
Bachelorthesis
Iwer Petersen

Using object tracking for dynamic video projection mapping

Fakultät Technik und Informatik
Studiendepartment Informatik

Faculty of Engineering and Computer Science
Department of Computer Science

Iwer Petersen

Using object tracking for dynamic video projection mapping

Bachelorthesis submitted within the scope of the Bachelor examination

in the degree programme Bachelor of Science Technical Computer Science
at the Department of Computer Science
of the Faculty of Engineering and Computer Science
of the Hamburg University of Applied Science

Mentoring examiner: Prof. Dr. Ing. Birgit Wendholt
Second expert: Prof. Dr.-Ing. Andreas Meisel

Submitted at: January 31, 2013

Iwer Petersen

Title of the paper
Using object tracking for dynamic video projection mapping

Keywords
video projection mapping, object tracking, point cloud, 3D

Abstract
This document presents a way to realize video projection mapping onto moving objects.

Therefore a visual 3D tracking method is used to determine the position and orientation of a

known object. Via a calibrated projector-camera system, the real object then is augmented

with a virtual texture.

Iwer Petersen

Thema der Arbeit
Objekttracking für dynamisches Videoprojektions Mapping

Stichworte
Video Projektions Mapping, Objektverfolgung, Punktwolke, 3D

Kurzzusammenfassung
Dieses Dokument präsentiert einen Weg um Video Projektions Mapping auf sich bewegende

Objekte zu realisieren. Dafür wird ein visuelles 3D Trackingverfahren verwendet um die

Position und Lage eines bekannten Objekts zu bestimmen. Über ein kalibriertes Projektor-

Kamera System wird das reale Objekt dann mit einer virtuellen Textur erweitert.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Structure . 3

2 Related Work 4
2.1 Corresponding projects . 4

2.1.1 Spatial Augmented Reality . 4
2.1.2 2D Mapping onto people . 5
2.1.3 Marker based tracking of known projection surfaces 6
2.1.4 Mapping on servo actuated Objects . 7
2.1.5 Mapinect . 8
2.1.6 KinectFusion . 10

2.2 Technology to consider . 10
2.2.1 Calibration . 10
2.2.2 Reconstruction . 11
2.2.3 Tracking . 12

2.3 Discussion . 13

3 Analysis 15
3.1 Subproblem Analysis . 15

3.1.1 3D sensor . 15
3.1.2 Projector camera calibration . 16
3.1.3 Dynamic model creation / Object tracking 16
3.1.4 Virtual Scene Construction . 17

3.2 Summary . 18

4 Realization 20
4.1 Assumptions . 21
4.2 Tools and Libraries . 21

4.2.1 Point Cloud Capturing Sensor . 21
4.2.2 Projector Camera Calibration . 22
4.2.3 Libraries . 23
4.2.4 Data structures and Algorithms . 24

4.3 Solution . 30
4.3.1 Calibration . 31
4.3.2 Model acquisition . 32

iv

Contents

4.3.3 Object tracking . 35
4.3.4 Virtual Scene Construction . 35

4.4 Evaluation . 36
4.4.1 The calibration parameters . 37
4.4.2 Model acquisition . 38
4.4.3 Runtime . 39
4.4.4 Measurements . 40

4.5 Summary . 44

5 Conclusion 45

v

1 Introduction

1.1 Motivation

Computer science is more and more incorporated by artists for inspiration or for concrete

realisations by using programming languages as design medium (see Bohnacker et al. [7]).

Several environments like the Java based Processing language ([35]) or the openFrameworks

toolkit ([28]) which is written in C++ provide a convenient starting point for creative coding.

It is not uncommon that software created to solve a technical task is being used for creative

applications. Artists use for example software like OpenCV for image processing as well as

micro-controllers like Arduino to realize artistic installations.

Figure 1.1: 3D Video Projection Mapping: CRYS-
TALCHOIR by Andrea Sztojánovits, Gá-
bor Borosi

Video projection mapping is part-

discipline where virtual textures are pro-

jected to real physical objects with high

lumen video projectors to create an im-

mersive illusion. For example like in

Vgure 1.1 a white surface consisting of

tetrahedrons was constructed and all

sides visible to the projector are aug-

mented with slowly fading color gra-

dient textures. In reality even much

more complex surfaces like buildings

are used as projection surfaces. Tradi-

tionally video projection mapping is per-

formed on static scenes.

To accomplish such a projection it is necessary to have the virtual world, where the textures

are created, aligned to the physical world where those textures shall Vt exactly onto a limited

surface. That is mostly done by manually align binary mask images to the physical scene

1

1 Introduction

via the projector and apply those mask to the video content to be displayed or by rendering

textures onto aligned 2D polygons (2D mapping).

A more advanced technique reconstructs the whole scene that should be augmented as a

virtual 3D model and chooses a viewpoint for the virtual scene that matches the projectors

viewpoint onto the real, physical scene (3D mapping). With this technique illusionary 3D

deformation or lighting eUects are much easier to achieve.

Both methods have in common that the process of aligning the virtual scene to the physical

world (commonly called mapping) is a protracted process. They also have in common that if

the aligning is done, nothing in the physical scene or in the projectors position can be changed

without compromising the tedious mapping process.

This thesis is driven by a quite futuristic vision originating from the Veld of fashion design.

The idea is to augment white clothing with virtual textures that are projected onto the clothes.

This can be seen as a dynamic form of 3D video projection mapping, where, opposed to

traditional static projection mapping, the augmented object is moving and deforming within

the scene.

To enhance video projection mapping for dynamic scenes with moving or non-rigid projec-

tion surfaces, the virtual scene has to be generated in real-time according to the changes in

the physical scene. For 2D Mapping this can be achieved by automatically adjusting binary

masks using a camera based object recognition method. For 3D mapping a virtual 3D scene

has to be recreated dynamically. The shape, position and orientation of the object is assumed

to be variable and has to be remodelled constantly in the virtual scene.

In both cases sensors are required to observe the changing scene. For 2D projection mapping

this can be cameras whose images can be processed with computer vision methods (see Szeliski

[42]) to reveal necessary data to reconstruct the scene.

For 3D mapping a stereo camera system or modern range sensors can be used to measure the

geometric changes of the object. Those sensors mostly provide data as clouds of 3D surface

points that can be used to re-construct the virtual scene (see Bernardini and Rushmeier [3]).

This thesis presents a method to perform dynamic projection mapping by using detection

algorithms on a 3D point cloud captured with a 3D sensor. The problem to be solved consists

of several sub problems which will be further discussed in the following:

2

1 Introduction

• Projector-camera-calibration: One of the most obvious issue is that a projector can-

not be in the same location as a camera and therefore a viewpoint transformation has to

be applied to the scene. This problem is widely known as projector-camera calibration

and is not present in traditional video projection mapping as the alignment takes place

in projector space and usually no cameras are needed.

• Dynamic model creation / Object tracking: Further the shape and pose of the object
has to be known to overlay its surfaces with virtual textures. This can be achieved in

two ways. Either one can generate a model of the object for every video frame which

still is a big challenge on the data processing side (see Bi and Wang [5]), or one can

track a known object in the scene to obtain its pose. This problem is not present in

traditional video projection mapping as this happens on static scenes so that the model

can be created in advance.

• Virtual scene creation: Finally the video animation has to be applied to the virtual

scene as a texture. In 2D mapping this is done by masking the texture so that it only

appears on the object. In 3D mapping, where a 3D model of the object is used for

rendering the virtual scene, a standard 3D rendering technology like OpenGL or DirectX

can be used. In addition to a 3D mesh representation of the model a 2D texture is created

that contains all outer surfaces of the model in an unwrapped form. In the 3D model for

every point (or vertex) in space a 2D texture coordinate is computed that deVnes which

point on the texture corresponds to which point on the model.

1.2 Structure

The remaining work is structured as follows. To get an overview of existing solutions some

work that projects video on moving objects and technical solutions for the diUerent problem

Velds is examined (see 2). An analysis of the problem Velds reveals the tasks that have to be

solved and discusses diUerent approaches. That leads to a decision whether to use a tracking

or a reconstruction approach (see 3). Starting with the used tools the solution for the diUerent

task are explained in detail and the achieved result is presented (see 4). Finally a conclusion

sums up the results of this thesis and shows possibilities for further work (see 5).

3

2 Related Work

In this chapter existing solutions for mapping video onto moving objects are examined in

(2.1). The operating principles of those solutions will be analysed and described. In (2.2)

some existing technology is taken into consideration that could help Vnding a solution for the

diUerent problem Velds.

2.1 Corresponding projects

The following subsections will give a rough overview of diUerent approaches to projection

mapping introducing projects which pursue a similar goal with diUerent key aspects and

increasing demands. With (2.1.1) the technical origin of projection mapping will be explained.

With (2.1.2) a realization of dynamic 2D mapping will be examined. In (2.1.3) dynamic 3D

mapping is realized using a marker-based tracking approach while in (2.1.4) it is achieved with

a system that moves virtual and physical models synchronously. A polygonal reconstruction

method to achieve dynamic 3D projection mapping is presented in (2.1.5). In (2.1.6) a real-time

reconstruction method that produces a dense 3D environment model is explained.

2.1.1 Spatial Augmented Reality

The Velds of virtual reality and augmented reality usually take place in a virtual environment

using for example head-mounted displays or mobile device screens to overlay virtual textures

on camera images. Spatial augmented reality (SAR) makes use of novel display technology like

projectors or holographic displays to transport this virtual overlay back into the real world

(see Bimber et al. [6, chapter 3,6,7]). Several examples for spatial augmented reality displays

have been realized (see [6, chapter 8]). Figure 2.1 depicts four signiVcantly diUerent display

variants. The extended Virtual Table (2.1a) as well as the Holostation (2.1c) use half-reWective

mirrors to visually combine virtual and physical worlds. Projector-based illumination is used

to realize augmented paintings (2.1b). Using scanning techniques, Smart projectors (2.1d) can

use arbitrary projection surfaces. Traditional static projection mapping has its technical roots

4

2 Related Work

(a) Extended virtual table (b) augmented paintings

(c) Holostation (d) Smart projector

Figure 2.1: Examples for spatial AR displays (Source: [6, chapter 8])

in the Veld of spatial augmented reality using projector-based illumination and augmentation.

Tasks like projector-camera calibration and scene construction as well as all the considera-

tions concerning the projector like pixel-resolution, luminosity and black-level also apply to

projection mapping.

2.1.2 2D Mapping onto people

One early realization of the idea to project onto moving objects was presented by (Obermaier

[26]) in his interactive dance and media performance Apparition at ARS Electronica 2004. In

this performance the silhouettes of dancers on stage where extracted using a camera based

motion tracking system, and are used for masking textures that are projected onto the dancers

using a calibrated projector-camera system. In Vgure 2.2 half of the dancers silhouette is

5

2 Related Work

augmented with a striped texture. The limitation to the dancer is clearly visible. This work

reWects an idea that is very attractive for textile designers, to augment clothes with virtual

textures for a virtual enhanced fashion show.

Figure 2.2: 2D projection mapping onto a dancers
silhouette (Source: [26])

Calibration The calibration problem

is similar to the one this thesis has to

solve. Since this method uses 2D camera

images for silhouette extraction and also

overlays 2D Textures, it has to perform a

transformation from camera to projector

space. Further it is likely that more than

one camera and projector was used in

this project. Therefore all cameras have

to be calibrated to a 3D reference coordi-

nate system and for every projector the

corresponding transformation from 3D

to 2D has to be estimated (see Hartley

et al. [18]).

Dynamic model creation / Tracking of known object: The model in this method is

the 2D silhouette of the dancers and is generated in real-time by some sort of background

subtraction. The silhouette is then used to separate background textures from textures to be

projected on the dancers. This is commonly done with binary masking which is a well known

technique from the Veld of computer graphics.

Virtual scene creation After transforming the captured silhouette-mask from camera to

projector space it can be applied as binary mask to any 2D texture to restrict it to the real

objects, which are the people on stage in this scenario.

2.1.3 Marker based tracking of known projection surfaces

More for the purpose of creating an augmented stage design, (Yapo et al. [48]) used infra-red

LEDs as markers to track moving scenery walls with deVned known shapes on stage (Vgure

2.3). In this work vertical Wat walls are equipped with infra-red LEDs on top so that each wall

forms a unique pattern of its LEDs. A top view camera is tracking those LEDs as points in

6

2 Related Work

2D. By matching angular and distance features of the LED points against the known patterns,

the position and orientation of the screens is obtained and the scene to be projected can be

constructed. Related marker-based tracking methods like AR-Toolkit (see Kato and Billinghurst

[21]) use visible tracking markers.

Figure 2.3: Tracked screens on stage lit by calibrated
projectors (Source: [48])

Calibration The tracked 2D points

acquired from the camera have to be

transformed to a virtual 3D space where

the models of the walls can be posi-

tioned. For every projector a 2D view

is rendered with the projectors parame-

ters. Therefore a full projector-camera

calibration has to be performed.

Dynamic model creation / Object
Tracking: This method works with

3D models of the walls which can trans-

late and rotate on stage. On top of

the walls infra-red LEDs are placed in a

unique pattern that allows a robust iden-

tiVcation against other walls patterns. A

camera equipped with visible light Vlter is observing the scene from above, providing an image

which reveals the positions of the LEDs. By matching the led patterns against the known wall

shapes, the position and orientation of each screen can be determined.

Virtual scene creation With known wall shapes and known poses it is trivial to construct

a virtual 3D scene that can be rendered from the viewpoint of one or more projectors.

2.1.4 Mapping on servo actuated Objects

Another solution for mapping onto moving objects takes advantage of software controlled

movements. This technique involves stepper motors to synchronize the movement of a 3D

object with a virtual 3D scene. The object is therefore mounted onto a servo actuated table or

on a turning axis like in Vgure 2.4 where a polystyrene object is mounted on a vertical axis. In

the grey box on the Woor the servo motor and the control circuit are located. The movement

7

2 Related Work

of the object is then controllable by software deVned time-variable functions or by an input

device like a tablet computer running a customized application. This technique is used for

example by (White Kanga [45]) a polish interactive media artist and by the (panGenerator

collective [31]) which is related to the MediaLab in Chrzelice in Poland.

Figure 2.4: Physical object mounted on a servo-
driven axis (Source: http://whitekanga.
pl/pl/technologia)

Calibration The calibration problem

is reduced to Vnd the projectors intrin-

sics and extrinsics with respect to the

object, as there is no camera tracking

involved. This can be done once before

run-time. White Kanga implemented

a stripe boundary code calibration for

which a camera is needed prior to the

performance.

Dynamic model creation / Object
Tracking: The initial alignment be-

tween virtual 3D space and real-world

is established initially through the cali-

bration process. A software that controls the models movement maintains the synchronicity

between virtual and real model, provided that an exact steering of the actuators can be

guaranteed.

Virtual scene creation To create the virtual scene a virtual model, that is true to scale to the

real model can be textured using common 3D rendering techniques. By synchronously rotating

or translating the virtual scene according to the stepper motors movement, the perspective is

updated constantly.

2.1.5 Mapinect

Mapinect ([33]) is a research project of students from the Universidad de la Republica in

Uruguay, which aim to develop a simple robotic arm carrying a pocket projector and a Kinect

sensor, that will be able to detect surrounding cuboids and project virtual textures onto them.

Mapinect uses a pure visual method to locate cuboids for mapping textures onto them. They

detect change in the scene and reconstruct the cuboids using planar polygons extracted with

8

http://whitekanga.pl/pl/technologia
http://whitekanga.pl/pl/technologia

2 Related Work

RANSAC based plane extraction methods implemented in the PCL Library. Existing virtual

cuboids are compared to the sensor data in each frame and locally corrected using an iterative

closest point algorithm (see 4.2.4). If the measurement diUers too much from the last position,

a new virtual cuboid is created. With the calibrated projector-camera system and the poses of

the detected cuboids a virtual scene is rendered that is projected onto the real world. Figure

2.5 shows an example of a scene augmented using Mapinect. Small white boxes on a table

are augmented with single color textures carrying letters. The table is augmented with a grid

pattern. The boxes can be moved manually and the projected scene is adjusted according to

the procedure above.

The limitation of this method is connected with the objects geometrical complexity. Curved

surfaces for example would seriously slow down the search for planar surfaces in the scene,

because they need to be approximated by many planar surfaces.

Figure 2.5: Mapinect System litting small boxes on a table (Source: http://www.fing.edu.uy/
grupos/medialab/projects/mapinect/images/mapinect6.jpg, 9.1.2013)

Calibration To correct the viewpoint for the projector output, only extrinsics and intrinsics

of the projector have to be obtained since the Kinect comes with a factory calibration that

allows to acquire points in 3D camera view coordinates. This also applies to this thesis as it is

intended to use this sensor.

Dynamic model creation / Object Tracking: The 3D model is dynamically built using 3D

planar polygons that are extracted using a RANSAC based extraction algorithm. The algorithm

9

http://www.fing.edu.uy/grupos/medialab/projects/mapinect/images/mapinect6.jpg
http://www.fing.edu.uy/grupos/medialab/projects/mapinect/images/mapinect6.jpg

2 Related Work

iteratively extracts the biggest planar surface candidate from the remaining point cloud (see

4.2.4). From the detected planar polygons they construct 3D models and observe their 3D

centroid for change. If the change is within a certain threshold the object gets transformed and

redrawn due to the underlying tracking algorithm (ICP, see 4.2.4). Otherwise it is supposed

they have disappeared from the scene and a new virtual object is constructed.

Virtual scene creation Using the projectors extrinsics and intrinsics and the 3D polygonal

model, the projectors view can be rendered with for example OpenGL. It is much easier to

create virtual textured objects from the geometrically relatively simple objects in real-time

than from more complex, arbitrary shaped objects.

2.1.6 KinectFusion

(Izadi et al. [19]) present a system to recreate large scenes in real time by using a Microsoft

Kinect Sensor. The image and depth data for each frame is successive fused by registering

the nth point cloud with the n + 1th and applying the image data as texture. Using the

depth-map provided by the Kinect sensor they compute vertex data for every frame, which is

then aligned to the previous frame using iterative closest point (see 4.2.4). The aligned data

then is integrated into a volumetric truncated signed distance function model (see Curless

and Levoy [12] for details). With a GPU-oriented implementation they achieve interactive

real-time reconstruction rates for building a volumetric model of a real scene. Although there

is no re-projection into the real world this project is interesting for this thesis with regard to

the real-time reconstruction approach.

2.2 Technology to consider

While section 2.1 dealt with projects whose objectives are similar to this thesis, this section

discusses technical solutions for the subtasks projector-camera calibration, 3D reconstruction

and object tracking that will contribute to the overall solution. Here some techniques are

examined if they are applicable to this thesis. This examination is structured by the the

problem Velds stated in the motivation.

2.2.1 Calibration

A very popular method for projector-camera calibration is the method introduced by (Zhang

[50]) which Vnds a homography between known points of a chessboard pattern of deVned

dimensions and the corresponding detected points on the camera image. On this basis (Jones

10

2 Related Work

[20, chapter 4.3]) explains projector calibration. (Burrus [9]) revisited this technique to build

a calibration work Wow for a camera - projector system with a Kinect camera. (Lee [23])

proposes a method to locate projection surfaces by projecting gray-codes onto a surface which

are picked up by small light sensors that are Vxed to the surfaces. The light sensors measure if

the projected pixel is white or black so that the position of those passive markers in projector

space can then be calculated by the binary code resulting from the picked up patterns.

Many diUerent methods prove that projector-camera calibration is a well understood Veld,

that provides existing, applicable solutions.

2.2.2 Reconstruction

The reconstruction subtask will be examined for both variants stated in the introduction.

Online reconstruction, that is creating a textured 3D model of the moving and deforming

object in real-time, would be the preferred method but is believed to be harder to achieve.

The alternative, an oYine reconstructing method of the 3D model combined with online rigid

object tracking, would restrain the objects degrees of freedom though it would certainly reduce

the computational costs in the online phase.

OYine modelling of 3D objects (Xu and Aliaga [46]) describe a photometric method to

model non-rigid surfaces of camera monitored objects from a stream of camera images. It

produced very high detailed 3D models but cannot run in real-time which is required for this

thesis purpose. An interesting algorithm which uses a method called landmarking to reVne 3D

models is presented by (Tevs et al. [43]). This method can Vll holes in dynamic meshes and

reconstruct temporary lost points. The paper also makes clear that real-time reconstruction of

shape and motion is still hard to achieve.

(Bi and Wang [5]) give a good overview of oYine 3d data acquisition methods for industrial

purposes. They distinguish passive methods like shape-from-X or passive stereo vision from

active systems like time-of-Wight or triangulation based systems. Further an overview of dif-

ferent 3D sensor data processing methods for data Vltering, registration of data from multiple

frames and 3D reconstruction, simpliVcation and segmentation is given. According to this

work active scanner hardware has become quite powerful for real-time applications but the

real-time capability on the software processing side is still unsatisfactory.

A fast model acquisition method is presented by (Pan et al. [30]), which acquires a 3D model

of textured objects by a video stream in about 1 minute. Using 2D features, a camera pose

relative to the object is calculated in real-time. When the cameras rotation around the object

(or the objects rotation in front of the camera) is large enough, model landmarks are calculated

11

2 Related Work

from image features that are then used to cumulatively compute 3D points of the model. With

a modiVed approach of space carving they Vnally compute the surface representation of the

object. Though this methods is really fast with 1 minute of reconstruction time, it is still too

slow for the real-time reconstruction approach in this thesis.

Online modelling of 3D objects (Zhang [49]) presents recent advances on 3D shape

acquisition by fringe image projection. This method, generally known as structured-light

scanning, projects a structured pattern onto the object. The object, that distorts the pattern

through its geometry, is observed by a camera which is picking up the distorted pattern. From

the camera image and the projected pattern, the 3D shape of the object can be recovered.

With recent advances, this method is capable of real-time reconstruction at 30 frames per

second. Although this method is fast enough to be a candidate for the real-time reconstruction

approach, it relies on the projection of a pattern onto the object which would pre-empt the

projection of textures onto the object.

2.2.3 Tracking

Object detection and pose estimation in 2D (Glasner et al. [16], Mei et al. [25]) perform

detection and pose estimation for cars by trained viewpoint appearances from 2D image

streams. A drawback is that a lot of diUerent poses have to be trained in advance to ensure the

reliability of this method.

(Godec et al. [17]) present a new method for tracking deformable objects from 2D image

streams based on the generalized Hough-transformation. This method seems to be very

reliable for extracting the moving and deforming outlines of an object, but does not reveal 3D

position and orientation information.

Model-based object tracking in 3D (Shaheen et al. [41]) compares 3D model-based track-

ing methods for the purpose of tracking a skeletal model of a human. The base principles

of most of the available algorithms can be categorized into bayesian Vlters, local and global

optimizations which can be further diUerentiated into single hypothesis and multiple hypoth-

esis optimizations. Those base principles still oUer a wide range of implementation details

(see Poppe [34]). Lots of diUerent approaches using bayesian Vlters have been made. There

are kalman Vlter approaches (see f.e. Yang and Welch [47]) which are only suitable for lin-

ear motion ([34]) and particle Vlter approaches (see f.e. Azad et al. [2], Brown and Capson

12

2 Related Work

[8], Choi and Christensen [10]) which can track non-linear motion but are computational

more expensive.

2.3 Discussion

The technical basics for projections onto 3D objects have been well researched in the Veld

of spatial augmented reality (see 2.1.1) and have led to projection mapping as art form. The

relation of projection mapping to this Veld oUers numerous research topics that have the

potential to help solving projection mapping problems.

Video projection mapping has been done in 2D for some time with dynamic model recon-

struction by calculating the mask image for every video frame (see 2.1.2) or by marker based

2D image tracking methods that allow to reconstruct the virtual scene in 3D (see 2.1.3). While

marker-based tracking methods proved to be real-time capable and reliable, it is yet unwanted

for the purpose of video projection mapping to put markers onto the object.

Also the basic 3D video projection mapping technique has evolved to a semi-dynamic form

by controlling the movement of the object with mechanical actuators (see 2.1.4), which are

synchronized with the movement of the virtual model. While this method provides seamless

alignment and thus a truly striking immersive eUect, the movement of the object is very re-

stricted and determined. The degree of freedom could be increased by using multiple actuators

but that would not overcome the fundamental restrictions.

With Mapinect, a project was introduced, that uses a markerless visual tracking method to

reconstruct and video map 3D objects with the restriction to objects with low polygon counts

(see 2.1.5). The iterative approach of extracting the respective biggest planar surface from

the remaining point cloud frame will certainly be too expensive for more detailed models.

Nevertheless a closer look into the capabilities of the used library reveals promising features

that will allow diUerent approaches.

Kinect Fusion (see 2.1.6) shows that real-time 3D reconstruction using low cost depth sen-

sors is feasible. Though the methods shows interactive rates in integrating successive frames

to a full 3D model, the purpose of this project is more to reconstruct room scenes than to

13

2 Related Work

augment a moving and deforming object.

All problem Velds stated in the introduction are still research topics in the context of

computer vision, robotics and augmented reality. While working solutions for a projector-

camera calibration with a Kinect sensor are already available (see 2.2.1), it turns out that the

reconstruction problem is still the harder part of the work. Although oYine reconstruction

methods are available and well known, online reconstruction solutions are subject to current

research. The only reconstruction methods that meets the performance requirements is based

on projected patterns which is not applicable to this thesis (see 2.2.2). Object tracking based

on 2D image streams is intensively researched but has a low chance of providing good 3D

poses (see 2.2.3).

14

3 Analysis

As stated previously, a very attractive idea for textile designers is to create a virtual augmented

fashion show, where clothes are dynamically textured with video content or generative graph-

ics. Also for artistic purposes like augmented sculptural installations or dance performances

video mapping is a promising Veld that is more and more explored using techniques originating

from computer science.

The objective of this thesis is to create a solution for mapping a 3D video projection onto a

deVned object that freely moves in a deVned area. The object may have an almost arbitrary

geometrical complexity.

In the remaining of this chapter requirements for a solution of the diUerent problem Velds

will be analysed in detail. The choice of the sensor to be used will be discussed (3.1.1), as well

as the according implications for the projector-camera calibration (3.1.2). As both approaches,

real-time reconstruction and tracking of a 3D object can be assumed to be the computational

most expensive part, here the analysis will evaluate both online and oYine approaches. This

results in an assignment of expensive sub tasks to an oYine computing phase. The goal is to

oYoad computation from the online phase as less as possible, while maintaining interactive

frame rates in the online phase (3.1.3). Finally the construction of the projectors output is

discussed (3.1.4).

3.1 Subproblem Analysis

3.1.1 3D sensor

Aiming at projecting textures onto objects, visible light based sensors will not be very suitable

for this thesis because it aims to project potentially changing textures onto the object. Sensors

that operate with infra-red light will produce more consistent data under the given circum-

stances. Therefore the Microsoft Kinect was chosen as 3D sensor due to cost considerations

and personal experience with the sensor and its related OpenNI drivers.

15

3 Analysis

3.1.2 Projector camera calibration

(a) Overview of the conceptual setup (b) Camera view (c) Projector "view"

Figure 3.1: Projector-camera setup

Seeing the physical scene in 3D, the camera and the projector are observing the object from

two diUerent view points and will therefore "see" diUerent perspectives of the object. Figure

3.1 gives an overview of the calibration problem. The resulting viewpoint images show the

diUerent appearances for camera and projector. For a correct re-projection the camera image

(3.1b) has to be distorted to get the projector "view" (3.1c). In 3D this can be done by translating

and rotating the 3D scene so that it is viewed at from the projectors perspective and render it

with a virtual camera setting, that resembles the projectors perspective projection. Therefore

the intrinsic parameters of the projector, describing the way light gets projected, and the

extrinsic parameters with respect to the camera, describing the location and orientation in

relation to the camera, have to be obtained. This calibration process is intended to be part of

the setup, and is to be performed after projector and camera have found their Vxed place. As

there are established calibration solutions for projector-camera systems with a Kinect (see

2.2.1) it is not intended to develop a new solution.

3.1.3 Dynamic model creation / Object tracking

Real-time 3D scene reconstruction is a task that has not really been solved (see Bi and Wang

[5]). Methods that use structured-light (see 2.2.2), reconstruct static scenes (see 2.1.6) or have

restrictions with respect to the geometrical complexity of objects (see 2.1.5) are not really

applicable to this thesis. Since real-time reconstruction has to recover shape and pose for

each frame only a few tasks are candidates for oYine execution. The alternative approach

of tracking a known model of the object in a scene seems to be more feasible (see 2.2.3), but

implies that the object must have a rigid shape that does not change over time in the online

phase. Provided, that the object has a rigid non-trivial shape, allows to prepare the model in

16

3 Analysis

an oYine phase. Thus the problem turns into an oYine model reconstruction combined with

an online object tracking problem for virtual scene construction.

Model Acquisition

The principal behind 3D scene reconstruction is to create a virtual 3D model of real objects

by using optical measurement rather than modelling it manually. The method of combining

point clouds presented in (2.1.6) is known as point registration (see Bernardini and Rushmeier

[3]) and can produce models of complex objects by registering several partial, overlapping

views of the object to acquire a full 360° model. To obtain partial views of the object out of

the bulk of points captured with the 3D sensor, all points that do not belong to the object

have to be disposed. Therefore a suiting separation method has to be found. OYine model

acquisition can take place in a staged environment, which can help separating the objects

points from the environments points. The object can be placed in front of a black background

so that the color can be used to separate the object. Another method would be to use an

environment that is staged in a geometrical manner to separate the object from the background.

Object Tracking

To recreate a virtual counterpart of the physical scene, the position and orientation of the

object has to be obtained in every frame. (Lepetit and Fua [24]) discuss several diUerent

tracking methods in 2D and 3D. As they state there are almost as many tracking methods as

possible applications. Popular examples are marker-based tracking as in (2.1.2) and (2.3) and

the so called bayesian tracking methods which are divided into Kalman (see [24, chapter 2.6.1])

and Particle Vlters (see [24, chapter 2.6.2]). As stated above marker-based tracking does not

suit very well for video projection mapping as it is undesirable to put markers onto the object.

Bayesian tracking methods estimate a probability density of successive states in the state space

of possible object poses and mostly choose the hypothesis with the maximum-likelihood as the

resulting object pose. As stated by (Poppe [34]) Kalman Vlters can only track linear movement,

while particle Vlters are able to track arbitrary movement.

3.1.4 Virtual Scene Construction

While for tracking purposes a dense point representation of the model is well suited, for

visualization purposes a mesh representation is needed to apply a texture to the 3D model.

There are several algorithms that calculate a mesh representation from a set of 3D points like

17

3 Analysis

Poisson reconstruction (see Kazhdan et al. [22])or Moving least-squares (see Cuccuru et al.

[11]).

For rendering a textured 3D object, every mesh-point has to be provided with a texture

coordinate. Those coordinates deVne from which part of a texture a triangle gets its texture.

Most 3D modelling software provides some sort of unwrapping function for that purpose that

generates an unwrapped appearance of the 3D object on a 2D texture and stores corresponding

texture coordinates with every point. There is a lot of research around the topic of mesh

generation, but that goes beyond the scope of this paper. For visualization purposes the point

cloud representation of the model will be used in this thesis. To produce the projectors output

image, common 3D rendering techniques such as OpenGL or DirectX can be used. With the

prepared model, the projector-camera calibration parameters and the constantly obtained pose

of the object, a 3D scene can be constructed that shows the textured object. The 3D scene is

then rendered from the projectors viewpoint with a virtual camera that has to be conVgured

with the intrinsic parameters of the projector.

3.2 Summary

Figure 3.2: Overview of the working phases and their respective problem Velds

Due to performance considerations the solutions for the partial problems will be grouped into

an online phase and an oYine phase. The calibration part is planned to be done with external

tools and belongs to the oYine phase of the application. Figure 3.2 gives an overview of the

partial problems and their assignment to the respective phase. The calibration task and the

virtual scene creation can now be assumed as solvable. While the calibration is performed

with external tools, the creation of the virtual scene will be realized using basic 3D rendering

software. What is left are the processing pipelines for model acquisition and object tracking

18

3 Analysis

which need concrete implementations of the above stated algorithms in order to be realized.

Suitable libraries, that provide tools that can contribute to this solution, have to be selected

and tested.

19

4 Realization

From the rough outline of the solution speciVed in chapter 3, this chapter breaks down the

detailed solutions of the problem Velds and composes the processing pipelines for the model

acquisition task and the tracking task. From (2.2.1) it is known that a working calibration

solution for a projector-camera system with a Kinect camera is available with RGBDemo (see

Burrus [9]). In (2.1.5) a promising library candidate was discovered with PCL ([32]), that

provides a comprehensive set of tools for 3D point data processing. A thorough examination

reveals that it provides implementations of the algorithms needed for the model acquisition

and tracking tasks. Figure 4.1 breaks down the four subtasks and speciVes the incorporated

third party software. In the oYine phase the calibration is performed using the RGBDemo tools

(see 4.3.1). With a set of Vlters and extraction methods partial model point clouds are obtained,

which are then registered to a 360° model by using feature based alignment methods. Finally

the resulting model gets reVned by some post processing Vlters. For analytical visualization

PCLs visualisation tool is used.

Figure 4.1: Overview of the architecture

20

4 Realization

The object tracking pipeline in the online phase pre-Vlters the model and the scene point

cloud before the tracking algorithm is applied that produces the objects 3D pose. For the virtual

scene construction an OpenGL window is set up with the projector calibration parameters

that renders the model point cloud, that constantly gets transformed by the 3D pose.

In the following the assumptions for the solution are deVned (see 4.1) before the used tools

and libraries are examined in detail (see 4.2). Then the developed solution will be explained

(see 4.3) and the results are discussed (see 4.4).

4.1 Assumptions

Projector and camera placement Projector and camera should be placed as close together

as possible, so that they are sharing as much of their view-frustums as possible. In that case

the calibration method is more likely to produce a small pixel re-projection error and the

movement range of the object is maximized.

Object Placement for Model Acquisition For model acquisition the object is to be placed

on a Wat surface like a table, so that the segmentation of the model from the scene can be

simpliVed.

4.2 Tools and Libraries

4.2.1 Point Cloud Capturing Sensor

Figure 4.2: Microsoft Kinect Camera
(Source: http://assets-1.
microsoftstoreassets.
com/CatalogImages/
media_content/Kinect/
preview/Kinect_06.jpg,
20.09.2012)

The Microsoft Kinect sensor was chosen as point

cloud capturing device. Because it is working on

infra-red basis it is expected that the interference

with light emitted from the projector would be min-

imal. The raw depth map obtained from the sensor

contains 320 ∗ 240 = 76800 points and is delivered

with a rate of 30 frames per second. A suitable preci-

sion of measurement is provided in a distance range

of 0.5 to 2m from the sensor. Farther away the preci-

sion reduces signiVcantly. In Vgure 4.3 the decreasing

precision can be seen from left to right as increasing

21

http://assets-1.microsoftstoreassets.com/CatalogImages/media_content/Kinect/preview/Kinect_06.jpg
http://assets-1.microsoftstoreassets.com/CatalogImages/media_content/Kinect/preview/Kinect_06.jpg
http://assets-1.microsoftstoreassets.com/CatalogImages/media_content/Kinect/preview/Kinect_06.jpg
http://assets-1.microsoftstoreassets.com/CatalogImages/media_content/Kinect/preview/Kinect_06.jpg
http://assets-1.microsoftstoreassets.com/CatalogImages/media_content/Kinect/preview/Kinect_06.jpg

4 Realization

distance between the lines. The depth information is coded into 13 bits which results into 8192

diUerent depth values. These values steps can be seen in the Vgure below as lines of points.

From every pixel in the depth map a 3D point is generated.

Figure 4.3: Typical planar Point Cloud captured by a Kinect sensor in top-down view. Depth is
color coded from red (near) to green (far).

The (OpenNI [29]) driver framework is used as interface to the Kinect sensor. It is sup-

ported by the PCL library that gets introduced in section 4.2.3 and provides a hard-coded

pre-calibration, implicating that the intrinsic parameters of the sensor are quite the same on

all devices. As a result, it is possible to obtain calibrated 3D points from the sensors depth

map.

Other point cloud generating device like laser scanners (LIDAR), time-of-Wight-cameras or

the generation of point clouds from stereo cameras should work with this method. The only

constraint is that a frame rate of at least 30 FPS should be provided to leave enough time for

processing.

4.2.2 Projector Camera Calibration

As described in (Hartley et al. [18, chapter 2]) a camera roughly follows the perspective projec-

tion or pinhole camera model. According to (Falcao et al. [13]) the key to projector-camera

calibration is to see the projector as an ’inverse’ camera, so that multiple view geometry

(Hartley et al. [18]) provides the solution for the calibration problem. The projector is therefore

also deVned with intrinsic and extrinsic parameters.

22

4 Realization

Considering the Kinect sensor (4.2.1), the captured point cloud data is represented in

calibrated 3D camera space. The coordinate spaces origin is the principal point of the camera

with the z-axis facing away from the sensor in view direction. For point cloud processing

this coordinate space is suitable. Only for visualization the 3D scene has to be projected to

2D projector space. The projection to 2D is done by the graphics hardware in the rendering

pipeline while the respective un-projection is done physically by the projector. Therefore the

application of the calibration parameters is reduced to a translation and rotation of the point

cloud data, to transform to the viewpoint of the projector, and a calibration of the virtual scene

camera according to the projectors intrinsic parameters (e.g. focal-length).

4.2.3 Libraries

RGBDemo

RGBdemo is a simple toolkit to start playing with Kinect data which was initially developed

by (Burrus [9]). It provides the library nestk and some demo applications. As driver backends

both freenect as well as OpenNI are supported. For this thesis the most interesting feature is

the integration with OpenCV and in particular the integrated solution for projector camera

calibration. The applications rgbd-viewer and calibrate-projector are used to obtain the calibra-

tion parameters explained in (4.3.1).

Point Cloud Library

Figure 4.4: PCL Logo
(Source: http:
//www.pointclouds.
org/downloads/
9.1.2013)

The Point Cloud Library ([32]) was presented at the ICRA

2011 (see Rusu and Cousins [37]). The development started

in march 2010 at Willow Garage with the goal to provide

support for processing of 3D point cloud data with main

focus on robotic applications. PCL is a comprehensive C++

library for 2D/3D image and point cloud data processing.

It contains modules for Vltering, search, feature estima-

tion, surface reconstruction, registration, model Vtting, seg-

mentation and visualization of point cloud data. In Vgure

4.5 a complete overview of PCL’s modules and their inter-

dependencies is shown. The C++ library is templated in

terms of point representation and deVnes several types of

23

http://www.pointclouds.org/downloads/
http://www.pointclouds.org/downloads/
http://www.pointclouds.org/downloads/

4 Realization

points.

Figure 4.5: PCL module dependencies (Source: http://www.pointclouds.org/about/, 9.1.2013)

PCL is used throughout this thesis for numerous purposes starting with the PointCloud data

types used with diUerent point representations. The point cloud data is obtained with help of

the io module and gets processed using the Vlters and segmentation module. Partial captured

model views are then joined using the registration module and post-processed using the

surface module. In the runtime part of this solution the tracking module is used to obtain the

location and orientation of the model. To visualize point clouds at any stage the visualization

module of PCL provides suitable tools.

In the following the data types and algorithms deVned by PCL will be explained further

since the principles of operation are essential for understanding the overall solution.

4.2.4 Data structures and Algorithms

Point

The most basic Point that is deVned in PCL is PointXYZ which represents a 3D Position.

Throughout this thesis the PointXYZRGBA which contains color information in red, blue, green

and alpha components is used as default point type. For feature comparison the point type

FPFHSignature33 deVnes the 33-bin Fast Point Feature Histogram. As particle representation in

the tracking algorithm the point type PointXYZRPY is used.

Point Cloud

The PointCloud data type deVnes collections of points and is templated by point types. Point-

clouds contain a set of points and cloud structure information. Projectable point clouds also

contain information about sensor position and orientation according to the pinhole camera

24

http://www.pointclouds.org/about/

4 Realization

model. A point cloud can be organized which means it can be split into rows and columns

like an image. In that case width and height of the point cloud resemble the row and column

count. If the point cloud is unorganized, the height is 1 and the width equals the total number

of points. Organized point clouds allow for example much faster neighbor operations than

unorganized ones. A point cloud is deVned as dense when it does not contain any inVnity or

NaN data in the points Velds.

K-D Tree

Figure 4.6: KD Tree space parti-
tioning with K = 3
source by: http://
commons.wikimedia.
org/wiki/File:
3dtree.png, 9.1.2013

In contrast to the vector-like structure of a point cloud, a

k-d tree (k-dimensional tree) is a tree data structure that

divides space in a hierarchical structure. Each Node rep-

resents a point in space and a split of the room it belongs

to. Here the split is always oriented along one of the di-

mensional axis and all points with a value bigger as the

splitting points value of this dimension gets sorted to the

right side of the sub-tree and all points with smaller val-

ues to the left side. The splitting axis switches with each

tree layer. In Vgure 4.6 the red lines indicate the Vrst split,

the green lines the two second splits and the blue lines the

third splits. This data structure is most eUective for spa-

tial search operation around points such as neighborhood

search algorithms and is used in the surface normal estima-

tion.

Passthrough Filter

A pass-through Vlter restricts the viewing volume to a Vxed size. Constraints for each axis

X , Y and Z can be set, and points that are outside these constraints are removed from the

cloud. EUectively the origin space is cut to the given minimum and maximum dimensions

in the given directions. This Vlter is very useful to reduce points by shrinking the viewing

volume. It reduces the amount of point in a trivial way and increases the processing speed

of following operations on the remaining cloud. The computing time of this Vlter is nearly

constant. In Vgure 4.7 a pass-through Vlter is applied to the Z axis with the constraints 0.5 to

1.5 meters. The pass-through Vlter is used for model acquisition to focus on the volume of

interest so that the planar surface on which the object is placed is guaranteed to be the biggest

25

http://commons.wikimedia.org/wiki/File:3dtree.png
http://commons.wikimedia.org/wiki/File:3dtree.png
http://commons.wikimedia.org/wiki/File:3dtree.png
http://commons.wikimedia.org/wiki/File:3dtree.png

4 Realization

planar surface in the remaining scene.

Figure 4.7: Scene before (left) and after pass-through Vltering (right)

Voxelgrid Filter

In a voxelgrid Vlter the space is divided into voxels of a Vxed size. Voxels are tiny 3D boxes in

space. Points in each voxel are then approximated to the centroid oU all voxel points, so that

for each voxel one averaged point is remaining. This approach gives a more accurate result

than approximate each voxel by its center. EUectively the whole point cloud gets downsampled

to a smaller resolution. The voxelgrid Vlter is used to down-sample scene and model point

cloud to the same resolution for feature calculation. In Vgure 4.8 a voxelgrid Vlter with a voxel

size of 1 cm is applied to the whole scene.

Figure 4.8: Scene before (left) and after voxel-grid Vltering (right)

26

4 Realization

RANSAC Plane Model Estimation

RANSAC is an iterative method to Vnd values that support a given hypothesis in a noisy set of

values. Therefore a random set of values is picked as hypothetical inliers and tested against

the hypothesis, producing a qualiVcation score of the model that is deVned by the hypothetical

inliers. This is repeated for a Vxed number of times and the set with the best qualiVcation

score is chosen as best Vtting for the hypothesis.

In PCL several basic 3D shape models like lines, planes, spheres or cylinders are supported to

be searched with diUerent sample consensus estimators like random sample consensus, least

median of squares or other more complicated estimators. (Rusu [36, chapter 6.1]) describes the

implementation details for PCL.

In this thesis RANSAC is used to eUectively separate the object from its surroundings. The

trick is to place the object on a Wat surface for model acquisition which then can be removed

by Vnding the inliers of the planar surfaces with this method. Therefore the scene has to be

pre-Vltered with a pass-through Vlter to make sure that the surface, the model is placed on is

the biggest plane in the scene.

Euclidean Cluster Extraction

With this algorithm a point cloud is clustered based on a maximum euclidean point distance.

In a tree representation of the point cloud which provide the fastest search method for spatial

searches a random leaf is chosen and from there all leafs within a given search radius in 3D

space are added to a cluster. If the cluster does not meet the given minimal and maximal point

number constraints, it is discarded. This is repeated for every found leaf until the cluster

cannot be expanded further and a new cluster is started from another random leaf. The

algorithms returns all clusters as point index vectors that can be used to extract the points

from the input point cloud. (Rusu [36, chapter 6.2]) describes this method as one of the basic

clustering techniques. Here the euclidean cluster extraction is used for model acquisition

to extract the model cluster out of the point cloud that is left after plane removal with RANSAC.

Normal Estimation

The surface normal estimation method proposed by the PCL Library is based on a least-square

plane Vtting estimation as described by (Rusu [36, chapter 4.3]). An analysis of the eigenvec-

tors and eigenvalues of a co-variance matrix built from the k nearest neighbors of the point

27

4 Realization

reveals the normal vector. Surface normals are required for example to compute point feature

histogram descriptors.

Point Feature Histograms

Figure 4.9: InWuence region of the
point feature histogram de-
scriptor (Source: [39])

For the registration procedure„ corresponding points

in two point clouds have to be found. Therefore a

robust feature descriptor is needed. Point Feature

Histograms are 3D feature descriptors described by

(Rusu [36, chapter 4.4]), that specify the neighbor-

hood of a query point Pq . First every k points Pk in

a radius r are selected. For every pair of the selected

points and their respective surface normals a set of

angular features is computed and binned into a his-

togram. Figure 4.9 depicts the inWuence radius r of

the descriptors as stippled line. The query point Pq

and its selected neighbour points Pk1 to Pk5 as graph

vertices and all pairs of them as graph edges. This feature descriptor is consistent to the six

degrees of freedom and is said to be relatively insensitive to noise. The general computation

complexity for n points of O(nk2) could be reduced to O(nk) by the Fast Point Feature

Histogram Algorithm (described by Rusu et al. [39]), that is not fully interconnecting all pairs

so that real-time feature acquisition is possible. The feature estimation is also available in a

parallelized form using the OpenMP standard (see [39, 40]).

The Fast Point Feature Histogram descriptor (FPFHSignature33) is used for point cloud registra-

tion in the sample consensus initial alignment as well as in the ICP algorithm.

Sample Consensus Initial Alignment

The sample consensus initial alignment algorithm Vnds a rough global alignment of two

partially overlapping point clouds (see Rusu et al. [39, Section IV]). It randomly selects point

correspondences from the two point clouds and reduces their euclidean distances by Vnding a

rigid transformation that reduces this distance.

This algorithm is used in this thesis to pre-align two point clouds before reVning that alignment

using ICP.

28

4 Realization

Iterative Closest Point

Iterative closest point (ICP) is used to match two point clouds that represent a scene from

diUerent view points, so that they can be concatenated after alignment. The algorithm incre-

mentally reduces the euclidean distance between closest points of two point clouds. Based on

the work of (Besl and McKay [4]) PCL provides a modiVed version of the ICP algorithm for

point cloud registering which is described by (Rusu [36, chapter 5.1]). The algorithm has the

drawback that it only Vnds the closest local minimum. With an initial alignment which gets

close to a global minimum distance, it can be used to Vne tune the alignment between two

clouds.

Statistical Outlier Removal

Scanned point cloud data often contains sparse outliers due to noise or other measurement

errors. To remove those outliers from the point cloud, a statistical analysis is performed around

each points neighbourhood to compute the global mean distance to a neighbour point and the

standard deviation. All points outside an interval deVned by those values are considered to

be outliers and removed from the point cloud (see Rusu et al. [38]). In this thesis statistical

outlier removal is used on the registered 360° model.

Moving least squares smoothing

Moving least squares is method to reconstruct a continuous function from a set of points.

The algorithm computes surface manifolds from the given points and re-samples the acquired

points to produce a smoothed surface (for details, see Alexa et al. [1]). This algorithm is used

to further reVne the registered 360° model.

Adaptive Particle Filter Tracking

Based on (Fox [14, 15]) the PCL library provides an implementation for particle Vltering with

adaptive particle count and parallel computation of probabilty scores. A particle is deVned in

this method as a pose with a position vector and roll, pitch and yaw information (PointXYZRPY).

The algorithm estimates pose candidates of the model in the observed scene, and weights the

candidates with a probability score. The probability score is calculated on diUerent coherence

factors between model points and scene points. In PCL those coherence factor can be based

29

4 Realization

on point colors, point normals or point distances. The candidate with the highest score is

supposed to be the best matching candidate.

According to (Lepetit and Fua [24]), a big drawback of this method is that an accumulation

of estimation errors can occur because this method bases its estimation on a sequence of

captured frames and so estimation errors in previous frames can sum up. Being the only 3D

tracking method implemented in PCL this however is the method of choice to obtain object

position and orientation in this thesis.

4.3 Solution

There are four applications involved in the solution which are shown Vgure 4.10. The appli-

cations in the blue box, rgbd-viewer and calibrate-projector are provided by (Burrus [9]) and

generate the calibration Vle (see 4.3.1). The dynmap application includes a point cloud process-

ing pipeline for model acquisition and one for object tracking. The model acquisition pipeline

produces point clouds of the separated partial model (see 4.3.2). The tracking pipeline delivers

the most likely pose of the tracked object (see 4.3.3). The pairwise-registration application is

derived from a PCL demo application of the same name and is used to successively register all

partial model point clouds to a 360° model (see 4.3.2).

Figure 4.10: Structure of the programs involved in the solution

30

4 Realization

4.3.1 Calibration

Figure 4.11: Detection of calibration
pattern

Perform calibration The "Projector-Kinect Cali-

bration Tutorial" by (Burrus [9]) is followed to ob-

tain the projector calibration. Therefore the tools

rgbd-viewer and calibrate-projector from the RGB-

Demo project have to be built. The method assumes

a projector as a "reverse" camera and performs a

stereo camera calibration with methods provided by

(OpenCV [27]). A plane board with diUerent chess-

board patterns in all corners (see 4.11) is positioned

in front oU camera and projector, so that another

chessboard pattern gets projected on the middle of

the board. With the physical chessboard, the world to camera space homography is given while

the projected chessboard the projector unveils the projector to world homography. With this

information the camera to projector homography can be obtained. With the rgbd-viewer about

10 to 30 images with diUerent board poses are captured. The calibrate-projector application

than takes those images, detects the corners of the real and virtual chessboards and computes

a homography between the two coordinate spaces and an estimated pixel re-projection error

which should be lower than 1.0 pixel by possibility. If it is much bigger, the calibration possibly

failed due to too many images. The resulting parameters contain intrinsics and extrinsics of

the projector with respect to the cameras location and are stored in .yml Vles for later use.

Figure 4.12 illustrates the calibration procedure.

Figure 4.12: Overview of calibration procedure

31

4 Realization

4.3.2 Model acquisition

Due to the behaviour of ICP to Vnd local minima, it was already considered to use sample

consensus initial alignment for rough global alignment in advance. That raises the possibility

to Vnd a correct registration transformation for two partial overlapping point clouds but there

still can be cases where the alignment fails. Therefore the registration of the partial point

clouds can not be automated using this algorithms. Instead Vrst partial model point clouds are

saved as Vles which than can be pairwise registered. Every pairwise registration result has to

be manually reviewed for feasible alignment.

Figure 4.13: Overview of partial model capturing

32

4 Realization

Partial model acquisition

Figure 4.13 illustrates the function of the model acquisition pipeline. To segment an object

out of the point cloud from the sensor, a series of Vlters are applied to it. First a pass-through

Vlter is applied which only leaves points in a given bounding box. That bounding box is then

down-sampled using a voxelgrid Vlter with a small leaf-size to achieve a uniform resolution

while preserving the details of the model. Then the biggest plane in the remaining cloud will

be searched with a plane model Vtting algorithm that removes all points in this plane, leaving

a scene as shown in Vgure 4.14c. Now the remaining point cloud consist of the main objects

without the planar surface and some surrounding clutter. To Vnally separate the object out

of the remaining point cloud it has to be selected in a PCLVisualizer by mouse click. The

PCLVisualizer provides a click point in 3D space from which the closest point in the remaining

cloud can be searched. Using the index of this point, an euclidean cluster extraction can collect

all points belonging to the object in a separate point cloud that is stored for further processing.

(a) Sensor Data (b) Passthrough Filtered

(c) Biggest Plane removed (d) Clustered

Figure 4.14: Model acquisition Vlter pipeline

Registration with manual inspection

To provide a more complete model, this is done from diUerent views of the object and the

clusters are combined to provide a 360° model. The obtained model clusters are registered

pairwise by Vrst obtaining a rough alignment transformation via sample consensus initial

33

4 Realization

alignment which is then reVned by iterative closest point. To remove sparse outliers and

to smooth noisy surfaces the statistical outlier and the moving least squares algorithms are

applied. Figure 4.15 illustrates this registration procedure.

Figure 4.15: Overview of pairwise registration procedure

Figure 4.16 shows two partial views of the model in their original position and after the reg-

istration process was successful. The resulting transformation is applied to the corresponding

point cloud, before they are concatenated.

Figure 4.16: Two partial models (red/green) before (left) and after registration (right) using ICP

34

4 Realization

4.3.3 Object tracking

The tracker gets initialized to use a maximum of 500 particles and to start with 400 particles.

As coherence factor point distance was chosen. For the pose estimation the created model

and the last captured frame get down-sampled to the same resolution using a voxel-grid Vlter.

The model is set initially as reference point cloud to the tracker while the scene point cloud

has to be renewed for every incoming frame. Then the tracker is started to obtain the pose

estimation for the object. For every processed frame, the 3D pose is delivered by the Tracker as

PointXYZRPY which represents the most likely pose candidate of the actual frame. The pose is

turned into a transformation matrix and stored for transforming the model point cloud before

visualization. Figure 4.17 shows an overview of the tracking pipeline.

Figure 4.17: Overview of tracking procedure

4.3.4 Virtual Scene Construction

To achieve a projector view, the inverse of the extrinsic parameters has to be applied to the

scene and the intrinsic parameters have to be used to set up the virtual camera. While the

PCLVisualizer is a nice tool to provide a technical overview of what is going on in the point

cloud, it is not suitable to provide the virtual camera that deVnes the projector perspective

35

4 Realization

because the camera of the underlying (VTK Toolkit [44]) does not support oU-axis projection

yet in the version PCL supports. This is needed, because nearly every video projector projects

with an oUset angle to the z-axis what means that the lenses principal point is not located in

the image center. Therefore an OpenGL based pointcloud visualizer was created which gets

conVgured with an OpenGL version of the intrinsic matrix.

With the pose information from tracking, the model point cloud is transformed and rendered

in the projector window.

4.4 Evaluation

In this section the developed solution will be presented and discussed. Figure 4.18 shows the

main user interface which displays the point cloud after plane removal at the top, the RGB

image from the Kinect at the lower left and the latest segmented model at the lower right.

Next to the main visualizer the Vlter parameters can be controlled and the intermediate point

clouds for display can be selected. The rightmost section in the lower panel displays averaged

computation times for each Vlter stage.

Figure 4.18: User Interface of the developed solution

36

4 Realization

4.4.1 The calibration parameters

The calibration is performed as stated in section 4.3.1, several board pose images are captured

with the rgbd-viewer and after that, the calibration parameters are calculated with calibrate-

projector. The output depicted in listing 4.1 of the later shows the intrinsic matrix of the

projector (line 2-4), the estimated lens distortion coeXcients (line 5) and indicates the quality

of the calibration (line 7).

1 ...
2 [2539.664076205458 , 0, 636.4047646278752;
3 0, 2489.958599900968 , 555.751728675664;
4 0, 0, 1]
5 [0, 0, 0, 0, 0]
6 Debug: [DBG] "errorInt: 1.77581"
7 Average pixel reprojection error: 0.783524

Listing 4.1: Output of calibrate-projector

To visualize the positions and orientations of projector and camera in the user interface,

their corresponding coordinate systems are drawn. The cameras location in virtual space is at

the zero point facing into Z direction while the projectors position and orientation is deVned

by the acquired extrinsic calibration parameters. Figure 4.19 shows the physical scene with

subsequently inserted, manually drawn coordinate systems for Kinect camera and projector.

Figure 4.19: Kinect camera and projector placement (coordinate systems drawn manually)

In Vgure 4.20 the two coordinate systems, which are calculated from the acquired calibration,

show up in plausible locations in the virtual scene. This indicates roughly that the calibration

is correct.

37

4 Realization

Figure 4.20: Kinect camera and projector placement in virtual space (coordinate systems
calculated from calibration)

4.4.2 Model acquisition

For the reference model that will be used in the tracking algorithm, several diUerent views

of the physical objects are captured. Figure 4.21 depicts six segmented diUerent views of the

object each showing only the surfaces visible to the camera.

Figure 4.21: Six diUerent segmented views of the object to track

Those partial views are then registered to a full 360° point cloud model of the object by

pairwise registering two partial model. Even with a good initial alignment for example through

RANSAC initial alignment it happens that the two partial model are Vtted in a way that does

38

4 Realization

not reWect the real form of the object. In Vgure 4.22 the red model would have to be rotated

counter-clockwise about 90°to Vt the green model. ICP instead found a stronger local minimum

by mainly translating the red model to the upper left. Therefore every aligned pair has to be

reviewed if the alignment is correct.

Figure 4.22: Two partial models (red/green) before (left) and after registration (right). ICP has
converged to a local minimum

Only successful registered pairs are then used for further pair alignment. Due to the fact

that the partial models have overlapping parts, not necessarily all partial models are needed

for a full model. In Vgure 4.23 the registered model is very noisy, but after outlier removal and

MLS smoothing the model looks quite clear although the edges also get rounded. The Vnal

model can then be used for tracking purposes.

Figure 4.23: Fused model after registration (top row) and smoothed model (bottom row)

4.4.3 Runtime

Below image sequence represents the results of this solutions pretty good and also shows the

weaknesses of this approach. The sequence is made with one image per second and the model

39

4 Realization

point cloud is projected in red onto the tracked object. In the Vrst three images of the sequence

the alignment is accurate. Then from image 4 to image 12 the projections is misaligned by up

to 3cm. After changing movement direction, the projection Vnds back to the correct pose from

image 13 to image 14. Overall the position gets tracked quite reliable so that the projection

is following with an expectable delay. Rotation seems to be a little bit more uncertain. If the

object is not moving the tracking algorithm does not really comes to rest. For each frame the

position and orientation slightly jumps around the real position.

Figure 4.24: Image sequence of tracking with 1 second between images

4.4.4 Measurements

During the experiments average computation times where calculated. Note that the times

where calculated with the Vlter pipelines in aUect, so for example the voxelgrid Vlter time

depends on how many points are left after passthrough Vltering.

40

4 Realization

The Vrst Vltering stage in the model acquisition pipeline is the passthrough Vlter. The per-

formance of the following processing stages depends on how many points are left after

passthrough Vltering. Because of the organized nature of the point cloud obtained from the

Kinect, there can be only one point at a (x, y) position. Therefore, doubling the edge length

of the passtrough Vltering volume results maximally in a quadrupling of the point count.

The amount of points that the planar surface extraction has to deal with also quadruples at

maximum. The input point number for the cluster extraction thus varies due to noise, that

results in a varying number of extracted planar surface points.

In Vgure 4.25 the impact of diUerent passthrough Vlter volumes to the following process-

ing stages is shown. While the Vltering times for passthrough and voxelgrid Vlter is nearly

constant, the time for extracting the biggest planar region grows exponentially. The compu-

tation time for the cluster extraction shows the most signiVcant growth, indicating that this

algorithms computation time is heavily dependent on the input data size. As a very basic

clustering algorithm is used, there probably are more advanced algorithms, that could be used.

Figure 4.25: Impact of Passthrough Vlter on following computation

The second suspect of computation time investigation is the voxelgrid Vlter. For comparison

reasons this is done with two diUerent passthrough volumes. The voxelgrid Vlter leaves one

point per leaf, resulting in a maximum of n =
(
XlengthPasstrough

LeafsizeV oxelgrid

)
∗
(
Y lengthPasstrough

LeafsizeV oxelgrid

)
points

41

4 Realization

after Vltering. Therefore doubling the voxelgrid leaf size results in a quartered point count at

maximum after voxelgrid Vltering.

Figure 4.26 and 4.27 illustrate the impact of diUerent leaf sizes to the following Vlters with

two diUerent passthrough Vlter volumes. Of course the passthrough Vlter is not aUected by

the changing voxelgrid Vlter. The voxelgrid Vlters computation time is only slightly aUected

by its changing setting. Here again the planar region extraction shows a exponential growth

behaviour. The same applies to the computation time of the cluster extraction which shows a

diUerent behaviour at the right end in Vgure 4.26 and on the left end in Vgure 4.27. This can

be explained with the minimum and maximum cluster size setting of the cluster extraction.

The denser the point cloud is, the more points are in a cluster and more likely the maximal

cluster size is met.

Figure 4.26: Impact of Voxelgrid Vlter on following computation

42

4 Realization

Figure 4.27: Impact of Voxelgrid Vlter on following computation

In the tracking pipeline is used to down-sample model and scene point clouds to the same

resolution. Figure 4.28 shows the impact oU diUerent voxelgrid Vlter leaf sizes on the tracking

algorithm. Again the voxelgrid computation time is close to constant. The average tracking

time in contrast is very inconsistent, therefore a minimum and maximum value is plotted. It

seems that too dense point clouds and also too sparse point clouds cause the tracking algorithm

to be more expensive.

Figure 4.28: Impact of Voxelgrid Vlter on tracking

43

4 Realization

Overall the performance of voxelgrid Vlter, passthrough Vlter and plane extraction are good

enough for real-time application on Kinect data with 30 FPS. The performance of the cluster

extraction could surely improved by using more advanced cluster extraction algorithms. The

performance of the tracking algorithm would also have to be improved further for real-time

tracking. The trackers conVguration can certainly be optimized for this purpose, by using

diUerent coherence factor combinations with diUerent weights and by tuning the probability

parameters.

4.5 Summary

After deVning the outlines of the solution and making basic assumptions (see 4.1), a thorough

examination of the proposed sensor and library candidates showed the suitability of those

tools for this thesis. The algorithms used to develop the solution where explained (see 4.2).

In section (4.3) the structure of the solution is explained for each of the problem Velds. Point

cloud processing pipelines for model acquisition and tracking have been developed from the

given algorithms. An output window that gets conVgured with the projectors calibration

parameters was developed to produce the projectors output.

The developed solution and exemplary results are then presented for each of the problem

Velds. The implementation of the theoretical solution was proven feasible but shows also that

it is still hard, to achieve an optimal result (see 4.4). Measurements have revealed performance

bottlenecks in the solution and led to proposals for improvement.

44

5 Conclusion

Coming from the technical research Veld of spatial augmented reality, static video projection

mapping has been adapted to an art form. Several approaches have been made to video

map dynamic objects (see 2.1). From 2D mapping using dynamic masks over marker-based

2D tracking video projection mapping has evolved to 3D mapping approaches using con-

trolled movement or vision-based simple polygonal reconstruction. A real-time reconstruction

method based on the Microsoft Kinect sensor introduces the idea of creating a 3D model of

successive point clouds. It turned out that the identiVed problem Velds are actual research

topics which oUer solution approaches (see 2.2).

After deVning the objective of this thesis, the problem Velds have been analysed. That

resulted in a separation of the solution in an oYine phase for calibration and model acquisition

and an online phase for object tracking and visualization. Also a rough idea of the implemen-

tation was developed (see 3).

In (4.2) the used libraries are introduced and thoroughly analysed. The algorithms which

contribute to the overall solution are examined and explained (see 4.2.3). With that knowledge

the solution was developed. Point cloud processing pipelines for the model acquisition and the

object tracking task where implemented and a projector window that resembles the projectors

intrinsics from the acquired calibration Vle was created (see 4.3).

Finally the developed solution is presented which showed that the idea is feasible. The

tracking method provided good enough accuracy to project reliably onto the object although

the alignment of the projection was not perfectly Vtting (see 4.4). Measurement showed

bottlenecks regarding the performance (see 4.4.4).

45

5 Conclusion

Drawbacks

Frame rate It turned out that the possible movement speed feels much lower than expected

because of the delay between successive frames. A small calculation example shows the prob-

lem. When the object is moved at a speed of 1m/s, which is a medium movement speed for a

stretched out arm, and the Kinect is producing Point Clouds at 30 frames per second, the object

will move 3, 3cm between two frames, ignoring the calculation time for the re-projection.

Therefore for a really seamless projection faster cameras and then certainly faster computation

are required.

Tracking Method One problem is that the tracking method fails to estimate a steady pose

when the objects is not moving. Possibly this could be circumvented by somehow smooth the

acquired poses over time. One other drawback regarding the tracking was already mentioned.

Since particle Vltering follows an accumulative approach, the tracking fails consequently if it

lost track of the object. Therefore the tracker would have to be reset if the tracking fails, to

start over without any historical data to base the estimation on.

Global alignment The lack of a reliable global registration methods makes it hard to auto-

matically acquire a 3D model using ICP on partial model point clouds. This problem is widely

known and is subject to current research.

Further Work

Further work in this topic is needed with regards to the particle Vlter conVguration, which

still oUers lots of optimization possibilities. Also the usage of more advanced, faster clustering

algorithms could improve this solution. Much work is needed for the vision towards a real-

time 3D projection-mapping for moving and deforming objects like clothings. As real-time

reconstruction still proves to be a challenge this is an interesting research topic. State oU the

art research is done in closely related Velds that provides lots of inspiration to tackle this idea.

Current trends like the continuing eUorts in parallelizing algorithms for multi core and GPU

computing also represent a favourable development.

46

Bibliography

[1] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C.T. Silva. Computing and

rendering point set surfaces. Visualization and Computer Graphics, IEEE Transactions on,

9(1):3–15, 2003.

[2] P. Azad, D. Munch, T. Asfour, and R. Dillmann. 6-dof model-based tracking of arbitrarily

shaped 3d objects. In Robotics and Automation (ICRA), 2011 IEEE International Conference

on, pages 5204–5209. IEEE, 2011.

[3] F. Bernardini and H. Rushmeier. The 3d model acquisition pipeline. In Computer Graphics

Forum, volume 21, pages 149–172. Wiley Online Library, 2002.

[4] P.J. Besl and N.D. McKay. A method for registration of 3-d shapes. IEEE Transactions on

pattern analysis and machine intelligence, 14(2):239–256, 1992.

[5] ZM Bi and L. Wang. Advances in 3d data acquisition and processing for industrial

applications. Robotics and Computer-Integrated Manufacturing, 26(5):403–413, 2010.

[6] O. Bimber, R. Raskar, and M. Inami. Spatial augmented reality. AK Peters, 2005.

[7] H. Bohnacker, B. Gross, J. Laub, and C. Lazzeroni. Generative Gestaltung: entwerfen,

programmieren, visualisieren. Schmidt, 2009.

[8] J.A. Brown and D.W. Capson. A framework for 3d model-based visual tracking using a

gpu-accelerated particle Vlter. Visualization and Computer Graphics, IEEE Transactions on,

18(1):68–80, 2012.

[9] N. Burrus. Kinect rgbdemo v0.7.0. URL http://labs.manctl.com/rgbdemo/index.

php/Main/HomePage. last accessed: 25.09.2012.

[10] C. Choi and H.I. Christensen. Real-time 3d model-based tracking using edge and key-

point features for robotic manipulation. In Robotics and Automation (ICRA), 2010 IEEE

International Conference on, pages 4048–4055. IEEE, 2010.

47

http://labs.manctl.com/rgbdemo/index.php/Main/HomePage
http://labs.manctl.com/rgbdemo/index.php/Main/HomePage

Bibliography

[11] G. Cuccuru, E. Gobbetti, F. Marton, R. Pajarola, and R. Pintus. Fast low-memory streaming

mls reconstruction of point-sampled surfaces. In Proceedings of Graphics Interface 2009,

pages 15–22. Canadian Information Processing Society, 2009.

[12] B. Curless and M. Levoy. A volumetric method for building complex models from range

images. In Proceedings of the 23rd annual conference on Computer graphics and interactive

techniques, pages 303–312. ACM, 1996.

[13] G. Falcao, N. Hurtos, and J. Massich. Plane-based calibration of a projector-camera

system. VIBOT Master, 2008.

[14] D. Fox. Kld-sampling: Adaptive particle Vlters and mobile robot localization. Advances in

Neural Information Processing Systems (NIPS), pages 26–32, 2001.

[15] D. Fox. Adapting the sample size in particle Vlters through kld-sampling. The international

Journal of robotics research, 22(12):985–1003, 2003.

[16] D. Glasner, M. Galun, S. Alpert, R. Basri, and G. Shakhnarovich. Viewpoint-aware object

detection and pose estimation. In 2011 IEEE International Conference on Computer Vision

(ICCV), pages 1275–1282. IEEE, 2011.

[17] M. Godec, P.M. Roth, and H. Bischof. Hough-based tracking of non-rigid objects. In 2011

IEEE International Conference on Computer Vision (ICCV), pages 81–88. IEEE, 2011.

[18] R. Hartley, A. Zisserman, and Inc ebrary. Multiple view geometry in computer vision,

volume 2. Cambridge Univ Press, 2003.

[19] Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard Newcombe, Push-

meet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, Andrew Davison, and Andrew

Fitzgibbon. Kinectfusion: real-time 3d reconstruction and interaction using a moving

depth camera. In Proceedings of the 24th annual ACM symposium on User interface soft-

ware and technology, UIST ’11, pages 559–568. ACM, 2011. ISBN 978-1-4503-0716-1. doi:

10.1145/2047196.2047270. URL http://doi.acm.org/10.1145/2047196.2047270.

[20] B.R. Jones. Augmenting complex surfaces with projector-camera systems. 2011.

[21] H. Kato and M. Billinghurst. Marker tracking and hmd calibration for a video-based aug-

mented reality conferencing system. In Proceedings of the 2nd IEEE and ACM International

Workshop on Augmented Reality, 1999.(IWAR’99), pages 85–94. IEEE, 1999.

48

http://doi.acm.org/10.1145/2047196.2047270

Bibliography

[22] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface reconstruction. In Proceedings of

the fourth Eurographics symposium on Geometry processing, 2006.

[23] J.C. Lee. Projector-based location discovery and tracking. PhD thesis, Intel, 2008.

[24] V. Lepetit and P. Fua. Monocular model-based 3D tracking of rigid objects. Now Publishers

Inc, 2005.

[25] L. Mei, J. Liu, A. Hero, and S. Savarese. Robust object pose estimation via statistical

manifold modeling. In 2011 IEEE International Conference on Computer Vision (ICCV),

pages 967–974. IEEE, 2011.

[26] K. Obermaier. Apparition. Proceedings of Ars Electronica 2004, pages 314–318, 2004.

[27] OpenCV. Opencv. URL http://opencv.willowgarage.com/wiki. last accessed:

08.10.2012.

[28] openFrameworks. openframeworks. URL http://www.openframeworks.cc. last ac-

cessed: 25.09.2012.

[29] OpenNI. OpenNI. URL http://openni.org/. last accessed: 27.11.2012.

[30] Q. Pan, G. Reitmayr, and T. Drummond. Proforma: Probabilistic feature-based on-line

rapid model acquisition. In Proc. 20th British Machine Vision Conference (BMVC), 2009.

[31] panGenerator collective. Peacock. URL http://vimeo.com/49869407. last accessed:

18.10.2012.

[32] PCL. Point Cloud Library 1.7.0.rv8129. URL http://pointclouds.org. last accessed:

25.09.2012.

[33] Guillermo Perez, German HoUmann, Rodrigo Rivera, and Veronica Manduca. Mapinect.

URL http://mapinect.wordpress.com/. last accessed: 08.01.2013.

[34] R. Poppe. Vision-based human motion analysis: An overview. Computer Vision and Image

Understanding, 108(1):4–18, 2007.

[35] Processing. Processing. URL http://processing.org. last accessed: 25.09.2012.

[36] Radu Bogdan Rusu. Semantic 3D Object Maps for Everyday Manipulation in Human

Living Environments. PhD thesis, Computer Science department, Technische Universitaet

Muenchen, Germany, 10 2009.

49

http://opencv.willowgarage.com/wiki
http://www.openframeworks.cc
http://openni.org/
http://vimeo.com/49869407
http://pointclouds.org
http://mapinect.wordpress.com/
http://processing.org

Bibliography

[37] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library (PCL). In IEEE

International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13

2011.

[38] R.B. Rusu, Z.C. Marton, N. Blodow, M. Dolha, and M. Beetz. Towards 3d point cloud

based object maps for household environments. Robotics and Autonomous Systems, 56

(11):927–941, 2008.

[39] R.B. Rusu, N. Blodow, andM. Beetz. Fast point feature histograms (fpfh) for 3d registration.

In ICRA’09. IEEE International Conference on Robotics and Automation, pages 3212–3217.

IEEE, 2009.

[40] R.B. Rusu, A. Holzbach, N. Blodow, and M. Beetz. Fast geometric point labeling using

conditional random Velds. In International Conference on Intelligent Robots and Systems,

2009. IROS 2009. IEEE/RSJ, pages 7–12. IEEE, 2009.

[41] M. Shaheen, J. Gall, R. Strzodka, L. Van Gool, and H.P. Seidel. A comparison of 3d model-

based tracking approaches for human motion capture in uncontrolled environments. In

Applications of Computer Vision (WACV), 2009 Workshop on, pages 1–8. IEEE, 2009.

[42] R. Szeliski. Computer vision: Algorithms and applications. Springer, 2010.

[43] A. Tevs, A. Berner, M. Wand, I. Ihrke, M. Bokeloh, J. Kerber, and H.P. Seidel. Animation

cartography - intrinsic reconstruction of shape and motion. ACM Transactions on Graphics

(TOG), 31(2):12, 2012.

[44] VTK Toolkit. Vtk. URL http://www.vtk.org. last accessed: 13.11.2012.

[45] White Kanga. Modeling projection system. URL http://whitekanga.pl/pl/

produkty. last accessed: 19.11.2012.

[46] Y. Xu and D.G. Aliaga. High-resolution modeling of moving and deforming objects using

sparse geometric and dense photometric measurements. In 2010 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 1237–1244. IEEE, 2010.

[47] H. Yang and G. Welch. Model-based 3d object tracking using an extended-extended

kalman Vlter and graphics rendered measurements. In Computer Vision for Interactive

and Intelligent Environment, 2005, pages 85–96. IEEE, 2005.

50

http://www.vtk.org
http://whitekanga.pl/pl/produkty
http://whitekanga.pl/pl/produkty

Bibliography

[48] T.C. Yapo, Y. Sheng, J. Nasman, A. Dolce, E. Li, and B. Cutler. Dynamic projection

environments for immersive visualization. In 2010 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition Workshops (CVPRW), pages 1–8. IEEE, 2010.

[49] S. Zhang. Recent progresses on real-time 3d shape measurement using digital fringe

projection techniques. Optics and lasers in engineering, 48(2):149–158, 2010.

[50] Z. Zhang. A Wexible new technique for camera calibration. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 22(11):1330–1334, 2000.

51

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig verfasst und

nur die angegebenen Hilfsmittel benutzt habe.

Hamburg, January 31, 2013 Iwer Petersen

	1 Introduction
	1.1 Motivation
	1.2 Structure

	2 Related Work
	2.1 Corresponding projects
	2.1.1 Spatial Augmented Reality
	2.1.2 2D Mapping onto people
	2.1.3 Marker based tracking of known projection surfaces
	2.1.4 Mapping on servo actuated Objects
	2.1.5 Mapinect
	2.1.6 KinectFusion

	2.2 Technology to consider
	2.2.1 Calibration
	2.2.2 Reconstruction
	2.2.3 Tracking

	2.3 Discussion

	3 Analysis
	3.1 Subproblem Analysis
	3.1.1 3D sensor
	3.1.2 Projector camera calibration
	3.1.3 Dynamic model creation / Object tracking
	3.1.4 Virtual Scene Construction

	3.2 Summary

	4 Realization
	4.1 Assumptions
	4.2 Tools and Libraries
	4.2.1 Point Cloud Capturing Sensor
	4.2.2 Projector Camera Calibration
	4.2.3 Libraries
	4.2.4 Data structures and Algorithms

	4.3 Solution
	4.3.1 Calibration
	4.3.2 Model acquisition
	4.3.3 Object tracking
	4.3.4 Virtual Scene Construction

	4.4 Evaluation
	4.4.1 The calibration parameters
	4.4.2 Model acquisition
	4.4.3 Runtime
	4.4.4 Measurements

	4.5 Summary

	5 Conclusion

