
Fakultät Technik und Informatik

Department Informatik

Faculty of Engineering and Computer Science

Department of Computer Science

Stefan Greis

Applying Interoperability and Traceability

to the Domain of Testing using OSLC

Bachelor Thesis

Stefan Greis

Applying Interoperability and Traceability

to the Domain of Testing using OSLC

Bachelor-Arbeit eingereicht im Rahmen der Bachelor-Prüfung

im Studiengang Angewandte Informatik

am Department Informatik

der Fakultät Technik und Informatik

der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer : Prof. Dr. Zhen Ru Dai

Zweitgutachter : Prof. Dr. Stefan Sarstedt

Abgegeben am 18. Juni 2013

Stefan Greis

Thema der Bachelor-Arbeit

Applying Interoperability and Traceability to the Domain of Testing using OSLC

Stichworte

Open Services for Lifecycle Collaboration (OSLC), Rational Rhapsody Test Conductor (RTC),

Interoperability, Traceability, Proof of Concept

Kurzzusammenfassung

In dieser Arbeit geht es darum, Interoperability und Traceabiliy für den Rational Rhapsody

Test Conductor (RTC) mit Hilfe von OSLC herzustellen. Hierzu wurde eine Analyse der RTC

Konstrukte durchgeführt und ein Mapping zu den passenden OSLC QM Ressourcen erstellt.

Der praktische Anteil der Arbeit umfasst eine Prototypimplementierung eines OSLC

Adaptors für RTC; dieser dient als Proof of Concept für OSLC Implementierung und wurde

unter Zuhilfenahme des Lyo SDK erstellt.

Stefan Greis

Title of the paper

Applying Interoperability and Traceability to the Domain of Testing using OSLC

Keywords

Open Services for Lifecycle Collaboration (OSLC), Rational Rhapsody Test Conductor (RTC),

Interoperability, Traceability, Proof of Concept

Abstract

This paper deals with applying interoperability and traceability to the Rational Rhapsody

Test Conductor (RTC) using OSLC as a technology. This includes an analysis of the RTC

constructs and a mapping to the OSLC resources of the Quality Management domain. In

addition a prototype implementation of an OSLC adaptor was created. This serves as a

proof of concept for OSLC implementations and is based on the Lyo SDK.

Acknowledgement

Firstly I would like to thank my mentor Prof. Dr. Dai for her time, effort and support which

strongly influenced this paper in the most positive way.

Secondly I would like to thank Parham Vasaiely (EADS, MBAT project) for providing me with

the topic and the basic idea of the paper.

I would also like to thank Udo Brockmeyer, Marc Lettrari, Ruben Rothaupt and Christian

Wachtendorf of BTC for their support regarding the Rational Rhapsody Test Conductor.

I would also like to thank Stefan Paschke for his support regarding the Lyo SDK and its use in

the implementation.

Table of Contents

1 Introduction .. 6

1.1 Motivation ... 7

1.2 Objective ... 8

2 Core Concepts ... 9

2.1 Traceability .. 9

2.2 Interoperability ... 12

2.3 Linked Data .. 15

3 Core Technologies ... 18

3.1 Representational State Transfer (REST) .. 18

3.2 ResourceDescriptionFramework (RDF) ... 19

3.3 ExtensibleMarkupLanguage (XML) .. 20

3.4 UniformResourceIdentifier (URI) .. 21

3.5 HypertextTransferProtocol (Http) ... 21

4 Open Services for Lifecycle Collaboration (OSLC) .. 23

4.1 Definition ... 23

4.2 Principles and Philosophy ... 23

4.3 Choosing OSLC ... 25

4.4 Structure .. 26

4.5 OSLC QM ... 26

4.6 Concepts .. 27

4.7 Technologies ... 27

4.8 Lyo ... 27

5 Related Work .. 28

5.1 ModelBus .. 28

6 Analysis .. 30

6.1 Overview ... 30

6.2 Relevant Constructs .. 30

6.3 Irrelevant Constructs ... 34

6.4 Mapping .. 38

7 Scenario .. 40

7.1 Pre-Condition .. 40

7.2 Post-Condition ... 40

7.3 Steps .. 40

8 Requirements ... 41

8.1 Traceability .. 41

8.2 Interoperability ... 41

8.3 Specification .. 41

8.4 Simplicity ... 42

8.5 Modularity and Extensibility ... 42

9 Design .. 43

9.1 Overview ... 44

9.2 Project Structure ... 45

9.3 System Architecture .. 47

9.4 Project rtc_oslc_adaptor ... 47

9.5 Project rtc_oslc_provider .. 52

9.6 Project rtc_oslc_common ... 58

9.7 Scenario Execution .. 65

10 Implementation .. 67

11 Conclusion .. 68

11.1 General Appraisal .. 68

11.2 Coverage of Requirements .. 69

11.3 Coverage of Scenario... 69

11.4 Specification .. 70

11.5 Interoperability ... 71

11.6 Traceability .. 72

11.7 Tutorials and Examples ... 73

11.8 Resources and Mapping .. 74

11.9 Lyo Software Development Kit (SDK) .. 75

11.10 Implementation Problems .. 76

11.11 Outlook .. 77

12 Glossary .. 79

13 Bibliography ... 81

14 Appendix .. 83

Appendix A: Installation Guide ... 83

Appendix B: Table of Figures .. 84

Appendix C: Archived Website ... 86

1 Introduction 6

1 Introduction

The complexity of software products has rapidly increased over the past years which also

increased the complexity of the software development lifecycle as well. This has led to a

vast number of diverse, specific and important tasks which have to be mastered along the

software development lifecycle.

Handling those tasks need specialists with a high degree of know-how, expertise and

skill. Those experts are specialized in specific tasks and use equally specialized tools to

handle the given tasks.

This creates a tool landscape which is highly diverse in regard to the available

functionality as well as the number of tools included (see Fig. 1, page 6). Additionally the

high amount of tools and tasks lead to a huge number of artifacts that are produced during

the lifecycle. These artifacts are not compatible.

Correctly maintaining and handling these artifacts is a complex task in itself. Not being

able to efficiently and effectively handle the tasks included in the software development

lifecycle will lead to errors which are expensive in both time and money to correct.

One solution is to create proprietary adaptors for every combination of tools (see Fig. 2,

page 7). But this is not a very efficient solution as it produces a high number of adaptors

which need to be designed, implemented and maintained.

Fig. 1: Lack of interoperability hinders communication.

1 Introduction 7

Fig. 2: Point-to-point communication based on proprietary adaptors.

1.1 Motivation
The motivation behind this thesis is improving the tasks in concern of correctly handling

different artifacts. This requires the application of concepts and technologies such as OSLC

(see Fig. 3, page 7). Applying OSLC to different tools will create interoperability between

different tools which will in return make the handling of artifacts along their lifecycle easier.

Interoperability is applied as an enabling concept for artifact traceability. Being able to

trace the different artifacts is a very efficient and effective way to handle artifacts.

Using OSLC does only require one adaptor for every tool (see Fig. 4, page 8). This is a

dramatically reduced number in comparison to the proprietary adaptor approach.

Additionally it creates a very flexible way of communication.

Fig. 3: Communication based on OSLC adaptors.

1 Introduction 8

Fig. 4: OSLC adaptors allow flexible communication in a tool landscape.

1.2 Objective
Based on the fact, that interoperability and traceability in the software lifecycle is a very

wide area, this thesis focuses on the domain of testing. The objective is to apply

interoperability capabilities and enabling traceability with OSLC in this domain. This work

will be a proof of concept for OSLC which will include the ability to successfully apply it in

theory and practically to a test tool. As example the tool "Rational Rhapsody Test

Conductor" is used. The thesis is divided into four parts. The first part gives an introduction

to core concepts, core technologies and OSLC. The second part will focus on the analysis

and the mapping of concepts while the third part represents the practical side with design

and implementation of an adaptor prototype for the above mentioned tool. The final part is

the conclusion regarding my findings concerning OSLC.

There are several technologies that can be used for interoperability and traceability but

it is not in the scope of this work to list all of them or compare them. Nonetheless there is a

short chapter about one of the more well-known technologies to show an example for

alternative technologies.

2 Core Concepts 9

2 Core Concepts

2.1 Traceability

2.1.1 Definition
Traceability can be divided into two basic principles. The first principle focuses on following

(tracing) of software artifacts throughout the software lifecycle while the second principle

focuses on using the relations, connections and links between artifacts. Traceability is an

enabling technology for different tasks in the software lifecycle. An example for such a task

is the impact analysis of changes which cannot be done without traceability capabilities.

Traceability itself is not a technology but an overall concept which can be applied by using

different technologies.

2.1.2 Achieving Traceability
To achieve traceability one or more enabling technologies need to be applied. There are

several different technologies that can be used which also influence how traceability is

achieved in detail. Therefore the section below is only a rough outline of the different tasks

that need to be performed.

Traceability can be achieved by following two steps. The first step is an in depth analysis

of the artifacts whereas the second step utilizes the findings of the analysis. All this can be

done by using specialized tools or by creating the needed analysis and evaluation

capabilities for already existing tools. One of these two options must be applied to create

the capabilities to handle the artifacts.

First Step: Analysis

The information contained by the artifacts must be analyzed. The information needs to be

evaluated in regard to its relevance for sharing. The correlations between artifacts must be

2 Core Concepts 10

analyzed too. Correlations are important because they are used to link artifacts together.

Theses links are valuable information that can be utilized.

Second Step: Evaluating the Analysis Results

In this step the information gained in the analysis is used. All artifacts containing valuable

information must be transformed into a common data format. The transformed artifacts

will be linked with each other according to the correlations identified in the analysis part.

The links between the artifacts are created by using specialized tools or applying linking

capabilities to existing tools.

2.1.3 Advantages of Traceability
Traceability can vastly improve the efficiency of software development and software

maintenance. It also greatly influences the workflow within any project it is applied to.

Improving Tasks and Workflow

Traceability streamlines tasks in the production cycle. An example is better control of tasks

by tracking the progress which is useful because it directly influences the success of a

project by identifying problems in the workflow more easily. This improves the process of

decision making. Traceability leads to a reduction in errors created during a task and

improves the speed in which errors can be detected and corrected. In addition traceability

creates the capability of evaluating if a requirement is satisfied by a software product and

can also help to ensure that the implementation of the required features is sufficiently

tested.

Enabling Concept

Traceability enables the use of different tasks and techniques. An example is the impact

analysis which is part of the change management and improves the quality of a software

product. The correlations between different artifacts are made visible by the use of

traceability. These correlations can be used by the impact analysis which directly influences

the efficiency of the maintenance process of the final software product. The influences of

changes to the software product can be identified more easily. Traceability can be used to

automate tasks such as the impact analysis which greatly reduces the risks involved in

manually handling tasks.

2.1.4 Inhibiting Factors
There is a number of inhibiting factors for traceability which can cause problems and

difficulties for the process. I will focus on the three most important ones.

Inhomogeneous or Insufficient Artifact Documentation

Artifact documentations can be in a varied level of detail and can be held in different data

formats. This makes analyzing the artifacts and evaluating the results difficult. If the detail

2 Core Concepts 11

level of documentation is not sufficient it cannot be correctly analyzed. Therefore artifacts

may be ignored entirely. This is problematic because it might lead to loss of information

relevant for sharing.

Missing Standard

Lacking a standard hinders the analysis of the artifacts and evaluating the findings. A

standard helps in identifying which artifacts need to be traced. In addition it helps analyzing

complex artifacts as well as improving data integrity and consistency. The decision which

technologies will be used to establish traceability capabilities has to be done carefully. This

is a challenging task as it requires a high amount of know-how and expertise. Lacking a

standard can create the possibility of creating redundancies by holding the same artifact in

different tools and storages leaving the created system prone to errors.

Lack of Know-How and expertise

All tasks in the domain of traceability require a certain level of know-how and expertise. If

this level is not available the different tasks will create low quality results which will reduce

the overall quality of the achieved traceability. A low level of quality can cause problems.

Improving the quality is more expensive the later it must be done.

2.1.5 Solutions

Lack of Know-How and expertise

Solving this problem includes hiring experts who have the required abilities. Another option

is training workers so that they can acquire the required abilities. This can be achieved by

either using experts as teachers or by letting the workers acquire the abilities while working

on a project.

Missing Standard

To solve this problem a new standard must be created or an already existing standard must

be used. The standard should include two parts. The first part focuses on traceability on a

functional level while the second part focuses on a technical level. The higher the

standard's quality is the lower the chance to encounter problems while applying it.

Part I: Functional Level

The first part helps in the analysis of the artifacts. It must specify which artifacts should be

used in regard to the information contained. The standard should help in identifying

important information.

Part II: Technical Level

The second part must specify which technologies should be applied. The technologies must

be chosen carefully because they have to satisfy the needs of the traceability process.

Choosing the best technologies for the task at hand requires an in depth analysis.

2 Core Concepts 12

Inhomogeneous or Insufficient Artifact Documentation

There are two basic solutions for this problem. The first option is trying to work with the

documentation that is available. The second is a more radical approach used if the quality

of the available documentation is insufficient to work with.

First Option: Working with the Available Documentation

The first option is based on using the available documentation. This is possible if the level of

quality is high enough. The level of documentation may vary from one artifact to another.

This makes the analysis more difficult as the process cannot be standardized across all

available artifacts. The process of analysis can be supported by guide lines that specify the

workflow on a functional level.

Second Option: Improving the Quality of the Documentation

The second option is to create a new documentation of the needed quality level for the

artifacts. The quality level must be specified first so that it matches the requirements of the

analysis process. Choosing this option is the last resort choice if working with the available

documentation is impossible or if no documentation is available at all. Automated

processes can help in creating the documentation.

2.2 Interoperability

2.2.1 Definition
In software engineering the term interoperability describes the ability of a system to

interact with another system. This includes the exchange of data and also the common

usage of shared data. The size of the systems is not limited and can either describe the

interaction of complete software products or just parts or components of a software

system. Interoperability itself is not a technology but an overall concept.

Levels of Interoperability

There are two levels of interoperability, the syntactic and the semantic level. The syntactic

level focuses on the exchange of data. The semantic level focuses on the interpretation of

the exchanged data. If both levels are satisfied it is called full or true interoperability.

First Level: Syntactic Interoperability

Syntactic interoperability describes the ability to exchange data between different systems

in a meaningful manner. The data itself must not be altered in the exchange. This ensures

that the second level of interoperability can be applied.

2 Core Concepts 13

Second Level: Semantic Interoperability

Semantic interoperability is only possible to apply if syntactic interoperability was already

applied. This ensures that the data is exchanged in a way that allows accurate and correct

interpretation. Operating on the data becomes possible.

2.2.2 Advantages of Interoperability
Interoperability has several advantages. The most important ones are the three described

below.

Improve Communication

Interoperability increases the quality of cross domain communication. This does include the

exchange of information and knowledge of different experts working on a software

product. If these experts e.g. a requirement engineer and a software tester can more easily

interact with each other it leads to a reduction of problems in the software development

process. If the exchange of data between different tools is a complex task the willingness of

communication will be reduced.

Improving Workflow Efficiency

Solving problems that are caused by a lack of communication and cross domain interaction

of experts can be expensive and time consuming. Identifying the actual problem can be

difficult. The lack of efficient communication hinders identifying how a certain part of the

system should work or behave. Interoperability helps in software development because it

allows sharing domain specific information outside of the domain in which the information

was created.

Enabling Concept

Interoperability is an enabling technology for traceability which is a very important aspect

in software engineering.

2.2.3 Achieving Interoperability
There is one concept for every level of interoperability. The first concept focuses on the

data itself. The second concept focuses on the exchange of data. Usually there is the need

to apply different technologies to satisfy the requirements of a concept.

First Concept: Data

The first concept focuses on the data which needs to be in a state where it can be

exchanged successfully. This state must be a common data format that can be used in

several systems. The transformation process has to take place whenever data is exchanged.

The new data format is only used in the exchange.

2 Core Concepts 14

Every system can hold a representation of the data in a format it can use. The system

does not need to be changed to work with new data formats. This is an advantage because

it is almost impossible to create one common data format every system can use.

The use of a standardized data format greatly reduces the complexity of achieving

successful interoperability. Creating a data format requires know-how and expertise to help

in identifying the requirements of the new data format.

Second Concept: Exchange of Data

The second concept focuses on the exchange of data which needs to be specified so it can

be used in every system. If the exchange is not specified the exchange can alter the data

and therefore the information contained. All operations on the exchanged and altered data

can create wrong results. If this is not detected the results are used in other operations.

Correcting this will be a complex and expensive task.

The use of standardized communication protocols is mandatory. This creates a common

way to exchange data which ensures the data is not manipulated or altered. This is done by

establishing common interfaces and common methods.

The interfaces and methods must be stable and public. This means they must not

change so that other systems do not have to be altered. If both of these requirements are

satisfied the standard can be implemented and used almost without effort in any system.

Creating Interoperability Capabilities

Interoperability can be achieved by creating proprietary adaptors for a specific combination

of systems. A better solution is to use a standard that achieves interoperability for any

number of systems that are based on it.

Proprietary Solution

The disadvantage of a proprietary solution is that one proprietary adaptor must be created

for each combination of systems. The number of proprietary adaptors per system is

therefore as high as the number of systems it has to interact with. To create and maintain

these adaptors can be a very complex and therefore expensive task. In an environment of

many different systems this can even prove to be an impossible task.

Solution based on Standards

The use of a standard reduces the number of adaptors that are created for a single system

to one. Other systems can now interact and communicate with the system offering the

standardized adaptor solution. This is very cost efficient because the number of adaptors is

massively reduced.

2.2.4 Inhibiting Factors
There are also inhibiting factors which strongly influence interoperability. Following are the

three most important factors that influence interoperability capabilities.

2 Core Concepts 15

Sustaining Uniqueness of Products

One of these factors is the need of every system provider to establish its own products and

be ahead of other competitors. This is sometimes done by including small changes and

alterations in a new revision. The communication of these changes is then delayed to stay

ahead of the competition. The competition has to adapt to the new changes which requires

time. This practice is used to improve the position of the original vendor and its products.

Patents on Data

It often happens that data and data formats are protected by patents. The problem is that

the data cannot be used or generates additional cost.

Errors and Limitations

If a specific product is dominant on the market and used as a basis for other solutions all

errors and limitations included in the product are carried over. All systems based on this

product will have the problem of having to work around these problems. This will reduce

the quality of the solution.

2.2.5 Solutions

Sustaining Uniqueness of Products

If a community is creating a standard it is impossible for a single member of the group to

slow down or block the process. If the standard is created and used by several parties it is

no longer possible to withhold changes to a system. This is the case because changes and

alterations in the software need to always match the current state of the standard. If this is

not done it is only a disadvantage of the product not correctly implementing the standard.

Patents on Data

The solution to the problem of data being encumbered by patents can be solved by not

building upon this data. Therefore the patented data format must only be used if there is

no alternative. The basis for a common data format should not be a patented data format

to avoid problems.

Errors and Limitations

The solution is to not to base the new data format on error prone sources.

2.3 Linked Data

2.3.1 Definition
Linked data also called linked open data is a method of publishing information. It is a core

concept for the semantic web which can also serve as a concept to achieve interoperability

and traceability.

2 Core Concepts 16

Linked data has two aspects. The first aspect is that the information will be made

available as raw data and the second aspect is that data will be connected to other data.

The data needs to be prepared according to the first aspect to be able to implement the

ideas of the second aspect.

Linked data builds upon technologies like the Hypertext Transfer Protocol (Http), the

Unified Resource Identifier (URI) and the Resource Description Framework (RDF).

2.3.2 Advantages of Linked Data
The three most important advantages of linked data are listed below.

Improving Quality and Accessibility of Information

If data is enriched with links to other similar or otherwise relevant data the quality of the

original data is increased. It can enable users to find other useful information more easily.

If the information is provided in a basic data format the information can be used more

easily because a standardized method to access the uniform data can be used.

Improving Availability of Information

Linked data increases availability of information. The information is available in a raw data

format which makes it possible to access information independent from the way it is

accessed. Decoupling the data from the representation allows for a wider use of that

specific data set. Additionally holding information in a raw format renders the need of

holding information in different formats obsolete. This is important because redundancies

lead to increased effort in maintenance and create errors.

Enabling Concept

Linked data is an enabling concept. It creates the possibility to create interoperability and

traceability capabilities. Both of these are important for the success of any project. Linked

data is also a core concept of the semantic web proposed by the World Wide Web

Consortium (W3C). The capability to serve as an enabling concept increases the value of

using linked data.

2.3.3 Achieving Linked Data
There are three steps that need to be taken to satisfy the requirements of linked data. The

first step concerns itself with the data format. The second step involves the identification of

the data. The third and last step is about making the data available.

In addition the data must not be protected by any patents or be otherwise inaccessible.

This is needed because only freely accessible data can be linked.

First Step

The available information has to be in the form of raw data. This creates the possibility of

linking the raw data to other sources of information (raw data). This is an important step

2 Core Concepts 17

because it supports the basic concept of linked data. This is the idea of being able to link

information with other pieces of information to enhance its value.

This is done by using the Resource Description Framework (RDF). RDF can be used as a

way to model and describe information. A rough outline of RDF can be found in the section

(see 3.2, page 19).

Second Step

If the information is now available as raw data it can be linked to other pieces of

information. To efficiently map information there is the need for unique names to identify

and locate specific data.

This is done by using the concept of Unified Resource Identifiers (URIs). A URI is a string

of characters which will be generated by the use of a set of generation rules. It is used to

identify resources. A rough outline of URI can be found in the section (see 3.4, page 21).

Third Step

The last step involves making the data available online. This creates the need for a way to

access this data.

The technology used for this step is the Hypertext Transfer Protocol (Http). Http is a

protocol used for exchanging data. A rough outline of Http can be found in the section (see

3.5, page 21).

3 Core Technologies 18

3 Core Technologies

3.1 Representational State Transfer (REST)

3.1.1 Definition
The Representational State Transfer (REST) is an architecture concept developed by the

World Wide Web Consortium (W3C). REST is a resource-oriented architecture. The REST

architecture uses clients and servers. Clients send requests to servers which are then

answered by responses. Requests and responses usually transfer representations of

resources.

3.1.2 Advantages of Representational State Transfer (REST)
REST has many advantages. The two most important ones are listed below.

Scalability and Performance

The concepts used in REST make it an architecture that can be scaled very easily. The ability

to scale the system up and down greatly influences performance. This makes it possible to

adapt the system to the task at hand. This can greatly influence the need for time and

money.

Common Interface

REST uses a common interface between clients and servers. This interface is very well

structured and easy to understand. The standardization of used methods makes REST an

easy to use architecture. This is also the case because of the simplicity of the applied

concepts.

3 Core Technologies 19

3.1.3 Achieving Representational State Transfer (REST)
REST specifies five basic constraints. These are used to specify which aspects a system must

have. The components can be implemented freely because REST does not specify how a

component has to fulfill the constraints.

Client-Server

Applications are divided into clients and servers which can communicate via a common

interface. This allows for clients and servers to be able to evolve independently. This

ensures separation of concerns. In addition it allows for low coupling while achieving high

cohesion which are important design paradigm.

Layered System

This means that there may not be a direct connection between the client and the server.

This is needed to increase performance and scalability. In addition the client must not be

able to gather information if it is directly connected to the server or not. The connection

must always be in a form where there is no difference for the client how exactly the

connection is established.

Stateless

Stateless means that the server must not hold any information regarding the state of the

client. Therefore the client has to include all information that is needed by the server in the

request. The client and server may hold information regarding their own state.

Cacheable

The client has to be able to cache responses of the server. Therefore every response send

by the server needs to be explicitly marked as cacheable. This eliminates the need for some

client server communication as the client can reuse older responses of a server.

Uniform Interface

The interface between client and server must be uniform. It has to adhere to the following

aspects. It has to be able to identify resources, allow the manipulation and alteration of

resources. In addition it has to provide the capability of creating messages that include how

the information itself can be used.

3.2 ResourceDescriptionFramework (RDF)

3.2.1 Definition
ResourceDescriptionFramework (RDF) is a metadata model for data. It is a concept for the

basic modeling and description of information.

RDF uses a construct called triple to describe information. A triple always consists of a

subject, a predicate, also called property, and an object. A set of these triples is called RDF

3 Core Technologies 20

graph. A RDF triple would translate into two nodes and one edge. The subject and the

object would form the nodes. The predicate is the edge that connects the nodes.

A node is either an URI, a literal or blank. Blank is used if the node does not have a form

of identification.

3.2.2 Advantages of ResourceDescriptionFramework (RDF)
The most important advantages RDF has are the following three.

Triples

RDF stores all information in the form of triples. This is a very efficient and easy to

understand concept. Triples can be easily stored. This is an advantage over many other

concepts because it avoids the need of variable length fields. This is not the case with RDF

as the triple always needs the same space.

Graph

Every RDF triple or set of triples is a directed graph. This provides RDF with all the

advantages of storing information in a graph. It allows the use of all operations that can be

used on a graph.

Fact Basis

Every RDF model can be used and interpreted as a fact basis. This allows the inference of

new information based on the already stored triples. This makes the process of storing

information in RDF even more advantageous as it can provide more information.

3.3 ExtensibleMarkupLanguage (XML)

3.3.1 Definition
The ExtensibleMarkupLanguage (XML) is a markup language used to represent data. The

XML format is used for textually representing data or data structures. The format used is

readable by humans and machines alike.

3.3.2 Advantages of ExtensibleMarkupLanguage
The following is the most important advantage of XML. All other advantages are derived

from this one.

Simplicity

XML is a very simple technology which is none the less very powerful. The fact that xml is a

very simple concept makes it very easy to apply. This simplicity allows the use of XML in

classic applications as well as in internet based ones. The fact that XML is only used to store

data and can be used by any application makes it a very stable format. This is important

because using older formats may be a limiting factor for an application. All information can

3 Core Technologies 21

be structured with XML. The ability to represent any form of information renders the need

for different data formats and transformation of different data formats obsolete.XML

allows the ability for humans and machines to read the file. This increases efficiency

because there is no need for two separate data formats.

3.4 UniformResourceIdentifier (URI)

3.4.1 Definition
The UniformResourceIdentifier (URI) is used for two things. The more obvious one is

identification of resources. The second one is allowing interaction in a network. Interaction

across several systems creates the need to identify resource in a unique fashion to correctly

address them.

3.4.2 Advantages of UniformResourceIdentifier (URI)
The biggest advantage of URIs is that it is a standard that has been used for a long time.

This makes it a very well understood standard which is used in many different systems. The

longevity of the URI standard is proof of its quality.

3.5 HypertextTransferProtocol (Http)

3.5.1 Definition
The HypertextTransferProtocol (Http) is a protocol used for exchanging data. It is a protocol

used for sending and receiving hypertext that is used in the context of the client-server

model. To achieve this it is based on requests and responses. Http is a protocol that is

based on sending all valid information regarding the state of the sending component within

the request. This is useful because it allows the use of concept that demand that the server

does not keep track of client states i.e. REST.

3.5.2 Advantages of HypertextTransferProtocol (Http)

Complete Information in Requests and Responses

Requests and responses including complete information allow the use of Http in many

systems. This is the case because there is no need for additional technologies to enable the

server to keep track of client states. This makes Http a very good technology for simple

communication.

3 Core Technologies 22

Simplicity

Http is a very basic protocol which makes it widely usable. Additionally it is easy to

understand and apply. This makes choosing a communication protocol easy because of the

simplicity of Http while being a powerful protocol.

4 Open Services for Lifecycle Collaboration (OSLC) 23

4 Open Services for Lifecycle

Collaboration (OSLC)

4.1 Definition
The Open Services for Lifecycle Collaboration (OSLC) is best described in the following

quotation: "Open Services for Lifecycle Collaboration (OSLC) is a community of software

developers, operations experts, and organizations that are working to standardize the way

that software lifecycle tools can share data with one another." [highlighted in original]
1

OSLC has several members that develop software using OSLC, work on the specifications

and participate in workgroups. Among them are well known companies like EADS, IBM,

Ericsson, General Motors, Oracle, Shell, Siemens and Boeing to name just a few.

The standards and specifications created by OSLC can be used to achieve tool

interoperability and create traceability capabilities.

4.2 Principles and Philosophy
OSLC stands on three pillars (goals, process, specification).

2
 Each pillar has aspects to it that

influence the community, the specifications and standards as well as the process of creating

them.

1
 OSLC 2013-1

2
 OSLC 2013-2

http://open-services.net/about/

4 Open Services for Lifecycle Collaboration (OSLC) 24

Pillar 1: Goals

Principles and Philosophy Description

Improve Connections Another goal is to make the communication between

different lifecycle tools easier by creating flexible and robust

connections. This means that the connections are not point-

to-point connections but connect the tool to a common

cloud of other tools that use OSLC.

Improve Data Usage The final goal of OSLC is to make more data available. This

allows more complex operations on the data as well as

improving the functionality of a given tool.

Improve Process of

Integration

One goal of OSLC is to make the integration of life tools

easier. To achieve this they have created a new standard.

Pillar 2: Process

Principles and Philosophy Description

Discuss Problems and

Solutions

OSLC is heavily based on discussing important topics in

special workgroups. This is done to create the minimal

amount of information, scenarios and use cases that are

needed for the successful support of common tasks and

interactions in the process of integrating tools.

Gather Experts OSLC brings together experts of the different domains like

quality, requirements and architecture management to

name just a few. This improves the quality of the standard

and generates additional know-how and expertise.

Spreading Open

Specifications

OSLC focuses on spreading the open standards that are

created so that they can be used in a wide field of

applications and tools. This is done by the agreement of all

members to not have patents on ideas and implementations

in the scope of OSLC.

4 Open Services for Lifecycle Collaboration (OSLC) 25

Pillar 3: Specification

Principles and Philosophy Description

Evolving OSLC standards and specifications are involving over time to

be able to address more use cases and scenarios. This is

done so that the standards and specifications can always

match the current requirements of the software engineering

processes.

Implemented and Tested There are several example implementations including tests

to make sure that the OSLC standards and specifications are

sufficient to be effectively and efficiently used in the context

of applications and systems.

Inspired by Web

Technologies

OSLC specifications and standards build on well-known and

widely used web and internet standards. This includes the

concepts specified by linked data as well as the use of

Hypertext Transfer Protocol (HTTP), Representational State

Transfer (REST) and Uniform Resource Identifier (URI).

Minimalistic All specifications defined by OSLC are minimalistic therefore

specifications are only as complex as needed for common

scenarios. OSLC standards and specifications are not created

to address every possible use case to keep the complexity on

a low level.

4.3 Choosing OSLC
In this section I will list the advantages of OSLC that lead to choosing it as the core source of

specifications for this thesis.

 Huge Community

The OSLC community is a very big one including well-known companies that work on

creating, improving and using the specifications and standards. This makes OSLC

relevant because the more companies use a specification and are interested to work

on it, the higher the chance that the specifications will always be up to par with the

rest of the competition and therefore will be long lasting and available.

 New Specification

OSLC specifications and standards are rather new and therefore really interesting to

work with. In addition it is still relevant to have a proof of concept which is not

necessary for well-established specifications and technologies.

 Fast Growing

OSLC is a very fast growing community which makes it very interesting because this

thesis can be part of this process.

4 Open Services for Lifecycle Collaboration (OSLC) 26

4.4 Structure
OSLC is structuring its content by dividing it in two areas. These are the core and the

domain groups. The core specifies constructs and concepts that need to be generally used

and applied. The domain groups include additional constructs and concepts relevant for the

implementation of OSLC in a specific domain.

The core includes the general resources, properties and services that are not domain

specific. For more information look into the core specification: http://open-

services.net/bin/view/Main/OslcCoreSpecification

The domain groups focus on creating domain specific standards content. This includes

resources and properties that are only useful in the context of the domain and are

therefore not include in the core. The domains that are currently supported by OSLC

include:

 Architecture Management

 Asset Management

 Automation

 Change Management

 Quality Management

 Reconciliation

 Requirements Management

4.5 OSLC QM
OSLC QM includes the following five domain specific resources:

Resource Description
3

TestCase "Defines the criteria which determine whether a system

exhibits the correct behavior under a specific set of

circumstances."

TestExecutionRecord "Planning for execution of a test."

TestPlan "Defines the overall process and strategy for testing a system."

TestScript "Defines a program or list of steps used to conduct a test."

TestResult "Describes the outcome of attempting to execute a test."

For more information about the Quality Management domain group visit: http://open-

services.net/bin/view/Main/QmSpecificationV2

3
 McMahan 2011

4 Open Services for Lifecycle Collaboration (OSLC) 27

4.6 Concepts
This is a rough outline of the OSLC constructs to give a simple overview. Further

information as well as specific details can be found in the specifications.
4
 OSLC is based on

two basic principles. These two are used to separate data from operations.

The first is that artifacts are mapped to equivalent OSLC resources. The information of

the artifacts is represented by OSLC properties which are described in the resource shape.

Every OSLC resource has a corresponding resource shape that describes it.

The second is that these resources can be operated on by the use of OSLC services.

These services include creation factories and query capabilities.

4.7 Technologies
As stated in the “Principles and Philosophy” section (see 4.2, page 23) OSLC builds upon the

web technologies such as Hypertext Transfer Protocol (HTTP), Representational State

Transfer (REST) and Uniform Resource Identifier (URI). Additionally it also uses Resource

Description Framework (RDF) and Extensible Markup Language (XML). These technologies

form a powerful set of concepts which are sufficient for solving any task.

4.8 Lyo
Lyo is a Software Development Kit (SDK) for OSLC. It provides basic concepts and constructs

to support the implementation of the OSLC specification in the context of adaptors used in

tools. More information can be found in the Eclipse Lyo Wiki.
5

4
 McMahan 2011; Arwe 2013

5
 Fiedler 2013-1

5 Related Work 28

5 Related Work

5.1 ModelBus

5.1.1 Definition
ModelBus is a tool integration framework used to build seamlessly integrated tool

environments in the domain of system engineering and focusing on application lifecycle

management. ModelBus is used to achieve interoperability between tools and can

therefore create traceability capabilities.

5.1.2 Principles and Philosophy
ModelBus is best described by the following six distinct key features.

6

Principles and Philosophy Description

Automation ModelBus allows increasing the efficiency of the workflows

by using automation. The automation can either be started

by user commands or other means of triggering.

Built on Industry

Standards

ModelBus relies heavily on industry standards which include:

Web Services (Axis2), BPMN, BPEL, OMG standards OCL,

UML, MOF (EMF) as well as JMS.

Distributed and

Heterogeneous

ModelBus allows heterogeneous tools to be integrated.

Additionally it is a distributed system because all tool

adaptors transform data into the needed formats which can

be used for communication by ModelBus.

6
 Ritter

5 Related Work 29

Principles and Philosophy Description

Extensible and

Customizable

ModelBus can be applied in every development

environment because it is customizable to the extent that it

can fit many possible setups. The number of tools that

support ModelBus can be extended by using the ModelBus

software to create new adaptors.

Support of Large and

Complex Models

ModelBus uses a repository for version control, partial

checkouts as well as merging and branching of model

fragments and models.

Transparent Model

Management

ModelBus increases the transparency of the development

process by allowing easy identification and access of models.

5.1.3 Concepts
ModelBus is used to take artifacts created by different tools and put them into the Model

Repository. This is done by implementing an adaptor for the tool and then connecting to

the repository via the bus. ModelBus also includes a repository browser to use the

repository.

ModelBus also includes a Service Repository that includes different services that are

already included in ModelBus or are created by implementing them. These services are

then used to wrap functionality of a tool so that it can be used outside of the tool if the

using party is also connected to the bus.

ModelBus goal is to create interoperability of the first and second level. This is done by

creating and then using transformation services that transport information from one data

format into another so that the data can be used in different tools. There is no common

data format therefore every transformation is a one to one transformation for the

combination of two tools.

ModelBus uses traceability data that is added in the repository to realize traceability.

The added data includes basic constructs like timestamps for creation and modification as

well as information about the creator of a specific resource.

5.1.4 Comparison
ModelBus and OSLC have different goals and also different philosophies. Comparing these

two is therefore not useful because both goals and philosophies are good for their purpose

but cannot be applied to the goals achieved by the other technology.

6 Analysis 30

6 Analysis

6.1 Overview
In this chapter I summarize the findings of my analysis for the "Rational Rhapsody Test

Conductor" constructs as well as my criteria for evaluating them for mapping. I have

identified constructs as either relevant or irrelevant. These and the criteria I used are

mentioned in the specific sections.

6.2 Relevant Constructs

6.2.1 Criteria for Relevant Constructs
Only constructs holding valuable and heavily used information should be included in the

mapping process because if there are too many resources the amount of time needed to

find the relevant information grows.

Listed below are the criteria a construct must satisfy for being classified as relevant for

mapping. All the criteria below are aspects that make a construct relevant in regard to

traceability and therefore the criteria below are more detailed and specific.

 Management and Control

This criterion is applied if the construct is relevant from a management or controlling

perspective and should therefore be made available.

 Cross Domain

This criterion is applied if the construct includes information that is relevant outside

of the testing domain and should be accessible outside of the tool it is created and

used in.

6 Analysis 31

 Crucial Information

This criterion is applied if the construct includes information that is crucial and

therefore must be made available outside of the tool it is create and used in. This is a

different criterion from "cross domain" because it is crucial information inside its

own domain.

Below is the list of all "Rational Rhapsody Test Conductor" constructs that I identified as

relevant for traceability purposes using the above-mentioned criteria. The detailed analysis

of every construct and reason for mapping it can be found below the following table.

Each table entry includes the name of the "Rational Rhapsody Test Conductor"

construct, a short description and the criteria used for identifying.

Construct Description Criteria

M
a

n
a

g
e

-
m

e
n

t
a

n
d

co

n
tr

o
l

C
ro

ss

d
o

m
a

in

C
ru

ci
a

l
in

fo
rm

a
ti

o
n

CoverageResult Result specifies which model

elements are tested by which test

cases

  

Scheduler Stereotype for test components

that control the execution of test

cases

  

System under Test (SUT) Part of a system that is tested by a

test case

  

TestCase Specifies the correct behavior of

the SUT, input and expected output

  

TestObjective Links test cases to requirements   
TestRealTimeResult Result of the test case execution

with tool "TestRealTime"

  

TestResult Final result of the test case

execution, pass or fail of test case

  

TestScenario Stereotype for diagrams, diagrams

specify specific steps in test case

execution

  

6.2.2 CoverageResult
The CoverageResult documents which elements of the model are covered by one or many

test cases.

6 Analysis 32

Advice: The CoverageResult should be made available by mapping it to an OSLC

resource.

Reason: The CoverageResult is important from a management and control perspective

because it allows controlling if the system is sufficiently tested. This

information is needed to take further steps if there are parts of the system

that are not covered by tests.

The CoverageResult is important to decide if the system is sufficiently and correctly

tested or if there is the need to specify further tests.

6.2.3 Scheduler
The scheduler is used to control the execution of test cases. This includes the activation and

termination of different test cases. This helps in controlling and balancing work load on

hardware and makes rerunning tests easier.

Advice: The scheduler should be made available by mapping it to an OSLC resource.

Reason: The scheduler is important from a management and control perspective

because it allows planning the execution of test cases. This is important

because it allows efficiently rerunning test cases for regression test as well as

performance balancing while testing.

The scheduler is needed to schedule the execution of test cases.

6.2.4 System under Test (SUT)
The system under test (SUT) is the part of the system that is being tested. The SUT is closely

linked to the test case and the requirement it satisfies. The complexity of the SUT depends

on the functionality that is being tested. To satisfy the needs of different levels of testing

the SUT can be composed of different parts of the system.

Advice: The SUT should be made available by mapping it to an OSLC resource.

Reason: The SUT is important from a management and control perspective because it

allows checking if the SUT is correctly linked to requirements and test cases

which allows covering all requirements as well as test coverage of the

implemented features.

If the SUT is available as an OSLC resource it can be linked to requirements and test

cases. These links can either be traced starting from the SUT or from the other direction

which increases efficiency and effectively reduces errors from lack of interconnection.

The SUT itself is a crucial piece of information in the domain of testing. It is used to

specify which part of a software system is used by a test case.

6.2.5 TestCase
Test cases are constructs included in the test context. A test case specifies which inputs are

used to stimulate the SUT and which the correct and expected results are. The TestCase is

6 Analysis 33

specifying the behavior of a test and also specifies how the test components are interacting

with the SUT to realize the test objective.

Advice: The TestCase should be made available by mapping it to an OSLC resource.

Reason: The TestCase is important from a management and controlling perspective

because it allows correctly covering the system by testing the implementation

of the features specified by the different requirements.

The TestCase is also important from a cross domain perspective just like the SUT

because it allows correctly linking test cases with requirements and SUTs.

The TestCase is the central point of the testing process as it specifies how the SUT needs

to be stimulated and what the expected and correct output and behavior should be.

6.2.6 TestObjective
The TestObjective is used to specify the different objectives of a test case. A test case can

have several test objectives that are used to specify the purpose for designing and

executing the specific test case. To achieve this, the test objective links the test case to the

requirement.

Advice: The information (the link) included in the test objective needs to be made

available. This is not done by mapping the test objective to a specific OSLC

resource but by including the link in the linked resources.

Reason: The TestObjective is important from a management and control perspective

because it specifies why test cases are designed and executed. Being able to

track this information is important because it allows reducing costs by avoiding

redundant tests. Even more important is to ensure that the system and

requirements are correctly covered by tests.

The TestObjective holds crucial information inside of the test domain because it

provides the reasons for testing a specific part of the system which allows a controlled and

efficient testing process.

6.2.7 TestRealTimeResult
The TestRealTimeResult is the result of the execution of a test case or a test context which

can include any number of test cases. This is only available if the execution is done by using

the "TestRealTime" tool.

Advice: The TestRealTimeResult should be made available by mapping it to an OSLC

resource.

Reason: The TestRealTimeResult is important from a management and control

perspective because it allows controlling if the test had the desired outcome or

not. This information is needed to take further steps if errors or problems are

detected.

The TestRealTimeResult is important because without execution results there is no need

for testing. The results are used to check if the testing process is proceeding as planned.

6 Analysis 34

6.2.8 TestResult
The TestResult represents the overall verdict for a single test case and can be used to group

test cases together for analysis. The TestResult can have one of the two following values:

 Pass: This value shows that the system under test (SUT) showed the correct behavior

for the test case which includes this verdict.

 Fail: This value indicates that the SUT did not show the correct behavior for the test

case which includes this verdict.

Advice: The TestResult should be made available by mapping it to an OSLC resource.

Reason: The TestResult is important from a management and control perspective

because it allows checking if a test case was executed successfully. It is also

used to ensure that the testing process is following the desired schedule.

The TestResult is important because it allows a rough division of test cases to speed up

the process of identifying the need for taking further action.

6.2.9 TestScenario
The TestScenario specifies specific steps that are taken in running a test case. This includes

sending and evaluating messages as well as general behavior control.

Advice: The TestScenario should be made available by mapping it to an OSLC resource.

Reason: The TestScenario is important from a management and control perspective

because it allows controlling the steps that are taken to run a test case. This

information is crucial because it allows controlling the correct execution of the

test case.

The TestScenario is important because without it there is no way to decide if the test

case is correctly used in testing and if the actual test can correctly validate the test case.

6.3 Irrelevant Constructs

6.3.1 Criteria for Irrelevant Constructs
Excluding constructs from the mapping is necessary because making available information

that is not needed is expensive in time and money. The resources holding the irrelevant

information have to be created and maintained. This causes overhead and has to be

avoided.

Listed below are the criteria a construct must satisfy for being classified as irrelevant for

mapping.

 Technical Construct (Marks, Tags and Links)

This criterion is applied if the construct serves a technical purpose without holding

relevant information. These constructs are important for the tool to actually work

and provide the needed functionality but cannot serve a purpose outside the tool

6 Analysis 35

environment. This is applied to constructs that are used to mark or tag other

constructs which includes dependencies between two other constructs. The link

between the constructs itself is important but it is not created in mapping the

technical construct but creating a relational property for the specific resources that

are linked.

 Non-Crucial Information

This criterion is applied if the construct does not include information that is relevant

or important from a traceability perspective which means it is not satisfying any of

the criteria for relevant constructs. This criterion is applied to many constructs that

only provide a limited amount of information which is not sufficient to be mapped.

Additionally it is also applied if the information stored in this construct is specified in

another construct. Therefore the information is non-crucial because it would create a

redundant source for the same information.

 Grouping Mechanism

This criterion is applied if the construct is a grouping mechanism and therefore holds

important information indirectly. Therefore the construct should not be mapped but

the included constructs that are grouped together by the mechanism.

Below is the list of all the Rational "Rhapsody Test Conductor" constructs that I

identified as irrelevant for traceability purposes using the above mentioned criteria. This

section does not include the detailed analysis of all the constructs but the core results can

be found in the following table.

Each table entry includes the name of the "Rational Rhapsody Test Conductor"

construct, a short description and the criteria used for identifying.

Construct Description Criteria

T
e

ch
n

ic
a

l
co

n
st

ru
ct

N
o

n
-c

ru
ci

a
l

in
fo

rm
a

ti
o

n

G
ro

u
p

in
g

m

e
ch

a
n

is
m

Arbiter Evaluation of test results, sets verdict for

test case or test context (all test cases in

the context)

 

ArbiterInstance Instance of arbiter test components

which control execution in testing mode

based on assertions

 

ControlArbiter Dependency between test component

and arbiter

 

CppUnitConfig Provides properties for custom CppUnit

testing integration

 

6 Analysis 36

Construct Description Criteria

T
e

ch
n

ic
a

l
co

n
st

ru
ct

N
o

n
-c

ru
ci

a
l

in
fo

rm
a

ti
o

n

G
ro

u
p

in
g

m

e
ch

a
n

is
m

CppUnitContext Provides tags for CppUnit testing

integration

 

CUnitConfig Provide tags for custom CUnit integration  

CUnitContext Provide properties for CUnit testing

integration

 

DefaultOperation Default behavior if test case does not

specify differing behavior

 

DriverOperation Generates automatically for test

components, used in SUT stimulation

 

Instantiated Tag for associations that are instantiated

with valid links

 

NoConsoleApp Suppresses opening of app’s console  

ParameterTable Marks file as parameter table which

includes test parameter values

 

Replacement Used to mark replacing test components  

RTC_InstInfo Enables use of tags in test execution,

includes monitoring messages and

default behavior

 

RTC_MsgInfo Enables use of tags in driver operations  

RTC_RefInfo Used for internal message identification  

Scheduled Dependency between test context and

scheduler test component

 

Scheduler Controls execution of test components,

informs arbiter to generate verdict

 

SCTCInstance Mark for instances of test components of

state chart test cases

 

SDInstance Represents instance of TestScenario  

StatechartTestCase Dependency between state chart and

test component

 

Stubbed Mark for stubbed operations, meaning

operations was altered for testing

purposes

 

6 Analysis 37

Construct Description Criteria

T
e

ch
n

ic
a

l
co

n
st

ru
ct

N
o

n
-c

ru
ci

a
l

in
fo

rm
a

ti
o

n

G
ro

u
p

in
g

m

e
ch

a
n

is
m

StubbedOperation Operation for which a test case specified

non default behavior

 

StubOperation The specific behavior for a stubbed

operation

 

TestAction Action block for test scenarios, block on

life line can specify action like asserts to

check outputs or load code for complex

tasks

 

TestActor New term replacing actors for testing

purposes

 

TestComponent Realizes behavior of test case,

communicates with SUT and other test

components, evaluates if output is

correct for given input

 

TestComponentInstance Instance of test components  

TestConfiguration Collection of connections to SUT and test

components, specifies setup of test

components during test execution,

defines how SUT and test components

act in a test context

 

TestContext Includes SUTs and test components and

specifies interconnections

  

TestContextDiagram Graphic representation of TestContext,

does not provide more information than

the test context itself

 

TestPackage Container for testing related elements,

separates testing from design elements

  

TestParameter Marks attribute to be used as parameter  

TestRealTime Used when using tool "Rational

TestRealTime"

 

TestRealTimeFile Used to store results of tool "Rational

TestRealTime" executions in model

 

TestRequirementMatrix List of test cases and the associated

requirements

  

6 Analysis 38

Construct Description Criteria

T
e

ch
n

ic
a

l
co

n
st

ru
ct

N
o

n
-c

ru
ci

a
l

in
fo

rm
a

ti
o

n

G
ro

u
p

in
g

m

e
ch

a
n

is
m

TestResultTable List of test cases and the associated test

results

  

Unrealized Tag for unrealized messages, used for

filtering

 

Use_ParameterTable Dependency of parameter table and test

configuration

 

Use_Replacement Dependency for replacing test

components

 

6.4 Mapping
This table includes the relevant constructs and the mapping to the corresponding OSLC

resource. Following the table is a more detailed description if the mapping process of the

construct is not straight forward.

RTC Construct OSLC Resource

CoverageResult TestResult (OSLC QM)

Scheduler TestExecutionRecord (OSLC QM)

SUT Resource (OSLC AM)

The SUT is not an OSLC QM but an Architecture Management

Resource and must be included as a property in the OSLC QM

test case. One option would be to include a usesSUT property.

TestCase TestCase (OSLC QM)

TestObjective TestCase (OSLC QM); Property: validatesRequirement

TestRealTimeResult TestResult (OSLC QM)

TestResult TestResult (OSLC QM)

TestScenario TestScript (OSLC QM)

6.4.1 SUT
The SUT is mapped to an OSLC Architecture Management (OSLC AM) resource. The

prototype adaptor included in the scope of this work is an OSLC Quality Management (OSLC

QM) adaptor. Therefore the actual mapping of the SUT will not take place in the adaptor.

6 Analysis 39

The SUT is implemented in another tool and will be mapped to the appropriate OSLC

resource’s relationship property which will make it available for tracing.

6.4.2 TestObjective
The TestObjective links a test case to a requirement. The TestObjective does not include

additional information that should be made available and therefore the test objective is

transformed into the OSLC Quality Management (OSLC QM) test case property

validatesRequirement to contain the link information.

6.4.3 OSLC QM resources without Mapping
The OSLC QM test plan does not have a mapping to a "Rational Rhapsody Test

Conductor"(RTC) construct. This is the case because the RTC does not support the test

management process and does therefore not include test management related constructs.

7 Scenario 40

7 Scenario

7.1 Pre-Condition

1. Rational Rhapsody Test Conductor is currently running.

2. The prototype adaptor is currently running.

3. The prototype provider is currently running.

4. A Test Conductor project is opened.

7.2 Post-Condition

1. Every project test case is represented by an OSLC QM test case.

2. Every OSLC QM test case is present on the provider.

3. Every OSLC QM test case on the provider is accessible by OSLC consumers.

4. Every OSLC QM test case on the provider is accessible via browser.

7.3 Steps

1. The adaptor reads in the test cases of the project.

2. The adaptor creates OSLC QM test cases based on the retrieved test cases.

3. The adaptor posts the OSLC QM test cases to the provider.

4. The provider makes these OSLC QM test cases accessible by OSLC consumers.

5. The provider makes these OSLC QM test cases accessible by a browser.

8 Requirements 41

8 Requirements

These are the requirements for the prototype implementation that will serve as a proof of

concept.

8.1 Traceability
The different constructs of the "Rational Rhapsody Test Conductor" (RTC) needed in the

scenario are mapped to the corresponding OSLC QM resources and provided for other

users. The provided OSLC QM resources can be accessed by other systems without the

need that the RTC is up and running.

8.2 Interoperability
The provider must be able to interact with the adaptors of other tools. Interaction means

that other adaptors must be able to access and retrieve OSLC QM resources held by this

provider.

The adaptor must be able to interact with the providers associated with other tools.

Interaction means this adaptor must be able to access and retrieve OSLC resources held by

other providers.

8.3 Specification
The implementation must reflect the state of the OSLC specification. The version of the

core specification is "OSLC Core Specification Version 2.0"
7
 and the version of the QM

specification "OSLC QM Specification Version 2.0"
8
. The state must therefore reflect the

7
 Arwe 2013

8
 Mahan 2011

8 Requirements 42

specification in the above mentioned versions. This includes the setup of the different OSLC

QM resources and properties as well as the described services.

8.4 Simplicity
The implementation must be kept as simple as possible. This means it must only support

the minimum of the functionality needed for the scenario. This will make sure the proof of

concept will be easily understood in its basic functionality.

8.5 Modularity and Extensibility
The implementation must be kept modular. This will ensure that the prototype's

components have low coupling while achieving high cohesion.

The prototype must be implemented in a way to allow extensions of functionality

aspects. This is necessary to create a full business solution from the basis of the prototype.

Furthermore it increases the value of the prototype as it can be used for further

implementation instead of being a proof of concept.

9 Design 43

9 Design

In this part I describe the design for the OSLC QM adaptor prototype for "Rational Rhapsody

Test Conductor" (RTC) that I created as a proof of concept. The prototype will only include

the functionality needed to be successfully used in the described scenario.

Following is an abstract overview of the OSLC adaptor and its functionality. Every tool

has its own OSLC adaptor in addition to its OSLC provider (see Fig. 5, page 43). A tool’s OSLC

adaptor is able to communicate with OSLC providers. The OSLC adaptor can transform

constructs included in the tool to OSLC resources. These resources are then sent to the

provider. It can consume OSLC resources of an OSLC provider (see Fig. 6, page 44). The

OSLC adaptor can also consume OSLC resources of the providers of other tools (see Fig. 7,

page 44).

Fig. 5: Tools with implemented OSLC adaptor solution.

9 Design 44

Fig. 6: Principle of the OSLC adaptor uploading OSLC resources to its own provider.

Fig. 7: Principle of OSLC adaptor consuming OSLC resources of a provider.

9.1 Overview
The OSLC QM adaptor prototype will include three parts which are needed to provide the

functionality of the adaptor. These three parts are the plugin, the client and the server.

Following is a short and abstract description of these parts.

9.1.1 Plugin
The Plugin is used to read constructs from "Rational Rhapsody Test Conductor" projects and

form OSLC QM resources based on these constructs. The OSLC QM resources will be passed

to the client.

9 Design 45

9.1.2 Client (Consumer and Manager)
The client transmits the received OSLC QM resources to the server. In addition the client is

also used to request OSLC resources from other adaptors. This is done by communicating

with the server holding the OSLC resources of the other tool.

In the context of OSLC this client is called consumer.

9.1.3 Server (Provider)
The server receives OSLC QM resources from the client included in the adaptor and makes

the resources accessible from outside the tool. In addition the server receives requests

from other clients that send the OSLC QM resources for processing purposes. In the context

of OSLC this client is called provider.

9.2 Project Structure
Based on the rough outline given in the overview section (see 9.1, page 44) the overall

structure of the implementation is divided into three projects. The first includes the

adaptor itself. The second includes the provider (server). The third includes basics that are

used in both of the other two projects. These projects form the prototype that is created

for the scenario in the scenario section (see 7, page 40).

9.2.1 rtc_oslc_adaptor
This project includes the plugin and the client to provide the functionality of the adaptor for

the prototype. The client is composed of the consumer and the manager (see Fig. 9, page

48).

This is a separate project because I want to be able to run the adaptor implementation

separately from the provider. This allows using different implementations of the provider as

well as creating the possibility to use different approaches regarding provider availability.

The two most essential approaches are the following. The first is that every adaptor has its

own provider while the second is that one provider is used for several tools. The second

option is the better choice for a company because it lowers the amount of different

providers to one which will make maintenance easier.

9.2.2 rtc_oslc_provider
This project includes the provider to provide the functionality of the server for the

prototype to make the resources created in the “rtc_oslc_adaptor”-project available

outside of the adaptor and therefore outside of the tool (see Fig. 17, page 53).

This is a separate project because I want to create the possibility to easily exchange the

provider implementation with a different one. In addition I want to be able to run the

provider independently of the adaptor.

9 Design 46

In some implementations the provider is an integral part of the adaptor which means it

cannot be easily exchanged with a different implementation and that it is only available if

the adaptor is running.

9.2.3 rtc_oslc_common
This project includes the basic implementation of the OSLC which are the TestPlan,

TestCase, TestScript, TestExecutionRecord and the TestResult. In addition it includes a

number of constants that are needed in the implementation of the prototype (see Fig. 24,

page 59).

This is a separate project because the resources and constants are needed in the

“rtc_oslc_adaptor” and “rtc_oslc_provider”-project. If this is not done it will duplicate the

code which will lead to a higher amount of time needed to maintain and change parts of

the implementation as well as increasing the likelihood of errors.

9 Design 47

9.3 System Architecture

Fig. 8: UML component diagram of the system architecture.

9.4 Project rtc_oslc_adaptor
This project includes the client with the two interfaces IResourceManager and

IResourceConsumer and the implementing classes Manager and Consumer. It also includes

the Exceptions for the client which are the NoMatchingQueryCapabilityException,

NoMatchingCreationFactoryException and NoMatchingServiceProviderException class. The

project finally includes the Plugin class that is used to interact with the "Rational Rhapsody

Test Conductor" (RTC).

9 Design 48

9.4.1 Components

Fig. 9: UML component diagram “rtc_oslc_adaptor”-project (external view).

9.4.2 Client Component

Fig. 10: UML component diagram Client component (internal view).

This is included in a separate component because it includes the functionality of the client.

This component is represented by the "client"-package. It includes the IResourceConsumer

and IResourceManager interfaces and the Consumer and Manager classes (see Fig. 10, page

48).

The IResourceConsumer is used to specify the interface for adaptor-server

communication. The interface includes methods for retrieving resources from the provider

as a bulk operation retrieveResources or as a single resource retrieveResource.

9 Design 49

The Consumer class is implementing the IResourceConsumer interface and provides the

functionality for the two specified methods. In addition it includes a method to retrieve a

creation-URI from a service provider catalog getCreationURI.

The IResourceManager is used to specify the interface for adaptor-server

communication. The interface includes methods for adding addResource, updating

updateResource and deleting deleteResource resources of the provider.

The Manager class is implementing the IResourceManager interface and provides the

functionality for the three specified methods. In addition it includes a method to retrieve a

query-URI from a service provider catalog getCreationURI.

IResourceConsumer and IResourceManager are used to specify the interface for the

client component. The IResourceConsumer includes the methods for resource retrieval

which can be used to retrieve a single resource or more. The IResourceManager includes

the methods for adding resources to a provider, updating a resource that is already present

on a provider and deleting a resource that is held by a provider.

9.4.3 Client Exceptions Component

Fig. 11: UML component diagram Client Exceptions component (internal view).

This is included in a separate component because it includes the exceptions for the client.

This component is represented by the "client.exceptions"-package. It includes the

NoMatchingQueryCapabilityException (see Fig. 16, page 52),

NoMatchingCreationFactoryException (see Fig. 15, page 52) and

NoMatchingServiceProviderException (see Fig. 14, page 52) classes (see Fig. 11, page 49).

The NoMatchingServiceProviderException is thrown by the getCreationURI,

getQueryBaseURI, addResource, retrieveResource and retrieveResources methods. It states

that there was no matching service provider for the given resource type included in the

given service provider catalog.

The NoMatchingCreationFactoryException is thrown by the getCreationURI and

addResource methods. It states that there was no creation factory available for the given

resource type included in the given service provider catalog.

9 Design 50

The NoMatchingQueryCapabilityException is thrown by the getQueryBaseURI,

retrieveResource and retrieveResources methods. It states that there was no query

capability available for the given resource type included in the given service provider

catalog.

9.4.4 RTC Plugin Component

Fig. 12: UML component diagram RTCPlugin component (internal view).

This is included in its own component because it includes the functionality of the "Rational

Rhapsody Test Conductor" (RTC) plug-in. This component is represented by the "rtc.plugin"-

package. It includes the Plugin class (see Fig. 12, page 50).

The Plugin class inherits methods from the RPUserPlugin superclass. The methods are

RhpPluginInit, RhpPluginInvokeItem, OnMenuItemSelect, onTrigger, RhpPluginCleanup and

RhpPluginFinalCleanup. These methods are called by the RTC to handle the plug-in. The

RhpPluginInit method includes the functionality to initially read in and create the constructs

from the currently opened project in the RTC. The onTrigger method includes the

functionality to add, update and delete the OSLC QM resources on the provider. This is

done on the "After project save" trigger event. The Plugin class also includes fields of the

type IResourceConsumer and IResourceManager for the consumer and manager to use the

included communication functionality.

9 Design 51

9.4.5 Class Diagrams

Fig. 13: UML class diagram Plugin, Manager, Consumer classes

9 Design 52

Fig. 14: UML class diagram NoMatchingServiceProviderException exception

Fig. 15: UML class diagram NoMatchingCreationFactoryException exception

Fig. 16: UML class diagram NoMatchingQueryCapabilityException exception

9.5 Project rtc_oslc_provider
This project includes the persistence for the server. This includes the interface IPersistence,

the implementing class NonPersistentStorageSingleton and the ResourceHandler class to

modify resources at creation. It also includes the main part of the server consisting of the

ServerApplication and the ServletListener. These are used by the surrounding framework to

make up the core of the server implementation. The project also includes the

ServiceProviderSingleton to be used as the central service provider for the server. In

9 Design 53

addition the project finally includes the TestCaseService to handle requests send to the

server that are used to operate on TestCase resources.

9.5.1 Components

Fig. 17: UML component diagram “rtc_oslc_provider”-project (external view).

9.5.2 OSLC Resources Component

Fig. 18: UML component diagram Oslc Resources component (internal view).

This is included in a separate component because it includes the service provider resource

which is used in the server. This resource is not included in the “rtc_oslc_common”-project

because the service provider resource must not be available for creation and manipulation

in the client (see Fig. 18, page 53).

This component is represented by the "oslc.resources"-package. It includes the

ServiceProviderSingleton class.

The ServiceProviderSingleton is a singleton. To achieve this it includes a field of the type

ServiceProvidercalledinstance and a getInstance method. The type ServiceProvider is

included in the Lyo SDK libraries. The getInstance method returns the value of the instance

9 Design 54

field or if it is not already bound it sets the value. This includes creating a ServiceProvider

and binding it to the instance field as well as setting OSLC properties for it. In addition it

sets all the prefixes for the service provider for the different namespaces.

The class is a singleton because the server must only use one service provider which is

handling the OSLC QM resources.

9.5.3 OSLC Services Component

Fig. 19: UML component diagram Oslc Services component (internal view).

This is included in a separate component because it includes the functionality of the

resource services for the provider. This component is represented by the "oslc.services"-

package. It includes the TestCaseService class (see Fig. 19, page 54).

The TestCaseServiceclass includes methods for handling requests from the client. The

methods are getTestCases, getTestCase, addTestCase, updateTestCase and deleteTestCase.

The getTestCases method is used for handling query strings to return matching test

cases while the getTestCase is used for returning the test case with the matching resource

identifier. Both methods include the GET annotation to specify them as Http GET methods.

The addTestCase method is used for handling test case creation. It handles client

requests to the creation factory URI to create resources. The test case will be added to the

persistence. The method includes the POST annotation to specify it as Http POST method.

The updateTestCase method is used to update test cases. It handles client requests sent

to the location of a test case. The properties of the test case will be updated with the

properties of the test case given as parameter. The method includes the PUT annotation to

specify it as Http PUT method.

The deleteTestCase method is used to delete test cases. It handles client requests send

to the location of a test case. The test case will be deleted from the persistence and

excluded from the server. The method includes the DELETE annotation to specify it as Http

DELETE method.

9 Design 55

9.5.4 Persistence Component

Fig. 20: UML component diagram Persistence component (internal view).

This is included in a separate component because it includes the functionality of the

persistence for the server. This component is represented by the "persistence"-package. It

includes the ResourceHandler and NonPersistentStorageSingleton class as well as the

IPersistence interface (see Fig. 20, page 55).

The IPersistence is used to specify the interface for the server’s persistence. The

interface includes methods for adding addResource, updating udpateResource and deleting

resources deleteResource. It also includes two methods for resource retrieval. The first is a

bulk operation getResources while the second can be used to retrieve a single resource

getResource.

The NonPersistentStorageSingleton class is implementing the IPersistence interface and

provides the functionality for the five specified methods. The

NonPersistentStorageSingleton is a singleton. To achieve this it includes a field of the type

NonPersistentStorageSingleton named instance and a getInstance method. The getInstance

method returns the value of the instance field or if it is not already bound it sets the value.

The storage included in the prototype adaptor is non-persistent because it does not create

added value for the prototype.

The ResourceHandler class includes the setResourceIdentifier used in resource creation

to set the identifier property of the resource. Therefore the class includes a field for every

OSLC QM resource type that holds the identifier value that was last used. This is always

updated by the setResourceIdentifier to avoid doubling the identifier values in different

resources.

9 Design 56

9.5.5 Server Component

Fig. 21: UML component diagram Server component (internal view).

This is included in its own component because it includes the functionality for the server.

This includes the server application itself and a servlet listener. This component is

represented by the "server"-package. It includes the ServerApplication and ServletListener

class (see Fig. 21, page 56).

The ServerApplication class uses OslcWinkApplication from the Lyo SDK library as a

superclass. It only includes a constructor that passes on the values of the

RESOURCE_CLASSES and RESOURCE_SHAPE_PATH_TO_RESOURCE_CLASS fields. The

RESOURCE_CLASSES field includes the providers for JENA and JSON4J and includes the

TestCaseService.class value. The RESOURCE_SHAPE_PATH_TO_RESOURCE_CLASS includes

the test case path and the TestCaseService.class value in a map entry.

The ServerApplicationis run by the surrounding framework as the main part of the server

system and includes the servlet listener for creating and registering a service provider. It

also uses the TestCaseService class to handle the specific requests created by the client

included in the Lyo SDK library.

The ServletListener class uses the superclass ServletContextListener to initialize

contextInitialized and destroy contextDestroyed the context of the application.

The ServletListener class includes an inner class RegistrationTask which includes a run

task to create a service provider and register it with the OSLC4J Registry.

9 Design 57

9.5.6 Class Diagrams

Fig. 22: UML class diagram TestCaseService, NonPersistentStorage, ResourceHandler,

ServerApplication classes

9 Design 58

Fig. 23: UML class diagram ServletListener, ServiceproviderSingleton, RegistrationTask

classes

9.6 Project rtc_oslc_common
This project includes the OSLC specific Constants class that includes the constants used in

the other two projects. In addition is also includes the implementation of the OSLC QM

resources (TestCase, TestExecutionRecord, TestPlan, TestResult, TestScript) and the Person

resource from the OSLC core. The project finally includes the OslcResourceType

enumeration which is used for switching between the different behaviors demanded by the

different resources.

9 Design 59

9.6.1 Components

Fig. 24: UML component diagram “rtc_oslc_common”-project (external view).

9.6.2 OSLC Core Resources Component

Fig. 25: UML component diagram Oslc Core Resources component (internal view).

This is included in a separate component because the included resource belongs to the

OSLC core. This component is represented by the "oslc.core.resources"-package. It includes

the Person class (see Fig. 30, page 62) which implements the OSLC Core resource with the

same name (see Fig. 25, page 59).

The resources include the properties and relational properties specified in the

corresponding OSLC specification as fields. The fields are named after their respective OSLC

properties and are implemented with the type specified by the specification. The properties

that have a cardinality of zero-or-many or one-or-many are implemented as lists. These

fields include add as well as delete methods for single list entries in addition to the getters

and setters that all fields possess.

An example for the field name is the setName and getName methods. An addName

method is not included because the name is not implemented as a list field.

The getters include OSLC specific annotations from OSLC4J. These include the title,

name, description, propertyDefinition and occurs annotations.

9 Design 60

9.6.3 OSLC QM Resources Component

Fig. 26: UML component diagram Oslc Qm Resources component (internal view).

This is included in a separate component because the included resources belong to the

OSLC QM domain. This component is represented by the "oslc.qm.resources"-package. It

includes the TestCase, TestExecutionRecord, TestPlan, TestResult, and TestScript class (see

Fig. 31 - Fig. 35, page 62 - 64) which implements the OSLC QM resources of the same name

(see Fig. 26, page 60).

The implementation of the OSLC QM resources follows the same principles that are

described in the “OSLC Core Resource Component” section (see 9.6.3, page 60).

9.6.4 OSLC Utility Component

Fig. 27: UML component diagram Oslc Utility component (internal view).

This is included in a separate component because it includes functionality that is separate

from the resource implementations included in the other components. This component is

represented by the "oslc.utility"-package. It includes the abstract Constants class and the

OslcResourceType enumeration (see Fig. 27, page 60).

The constants included are the OSLC QM domain, namespace and namespace prefix

constants. In addition it includes the type and path constants for test cases.

The OslcResourceType enumeration includes TESTPLAN, TESTCASE, TESTSCRIPT,

TESTEXECUTIONRECORD and TESTRESULT as a value. The enumeration is used for different

methods in the other projects. It is needed to have one general method declaration and

9 Design 61

only switch the different behavior inside the method. This allows avoiding duplicating code

as well as hiding the different behavior outside of the classes that implement the

functionality.

9.6.5 Class Diagrams

Fig. 28: UML class diagram Constants class

Fig. 29: UML class diagram OslcResourceType enumeration

9 Design 62

Fig. 30: UML class diagram

Fig. 31: UML class diagram

9 Design 63

Fig. 32: UML class diagram

Fig. 33: UML class diagram

9 Design 64

Fig. 34: UML class diagram

Fig. 35: UML class diagram

9 Design 65

9.7 Scenario Execution

Fig. 36: UML sequence diagram scenario client-side

The scenario requires the collaboration of several methods to provide the needed

operations to fulfill the different steps.

This starts in the “rtc_oslc_adaptor”-project with the Plugin class and the method

RhpPluginInit. This method calls the getTestCases method with the currently opened RTC

project as argument. The method then retrieves all testCases included in the currently

opened project and returns them in the form of a list. Every element of the list is then used

in the same steps. These steps include the createOslcResource method with the element

argument as well as the OslcResourceType.TESTCASE value. This is followed by the

addResource call on the instance of the Manager class that is included in the Plugin class. In

the Manager instance the OslcRestClient instance is created to use

addOslcResourceReturnClientResponse with the testCase argument to send it to the

provider. This is the last step included in the rtc_oslc_adaptor project. The HTTP based

communication between the client and server projects is handled by the Lyo SDK.

9 Design 66

Fig. 37: UML sequence diagram scenario server-side

At this point the rtc_oslc_provider project is used. The addTestCase method of the

TestCaseService class is called as an HTTP POST method. The included testCase argument is

used in the setResourceIdentifier method of the ResourceHelper class. This method sets the

identifier of the testCase. This is necessary because the identifier must only be manipulated

on the server side therefore they do not include an identifier when they are sent. Finally

the testCase argument is used in the addResource method of the

NonPersistentStorageSingletion instance that is used in the TestCaseService class and

returns the reponse object to the client side. This concludes the server-sided steps for the

scenario.

10 Implementation 67

10 Implementation

Programming Language

Java Java in Version 1.6

Development Environment

Eclipse EGit Plugin Eclipse Plugin, Pure Java Git integration for Eclipse, used for

source code management of OSLC4J

IDE "Eclipse IDE for Java EE Developers" Juno edition

m2e Plugin Eclipse Plugin, Maven integration for Eclipse, used for

dependency management and building the project

Dependency Description

rhapsody.jar Java API for "Rational Rhapsody

Lyo SDK The Java based Software Development Kit for OSLC

implementation

The Lyo SDK provides the functionality as OSLC4J libraries.

These were included in the project by checking out the

source code of the projects with the "Eclipse EGit Plugin".

Afterward the "m2e Plugin" is used to generate .jars from

the projects to include them as dependencies.

11 Conclusion 68

11 Conclusion

My findings are based on my theoretical work with OSLC as well as my experience with my

prototype implementation. The OSLC specification includes many different aspects and

domains but I will only focus on the OSLC Core and the Quality Management domain as I

have worked with them closely.

The conclusion includes the outcome of my work regarding the coverage of my

requirements and the scenario. In addition the conclusion also includes the different

aspects of OSLC. It is divided into three parts. The first part is about the theoretical aspects

of OSLC including the specification and the goal which is achieving interoperability as well

as traceability. The second part includes the more general aspects which include the

tutorials and the philosophy of OSLC. The third part focuses on the practical aspects of OSLC

including the Lyo SDK and the aspect of mapping resources.

11.1 General Appraisal
OSLC as a technology does satisfy the requirements to achieve interoperability and

traceability. It is a high quality specification using the latest in available technology and

techniques.

The Lyo SDK hinders OSLC on a practical level because it is not on the same high level as

the specification. If the Lyo SDK would be improved this would change and improve the

practical aspects of using OSLC.

The fact that OSLC is a very new technology reduces the amount of available

information on the topic. This currently hinders the efficient and effective use of OSLC but

will also improve automatically over the course of time as these sources of information

become available.

11 Conclusion 69

11.2 Coverage of Requirements
The table below includes the analysis of the requirements in the aspect of the

implementation.

Requirement Explanation Satisfied

Traceability Satisfied by mapping the RTC constructs to OSLC

resources and making them available on the provider.



Interoperability Satisfied because the provider and adaptor of the

implementation can interact with other adaptors and

providers. These have to be implemented using the Lyo

SDK or implement the HTTP accessible methods listed in

the “Interoperability” section (see 11.5, page 71).



Specification Satisfied because the Lyo SDK is used that is closely

checking if the created resources are correctly fulfilling

the specification.



Simplicity Satisfied because the implementation does provide the

minimal set of functionality that is needed for the

scenario.



Modularity and

Extensibility

Satisfied by the architecture of the different

components.



11.3 Coverage of Scenario
The following table includes the list of the steps of the scenario and if they were satisfied by

the prototype implementation.

Scenario Steps Satisfied

The adaptor reads in the test cases of the project. 

The adaptor creates OSLC QM test cases based on the retrieved test cases. 

The adaptor posts the OSLC QM test cases to the provider. 

The provider makes these OSLC QM test cases accessible by OSLC

consumers.



The provider makes these OSLC QM test cases accessible by a browser. 

The following table includes the list of the post conditions of the scenario and if they

were satisfied by the prototype implementation.

11 Conclusion 70

Scenario Post Conditions Satisfied

Every project test case is represented by an OSLC QM test case. 

Every OSLC QM test case is present on the provider. 

Every OSLC QM test case on the provider is accessible by OSLC consumers. 

Every OSLC QM test case on the provider is accessible via browser. 

11.4 Specification
The OSLC specification is listing many different aspects of its inner workings which include

resources, properties as well as services to name the most important ones. The

specification is using an intuitive way of describing these aspects. Two examples of this are

included below.

Fig. 38: Example for the specification of common properties of OSLC resources

This is an example for an OSLC resource. In this case an OSLC QM TestCase and its

properties (see Fig. 38, page 70). The table entry first specifies the name of the included

property followed by important information and finishes with a short description of the

property. This is a very clean and simple way of describing resources and properties.

Fig. 39: Example for the specification of relationship properties of OSLC resources

This is an example for the description of a relationship property (see Fig. 39, page 70). It

basically is described in the same way as the OSLC resources but is included in a different

section to highlight that it is a relational property and not a common property. Dividing this

into different sections is very useful because the relational properties are very important.

11 Conclusion 71

A problem in the specification is that it relies heavily on the word SHOULD for describing

many aspects. This leads to the problem that a high amount of the specification could be

ignored as SHOULD marks the content as not mandatory. Identifying a minimal working set

of mandatory aspects that form OSLC is a time consuming and non-trivial task.

Another problem is that it misses a top down perspective of explaining OSLC. This would

include a very abstract view of OSLC and what it is, a rough outline of its inner working as

well as what are the basics of what can be achieved by applying OSLC.

11.4.1 Impact
The above mentioned influenced my work in regard to needing a lot of time to grasp the

basic concepts of OSLC because the top down perspective was lacking for my purposes. This

was also the case because I could not make out the minimal working set that forms OSLC

which made acquiring the needed knowledge time consuming. But the intuitive, simple and

clean way to present the information of the specific resources and the properties did help

on a more detailed level.

11.4.2 Appraisal
I cannot explicitly say if the problems I had while working with the OSLC specification are a

hindrance to people who have more experience in this field. From my personal position the

OSLC specification is still good enough but needs to be improved in regard to these aspects.

11.5 Interoperability
OSLC shows promise in creating interoperability capabilities in different tools. OSLC allows

to a certain degree for syntactic interoperability in tools by providing a common data

format for the different constructs included in a tool. This format is represented in the form

of using the OSLC resources and the properties that are specific for them.

The syntactic level of interoperability is only achieved to a certain degree because the

OSLC resources can be exchanged between different tools but they cannot provide the

same level of information that is included in the original constructs they are based on.

But the exchanged level of information is sufficient because it allows the basic

information of constructs to be exchanged across different tools. For more specific

information the tool construct that the OSLC resource is based on must be looked at.

This is acceptable because it is impossible to find data formats for every construct in

every tool that correctly maps all information. In addition it must be used and processed by

every possible tool. This would create complex data that must be maintained.

The above mentioned is the complete opposite of what interoperability should be which

is easy and fast to use and understand as well as efficient and effective.

One exception has to be made from applying interoperability by using OSLC with the Lyo

SDK. If the other tools do not provide a well formed interface that can be accessed using

11 Conclusion 72

the general HTTP (POST, PUT and GET) methods interoperability cannot be achieved.

Therefore the other tool has to correctly implement the specification to provide the

interoperability capabilities.

11.5.1 Impact
As stated above I did not find any problems while using OSLC to create interoperability

capabilities for "Rational Rhapsody Test Conductor" therefore this did not have any impact

on my work.

11.5.2 Appraisal
The lack of finding any problems while using OSLC to create tool interoperability leads me

to the conclusion that OSLC is very well suited for that purpose. OSLC cannot be used to

achieve semantic interoperability between different tools but this is not a goal of OSLC and

can therefore not be seen as a lacking feature. Nonetheless OSLC would be the wrong

technology if the goal is to achieve syntactic and semantic interoperability.

11.6 Traceability
OSLC shows promise in creating traceability capabilities in different tools. The different

constructs of tools can be transformed into OSLC resources which can then be traced

throughout the lifecycle as well as across domains and across different tools. This is the

case because the different OSLC resources can be held in the providers which are accessible

regardless of the specific tool constructs they are based on.

The fact that the constructs of a tool are not published directly but only indirectly as

OSLC resources creates the need to keep them synchronized. This means that only the

simplified OSLC representation of the tool constructs is worked with and not the original.

11.6.1 Impact
The need to keep constructs of the tool and OSLC resources synchronized was no influential

factor for my prototype implementation as it is not a fully functional business solution. The

implementation of the prototype does not use persistent data storage for the mapped

resources. A business solution must use the provided interface to connect to a database.

The synchronization of the connected database is automatically provided by the adaptor.

The need to synchronize the data is not an OSLC specific requirement but a general

requirement for different technologies. Therefore this is not a disadvantage for OSLC.

11.6.2 Appraisal
OSLC can be applied to create traceability capabilities in an effective and efficient manner

which makes using it a good choice.

11 Conclusion 73

11.7 Tutorials and Examples
Tutorials and examples are a very important aspect of every technology as it enables

people to use the technology efficiently and effectively. Therefore I included them together

in one section. I differentiate between tutorials and examples at the point that a tutorial

has to explain in great detail how the person doing the tutorial can achieve the objective

while the example is just about showing how something should be.

The examples that are included in OSLC are good regarding quality and quantity. There

are several examples for resources for the different domains as well as the core.

Additionally the high quality of the specification I mentioned in the “Specification” section

(see 11.4, page 70) does not leave much need for examples for most things as the

description in the specification itself is sufficient.

The tutorials for OSLC and how to implement OSLC are lacking. The tutorials are not

explicit enough for explanation and are often stuck on a very abstract level which is not

sufficient to qualify as an actual tutorial. Most of these tutorials are good as abstract

examples of what can be done with OSLC and what the advantages of applying OSLC are.

But they do not give a detailed step by step explanation how to actually apply OSLC. In

addition some of the code based implementation tutorials are just example projects. These

include an explanation how to setup the projects and run them but do not explain the

actual functionality of the project. Another problem of some tutorials and examples

regarding the implementation of OSLC is that they are not efficient enough in the way they

provide explanation.

11.7.1 Impact
The above mentioned problems lead to the problem that I needed a lot of time to actually

understand the implementation of OSLC. This can cause an additional problem because

understanding the steps that need to be undertaken to implement OSLC can become a

resource consuming task in both time and money. The tutorial I actually used to implement

OSLC was the script of a workshop I participated in that was held in the context of the

MBAT project. The problem with this script is that it is not available outside of the MBAT

project and I could only participate in the workshop and get the script because the bachelor

thesis was created in the context of the MBAT project.

11.7.2 Appraisal
The above mentioned problems lead me to the conclusion that some of the OSLC tutorials

should be renamed as examples because they do not provide necessary explanations. In

addition the tutorials that include example implementations should be enriched with

explanations how the implementation was created and what the core aspects are.

Additionally the script from the workshop should be included together with the provided

example projects in the OSLC wiki to help with the implementation of OSLC.

11 Conclusion 74

11.8 Resources and Mapping
The mapping of constructs to OSLC resources involves three steps. The first is choosing

which OSLC resource the construct is equivalent to. The second involves the actual mapping

process of creating the OSLC resource and setting its properties. The third and last step

should then include checking if additional properties need to be created for the OSLC

resource to reflect the important information of the basic construct that need to be

checked directly in the OSLC resource. The third step was not tested in my work as the

prototype I implemented is only serving of a general prove of concept.

The difficulty of the first step depends on the number of resources included in the OSLC

domain that is used. In the OSLC QM domain there are five resources which makes

matching the tools constructs to these resources not too complicated. The only problem

that might occur is that the wording in OSLC sometimes overlaps with the vocabulary used

in computer science but differs in the definition of the meaning.

The second step is intuitive because most properties of OSLC resources are reflecting

information that is included in most constructs anyway. These include title, description,

time stamps for creation and modification as well as links to the creators and contributors

of the resource.

The number of resources and the coverage of different domain aspects for the OSLC QM

domain are easy to work with aside from the above mentioned problems. The low number

of resources allows for an efficient mapping process while still providing the ability to map

all important information without creating additional resources. This is also support by the

low number of properties that are used in the OSLC resources which leads to a good

coverage of useful information while not providing the need to map unnecessary details.

This makes OSLC resources very efficient and effective to use.

11.8.1 Impact
The first step for the mapping process is rather complex depending on the tool that is used

and how many constructs it supports. But this is not the case because OSLC is used as a

technology but is based on the complexity of the tool used.

The second step was straight forward because it only involved using given information of

the resources in the properties of the OSLC resources. This task can be done fast and easily.

The fact that the wording of OSLC is duplicating vocabulary while not having the same

meaning can make the process more complex. This depended on the fact that I always

needed some time to change the perspective to differing meaning of the vocabulary.

11.8.2 Appraisal
In my opinion the mapping process of OSLC is intuitive and can be done in a short amount

of time. The resources are well fit for the mapping process but the explanations of the

content a resource should contain should be a little more detailed and maybe enriched

11 Conclusion 75

with some small examples. This would make the process of understanding which tool

constructs are equivalent to which OSLC resources easier.

11.9 Lyo Software Development Kit (SDK)
The Lyo SDK can be used to implement OSLC solutions. It does have advantages as well as

problems. Advantages include that OSLC resources can be implemented as Plain Old Java

Objects (POJOs) which makes handling the resources easier while also providing the option

to set the different representational types like rdf/xml or json.

One of the problems of the Lyo SDK is that it is not documented and explained well

enough which hinders fast and efficient work with it. This is the case because basic tasks

that are supported by the Lyo SDK need a lot of time to understand and use even though

they should not be as complex and hard to understand. In addition there are not enough

sources that include explanation of the Lyo SDK and its functionality.

In addition it does not go far enough in helping with the implementation. This means

that the OSLC resources have to be implemented with the help of the Lyo SDK. An example

for this is implementing all the OSLC QM resources but they are based on the specification

which leaves no room for interpretation. Therefore these resources should already be

implemented by the Lyo SDK and be available for direct use from the library or as

superclass if there is the need to add custom properties.

This is discussed in the Lyo development mailing group now (June 2013). The

implementation of OSLC resources might be included in a later version of the Lyo SDK. At

the moment this is not the case therefore this is still a problem.

Another problem of the Lyo SDK is that constructs that are known from other

technologies and implementation feel unintuitive to use. I picked the OSLC Client as an

example for this.

Fig. 40: Code snippet of the OslcRestClient included in the Lyo SDK

In the first line of the example is the constructor for the OSLC4J Rest Client. Included is

the variable queryBase which specifies the URI of the query service. In the second line the

OSLC4J Rest Client is used to retrieve resources in this case a test cases. The resources are

retrieved from the URI that was specified in the constructor.

This is not intuitive because every time another resource needs to be retrieved the

queryBase variable must be set to a new destination before using the actual method for

retrieval. Additionally the use of the "class" method in java is very uncommon.

11 Conclusion 76

A more intuitive approach would be to specify the URI for the query service as a

parameter in the getOslcResources method so that every method call can include a new

queryBase value.

11.9.1 Impact
The Lyo SDK heavily influences the effort needed for the implementation. Working with the

Lyo SDK the first time was very time consuming. A lot of this time was spent using examples

and tutorials from the workshop as well as participating in the "DevCafe" workshop
9
 to

understand how to use and apply the SDK. The workshop helped greatly in understanding

the Lyo SDK. Unfortunately the workshop is not publicly available.

In addition the Lyo SDK did not generate added value for my implementation. This might

partly depend on the fact that it is a prototype but it is also the case because of the above

mentioned problems of the Lyo SDK.

11.9.2 Appraisal
In my opinion the problems I have mentioned above need to be solved because it

influences the quality of the Lyo SDK in a negative way. Developers must be able to

efficiently and effectively use the SDK or otherwise it will not be useful for supporting OSLC

which could lead to the lack of implementations and usage of the technology.

11.10 Implementation Problems

11.10.1 Maven and Lyo SDK
Maven is a very powerful tool which makes it hard to use at first. After focusing on the

basic functionality of the "m2e Plugin" it worked very well. The plugin saves a lot of time by

automatically handling the dependency management for the project. In addition it allowed

using the Lyo SDK because manually integrating the OSLC4J libraries in the project becomes

obsolete. The problem I had using the "m2e Plugin" initially was based on the fact that it

checks the local repository saved on the hard disk before it checks the general maven

apache repository. The Lyo SDK .jars are not integrated in the general maven apache

repository and are therefore not available. This was obfuscated because I ran an example

implementation earlier that included the Lyo SDK .jars in the local repository which were

missing for my own projects. To solve this problem I used the "Eclipse EGit Plugin" to check

out the source code of the Lyo SDK. The projects containing the Lyo SDK can then be

transformed into .jars with the "m2e Plugin" and added to the project as dependency.

9
 Paschke 2013

11 Conclusion 77

11.11 Outlook
The prototype implementation can be upgraded to a fully functional business solution by

applying changes in some places.

11.11.1 Using all relevant Constructs of Rational Rhapsody Test Conductor
To use all RTC constructs that are specified as relevant for mapping in the "Analysis" section

(see 8, page 41) the prototype must be changed in some places. The first step is including

the read in and resource creation in the Plugin class. These can be closely modeled

according to the already existing methods and source code sections already included for

the test cases. The next step includes adding the source code for the different resource

types specified by the OslcResourceType enumeration in the Consumer and Manager

classes that implement the IResourceConsumer and IResourceManager interfaces.

In addition the steps of the "Resource Services" section (see 11.11.2, page 77) must be

satisfied. Finally the changes of the "Persistent Database" section (see 11.11.3, page 77)

should be included as well. No other changes have to be made to include and use all

relevant RTC constructs.

11.11.2 Resource Services
The missing OSLC QM resource services (TestPlan, TestScript, TestExecutionRecord,

TestResult) have to be implemented for the provider. They can be closely modeled

according to the already existing TestCaseService class. This step will provide the ability to

use these resources in the provider. The newly created resource services need to be added

to the RESOURCE_CLASSES field of the ServerApplication class. The path and type constants

have to be added to the constants class of the "rtc_oslc_common”-project.

No other changes are necessary.

11.11.3 Persistent Database
The prototype does not include persistent data storage. Persistent data storage has to be

applied for a fully functional solution. To support the persistent data storage, the

IPersistence interface is provided and must be used. The persistent data storage has to

replace the NonPersistentStorageSingleton class.

No other changes are necessary to include a persistent storage for the resources of the

provider.

11.11.4 Synchronization
The synchronization of the RTC constructs with OSLC QM resources is already given. This is

the case because the Plugin will always update the OSLC QM resources whenever the base

construct from RTC is changed. The only part missing is the functionality for synchronizing

deleted RTC constructs. This has to be implemented.

11 Conclusion 78

No other changes are necessary to make sure the RTC constructs are synchronized with

the OSLC QM resource counterparts.

11.11.5 Plugin Integration for Rational Rhapsody Test Conductor
To create a plugin that can be called from the RTC the “rtc_oslc_adaptor” and

“rtc_oslc_common”-projects have to be compiled into a single jar. This is needed to include

all the dependencies to make them available for the RTC. The jar has to be included into the

rhapsody.ini to load the plugin when the RTC is started.

No other changes are necessary to create an integrated plugin for the RTC.

12 Glossary 79

12 Glossary

In the table below are the terms used in this paper that are not commonly known terms

which need further explanation. This excludes terms like HTTP or XML because these are

commonly known and are not special terms used in this paper.

Term Definition

API Application Programming Interface.

Library to interact with the system that provides the API.

Artifact Every product created during the software development cycle.

Consumer The OSLC term for a client that retrieves OSLC resources from

an OSLC provider

EGit Git plugin for eclipse. Used for checking out the Lyo SDK source

code from the repository

IDE Integrated Development Environment.

Application that provides several capabilities to create software

Interoperability Ability of different tools or systems to interact and

communicate with each other

Linkeddata Data that does not only include information but is also linked to

other sources of data to increase the value of the information

Lyo SDK The software development kit for OSLC. Supports the creation

of OSLC based applications

M2E Maven plugin for eclipse. Used for build automation and

dependency management

ModelBus Framework for the creation of integrated tool environments

OSLC Open Services for Lifecycle Collaboration.

Specification to allow integration of tools

12 Glossary 80

Term Definition

OSLC AM Open Services for Lifecycle Integration Architecture

Management.

Architecture domain workgroup of OSLC, includes domain

specific resources

OSLC QM Open Services for Lifecycle Integration Quality Management.

Quality domain workgroup of OSLC, includes domain specific

resources.

OSLC RM Open Services for Lifecycle Integration Requirement

Management.

Requirement domain workgroup of OSLC, includes domain

specific resources.

OSLC4J Toolkit for creating OSLC based applications. Supports creation

of consumers and providers as well as enables easy

communication for these constructs

Property Information in an OSLC resource.

Provider The OSLC term for a server that provides OSLC resources

Rational Rhapsody

Test Conductor

Integrated tool for scenario based testing in the UML based

software development tool Rational Rhapsody

Resource Artifact representation in OSLC

SDK Software Development Kit.

Software that helps in creating applications for specific systems

or technologies

Service Operation on an OSLC resource

Test Case OSLC QM resource

Test Execution Record OSLC QM resource

Test Plan OSLC QM resource

Test Result OSLC QM resource

Test Script OSLC QM resource

Traceability Ability to follow and track artifacts throughout their lifecycle.

Used for gaining additional information about the artifacts and

enabling additional techniques like change management and

impact analysis

13 Bibliography 81

13 Bibliography

Arwe 2013

Arwe, John: Open Services for Lifecycle Collaboration, Core Specification Version 2.0.

URL: http://open-services.net/bin/view/Main/OslcCoreSpecification (8 January 2013)

Brockmeyer 2013

Brockmeyer, Udo; Lettrari, Marc; Rothaupt, Ruben; Wachtendorf, Christian: Workshop

Implementation of Rational Rhapsody Test Conductor (RTC) Plug-in (7/8 March 2013).

Oldenburg: BTC Business Technology Consulting AG, 2013

Dai 2012

Dai, Zhen Ru: ISTQB Certified Tester, Foundation Level (CTFL). Lecture, summer semester

2012 at Hamburg University of Applied Sciences (HAW). Hamburg: 2012.

Fiedler 2013-1

Fiedler, Michael: Lyo. Ottawa (Canada): Eclipse Foundation, 2013. URL:

http://wiki.eclipse.org/Lyo (4 April 2013)

Fiedler 2013-2

Fiedler, Michael: Building and Running Lyo OSLC4J applications in Eclipse. Ottawa

(Canada): Eclipse Foundation, 2013. URL: http://wiki.eclipse.org/Lyo/BuildingOSLC4J (4

April 2013)

Mailing list Lyo

Lyo project developer discussions, lyo-dev@eclipse.org

Mailing list OSLC

OSLC Core, oslc-core@open-services.net

13 Bibliography 82

McMahan 2011

McMahan, Paul: Open Services for Lifecycle Collaboration, Quality Management

Specification Version 2.0, Terminology. 2011. URL: http://open-

services.net/bin/view/Main/QmSpecificationV2#Terminology (10 January 2013)

OSLC 2013-1

Open Services for Lifecycle Collaboration: About. 2013. URL: http://open-

services.net/about/. Note: This page is no longer available on the current (June 2013)

OSLC web site, but it is put into the archives by "The Wayback Machine"

http://archive.org/web/web.php (see Appendix C: page 87).

OSLC 2013-2

Open Services for Lifecycle Collaboration. 2013. URL: http://open-services.net/. (10

January 2013)

Paschke 2013

Paschke, Stefan: Online Workshop MBAT RTPv1 Dev Café, Implementation of OSLC

Consumer and Provider using the Lyo SDK. 5/25 April 2013

Ritter

Ritter, Tom (responsible editor): Overview, Features. München: Fraunhofer-Gesellschaft

zur Förderung der angewandten Forschung e.V. URL:

http://www.modelbus.org/modelbus/index.php/overview/features (14 March 2013)

14 Appendix 83

14 Appendix

Appendix A: Installation Guide

Rational Rhapsody Test Conductor

1. Install Rational Rhapsody Version 8.0 from

https://www14.software.ibm.com/webapp/download/preconfig.jsp?id=2012-09-

21+05%3A17%3A50.571065R&S_TACT=&S_CMP=. Select all programming languages in

the installation. Install the Test Conductor add-on when asked to install plug-ins and

add-ons in the installation process.

Eclipse

1. Install Eclipse IDE for Java EE Developers Juno Edition.

2. Install EGit plug-in. Add http://download.eclipse.org/egit/updates as Eclipse update

page to install the plug-in.

3. Install M2E plug-in. Add http://download.eclipse.org/technology/m2e/releases as

Eclipse update page to install the plug-in.

Setup Project and Dependencies

1. Import > Existing Projects > Archive File rtc_oslc_implementation and import

“rtc_oslc_common”, “rtc_oslc_adaptor” and “rtc_oslc_provider”.

2. Follow the below mentioned steps on http://wiki.eclipse.org/Lyo/BuildingOSLC4J
10

:

 "Clone the Lyo Core and RIO(optional, for Change and Quality Management

samples) git repositories

 "Import OSLC4J Eclipse Projects from the git repository"

 "Build all projects"

10

 Fiedler 2013-2

14 Appendix 84

3. Right click pom.xml from rtc_oslc_common, rtc_oslc_adaptor and rtc_oslc_provider and

Run As>Maven clean for each project.

4. Right click pom.xml from “rtc_oslc_common”, “rtc_oslc_adaptor” and

“rtc_oslc_provider” and Run As>Maven install for each project. If "Build Success" shows

in the console the project was successfully build, if not check alternative step 4b.

5. Open Run Configurations and select the Plugin class' RunConfiguration. In the

Arguments tab add

"-Djava.library.path=C:\tools\IBM\Rational\Rhapsody\8.0\Share\JavaAPI" as VM

argument. This has to point to the Rational Rhapsody Installations JavaAPI.

6. Run the rtc_oslc_provider Maven build. When the console states the error "INFO:

RegistrationTask:ServiceProvider registered." run the Plugin class.

Alternative Step

4b. If the rtc_oslc_adaptor build is not successful check the console for missing symbols

warning. Right click pom.xml and Run As>Maven clean. Right click the project and

select Build Path>Configure Build Path. In the libraries tab remove the rhapsody.jar.

Afterwards right click them pom.xml and Run As>Maven install. After the installation

run return to Build Path Configuration and click Add Jars in the libraries tab. Select the

rhapsody.jar from the rhapsody folder of the lib folder in the rtc_oslc_adaptor project.

Launch Configuration and Running the Project

Run the Plugin class and the rtc_oslc_provider run maven configuration. If they do not exist

follow steps 1-5.

1. Open Run Configurations and select the Plugin class' RunConfiguration. In the

Arguments tab add

"-Djava.library.path=C:\tools\IBM\Rational\Rhapsody\8.0\Share\JavaAPI" as VM

argument. This has to point to the Rational Rhapsody Installations JavaAPI.

2. Open Run Configurations and create a new configuration under the Maven section. Set

the Base Directory to ${workspace_loc:/rtc_oslc_adaptor} in the main tab. The Goal has

to be jetty:run-exploded.

3. In the Source tab add “rtc_oslc_common”, “rtc_oslc_provider” and OSLC4JRegistry.

4. In the Environment tab add a variable OSLC4JREG with the Value

${workspace_loc:/OSLC4JRegistry}

5. In the common tab under saved as select Shared File and set it to

\rtc_oslc_provider\test\launches

Appendix B: Table of Figures

Note: To create the figures 1-7 I used Microsoft Power Point 2010, and Microsoft Visio

Professional 2013 for the figures 8-37.

14 Appendix 85

Fig. 1: Lack of interoperability hinders communication.. 6

Fig. 2: Point-to-point communication based on proprietary adaptors. 7

Fig. 3: Communication based on OSLC adaptors. ... 7

Fig. 4: OSLC adaptors allow flexible communication in a tool landscape. 8

Fig. 5: Tools with implemented OSLC adaptor solution. ... 43

Fig. 6: Principle of the OSLC adaptor uploading OSLC resources to its own provider. 44

Fig. 7: Principle of OSLC adaptor consuming OSLC resources of a provider. 44

Fig. 8: UML component diagram of the system architecture. .. 47

Fig. 9: UML component diagram “rtc_oslc_adaptor”-project (external view). 48

Fig. 10: UML component diagram Client component (internal view). 48

Fig. 11: UML component diagram Client Exceptions component (internal view). 49

Fig. 12: UML component diagram RTCPlugin component (internal view). 50

Fig. 13: UML class diagram Plugin, Manager, Consumer classes .. 51

Fig. 14: UML class diagram NoMatchingServiceProviderException exception 52

Fig. 15: UML class diagram NoMatchingCreationFactoryException exception 52

Fig. 16: UML class diagram NoMatchingQueryCapabilityException exception 52

Fig. 17: UML component diagram “rtc_oslc_provider”-project (external view). 53

Fig. 18: UML component diagram Oslc Resources component (internal view). 53

Fig. 19: UML component diagram Oslc Services component (internal view). 54

Fig. 20: UML component diagram Persistence component (internal view). 55

Fig. 21: UML component diagram Server component (internal view). 56

Fig. 22: UML class diagram TestCaseService, NonPersistentStorage, ResourceHandler,

ServerApplication classes ... 57

Fig. 23: UML class diagram ServletListener, ServiceproviderSingleton, RegistrationTask

classes ... 58

Fig. 24: UML component diagram “rtc_oslc_common”-project (external view). 59

Fig. 25: UML component diagram Oslc Core Resources component (internal view). 59

Fig. 26: UML component diagram Oslc Qm Resources component (internal view). 60

Fig. 27: UML component diagram Oslc Utility component (internal view). 60

Fig. 28: UML class diagram Constants class .. 61

Fig. 29: UML class diagram OslcResourceType enumeration ... 61

Fig. 30: UML class diagram .. 62

Fig. 31: UML class diagram .. 62

Fig. 32: UML class diagram .. 63

Fig. 33: UML class diagram .. 63

Fig. 34: UML class diagram .. 64

Fig. 35: UML class diagram .. 64

Fig. 36: UML sequence diagram scenario client-side .. 65

Fig. 37: UML sequence diagram scenario server-side ... 66

14 Appendix 86

Fig. 38: Example for the specification of common properties of OSLC resources 70

Fig. 39: Example for the specification of relationship properties of OSLC resources 70

Fig. 40: Code snippet of the OslcRestClient included in the Lyo SDK 75

Appendix C: Archived Website

The following figure shows the former "About OSLC" page of the OSLC Community web site

(archived on 11 May, 2013).

Source: http: //web.archive.org/web/20130511150212/http: //open-services.net/about/

14 Appendix 87

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbstständig

verfasst und nur die angegebenen Hilfsmittel benutzt habe.

Hamburg, den ___

