extends Wrapped
with PureSyntax
with MonoidSyntax {

type Self = A
}

implicit def any2syntax[A](a: A) = new Syntax(a)

// use the monoid instance for integers via MonoidSyntax
val twenty = 10 ⊕ 10

// Wrap String in a List[String]
val foos = ”foo”.pure[List]

Listing 42: Syntax layer for types

Example 5.4.2. The enrich-my-library pattern can also be applied to types defined via a
type constructor. The base trait WrappedKind has two type members, one higher kinded
member referencing the type constructor and one type member that captures the type
that was applied to the kind for constructing the type of the wrapped value. All traits
in Listing 43 defining the operations follow the same pattern as in Example 5.4.1 but
now have the type constructor available. The method lengths provides an example
usage. A context bound is used to express the dependency for a functor instance for
kind M[_] and inside the map-method is invoked on the parameter. As nothing is known
about the type M[A] this will trigger the implicit conversion to KindSyntax[M,A].

78

5. Design and Implementation

trait WrappedKind {
type M[X]
type A
val value: M[A]

}

trait FunctorSyntax { self: WrappedKind =>
def map[B](f: A => B)(implicit t: Functor[M]) =

t.fmap(value, f)
}

trait MonadSyntax { self: WrappedKind =>
def flatMap[B](f: A => M[B])(implicit m: Monad[M]) =

m.bind(value, f)
}

class KindSyntax[F[_],T](val value: T)
extends WrappedKind

with MonadSyntax {
type M[X] = F[X]
type A = T

}

implicit def any2kindSyntax[M[_],A](ma: M[A]) =
new KindSyntax[M,A](ma)

// Usage:
def lengths[M[_] : Functor](xs: M[String]) =

xs.map(x => x.length)

Listing 43: Syntax layer for kinds

79

6. Conclusion	and	Prospects

6.1. Discussion

The goals stated in Subsection 1.1 have been met as shown subsequently:

1. In this thesis we showed how Scala’s language features can be used to model cat-
egorical concepts. Especially when working with generic data structures the con-
cepts are easily transferable between the categorical model describing abstract
structures and the categorical model for describing functional programming lan-
guages. The separation of data types and operations provided by type classes
together with the higher abstraction level over types and type constructors en-
ables a modular design in which the behaviour of the program depends on the
types used. Furthermore the behaviour is fully determined by the types as the
operations are defined on types rather than instances. Referential transparency
together with the grouping of type classes and the inability to modify behaviour
of a single object by overriding the behaviour make the code more maintainable.
The ability to also encode axioms in the type system proved helpful. Different
operations with the same signature can not be misused when the implementor
choses the right interface after evaluating whether the respective axioms hold for
the provided implementation.

2. We also showed that it is possible to use the common foundation supplied by
category theory to create formal abstractions that can be used to easily transfer
concepts that exist in the problem domain into the solution domain. The formal
model given by Abstract Petri Nets can be used as a foundation for a program de-
scribing different classes of Petri nets. The resulting framework is highly modular
in that it can be easily extended to support various low-level net classes by pro-
viding the relevant type class instances that model the underlying mathematical
concepts. These concepts are also generic enough for the resulting implementa-
tions to be of use in other fields.

80

6. Conclusion and Prospects

3. Both transformations based on functors and transformations based on morphisms
have been implemented. The definition of a functor between net classes can be
easily given by implementing two generic methods that perform the actual map-
ping between net structure and marking of both nets. The transformations based
on morphisms are implemented using only type classes that are used for defining
the general structure and basic operations on the net and thus should be easily
transferable to new low-level net classes. As this morphism-based transforma-
tion is very general it can be used as a foundation to implement the more ad-
vanced net transformations on top of it.

Some disadvantages are also to be mentioned. Operations depending on many type
classes carry a long type signature. A solution to this is the grouping of type classes
to yield another instance that publishes its members. On the other hand this makes
the resulting library harder to use as the type class instances are hidden inside other
objects.

6.2. Applicability	to	High-Level	Nets

The presented software design is capable of representing low-level net classes. This
subsection will present the concepts that can be used to extend the model to also sup-
port high-level petri nets and will illustrate the difficulties in extending the model.

In Subsection 4.3.1 the notion of typed algebraic high-level networks was introduced.
There are numerous possible implementations but as one goal of this work was to main-
tain static type safety the approach taken in this subsection will try to leverage Scala’s
type system for a possible implementation.

The signature SIG = (S,OP) consists of a set of sorts S and a set OP of constant
and operational symbols. In this approach the sorts will be represented as Scala types
and the operational symbols are expressed as values and pure methods and functions.
By using algebraic data types as introduced in section 3.4.6 to represent the type part
of the signature it is possible to restrict the data types of the net.

As places of high-level petri nets are typed we will introduce an additional higher
kinded type called TypedPlace, a unary type constructor with a covariant type param-
eter. Furthermore it is not desirable to define the algebra of the net class over all types
available in the Scala type system. For representing the hierarchy of valid data types
the trait representing a net class has to include type information that determines which
types are eligible for being used as type parameters. Thus the trait will contain types

81

6. Conclusion and Prospects

Top and Bot representing the top type and bottom type of the hierarchy. The type pa-
rameter of the TypedPlace type will be bounded by these types.

trait HLNetClass {

type Top

type Bot <: Top

type TypedPlace[+X >: Bot <: Top]

type Place = TypedPlace[Top]

// other code omitted

}

Example 6.2.1. Given the algebraic high-level net from Example 4.3.1 the sorts of the
associated net class can be given as follows:
type Top = Sort

type Bot = Nat with Process with ProcessType

sealed trait Sort

case class Nat(x: Int) extends Sort

case class Process(i: Int, t: ProcessType) extends Sort

abstract class ProcessType extends Sort

case object RS extends ProcessType

case object WR extends ProcessType

Listing 44: Sorts of Reader-writer net

The trait Sort is the top type for all valid types in the algebra, thus the places of the net
are typed as TypedPlace[Sort]. This example also contains two values RS and WR that
have associated singleton types. In this context it is not desirable to assign these types
to a place as this would make the place effectively a constant. Furthermore assigning
an element type of Nothing to a place has to be avoided (see 3.6). For these reasons the

82

6. Conclusion and Prospects

bottom type Bot is assigned as given in the listing. Bot is uninhabited as it defines a
compound type of class types.

The variables’ types are encoded as a trait Var[+X >: Top <: Bot] with the type
parameter bounded as in the case of the places. Variables are defined as singleton
objects extending this trait with the type type parameter representing the variables data
type. This encoding of variables allows the type safe construction of the pre-domains of
the transitions by requiring place and variable to have their respective type parameters
represent the same type.

The problem with the model becomes obvious when trying to offer a type save way of
constructing the pre-domains and post-domains of a transition. For satisfying the con-
sistent assignment agreement it is necessary to ensure that variables referenced in the
terms of the post-domains are actually included inside the pre-domain. Information
about the variables available would have to be encoded in the types of the transitions.
This encoding is possible either in by tracking the types involved in the construction in
a similar way as it is done in heterogeneous lists (Kiselyov et al., 2004) or by tracking
the types of the variables using phantom types (Leijen and Meijer, 1999). The fact that
an expression can occur in the terms of multiple incoming arcs makes an implementa-
tion that accounts for that in the type system even more complex. The complexity of
an implementation that incorporates this would result in a library that is cumbersome
to use because of the type operations involved.

The upcoming Scala release 2.10 will add compiler macros1 to the language. These
macros are implemented as ordinary Scala methods that can transform the abstract
syntax tree of a program during the compilation phase and even provide new types
based on the structure of the program. Inspecting how macros can be used to track
the types and variables associated with a transition of a high-level net could lead to
interesting results.

The model as is can be extended to implement the semantics of algebraic high-level
nets without tracking the types and variables. One possible solution that provides at
least type safety during construction of the pre-domain could involve representing the
terms as expression trees. The enabling of transitions would then include an interpre-
tation phase that evaluates the expression dynamically. The variables involved would
also need to be tracked as values and not as types. The existence of a variable in the
pre-domain can not be statically determined at compile time and as such involves ad-
ditional checks at runtime.

1see http://scalamacros.org/

83

http://scalamacros.org/

A. Appendix

A.1. Sets	and	Classes

The concept of classes was introduced to be able to describe large collections of sets.
Every set is also a class and hence there exists the term proper classes to explicitly state
that the class in question is not a set.

A.2. Semigroups, Monoids	and	Groups

A semigroup (S, ·) consists of a set S together with a binary operation · : S × S −→ S

satisfying the following axioms:

• closure: ∀a, b ∈ S : (a · b) ∈ S

• associativity: ∀a, b, c ∈ S : (a · b) · c = a · (b · c)

A monoid is a semigroup with unit, i.e. a triple (S, ·, e) consisting of a set S, an asso-
ciative binary operation · : S × S −→ S and the unital element e ∈ S. In addition to
the axioms of a semigroup the monoid satisfies the axiom for the identity element:

• identity element: ∃e ∈ S : ∀a ∈ S : e · a = a = a · e

If a monoid also satisfies the invertibility property

• invertibility: ∀a ∈ S∃b ∈ S : a · b = e

it is called a group.
Semigroups, groups and monoids with a commutative operation are called abelian

semigroups, abelian groups or commutative monoid respectively.

84

A. Appendix

A.3. Grothendieck	Group

The Grothendieck group construction can be used to construct an abelian group from
an abelian semigroup.

The Grothendieck group of an abelian semigroup S = (A,+) is K (S) = S × S/ ∼
where ∼ is the equivalence relation:

(s, t) ∼ (u, v) : ∃r ∈ S : s+ v + r = t+ u+ r

• identity: (s, s)

• addition: (s, t) + (u, v) = (s+ t, u+ v)

• inverse: −(s, t) = (t, s)

When S is not only a commutative semigroup but also a commutative monoid with
unital element ewe can easily construct an element of the Grothendieck group from an
element s ∈ S by creating a pair (s, e).

A.4. Free	Commutative	Monoid

Given a set P the free commutative monoid generated over P is given by (P⊕, λ,⊕) with
λ denoting the unit of the monoid and ⊕ the binary operation of the monoid. For all
u, v, w ∈ P⊕ the following properties hold:

• λ acts as a left and right identity:

v ⊕ λ = v = λ⊕ v

• ⊕ is associative:
u⊕ (v ⊕ w) = (u⊕ v)⊕ w

• ⊕ is commutative:
v ⊕ w = w ⊕ v

85

A. Appendix

Another common way to represent the free commutative monoid is the sum notation:∑
p∈P

λpp

where λp ∈ N denotes the coefficient for element p.

86

Bibliography

Jiří Adamék, Horst Herrlich, and George E. Strecker. Abstract and Concrete Categories.
Dover Publications, Mineola, New York, 2009. URL http://katmat.math.uni-bremen.

de/acc/.

Steve Awodey. Category Theory. Oxford University Press, 2010.

Paul Hudak. Conception, evolution, and application of functional programming lan-
guages. ACM Computing Surveys, 21:359–411, 1989.

Kurt Jensen. Coloured petri nets: A high level language for system design and analysis.
In Grzegorz Rozenberg, editor, Advances in Petri Nets 1990, volume 483 of Lecture
Notes in Computer Science, pages 342–416. Springer Berlin / Heidelberg, 1991. ISBN
978-3-540-53863-9.

Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. Strongly typed heterogeneous
collections. In Proceedings of the 2004 ACM SIGPLAN workshop on Haskell, Haskell
’04, pages 96–107, New York, NY, USA, 2004. ACM. ISBN 1-58113-850-4. doi:
10.1145/1017472.1017488. URL http://doi.acm.org/10.1145/1017472.1017488.

Daan Leijen and Erik Meijer. Domain-specific embedded compilers. Conference on
Domain-Specific Languages, page 109–122. USENIX, 1999.

Martin Odersky Lukas Rytz. Relative effect declarations for lightweight effect-
polymorphism. 2012. URL http://infoscience.epfl.ch/record/175546/files/

rel-eff_1.pdf.

Adriaan Moors, Frank Piessens, and Martin Odersky. Generics of a higher kind. SIG-
PLAN Not., 43(10):423–438, October 2008. ISSN 0362-1340. doi: 10.1145/1449955.
1449798. URL http://dx.doi.org/10.1145/1449955.1449798.

Martin Odersky. Scala language specification, 2011. URL http://www.scala-lang.org/

sites/default/files/linuxsoft_archives/docu/files/ScalaReference.pdf.

87

http://katmat.math.uni-bremen.de/acc/
http://katmat.math.uni-bremen.de/acc/
http://doi.acm.org/10.1145/1017472.1017488
http://infoscience.epfl.ch/record/175546/files/rel-eff_1.pdf
http://infoscience.epfl.ch/record/175546/files/rel-eff_1.pdf
http://dx.doi.org/10.1145/1449955.1449798
http://www.scala-lang.org/sites/default/files/linuxsoft_archives/docu/files/ScalaReference.pdf
http://www.scala-lang.org/sites/default/files/linuxsoft_archives/docu/files/ScalaReference.pdf

Bibliography

Julia Padberg. Abstract Petri Nets: Uniform Approach and Rule-Based Refinement. Shaker
Verlag, 1996.

Ahmad Ramin and Tavagoli Kolagari. Transformation of open and algebraic high-level
petri net classes. Technical Report 2002-24, Technische Universität Berlin, 2002.

Philip Wadler. The essence of functional programming. In Proceedings of the 19th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, POPL ’92, pages
1–14, New York, NY, USA, 1992. ACM. ISBN 0-89791-453-8. doi: 10.1145/143165.
143169. URL http://doi.acm.org/10.1145/143165.143169.

88

http://doi.acm.org/10.1145/143165.143169

Index

A
Abstract Petri Nets, 52
adjoints, 12

C
category of structure, 52
consistent transition agreement, 55
contravariant type parameter, 23
covariant type parameter, 23

D
dual, 6
dual category, 6

E
effect system, 18
enrich-my-library pattern, 35

F
follower marking, 48
forgetful functor, 15
free functor, 7, 15

G
Grothendieck Group, 85

I
implicit, 33

conversions, 34

implicit scope, 33
inhabited type, 42
invariant type parameter, 23

K
Kleene Closure, 7

M
monad, 14, 18

in Scala, 61

N
natural isomorphism, 9
natural transformation, 8
net structure functor, 52

P
post-domain, 49, 51
pre-domain, 49, 51
pure function, 17

R
referential transparency, 17

T
transition vector, 53
type lambda, 39
type projection, 31

89

Index

U
unit

of a monad, 15
of a monoid, 84

V
view bounds, 34

90

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig verfasst
und nur die angegebenen Hilfsmittel benutzt habe.

Hamburg, 28. August 2012 Moritz	Uhlig

	Introduction
	Motivation and Goals
	Structure of the Thesis

	Categorical Foundations
	Categories
	Duality
	Functors
	Free Functor
	Natural Transformations
	Products and Coproducts
	Adjoints
	Monads

	Functional Programming in Scala
	Functional Programming
	Referential Transparency and Pure Functions
	Concepts in Scala
	Types
	Classes, Traits and Objects
	Companion Objects and Case Classes
	Polymorphic Expressions
	Generic Types
	Function Types
	Algebraic Data Types and Pattern Matching
	Higher Kinds
	Type Aliases and Type Members
	Implicit Parameters
	Structural Types and Type Lambdas

	Type classes
	Type Hierarchy
	The Category of Scala Types
	Products in Scala
	Coproducts in Scala
	Endofunctors in Scala
	Natural Transformations in Scala

	Abstract Petri Nets
	Petri Nets
	Elementary Nets
	Place/Transition Nets

	Low-Level Abstract Petri Nets
	High-Level Petri Nets
	Typed Algebraic High-Level Nets

	Transformation of Petri Nets
	Net Class Transformations
	Petri Net Transformations Based on Morphisms

	Design and Implementation
	Type Classes
	Type Classes as Evidence
	Net Structure as Data Type

	Categorical View of Data Structures
	Data Types
	Syntax Layer

	Conclusion and Prospects
	Discussion
	Applicability to High-Level Nets

	Appendix
	Sets and Classes
	Semigroups, Monoids and Groups
	Grothendieck Group
	Free Commutative Monoid

	Bibliography

