
        

 

Hochschule für Angewandte Wissenschaften Hamburg 
Fakultät Life Sciences 

 

Characterization of White Matter Damage in 

Multiple Sclerosis using Volumetry and Voxelbased 

Morphometry 

 

Master Thesis 

Biomedical Engineering 

 

Presented by 
Jainam Shah 

2054321 

 

HAW Bergedorf, Hamburg 
31 August 2012 

 

 Supervisor: Prof. Dr. Ing. Friedrich Ueberle  HAW Hamburg 
 Supervisor: Dr. Lothar Spies    Jung Diagnostics GmbH

 

The thesis was supervised and created in the company Jung Diagnostics GmbH  



 

 
II 

 

Declaration 

I hereby declare and confirm that this diploma thesis is entirely the result of my own work except 

where the references are mentioned. All used resources are explicitly referenced in the 

bibliography. 

 

 

 

 

 

 

 

 

Hamburg, 31 August 2012 

 

 

 

Jainam Shah 

 



 

 
III 

 

Executive Summary 

Aim 
The main objective of this thesis was to construct and validate an image processing framework 

which automatically detects and quantifies multiple sclerosis (MS) lesions in white matter based 

on high resolution T1-weighted magnetic resonance (MR) images. 

Materials and Methods 
A dataset consisting of artificially generated T1-weighted MR images of normal brains and brain 

images having artificial mild, moderate and severe MS lesions on them and their corresponding 

lesion masks was constructed. Clinical data of subjects with real MS lesions and three databases 

consisting of normal healthy subjects available at Jung Diagnostics were used in the experiments 

done during the thesis. The image processing framework was constructed using Statistical 

Parametric Mapping (SPM), a software suite designed for analyzing brain images. Two distinct 

biomarkers representing reduction and damage in white matter were investigated using this suite. 

A voxel-wise comparison of images between two groups of subjects, termed as voxel-based 

morphometry (VBM) was used for detecting these biomarkers (lesions) in brain images. VBM 

needs image preprocessing in order to make statistical comparisons between images efficiently. 

Certain image preprocessing modules of SPM were optimized for the same. Simulated and real 

subject brain images were used for optimizing segmentation routine by varying the parameter 

settings to find an optimal set of parameters. DARTEL, a high dimensional registration process, 

can be executed with two different setups, either by performing DARTEL on grey and white 

matter images individually or simultaneously, termed as independent and joint DARTEL 

respectively. An investigation was done to find out which setup is more robust. VBM was 

optimized by controlling the significance level of the statistical test (t-test) and varying the 

Gaussian smoothing kernel for DARTEL from 0 to 12mm. Volumetry (estimation of volumes) of 

artificially simulated normal brain images and brain images with MS lesions was done to 

estimate the effect of lesions on tissue classification. The optimized framework was validated 

using simulated brain image with severe lesion and severe lesion mask was used as a reference 

for interpretation. The statistical test (t-test) generates maps of t-values as an output based on 
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which quantification and visual interpretation can be done. Finally, the optimized framework was 

implemented on the clinical data of MS patients for lesion detection.  

Results 
A nice segmentation of tissues was attained for individual subjects at specific set of parameter 

settings, but no optimal set of parameters leading to a perfect segmentation which suits all the 

images was ascertained in this experiment. Joint DARTEL setup was found to be more robust. 

The statistical test demonstrated a good trade-off between specificity and sensitivity at 0.1 and 

0.005 significance level for biomarkers representing reduction and damage in white matter 

respectively at a smoothing kernel size of 4 and 3 mm for grey and white matter images 

respectively. Volumetry of normal and lesioned brains showed misclassification of the same 

amount of white matter as grey matter due to lesion induced low contrast between grey and white 

matter tissues. Replicating this misclassification in the image processing framework in the form 

of two biomarkers, VBM performed with simulated brain image using all three databases showed 

an average accuracy and specificity of approximately 90% and 45 and 55% average sensitivity 

for biomarker mimicking reduction and damage in white matter respectively. The framework 

showed high specificity (>95%) with normal healthy subjects also. 

Conclusion 
The image processing framework was successfully implemented for detecting MS lesions. The 

framework when tested with simulated data, attained the benchmark of 90% set for accuracy and 

specificity but did not attain the benchmark of 60% set for sensitivity for reduction and damage 

in white matter. Thus, more work is needed to be done to make the current image processing 

framework more efficient in detecting MS lesions. 
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1. Introduction 

Motivation and Aim 

Multiple sclerosis (MS) is considered as one of the most common neurological disorder (1). It is a 

chronic autoimmune disease of the central nervous system which affects brain, spinal cord and 

optic nerves (2). It usually affects people between the ages of 20 and 50 and is one of the most 

common causes of nontraumatic disability among young and middle-aged people. MS is twice as 

common in women as in men. Today, more than 2.1 million people are affected by multiple 

sclerosis worldwide (3). 

Every case of MS is different from the other and so are the symptoms. Some of the symptoms of 

MS are blindness in one eye, double vision, painfulness, absence of coordination and fatigue (4). 

In some cases the symptoms of MS are characterized by periods of relapse and remission while a 

progressive pattern is observed in others. 

The World Health Organization (WHO) and the Multiple Sclerosis International Federation 

(MSIF) carried out a major research to determine the global epidemiology of MS. As a part of 

this research 112 countries were surveyed from 2005 to 2007 representing 87.8% of the world 

population (5). 

None of the countries that participated in the survey was free of multiple sclerosis confirming 

MS to be a global disease. The prevalence estimates of MS are 30 per 100,000 globally. More 

white people are affected by MS worldwide than non-whites. Results of the survey confirmed 

that there are strong geographical patterns influencing the disease and that the frequency of MS 

varies by geographical region throughout the world, increasing with distance from the equator in 

both hemispheres (5). 

Fig. 1.1 shows the geographical prevalence of multiple sclerosis worldwide as in 2007. Different 

color ranges indicates prevalence of MS in that country per 100,000 people. The median 

estimated prevalence of MS globally is 30 per 100,000 with a range of 5 to 80 (5).
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Fig. 1.1 Prevalence of MS globally (5) 

Currently, there is no cure for multiple sclerosis, only treatment for MS is available. The 

treatment does not repair the destroyed nerve cells but slows down the MS process which 

successively reduces the neurodegeneration rate (6). Steroids and drugs are available as a 

treatment for MS symptoms. Ongoing research on new drugs requires imaging techniques to get 

an insight about the progress of drug development and its effectiveness. 

Magnetic resonance imaging (MRI) is an excellent imaging technique for examining 

parenchymal brain tissue. MRI is very effective in detecting lesions and their progression. Visual 

interpretation of MRI scans of brain alone doesn’t provide concrete diagnosis about MS. A 

combination of MRI scans and computer aided techniques can prove to be a very helpful tool in 

detecting MS lesions more efficiently. The aim of this thesis work was to construct an automated 

image processing framework which can work efficaciously in characterizing MS lesions using 

MRI scans and computer aided techniques. This involves use of image processing tools and their 

optimization.  
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2. Multiple Sclerosis 

2.1. Definition 

Multiple sclerosis is a chronic disease of the immune system affecting the bodily functions 

depending on which area of the brain is affected (7). MS mainly affects white matter of the brain 

destroying the myelin sheath. Myelin is a dielectric fatty material covering the axon which forms 

the white matter of brain due to its white appearance. Myelin sheath insulates and encases axons 

of nerve fibres in the central nervous system and helps in quick and smooth transmission of 

electrical impulses between the brain and rest of the body. When myelin is destroyed (as shown 

in Fig. 2.1) or in other words, demyelination occurs, electrical signals from the nerve fibres are 

sent slowly and less efficiently. Patches of scarred tissue form over the affected areas of the 

brain, further disrupting nerve communication. The sites where myelin is lost, i.e. the site of 

plaques or lesions appear as scarred or hardened tissues. In multiple sclerosis these scars appear 

at different areas of the brain and spinal cord. The term sclerosis literally means pathological 

hardening or scarring of tissue and thus, multiple sclerosis meaning many scars (7). The 

symptoms of MS occur when the brain and spinal cord nerves no longer communicate properly 

with other parts of the body. 

 

Fig. 2.1 Healthy neuron and neuron damaged by MS (2) 
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2.2. Etiology 

Multiple sclerosis is an autoimmune disease i.e. cause of the disease is an attack of immune 

system of the body itself (8). The immune system of the body is responsible for detecting and 

destroying foreign entities such as bacteria and viruses. 

In MS, for unclear reasons immune cells of the body attacks and destroy the myelin sheath that 

insulates neurons in the brain and spinal cord assuming them to be foreign bodies. The immune 

system becomes too active and sends out specific type of white blood cells that attacks the 

myelin sheath as if it were a foreign entity (9). The myelin sheath provides insulation between 

cells preventing short-circuiting of electrical signals between cells and speeds up transmission of 

these electrical signals. The damage in myelin sheath hinders passage of these electrical signals 

causing disruption of communication between the brain and other parts of the body leading to the 

symptoms of MS. These demyelinated regions appear as plaques. 

The progression of symptoms in MS correlates to development of new plaques in the portion of 

the brain and/or spinal cord controlling the affected areas. The progression of MS can be 

unpredictable as there appears to be no pattern in the progression and appearance of new plaques. 
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2.3. Symptoms 

Different areas of the central nervous system (CNS) are responsible for different bodily 

functions. As the areas affected by scarring can be scattered anywhere in the CNS, the symptoms 

can also vary with respect to the areas affected. As the symptoms are unpredictable depending on 

the location of brain tissue scarred, all the cases of MS are different from the others and the 

symptoms also vary from patient to patient (7). 

Some of the initial symptoms include muscle weakness, loss of coordination and balance, blurred 

vision in one or both eyes, numbness and tingling. Later symptoms may include paralysis, 

vertigo, fatigue, speech and swallowing difficulty, loss of bowel and bladder control, cognitive 

changes such as memory problems, depression, personality changes, etc. (10).  

Multiple sclerosis is divided into sub-classifications according to the symptom patterns, which 

are as follows (11), 

• Relapsing-remitting – this pattern is characterized by acute attacks followed either by full 

or partial recovery with some symptoms still remaining. Approximately 85% of MS cases 

begin with this pattern. 

• Secondary Progressive – this pattern of disease begins with relapsing-remitting course 

and enters into a progressive phase with a slow and steady overall worsening. 

Approximately 50% of patients with relapsing-remitting course enter in a progressive 

phase. 

• Primary Progressive – in this pattern there is a slow progression of symptoms from the 

onset of the disease without attacks but with occasional and temporary minor 

improvements. This pattern is more prevalent in patients having an onset of MS after the 

age of 40 and more often in males. About 15% of patients are initially diagnosed with 

this pattern of MS. 

• Progressive-relapsing – this pattern of disease shows a progression from the onset. The 

symptoms may or may not recover at all. 
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2.4. Diagnosis 

A neurologist makes diagnosis of multiple sclerosis. A detailed medical history of the patient, 

symptoms and complaints is collected, followed by a physical and neurological examination. MS 

shares some of its symptoms with other diseases; therefore a search to exclude such symptoms is 

necessary. Certain laboratory tests in addition to taking a medical history and physical and 

neurological tests are done to confirm the diagnosis of MS. Evoked potential tests, lumber 

puncture and magnetic resonance imaging (MRI) scans are the tests which confirm the diagnosis 

of MS (12). 

Evoked potential tests are measurements of electrical responses to stimulation of different 

sensory pathways. Three types of evoked potential tests were done in past (13). 

• Sensory evoked potentials – by applying a small electrical charge on the arm or leg. 

• Visual evoked potentials – the patient sits in front of a screen on which alternating check-

board pattern is displayed. 

• Brainstem auditory evoked potentials – the patient hears a series of clicks in both the 

ears. 

In multiple sclerotic condition, levels of immune protein in cerebrospinal fluid (CSF) increases. 

This level of proteins is measured by lumber puncture or spinal tap technique. In this technique a 

needle is inserted below the end of spinal cord and a sample of CSF is extracted for clinical tests 
(14). 

MRI is the most sophisticated diagnostic tool which offers a non-invasive imaging technique. 

MRI scans allow detecting structural and functional changes in brain matter over the course of 

disease. Diagnosis of MS can be confirmed with two or more lesions detected in white matter 

using MRI (11). Number of lesions and their volumes can also be measured using MRI images. 

MRI scans also reveal the progression of disease by comparing new scans with the previous 

ones. Thus, MRI scans can be used to design a treatment for patients by modifying their drug 

dose at different stages of the disease (15). 
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Though, there is no test which definitively confirms the presence of MS, a second helpful aid in 

confirming the suspicion of MS is a group of tests. McDonald’s criteria are used for confirming 

the suspicion of MS. McDonald criteria were introduced in 2001 by Ian McDonald et al. As there 

is no single clinical or diagnostic test which concludes to certain diagnosis of MS, McDonald 

criteria includes a combination of clinical and paraclinical tests (16). 

These criteria include the use of magnetic resonance imaging techniques. A revised version of 

these criteria was published in 2010. The reasons for revision of the criteria were simplification 

of demonstration of CNS lesions detected in MRI scans and also the previous revision did not 

apply appropriately for non-Western Caucasian populations (17). The criteria are included in 

appendix. Thus, MRI scans are used as imaging biomarkers. Imaging Biomarkers are described 

in detail in the section MRI as Imaging Biomarker.  
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2.5. Treatment 

The cure for multiple sclerosis is not yet known to man. A cure for MS would mean a complete 

recovery of the damage occurred to the central nervous system. But there are treatments and 

approaches to reduce the symptoms of MS (6). Though, the treatment does not repair the damaged 

nerve cells, but it slows down the disease process. Current treatments reduce the inflammation 

which in turn slows down the neurodegeneration rate which is responsible for long-term 

progression of disabilities. 

Some of the drugs which can reduce the disease symptoms and progression are Avonex, 

Betaseron and Copaxone (18) (19). Avonex and Betaseron are forms of interferon beta – 1a and 1b 

respectively, which are forms of immune system protein found in human body; and copaxone is 

glatiramer acetate (20) (21) (22). Glatiramer acetate is a synthetic protein that simulates myelin basic 

protein. It is a component of the myelin that insulates nerve fibers in the brain and spinal cord 
(22). These drugs have shown effective results in reducing the rate of relapses in the relapsing-

remitting pattern of the disease. Avonex slows the progress of physical impairment, Betaseron 

aids reducing the severity of symptoms and Copaxone decreases disability. 
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2.6. MRI as Imaging Biomarker 

The term Biomarker can be defined as a detectable biological phenomenon, which is either 

structural and/or functional (23). An Imaging Biomarker is any physiological, anatomical or 

metabolic change/s detectable with one or more imaging techniques which helps in establishing 

the presence and/or severity of a disease. Imaging biomarkers provide a faster and more efficient 

way for diagnosing diseases and developing new drugs also (24).  

Magnetic resonance imaging (MRI) is a well-known technique used to detect structural and 

functional changes in the body. Using MRI as an imaging biomarker structural changes 

occurring in the brain during the course of multiple sclerosis can be detected. Magnetic 

resonance (MR) images can also be used to detect the rate of neurodegeneration and brain matter 

volume changes. 

Mainly four imaging modalities in MR imaging are used, T1-weighted, T2-weighted, fluid 
attenuated inversion recovery sequences (FLAIR) and proton density (PD) (25).  

T1-weighted images are generated using gradient echo or spin echo sequences with short echo 

time (TE) and repetition time (TR). The signal acquisition depends on the fat content of the 

tissues. In T1 weighted images fluid appears darker than the fat. Subcutaneous fat appears 

brighter, thus white matter appears brighter than grey matter. Lesions in T1-weighted images 

appear darker than the surrounding tissue and are referred as T1-hypointense lesion or black 

holes. T1-weighted images are good for examining anatomical structures. Spin echo and gradient 

echo are different combinations of RF pulse sequence used in MRI to acquire data to form an 

image. TE and TR are explained in section 4.2. 

T2-weighted images are generated using gradient echo sequence with long TE and TR. The 

signal acquisition depends on the fluid contents in the tissues. CSF appears brighter and can be 

easily detected. T2-weighted images are good for evaluating pathology. Lesions in T2-weighted 

images appear brighter than the surrounding tissue and are referred as T2-hyperintense lesion. 

Proton density or spin density weighted scans are generated using spin echo sequence usually 

and sometimes with gradient echo sequence also, with short TE and long TR. The signal 

intensity in PD-weighted images depends on the number of protons in per unit tissue. Tissues 
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with lower number of protons per unit appear darker than the tissues with higher number of 

protons per unit. 

FLAIR images are similar to T2-weighted images. FLAIR scans are generated using inverse-

recovery pulse sequence. In FLAIR images bright signals from CSF are suppressed unlike T2-

weighted images. Thus, are good for evaluating regions near CSF filled spaces (25). 

All the images used for the thesis are T1-weighted MR images as the normative database 

available to make comparisons also consists of T1-weighted images. 
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3. Technological Framework 

Following chapter describes the technological framework used for experiments during the thesis. 

The technological framework used for the thesis work is adapted from the framework built for 

Alzheimer’s Dementia patients as described in the thesis, Implementation and Optimization of an 

Image Processing Framework to Evaluate PET/MRI Brain Data for Early Diagnosis of 

Alzheimer (26). This chapter gives an overview about the software suite and its modules used for 

the experiments in this thesis. 

3.1. Statistical Parametric Mapping 

Statistical Parametric Mapping (SPM) software is a suite of MATLAB functions and subroutines 

with some externally compiled C routines (27). SPM is free but copyright software, distributed 

under the terms of the GNU General Public License. Current version of the suite, SPM8, released 

in April 2009 was used during the thesis. SPM is used as a MATLAB toolbox. SPM refers to the 

construction and assessment of statistical processes used to test hypotheses about functional 

imaging data. 

The SPM software package has been designed for the analysis of brain imaging data sequences. 

The sequences can be a series of images from different cohorts, or time-series from the same 

subject. SPM follows a voxel based approach which consists of image pre-processing, statistical 

comparison and graphical representation. Images on which statistical analysis is to be done may 

be from different scanners and in different 3D systems, or may have noise. Thus, images 

are realigned, spatially normalized into a standard space and smoothed to remove any noise, if 

present. Using the general linear model (GLM), parametric statistical models are assumed at 

each voxel to describe the variability in the data in terms of experimental and confounding 

effects, and residual variability. The general linear model is explained in section 3.7. Each voxel 

is assessed with univariate statistics for the hypotheses expressed in terms of the model 

parameters (28). 
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3.2. Voxel Based Morphometry (VBM) 

Brain morphometry means measurement of brain structures and their changes. Voxel-based 

morphometry (VBM) is a voxel-wise comparison of brain images between two different groups 

of subjects by which structural changes can be investigated (29). VBM requires pre-processing of 

MRI images before the voxel-wise investigation. First step to VBM is segmentation of MRI 

images and normalization to the same stereotactic space. Normalization is followed by 

smoothing after which the voxel-wise parametric statistical tests are performed. SPM consists of 

different modules using which VBM can be performed, which are discussed in further sections. 

The process chain for performing voxel-based morphometry as shown in Fig. 3.1 consists of pre-

processing of MRI images. This step includes segmentation of images into grey matter, white 

matter and CSF. The segmented images are in their native space which should be converted to 

the standard space used for this thesis work i.e. MNI space. This is done by normalization 

process which is followed by smoothing. An alternative to normalization and smoothing 

processes is the DARTEL process. DARTEL is a high dimensional registration process 

performed to obtain a precise inter-subject mapping for the statistical test. 

   
Fig. 3.1 VBM process chain 

  

Segmentation  

Normalization & Smoothing 
or DARTEL 

Statistical Test 
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The major work of this thesis is to devise a framework for VBM of white matter for multiple 

sclerosis. Several methodologies were implemented and experiments were carried out to setup 

and optimize this framework using different modules of SPM. In order to setup a consistent 

methodology to detect lesions in white matter, simulated brain images were used for VBM for 

which the lesion areas are known in prior and quantified for detectability. 
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3.3. Segmentation 

MR image of a healthy brain tissue can be classified into grey matter, white matter and CSF as 

shown in Fig. 3.2. Segmentation algorithm is used to classify these tissue types. This process is 

used to distinguish different brain tissue types from each other which make it easier for the 

statistical test to detect anomalies. Segmentation is based on a modified Gaussian Mixture Model 

clustering algorithm, which has been extended to include spatial maps of prior belonging 

probabilities, known as Tissue Probability Maps (TPMs), and also a correction for image 

intensity non-uniformity that arises in MR imaging (30). Because the tissue classification is based 

on voxel intensities, partitions derived without the correction can be confounded by these smooth 

intensity variations. 

The model assumes that the MR image consists of a number of distinct tissue types (clusters) 

from which every voxel has been drawn. The model has approximate knowledge of the spatial 

distributions of these clusters, in the form of TPMs. Before using the current method for 

classifying an image, the image has to be in register with the TPMs. Registration is the process 

of transforming images from one coordinate system to other. Brains of subjects vary in shape and 

size, thus it is necessary to match them before making any comparisons. This is done using affine 

registration technique as described in next subsection. After segmentation, the grey matter, white 

matter and CSF images are transformed into MNI space preserving the amount of volume 

(explained further in next subtopic). MNI space was defined by Montreal Neurological Institute 

and thus the acronym MNI was coined. Its coordinates are derived from an average of 152 MRI 

structural images (31). 

The names of these images have ‘c1’, ‘c2’ and ‘c3’ appended to the name of the original image 
(32). Where, c1, c2 and c3 are grey matter, white matter and CSF images respectively. Images are 

in their native space after segmentation. 
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Fig. 3.2 Above figure shows a whole brain image and three different images, grey matter, white matter and CSF image 
obtained after segmentation 
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3.4. Normalization 

After segmentation the images are still in their native space. Normalization warps the images to 

the same stereotactic space using a template image. As all the operations in SPM are done in 

MNI space normalization of images to be analyzed in same stereotactic space (here MNI) is 

necessary. An example of normalization is shown in Fig. 3.3. Cyceron templates were used for 

this thesis work. The Cyceron templates are computed over a sample of 662 healthy subjects 

aging from 63 to 75 years consisting of 331 males and females (33). 

The normalization process of SPM adopts a two-step procedure to determine a transformation 

that minimizes the sum of squared differences between the voxel intensities of the template and 

image/s to be normalized (34). 

The first step involves a linear registration or 12 parameter affine registration and the second step 

is non-linear transformation or warping. First step determines an affine transformation to match 

the size, shape and position of the images using translations, rotations, shears and zooms. 

The second step involves non-linear registration for further correcting differences in size and 

shapes which are not accounted by affine transformation described by smooth discrete cosine 

transform functions. Non-linear transformation changes the volumes of brain regions. For 

preserving the volumes of each voxel a further processing step, modulation is introduced. 

Modulation multiplies the voxels of normalized image by their relative volumes before and after 

normalization. 

The name of the normalized and warped image has ‘mw’ appended to the name of its original 

name. 
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Fig. 3.3 Above fogure shows segmented images of grey matter, white matter and CSF and normalized and warped images. 

For the thesis experiments Unified Segmentation approach is implemented. This approach 

enables image registration, tissue classification and spatial normalization in the same model (35). 

Adapting unified segmentation algorithm allows a better segmentation and registration process 

which leads to more promising VBM results. 
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3.5. Smoothing 

Smoothing makes voxel-wise analysis comparable by accounting the anatomical variability and 

increasing the signal-to-noise ratio (29). Smoothing effect is the smearing of voxels into their 

neighboring voxels as shown in Fig. 3.4. The smearing effect of smoothing compensates for the 

registration errors. This in turn increases the sensitivity and specificity of the statistical test. The 

smoothing kernel is defined by the three dimensional full width at half maximum (FWHM). 

FWHM of the three dimensional Gaussian filter is a multiple of the voxel resolution. Each voxel 

of the smoothed image comprises average concentration of the surrounding voxels depending on 

the size of the smoothing kernel. The central limit theorem says that a distribution of a 

population will form a normal distribution with a large sample size. Following this principle, 

smoothing causes the voxel intensities to be normally distributed making the statistical tests 

more effective (29). Smoothing also helps in compensating inaccurate normalization. 

The name of the normalized and warped image has ‘s’ appended to the name of its original 

name. So the segmented, normalized and warped and smoothed image has ‘smwc’ appended to 

its original name. 
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Fig. 3.4 Above figure shows a smoothing effect at 4mm FWHM of normalized and warped grey matter, white matter and CSF 

images  
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3.6. DARTEL 

DARTEL is a high dimensional, nonlinear image registration procedure. It is the acronym for 

Diffeomorphic Anatomical Registration Through Exponential Lie algebra. In this procedure, first 

the mean of all the images to be darteled is created, which is used as an initial template (36). In the 

next step, the deformations from this template to each of the individual images are computed and 

the template is then regenerated by applying the inverse of deformations to the images and 

averaging. This procedure is repeated a number of times. Finally, warped versions of the images 

can be generated by normalizing them into MNI space (36). The step for conversion to MNI space 

in the toolbox also comprises of smoothing. 

DARTEL process can be done independently or jointly. In independent DARTEL grey matter 

and white matter images are darteled one after the other i.e. the grey matter images are darteled 

and the output is a single image having grey matter intensities, then the white matter images are 

darteled for which the output is again a single image comprising of white matter intensity 

information. In joint DARTEL process the grey matter and white matter images are given as 

input to the algorithm together and the output is two images, one consisting grey matter 

information and the other for white matter. 

An investigation was done to check which approach out of independent and joint DARTEL is 

more robust, as described in appendix. In this investigation joint DARTEL setup was found to be 

more robust. For all the experiments henceforth discussed, joint DARTEL setup was used. 
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3.7. Statistical Test 

Once the images are pre-processed, a voxel-wise statistical test can be performed. The test is 

performed using general linear models (GLM) which allows multiple tests ranging from group 

comparisons in non-normally distributed data also and detection of regional differences (37). 

GLM is a statistical linear model which can be used to implement parametric statistical tests. It is 

done in two steps, which includes analysis of variance of each voxel and a t statistic from the 

results for each voxel. The output of this test is an image file, statistical parametric mapping 

(SPM) or t-map showing the significantly affected regions. 

Two sample t-test is used for voxel-wise comparison based on the studies made by M. Mühlau et 

al. (38). T-test examines for the difference in means of two populations (39). As we want to detect 

anomalies in an individual we compare a single subject to the control group. The image to be 

examined for anomalies is considered as one population and controls as the other (40) (26). The null 

hypothesis H0 is stated as means of two populations, here, voxel of image to be examined and 

mean of corresponding voxels of all control images to be equal (µ1 = µ2). Variances of both 

groups, subject and controls are assumed to be equal (σ1 = σ2 = σ). If the calculated t-value is 

smaller than the t-value at the particular selected significance level, the null hypothesis is not 

rejected and if the t-value is higher, the null hypothesis is rejected (26). When a true null 

hypothesis is rejected such an error is called Type – I error. Type – I error is defined by its 

significance level (α). Some common values of α are 0.005, 0.05, 0.01, etc. 

Equation 3.1 shows formula for t-value, 

• 𝑡 =  µ1− µ2 

𝜎2 × � 1
𝑛1
+ 1𝑛2

        (3.1) 

where, n1 and n2 represent the size of populations, subject and control group respectively. As the 

size of subject is one, n1 = 1. Equation 3.2 shown the formula for t-value for n1 = 1, 

• 𝑡 =  µ1− µ2 

𝜎2 × �1 + 1𝑛2

        (3.2) 

The statistical test generates maps of t-values as the output. These maps are images with t-values 

under null hypothesis of the statistical test. 
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4. Adaptation of Technological Framework to MS Patients 

The technological framework described in previous chapter was created to analyze patients with 

Alzheimer’s Dementia (AD). Age group of patients with AD is higher in comparison to multiple 

sclerosis patients. AD is a disease of grey matter and multiple sclerosis is a disease of white 

matter of the brain. Also, the template (Cyceron template as described in section 3.4) used for 

normalization of images is defined using older healthy subjects. This technological framework is 

now being used for multiple sclerosis patients, who are a young group of patients compared to 

AD patients. Thus, necessary adaptations are made so that the framework can be used for 

multiple sclerosis patients. This process is described in this chapter. 

4.1. Normative Database 

Brain scans of normal healthy subjects are used to make statistical comparison. For the 

experimental work of this thesis, the statistical comparisons are made using one, two or all three 

of the following healthy subject databases from the databases available at Jung Diagnostics. 

All the controls in the databases are healthy subjects. First database consists of 32 subjects, 

second of 46 and third of 42 subjects. The mean and maximum and minimum ages along with 

their standard deviations are given in the following table. All the scans are T1-weighted. Table 1 

shows details of the normative databases used during the thesis work, 

Table 1 Details of Control Databases 

 No. of subjects 
Min. age 
[years] 

Max. age 
[years] Mean 

Standard 
deviation 

Database 1 32 22 80 44.58 13.12 
Database 2 46 18 54.85 45.63 8.47 
Database 3 42 25 74.75 57.20 12.76 
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4.2. Simulated Image Database 

BrainWeb (McConnell Brain Imaging Centre in Montreal) provides ground truth images for the 

analysis of in vivo data acquired in the form of Simulated Brain Database (SBD). This database 

contains a set of realistic MR images generated using MRI Simulator (41). The simulator 

implements a discrete-event simulation of nuclear magnetic resonance (NMR) signal production, 

and also models noise and partial volume effects of the image production process using models 

based on the Bloch equations (41). 

MR images of a normal brain and brain with different severities of multiple sclerosis lesions and 

their corresponding lesion masks are available for download from BrainWeb 

(www.bic.mni.mcgill.ca/brainweb/). The lesions in the brain images with mild, moderate and 

severe MS lesions are exactly same as the lesions in mild, moderate and severe MS lesion mask 

images. The dataset consists of 11 images of each brain type i.e. normal brain, brain with mild 

lesion, moderate lesion and severe lesion. The ground truths for each brain type are also 

available from the same source. ‘Ground truth’ is a reference image on basis of which 

comparisons are made, in other words it can be said that ground truth images are the ideal images 

of simulation using which comparisons and inferences can be made.  

  

http://www.bic.mni.mcgill.ca/brainweb/
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MRI simulator provides several types of parameters to be specified in order to model various 

acquisition protocols. Following parameters we selected in order to simulate the image quality of 

MP-RAGE protocol. MP-RAGE is the acronym for Magnetization Prepared RApid Gradient 

Echo. It is a type of pulse sequence which uses very short TR allowing acquisition time to be less 

than one second and images almost free from motion artifacts (42). The simulation parameters of 

the images are as in Table 2. 
   Table 2 Parameters of Simulated Images 

Echo time 10ms 
Flip angle 30˚ 
Image type M 
INU field A 
No. of echoes 1 
% INU 20% 
% Noise 3% 
Random seed 0 
Reference tissue 0 
Scan technique SFLASH 
Slice thickness 1mm 
TR 18ms 

The simulation parameters are briefly described as below, 

• Echo time (TE) is the time from the application of the pulse to the peak of the echo signal in 

pulse sequences (43). It is defined in milliseconds. 

• Flip angle is the angle at which the net magnetization is tilted on the application of external 

radio-frequency (RF) pulse (44). It is measured in radians. 

• Image type is the type of output image constructed by the simulator (41). Either of the three 

images types is to be selected from imaginary (I), magnitude (M) and real (R). 

• INU field and % INU is the intensity non-uniformity parameter. This field is based ton real 

MR scans to make them more realistic. The value ranges from -100 to 100, a negative value 

inverts the field (41). 

• Number of echoes: it is the series of RF rephasing pulses. 

• Random seed: it initializes the random number generator used to simulate noise. If the value 

is specified as zero a new pseudo-random seed is generated every time. The value ranges 

from 0 to 2147483647 (41). 
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• % Noise: standard deviation of the Gaussian noise applied to the image (41). 

• Reference tissue is the tissue used as a reference for the percentage noise calculation (41). 

• Scan technique defines the type of pulse sequence. The default type is used for the 

downloaded data. 

• Slice thickness defines the thickness of slices. From 1 to 10mm. 

• Repetition time (TR) is the time between consecutive excitation pulses (43). It is defined in 

milliseconds. 

Table 3 shows the nomenclature for normal, mild, moderate and severe MS lesion brains and 

their respective lesion masks is as follows, 
   Table 3 Simulated Database Nomenclature 

Image Assigned Name 
Normal brain t001-000001 
Mild lesion brain t001-000002 
Moderate lesion brain t001-000003 
Severe lesion brain t001-000004 
Mild lesion mask msles1 
Moderate lesion mask msles2 
Severe lesion mask msles3 

Fig. 4.1 shows same slice of the images of normal brain, brain with mild, moderate and severe 

MS lesion. The lesion is highlighted in red.  

    
Fig. 4.1 Axial view of MS lesion brains (left to right – normal, mild, moderate and severe MS lesion brain) 
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Fig. 4.2 shows same slices of mild, moderate and severe lesion masks. Arrow heads show the 

mild lesions. 

   
Fig. 4.2 Axial view of MS lesion masks (left to right – mild, moderate and severe MS lesion mask) 

There is a variation in the brain images downloaded from BrainWeb database i.e., every time a 

job is ordered for the same simulated parameters there is a difference in the images due to 

simulated noise (3%). Therefore, to check the variation in volumes a dataset of 11 images of 

each brain type is constructed. The relative deviation of total intracranial volume for all brain 

type images from the ground truth is not greater than 0.21%.  
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4.3. Performance of Segmentation Engine on Normal Brains 

4.3.1. Segmentation Optimization 

Introduction 

Segmentation engine of SPM classifies brain tissues into either of the three tissue types 

depending on their tissue probability maps. But this classification of tissues is not accurate, for 

some instances segmentation misclassifies some portion of tissue into another and/or scalp is 

classified into CSF. An assumption was made that by optimizing particular value/s of parameter 

settings there is a possibility that an accurate or near to accurate segmentation can be achieved. 

To optimize the performance of segmentation engine, volumetry was done on simulated brain 

images. Volumetry is the estimation of volumes of different brain regions or brain matters or 

lesions, for e.g. volume of white matter in a subject. 

Materials and Methods 

Simulated brain data for which ground truth was available and three real patient brain scans were 

used for optimization of the segmentation routine. For optimization of segmentation routine 

different parameters were varied from their default values to check which parameter value gives 

best results (volumes) near to ground truth. 

Ground truth volumes of grey matter, white matter and CSF for simulated brain scans were 

available. Deviation in volumes of the segmented brain tissues of simulated data were compared 

to their ground truth volumes and for real patient data, volume deviations were compared using 

the volumes obtained at defaults segmentation parameter settings. A graphical presentation of 

comparison of volume deviations from their default parameter settings is made to check whether 

a same pattern in deviation is obtained for simulated and real patient data. A same pattern of 

volume deviations is expected for each and every brain image for all the parameter settings. 

The real patient data consists of a female of 18 years (s001-000002), a male of 43 years (s001-

000123) and a male of 81 years (s001-000129). The simulated image data is generated using the 

same protocol but with a variation in noise. Table 4 shows the ground truth volumes for four 

simulated brain images.  
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         Table 4 Ground truth (brain tissue volumes) 

 Grey matter vol. 
[ml] 

White matter vol. 
[ml] CSF vol. [ml] 

t000-000001 881.63 654.46 374.68 
t000-000002 894.15 667.30 352.22 
t000-000012 880.37 686.15 321.66 
t000-000014 898.60 680.71 308.61 

The parameters varied were warp frequency cutoff, bias FWHM, sampling distance and warp 

regularization. 

• Warp frequency cutoff. Discrete cosine transforms (DCT) of periods longer than the cutoff 

are used to describe the warps. A smaller cutoff frequency allows more image deformations 

to be modeled. Segmentation at smaller values of warp frequency cutoff consumes more time 

and computational power (32). The default value of this parameter is 25. The experimental 

values were varied from 20 to 80 at an interval of 5. 

• Bias FWHM. It is full width at half maximum of Gaussian smoothness. Bias FWHM models 

out intensity non-uniformity due to different tissue types. If the intensity non-uniformity is 

very smooth, then a larger value of bias FWHM is preferable (32). The default value is 60mm. 

The experimental values were varied from 10 to 190 mm at an interval of 10. 

• Sampling distance. “It is the approximate distance between sampled points when estimating 

the model parameters” (32). Smaller values use more of the data, but the procedure comes 

with a computational time trade-off. The default value of this parameter is 3mm. The 

experimental values were varied from 1 to 4.5mm. 

• Warp regularization. Intensity variations occur arises due MR physics and different tissue 

properties. Warping regularization controls the amount of these deformations to be modeled. 

More regularization allows smoother deformations to be modeled (32). The default value of 

this parameter is 1. Experimental values were varied from 0.001 to 1000 with a factor of 10. 
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Results 

All the graphs for t000-000001 and t000-000002 show the deviation of volumes from the ground 

truth volumes. All the graphs with prefix ‘d’ and s001-000002 and s001-000129 show the 

deviation of volumes from their respective default values of parameter settings. Results for t000-

000012 and t000-000014 show a similar pattern as t000-000002. 

Warp frequency cutoff 

As shown in Fig. 4.3, with the increase in warp frequency cutoff, deviation of the volumes 

obtained from the ground truth decreases for grey matter, increases for white matter. The volume 

of cerebrospinal fluid gets stable at a frequency range of 50 to 60 for synthetic data. There are no 

similar patterns between t000-000001 and other synthetic data files. 
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Fig. 4.3 Segmentation optimization using warp frequency cutoff parameter 

The volumes of grey matter, white matter and cerebrospinal fluid deviates more from the default 

parameter setting with the increase in warp frequency cutoff. With deviation of parameters from 

their default values, the synthetic patient data shows a similar pattern in results, with the increase 

in the frequency the deviation in results also increases for grey matter, white matter and 

cerebrospinal fluid. Less deviation in the values of grey matter and white matter is noticed in 

younger patients (s001-000002) than older patients (s001-000123 and s001-000129). The 

patterns for s001-000123 and s001-000129 are similar. 
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Bias FWHM 

In simulated patient data, when comparing the deviation from ground truth, this parameter has an 

intense effect on the volumes of cerebrospinal fluid as shown in Fig. 4.4. When comparing with 

respect to the deviation from the default parameter settings, the synthetic patient data shows a 

similar pattern and a significant change in the cerebrospinal fluid volumes. In real patient data it 

has a significant effect on the volumes of white matter and CSF. There is no similarity between 

the patterns of simulated data and real patient data when comparing with deviation of parameters 

from their default values. 
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Fig. 4.4 Segmentation optimization using bias FWHM parameter 
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Sampling distance 

It is evident from Fig. 4.5 that changing sampling distance has an effect on the volumes of 

cerebrospinal fluid, but the effect on grey matter and white matter is insignificant. When 

comparing the results with respect to the deviation of parameter settings from default values the 

synthetic data show dissimilar patterns with major variations in cerebrospinal fluid. 

 

 

   
Fig. 4.5 Segmentation optimization using sampling distance parameter 
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Warp regularization 

Altering warping regularization shows a similar pattern on all the patient data as shown in Fig. 

4.6. It has a significant effect in the volumes of cerebrospinal fluid. Grey matter and white matter 

volumes do not vary much. 

  

 
Fig. 4.6 Segmentation optimization using warp regularization parameter 
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Varying different parameters leads to more unsatisfying results, and thus indicates that the 

default parameter settings are the best suitable for segmentation. Though, there is a possibility of 

segmenting MR images perfectly by selecting customized parameter values for individual 

images, this process is time consuming but leads to better segmentation. 

  



Adaptation of Technological Framework to MS Patients 

 
36 

 

4.3.2. Segmentation Errors 

Introduction 

Segmentation inaccuracies cause misclassification of grey matter, white matter and CSF in the 

segmented images. This misclassification can be nullified up to an extent by optimizing the 

Gaussian kernel for smoothing of images if the inaccuracy in segmentation and registration is 

known. 

Materials and Methods 

In order to find the combined segmentation error a ground truth image (phantom image) for grey 

matter, white matter and CSF obtained from BrainWeb was used with the simulated data from 

the same source. 

Three T1 images from BrainWeb with same simulation parameters are segmented using SPM. 

The phantom image and segmented images are first binarized and the segmented image is then 

reoriented in the same dimensions as phantom image using image calculator routine of SPM. A 

binary image has only two values of all voxels, either 0 or 1. Binarization of image refers to 

conversion of all voxel values greater than zero, to 1 and all remaining voxels to zero. Images 

can be binarized at thresholds other than zero also; this is further explained in section 4.4. 

On visually observing both the binarized images after reorientation of the segmented image it 

was evident that there is a shift in the segmented image. To find this shift a subtracted image is 

generated as shown in equation 4.1. Maximum shift can be defined by the maximum number of 

white pixels next to each other. 

• 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 =  | 𝑝ℎ𝑎𝑛𝑡𝑜𝑚 𝑖𝑚𝑎𝑔𝑒 − 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 |   (4.1) 

First image in Fig. 4.7 is the result of the reoriented and binarized segmented image overlaid on 

binarized phantom image shown in pink color. The white and red portions in the image are of 

phantom and segmented images respectively and the pink portion shows overlap of both the 

images. The white and red portion of the first image is the result of subtraction image in the 

second image. 
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Fig. 4.7 Image on the left is the coronal view of an overlay of phantom and segmented image. Second image is the 

subtraction image 

The voxels in white display a shift which is evident in all three, x, y and z dimensions. This shift 

is calculated for all planes for all three dimensions. For e.g. for an image with dimensions 

181x217x181 i.e. a 3D matrix, if we consider X-axis, then all the voxels orthogonal to X-axis i.e. 

in the direction of Z-axis are scanned for maximum shift from the first till last coordinate of Y-

axis. So, now we have a 2D matrix of Y×Z (217×181) elements with maximum shifts. A mean 

value is obtained from this 2D matrix which indicates an average shift in X-axis. Likewise, a 

scan is made for Y- and Z-axis. 

Results 

Table 5 shows the mean of maximum shift, denoted by ‘MMS’, for three images in all three 

dimensions with their standard deviation, denoted by ‘SD’, 
Table 5 Registration error 

 Image MMS X 
[mm] 

MMS Y 
[mm] 

MMS Z 
[mm] SD X SD Y SD Z 

Grey 
Matter 

t000-000001 3.56 3.9 3.06 4.41 4.88 3.84 
t000-000002 2.88 3.23 2.46 3.55 3.97 3.02 
t000-000012 2.88 3.23 2.51 3.49 3.96 3.04 

White 
Matter 

t000-000001 2.06 2.34 1.81 2.71 3.05 2.38 
t000-000002 2.04 2.3 1.84 2.62 2.9 2.35 
t000-000012 2.52 2.86 2.37 3.1 3.47 2.98 

CSF 
t000-000001 5.57 6.65 4.87 6.32 8.64 7.41 
t000-000002 5.03 5.99 4.57 5.50 7.58 6.8 
t000-000012 4.72 5.61 4.30 5.11 6.98 6.12 
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From the above table it can be estimated that there is approximately 4mm shift in grey matter, 

3mm in white matter and 7mm in CSF (based on the mean of standard deviations). These 

segmentation errors can be compensated using a 4mm Gaussian kernel for smoothing grey 

matter images, 3mm Gaussian kernel for white matter images and 7mm Gaussian kernel for CSF 

images. 
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4.4. Effect of MS Lesions on Tissue Classification 

Presence of MS lesion in the simulated brain images causes misclassification of brain tissues. 

The multiple sclerosis lesions in white matter are classified as grey matter due to the matching 

intensities of MS lesions and grey matter in T1-weighted images (45) (46). Volumetry of simulated 

brain images, normal brain and lesion brains was done to check the extent of this 

misclassification of brain tissues due to mild, moderate and severe MS lesions. 

The MS lesion masks, as introduced in section 4.2 are in Talairach space. Talairach space is 

defined by Talairach & Tournaux in 1988. This space is based on the dissection of a 60-year old 

French lady (47). As all the statistical comparisons using SPM are done in MNI space, all lesion 

masks were first converted into MNI space using normalization algorithm from Unified 

Segmentation routine. MNI space was defined by Montreal Neurological Institute and thus the 

acronym MNI was coined. Its coordinates are derived from an average of MRI structural images 

from 152 individuals (31). Normalization uses a transformation matrix obtained after 

segmentation which contains information about affine transformation. Transformation matrix 

generated after segmentation of one of the simulated normal brain from the dataset of 11 images 

was used to convert all three (mild, moderate and severe) MS lesions masks. Normalization was 

done at the default parameters used in unified segmentation other than the transformation matrix 

as mentioned above. 

As there are many small clusters of lesion scattered all over the brain, the region of interest 

(ROI) was confined to simulate a more realistic lesion in white matter region. Binary masks were 

generated from the lesion masks which are now in MNI space, at a threshold of 20%, i.e. all 

voxels having intensity greater than 0.2 in the lesion mask are up scaled to 1 and less than or 

equal to 0.2 are down scaled to 0. Table 6 shows the volumes of lesions before and after 

thresholding. 

• 𝑙𝑒𝑠𝑖𝑜𝑛 𝑚𝑎𝑠𝑘 > 0.2 → 1        (4.2) 

• 𝑙𝑒𝑠𝑖𝑜𝑛 𝑚𝑎𝑠𝑘 ≤ 0.2 → 0        (4.3) 

Image Calculator routine from SPM is used to generate the binary masks. 
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        Table 6 Volumes of lesion masks in MNI space before and after thresholding at 20% 

Lesion type Lesion vol. before 
thresholding [ml] 

Lesion vol. after 
thresholding [ml] 

Mild 1.09 1.46 
Moderate 6.19 8.81 
Severe 12.20 18.18 

After thersholding at 20% and generating binary masks, the voxels which were before of low 

intensities are now up scaled to value 1 making borders of the lesion definite. As a consequence, 

the lesion volumes increase after thresholding. 

The segmentation routine classifies brain image into either of the three brain tissues, grey matter 

(c1), white matter (c2) or CSF (c3) depending on their respective tissue probability maps 

(TPMs). As there is no TPM for MS lesion in the segmentation routine, the intensity of voxels in 

the lesion area corresponding to that of grey matter up to an extent are classified as grey matter 

voxels. Therefore, with white matter, some portion of grey matter is also classified as a MS 

lesion. Therefore, to check the size of this misclassification, volumes inside the lesion area for all 

brain matters are estimated. 

For calculating the volumes inside the lesion area, segmented images of all 11 normal brains 

were masked with mild, moderate and severe MS lesions and the average of white matter, grey 

matter and CSF proportions was calculated.  

Normal brain images are masked with mild, moderate and severe MS lesion as shown in Fig. 4.8, 

• c𝑛 .∗  (msles1 >  0.2),   c𝑛 .∗  (msles2 >  0.2),   c𝑛 .∗  (msles3 >  0.2)  (4.4) 

where, cn (cn = c1, c2, c3) are segmented images of normal brain 

 
Fig. 4.8 MS lesion masked on a normal brain image 
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Volumetry of mild, moderate and severe MS lesion brain images is also done masking mild, 

moderate and severe MS lesion masks respectively as shown in Fig. 4.9. 

• 𝑐𝑚𝑖𝑙𝑑 .∗  (msles1 >  0.2),   𝑐𝑚𝑜𝑑 .∗  (msles2 >  0.2),   𝑐𝑠𝑒𝑣 .∗  (msles3 >  0.2) (4.5) 

where, cmild (cmild = c1, c2, c3) are segmented images of mild lesion brain 
cmod (cmod = c1, c2, c3) are segmented images of moderate lesion brain 
csev (csev = c1, c2, c3) are segmented images of severe lesion brain 
 

 
Fig. 4.9 MS lesion mask on a lesion brain image 

The region highlighted in red is the lesion area. 

In the above equations, ‘.*’ means voxel-wise multiplication of two images. ‘msles_x > 0.2’ 

indicates that only the part of lesion mask image which has intensity more than 0.2 will be taken 

into account, the remaining lesion is ignored in masking. 

 Table 7 shows average proportions of white matter, grey matter and CSF volumes inside the 

lesion region for normal brain when masked with MS lesions. 
Table 7 Volumes inside the lesion 

                  Substance 
Brain type White matter [%] Grey matter [%] CSF [%] 

cn .* ( msles1 > 0.2 ) 69.80 23.79 6.41 
cn .* ( msles2 > 0.2 ) 80.93 14.44 4.63 
cn .* ( msles3 > 0.2 ) 90.20 6.18 3.62 
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Table 8 shows average proportions of white matter, grey matter and CSF volumes inside the 

lesion region for mild, moderate and severe lesion brains when masked with their respective 

lesion masks. 
Table 8 Volumes inside the lesion 

                    Substance 
Brain type White matter [%] Grey matter [%] CSF [%] 

cmild .* ( msles1 > 0.2 ) 58.68 35.01 6.31 
cmod .* ( msles2 > 0.2 ) 65.97 29.37 4.66 
csev .* ( msles3 > 0.2 ) 74.06 22.26 3.68 

The values in the above tables indicate proportion of each brain matter calculated from the 

average of 11 images of their respective type of brain. 

Ideally, none of the brain matters should be detected inside the lesion area when a respective 

lesion mask is applied on the lesion brain, but due to misclassification of lesion all the matters 

are detected. 

The graphs in Fig. 4.10 demonstrate the absolute difference of white and grey matter volume 

inside the lesion area; for e.g., for white matter, 

| (vol. of WM for 𝑐𝑛 .∗  (msles1 > 0.2)) – (vol. of WM for 𝑐𝑚𝑖𝑙𝑑.∗ (msles1 > 0.2)) | (4.6) 

The graph on the left is for white matter and on the right is for grey matter. Lesion volumes are 

1.46, 8.81 and 18.18 ml representing mild, moderate and severe MS lesions respectively. 

Standard error of estimate for the fits of grey matter and white matter are 5.80 and 5.77 

respectively. 

 
Fig. 4.10 Absolute difference of white matter and grey matter volumes inside the lesion 
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Fig. 4.11 show similar graphs, but here the linear regression fits are forced to pass through origin 

as at zero lesion volume the difference in misclassification should also be zero. Standard error of 

estimate for the fits of grey matter and white matter are 8.21 and 8.15 respectively. Although, 

standard error of estimate for the fits not intercepting zero are smaller, the later fits give a more 

realistic impression about the behavior of lesion misclassifications. 

 
Fig. 4.11 Absolute difference of white matter and grey matter volumes inside the lesion 

From the results of volumetry it can be inferred that the effect size (Δ) for white matter is 

11.12%, 14.96% and 16.14% for mild, moderate and severe lesion respectively, and 11.22%, 

14.93% and 16.08% for mild, moderate and severe lesion respectively for grey matter. 

By volumetry of the MS lesion brain images it is evident that there is a misclassification of the 

lesion due to the segmentation algorithm as there is no lesion template present in segmentation 

and normalization routine. Based on the linear regression analysis it is observed that the effect 

size scales with the lesion volume, i.e. greater the lesion volume, bigger is the effect size. Thus, 

approximately same volume of white matter is misclassified as grey matter. As the effect size 

scales with the lesion volume, all further investigations are limited to only one MS lesion mask. 

Severe lesion mask was chosen for later findings as a representative of MS lesion. 
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4.5. Simulation of Artificial Lesion 

4.5.1. Introduction 

Segmentation process depends on the intensity differences in order to segment brain tissues. 

Intensity differences between grey matter and white matter decrease in presence of lesions 

contributing to misclassification of lesion as grey matter (46). Therefore, lesions are not detected 

completely by the statistical test described in section 3.7. In order to make the lesions more 

detectable, both white matter and grey matter needs to be examined. Thus, to see the effect of 

lesion in both white and grey matter, statistical test is run for both brain tissues. Therefore, t-

maps are generated for white matter and grey matter components, named as hypo and hyper 

intensity maps respectively. For this, we attenuate white matter and amplify it in the grey matter 

with an artificial lesion. 

The above described simulation of artificial lesions can be implemented in VBM with two 

different approaches. In the first approach simulation of lesions is done on pre-processed i.e. 

normalized and smoothed images and the other in which lesion is simulated on normalized image 

and then smoothing is done. The first approach is an artificial kind of setup for testing the 

efficiency of lesion detection by the framework. Whereas, the second approach is more realistic 

as real patient images already have a lesion on them and then they are pre-processed. 

4.5.2. Materials and Methods 

In order to generate t-maps (hypo- and hyper-intensity maps), the lesion masks (mild, moderate 

and severe MS lesion masks) are applied on pre-processed images. Attenuation of lesion on 

white matter images which means reduction in white matter and amplification of lesion on grey 

matter images, elevation in withe matter is done. 

As multiple sclerosis is a disease of white matter, the lesion should be in white matter region 

only. Therefore, only white matter should be detected in the area of lesion. But a small volume of 

grey matter is also detected due to misclassification of the lesion as grey matter. As observed 

from the results based on the studies made by Renske Boer et al. (45) and the experiment 

described in section 4.4 (effect of MS lesions on tissue misclassification), the amount of 

misclassification of grey matter scales to the effect size. Thus, in order to detect the lesion fully 

in the grey matter we add the same portion of the white matter in the lesion that is missing in the 
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grey matter image, from the white matter image. Equation 4.8 for amplification mimics the 

misclassification as explained above. 

Simulation of artificial lesions can be implemented by two different approaches in VBM. In the 

first approach, lesion is applied after normalization and smoothing, simulates very accurate 

delineation of lesions on the brain.  

(𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑎𝑛𝑑 𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 ∗ 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑙𝑒𝑠𝑖𝑜𝑛)  →  𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 𝑡𝑒𝑠𝑡 

As the lesion is masked on the smoothed image, there is a very accurate division of lesion from 

the normal brain tissue which can be detected easily by the statistical test.  

The second approach is slightly different from the first. In this method, the segmented and 

normalized brain image is attenuated with MS lesion mask and then the normalized image is 

smoothed, followed by statistical test. 

(𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑖𝑚𝑎𝑔𝑒  ∗  𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑙𝑒𝑠𝑖𝑜𝑛)  →  𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 →  𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 𝑡𝑒𝑠𝑡 

As the brain images are smoothed after the application of lesion mask, the voxels of lesion also 

gets smeared out with the neighboring voxels and so does the neighboring voxels in the lesion 

area. As a result of this smearing effect of lesion voxels after smoothing, there is a less accurate 

delineation of lesion in the test. This method simulates a more real brain image. 

Fig. 4.12 shows smoothed (8mm Gaussian kernel) images generated at 90% attenuation with 

severe lesion mask with both the above described approaches. The lesion in the left image is 

clearly visible than in the right although both the images are smoothed with 8mm filter size. 

            

Fig. 4.12 Sagittal view of same brain image simulated with 90% MS lesion. On the left is the image generated with model 1 
and on the right with model 2. Region highlighted in red is one of the lesion areas. 
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Following biomarkers are implemented for both VBM approaches discussed above. 

• Biomarker (a): Expression for attenuation in Image Calculator is as follows, 

f =   i2 .∗  ( 1 –  effect size .∗  ( i3 >  0.2 ) )     (4.7) 

• Biomarker (b): Expression for amplification in Image Calculator is as follows, 

f =   i1 .∗  ( i3 ≤  0.2 )  +  ( i1 + ( effect size .∗  i2 )) .∗  ( i3 >  0.2 )  (4.8) 

where, i1 = mwc1 image file (normalized grey matter image) or 
        smwc1 image file (smoothed and normalized grey matter image) 

 i2 = mwc2 image file (normalized white matter image) or 
        smwc2 image file (smoothed and normalized white matter image) 

 i3 = severe lesion mask 

i1 and i2 are selected according the approach implemented for the statistical test. 

 
Effect size is the percentage volume of white matter in the lesion. In the experiments for this 

thesis work the effect size is varied from 0% to 100% with 10% increment. 

Equation for biomarker a, indicates voxel wise multiplication of smoothed and normalized white 

matter image and the resulting image generated by the inversion of percentage of MS lesions 

equivalent to effect size. MS lesion is thresholded at 20%. The equation is explained graphically 

step-by-step as follows, 

Fig. 4.13 shows same slices of white matter of normal brain (i2) and severe lesion mask (i3). 

   
Fig. 4.13 Slice of normal brain image (left) and severe lesion mask (right) 
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Fig. 4.14 shows same slice of severe lesion mask thresholded at 20% (i3 > 0.2) and the same 
image at an effect size of 50% attenuation (effect size .* (i3 > 0.2)), i.e. intensity of the image 
reduced by 50%. 

   
Fig. 4.14 Slice of severe lesion mask at 20% thresholding (left) and 50% attenuation (right) 

Fig. 4.15 shows same slice of inverted severe lesion mask after thresholding and attenuation (1 - 

effect size .* (i3 > 0.2)) and this image masked with white matter image (i2 .* (1 - effect size .* 

(i3 > 0.2))). 

    
Fig. 4.15 Slices of inversion image of thresholded and attenuated severe lesion mask (left) and white matter masked with the 

left image (right) 

Likewise, equation for biomarker b, indicates summation of voxel wise multiplication of 

smoothed and normalized grey matter image and voxel wise multiplication of MS lesion at 20% 

thresholding and the resulting image generated by the summation of percentage of white matter 

image equivalent to effect size and grey matter image. 
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Fig. 4.16 shows an example of attenuation and amplification of severe MS lesion on white 

matter and grey matter images of the normal brain at an effect size of 50% each as explained in 

equations above, 

    
Fig. 4.16 Reduction in white matter (left) and elevation in white matter (right) 

After pre-processing and simulation of artificial lesion, statistical test is done. In the t-maps 

generated as an output of the statistical test, every voxel that is highlighted is not necessarily an 

actual lesion. There are some voxels which are not in reality lesions but are highlighted, and 

vice-versa. Thus, accuracy, sensitivity and specificity are the measures used to quantify the 

efficiency of the statistical test. Quantification is explained in detail in appendix. All three 

measures of quantification should be 100 percent which will indicate the framework to be ideal 

for detection of MS lesions. 

It can be assumed that first approach is more sensitive than the second approach. The assumption 

was made on the basis of the fact that there is a more accurate delineation of MS lesion in the 

first model than in the second. To support the above assumption, voxel-based morphometry 

using database – 1 was done with both methods. Severe MS lesion was used to simulate the 

lesion on the normal brain image at 0.005 significance level. Smoothing increases signal-to-noise 

ratio which in turn improves the results of statistical test. So, the second model was also tested at 

different smoothing kernel sizes to check the best suitable size of Gaussian smoothing kernel that 

can be used in further experiments. 
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The above mentioned VBM procedure was performed using the MATLAB program available at 

Jung Diagnostics on the normal subject database. This program performs a statistical test on the 

database files against each other, one after the other to characterize group differences. For e.g., 

consider a database with 10 controls in it, from controls_001 to controls_010. First image data 

from the database i.e. controls_001 is considered as the subject file and remaining files (from 

controls_002 to controls_010) as controls for the statistical test and voxel-wise investigation is 

executed. In the next sequence, second image data from the database (controls_020) is 

considered as the subject file and remaining files (controls_010 and controls_030 to 

controls_010) are considered as controls and statistical test is performed. Thus, each image data 

is statistically tested against the remaining data. Thus, a mean of quantification measures i.e. 

accuracy, sensitivity and specificity can be calculated for the individual results of each statistical 

test. These mean values give an overview about the performance of the implemented VBM 

approach. 

4.5.3. Results 

The graphs for mean accuracy, mean sensitivity and mean specificity in the results below and in 

other experiments henceforth indicate the mean of respective quantity calculated from the results 

of quantification after statistical test of each image in the database. Attenuation is the effect size 

(refer section 4.5.2) at which lesion was simulated. The legend in the mean sensitivity graphs 

indicates the area under curve. 

Fig. 4.17 shows the results of quantification of VBM done at 12mm smoothing kernel. With the 

second approach 100% accuracy, sensitivity and specificity is not achieved even at 90% 

attenuation, whereas nearly almost 100% accuracy and specificity, and 100% sensitivity is 

observed at 40% attenuation with first approach. In the second approach of VBM as the lesion 

boundaries are smoothed out, statistical test doesn’t detect the lesion accurately and thus, low 

sensitivity is achieved. With the increase in effect size (from 0% to 100%) of simulated lesion 

the smearing effect of lesion voxels also increases. Therefore, the lesion voxels are smeared out 

into non-affected white matter region simulating new clusters of lesion. Thus, increases false 

positives inducing a downward slope in the results of accuracy and specificity in the graphs of 

second model. Similar observations can be made from the graphs in Fig. 4.18 which shows the 

results for both the models at 8mm smoothing kernel.  
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Fig. 4.17 Graphs shows mean sensitivity and specificity and accuracy for both the models at 12mm filter size. Left graph 

represents results of model 1 and right of model 2 
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Fig. 4.18 Graphs shows mean sensitivity and specificity and accuracy for both the models at 8mm filter size. Left graph 

represents results of model 1 and right of model 2 
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Due to a large filter size the smearing effect in the voxels is also higher. This effect can be 

controlled by reducing the Gaussian kernel to smaller sizes. Fig. 4.19 and Fig. 4.20 shows results 

obtained by performing morphometry with second model on images smoothed at 2mm, 4mm, 

8mm and 12mm, p-value 0.005 and lesion type severe, 

 
Fig. 4.19 Above graphs shows mean sensitivity and specificity and accuracy. Graphs from left to right represent results 

obtained with 2mm and 4mm respectively 
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Fig. 4.20 Above graphs shows mean sensitivity and specificity and accuracy. Graphs from left to right represent results 

obtained with 8mm and 12mm respectively 
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It is apparent that model – 1 is more efficient in detecting the simulated lesion due to clear 

delineation of the boundaries of lesion. The measures of accuracy, sensitivity and specificity are 

higher for first approach in comparison to the second. However, second approach is more 

realistic for lesion detection. It is also evident from the later part of this experiment that smaller 

the Gaussian kernel more efficient the second approach of VBM becomes. A smaller Gaussian 

kernel causes less smearing effect, thus there are more true positives and less false positives, 

which in consequence improves the performance of the model. 
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5. Implementation of VBM on Simulated Data for Optimization 
of Framework 

5.1. Introduction 

From the results of the previous section 4.5 (simulation of artificial lesion), it is evident that 

when a lesion is applied before pre-processing the image, better results are obtained for statistical 

tests using images generated with smaller smoothing filter size. Same inference can be made 

about smoothing kernel from the results of section 4.3.2 (segmentation error) also. Using 

previous results and observations, VBM is further optimized varying significance level in the 

statistical test and smoothing kernel size for joint DARTEL implementation to make it more 

robust for detection of MS lesions. For the framework built during this thesis work, a benchmark 

of 90% accuracy and specificity and 60% sensitivity was set. Threshold for sensitivity was kept 

low taking into account the fact that misclassification of lesion voxels as grey matter leads to 

poor detection of the lesion clusters. 

 

5.2. Materials and Methods 

As the volume and region distribution of MS lesion available from BrainWeb is known, it can be 

used as a reference to optimize the performance of VBM model. Brain image with severe MS 

lesion was used as the patient image and severe MS lesion mask as a reference for optimization 

of VBM model. Normative database – 1, 2 and 3 were used as controls for the statistical test. 

VBM was performed on brain image with severe MS lesion at three different significance levels, 

0.05, 0.01 and 0.1 for hypo intense maps and two significance levels, 0.005 and 0.05 for hyper 

intense maps. The significance levels selected for optimization were based on the results of 

previous experiments which show different sensitivities in detecting lesions when investigating 

reduction in white matter (hyper intense maps) and damage in white matter (hypo intense maps). 

Normalized and smoothed images of grey matter and white matter generated by joint DARTEL 

implementation were used in the statistical test. The smoothing kernel for DARTEL was varied 

from 0 to 12mm (0, 2, 3, 4, 5, 6, 8 and 12mm). 
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The model set-up to detect MS lesions in patients affected by MS should detect the lesions 

efficiently but at the same time it should be efficient enough not to detect lesions in normal (with 

no MS lesions) healthy subjects. Therefore, the optimized model is tested for normal subject 

also. Three normal subject data were used to verify the efficiency of the framework for normal 

brains. These subjects were clinically diagnosed with no disease. The age of these subjects is 

from 25 to 64 years. The details of these normal healthy subjects are shown in Table 9. 

      Table 9 Normal Subjects 

Subject Gender Age 
1 Not available 25 
2 F 44 
3 F 64 

Images of VBM results for subject – 1 are shown in the results sub-section. 

An overlay of detected lesion and contour of the ground truth image of severe MS lesion was 

used for visual interpretation. A graphical representation of accuracy, sensitivity and specificity 

was used for numeric interpretation of VBM results. 

  



Implementation of VBM on Simulated Data for Optimization of Framework 

 
57 

 

5.3. Results 

Fig. 5.1 and Fig. 5.2 show graphs for accuracy, sensitivity and specificity at different 

significance levels and smoothing kernels for VBM performed on simulated brain image (severe 

MS lesion brain image) using database – 1 as the control database for statistical comparison. 

 

 

 
Fig. 5.1 Accuracy, sensitivity and specificity for hypo intense maps at 0.05, 0.01 and 0.1 significance levels 
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Fig. 5.2 Accuracy, sensitivity and specificity for hyper intense maps at 0.005 and 0.05 significance levels 

High accuracy and specificity are obtained for both hypo and hyper intense maps for VBM done 

using images smoothed at lower smoothing kernel sizes. Very low sensitivity is obtained for 

hypo intense maps. In performance of VBM model for hyper intense maps there is a trade-off 

between accuracy and specificity, and sensitivity with increasing smoothing kernel size. As 

observed in section 4.5, it is evident in this experiment also, that images pre-processed with 

smaller smoothing filter sizes leads to better performance of VBM.  

High specificity is obtained for lesions detected as reduction in white matter (hypo intense maps) 

at all three significance levels but with low sensitivity. Significance level of 0.1 offers the best 

trade-off between sensitivity and specificity values at lower smoothing kernel sizes. A higher 

sensitivity is obtained for lesions detected as damage in white matter (hyper intense maps) at 

small smoothing kernel size, with the significance level of 0.05 in the statistical test but 
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simultaneously low specificity is achieved. A good trade-off at significance level of 0.005 is 

observed. Approximately 90% accuracy and specificity for both biomarkers and approximately 

40% and 55% sensitivity for lesions detected as reduction and damage in white matter 

respectively was attained for database – 1. For database – 2, the values for accuracy and 

specificity for biomarker a (hypo intense map) and b (hyper intense map) are approximately 90 

and 95%, while sensitivity is approximately 49 and 53% for biomarker a and b respectively. For 

database – 3, accuracy and specificity for biomarker a (hypo intense map) and b (hyper intense 

map) are approximately 93 and 95%, while sensitivity is approximately 45 and 58% for 

biomarker a and b respectively. The average of accuracy and specificity for all three databases is 

more than 90% and average of sensitivity for biomarker a is 45% and for biomarker b is 55% 

Graphs for database – 2 and 3 can be found in appendix. 

All the figures with t-maps henceforth show axial slices of brain. Design of the t-maps used in 

the entire thesis work is a copyright of Jung Diagnostics (Copyright © 2012 Jung Diagnostics). 

Blue contour indicates actual (ground truth) severe MS lesion. The intensities indicate severity of 

lesion at that particular region. Color bar indicates severity of the lesion. A yellow/blue region 

demonstrates presence of more severe lesion and red/purple region demonstrates presence of less 

severe lesion. Numbers on the left of color bar corresponds to the t-values and on the right shows 

p-value.  
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Following two images indicate elevated grey matter intensities in white matter region of brain. 

 
© 2012 Jung Diagnostics 

Fig. 5.3 t-map (hpyermap, significance level 0.005 and smoothing filter 4mm) 
Pixels with color intensities (from the color bar) inside blue contour indicate true positives and 

outside the contour indicate false positives.  
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© 2012 Jung Diagnostics 

Fig. 5.4 t-map (hpyermap, significance level 0.005 and smoothing filter 12mm) 

From Fig. 5.3 and Fig. 5.4 it is evident that less false positive lesion regions are detected using 

4mm filter size for smoothing kernel compared to regions detected using 12mm filter size.  
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Following two images indicate reduced white matter in white matter region of the brain. 

 
© 2012 Jung Diagnostics 

Fig. 5.5 t-map (hpyomap, significance level 0.1 and smoothing filter 3mm) 
Pixels with color intensities (from the color bar) inside blue contour indicate true positives and 

outside the contour indicate false positives.  
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© 2012 Jung Diagnostics 

Fig. 5.6 t-map (hpyomap, significance level 0.1 and smoothing filter 12mm) 
From Fig. 5.5 and Fig. 5.6 is evident that more true positive and less false positive lesion regions 

are detected using 4mm filter size for smoothing kernel compared to regions detected using 

12mm filter size.  
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A good trade-off between accuracy and specificity, and sensitivity is obtained at significance 

level 0.1 and smoothing kernel size of 3mm for DARTEL for detecting reduction in white matter 

and at 0.005 significance level and 4mm smoothing kernel for detecting damage in white matter. 

On performing VBM on normal healthy subjects, very small or no clusters of pixels were 

classified as MS lesions. The clusters classified as MS lesions are due to partial volume effects in 

most instances. Partial volume effect is a conflict of contrast between brain tissues at the borders. 

It is seen when more than one tissue type shares intensity at the same voxel (48).  

Considering these subjects disease free false positives (FP), true negatives (TN) and specificity 

were calculated. Table 10 shows FP, TN and specificity calculated with respect to white matter 

as region of interest (ROI) and Table 11 shows FP, TN and specificity calculated with respect to 

severe MS lesion as ROI. It is evident that high specificity for both ROIs indicates the model to 

be robust for normal healthy subjects also. 
Table 10 Specificity for normal subject data (ROI – white matter mask) 

 
False positives vol. [ml] True negatives vol. [ml] Specificity [%] 
Hypomap Hypermap Hypomap Hypermap Hypomap Hypermap 

Simulated 
normal 
brain image 

3.12 1.44 272.80 274.48 98.87 99.48 

Normal 
subject 1 

0.78 3.45 275.14 272.47 99.72 98.75 

Normal 
subject 2 

0.82 4.48 275.10 271.44 99.70 98.38 

Normal 
subject 3 

0.64 11.12 275.28 264.80 99.77 95.97 

Table 11 Specificity for normal subject data (ROI – severe MS lesion mask) 

 
False positives vol. [ml] True negatives vol. [ml] Specificity [%] 
Hypomap Hypermap Hypomap Hypermap Hypomap Hypermap 

Simulated 
normal 
brain image 

0.38 0.05 11.98 12.31 96.93 99.60 

Normal 
subject 1 

0.02 0.04 12.34 12.32 99.84 99.68 

Normal 
subject 2 

0.05 0.35 12.31 12.01 99.60 97.17 

Normal 
subject 3 

0 1.28 12.36 11.08 100 89.64 
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6. Implementation of Optimized Framework on Clinical Data 

6.1. Introduction 

Previous chapters described the modules of used in SPM, different approaches of implementing 

VBM and their optimization. The technological framework built for older group of patients for 

detecting AD was adapted to younger group of patients for detecting multiple sclerosis lesions. 

Further, crucial parameters were optimized to increase the detectability of lesions in white matter 

region. Performance of the customized framework was then tested using simulated data available 

from BrainWeb. This chapter describes the implementation of customized and optimized 

framework to detect lesions in real MS patients. 

6.2. Materials and Methods 

Voxel-based morphometry was used to detect MS lesions in real patients. The framework 

described in previous section, constructed adapting special modules for pre-processing was 

implemented on the clinical data. Optimized parameters of different modules were implemented 

in the framework. Joint DARTEL was used for registration of images after segmentation. Grey 

and white matter images were smoothed with 4mm and 3mm smoothing kernel size respectively. 

Significance level of 0.1 was used for detecting reduction in white matter (for generating hypo 

intense maps) and a significance level of 0.005 was used to detect damage in white matter (hyper 

intense maps) for the statistical test. 

Images of six patients were tested for detecting multiple sclerosis lesions using the current 

framework. All the patients show a relapsing remitting pattern of multiple sclerosis. Age of 

patients is from 30 years to 68 years and two patients are males and four are females. Table 10 

shows the details of patients, 
              Table 12 Clinical Data 

Sr. No. Gender Age 
1 M 30 
2 F 41 
3 F 55 
4 M 69 
5 F 32 
6 F 35 
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6.3. Results 

In the figures below, red contour indicates boundaries of white matter mask. White matter 

contour helps in concluding that whether a detected lesion is really in white matter region or not. 

The white matter mask was generated thresholding the Cyceron template for white matter at 85% 

(refer to section 4.4 for thresholding of image). The intensities indicate severity of lesion at that 

particular region. Color bar indicates severity of the lesion. A yellow/blue region demonstrates 

more severe lesion and red/purple region demonstrates a less severity of lesion. Numbers on the 

left of color bar corresponds to the t-values and on the right shows p-value. 
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Following image indicates elevated grey matter intensities in white matter region in the brain of 
healthy subject – 1. 

 
© 2012 Jung Diagnostics 

Fig. 6.1 t-map – subject 1 (hpyermap, significance level 0.005 and smoothing filter 4mm)  
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Following image indicates reduced white matter in white matter region in the brain of healthy 
subject – 1. 

 
© 2012 Jung Diagnostics 

Fig. 6.2 t-map – subject 1 (hpyomap, significance level 0.1 and smoothing filter 3mm)  
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Following image indicates elevated grey matter intensities in white matter region in the brain of 
healthy subject – 4. 

 
© 2012 Jung Diagnostics 

Fig. 6.3  t-map – subject 4 (hpyermap, significance level 0.005 and smoothing filter 4mm)  
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Following image indicates reduced white matter in white matter region in the brain of healthy 
subject – 4. 

 
© 2012 Jung Diagnostics 

Fig. 6.4 t-map – subject 4 (hpyomap, significance level 0.1 and smoothing filter 3mm) 

Similar results for other subjects (subject – 2, 3, 5 and 6) can be found in appendix. 
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7. Discussion, Conclusion and Future Aspects 

Discussion 

Segmentation is one of the most important steps of image pre-processing. Performance of 

segmentation routine has an influence on performance of normalization and statistical 

comparison also. A comment about optimal segmentation can be made by visual interpretation of 

individual patient data using anatomical landmarks. In one study done by a group, four popular 

segmentation algorithms from SPM99, SPM2, EMS (Expectation Maximization Segmentation) 

and FSL (FMRIB Software Library) were tested (46). According to the findings of this study, all 

the algorithms failed to segment T1-weighted images with lesions correctly so they used skull 

stripped unsegmented images in their statistical comparisons. In this thesis work instead of using 

skull stripped unsegmented images; an experiment to optimize the segmentation routine was 

done as described in section 4.3.1, segmentation optimization. A nice segmentation of tissues 

was attained for individual subjects at specific set of parameter settings but no optimal set of 

parameters leading to a perfect segmentation which suits all the images was found in this 

experiment. This is due to the fact that the presence of lesions causes low contrast between grey 

matter and white matter in T1-weighted images (46). 

In the next section 4.3.2 an average of misclassification due to segmentation is found out using a 

set of simulated brain images. The mean of these misclassification errors in grey matter, white 

matter and CSF were approximately 4mm, 3mm and 7mm respectively. An assumption was 

made that these misclassifications can be compensated by using equivalent smoothing kernel 

sizes for grey matter, white matter and CSF respectively. Further, to support this assumption an 

experiment was done to check the best suitable Gaussian smoothing kernel size which can 

compensate segmentation errors as described in section 4.5. Better sensitivity and specificity 

were obtained in detecting lesions at smaller smoothing kernel sizes. Research done by S.M.D. 

Henley et al. also supports these results. In this research, they used three different smoothing 

kernel sizes (4, 6 and 8mm) and found out that smaller size (4 or 6mm) is sufficient (49).  
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Section 4.4 describes the effect of misclassification of MS lesions. As lesion and grey matter 

intensities are matching there is a misclassification of approximately same volume of grey 

matter. This is evident for all three MS lesions that the misclassification scales according to the 

volumes of lesions and is also described in the studies made by Renske de Boer et al. (45) and 

Emmanuel Stamatakis et al. (46). 

A model to simulate lesions replicating the behavior of misclassification was built to optimally 

detect lesions in the statistical comparisons implementing two different approaches of VBM as 

described in section 4.5. Optimization of the framework was done by performing VBM at 

different significance levels and smoothing kernel sizes. From the experiments described in 

section 5 it was evident that lesions for reduction in white matter are detected more efficiently at 

higher significance levels, whereas damage in white matter can be detected at lower significance 

levels also, both at lower smoothing kernel size. A good significance level for the statistical test 

for detecting reduction and damage in white matter is 0.1 and 0.005 respectively, with the 

smoothing filter size of 4mm for grey matter and 3mm for white matter images. After 

segmentation, the white matter image consists of voxels in the lesion region. These voxels are 

actually lesion voxel but due to inaccurate segmentation are classified as white matter. Thus, the 

statistical test detect fewer voxels as lesions in the voxel-wise comparison. This could be a 

possible reason for lower sensitivity when investigating white matter for lesions and thus a 

higher significance level is required in the statistical test to detect white matter reduction. The 

benchmark of 90% accuracy and specificity and 60% sensitivity as discussed in section 5 was 

almost achieved, with more than 90% accuracy and specificity for both biomarkers and 

approximately 45% and 55% sensitivity for lesions detected as reduction and damage in white 

matter respectively. In the studies done by Sonya Mehta et al., voxel-based morphometry was 

evaluated for focal lesion detection using T1-weighted images. In their findings also it is evident 

that the lesions are incorrectly classified as grey matter and thus, VBM fails to detect all the 

lesions (50). In contrast to this thesis work, in the studies done by Emmanuel Stamatakis et al. 

quantification measures for true positives and true negatives as high as 99 and 95% respectively 

were obtained, with false positives and false negatives as low as 1 and 6% respectively (46). In 

this work T1-weighted images were used to detect artificially simulated lesions and this 

technique is based on statistical comparison of skull stripped and unsegmented images. The use 
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of unsegmented images was adapted in their technique as the segmentation engine failed to 

segment the brain tissues correctly due to the presence of lesions. 

 

Conclusion 

In conclusion, this thesis work describes the implementation and optimization of an image 

processing framework for detection of multiple sclerosis lesions. The framework constructed to 

detect lesions in AD patients was successfully adapted to detect MS lesions optimizing SPM 

modules and VBM methodology. The segmentation module of SPM is quite good in classifying 

grey matter and white matter tissues but at the same time misclassifies MS lesions as grey 

matter. No optimal set of parameters leading to a perfect segmentation which can be adapted in 

general was found in the experiment done for optimizing segmentation. Smoothing kernel sizes 

equivalent to the segmentation errors (4.3.2), when used were found to be effective in 

compensating the errors. Two biomarkers defined to simulate artificial lesions proved to be 

effective providing a foundation for implementing the image processing framework. Using these 

biomarkers the framework was successfully optimized to detect MS lesions. The framework 

when tested with simulated data, attained the benchmark of 90% set for accuracy and specificity 

but did not attain the benchmark of 60% set for sensitivity for reduction and damage in white 

matter. Thus, more work is needed to be done to make the current image processing framework 

more efficient in detecting MS lesions. The framework detected MS lesions fairly in real clinical 

data also. Though, a comment regarding false positives cannot be made as there is no reference 

ground truth image (for MS lesions) for either of the real clinical subjects. But a confirm 

evaluation about the lesions detected can be made by a medical specialist. Voxel-based 

morphometry can be further developed to detect MS lesions more efficiently by optimizing 

currently used techniques and/or implementing new techniques for image preprocessing and 

statistical comparison. 
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Future Aspects 

The current version of framework works efficiently for detecting multiple sclerosis lesions. This 

framework can be further optimized for a better detectability of lesions customizing certain 

modules of SPM. Segmentation with a set of optimized parameters leading to minimum 

misclassification errors in tissue segmentation can be implemented for every subject to be 

examined. Templates using MRI scans of younger group of subjects, generated specifically for 

multiple sclerosis disease can be used for registration and normalization for a better match of 

brains for statistical tests. Further optimization of segmentation routine is possible if a large 

dataset of simulated brains is available with their ground truth images so that they can be 

compared individually for volume deviations and visual interpretation. VBM technology can be 

further optimized implementing other statistical tests; for e.g. ANOVA. The current image 

processing framework needs to be clinically evaluated by neurologists. 
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Appendices 

McDonald’s Criteria for Multiple Sclerosis (17) 

Clinical Presentation Additional Data Needed for MS Diagnosis 
≥2 attacksa; objective clinical evidence of 
≥2 lesions or objective clinical evidence of 
1 lesion with reasonable historical evidence 
of a prior attack 

None 

≥2 attacksa; objective clinical evidence of 1 
lesion 

Dissemination in space, demonstrated by: 
≥1 T2 lesion in at least 2 of 4 MS-typical regions of the 
CNS (periventricular, juxtacortical, infratentorial, or spinal 
cord)d; or  
Await a further clinical attacka implicating a different CNS 
site 

1 attacka; objective clinical 
evidence of ≥2 lesions 

Dissemination in time, demonstrated by: 
Simultaneous presence of asymptomatic gadolinium-
enhancing 
and non-enhancing lesions at any time; or 
A new T2 and/or gadolinium-enhancing lesion(s) on 
follow-up MRI, irrespective of its timing with reference to 
a baseline scan; or Await a second clinical attacka 

1 attacka; objective clinical 
evidence of 1 lesion 
(clinically isolated syndrome) 

Dissemination in space and time, demonstrated by: 
For DIS: 
≥1 T2 lesion in at least 2 of 4 MS-typical regions of the 
CNS (periventricular, juxtacortical, infratentorial, or spinal 
cord)d; or 
Await a second clinical attacka implicating a different CNS 
site; and 
For DIT: 
Simultaneous presence of asymptomatic gadolinium-
enhancing and non-enhancing lesions at any time; or 
A new T2 and/or gadolinium-enhancing lesion(s) on 
follow-up MRI, 
irrespective of its timing with reference to a baseline scan; 
or await a second clinical attacka 

Insidious neurological progression 
suggestive of MS (PPMS) 

1 year of disease progression (retrospectively or 
prospectively determined) plus 2 of 3 of the following 
criteriad: 
1. Evidence for DIS in the brain based on ≥1 T2 lesions in 
the MS-characteristic (periventricular, juxtacortical, or 
infratentorial) regions 
2. Evidence for DIS in the spinal cord based on ≥2 T2 
lesions in the cord 
3. Positive CSF (isoelectric focusing evidence of 
oligoclonal bands and/or elevated IgG index) 
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If the Criteria are fulfilled and there is no better explanation for the clinical presentation, the diagnosis is 
‘‘MS’’; if suspicious, but the Criteria are not completely met, the diagnosis is ‘‘possible MS’’; if another 
diagnosis arises during the evaluation that better explains the clinical presentation, then the diagnosis is 
‘‘not MS.’’ 
aAn attack (relapse; exacerbation) is defined as patient-reported or objectively observed events typical of 
an acute inflammatory demyelinating event in the CNS, current or historical, with duration of at least 24 
hours, in the absence of fever or infection. It should be documented by contemporaneous neurological 
examination, but some historical events with symptoms and evolution characteristic for MS, but for 
which no objective neurological findings are documented, can provide reasonable evidence of a prior 
demyelinating event. Reports of paroxysmal symptoms (historical or current) should, however, consist of 
multiple episodes occurring over not less than 24 hours. Before a definite diagnosis of MS can be made, 
at least 1 attack must be corroborated by findings on neurological examination, visual evoked potential 
response in patients reporting prior visual disturbance, or MRI consistent with demyelination in the area 
of the CNS implicated in the historical report of neurological symptoms. 
bClinical diagnosis based on objective clinical findings for 2 attacks is most secure. Reasonable historical 
evidence for 1 past attack, in the absence of documented objective neurological findings, can include 
historical events with symptoms and evolution characteristics for a prior inflammatory demyelinating 
event; at least 1 attack, however, must be supported by objective findings. 
cNo additional tests are required. However, it is desirable that any diagnosis of MS be made with access 
to imaging based on these Criteria. If imaging or other tests (for instance, CSF) are undertaken and are 
negative, extreme caution needs to be taken before making a diagnosis of MS, and alternative diagnoses 
must be considered. There must be no better explanation for the clinical presentation, and objective 
evidence must be present to support a diagnosis of MS. 
dGadolinium-enhancing lesions are not required; symptomatic lesions are excluded from consideration in 
subjects with brainstem or spinal cord syndromes. 
MS = multiple sclerosis; CNS = central nervous system; MRI = magnetic resonance imaging;  
DIS = dissemination in space;DIT = dissemination in time; PPMS = primary progressive multiple 
sclerosis; CSF = cerebrospinal fluid; IgG = immunoglobulin G. 
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Evaluation of Independent and Joint DARTEL Performance 

DARTEL is a high dimensional, non-linear image registration process. DARTEL process can be 

done by two different setups, independently and jointly as discussed in section 3.6. An 

investigation was done to evaluate the performance of independent and joint DARTEL process. 

Voxel-based morphometry using normative databases was done to check the performance of 

both DARTEL setups. VBM procedure was performed using the MATLAB program available at 

Jung Diagnostics. Working of this program is explained at the end of section 4.5.2. Artificial 

lesions implementing both the biomarkers (biomarker a and b, as discussed in section 4.5) were 

simulated on the normalized and smoothed grey matter and white matter images of normal brains 

using the severe MS lesion mask. Normalized and smoothed grey matter and white matter 

images were generated by both, independent and joint DARTEL. 

Statistical test was done at significance level of 0.005 and both, grey matter and white matter 

images were smoothed at 8mm. Normative database – 1 and 2 were used for statistical 

comparison in the VBM process. 

The graphs below show the mean of sensitivity obtained from the results of quantification after 

statistical test of each image in the database. Attenuation indicates the effect size. Legend in the 

graphs indicates the area under curve. 
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For database – 2 when investigating white matter to detect lesion simulated by biomarker a 

(attenuation), higher sensitivity is obtained by joint DARTEL process compared to independent 

process. Almost 100% lesion was detected at 40% effect size using images for statistical 

comparison generated by joint DARTEL setup; whereas approximately 85% of lesion is detected 

using images generated by independent DARTEL setup. 

 
Fig. 0.1 Mean sensitivity curves of independent (left) and joint (right) DARTEL 

When investigating grey matter to detect lesion simulated by biomarker b (amplification), almost 

100% lesion was detected at 30% effect size using images for statistical comparison generated by 

joint DARTEL setup, whereas 100% lesion was never detected using images generated by 

individual DARTEL setup. 

 
Fig. 0.2 Mean sensitivity curves of independent (left) and joint (right) DARTEL  
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Similar results to database – 2 were obtained for database – 1 also. When investigating white 

matter to detect lesion simulated by biomarker a (attenuation), almost 95% lesion was detected at 

40% effect size using images for statistical comparison generated by joint DARTEL setup; 

whereas approximately 85% of lesion was detected using images generated using independent 

DARTEL setup. 

 
Fig. 0.3 Mean sensitivity curves of independent (left) and joint (right) DARTEL 

When investigating grey matter to detect lesion simulated by biomarker b (amplification), almost 

100% lesion in grey matter was detected at 30% effect size using joint DARTEL image files, 

whereas 100% lesion is not detected at 100% effect size also using DARTEL files generated by 

individual DARTEL process. 

 
Fig. 0.4 Mean sensitivity curves of independent (left) and joint (right) DARTEL 
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DARTEL process when done independently consumes more computational power and time, as 

two DARTEL processes are run consecutively for grey and white matter, whereas the process 

consumes half the time when done jointly. Also 100% sensitivity in detecting hyper-intensity 

voxels is not achieved when DARTEL files generated by independent DARTEL process are 

used. This exhibits that joint DARTEL process is more efficient and produces better results 

compared to independent process. 
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Quantification 

Accuracy, sensitivity and specificity are the measures used to quantify the efficiency of the 

statistical test. Accuracy is the measure of correctness of the statistical test in identifying and 

excluding a given condition. Sensitivity gives the proportion of actually diseased regions which 

are correctly identified by the test. Specificity gives the proportion of negatives that are correctly 

identified by the test. 

Accuracy, sensitivity and specificity are defined by true positives, false positives true negatives 

and false negatives. True positives are the voxels in t-map which are highlighted and are really 

lesion voxels. False positives are those voxels which are not actually lesion voxels but 

highlighted due to inaccuracy in the test model. True negatives are the voxels which are not 

diseased and not detected as lesion in the statistical test also. False negatives are the voxels 

which are actually diseased regions but not classified as lesions by the test. 

            Table 13 Terms used to define accuracy, sensitivity and specificity 

Outcome of statistical test 
Actual disease condition 

Positive Negative 

Positive True positive False positive 

Negative False negative True negative 

 

• 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

  (4.10) 

• 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

      (4.11) 

• 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

      (4.12) 

True positives (tp), false positives (fp), true negatives (tn) and false negatives (fn) can be 

measured by generating the respective images. These images can be generated by the Image 

Calculator routine of SPM. Image calculator is used to perform voxel-wise algebraic 

manipulations on a set of images such as binarizing, subtracting, taking a sum or mean of set of 

images, etc. 
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The expressions for generating tp, tn, fp and fn images are as follows: 

• true positive =  i4 .∗  ( i5 >  0.2 )  .∗  ( i6 >  0 )     (4.13) 
• true negative =   i4 .∗  ( i5 <=  0.2 ) .∗  ( i6 <=  0 )     (4.14) 
• false positive =   i4 .∗  ( i5 <=  0.2 ) .∗  ( i6 >  0 )     (4.15) 
• false negative =   i4 .∗  ( i5 >  0.2 )  .∗  ( i6 <=  0 )     (4.16) 

where, i4 = white matter mask 
 i5 = lesion mask 
 i6 = hypo or hyper map 

The white matter mask is used to restrict the area of brain under investigation. In the above 

equations, ‘.*’ means voxel-wise multiplication of two images. ‘ix > 0.2’ indicates that only the 

part of lesion mask image which has intensity more than 0.2 will be taken into account, the 

remaining lesion is ignored in masking and ‘ ( ix ≤ 0.2 )’ indicates that only the part of lesion 

mask image which has intensity less than 0.2 will be taken into account, the remaining lesion is 

ignored in masking. 

  



Appendices 

 
87 

 

Quantification Results of Optimized Framework for Database – 2 and 3 
Database – 2 

 

 

 
Fig. 0.5 Accuracy, sensitivity and specificity for hypo intense maps at 0.05, 0.01 and 0.1 significance levels 
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Fig. 0.6 Accuracy, sensitivity and specificity for hyper intense maps at 0.005 and 0.05 significance levels 
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Database – 3 

 

 
Fig. 0.7 Accuracy, sensitivity and specificity for hypo intense maps at 0.05 and 0.01 significance levels 
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Fig. 0.8 Accuracy, sensitivity and specificity for hyper intense maps at 0.005 and 0.05 significance levels 
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VBM Results for Clinical Data 

Subject – 2 

 
© 2012 Jung Diagnostics 

Fig. 0.9 t-map – subject 2 (hpyermap, significance level 0.005 and smoothing filter 4mm) 
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© 2012 Jung Diagnostics 

Fig. 0.10 t-map – subject 2 (hpyomap, significance level 0.1 and smoothing filter 3mm) 
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Subject – 3 

 
© 2012 Jung Diagnostics 

Fig. 0.11 t-map – subject 3 (hpyermap, significance level 0.005 and smoothing filter 4mm) 
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Fig. 0.12 t-map – subject 3 (hpyomap, significance level 0.1 and smoothing filter 3mm) 
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Subject – 5 

 
© 2012 Jung Diagnostics 

Fig. 0.13 t-map – subject 5 (hpyermap, significance level 0.005 and smoothing filter 4mm) 
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Fig. 0.14 t-map – subject 5 (hpyomap, significance level 0.1 and smoothing filter 3mm) 
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Subject – 6 
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Fig. 0.15 t-map – subject 6 (hpyermap, significance level 0.005 and smoothing filter 4mm) 
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Fig. 0.16 t-map – subject 6 (hpyomap, significance level 0.1 and smoothing filter 3mm) 
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