
Fakultät Technik und Informatik
Department Informatik

Faculty of Engineering and Computer Science
Department of Computer Science

Marvin Ede

Increasing modularity by implementing traits in ruby
with an application to game programming

Bachelor thesis

Marvin Ede

Increasing modularity by implement traits in ruby with
an application to game programing

Bachelorarbeit eingereicht im Rahmen Bachelorprüfung

im Studiengang Angewandte Informatik
am Department Informatik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer : Prof. Dr. rer. nat. Michael Böhm
Zweitgutachter : Prof. Dr. Ing. Birgit Wendholt

Abgegeben am 27.03.2013

Marvin Ede

Thema der Bachelorarbeit

Erhöhte Modularität durch die Implementierung von traits in ruby mit einer
Anwendung auf Spieleprogrammierung

Stichworte

Modularität, Ruby, Trait, Spieleprogrammierung

Kurzzusammenfassung

Diese Arbeit definiert Traits – feingranulare, wiederverwendbare Module, aus
denen Klassen zusammengesetzt werden können. Es wird gezeigt wie mit Hilfe der
Metaprogrammiertechniken aus Ruby solche Traits implementiert werden können.
Dabei wird auf die bereits vorhandenen Mixins aufgebaut ohne etwas anderes als
Rubysyntax zu verwenden. Die benötigten Vorkenntnisse über die
Metaprogrammierung in Ruby werden in einem eigenen Kapitel vermittelt.
Nachdem die Schwachpunkte dieser Herangehensweise erläutert wurden, wird
gezeigt wie man Traits bei einer Spielengine anwenden könnte und wie sie im
Anwendungscode des Spiels zu mehr Modularität führen.

Marvin Ede

Title of the paper

Increasing modularity by implementing traits in ruby with an application to game
programming

Keywords

Modularity, ruby, trait, game programming

Abstract

This work gives a definition for traits – a fine grained, reusable set of methods that
is used to build classes. It is shown how rubies meta programming techniques can
be used to implement such traits based on mixin modules only using ruby syntax.
The needed meta programming techniques are described in a separate chapter.
After the weaknesses of this approach and its limits are discussed, it is shown how
traits could be applied to a game engine and how that would lead to more
modularity in the actual game application code.

Index

1 Introduction .. 8

1.1 Problem .. 8

1.2 Goal .. 9

1.3 Textual structure .. 9

2 Traits ... 10

2.1 Motivation – Why traits? ... 10

2.1.1 Procedural programming ... 10

2.1.2 Parallel classes .. 10

2.1.3 Single inheritance ... 11

2.1.4 Multiple inheritance ... 11

2.1.5 Mixin inheritance ... 12

2.1.6 Traits ... 15

2.1.7 An Example for traits in the game programming domain 17

2.2 A definition of traits ... 18

2.2.1 Pure methods ... 18

2.2.2 Provided, required and satisfied methods ... 18

2.2.3 Symmetric composition ... 19

2.2.4 Explicit name conflict solving ... 21

2.2.5 The composing entity offers the glue code .. 21

2.2.6 Flattening traits into a class .. 22

2.2.7 Recap: Characteristics of traits .. 22

2.3 Traits, Mixins, Aspects .. 23

2.4 Known implementation of traits .. 24

3 Ruby .. 26

3.1 Object model .. 26

3.2 Open classes ... 28

3.3 Method look up .. 28

3.4 Eigenclasses .. 29

3.5 Mixin modules .. 31

3.6 Class and module Macros .. 32

3.7 Reflections .. 32

3.7.1 Hook methods .. 32

3.7.2 Methods ... 32

3.8 Aliasing ... 33

3.9 Blocks, Lambdas and Procs .. 34

3.10 Named Parameters .. 37

4 Extending ruby with traits .. 38

4.1 Trait definition .. 38

4.2 Building classes with traits ... 39

4.3 Implementation of traits .. 41

4.3.1 Conflict detection ... 41

4.3.2 Conflict solving ... 42

4.3.3 How Traits are built from mixins .. 44

4.3.4 Composition of traits .. 47

4.3.5 Except and Only.. 48

4.3.6 Trait look up and extendable syntax .. 50

4.4 Problems .. 50

4.4.1 Unsatisfied methods .. 50

4.4.2 Clean methods ... 50

4.4.3 Open module .. 51

4.4.4 Performance ... 51

4.4.5 Semantic name conflicts .. 51

4.4.6 Super .. 52

4.4.7 Flattening precedencies violated ... 52

4.5 Alternative implementations with more than plain ruby syntax 53

5 Applying traits to a game engine 55

5.1 Chingu... 55

5.1.1 Game loop .. 55

5.1.2 Game objects ... 56

5.1.3 Game states ... 56

5.1.4 Traits ... 57

5.2 Discussion on Chingus trait model ... 57

5.2.1 Class methods .. 57

5.2.2 Options ... 58

5.2.3 Applications .. 58

5.3 Application of new trait implementation .. 59

5.4 Decomposition into traits and composition from traits 60

5.5 Comparison of three implementations of Monster 60

6 Conclusion and future work ... 64

6.1 Conclusion .. 64

6.2 Future work .. 64

7 Annotations .. 66

8 Source materials .. 67

9 Figures .. 69

10 Tables .. 71

11 Appendix ... 72

11.1 Code example for composition of mixin modules 72

11.2 All methods of a String object .. 73

11.3 Building a class with the class macro “trait” .. 74

11.4 The hypothetical relation among Trait, Module and Class 75

11.5 Composition of traits .. 76

11.6 Class definition benchmark .. 77

11.7 Chingus trait implementation .. 78

11.8 Method call benchmark ... 79

11.9 Code and documentation of the method bind .. 80

11.10 An example for traits without composition ... 81

1 Introduction

In the past decades of software development, there have been many changes in languages
and in the way they are used. While in the grand scheme of paradigms, only the imperative
and the declarative ones are established there are many different manifestations of these
two approaches. For declarative programming there is distinguished among functional,
logical and constraint programming, while imperative programming can be sorted as
procedural, modular, agent oriented and object oriented – to name a few.
Object oriented programming experienced a significant accretion in the past decades,
especially languages like Java and C++ propagate this paradigm. To face the different
problems of the most common variant of object orientation – the single inheritance – there
has been different approaches to extend the object model, one of which are traits.

1.1 Problem
One of the benefits from the object oriented programming paradigm is, that programs are
easier to read and easier to understand, thus easier to maintain. One big problem with
maintenance is duplicated code. With classical object oriented techniques like single
inheritance it is shown that there are situations where code must be duplicated, which – in
the long run - leads to diversion of two pieces of code, that once were designed to
implement the same feature (cf. (Murphy-Hill, et al., 2005))
Traits as an extension to the object oriented programming paradigm are designed to offer
solutions to this problem. However, programmers are often not even aware of those
problems, nor do they know traits or other possible solutions. This may be caused by the
lack of implementations of traits1 and practical applications of traits that can function as a
showcase.

1
 To the knowledge of the author, there is no implementation of traits, like they are defined in this

work, for ruby at the time of publication.

Introduction 9

1.2 Goal
In this work, there will be discussed how classic object oriented techniques are not
sufficient to redeem the causes of duplicated code. It will be shown how traits are designed
to solve these problems and to extend current techniques like single inheritance. The main
emphasize however, lies on the analysis of how traits can be implemented using rubies2
meta programming techniques. To give an example of how traits can be used in actual
software, it is shown how a 2D game engine written in ruby could be refactored with traits.
This framework is the 2D game engine Chingu3 that is based on Gosu4.

1.3 Textual structure
This work is in divided into four essential chapters plus the two chapters for introduction
and conclusion. In chapter 2, traits are introduced. A detailed definition is given, that
follows very closely to the definition given by Ducasse et al in 2003. (cf. (Ducasse, et al.,
2006))
In chapter 3, there is an introduction to the object oriented programming language ruby. It
is assumed the reader has knowledge of the object oriented programming paradigm,
therefore only those parts of ruby – precisely some of its meta programming techniques –
that are important for the proposed implementation of traits, are covered.
After that, chapter 4 combines the definition of traits and the introduction to ruby by
describing the implementation of traits the author proposes. Not only is shown how traits
are defined and used, it is dwelled on weaknesses of the implementation and alternatives
that might solve these weaknesses are discussed.
In chapter 5 it is shown how traits can be used to increase modularity specific in game
programming. The game engine Chingu is shown, that already makes use of the concept of
mixin, that are similar to traits. It is shown how Chingu could be adapted to make use of the
proposed trait implementation and how this would affect the actual application code.
Finally a conclusion is given in chapter 6. Additionally there is a prospect of how the
implementation could be improved on.
Traits in the meaning of this work have been introduced in 2002 ((Schärli, et al., 2002)) and
have not been the target of research in many instances since. Therefore there are only few
researches to build upon. Due to this circumstance the list of source materials regarding
traits may appear shorter than expected.
In this work, there are many illustrations for the presented concepts and implementation.
They are designed by the author unless otherwise stated.

2
 Ruby programming language - http://www.ruby-lang.org

3
 Chingu - Make games with Ruby! - http://ippa.se/chingu

4
 Gosu - 2D game development library - http://www.libgosu.org/

Traits 10

2 Traits

Traits are an extension to the object oriented programming paradigm that is designed to
increase the reusability of code - especially code that would have to be copied and pasted
in an ordinary class hierarchy. The underlying problem is a conceptual one, as a class has
two roles: It is a generator of instances and a unit of reuse. In order to fulfill its role as
instance generator, it needs to be complete, therefore bundling all functionalities that an
instance needs to operate properly. This leads to classes that are rather big collection of
functions with a special purpose. But this completeness of a class obstructs its role as a unit
of reuse. (cf. (Schärli, et al., 2003 p. 2))

2.1 Motivation – Why traits?
In other words: A class needs to be complete in order to generate instance. But it is hard to
reuse a complete unit of code in another place. There are several approaches to solve this
problem like single inheritance, multi inheritance and mixin inheritance. These approaches
will be reviewed in a chronological order to show the need of traits in an evolutionary
perspective. At the end of chapter 2.1 there will be a top-down view of traits that does not
emphasize the evolution of traits but rather their concept itself.

2.1.1 Procedural programming
With procedural programming, there are only a few language artifacts to consider: Local
and global variables, procedures, data types and iterators. A program is basically a
monolithic collection of procedures, which can be called from anywhere. This emphasizes a
basic technique of reusable code – the procedure, but big application can become
confusing as there are no such things as name spaces or classes to structure the source
code in a more conceptual way.

2.1.2 Parallel classes
With classes, methods can be sorted into different small domains to increase the overall
maintainability of applications. They can also map the behavior of real world objects with a
life cycle and states in a more intuitive way. Classes also help to emphasize information
hiding to further decouple the modules of an application. All of these are major
improvements compared to procedural programming. Although all those improvements
help maintain an application, classes alone do not necessarily improve the reusability of

Traits 11

code5, as it is hard to implement a single point of control. In many parallel classes, there is
lots of duplicated code if they model similar parts of an application.

2.1.3 Single inheritance
Single inheritance helps to overcome the problem of duplicated code among parallel
classes. It enables a class to have one optional super class, which means it can access the
methods of that class. Some methods can be overwritten while others are not. Methods
can even be combined with the super keyword. When there is similar behavior of parallel
classes, that behavior can be refactored into a common super class where the code is only
defined one time, thus offering a single point of control. This technique already solves a lot
of problems regarding duplicated code.
Single inheritance is the most common way to break a class into reusable chunks of code.
According to (Schärli, et al., 2003 p. 1) it “is well-accepted, [but] it is not expressive enough
to allow the programmer to factor out all the common features shared by classes in a
complex hierarchy“. In order to reuse a set of methods in a new class, it may be required to
restructure the class hierarchy, thus possibly breaking its integrity or it may be required to
copy and paste those methods. (cf. (Murphy-Hill, et al., 2005 S. 1)) Along with that, it is a
common practice to place methods too high in the hierarchy only to be able to share its
methods in different sub classes. The term “too high” means that those methods are not
shared by all sub classes. (cf. (Schärli, et al., 2003 pp. 20,21)) This can even lead to class
hierarchies, where an indirect subclass re-implements a method from its indirect super
class by copieng and pasting, because the intermediate class did overwrite it. (cf. (Murphy-
Hill, et al., 2005 S. 4))
The underlying problem is that it is not possible to define more than one super class for a
certain class therefore it is only possible to design the class hierarchy from one point of
view.

2.1.4 Multiple inheritance
With multi inheritance, a class can have more than one super class. This leads to much
more flexibility in the class hierarchy as not only one point of view can influence the class
hierarchy. Yet, there are still some problems that arise with this approach.
There can be conflicts in the inheritance of methods and state variables. Especially the so
called diamond problem (cf. (Malayeri, 2008)), where a class has an indirect super class
multiple times via different paths, can be tricky to solve – as the implementer of multi
inheritance as well as the programmer using multi inheritance.
While method conflicts can be solved by overriding, state conflicts can be more
troublesome. (cf. (Schärli, et al., 2003 p. 4))

5
 Of course, some classes may be used for another application, but within a single application, a class

can most likely not be reused.

Traits 12

Accessing override features also is not trivial with multi inheritance. The simple keyword
super, is not sufficient, as it is unclear which super class is meant. By directly referencing
the super class a lot of flexibility is lost in terms of rearranging the class hierarchy. All
explicit super class references would need to be reviewed.
In (Schärli, et al., 2003) there is described another problem with generic wrappers and
multiple inheritance. An example of a wrapper that synchronizes read and write methods in
two classes is given. There are two solutions presented that make use of multi inheritance,
but none of which is free of duplication.
The most important characteristic of multiple inheritance regarding this work is its lack of
symmetric composition. The order in which classes are aligned within the class hierarchy is
important when the keyword super is used, in other words, if behavior from multiple
classes is combined.

2.1.5 Mixin inheritance
Up to this point, the problem of duplicated code was solved with classes and inheritance
alone. It is shown that there are still some cases in which code must duplicated even with
multi inheritance quite apart from its other downfalls like complexity in implementation.
The mixin inheritance introduces a new code artifact to the object oriented paradigm: The
mixin. It allows the designer of a class to mix in a set of methods that are independent from

the classical class hierarchy. The simplicity of single inheritance and the keyword super
are retained, as the mixin becomes the only super class of the class that makes use of it.
The original super class becomes the super class of the mixin. Actually, though, not the
mixin itself is placed in the class hierarchy, but rather a so called proxy class (cf. (Perrotta,
2010 S. 26)) that wraps all the methods of the mixin.
Therefore, mixins can be used in different locations in the hierarchy.

Traits 13

Example for a mixin.

print

Document

Object

TextDocument ChartDocument

Art

print

SilkscreenPrint
Statue

Fig 1: A class hierarchy without mixins

In this class hierarchy, there are two things that can be printed: Documents in general and
silkscreen printings. Assuming that the code for printing those two things is the same, there
is no legit way to share it between those two classes – its needs to be duplicated or to be
placed too high in Object.

Document

Object

TextDocument ChartDocument

Art

SilkscreenPrint Statue

print

Printable

print

Printable

Fig 2: The same class hierarchy with mixins (Mixins are bold)

This is still the same class hierarchy, but extended with mixins. The mixin Printable now
contains the print method, only implementing it once. It is placed in the appropriate places

in the class hierarchy as it is mixed in by Document and by SilkscreenPrint.

Traits 14

A reusability problem with mixins arises when they are composed. A class can mix in
multiple mixins, what still is unproblematic when their methods are disjoint. When multiple
mixins, that are used by the same class, implement the same method, the version of the
last mixin is used, as it becomes the direct super (proxy-)class of the sub class, therefore
overriding all above version in mixins and real super classes alike.
This implicit overriding can be hard to catch by itself, but it gets even more messy, when
the different versions of the same method need to be combined. An explicit super call in
each of the versions is needed:

 Calling super can simply be forgotten. Maybe the programmer does not understand
the model of a super proxy class and does not even know super could be used.

 The mixin is no longer independent from its position in the class hierarchy. What if
the mixin is the last in a chain of mixins, so its super class is a real class? This class
maybe does not implement the method that is being combined. Therefore the last
mixin may not be allowed to call super. But then, what if it is used in another
context where it is not the last mixin? It would simply stop the super chain.
Also the programmer needs to know whether a method will be combined or not,
but this depends on its position in the class hierarchy.

In essence, these problems with a chain of super calls arise, because, due to single
inheritance, mixins can only be composed linearly. This means the order in which the
method look up finds the different implementations of the same method is dependent
from the order in which mixins where included.
A mixin can include several other mixins, therefore it is possible to have some tree-like
structure of composed mixins. This however, may not be confused with the order in which
the method look up or the super keyword finds the different implementations. The
process of defining this order is called linearization.

Traits 15

Table 1: Evolution of programming paradigms

Evolution of programming paradigms

Paradigm Short description Problems Solved by

Procedural
programming

Only procedures and
local variables; no
name spaces

Monolithic
structure, a lot of
duplicated code

Parallel classes

Parallel classes Name spaces, object
lifecycle

Duplicated code
among similar
classes

Single inheritance

Single inheritance Common behavior
can be refactored
into a super class

Still duplicated code,
as there is only one
class hierarchy from
one point of view

Multi inheritance

Multi inheritance More than one
super class per class,
a class hierarchy can
emphasize more
than one point of
view

Diamond problem,
not symmetric,
complexity

Mixins

Mixins Classes can mixin
methods
independent from
class hierarchy

Not symmetric,
linear composition

Traits

2.1.6 Traits
In the evolutionary view, traits are mixins, which solve the problem of asymmetric
composition. In clear words: Composition of traits is always symmetric. The order in which
traits are incorporated into a class does not the effect the behavior of the class, as opposed
to mixins. This is achieved by explicit conflict solving.
From the top-down view, traits in software are quite similar to traits in the real world.
When an instance represents a concrete thing in the real world, its class represents the
abstract idea behind a chunk of similar concrete things. For example, when a person sees a
thing in a real world, which has roots, has a trunk, has branches, has leafs, is immobile and
that can burn, he can call it a tree. These six habits of a concrete thing in the real world are
conducted to an abstract idea of a tree. This concept of the relation between instances and
classes is similar to Plato’s Theory of Forms. (cf. (Hirschberger, 2007 S. 97-103))
A trait is a habit, that is involved into the Form (in software: class) of a thing in the real
world (instance). It is an integral component of the Form but not only of the one Form but
of other Forms as well. The Form of a tree, in this case, consists of the habits of having

Traits 16

roots, having a trunk, having branches, having leafs, being immobile and being burnable. All
of these six habits can be translated into traits. In software, a class Tree would incorporate
the six traits named above.
If the traits are fine-grained enough to satisfy the given model of the world, Forms (classes)
do only consist of traits and have no habits on its own.

Traits 17

2.1.7 An Example for traits in the game programming domain

ke
y

M
o

n
st

e
r

P
la

ye
r

R
o

ck
B

o
m

b
Ex

p
lo

si
o

n
P

o
w

e
ru

p

In
p

u
t

Ti
m

e
r

V
is

u
al

A
n

im
at

io
n

C
o

lli
si

o
n

P
at

h
in

g
P

la
n

n
in

g

A
I

M
o

vi
n

g

C
h

ar
ac

te
r

P
h

ys
ic

al

M
e

n
u

H
it

ta
b

le

Tr
ai

t
C

la
ss

in
co

rp
o

ra
te

d

Fig 3: This is an example of a possible class hierarchy that heavily relies on traits. Common traits like

animation, input or collision detection are implemented in a class but in a trait, they are then included only

into those classes that need this behavior. The addition of composed traits like Physical or Character

makes the definition of classes even more comfortable. An equivalent class hierarchy without those

composed traits can be seen in appendix.

Traits 18

2.2 A definition of traits
“A trait is essentially a group of pure methods that serves as a building block for classes and is a

primitive unit of code reuse.” – Schaerli et al

The citation above gives a good idea of what traits are, as it goes into these three
questions: What is a trait? (“a group of pure methods”) What is its purpose? (“a primitive
unit of code reuse”) How are they used? (“…as a building block for classes”) This chapter
will give a more detailed view on traits.

2.2.1 Pure methods

A trait is a “group of pure methods”. What does “pure” mean in this context? Even though
in (Schärli, et al., 2003) this word is not explained any further, the author believes it is safe
to assume it relates to the fact that “…traits do not specify any state variables, and the
methods provided by traits never access state variables directly.” ((Schärli, et al., 2003 p.
2))
This is done so that conflicts regarding the state of an object do not need to be considered
by traits at all. The class and only the class - as an instance generator - needs to consider
the state of an object. Traits apply to a more abstract view of class as a collection of higher
tier functions.

2.2.2 Provided, required and satisfied methods

A trait implements a set of methods that it provides to the class it is incorporated into.
These methods can be based on other methods that the class needs to implement. These
methods are provided by the class or from the viewpoint of the trait they are required.
When a class provides (implements) a method that is required by a trait, it satisfies this
method. If all required methods of a trait are satisfied, the trait is satisfied.

The possibility of required methods is what makes a trait incomplete and therefore a
proper unit of reuse. According to the principle of functional cohesion, the traits that a class
is built from, should regard only one behavior of the class. If a trait tries to solve too many
problems, it becomes once again a near-complete set of units that is hard to reuse.

Example for provided, required and satisfied methods.
A class Player in a game needs to have the behavior of positioning on the screen. The
programmer decides it is time to define a trait as the logic of positioning something on the
screen will be reused later in other classes. The behavior of positioning is based on a state
of x and y. So the Player class needs to offer methods regarding that state. In this case
these are x(), x=(value), y() and y=(value). The trait Position requires the

Traits 19

class Player to implement these four methods. In return it provides several more abstract
functionalities regarding positioning, e.g.: move_to(x,y), move_relative(x,y),

moved_since?(time) etc.

Position
Trait

move_to(x,y)
move_rel(x,y)
moved_since?(time)

x
x=(pixel)
y
y=(pixel)

Player
Class

x
x=(pixel)
y
y=(pixel)
name
name=

<<satisfy>>
<<incorporates>>

Fig 4: The graphical presentation of the example for provided, required and satisfied methods

The above diagram illustrates this example. At the top of each box there is the name and
type of the entity. To the left of each box there are provided methods and to the right there
are required methods. Classes may not have required methods as they are complete.

2.2.3 Symmetric composition
One important characteristic of a trait is its ability to be composed of other traits. This can
happen in a hierarchical way or even in unstructured patterns. Basically any trait can
incorporate any other trait. (cf. (Schärli, et al., 2003 p. 10))
Composition of traits means that the required methods of a trait can be partially or
completely satisfied by the provided methods of its sub traits. Of course the composed trait
can still be incomplete as its required methods may not be completely satisfied by its sub
traits. Also the unsatisfied required methods of the sub traits become required methods of
the composed traits. (cf. (Schärli, et al., 2003 p. 10))
Traits do not only have the characteristic of composition, the composition also needs to be
symmetric. This means that the order in which traits are incorporated into another or a
class does not make an impact on the resulting trait or class. (cf. (Schärli, et al., 2003 p. 16))

Traits 20

Example for composition.

Position
Trait

move_to(x,y)
move_rel(x,y)
moved_since?(time)

x
x=(pixel)
y
y=(pixel)

Player
Class

x
x=(pixel)
y
y=(pixel)
name
name=
speed_x
speed_x=(pixel_per_second)
speed_y
speed_y=
acc_x
acc_x=(pixel_per_sqare_second)
acc_y
acc_y=(pixel_per_sqare_second)

Movable
Trait

speed
speed=(x,y)
update_position

speed_x
speed_x=(pixelPerSecond)
speed_y
speed_y=(pixelPerSecond)
move_rel(x,y)

<<incorporates>>

Acceleration
Trait

acc
acc=(x,y)
update_speed

speed
speed=(x,y)
acc_x=(value)
acc_x
acc_y =(value)
acc_y

<<composes>>

<<composes>>

<<satisfy>>

<<satisfy>>

<<satisfy>>

Fig 5: Diagram of example for composition

This diagram shows one class Player, that incorporates the trait Acceleration.
Acceleration, however, is not a plain trait but a composed trait. The class Player does not
know that Acceleration is composed, as it behaves as if it would implement and require all
the methods from its sub traits. This transparence is required by the composition pattern.
(cf. (Olsen, 2008 S. 111-125))
The same kind of transparence can be seen between Player and Acceleration. A

user of Player cannot see what traits are incorporated - the class behaves just the same

Traits 21

as if it would implement all the offered methods from Acceleration and its sub traits
by itself.
Reviewing this similarity among the relations of traits and classes, the <<composes>>
labeling could be replaced by <<incorporates>>, as the same thing happens. The
incorporator needs to satisfy the required methods of the trait, therefore getting that
trait’s methods provided. The unsatisfied methods become the required methods of the
incorporator. The only difference between a class as incorporator and a trait as
incorporator is the fact, that the resulting incorporator must be complete if it is a class. A
trait as incorporator may not satisfy all required methods of its direct and indirect sub
traits, therefore staying incomplete.

2.2.4 Explicit name conflict solving
As with every name based reference, there can appear name conflicts. This can happen,
when there are two methods in two traits that have the same name. Even though they
have the same name, they can mean totally different things. For example the method
moved_since?(time) in Movable returns true if the position of an object on the
screen has been changed since the given time. Another method with the same name
moved_since?(time) in a trait Resident could return true if a person has changed
his address since the given time.
When such name conflicts appear with traits, they need to be solved explicitly. This is one
requirement for traits. (cf. (Schärli, et al., 2003 p. 11)) As the conflict solving is explicit, it
can combine the different implementations in an explicit order, what means the order of
conflict solving is independent from the order of incorporation. This implication of explicit
conflict solving makes it easier to implement the symmetry of composition.

2.2.5 The composing entity offers the glue code
The requirement of explicit name conflict solving leads to the question where the code,
that solves the conflict, shall be placed. What part of software is responsible for solving the
conflicts? The trait definition in (Schärli, et al., 2003) answers this question as well: The
incorporator needs to offer the so called glue code. This leads to two characteristics that
are good in concerns of composition:

 The trait itself does not need to know with what other traits it is combined. The
incorporator takes care of possible name conflicts.

 Composite traits solve their own inner name conflicts, so from an outside point of
view, they are conflict-free and just as easy to use as non-composite traits.

Traits 22

2.2.6 Flattening traits into a class
A class that incorporates traits needs to behave as if it implemented the unconflicted
methods itself via copy and paste. This holds especially for the classes’ behavior within the
class hierarchy. However, “Methods defined in a class itself take precedence over methods
provided by a trait.“ (Ducasse, et al., 2006)
In (Schärli, et al., 2003) there is a tool presented, that can display smalltalk classes which
incorporate traits, as a flat collection of methods. It is argued this helps understanding and
maintaining classes that are built from traits. Such a tool is not subject to this work.

2.2.7 Recap: Characteristics of traits
In the previous chapters, six characteristics of traits where defined. In the following chart,
these characteristics are condensed.

Table 2: Condensed characteristics of traits

Characteristic Elucidation

Pure methods Traits may only contain methods that do not access state
directly.

Incompletion Traits offer methods to the incorporator but may also require
the incorporator to implement methods. These methods are
called required. They are satisfied if the incorporator does
indeed implement them and unsatisfied if they are not
implemented.

Symmetric Composition The order, in which traits are incorporated into a class, does
not affect its consulting behavior.

Explicit conflict solving Conflicts among different implementations of the same
method must be solved explicitly.

Glue code The code for explicit resolves is offered by the entity that
incorporates the conflicted traits, not by the traits themselves.

Flattening into class Methods offered by traits can be seen as if they were
implemented in the class itself via copy and paste.

It is seen that by solving conflicts explicitly and therefore in an explicit order, the order of
the incorporation of traits does not affect the behavior but the glue code does. Also, since
the glue code is only offered in the class that caused the conflict, the traits stay untouched
and can be reused without further consideration. It can be seen that the combination of
glue code and explicit conflict solving leads to symmetric composition.

Traits 23

2.3 Traits, Mixins, Aspects
The above shown definition of a trait is designed to solve the problems with the different
kinds of inheritance. It is of no surprise that there are also other approaches to solve these
problems, two of which are selected to be circumscribed from traits.6 Namely they are
mixins and aspects. Mixins are already described in chapter 2.1.5 “Mixin inheritance” and
traits are described in chapter 2.2 “A definition of traits”.
Aspects are designed to solve so called cross-cutting concerns. These are concerns that are
orthogonal to the class hierarchy, which means they don’t interfere with the class hierarchy
in a conceptual way. Examples for cross-cutting concerns are logging and authentication.
The idea behind aspects is that these concerns should not bother the business logic as they
are rather technical. This is another more detailed view on the separation of concerns.
The mechanic behind Aspects is to write the code that implements the cross-cutting
concern – this code is called advice - separately from the code where it is applied to. Then
this implementation is intertwined into the application code with join points. These can be
defined explicitly or with a pattern like a regular expression. For example the aspect logging
can be intertwined into all methods within the module Persistence that begin with
“create”. An aspect is the combination of join point and advice.
Aspects are most commonly defined by the two characteristics of obliviousness and
quantification (cf. (Feigenspan, 2008 S. 4)) even though there is some discussion about
whether obliviousness really is an immanent characteristic (cf. (Filman, 2001)).
Obliviousness means that the advice and join points are defined apart from the core
business logic. A class BankAccount, for example, would be totally untouched from the
aspects of logging and authentication. Quantification means that the join points can be
defined at any location of the code, even within methods.
In practice, aspects are often used with join points within methods. Aspects enrich single
methods or via a pattern a set of methods with functionality that cannot be seen in the
definition of the method itself. This is vastly different from mixins and taits, where a
method itself stays untouched, rather a class is enriched with new methods than a method
with new aspects. For mixins and traits, a method can be seen as the atomic element of
abstraction, while for aspects it is a line of code.
A second difference lies in the requirement of obliviousness. As defined in chapter 2.2.5
“The composing entity offers the glue code” incorporator of a trait has to offer the glue
code, which results in at least one line of code even if there are no naming conflicts. The
same goes for mixins - even though there is no explicit conflict solving for mixins, the
incorporator still needs to declare, that it mixes in the mixin.
In the matter of conflict solving, traits only accept explicit solutions, whereas mixins only
accept implicit solutions. In the second case, the programmer can only influence the
conflict solving by changing the order in which the mixins are mixed in. For aspects, there is

6
 There are also other approaches to solve these problems like the strict prohibition of the diamond

problem. This approach is described in (Malayeri, 2008) It is clearly different from traits and
therefore not mentioned in this distinction.

Traits 24

no broadly accepted conflict solving strategy. A classification of behavioral conflicts
between aspects as well as approaches for solutions is given in (Durr, et al., 2007). Also
there is the approach to make composition or weaving symmetrical (cf. (Wunderlich,
2005)).

Table 3: Comparison of traits, mixins and aspects

Comparison of traits, mixins and aspects

 Trait Mixin Aspect

Purpose Building block for
classes

Extending classes
with disjoint
functionalities

Extend a set of
methods with non-
business
functionalities

Atomic element of
abstraction

Method Method Line of code

Invasiveness At least one line of
code

Typically one line of
code

Total obliviousness -
0 lines of code

Conflict solving Explicit Implicit Not homogenous

Composition Yes, symmetric Yes, only linearly
through single
inheritance

Not homogenous,
mostly asymmetric
and implicit

The relation between traits and mixins is a very close one, since there are only a few
abbreviations. However, functionality that can be achieved with mixins can also be
achieved with traits but not the other way round. Therefore, the functionality of mixins can
be seen as a subset of the functionality of traits – or speaking of classes, mixin could be a
sub class of Trait. This relation also has influence on the hypothetical class diagram
discussed in chapter 4.5 “Alternative implementations with more than plain ruby syntax”.

2.4 Known implementation of traits
To the knowledge of the author, there are several implementations of traits, two of which
are for ruby. There is the gem “traited”, but instead of implementing the trait like it is
defined in this work, it is “… allowing you to create a configuration similar to using class
variables” (Jarvis, 2012). The other gem “traits” also manages the state of an object,
especially its initialization.7

7
 “Traits” is documented at http://rubydoc.info/gems/traits/0.10.0/frames. It is developed by Ara T.

Howard

http://rubydoc.info/gems/traits/0.10.0/frames

Traits 25

For JavaScript, there is the extension traits.js8, PHP supports traits out of the box as of
version 5.4.09. Moose10 is an extension for Perl 5 that implements traits, while Perl 6 has
“roles” built-in11, which are traits with another name. Smalltalk provides traits in the two
dialects squeak12 and pharo13. Fortress14 also takes advantage of the trait model.
One of the newest members in the “trait-family” is Scala, which has an artifact that is called
trait. However, a closer look to scala’s traits reveal, they are not actually traits in the
definition of this paper, as they are described as following in the scala language
specification v2.9 (Odersky S. 182):

 “traits are now allowed to have mutable fields.”
What offends the “pure methods” characteristic of traits.

 “…it is now possible to have overloaded variants of the same method in a subclass
and in a superclass, or in several different mixins.”
What clearly breaches the “explicit name conflict solving” characteristic of traits.

 The class linearization (Odersky S. 64) indicates that the lastly mixed in “trait”
overwrites behavior of earlier mixed in “traits”, which is the behavior of a mixin.

Another not-quite-member of the “trait-family” is C++, which – referring to (Wikipedia,
2012) – has traits. However in (Alexandrescu, 2000) it is shown that “Traits [in C++] rely on
explicit template specialization to pull out type-related variations from code, and to wrap
them under a uniform interface.” and therefore are rather a tool for enhanced generic
programming but for composing a classes functionalities from reusable chunks of code.

8
 http://soft.vub.ac.be/~tvcutsem/traitsjs/, 10.3.2013

9
 http://www.php.net/manual/en/language.oop5.traits.php, 10.3.2013

10
 https://metacpan.org/module/Moose::Manual::Roles, 10.3.2013

11
 http://en.wikipedia.org/wiki/Perl_6#Roles, 10.3.2013

12
 (Schärli, et al., 2003 p. 17)

13
 http://www.pharo-project.org/home, 10.3.2013

14
 http://www.cs.cmu.edu/~aldrich/FOOL/FOOLWOOD07/Allen-slides.pdf, 10.3.2013

http://soft.vub.ac.be/~tvcutsem/traitsjs/
http://www.php.net/manual/en/language.oop5.traits.php
https://metacpan.org/module/Moose::Manual::Roles
http://en.wikipedia.org/wiki/Perl_6%23Roles
http://www.pharo-project.org/home
http://www.cs.cmu.edu/~aldrich/FOOL/FOOLWOOD07/Allen-slides.pdf

Ruby 26

3 Ruby

In chapter 3, there will be given an introduction of ruby. The author assumes the reader
knows about basic object oriented models as well as ruby syntax. Only those concepts of
ruby that were used to implement traits will be shown.

3.1 Object model
In ruby, everything is a first class object. Instances of application-specific classes, strings,
numbers, booleans and even classes, modules and methods are first class objects15. This
can be illustrated with a diagram of an extract from the ruby standard library classes:

15

 The term first class object in this case means that an object can be stored in variables and data
structures, can be passed as a parameter to a method, can be returned by a method and can be
constructed at run-time. (cf. (Wikipedia, 2012))

Ruby 27

ModuleObject

+ new

Class

+ within_window?

GameObject

+ attack

Monster

@health = 5

monster1

@health = 10

monster2

Instance of

Instance of

Instance of

Instance of

Instance of

Instance of

Instance of

+ id

BasicObject

Instance of

Fig 6: Example of ruby class hierarchy without Mixins. Adaption from (Perrotta, 2010 S. 23)

Everything that begins with a capital letter is a class, as can be seen with the “instance of”
relation to the class Class. The UML-notation for generalization is a simple single-
inheritance relation, read: “GameObject is the super class of Monster”. Everything that

begins with a small letter is an instance of a class that is not Class. In this case there are
two instances of Monster, named monster1 and monster2, that have one instance
variable health with a number as value.
Something special is the relation between Class and Module. Class is a sub class of
Module. So to say “Class is a special Module”. And this is the case, really. A class is
nothing else but a module, which can create instances of itself with the new method. While
a module is just a collection of methods with a name, a class is a collection of methods with
a name, which can create instances with an “instance of” relation to itself. This “instance
of” relation will come into place with the description of method look up.

Ruby 28

A module is a collection of methods - this seems familiar. It seems only natural that
modules can be used as mixin, in ruby.
Also interesting is the “instance of” relation of Class to itself. Of course the class Class
is a class, so it needs to be an instance of Class. This can be illustrated with the new
method. Usually a new class is defined using the class keyword. But as classes are

instances of Class, they can be created just like any instance of any class with the new
method: Class.new creates a new class.16
The class Class defines the behavior of all classes in ruby. A method
new_valid_object, that creates a new object via new and then performs a
validation_check on that object, for example, would add this new_valid_object
method to each class, even application-specific classes like Monster, PowerUp, etc.

3.2 Open classes
This idea leads to the concept of open classes (cf. (Perotta, 2010)), as it is actually possible
to add such a method to Class, thus defining a new way of object creation for all classes.
A class (and module) can be reopened at any time, adding new method or redefining
existing ones, using the same class (or module) keyword, that is used to define a totally
new class. In practice, this means that class definitions can be spread over multiple files, as
different responsibilities of a class can be defined at different places.
The concept of open classes holds for application-specific classes as well as classes from the
ruby standard library.

3.3 Method look up
When a message is sent to an object, it consists of three parts: The receiver object, the
name of the method and the parameters. When the receiver object receives the message,
it has to find the definition of the method with the name sent within the message to
execute the code under the definition within the context of the given parameters. This
process is called method look up. In ruby, it depends on the “instance of” relation of the
object to its creator class and the “super class” relation of that creator class. According to
the way of illustration that is used in Fig 6 the method look up is called “one step to the
right, then up”. At first, the receiver object looks for a method definition in its creator class.
When there is no definition with the given name, it continues its look up at the super class
and the super class of the super class etc. until there is no super class (BasicObject). (cf.
(Perrotta, 2010 S. 25))
The order in which the classes are addressed during the method look up is called ancestors.

The ancestors are also first class objects and can be accessed via the ancestors method

16

 This class would not be bound to a constant (its name) with this code alone, thus leaving it an

anonymous class. This can be fixed by assigning it to a constant using the method const_set in
the class Object. More details can be comprehended in “Metaprogramming Ruby” by Paolo Perrotta
(cf. (Perotta, 2010)).

Ruby 29

of the creator class of the receiver object. The ancestors of monster1 would be
[Monster,GameObject,Object,BasicObject]. The ancestors of Monster (the

method is sent to the class Monster itself, not to an instance of it) would be
[Class,Module,Object,BasicObject].17

3.4 Eigenclasses
Eigenclasses are also called meta classes or singleton classes. The phrase “eigen” refers to
the german word eigen that means “something’s own”. It belongs to only a single object
and each object has its own eigenclass. Within the class hierarchy it is placed directly
between the object and its creator class (cf. (Perrotta, 2010 S. 116)). An example for this is
illustrated in the following diagram:

+ attack

Monster

@health = 5
@id = 0x22e9b40
@name = „fred“

monster1

eigenclass

a_singleton_method_for_fred

#Class<#<Monster:0x22e9b40>>

@health = 10
@id = 0x2ba0e80
@name = „ted“

monster2

eigenclass

a_singleton_method_for_ted

#Class<#<Monster:0x2ba0e80>>

Fig 7: Eigenclasses of two objects

What does this mean for the method look up? It works with the same pattern as before:
When a message is sent to an object, the method look goes one step to the right and then
up. So at first the eigenclass of the object is searched for the method, then all the super
classes.
There are several practices that make use of eigenclasses in ruby. For example class
methods are just methods in the eigenclass of a class. As seen in chapter 3.1 “Object
model” classes are first class objects – plain instances of the class Class. Messages cannot
only be sent to the instances of classes but also to the classes themselves, these methods
are called class methods. In chapter 3.3 "Method look up” there is illustrated that methods
are only defined in classes while instance variables always belongs to the instance. So if a

17

 These ancestors are not the actual ancestors that would be returned by a real ruby program, as in
this demonstration mixin modules and eigenclasses are left out due to simplicity.

Ruby 30

method is sent to a certain instance of class and the message is understood (in other words:
The Class instance can execute the method) the method would be defined for all classes, as
all instances of a class respond to the same set of messages. This would only be the case if
there were no eigenclasses. With eigenclasses, each instance of class can have its own set
of messages that it can respond to. There are several syntaxes to define a method for an
eigenclass.

Fig 8: Defining a class method with the class << self syntax

With class << self the context of the eigenclass of the current self can be entered.

Self in this case refers to the class Monster. Thus everything between line 3 and 14 is
executed in the context of Monster’s eigenclass. The class variable @@numbers as well
as the two methods number_of_monster and new are defined for the eigenclass. The

keyword super will execute the new method of the eigenclasses super class, which is

Monster.

Fig 9: Defining a class method with the def self.method syntax

Instead of entering the context of the eigenclass and then defining the method, there is a

shortcut to define a method for a single object. The def keyword is not only used with the
name of the method but also with the object that the method is defined for. In this case the
current self – Monster – is that object. The method number_of_monsters_twice
is defined only for this single object that is an instance of Class.

Ruby 31

This shortcut with the keyword def cannot only be used within classes it can be used with
any object reference. The same goes for the class << object syntax.

3.5 Mixin modules
A mixin module, in ruby, is an instance of Module that is used as a mixin. Mixin are
described in chapter 2.1.5 “Mixin inheritance”. As mentioned in chapter 3.1 “Object
model”, a module is a named collection of methods. The methods do not need to be pure,
meaning they are allowed to access state directly.
How does a regular module become a mixin module? It is simply included by a class or

another module using the Module#include18 method. An example of how mixin
modules are defined and included is given in the appendix 11.1 “Code example for
composition of mixin modules”. The inclusion of a mixin in ruby works in the way
mentioned in chapter 2.1.5 “Mixin inheritance”. A pseudo-class with the methods of the
module is inserted directly above the including class in the class hierarchy (cf. (Perrotta,
2010 S. 26)).
Thus the class itself and all its sub classes have access to those methods but not its super
classes. It seems as if the methods where defined in the class itself – only they can be
reused at another place in the class hierarchy seamlessly.
As displayed in the example, there can be conflicted methods that have the same name - in

this case update. Ordinarily the version of update that was included as last is the first in
the ancestors and therefore the first one that the method look up will find. It is the only
version that is being executed when the method update is sent to the object. However,
this problem can be fixed using the keyword super, which continues the method lookup
from where it stopped.
The disadvantages of linear asymmetric composition are discussed in chapter 2.1.5 “Mixin
inheritance”.

It is noted, that in ruby, there is the possibility of something such as composition of mixins.

This can be done with the hook method included that is called on a mixin module upon
inclusion. In this method it can make the including class including further mixin modules.
The including class explicitly only includes one mixin module, but rather includes other
modules as well. Those other modules may as well include further modules etc. This can be
used to automatically include required mixins, on which the included mixin is based on. The
including class of the included mixin does not notice it actually includes several other
mixins, due to that mixin in turn including several other mixins. This behavior is very
composition-like. However, the class may still include another mixin, that has methods with
the same names. Then it once again comes down to the order in which the mixins were
included.

18

 The notation Module#include means: „The instance method include that is defined in the

class Module“.

Ruby 32

3.6 Class and module Macros
In ruby, a macro is an ordinary method that is sent to a class or a macro. It changes the
behavior of the receiver and is often used in a rather declarative way. The most popular
example of a class macro is the method attr_accessor that defines instance variables
for a class.

3.7 Reflections
As many languages, ruby enables a programming technique called reflection. Basically it
describes the capability of a program to analyze its own structure as well as behavior.
Although there is a wide range of reflection techniques in ruby in this chapter there will be
displayed only two of them: Hook methods and the methods method family.

3.7.1 Hook methods
There are two concepts that refer to the phrase “hook method”. One of them has the
meaning of a method that implements a default behavior in a common super class. This
behavior is meant to be overwritten in some sub classes. An example for this is an attribute
method text? that is implemented in Object and returns false. All classes that represent a
text, like String or Symbol, would overwrite the method and return true. Therefore all the

other classes do not need to implement the text? method. This concept of hook methods
is not a kind of reflection and is not the concept that is used in this work. In this work, the
phrase hook method, refers to a method that is empty at default only to be filled by the
application programmer. Hook methods are placed at certain points in the program to give
an opportunity to catch certain events. One example for this kind of hook method is

Class#extended. It is called whenever a class gets a new sub class with that sub class as
the parameter. Hook methods can be considered a reflection technique as they do not give
information on the structure of the program, but on the behavior of the program.

In chapter 3.5 “Mixin modules” the hook method Module#included was already
mentioned.

3.7.2 Methods
What methods does this object respond to? How many arguments does this method
accept? Is this method private or public? Is this method defined in the objects generator
class or in a super class?
All those questions are not only important to a programmer. When it comes down to
manipulating a class or object at runtime, this information must be accessible not only via
the documentation or reading the source code but also programmatically. In ruby, every
object responds to methods regarding this information. The most common and most

general example is the methods method. It returns the names of all methods that are
defined for the object.

Ruby 33

Example.

Fig 10: The methods method returns an array of method names. This is only an excerpt; all methods can

be seen in appendix 11.2

Other methods methods are: singleton_methods, protected_methods,
private_methods and public_methods.19 Further information about a method can
be gained by using the method method that takes the name of the method as parameter

and returns an instance of the class Method.
Example.

Fig 11: Some methods of the class Method

Another technique for reflecting about methods is the method respond_to?. It has one
parameter that is the name of the method, the object returns true or false without
executing the actual method. Respond_to? can be used to check whether a method can
be understood by an object before sending the actual method. In the latter case a singleton
method or even a regular method might be defined for this object before the actual
message is sent.20

3.8 Aliasing
The trait model requires conflicted methods to be able to be renamed, so they can be
accessed independently from the order in the method look up. Ruby has such a mechanism

called aliasing. A method can be aliased using the alias key word. It then is available
under both names. Even when the original method implementation is redefined, the alias
still is linked with the implementation that was present at the time of aliasing. This behavior
can be used to add new functionality to an existing method without having to alter the class
hierarchy. This is called around alias (cf. (Perotta, 2010 S. 132)).

19

 The concept of singleton classes and singleton methods are not further regarded in this work, as
they are particular important to the implementation of traits.
20

 A method that is generated at runtime is called Dynamic Method. (cf. (Perrotta, 2010 S. 44,45))

Ruby 34

Time
Method call
say(„Hello,

World“)

Method call
say(„Hello,

World“)

say say

original_say

Around
alias

Define
method

say

Redefine
method

say

Fig 12: In this around alias the old say method just puts out its text parameter. Then the original say

method is aliased with original_say, it is still available under that name even when in the next step the

method say is redefined. Within the new definition of say, there is a message sent named

original_say, which is the say method from before the around alias. So the resulting new say method

contains behavior of its prior version.

An around alias involves the following steps: (cf. (Perotta, 2010 S. 132))

 Alias the original method with a unique name

 Redefine the method with the new functionality

 Call the original version using the unique name from step 1

3.9 Blocks, Lambdas and Procs

The lambda calculus was introduced by Alonzo Church in the 1930s to formalize the
concept of effective computability. Up to now it has provided a strong theoretical
foundation for the family of functional programming languages (cf. (Rojas, 1998)).
In ruby, lambdas are dynamically scoped functions which can be used in many different
ways; however the iterator application of lambdas or blocks is the most common: The
method each.

Fig 13: The official documentation for Array#each

Ruby 35

In Ruby, there are three different implementations of lambdas: Blocks, Lambdas and
Procs. While Lambdas and Procs are first class objects, Blocks are not. Often, it is
not needed to have an object reference to the block as it is only called where it was
defined. For this case, there are Blocks which can be executed via the yield method. A
Block can be turned into a Proc using the &-Notation.

Fig 14: Transforming a block into a Proc instance using the &-syntax

Procs and Lambdas are very similar as they are both first class objects and even respond to
the same set of messages. Both are instances of the same class Proc but Lambdas are
flagged as such. This leads to different behavior regarding parameters and the keyword
return: Lambdas are more strictly regarding missing or abundant parameters while keyword
return aborts only the execution of the lambda itself. In a Proc, return aborts the
execution of the caller.21

Fig 15: The differences of the keyword super for Lambdas and Procs

So there are three kinds of implementations for the lambda calculus in ruby: blocks,
lambdas and procs. The difference can be comprehended in the following table 4.

21

 The exact differences between procs and lambas and ways to create both are comprehended in
the official ruby documentation (cf. (ruby-doc.org)).

Ruby 36

Table 4: Comparison of blicks, lambdas and procs

Comparison of blocks, lambdas and procs

 Block Lambda Proc

Return Not allowed Aborts execution of
lambda

Aborts execution of
calling method

Parameter Loose Loose Strict

Instance of Not first class object Proc Proc

There are three implementations for only one concept of the lambda calculus. This is a valid
approach as there are several possibilities for improving performance for the different
kinds of uses of lambdas. Lambdas without parameters might be implemented differently
from others. Or lambdas that do not need to access the calling stack because they only use
constants and internal local variables might once again be optimized in another way.
However, the author disapproves that the different kinds of optimizations are visible to the
application programmer. These kinds of optimization can and should be done on compiler
level, as three implementations for only one concept discount the principle of least surprise
and only lead to confusion.22

So, Lambdas are anonymous functions that are scoped dynamically. Dynamic scope means
that “at any point in time during the execution of a program, its [the functions] binding is
looked up in the current call stack as opposed to the lexically apparent binding as seen in
the source code of that program.” (Costanza, 2003 S. 1)
However, in ruby the bindings are not only looked up in the current call stack, but – as a
backup – in the lexical surroundings of that block, as well. This behavior can be
comprehended considering this example.

22

 The confusion that is caused by the three different implementations can be comprehended among
others in those two discussions: http://stackoverflow.com/questions/2983907/im-confused-with-
block-in-ruby-compared-to-smalltalk, http://stackoverflow.com/questions/1386276/difference-
between-block-and-block-in-ruby?rq=1. Language design, however, while being an interesting field
of discussion is not subject to this work. Therefore the discussion about lambdas is not spread any
further.

http://stackoverflow.com/questions/2983907/im-confused-with-block-in-ruby-compared-to-smalltalk
http://stackoverflow.com/questions/2983907/im-confused-with-block-in-ruby-compared-to-smalltalk
http://stackoverflow.com/questions/1386276/difference-between-block-and-block-in-ruby?rq=1
http://stackoverflow.com/questions/1386276/difference-between-block-and-block-in-ruby?rq=1

Ruby 37

Fig 16: Dynamical scope of blocks

In the left example, the method hello is defined with the keyword def. In line 9 there will
be thrown a NameError as the term greeting in line 5 does not refer to the variable
greeting in line 2. This local variable (line 2) is not in the scope within the method (lines
4 – 6).
In the right example, the method hello is defined using the define_method method
that uses a block to specify the code that is executed upon calling the defined method.
Within this block (lines 4-6), the local variable greeting from line 2 is visible and the call

in line 9 will return “Hello”.23
This means that a variable that is within class scope – in this case greeting – is usually
not visible within methods in that class. Similarly a variable that is within the scope of a
module is not visible in a class that is defined within that module. Modules, class methods
are so called scope gates as they open a new scope. However, this can be circumvented
with using blocks to define modules, classes or methods. Blocks also have their own scope
but in addition they can refer to the parent scope, as illustrated in the example from Fig 16.
This behavior of blocks is referred to as flattening the scope (cf. (Perrotta, 2010 S. 79-81)).

3.10 Named Parameters
Ruby has no real named parameters. There is, however, a compensation for that. It is
basically syntax for creating hashes that can only be used within the parameters of a
method call. So in fact, the method only has one parameter that is a Hash but the method
call looks like there are many different parameters with names.24

23

 greeting is not a instance variable but a local variable in the scope of the class Greeting,
which can be seen as a name space in this example.
24

 It is noted that during the writing of this work the Ruby 2.0.0 was released. Ruby 2.0.0 has a new,
more dedicated feature for named parameters. (cf. http://www.ruby-
lang.org/en/news/2013/02/24/ruby-2-0-0-p0-is-released/, 10.3.2013)

http://www.ruby-lang.org/en/news/2013/02/24/ruby-2-0-0-p0-is-released/
http://www.ruby-lang.org/en/news/2013/02/24/ruby-2-0-0-p0-is-released/

Extending ruby with traits 38

4 Extending ruby with traits

As the practice part of this work an implementation of traits is proposed. In the following
chapter it will be discussed how the techniques described in chapter 3 can be applied to
implementing traits for ruby. At first an introduction to the implementation will be given in
form of a case study of how traits are defined and how they are used to build classes with
them.

4.1 Trait definition
As discussed in chapter 3.1 “Object model”, a module is a collection of methods that has a
name. As a trait also is just a collection of methods, it seems only natural to use a module
to define a trait in ruby.

Fig 17: A definition of a trait in ruby

This is the definition of the trait Movable as it is used in Fig 5. It provides the methods

speed, speed=(vector) and update_position. It is easy to see that provided
methods are those that are defined in the module. The required methods are not as easy to
identify as they are just used within the implementation. The required methods are
speed_x and speed_y in line 3, speed_x=(pixel_per_second) in line 7,
speed_y=(pixel_per_second) in line 8 and
move_relative(x_pixel,y_pixel) in line 12. 25

25

 speed_x=(pixel_per_second) and speed_y=(pixel_per_second) are clean
methods as they are just setters for those state fields. These methods could encapsulate any form of
representation of state.

Extending ruby with traits 39

As of now, there is no explicit detection for unsatisfied methods. Only a call on an
unsatisfied method will give feedback to the programmer in the form of a NameError.
This leads to a more lean way of defining traits as they are seemingly not different from
mixins. Any form if explicit enumeration of required methods would lead to more effort in
implementation as well as redundancy. The listing of required methods is left to
documentation for those reasons.

4.2 Building classes with traits
Defining traits is only one half of the work for the application programmer as traits are used
to build classes from them. Fig 18 shows an example of a class flat hierarchy with making
use of traits. The n to m relation among classes and traits is illustrated.

Monster

lock_ratio
ratio
ratio_locked?
scale=
scale
moved?

Scalable

to_s
moved?
move_to
move_rel
last_pos

Movable

- health=
- armor=

to_s
hit
health
armor

Hittable

aim
shoot
ammo
reload

Shooting

Rock TurretDamageText

key

Trait Class

incorporated

Fig 18: 4 classes are built from 4 traits.

Extending ruby with traits 40

The actual syntax for incorporating traits into a class is available in two forms: As a class
macro26 or with a builder27. Fig 19 shows how the Monster class from Fig 18 is built with
traits.

Fig 19: The class Monster is composed of four traits: Movable, Scalable, Hittable and Shooting

In line 2, the mixin Traitable is mixed into the class. This provides the two class macros
trait and incorporate, second of which uses implements pattern. Incorporate
returns the builder object, which receives methods that define an incorporation and always

return the builder object again. So with a long method chain of trait, traits,
resolves, etc. an incorporation definition is declared. The done method in line 15 is
called last to trigger the actual incorporation into the class.
Technically everything from line 3 to 15 is one statement with the class as receiver. The
fact, that all traits and all resolves must be declared in one statement is a design decision
that was made due to simplicity. When traits have conflicted method names, there must be
a way to detect them all and resolve them in a symmetrical fashion. This would be much
harder when there could be new traits incorporated at any time. With each new
incorporation definition, there could emerge new conflicts which would need resolving. But
the order in which they are resolved could influence the semantic of the resolve. So in the
end the order in which traits would be incorporated could influence the behavior of the
resulting class. This would be the opposite of symmetric composition.
In the following chapter there will be more design decisions spread out.

26

 A class macro is a method that is sent directly to a class or module, modifying the behavior of that
class or module (cf. (Perrotta, 2010 S. 114,115)).
27

 The builder pattern is described in (Olsen, 2008 S. 249-260) among others.

Extending ruby with traits 41

4.3 Implementation of traits
The proposed implementation of traits is based heavily on mixins. Mixins already provide a
lot of functionality which is needed for traits as well:

 They add methods to classes and

 They can be composed, though only linearly.
There are only a few things that distinguish mixins from traits:

 Explicit conflict solving,

 Real composition instead of linear composition and

 The possibility to include only a few methods of a trait.
So what the proposed implementation does in its core is to extend Rubies mixin model so
that they

 Can be composed in any pattern, not just linearly,

 Solve name conflicts explicitly, not implicitly,

 Provide a way to use only few methods, not always all the methods.

The following table recaps what is accomplished with the proposed trait implementation.

Table 5: The core ideas of the proposed trait implementation

The core ideas of implementing traits via mixins

Mixins (initial point) Traits (target point) How it is accomplished
(transition)

Implicit conflict solving Explicit conflict solving Conflict detection via methods
method;
Aliasing and redefining original
methods

Linear composition Real composition Explicit conflict solving, thus
explicit ordering

Inclusion as a whole Can be incorporated partly Except and only filter

4.3.1 Conflict detection
A method name conflict emerges when there are two or more traits incorporated into a
class that implement two or more methods with the same name. These conflicts are
detected upon the actual process of incorporation.

The underlying data structure is an Incorporation that aggregates Trait instances
within a hash. The traits are keys in the hash in which the values are options for that

particular incorporation. Options again are hashes, with either :except or :only as the
key of the Hash and an array of symbols as the value. These symbols represent methods
that shall be filtered via :except or :only. This data structure already expresses the

Extending ruby with traits 42

symmetrical nature of trait incorporation as there is no particular order in the key-value-
pairs within a hash.
To detect conflicting method names, a trait has a method colliding_methods which
iterates over all trait-options-pairs in the traits hash. It accumulates all implemented
methods of the traits under the given options28 and also adds the instance methods of the
incorporator, as method conflicts cannot only occur among traits but also between the
incorporating class and one of its traits.
After all methods from all traits and the incorporator are accumulated, they are filtered for
duplicates which are then returned in an Array.29

4.3.2 Conflict solving
Resolving a name conflict must be done explicitly and in a symmetric fashion in the
composing class or trait. This is done with Lambda, which defines the new implementation
of the conflicted method. Often, it is needed to access the original implementations of the
traits. To be able to do so, they need to be aliased. So resolving name conflicts relies on two
techniques: Aliasing different implementations and defining the resulting method.

Aliasing conflicted methods is trivial as the aliasing technique described in chapter 3.8
“Aliasing” applies to mixin modules. The problem is rather that a trait has no knowledge of
where it is incorporated and whether it is being used for composition or not. So it does not
know what methods need to be aliased. Therefore it provides a method

alias_methods(*method_names) that receives a list of method names as
parameter. It aliases the given methods so that the new name is the old name plus a suffix

that depends on the traits name. The method update in the trait Acceleration would
be aliased to update_in_acceleration. Which methods need to be aliased depends
on the incorporation, as it detects the conflicts under the given combination of traits and
options (cf. chapter 4.3.1 “Conflict detection”). However, this approach to aliasing is
optimized in that regard that only conflicted methods will be aliased. Once a method is
aliased, it is a firm element of that trait and will be incorporated into other classes as well.
This is not too bad as they are unique and their expressive name may not lead to confusion.
But each incorporation will detect the same conflict and alias the method again, although it
has already been aliased in the first incorporation. This is not harmful as well, other than it
is time inefficient and conceptually not clean. The author sees two ways of approaching this
problem.

 Mark methods as aliased once they are aliased so they are not aliased again

28

 To find those methods of each trait, the trait itself has a method that filters its own provided
methods with the given options.
29

 The Array#duplicates! and Array#duplicates methods are also part of the proposed
implementation and take advantage of the open class principle described in chapter 3.2 “Open
classes”.

Extending ruby with traits 43

 Alias all methods blindly upon trait definition even before an incorporation is
defined

The first solution arranges it so that only necessary aliasing occurs. It has an overhead in
memory and in code, as another state for the trait object would need to be defined. In the
proposed implementation traits are stateless, just like mixins.
The second solution leads to much less and easier to understand code. It has the downfall
of probably aliasing too many methods and therefore polluting the resulting class with
many methods that are not needed.

After aliasing the different implementations is done, the second technique of redefining
the conflicted method comes into use. This is achieved via the define_method method,
that is also used in chapter 3.9 “Blocks, Lambdas and Procs” to illustrate the dynamic scope
of blocks. The define_method method defines a method, where the first parameter is
the name of the new method and the block of the method is the code of the new method.
The code in the block will be executed in instance context. Therefore instance methods –
like the aliased conflicted methods – can be referenced simply by their name. An example
for that is given in line 9 of appendix 11.3 “Building a class with the class macro “trait””. By
redefining the conflicted method with an explicitly written Lambda there are several
requirements of traits assured.

 Conflict solving is explicit.
This is pushed even further by the explicit detection of unresolved conflicts during
incorporation.

 The resolve for each method is symmetric, therefore the composition of traits are
symmetric.
The order and the context in which original implementations of the conflicted
method are combined, is defined in a Lambda in explicit, sequential code. The place
in which the Lambda occurs does not change the actual code within it, nor does the
order in which traits are incorporated, as each conflicted method is aliased to a
unique name that is then used in the Lambda.

In practice there occur often similar problems that can be solved in similar fashions. The
incorporator may want to call all implementations of the conflicted method. Maybe he
does not only want to call them but also combine them in a certain context, such as + for
Strings. Or he may pick only one implementation. These similarly solutions to method
conflicts are called patterns. The incorporation builder provides methods to implement
these patterns for certain, conflicted methods. These are just shortcuts to reduce the effort
of implementing simple resolves – especially when there are many traits combined. It does
not change the underlying structure of traits, as all these patterns are eventually just
Lambdas, which could have been hand written as well.

Recap: Conflict solving is done in two steps.

Extending ruby with traits 44

 Alias all conflicted methods

 Redefine the resulting method by calling all conflicted methods by its alias

4.3.3 How Traits are built from mixins

BasicObject

Kernel

Object

Position

Movable

Acceleration

Monster

to_s

to_s

puts

puts

__id__

__id__

update

update

update

updateto_s

A)
BasicObject

Kernel

Object

Position

Acceleration

Movable

Monster

to_s

to_s

puts

puts

__id__

__id__

update

update

update

updateto_s

B)

The order in which these
four methods are called, is
dependent on the order in
which Mixins are included

key

implicit super call via method look up

explicit super call via super keyword

Fig 20: In part A) of the above figure, the Monster class with its three mixins Acceleration, Movable

and Position is shown. Also its super class Object as well as Objects mixin Kernel and super class

BasicObject are shown, thus all the ancestors of Monster are visible in this example. The tiering of

those modules can be seen as a 3D view from slant above. Actually, the Monster class stands in front of

the other modules and covers it. This means that the user of Monster can only see those methods that are

written down at the bottom of Monster. All the other modules are only part of the implementation of

Monster, not of its interface. It can be seen that an instance of Monster responds to the message to_s but

the class Monster does not actually implement that method. It is only found in Object by the method

look up. Part B) shows the exact same class only that the ordering of ist mixins is slightly altered.

Acceleration and Movable are twisted compared to part A.

It can be seen, that due to the alternation in the ordering of the mixins and the linear
nature of mixin composition, the ordering in which the different update methods are

called, has also changed. In part A the ordering would be Moster#update,
Acceleration#update, Movable#update and then Position#update. In Part B
it is Moster#update, Movable#update, Acceleration#update and then
Position#update.

Considering, that the calculation if the speed vector is dependent from the acceleration, it
makes a difference whether the speed vector is increased after or before the acceleration

Extending ruby with traits 45

has been increased. The ordering of the mixins therefore heavily impacts the behavior of
the Monster instance. The asymmetric nature of mixins becomes obvious.
The most important portion of Fig 20 is the comment box right in the middle. It stresses the
fact that the programmer cannot influence the ordering in which the update versions are
called once the ordering of mixins is set. Adjusting the ordering of mixins to fix the order in
which methods are called, is no solution as it is possible that for update the ordering in
part A is a good one but for another method the ordering in B might be the right one. The
problems with this kind of composition are discussed in chapter 2.1.5 “Mixin inheritance”.

Extending ruby with traits 46

K
ey

o
ve

rw
ri

te
s

m
et

h
o

d
 c

al
l v

ia
 s

el
f

se
n

d

im
p

lic
it

 s
u

p
er

 c
al

l v
ia

 m
et

h
o

d
 lo

o
k

u
p

al
ia

se
d

 v
er

si
o

n
 o

f

B
as

ic
O

b
je

ct

K
e

rn
e

l

O
b

je
ct

P
o
si
ti
o
n

M
o
va
b
le

A
cc
el
er
a
ti
o
n

M
o

n
st

e
r

to
_s

to
_s

p
u

ts

p
u

ts

__
id

__

__
id

__
u

p
d

at
e

u
p

d
at

e

u
p

d
at

e

u
p

d
at

e
u

p
d

at
e_

in
_p

o
si

ti
o

n

u
p

d
at

e_
in

_m
o

va
b

le

u
p

d
at

e_
in

_m
o

n
st

er

u
p

d
at

e

u
p

d
at

e_
in

_p
o

si
ti

o
n

u
p

d
at

e_
in

_m
o

va
b

le
u

p
d

at
e_

in
_a

cc
el

er
at

io
n

u
p

d
at

e_
in

_a
cc

el
er

at
io

n

Th
e

o
rd

er
 in

 w
h

ic
h

 t
h

es
e

fo
u

r
m

et
h

o
d

s
ar

e
ca

lle
d

, i
s

fr
ee

 a
n

d
 e

xp
lic

it
ly

 d
ef

in
ed

C
)

m
o

ve
_r

el
at

iv
e

m
o

ve
_r

el
at

iv
e

Fig 21: This figure uses the same syntax as Fig 20. Once again the Monster class is illustrated but rather

than using mixins, traits are used to implement Monster. Therefore, Kernel is the only mixin and

Acceleration, Movable and Position are traits (indicated with their italic font). A key difference

between the two figures can be found in the key. In part C there is no explicit call of super. Instead there

are a lot of aliased versions of the method update, one for each trait and class that implements it.

Extending ruby with traits 47

There is a subtle part in this figure that needs to be highlighted. In the class Monster
there are two versions of update, both of which seem to be visible to the user. This is

due to the lack of time in this illustration. In fact the two versions of update show an
around alias as mentioned in chapter 3.8 “Aliasing”. After the around alias has been applied
only the bottom version of update is known under this name while the upper version is

known under the alias update_in_monster as indicated to the far right of Fig 21.
It is noted that there is no aliased version for move_relative, as it causes no conflict.
move_relative is just found by the method look up. A more complex solution aspired
with the method update, as it is defined in all three traits and the incorporating class. A
four-way name conflict is present as the update in Monster covers up the update in
Acceleration, Movable and Position. This is solved in two steps:

 The conflicted methods are aliased within the respective module30 in a unique way.
Now, the aliases of the conflicted methods are visible to the user of Monster,
which means they can be accessed via the ordinary method look up without having
to use the keyword super.

 The aliased methods are combined in an around alias. The around alias is
introduced in chapter 3.8 “Aliasing”. A new update method in Monster is
defined that overwrites the old update method, which is still available under its

alias update_in_monster. Within the new update method all the other or
only a few are called in an explicit order that is independent from the order in
which Acceleration, Movable and Position where included.

Once again, the most important part if this figure can be found in its comment box. In
contrast to Fig 20, the ordering in which the different versions of update are called, is
independent from the order in which the traits where incorporated. It is possible to define
a different order (and a different link like AND or OR) for each method.

4.3.4 Composition of traits
The composite pattern requires that the composite unit behaves and looks from the
outside just like the atomic unit (cf. (Olsen, 2008 S. 111-125)). Now, what is the atomic unit
in this composition? The basic trait. What is the composite unit? The composed trait. But
what is a trait? In a nutshell, it is a collection of methods.31 What makes a trait with a class
that it gets incorporated into? It adds methods to the class. The class itself also is a
collection of methods.32 So, basically, a trait adds a collection of methods to another
collection of methods, called the incorporator. The added methods appear to be
implemented in the incorporator itself. Now what happens if the incorporator is not a class
but another trait? The incorporating trait gets more methods that appear to be
implemented in the trait itself. When the resulting trait is used to be incorporated into

30

 This includes the incorporating class as well
31

 A precise definition is given in chapter 2.2
32

 A class also is a generator for instances and defines the state of objects.

Extending ruby with traits 48

another incorporator33, those methods will simply be added to the incorporator. This
behavior is exactly what the composite pattern demands.
This idea translates to ruby code very fluently as a class is just a special kind of module,
which is just a collection of methods with a name. In ruby, a module is a collection of
methods and a definition of state – the class only adds the aspect of generating instances.34
This is very interesting as traits are defined with a module and classes – in the context of
the implementation of traits can be seen as a special kind of module. So conceptually
implementation wise, a trait adds methods to a module, not to a class – even if this module
happens to be an instance of Class. The trait does not differentiate between classes and
modules, so when a module happens to be the definition of a trait, that module can easily
make use of the concept of traits to define its methods. In other words: A module that is
used to define a trait can be built from traits just as any other module.
This idea is implemented with a module called Traitable. It can be included into
anything that can be built from traits, thus classes and modules, which define a trait. In
chapter 4.2 “Building classes with traits” there is an example of a class using Traitable

and in appendix 11.5 “Composition of traits” a trait uses Traitable, therefore being
composed of other traits.

4.3.5 Except and Only
Implementing Except and Only is not trivial using Rubies built-in mixin mechanic as mixins
can only be included fully or not at all. It is not possible to partly include a mixin module.
Thus it is not possible to simply map this feature to a function of mixins, a rather
complicated approach was used to solve this problem.
Since Only is just an alternation of Except this chapter focuses in the implementation of
Except. Only is derived from that by subtracting the defined methods from all methods and
then using Except with the resulting set of methods.
The proposed implementation once again makes use of mixins and the ancestors to achieve
the behavior of Except which is that all methods of a trait are incorporated into a class
except those that are defined in the Except clause. Taking the defined Except methods, a
new mixin is defined that does not implement any method by itself, it rather implements a
method look up for the next mixin. This new mixin is called an ExceptFilter, as it filters for
all defined methods and makes the method look up skip the next mixin in the ancestor
chain. The Filter is included directly after the trait mixin so that its position in the ancestors
is directly before the trait implementation of the method. Due to the implementation

33

 This incorporator might be a class or another trait.
34

 In this regard, a class is an extension to a module, as it adds the behavior of generating instances
and inherits the rest of the functionality of a module – namely the definition of methods and the
definition of state. However, a module can be seen as an extension to a trait as it inherits the
functionality of the definition of methods from traits and adds the functionality of definition of state.
If traits were built into ruby itself natively, this model might be used to express and implement the
relation among trait, module and class. To illustrate this idea, a simple UML diagram is given in
appendix 11.4. This idea is not core to this work or the proposed implementation.

Extending ruby with traits 49

within the filter the next mixin – the trait – is skipped and the method look up continues
from the next but one.
There are several other approaches that promise to be easier to understand and to
implement. Each of those has a critical downfall, ultimately leading to the rather
complicated approach from above.

An easier approach would have been to remove the given method from the trait. However,
since a trait is internally implemented with modules, the method would be removed from
the module itself. So if a method would be excluded in one place it would automatically be
excluded in the whole project. This problem could have been solved by copying all methods
from the module into a new module so that when the excluded method is removed, it is
only removed from this one module. Due to the open module principle described in chapter
3.2 “Open classes” it is possible to add methods to a module – and thus to the trait – after it
was incorporated. This is dangerous in itself since the conflict detection is circumvented.
But with the copied module, those later added methods would only be added to
occurrences of the trait without Except and Only but not occurrences where Except or Only
where used. This would lead to very unexpected and unmaintainable code. Thus the option
of removing excluded methods from traits was not chosen.

In Ruby, there is the possibility to unbind method in one class and to rebind it to another
class35. Therefore it would be possible to copy all methods from a module and to add them
to the incorporating class. Methods that were added to the trait after it was incorporated
into the class would not be added to that class, which is a much more expected behavior.
However, there is one problem with this approach. The unbound method can only be
rebound to the very class it came from or its sub classes. It is not possible to “trick” the
bind method by modifying kind_of? or is_a? in the way that the target class appears
to be a sub class of the method originator36.
This approach of rebinding methods from the modules would have been conceptually
cleaner, as modules would just have been used as a container of methods without using
them as mixins. This would have let to a cleaner distinction between mixins and traits
within the implementation. It is, not possible with the given meta programming techniques
for reasons described in this paragraph. Further discussion about the possibilities of
alternative implementations can be found in chapter 4.5 "Alternative implementations”.

35

 Or to another eigenclass and therefore to a single object.
36

 This is due to the implementation of the bind method. It is not implemented in ruby itself but in C.
The type check is hard coded into the interpreter and cannot be circumvented without modifying the
interpreter itself. The appropriate code snippets are highlighted in appendix 11.9 “Code and
documentation of the method bind”

Extending ruby with traits 50

4.3.6 Trait look up and extendable syntax
In the given examples traits where always referred by their name as a Symbol. The trait

MyGame::MyTraits::Position would be referred to by :position. This is
implemented just for convenience. Traits can also be referred by their full reference as the
defining module or as the trait object itself.
The Symbol syntax triggers the trait look up which will look into certain modules that
function as a name space and look for modules that are defined within that namespaces.

These namespaces are defined in the constant Traits::HOME which is an array of
modules. A game programmer only needs to append the namespace in which he defines his
traits to enable the symbol syntax for his own traits.
Beyond that, not only Symbols and Strings could be used to refer a trait, the game

programmer can add a to_trait method for any object or class and use it to reference
traits in incorporation definitions.37 This principle is attended to the trait class macro as

well. The hash parameter just has a method to_trait_incorporation that is then
sent to it. If the game programmer wishes to do so, he can easily change or extend the
incorporation definition syntax.

4.4 Problems
The proposed implementation satisfies most of the requirements for traits, which are
defined in this work. However, there are still some downfalls.

4.4.1 Unsatisfied methods
For one, there is no explicit enumeration of required methods, possibly leading to a
programmer not knowing what the required methods of a trait are – e.g. when it is not
documented. Also it is not possible to explicitly check for unsatisfied methods, as those will
only raise an error the first time they are called.
An explicit listing of required methods would be possible via a constant with a certain name
or with a module macro38.

4.4.2 Clean methods
The requirement of “clean methods”, thus methods that cannot access state directly, is not
checked either. Traits are defined with a module, but within modules the state of an object
can be accessed directly. There is no direct way to check whether a method uses instance
variables or not, as the interpreter allows that. One possible solution might be to parse the
source code of the module that defines the trait. This is no trivial task especially due to the
dynamic nature of ruby. Therefore, and due to time-wise constrictions, it is left to
documentation and the trait programmer to not access state directly.

37

 In fact, the trait lookup is simply triggered by Symbol#to_trait and String#to_trait.
38

 Module macros are described in chapter 3.6 “Class and module Macros”

Extending ruby with traits 51

4.4.3 Open module
As described in 3.2 “Open classes” classes and modules can be reopened at any time to
extend or overwrite their functionalities. When a class includes a mixin module, it is
extended with the methods within that module. When that module is later opened and a
method is added, the class will also know that method. For mixins this is a neat feature, for
traits, there occur problems. Name conflicts among methods are checked upon
incorporation. When there are later methods added to that module, it might happen that
there are undetected method conflicts. This behavior is left to be tested and experimented
with. A possible solution might be to use the hook method Module#method_added to
forbid adding methods after the module has been used for trait definition. This however, is
a strong restriction that would need to be considered wisely, as traits could also benefit
from open modules as long as the name conflicts are detected and solved in a symmetric
way.

4.4.4 Performance
Performance was not a top priority during the design of the proposed implementation. A
small benchmark about the creation of 50000 classes showed that a class definition with
traits is 50 times slower than the “equivalent” class definition with mixins.39 This is not too
concerning as class definition is only done once at the beginning of the runtime of a
program. More interesting are the time costs for calling methods that are composed of
traits and methods that are composed of traits. As it turns out, the method look up and
execution for resolved methods from traits is about 17% slower than its equivalent mixin
method.40

4.4.5 Semantic name conflicts
A rather conceptual problem with traits can occur, when traits are composed. Assuming

that there is a trait called Emotion that models the emotion of a non-player-character in a
game and another trait Movable that is responsible for moving that non-player-character
on the screen, both of them can implement the method moved? but both of these
implementations have a totally different semantic. This conflict can be solved by the

NonPlayerCharacter class that incorporates both traits. The problem arises when
there is later on another trait AdvancedEmotion, that composes Emotion and
provides more advanced methods regarding emotion. The programmer of
AdvancedEmotion might assume that the message moved? will execute the moved?
method in Emotion, as he cannot know all other traits that might be incorporated into the

class that AdvancedEmotion is incorporated into. He might write a method like this:

39

 The program code and the result of that benchmark can be found in appendix 11.6 "Class
definition benchmark”
40

 See appendix 11.8 “Method call benchmark”

Extending ruby with traits 52

Fig 22: An example for semantic name conflicts

If the programmer of the class decides to solve the moved? conflict in that regard, that he
just picks the Movable#moved? and ignores the Emotion#moved?, this
show_emotion method would lead to the behavior that the non-player-character sheds
tears whenever it is moved on the screen.

A solution to this problem would be to just call moved_in_emotion? in line 2. This
however, would only work if there is a name conflict with the method moved?. To prevent
such errors the programmer of AdvancedEmotion could check with respond_to?

whether a moved_in_emotion? is defined and only then call it and otherwise just call
moved?. This would be a rather inconvenient solution to the problem.
A more simple solution that leads to more readable code would be to alias all methods
whether they are conflicted or not. Then the programmer of AdvancedEmotion could
always write moved_in_emotion? and be sure the right method is called. The pros and
cons of that approach are discussed in chapter 4.3.2 “Conflict solving”.

4.4.6 Super
The flattening characteristic requires that the methods, which are provided by a trait, can
be seen as if they were copied and pasted into the class. This especially must apply to the
behavior of the keyword super. In the case of ruby super would execute the
implementation of the mixin that was at last included or if no mixin was included it would
execute the implementation of the super class.
This behavior was not achieved in the given implementation as traits are implemented via
mixins that are part of the normal method look up of ruby. In the time that was invested
into this work,no fitting solution was found. A possible solution would be to modify super in
a way that it skips those mixins that are used as traits. This would not be possible without
modifying the interpreter itself, which is discussed in chapter 4.5 “Alternative
implementations”.

4.4.7 Flattening precedencies violated
As described in chapter 4.3.1 "Conflict detection” the instance methods of the incorporator

are included in the conflict detection. So if a class implements the update method and
incorporates a trait that implements the update method, this method will be considered a
conflicted method in the given implementation. This behavior violates the flattening
characteristic described in chapter 2.2.6 ”Flattening traits into a class”. In that chapter it is

Extending ruby with traits 53

defined that a method implemented in the class takes precedence over the method
provided by a trait.
This variance was implemented on purpose as it was not regarded as a core characteristic
of traits. It was rather regarded as a discrepancy to the explicit conflict solving characteristic
as it implicitly solves the conflict between trait and incorporator. Of course, it is not
contradiction in the definition because conflicts between a trait and its incorporator are not
defined as a conflict and therefore does not need to be solved explicitly.
However, in practical terms, the author was not of the opinion that this implicit resolve
would lead to better understanding of the trait concept. Also a programmer might not
know all the methods provided by a trait and unintentionally overwrite a method that is
used by the trait itself. This would lead to a semantic name conflict41 after all. Beyond that,
the exception in conflict detection was considered a breach in uniformity among traits and
incorporators.

4.5 Alternative implementations with more than plain
ruby syntax

With the given approach of implementation, it can be seen that there are several problems
left to improve on. Some of which may be easier to fix while others might pose more severe
challenges.
It is clear that there are limits to what can be done with meta programming techniques in
ruby due to its first-class-ness. While many Objects in ruby are first-class citizens there are
still some things that are not reachable from within ruby, namely the interpreter itself, the
call stack, assignments and instance creation to name a few.42
Without these limitations it would have been possible to introduce a new language artifact
trait with its own keyword just like class or module only using pure ruby syntax. A possible
concept of such an artifact is shown in appendix 11.4 “The hypothetical relation among
Trait, Module and Class”.
In the given circumstances, the introduction of a new keyword is only possible when
modifying the interpreter that is written in C itself. It would also be thinkable to change the
way method lookup works, modifying the interpreter. This is even possible – to a certain
extend - using only meta programming by overwriting the method send.

41

 Semantic name conflicts are described in chapter 4.4.5 “Semantic name conflicts”.
42

 To the knowledge of the author, the project rubinius tries to solve these problems by
implementing ruby in ruby, thus making it more first-class. However, during the course of this work
the proposed implementation was designed for the standard ruby implementation, also called MRI
for matz ruby interpreter – named after rubies inventor Yukihiro Matsumoto (cf. (Ruby community)
).

Extending ruby with traits 54

It was foreseen to change the interpreter as one of the core aspects of this work is how
traits can be implemented using only meta programming techniques of ruby.43 This self-
limitation was raised due to two main reasons:

 To measure capabilities of rubies meta programming techniques and

 To make the proposed trait implementation compatible to as many different ruby
implementations as possible.

43

 Also, there are other reasons the plain problem of complexity when dealing with interpreter
plugins. In addition to that it would have been too time consuming to earnestly consider such
implementation.

Applying traits to a game engine 55

5 Applying traits to a game
engine

In chapter 2 “Traits”, traits have been defined while in chapter 4 “Extending ruby with
traits” an implementation was proposed. In this chapter 5, there will be shown how traits
could be applied to a game engine. To do so, Chingu44 was chosen, as it is a 2D game engine
that is fully written in ruby, based on Gosu45, which is written in Ruby and C++.

5.1 Chingu
This chapter gives a short introduction to Chingu. It highlights important design artifacts but
leaves some things behind. A more complete introduction to Chingu can be found in the
Chingu documentation46.

5.1.1 Game loop
As many other game engines as well, Chingu functions in terms of game loop. Within a
game loop all the logical behavior of the game as well all the rendering is computed. It is
triggered at regular intervals dependent from the target frames per second. Of course the
game loop only starts after the engine is initialized and resources are loaded. Resources can
be loaded as a reaction to player input during the game loop, as well.47
To distinguish even more between game logic and rendering logic, the game loop is divided

into update and draw, which are also methods in the main window.

44

 The official website for Chingu is http://ippa.se/chingu
45

 The official website for Gosu is http://www.libgosu.org/
46

 Chingu documentation: http://rdoc.info/github/ippa/chingu
47

 In fact, in some games it makes more sense to load resources during the game play. If there is a
huge world it is not wise to load all assets into the memory when most of them won’t be needed. It
is advisable to load only assets that are near the player.
This mechanic is often implemented with levels, where there is a loading phase at the beginning of
the level.

Applying traits to a game engine 56

Game loop

update

Initialize

logic

register
tick

draw

input
Shut down

render

display

Fig 23: The processes that happen during the execution of a game can be divided into initialize, game loop

and shut down. The game loop again is divided into update and draw that are divided again. Within the

step “logic” there might be features like acceleration, relocation, collision detection, planning, pathing, etc.

5.1.2 Game objects
A powerful concept of Chingu, which is also used in many other game engines, is the game
object. It is a class that is supposed to define common behavior of “anything that is in the
game”. In Chingu, each game object can be drawn on the window, can be updated and can
receive input from the player. It is worth of discussion whether all game objects need to
have these aspects48 as only controllable objects like the player character or menus need to
receive player input. Also only manipulated objects need to be updated, e.g. a rock that is
just an obstacle and cannot be modified in any way.

5.1.3 Game states
Games usually can be seen as a state machine. In the beginning there is a main menu, then
a level starts, maybe a world is entered, a fight begins, a trade is being done, etc. During all
these phases of a game it can behave totally different. Especially input can mean something
totally different. While pressing A on the gamepad during a trade means “buy the potion”,
during a fight, it may mean “jump”. But also the drawing aspect of the game can change
due to a game state. Maybe, upon death, the world is greyed out, or simply in the main
menu, the player character is not shown.

48

 Aspect is used in a common sense meaning, not in the software meaning.

Applying traits to a game engine 57

To make managing those states of a game easier, Chingu offers a dedicated game state
model with a stack-based game state management. There are also transitional game states
and hook methods for each game state when pushed and popped.

5.1.4 Traits

 “The aim [of traits] is so [sic!] encapsulate common behavior into modules for easy inclusion in

your game classes. Making a trait is easy, just an ordinary module with the methods setup_trait(),

update_trait() and/or draw_trait().” – Chingu README (Ippa, 2012)

So Chingu also has a concept that is called trait. However, a closer look at the
implementation of Chingu traits, which can be seen in appendix 11.7, reveals that Chingu
traits are rather mixins than traits, like they are defined in this work. This is even mentioned
in the Chingu README: “Chingus trait-implementation is just ordinary ruby modules with 3
special methods: setup_trait, update_trait, draw_trait” (Ippa, 2012). The author of Chingu
also is aware of the problem with linear composition of mixins as he writes “Each of those 3
methods must call ‘super’ to continue the trait-chain.” (Ippa, 2012)
Chingu traits do not only implement those three above methods, they can also implement
any other method like any mixin can. In addition to that they can have an inner module

ClassMethods to define methods that will be added to the including class. Chingu traits
can also be included in the context of certain options that are custom to the trait. A trait
Acceleration could have an option DEBUG to draw the acceleration as vector when the
DEBUG option is true. These options are bound to the including class, so either for all
instances of a certain game class there would be drawn that acceleration vector or for
none.
Chingu not only offers the trait model but also many implementations of traits such as
animation, collision_detection, sprite, velocity and timer. The trait

model is even used to structure Chingus inner code, the GameObject class, for example,
consists only of the Chingu trait sprite and the ruby mixin InputClient.

5.2 Discussion on Chingus trait model
The downfalls of mixin inheritance are already described in chapter 2.1.5 "Mixin
inheritance” and are therefore not discussed here. But apart from inherent characteristics
of mixin inheritance there are some specialties to Chingu traits.

5.2.1 Class methods
One of them is the ClassMethods module that extends the class that includes the
Chingu trait. It is heavily used in the trait collision_detection to enable the
programmer not to only check for collision among certain objects but among whole groups
of objects. An example for this is in the documentation of

Applying traits to a game engine 58

Chingu::Traits:CollisionDetection::ClassMethods#each_collision

The addition of a definition of class-level methods within a trait does not interfere with the
trait definition in this work and is therefore conceptual compatible. It adds more
expressiveness to traits themselves as well as to the classes that use those traits. The
proposed implementation of traits does not have such a feature explicitly. However, as
traits can be applied to any class, they can be applied to eigenclasses as well. Therefore
they can be used to define class-level methods as well. This approach is not as convenient
and intuitive as the class-level method definition of Chingu traits, though.

5.2.2 Options
Chingu traits can also have options for the inclusion, therefore parameterizing their
behavior for each class. This also adds to the flexibility and expressiveness of traits, for the
DEBUG example in chapter 5.1.4 “Traits” it is however required to store those options in a
class variable. In fact, most options that are used within the Chingu traits, store the options
in a class variable to access them later. This handling with options is not compatible with
the definition of traits in this work. Yet still the proposed implementation in this work

enables options, although only in the very limited range of :except and :only, both of
which do not require state access.

5.2.3 Applications
In Chingu the implementation of the trait method is the core of the implementation of
traits themselves. There is no dedicated class or mixin module to implement this feature.
This is not necessarily a bad design decision, if there was only place where traits are
defined. However, in Chingu there are two places where traits can be applied:

GameObject and GameState. Both classes have 100% redundant implementations of
the same method. If something other than game objects or game states needs to make use

of Chingu traits there is no convenient way to make that happen. In fact, the trait timer is
a good example for this downfall. The trait timer offers methods like after(millis) or
during(millis) which receive a block and execute them after or during a certain time
span. This behavior is not necessarily bound to a game object or game state. E.g.
Chingu::Window is also a class that could take great use of timer logic. In contrast to
that, the proposed implementation of traits is applicable to any class, module or trait – thus
offering more flexibility and extensibility.

Applying traits to a game engine 59

Table 6: Appraisal and comparison of Chingus trait model

Appraisal and comparison of Chingus trait model

Aspect Appraisal of Chingus model Proposed implementation

Consistency with
the definition in
this work

Traits, as implemented in Chingu, do
not fulfill the requirements of traits as
defined in this work. They are just
mixins with some extra features.

Mostly consistent with the
definition in this work.

ClassMethods Useful feature that increases
expressiveness.

No dedicated feature. Traits
can be applied to eigenclasses
to compensate for that.

Options Custom options for each trait. Only :except and :only

Options storage Stored within class variables and then
accessed during the lifetime of the
instances.

Transient; Only needed during
the process of incorporation;
No Storage

Applicable to GameObject and GameState Any class, module or trait

5.3 Application of new trait implementation

As seen in the above Table 6: Appraisal and comparison of Chingus trait model there are
some differences between the trait model offered by Chingu and the trait model offered by
this work. Now, to make Chingu benefit from the trait implementation presented in chapter
4.3 “Implementation of traits”, some changes need to be made to the implementation of
Chingu. The actual implementation of the offered trait implementation to Chingu is not part
of this work due to time issues. It is comprehended on a theoretical basis.
First of all, the redundant implementations of trait and traits in GameObject and

GameState need to be removed. Those two classes need to include the mixin module
Traitable, instead.
The methods update_trait, draw_trait and setup_trait are then not needed
any more. They can be completely removed as there is now a collision detection for naming
conflicts. This makes code easier to understand, as there is no logical difference between
update and update_trait and now there is no difference in the code as well.
In a last step, the traits themselves need to be rewritten in a form that they are compatible
with the trait definition in chapter 4.1 “Trait definition”. Again, the update_trait etc.
methods need to be renamed. A more complex problem poses the ClassMethod
modules, which add methods to the class level. There is no direct way to map this
functionality to the new trait implementation.

Applying traits to a game engine 60

5.4 Decomposition into traits and composition from traits
When dealing with an existing class hierarchy it can be hard to find the right approach to
apply traits. All existing classes are complete but not as coherent as traits would be. The
software designer has to decide what code is worth a refactoring into traits. Code has to be
cut out of classes and then reincorporated into the class via traits. This process is called
decomposition into traits and composition from traits.
As it is hard to find appropriate tools to find possible approaches to integrate traits, namely
duplicated code (cf. (Murphy-Hill, et al., 2005)), it may be a valid strategy to have a more
abstract look at the classes at hand and their responsibilities. This however is a whole new
field of research that is not core to this work.

5.5 Comparison of three implementations of Monster
An example of a game is given, where the player has to kill several monsters to survive. He
can lay bombs to destroy rocks and find power ups. What behavior defines an instance of
the class Monster? How is it written in Code? In this chapter there are three versions of

the Monster class:

 Without any Traits, just single inheritance

 With Chingus trait model

 With the proposed trait implementation

Applying traits to a game engine 61

Fig 24: When monster does only benefit from single inheritance, there are only two options to add features

to the class without implementing them within the class itself: Inheritance and delegation. In this case the

code for graphics and for input are inherited from GameObject, the code for planning, path finding,

positioning and collision detection is added via delegate objects.

It is noted that the options for default state values are added on the initialization of the
delegate objects. The conflict must be resolved within the instance method update. Also

there are two features inherited from GameObject: Graphics and input. Since Monster is
not controlled by the player whatsoever, there is no need for any code in Monster that
handles input deferral. It becomes obvious that GameObject is not fine grained enough to
offer an efficiently reusable set of features.

Applying traits to a game engine 62

Fig 25: In this case, Monster is implemented with chingus traits. The options for default state values are

defined upon incorporation (see line 3). Still there is need for some delegate objects, this however is only

the case due to the lack of a build-in trait for planning.

While this code seems more elegant, there are still problems that are rather subtle. There is
no need to explicitly resolve update as they are combined using the super chain in
chapter 2.1.5 “Mixin inheritance”. Each mixin calls super, thus triggering the next

implementation of update. Originally the last mixin may not call super as there is no next
implementation, but since the programmer of the mixin does not know whether it is the
last mixin or not, there has to be a super. This leads to a solution where the super class has

an empty implementation of update that is called be the last mixins super. This can be

envisioned with a look at this excerpt from BasicGameObject.

Fig 26: BasicGameObject implements empty placeholder of different methods so the mixins can combine

their implementations via super.

Applying traits to a game engine 63

While this approach seems valid to combine the behavior of the above methods there are
still questions unanswered.

 What if a programmer of a trait wants to user other methods than setup, draw

or update?
o For each new method in any trait there would need to be added a new

empty placeholder in BasicGameObject.

 What if the new methods have an actual return value?
o For the methods so far the return values can be ignored. It is just important

to call them in a certain order. What if there are methods that return
Boolean values? Will they be linked via AND or via OR? The programmer of
each trait has to decide and hard code it into the trait. The programmer of
the class has no chance but to accept the decision made in the trait.

 What if not only the kind of link between return values is important but also the
ordering?

o For Boolean values there is no difference in which order they are linked via
AND or OR49. But for example a String concatenation is not commutative.
The programmer of the class might wish to determine the order in which
the different String return values are concatenated. This is another
phrasing of the problem with asymmetric composition or linearization
described in chapter 2.2.3 "Symmetric composition”.

Fig 27: With the proposed trait implementation the Monster class becomes considerably shorter. Also the

super class GameObject does not offer any features mentioned in this example, it can be considered a

markup.

The shortage of the code can be ascribed to the composition of traits. Character and AI are
traits that are composed of other traits, which in the end results in the behavior of the
other two Monster classes shown before. In this case the ordering and linking operator
among the different versions of update is not important. Thus the pattern
call_in_order is used to keep the code as simple and readable as possible. The
problems described for the second Monster class could be circumvented by using the
explicit resolve variant using a lambda and aliased methods.

49

 Other than performance.

Conclusion and future work 64

6 Conclusion and future work

6.1 Conclusion
This work has given a definition of traits – a language artifact that is used to build classes in
a fashion that each trait can be reused easily for other classes, thus increasing modularity. It
is shown that traits are more fine grained and therefore can achieve more reusable code
where inheritance or mixins still have conceptual problems. Those are mainly the
linearization, which means the order in which classes inherit from one another and the
order in which mixins are included into classes are important. The behavior changes with
the changes in that order. Also the programmer of such classes and mixins need to know
where they are within the hierarchy due to the keyword super. The knowledge of the
position within the class hierarchy leaks into the code of the respective code entities. This
decreases the reusability of such classes and mixins drastically. Traits solve this problem by
being commutative, which means symmetrically composable. The explicit conflict solving
for overloaded methods immensely helps achieving this behavior.
A brief introduction to rubies meta programming techniques was given so the reader can
comprehend how traits are implemented in the proposal of the author. It is described how
traits can be implemented specifically in ruby only using ruby syntax. This approach has the
advantage that it is compatible with every correct ruby implementation but also has its
boundaries due to the limited first-class-ness of ruby. The author shows how traits can be
implemented based on mixins, by using aliased versions of methods and explicit conflict
detection.
Finally it is shown how the proposed trait implementation could be applied to the game
engine Chingu. Chingu already has a concept that is called traits, but that is rather a mixin
with some engine specific features. First of all, those Chingu traits would need to be
replaced by traits as defined in this work. After that the already defined Chingu traits could
be used to compose higher level traits to minimize the effort the user of the engine has to
make to define his game object classes. An example is given how such a class can benefit
from the authors trait implementation compared to the mixin-like trait implementation of
Chingu itself.

6.2 Future work
During the work with Chingu and its trait model it became clear that many traits are bound
to some kind of state, often a set of instance variables. While Chingu traits are free to
define these variables themselves and even initialize them, the proposed implementation
only allows pure methods as mentioned in the definition in chapter 2.2.1 “Pure methods”.

Conclusion and future work 65

This restriction was defined due to the sake of simplicity in the theory of traits. In practice,
however, it would be handy to drop this restriction to make traits more comfortable to use.
Instead of identifying all the getters and setters that a trait needs to function it just defines
them itself. This on the other hand would define the separation of the state and the
behavior of an object down. To keep this separation clear it might be worthwhile to have a
new concept to define the state of an instance in the fashion of traits. Thus not only the
behavior can be used with fine grained reusable chunks of code, but also the state. This
concept might be called part state.

Without any further exploration of this idea, the author came to the impression that the
case of conflicting methods in different traits is a rather unlikely one. In most cases, the
class programmer might not need to define any resolves at all. In these cases, it might be
convenient to have a much more compact syntax to describe the incorporation of traits into
a class. The following syntax might be appropriate:

Fig 28: A possible syntax to build a class from traits when there are no conflicts. In this case health,

position and speed are the instance variables while moving, shootable, position and

acceleration are the names of traits.

In (Ducasse, et al., 2006) there is a class browser described that can view classes as if they
were flatly implemented only with methods. All incorporated traits are virtually copied and
pasted into the class. It is suggested that such a tool helps developing classes with traits
and makes understanding them easier. In (Murphy-Hill, et al., 2005) it is described that
finding approaches for applying traits to an existing class hierarchy is hard even with
dedicated tool support. This leads to the conclusion that developing a tool that helps
dealing with traits might be a worthwhile field of further research.

Another obvious field of further research is to approach the problems stated in chapter 4.4
"Problems”.

Annotations 66

7 Annotations

The source code of the proposed implementation is available at
https://github.com/AKnopf/trait
It was developed and tested on/with:

 Windows 7

 MRI 1.9.3p194 [i386-mingw32]

 RubyMine IDE 4.5.4

https://github.com/AKnopf/trait

Source materials 67

8 Source materials

Alexandrescu, Andrei. 2000. Traits: The else-if-then of Types. 2000.
http://erdani.com/publications/traits.html.
Costanza, Pascal. 2003. Dynamically Scoped Functions as the Essence of AOP. [Paper].
Bonn : University of Bonn, 6 17, 2003. http://dl.acm.org/citation.cfm?id=944587.
Ducasse, Stephane, et al. 2006. Traits: A Mechanism for Fine-Grained Reuse. NY, USA :
ACM, 2006.
Durr, Pascal, Bergmans, Lodewijk and Aksit, Mehmet. 2007. Reasoning about Behavioral
Conflicts between Aspects. s.l. : University of Twente, The Netherlands, 2007.
Feigenspan, Janet. 2008. The Diversity of the Understanding of Aspect-Oriented
Programming. Magdeburg : University of Magdeburg,, 2008.
Filman, Robert E. 2001. What Is Aspect-Oriented Programming, Revisited. Budapest : s.n.,
2001.
Hirschberger, Johannes. 2007. Geschichte der Philosophie. Freiburg im Breisgau : Komet,
2007. Vol. Band 1.
Ippa. 2012. Rdoc.info. [Online] Ippa, 5 23, 2012. [Cited: 09 07, 2012.]
http://rdoc.info/github/ippa/chingu#Traits.
Jarvis, Lee. 2012. Rubydoc.info. [Online] 11 2, 2012. [Cited: 2 11, 2012.]
http://rubydoc.info/gems/traited/1.0.0/frames.
Malayeri, Donna. 2008. CZ: Multiple Inheritance Without Diamonds. Nashville, Tennessee,
USA : OOPSLA’08, 10 19, 2008.
Murphy-Hill, Emerson R., Quitslund, Philip J. and Black, Andrew P. 2005. Removing
Duplication from java.io: a Case Study using Traits. Ney York : ACM, 2005.
Odersky, Martin. Scala-Lang.org. [Online] [Cited: 10 16, 2012.] http://www.scala-
lang.org/docu/files/ScalaReference.pdf.
Olsen, Russ. 2008. Design Patterns in Ruby. Upper Saddle River, NJ : Addison-Wesley, 2008.
p. 111pp.
Perotta, Paolo. 2010. 1.2 Open Classes. Metaprogramming Ruby. Raleigh, North Carolina;
Dallas, Texas : Pragmatic Bookshelf, 2010, p. 261.
—. 2010. 4.6 Aliases. Metaprogramming Ruby. Raleigh, North Carolina; Dallas, Texas :
Pragmatic Bookshelf, 2010, p. 261.
Perrotta, Paolo. 2010. 1.5 What Happens When You Call a Method? Metaprogramming
Ruby. Raleigh, North Carolina; Dallas, Texas : Pragmatic Bookshelf, 2010, p. 261.
—. 2010. Metaprogramming Ruby. Raleigh, North Carolina; Dellas, Texas : Pragmatic
Bookshelf, 2010. p. 261.
Rojas, Raúl. 1998. A Tutorial Introduction to the Lambda Calculus. Berlin : FU Berlin, 1998.

Source materials 68

Ruby community. ruby-lang.org. [Online] [Cited: 11 27, 2012.] http://www.ruby-
lang.org/de/downloads/.
ruby-doc.org. ruby-doc.org. [Online] [Cited: 11 12, 2012.] http://www.ruby-doc.org/core-
1.9.3/Proc.html#method-i-lambda-3F.
Schärli, Nathanael and Black, Andrew P. 2003. A Browser for Incremental Programming.
Beaverton, Oregan, USA : OGI School of Science & Engineering; Oregon Health & Science
University, 2003.
Schärli, Nathanael, et al. 2003. Traits: Composable Units of Behaviour. [prod.] University of
Bern, Switzerland Software Composition Group. Bern, Swizerland : Springer Verlag, 2003.
Schärli, Nathanael, et al. 2002. Traits: The Formal Model. Bern, Switzerland : University of
Bern, Switzerland, 2002.
Wikipedia. 2012. wikipedia.org. [Online] wikimedia, 6 28, 2012. [Cited: 10 16, 2012.]
http://de.wikipedia.org/wiki/Trait_(Programmierung).
—. 2012. wikipedia.org. [Online] wikimedia, 9 3, 2012. [Cited: 10 17, 2012.]
http://en.wikipedia.org/wiki/First-class_citizen.
Wunderlich, Lars. 2005. 1.7.6 Symmetrische und asymmtrische AOP-Lösungen. AOP -
Aspektorientierte Programmierung in der Praxis. Frakfurt : entwickler.press, 2005, p. 288.

Figures 69

9 Figures

Fig 1: A class hierarchy without mixins .. 13
Fig 2: The same class hierarchy with mixins (Mixins are bold) .. 13
Fig 3: This is an example of a possible class hierarchy that heavily relies on traits. Common

traits like animation, input or collision detection are implemented in a class but in a
trait, they are then included only into those classes that need this behavior. The

addition of composed traits like Physical or Character makes the definition of
classes even more comfortable. An equivalent class hierarchy without those composed
traits can be seen in appendix. .. 17

Fig 4: The graphical presentation of the example for provided, required and satisfied
methods ... 19

Fig 5: Diagram of example for composition ... 20
Fig 6: Example of ruby class hierarchy without Mixins. Adaption from (Perrotta, 2010 S. 23)

 .. 27
Fig 7: Eigenclasses of two objects .. 29
Fig 8: Defining a class method with the class << self syntax .. 30
Fig 9: Defining a class method with the def self.method syntax ... 30
Fig 10: The methods method returns an array of method names. This is only an excerpt; all

methods can be seen in appendix 11.2 ... 33
Fig 11: Some methods of the class Method ... 33

Fig 12: In this around alias the old say method just puts out its text parameter. Then the
original say method is aliased with original_say, it is still available under that
name even when in the next step the method say is redefined. Within the new

definition of say, there is a message sent named original_say, which is the say
method from before the around alias. So the resulting new say method contains
behavior of its prior version. .. 34

Fig 13: The official documentation for Array#each ... 34
Fig 14: Transforming a block into a Proc instance using the &-syntax 35
Fig 15: The differences of the keyword super for Lambdas and Procs 35
Fig 16: Dynamical scope of blocks .. 37
Fig 17: A definition of a trait in ruby .. 38
Fig 18: 4 classes are built from 4 traits. ... 39
Fig 19: The class Monster is composed of four traits: Movable, Scalable, Hittable

and Shooting ... 40

Figures 70

Fig 20: In part A) of the above figure, the Monster class with its three mixins
Acceleration, Movable and Position is shown. Also its super class Object

as well as Objects mixin Kernel and super class BasicObject are shown, thus
all the ancestors of Monster are visible in this example. The tiering of those modules
can be seen as a 3D view from slant above. Actually, the Monster class stands in
front of the other modules and covers it. This means that the user of Monster can
only see those methods that are written down at the bottom of Monster. All the other
modules are only part of the implementation of Monster, not of its interface. It can
be seen that an instance of Monster responds to the message to_s but the class
Monster does not actually implement that method. It is only found in Object by
the method look up. Part B) shows the exact same class only that the ordering of ist
mixins is slightly altered. Acceleration and Movable are twisted compared to part A. 44

Fig 21: This figure uses the same syntax as Fig 20. Once again the Monster class is

illustrated but rather than using mixins, traits are used to implement Monster.

Therefore, Kernel is the only mixin and Acceleration, Movable and
Position are traits (indicated with their italic font). A key difference between the
two figures can be found in the key. In part C there is no explicit call of super. Instead
there are a lot of aliased versions of the method update, one for each trait and class
that implements it. ... 46

Fig 22: An example for semantic name conflicts ... 52
Fig 23: The processes that happen during the execution of a game can be divided into

initialize, game loop and shut down. The game loop again is divided into update and
draw that are divided again. Within the step “logic” there might be features like
acceleration, relocation, collision detection, planning, pathing, etc. 56

Fig 24: When monster does only benefit from single inheritance, there are only two options
to add features to the class without implementing them within the class itself:
Inheritance and delegation. In this case the code for graphics and for input are
inherited from GameObject, the code for planning, path finding, positioning and
collision detection is added via delegate objects. ... 61

Fig 25: In this case, Monster is implemented with chingus traits. The options for default
state values are defined upon incorporation (see line 3). Still there is need for some
delegate objects, this however is only the case due to the lack of a build-in trait for
planning. ... 62

Fig 26: BasicGameObject implements empty placeholder of different methods so the mixins
can combine their implementations via super. ... 62

Fig 27: With the proposed trait implementation the Monster class becomes considerably
shorter. Also the super class GameObject does not offer any features mentioned in
this example, it can be considered a markup. ... 63

Fig 28: A possible syntax to build a class from traits when there are no conflicts. In this case

health, position and speed are the instance variables while moving,
shootable, position and acceleration are the names of traits. 65

Tables 71

10 Tables

Table 1: Evolution of programming paradigms .. 15
Table 2: Condensed characteristics of traits .. 22
Table 3: Comparison of traits, mixins and aspects .. 24
Table 4: Comparison of blicks, lambdas and procs .. 36
Table 5: The core ideas of the proposed trait implementation ... 41
Table 6: Appraisal and comparison of Chingus trait model ... 59

Appendix 72

11 Appendix

11.1 Code example for composition of mixin modules

Appendix 73

11.2 All methods of a String object

Appendix 74

11.3 Building a class with the class macro “trait”

Appendix 75

11.4 The hypothetical relation among Trait, Module and
Class

state

Module
Object

instance creation

Class

Instance of

Instance of

Instance of

+ id

BasicObject

Instance of

methods

Trait

Instance of

*

*

incorporates

Appendix 76

11.5 Composition of traits

Appendix 77

11.6 Class definition benchmark
Benchmark:

Output:

Appendix 78

11.7 Chingus trait implementation

Appendix 79

11.8 Method call benchmark

Output:

Appendix 80

11.9 Code and documentation of the method bind

Appendix 81

11.10 An example for traits without composition

M
o

n
st

e
r

P
la

ye
r

R
o

ck
B

o
m

b
Ex

p
lo

si
o

n
P

o
w

e
ru

p

In
p

u
t

Ti
m

e
r

V
is

u
al

A
n

im
at

io
n

C
o

lli
si

o
n

P
at

h
in

g
P

la
n

n
in

g

M
e

n
u

H
it

ta
b

le

ke
y

Tr
ai

t
C

la
ss

in
co

rp
o

ra
te

d

Appendix 82

 Selbstständigkeit

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe
selbstständig verfasst und nur die angegebenen Hilfsmittel benutzt habe.

Hamburg, den _______________ __________________________

