

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Bachelorarbeit

Bastian Meiners

Kamerabasierte Geschwindigkeitsmessung auf autonomen Fahrzeugen

Fakultät Technik und Informatik Studiendepartment Informatik Faculty of Engineering and Computer Science Department of Computer Science

Bastian Meiners

Kamerabasierte Geschwindigkeitsmessung auf autonomen Fahrzeugen

Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung

im Studiengang Bachelor of Science Technische Informatik am Department Informatik der Fakultät Technik und Informatik der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. rer. nat. Stephan Pareigis Zweitgutachter: Prof. Dr. Zhen Ru Dai

Eingereicht am: 12. April 2013

Bastian Meiners

Thema der Arbeit

Kamerabasierte Geschwindigkeitsmessung auf autonomen Fahrzeugen

Stichworte

FAUST, optische Geschwindigkeitsdetektion, Fahrstreifenerkennung, Bildverarbeitung, dynamische ROI, autonomes Fahrzeug, Fahrassistenz, Hallsensor, Carolo Cup

Kurzzusammenfassung

Dieses Dokument beschäftigt sich mit der Auswertung der aktuellen Geschwindigkeit eines autonomen Fahrzeugs mittels Bilddaten. Unter Zuhilfenahme einer auf dem Fahrzeug montierten Kamera werden markante Ortsmarken im Bild gespeichert und mit darauf folgenden Aufnahmen verglichen. Eine Software berechnet Weg und Zeit, die zwischen zwei Bildern zurückgelegt wurden, um die Geschwindigkeit des Fahrzeugs festzustellen. Zur Unterstützung wird ein Hall-Sensor verwendet.

Bastian Meiners

Title of the paper

Camera based speed measurement on autonomous vehicles

Keywords

optical speed detection, FAUST, lane recognition, image processung, dynamic ROI, autonomous vehicle, driving assistant, hall sensor Carolo Cup

Abstract

This thesis deals with the evaluation of the current speed of an autonomous vehicle using image data. With the aid of a camera that is installed on the car, distinctive spots in the picture will be saved and compared to following recordings. Distance and time covered within two images, will be calculated with a software to determine the speed of the car. A hall sensor is used in support.

Inhaltsverzeichnis

Eir	Einleitung 1			
1.	Das 1.1. 1.2. 1.3.	FahrzeugCarolo CupTechnische BesonderheitenGeschwindigkeits- /Fehleranalyse	3 4 5 5	
2.	Bild	verarbeitung	9	
	2.1.	Umwandlung von Bilddaten	10	
		2.1.1. Korrektur der Linsenverzeichnung	10 11	
3.	Gesc	hwindigkeitsanalyse	13	
	3.1.	Optische Merkmalsextraktion	13	
		3.1.1. Position des Fahrzeugs auf der Fahrbahn	14	
		3.1.2. ROIs nutzen	15	
	3.2.	Algorithmus zur Kantenfindung	16	
	3.3.	Konzept zur Feststellung der Geschwindigkeit	29	
	2.4	3.3.1. Embeziehung des Hall-Sensors	31	
	5.4.		32	
4.	Testergebnisse			
	4.1.	Testdurchführung	36	
	4.2.	Feststellung korrekter Messergebnisse in Anlehnung an Sensorwerte	41	
	4.3.	Zusammenfassung der Ergebnisse	46	
5.	Zusa	ummenfassung und Aussichten	47	
	5.1.	Zusammenfassung	47	
	5.2.	Einsatzmöglichkeiten	48	
	5.3.	Komplikationen	49	
	5.4.	Bedeutung für die Zukunft	50	
Ab	bildu	Ingsverzeichnis	52	
Та	bellei	nverzeichnis	53	
A.	Mes	sdaten der Simulationen	54	
B.	Mes	sdaten auf dem Fahrzeug	59	
C.	Reck	ienzeitanalysen	75	

Einleitung

In der Automobilbranche nimmt die Automatisierung einen hohen Stellenwert ein. Heutige Fahrzeuge bieten immer ausgereiftere und innovativere technische Hilfsmittel, die das Fahren sicherer und komfortabler machen. Hierzu zählen auch Systeme wie automatische Erkennung von Straßenschildern und sensorische Einparkhilfen.

Die Messung der Geschwindigkeit in Fahrzeugen ist einer der wesentlichen Faktoren für den Straßenverkehr. Um so wichtiger werden die Geschwindigkeitsdaten, wenn das Fahrzeug autonom fährt und somit nicht auf menschliche Intuition bezüglich der Wahl einer angemessenen Geschwindigkeit vertrauen kann.

In aktuellen Fahrzeugen wird die Geschwindigkeit mittels Sensoren an den Rädern oder Achsen gemessen. Hierbei können jedoch Unregelmäßigkeiten auftreten, die fehlerhafte Werte verursachen. Als gutes Beispiel sind hier die Reifen eines Autos zu nennen. Diese unterliegen sowohl dem Verschleiß, als auch einem zuvor definierten Abrollumfang. Werden kleinere oder größere Räder montiert, oder ist der Abrieb der Reifen zu groß, ist eine Tachojustierung erforderlich. Ähnlich verhält es sich auf den Fahrzeugen des Projektes "Fahrassistenz und Autonome Systeme" (FAUST).

Der Grund für den Bedarf eines Verfahrens zur kamerabasierten Geschwindigkeitsmessung ist, ungenaue Messdaten der Sensorik verhindern und Messfehler ausschließen zu können. Es werden durchdrehende oder blockierende Räder, nachlassende Motorleistung und andere abweichende physikalische Größen außer Acht gelassen und exakt die tatsächliche Geschwindigkeit des Fahrzeugs ermittelt.

Die Funktion des autonomen Fahrens im Projekt FAUST basiert auf der Erkennung der Fahrstreifen über eine am Fahrzeug angebrachte Kamera. Diese Bachelorarbeit beschreibt einen Algorithmus, der die Kameradaten nutzt, um die Geschwindigkeit des Fahrzeug über optische Signale zu errechnen. Das Verfahren hat die Eigenschaft, mittels Bildverarbeitung markante Punkte der Fahrbahn zu detektieren und zu nutzen, um Bewegung zu erkennen. Die räumliche Veränderung dieser Punkte über die Zeit ergibt die gefahrene Distanz und somit die Geschwindigkeit des Fahrzeugs. Im Gegensatz zu herkömmlichen Verfahren zur Messung der Geschwindigkeit mit Sensoren werden mit dem vorgestellten Algorithmus keine elektrischen Signale zur Verarbeitung herangezogen. Die protokollierten Daten werden ausschließlich aus optischen Aufzeichnungen gewonnen.

Im Verlauf dieser Bachelorarbeit wird auf folgende Dinge eingegangen:

Kapitel 1 - Das Fahrzeug

Das erste Kapitel gibt einen Überblick über das Umfeld, das den Rahmen für diese Bachelor-Thesis schafft. Es wird die Fahrzeugplattform und dessen Spezifikationen sowie dessen Aufgabe vorgestellt. Des Weiteren werden hier relevante Fahrzeugkomponenten analysiert und der Bedarf einer optischen Geschwindigkeitserkennung begründet.

Kapitel 2 - Bildverarbeitung

In diesem Kapitel wird auf die optischen Komponenten des in Kapitel 1 vorgestellten Fahrzeugs eingegangen. Die für diese Arbeit erforderlichen Bilddaten werden analysiert und deren Verarbeitungsmöglichkeiten vorgestellt.

• Kapitel 3 - Geschwindigkeitsanalyse

In dem Hauptkapitel werden Konzepte vorgestellt, die zur Detektion der Fahrzeugbewegung und zur Feststellung der Geschwindigkeit umgesetzt wurden. Es werden Voraussetzungen sowie hinführende Algorithmen erläutert, die für die Entwicklung unablässig waren. Außerdem werden Verbesserungs- und Einsatzmöglichkeiten vorgestellt.

Kapitel 4 - Testergebnisse

Alle Ergebnisse der Arbeit sind in diesem Kapitel zu finden. Es wird eine Analyse der Genauigkeit des entwickelten Algorithmus vorgestellt.

Kapitel 5 - Zusammenfassung und Aussichten

Das Abschlusskapitel stellt den Nutzen und die Einsatzmöglichkeiten des entwickelten Algorithmus vor. Des Weiteren wird hier der Ablauf der Arbeit analysiert.

1. Das Fahrzeug

Die Entwicklung der *optischen Geschwindigkeitsmessung auf autonomen Fahrzeugen* findet auf der Plattform "Saphir" statt. Hierbei handelt es sich um ein elektrisch angetriebenes Fahrzeug im Maßstab 1:10, welches unter der Bezeichnung TT-01 des Herstellers Tamiya (Tamiya, 2013) im regulären Handel erhältlich ist. Es besticht durch eine sehr leichte Bauweise aus Aluminium und Carbon und weist einen tiefen Schwerpunkt auf. Letzteres ist z.B. für schnelle Kurvenfahrten von Vorteil.

Im Rahmen des Projektes FAUST wurde zusätzlich eine eigens konstruierte Ebene aus Polycarbonat angefertigt, die als Plattform für elektronische Bauteile dient. So wurden hier unter anderem ein Mikrocontroller zur "Steuerung der Aktorik und Auswertung der Sensorik" (FAUST, 2013), ein Pico-PC zur Verarbeitung von Algorithmen, sowie elf Infrarot-Sensoren in selbst entwickelten Halterungen verbaut.

Abbildung 1.1.: Das Versuchsfahrzeug Saphir

Um die entwickelte und installierte Elektronik zu verdecken und zu schützen, wurde die Karosserie eines Ford Shelby GT-350 verwendet. Das Schwester-Fahrzeug "Diamond", das in allen Aufbauten "Saphir" gleicht, wurde mit einer Karosserie eines Audi RS8 ausgestattet.

1.1. Carolo Cup

Neue Entwicklungen für die Fahrzeuge des FAUST-Projektes können jährlich in einem Wettbewerb auf die Probe gestellt werden:

Der mit einem Preisgeld dotierte "Carolo-Cup" der TU Braunschweig (Carolo-Cup, 2013) bietet den Studenten verschiedener Hochschulen die Möglichkeit, die Funktion und Präzision des eigenen autonomen Fahrzeugs in verschiedenen Disziplinen zu demonstrieren. Hierbei sind die Fähigkeiten in den Kategorien

- · Spurführung und Ausweichen
- Einparken
- Befahren eines Rundkurses mit und ohne Hindernissen

vorzustellen. Die Ergebnisse werden einem Fachpublikum, bestehend aus Mitarbeitern aus Wirtschaft und Vertretern von Automobilherstellern, vorgestellt und von diesen bewertet.

Das Regelwerk des Cups beinhaltet eine Spezifikation für die Fahrbahn:

"Es gibt lediglich eine Straße. Bei dieser Straße handelt es sich um die Nachbildung einer Landstraße, bestehend aus langen Geraden, scharfen Kurven und Kreuzungen. Die Straße ist konstant 820 mm breit und an den Rändern mit durchgezogenen Linien abgegrenzt. Die zwei Fahrstreifen werden durch eine gestrichelte Mittellinie geteilt. Alle Linien sind weiß und ca. 20 mm breit. Die Mittellinie ist alle 200 mm durch eine 200 mm Lücke unterbrochen." ((Carolo-Cup, 2013), Regelwerk).

Die Fahrzeuge des FAUST-Projekts, die an dem Carolo-Cup teilnehmen, sind nach den vorgegebenen Spezifikationen konstruiert. Um die Funktionen exakt testen zu können, wurde in den Laboren der HAW Hamburg eine Teststrecke nach oben beschriebenen Regeln nachgebaut. Im Rahmen dieser Bachelorarbeit sind besonders die Angaben, die die Mittellinie betreffen, von großer Wichtigkeit. Diese bildet die Grundvoraussetzung für eine korrekte optische Messung der Geschwindigkeit.

1.2. Technische Besonderheiten

Die Fahrzeugplattform wurde, wie zu Beginn dieses Kapitels beschrieben, aufgrund spezieller technischer Spezifikationen ausgewählt und verfügt über eigens angefertigte Modifikationen. Zu den Besonderheiten, die bereits beim Kauf des Grundgerüstes des Fahrzeugs eine wichtige Rolle spielten, zählt ein Allradantrieb. Der starke Elektromotor treibt ein Ritzel an, durch das die Antriebskraft über einen Zahnriemen gleichmäßig an die Vorder- und Hinterachse verteilt wird.

An diesem Ritzel wurden manuell 20 Neodym-Magnete in identischem Abstand befestigt, welche mittels eines Hall-Sensors detektiert werden (vgl. Abbildung 1.2). Die Anzahl der Ticks, die der Sensor in einer bestimmten Zeitspanne ermittelt, dient als Grundlage für die aktuelle sensorische Geschwindigkeitsmessung.

Abbildung 1.2.: Hall-Sensor (FAUST, 2013)

Die Befestigung der Magnete per Hand wirkt sich auf die Genauigkeit der Messwerte aus. Eine Analyse der sensorischen Fehlerabweichung wird im folgenden Kapitel durchgeführt.

1.3. Geschwindigkeits-/Fehleranalyse

In diesem Abschnitt wird die Abweichung der tatsächlich gefahrenen Geschwindigkeit gegenüber der theoretischen, mit Sensoren gemessenen bestimmt. Wie bereits bei Hensel (2012) (S. 36), werden die Sensorwerte auf einer vorgegebenen Streckenlänge gemessen, um Abweichungen gegenüber Theoretischen Werten darstellen zu können. Differenzen entstehen hierbei durch mechanische Einwirkungen, wie z.B. die manuelle Montage der Magnete des Hall-Sensors.

Der Radumfang der Räder beträgt 207 Millimeter. Eine Umdrehung der Antriebsscheibe bei einer Übersetzung von 1:1 (d.h. eine Radumdrehung entspricht genau einer Umdrehung des Antriebsritzels) beträgt 20 Impulse. Somit wird mit einem Impuls eine Wegstrecke von 10,35 mm zurückgelegt.

$$\frac{207 \ mm \ Radum fang}{20 \ Impulse} = 10,35 \ mm \ pro \ Impuls \tag{1.1}$$

An einer Versuchsreihe wird festgestellt, ob die errechneten Werte mit den tatsächlich gemessenen Werten übereinstimmen. Das Fahrzeug wird auf einer zuvor exakt abgemessenen und markierten Strecke gerade über den Boden bewegt. Durch das Wiederholen der Testdurchführung kann ein Mittelwert der festgestellten Ergebnisse errechnet werden.

Der Versuch wurde für die Strecke von 1 Meter und für 5 Meter durchgeführt (vgl. Tabelle 1.1 und 1.2). Hierbei wird für jede Messung der aktuelle Wert des Hall-Sensors in seiner Funktion als Inkrementalgeber notiert und das Fahrzeug entlang der festgelegten Strecke bewegt. Der Endwert des Sensors wird vermerkt und die Differenz der Werte errechnet.

Um die festgestellten Werte analysieren zu können, ist es notwendig, die Anzahl der Impulse des Sensors zu kennen, die rechnerisch auf einer bestimmten Strecke auftreten. Bei einer Wegstrecke von 1 m gilt:

$$1 m = 1000 mm \rightarrow \frac{1000 mm}{10,35 mm \ pro \ Impuls} = 96, 6 \approx 97 \ Impulse$$
 (1.2)

Bei einer Strecke von 5 Metern tritt demnach die 5-fache Impulszahl auf:

$$5 m = 5000 mm \rightarrow \frac{5000 mm}{10,35 mm \ pro \ Impuls} = 483, 1 \approx 483 \ Impulse$$
 (1.3)

1. Das Fahrzeug

Messung	Startwert	Endwert	Differenz
1	2	103	101
2	109	210	101
3	308	409	101
4	507	608	101
Durchschnitt	-	-	101

Messung für die Distanz 1 Meter:

Tabelle 1.1.: Distanzmessung (1 Meter)

Messung für die Distanz 5 Meter:

Messung	Startwert	Endwert	Differenz
1	711	1222	511
2	1876	2385	509
3	32	540	508
4	1324	1835	511
6	2370	2882	512
7	3417	3926	509
Durchschnitt	-	-	510

Tabelle 1.2.: Distanzmessung (5 Meter)

Bei einer Wegstrecke von 1 Meter tritt eine Differenz von 4 Impulsen gegenüber der errechneten Impulszahl auf. Dies entspricht einem Fehler von 4,124% (vgl. Formel 1.4) gegenüber der tatsächlich gefahrenen Geschwindigkeit bzw. Wegstrecke. Diese Ungenauigkeit wird von der Messreihe auf 5 Meter bestätigt: Hier beträgt die Impulsdifferenz durchschnittlich 27 Impulse, was im Verhältnis zu der gefahrenen Strecke einem Fehler von 5,176% entspricht (vgl. Formel 1.5).

Fehlerberechnung für 1 Meter:

$$\frac{97}{100\%} = \frac{4}{x} \to x = 4,124\% \tag{1.4}$$

Fehlerberechnung für 5 Meter:

$$\frac{483}{100\%} = \frac{27}{x} \to x = 5,590\% \tag{1.5}$$

Wird diese Fehleranalyse auf die gefahrene Geschwindigkeit angewendet so ergibt sich ein Unterschied von circa 5 % zu der tatsächlich gefahrenen Geschwindigkeit.

2. Bildverarbeitung

Die Nutzung optischer Systeme im Rahmen dieser Bachelorarbeit impliziert die Verwendung von Bildverarbeitungsalgorithmen. Hierbei werden die zur Verfügung gestellten Bilddaten so modifiziert, dass nutzbare Informationen zur weiteren Verarbeitung extrahiert werden können.

Die freie Programmbibliothek "Open Source Computer Vision Library" (openCV) (OpenCV, 2013) ist hierbei von großem Nutzen. Sie "verfügt über mehr als 2500 optimierte Algorithmen", mit denen unter Anderem optische Merkmale aus Bildern gefiltert werden können. Außerdem ist es mit dieser Bibliothek möglich Merkmale durch Einzeichnung in das Bild kenntlich zu machen.

Bereits in vorhergehenden Bachelor- und Master-Thesen wurde diese Bibliothek genutzt, um Bildmerkmale zu analysieren. So wurde auch in der Bachelor-Thesis von Andreas Liedtke die "Realisierung eines robusten Verfahrens zur Identifikation von Positionsmarken unter Verwendung von Bildverarbeitung in Videobildern" (Liedtke, 2011) mittles in openCV enthaltenen SURF- (Speeded Up Robust Features) und SIFT- (Scale-Invariant Feature Transform) Algorithmen realisiert.

Eine weitere Entwicklung für die autonomen Fahrzeuge des FAUST-Projektes unter dem Aspekt der Bildverarbeitung, geht aus der Master-Thesis von Eike Jenning (Jenning, 2008) hervor. Diese beschäftigt sich mit der "Systemidentifikation eines autonomen Fahrzeugs mit einer robusten, kamerabasierten Fahrspurerkennung in Echtzeit". Dabei wird "die Fahrspur durch ein kubisches Polynom approximiert und anschließend die Fahrzeuglage in der Fahrspur, der tangentiale Steuerkurswinkel des Fahrzeugs zur Fahrspur und der Kurvenradius der Fahrspur identifiziert". Die daraus entstandene Fahrspurerkennung POLARIS wird im Rahmen des FAUST-Projektes weiterhin genutzt und weiterentwickelt.

2.1. Umwandlung von Bilddaten

Aufgrund kamera- und linsenspezifischer Gegebenheiten ist es notwendig, die Bilddaten, vor Weitergabe an einen Algorithmus, zu korrigieren. Hierbei ist es nötig, Kenntnis über den genutzten Bildsensor, das verwendete Objektiv und deren Spezifikationen zu haben. Auch der Montage-Winkel der Kamera auf dem Fahrzeug spielt eine große Rolle.

All diese Einflüsse müssen bei der Einrichtung und Kalibrierung der Kamera beachtet werden. Zwei hierbei äußerst relevante Faktoren werden im Folgenden erläutert.

2.1.1. Korrektur der Linsenverzeichnung

Die Linsenverzeichnung ist die Verzerrung eines aufgenommenen Bildes. "Bei weit-winkligen Objektiven", so wie sie auf den autonomen Fahrzeugen des FAUST-Projektes genutzt werden, "ist die radiale Linsenverzeichnung oftmals schon mit bloßem Auge zu erkennen"(Jacobi, 2009). Hierbei sind "kissen-" oder "tonnenförmige" Verzerrungen des Bildes zu sehen und Geraden werden als Kurven oder krumme Linien dargestellt. Dabei nimmt die Krümmung mit dem Abstand von der Bildmitte zu. Abbildung 2.1 zeigt den Unterschied zwischen einem verzeichneten und einem korrigierten Bild.

Die Master-Thesis von E. Jenning (Jenning (2008) (S. 23)) beschäftigt sich ebenfalls mit dieser Problematik. In dieser wird ein Weg vorgestellt, wie die Verzeichnung zu korrigieren ist, um korrekte Bilddaten zu erhalten. Hierbei werden "durch eine einmalige Kalibrierung der Kamera die, zur Verzeichnungskorrektur benötigten, internen Kameraparameter bestimmt".

Abbildung 2.1.: Verzeichniskorrektur (Jenning, 2008)

Für die optische Geschwindigkeitserkennung ist die Korrektur von Bilddaten von hohem Stellenwert. Bestimmte Pixelwerte werden dem Bild entnommen und zur weiteren Verarbeitung gespeichert. Verzeichnete Bilddaten können hier also zu Fehlern führen.

2.1.2. Bildtransformation

Da die Kamera in einem bestimmten Winkel auf dem Fahrzeug montiert ist, liegt die 2dimensionale Sensor-Ebene der Kamera anders im Raum, als die Ebene der Fahrbahn (siehe (Jenning, 2008) S. 26). Die Abbildung 2.2 skizziert diese Problematik.

Abbildung 2.2.: Kameramontage (Jenning, 2008)

Für die korrekte Weitergabe der Bilddaten ist es notwendig, dass diese veränderte Projektion auf den Sensor so transformiert wird, dass Entfernungs- und Größenangaben, die aus den Bilddaten gewonnen werden, korrekt vorliegen. Auch die projektive Transformation wurde im Rahmen der Master-Thesis von E. Jenning (Jenning, 2008) behandelt und gehört zur Basis der Bildverarbeitung auf den autonomen Fahrzeugen des FAUST-Projektes.

Konkret bedeutet das für diese Bachelorarbeit, dass Objekte, die im "hinteren" Teil des Bildes liegen, kleiner erscheinen, als Objekte mit der selben Größe im "vorderen" Abschnitt. In der Abbildung 2.3 erkennt man, dass ein Mittelliniensegment nahe dem Fahrzeug länger erscheint, als eines, dass weiter vom Fahrzeug entfernt liegt. Die projektive Transformation der Bilddaten

2. Bildverarbeitung

sorgt dafür, dass die Längenmessung des selben Segmentes an unterschiedlichen Bildpositionen den selben Wert ergibt.

Abbildung 2.3.: verzeichnetes Kamerabild

3. Geschwindigkeitsanalyse

Um die Bewegung eines Objektes optisch feststellen zu können, ist es notwendig, Veränderungen der Umgebung zu erfassen und auszuwerten. Die Geschwindigkeit an sich besteht aus der Änderung der Ortsposition über die Zeit. Diese Änderung kann auf unterschiedliche Weise festgestellt werden:

- mechanisch
- sensorisch
- optisch

Während die Fahrzeugindustrie die ersten beiden Punkte bereits nutzt (beispielsweise mit Wellen zur Drehzahlmessung oder Sensoren zur Geschwindigkeitsmessung), beschäftigt sich diese Bachelorarbeit mir der optischen Geschwindigkeitserkennung. Hierbei wird die Bewegung mittels optischer Merkmale ausgewertet.

Die Kamera des Versuchsfahrzeugs liefert Bilddaten, in denen per Bildverarbeitung brauchbare von unbrauchbaren Informationen getrennt werden. Die nutzbaren Daten werden dann zur weiteren Analyse an Verarbeitungsalgorithmen weitergegeben und zur Auswertung der Geschwindigkeit und Steuerung des Fahrzeuges genutzt.

3.1. Optische Merkmalsextraktion

Die Konzeption und Entwicklung eines Algorithmus zur optischen Kantendetektion basiert auf den vom Fahrzeug bereitgestellten Bilddaten.

Es werden die Grauwerte nebeneinander liegender Pixel miteinander verglichen. In welcher Form genau hierbei gesucht wird, ist in Kapitel 3.1.2 beschrieben.

In den aufgenommenen Kamerabildern haben die Bildpunkte der weißen Linien der genormten Fahrbahn einen hohen, die des schwarzen Fahrbahnuntergrunds jedoch einen niedrigen Grauwert. Eine große Differenz zweier Grauwerte wird somit als Linienkante gedeutet und die Pixelkoordinaten der gefundenen Kante gespeichert.

3.1.1. Position des Fahrzeugs auf der Fahrbahn

Bei der Auswertung der Bilddaten werden folgende Voraussetzungen angenommen:

- 1. das Fahrzeug befindet sich auf der genormten Fahrbahn (vgl. Kapitel 1.1 Carolo Cup)
- 2. das Fahrzeug hält sich zu jedem Zeitpunkt auf der rechten Fahrspur auf
- 3. die Mittelliniensegmente sind in der Mitte der Bildes positioniert
- 4. die Mittelliniensegmente laufen dicht neben der linken Fahrzeugseite vorbei

Nachfolgend ist eine Abbildung dargestellt, die die notwendige Position verdeutlicht:

Abbildung 3.1.: optimale Fahrzeugposition

Ist einer der oben genannten Punkte nicht erfüllt, so kann im Rahmen dieser Bachelorarbeit nicht gewährleistet werden, dass die Geschwindigkeit des Fahrzeugs richtig bestimmt wird.

3.1.2. ROIs nutzen

Regions of Interest (ROI) sind ein wichtiges Hilfsmittel für die Extraktion relevanter Bilddaten zur Erstellung des Algorithmus zur optischen Geschwindigkeitsfeststellung. Mit ihnen wird ein bestimmter Bereich im Bild festgelegt, in dem nach definierten Strukturen gesucht wird. Im Rahmen dieser Bachelorarbeit werden die Übergänge schwarzer und weißer Bildbereiche gesucht. Es werden demnach ROIs an die Positionen im Bild gelegt, in denen sich weiße Mittelliniensegmente befinden - also im vertikalen Zentrum des Bildes. Die Abstände der ROI ergeben sich aus der späteren Parametrisierung des Algorithmus.

In dem Bild wird abhängig von der Fahrzeugposition ein eindimensionaler ROI in das Bild gelegt (vgl. Abbildung 3.2). Dieser besteht aus einem vertikalen Bereich, der nur einen Pixel hoch, und eine definierte Anzahl von Pixeln breit ist. Auf ihm wird ein Algorithmus zum Detektieren von schwarz-weiß-Übergängen angewendet. Diese "Scan-Linie" wird pixelweise von links nach rechts durchlaufen, wobei der Grauwert jedes Pixels mit dem Grauwert des folgenden Pixels verglichen wird. Sollte der Algorithmus einen Unterschied der Werte feststellen, so wird weiterhin geprüft, ob in kurzer Distanz eine weitere Differenz festzustellen ist. Ist dies der Fall, wird die Position zwischen den festgestellten Pixeln als Linienmittelpunkt gespeichert.

Abbildung 3.2.: Scan-Algorithmus

3.2. Algorithmus zur Kantenfindung

Der Algorithmus soll mittels markanter und sich in gleicher Weise wiederholender Punkte die Bewegung des Fahrzeugs ermitteln. Die einzigen Merkmale, die hierfür auf der genormten Fahrbahn in Frage kommen, sind die kurzen Enden der Mittelliniensegmente, da diese stets einen Abstand von 200 mm haben (vgl. Kapitel 1.1, Carolo-Cup Regelwerk) und immer im selben Bildbereich liegen (siehe Markierungen in Abbildung 3.3).

Abbildung 3.3.: kurze Linienkanten

Im Folgenden wird die Entwicklung des Algorithmus erläutert, der zur Detektion der o.g. kurzen Linienkanten und der daraus resultierenden Geschwindigkeitsfeststellung führt. Hierbei wurde der Ansatz von E. Hensel aus Kapitel 2.4 ("Ermittlung der Geschwindigkeit mittels Bildverarbeitung") seiner Master-Thesis "Kamerabasierte Fahrspuridentifikation und -repräsentation unter Berücksichtigung eines kinematischen Bewegungsmodells" (Hensel, 2012) berücksichtigt.

Da die Mittelliniensegmente aus perspektivischen Gründen nicht senkrecht, sondern in einem bestimmten Winkel im Bild liegen, kommt folgender Ansatz zum Tragen: Unter Zuhilfenahme vertikaler ROI (vgl. Abbildung 3.2) kann ein Punkt auf einem Segment detektiert werden. Führt

man diesen Algorithmus ein weiteres Mal auf dem selben Mittelliniensegment, aber an einer leicht veränderten Position aus, so erhält man zwei Punkte, die das Segment markieren. Die beiden Punkte können nun miteinander verbunden werden; die entstehende Gerade liegt direkt auf der Mittellinie und wird als neuer ROI betrachtet. Da dieser neue ROI jedoch nur die beiden Punkte verbindet, wird nachfolgend erläutert, wie er verlängert wird, um die kurzen Kanten des Segments zu schneiden.

Die folgende Nomenklatur stellt die genutzten Variablen für die Berechnung der o.g. Verlängerung des neuen ROI dar.

3. Geschwindigkeitsanalyse

Variable	Erläuterung		
FirstPoint (x_f, y_f)	durch vertikalen ROI ermittelter Linienpunkt, der vorne auf		
	dem Mittelliniensegment liegt; x_f und y_f stellen die Punkt-		
	Koordinaten dar		
SecondPoint (x_s , y_s)	durch vertikalen ROI ermittelter Linienpunkt, der hinten auf		
	dem Mittelliniensegment liegt; x_s und y_s stellen die Punkt-		
	Koordinaten dar		
straight _a	Länge der Ankathete des Punktes FirstPoint im Steigungsdrei-		
	eck		
straight _b	Länge der Ankathete des Punktes SecondPoint im Steigungs-		
	dreieck		
<i>y</i>	Gerade im Steigungsdreieck, die FirstPoint und SecondPoint		
	verbindet		
β	Winkel der Geraden y zu straight_a		
m	Steigung der Geraden y		
b	Schnittpunkt der Geraden <i>y</i> mit der y-Achse		
add_a	Wert, um den <i>straight_a</i> verlängert wird (horizontale Erweite-		
	rung)		
add_b	Wert, um den <i>straight_b</i> verlängert wird (vertikale Erweite-		
	rung)		
newFirstPoint (x_{nf} , y_{nf})	neue Position des Punktes FirstPoint, die durch Erweiterung		
	von <i>straight_a</i> und <i>straight_b</i> entsteht; x_{nf} und y_{nf} stellen die		
	Punkt-Koordinaten dar		
newSecondPoint (x_{ns} , y_{ns}	neue Position des Punktes SecondPoint, die durch Erweiterung		
	von <i>straight_a</i> und <i>straight_b</i> entsteht; x_{ns} und y_{ns} stellen die		
	Punk-Koordinaten dar		
edge1, edge2	Positionen der gefundenen kurzen Kanten eines Mittellinien-		
	segments		

Tabelle 3.1.: Nomenklatur

In der nachfolgenden Vergrößerung des Bildausschnitts, der die horizontalen Scanlinien und detektierten Punkte auf dem Mittelliniensegment zeigt, wurde ein Steigungsdreieck eingezeichnet, mit dem verdeutlicht wird, wie die Formel zum Erstellen des neuen ROI entsteht.

3. Geschwindigkeitsanalyse

Abbildung 3.4.: Steigungsdreieck im Bild

In der folgenden Abbildung ist die schematische Darstellung dieses Dreiecks skizziert.

Abbildung 3.5.: Skizziertes Steigungsdreieck

Die Gerade *y*, die den neuen ROI darstellt, verbindet die beiden Punkte *First Point* und *Second Point*. Sie kann mittels der Geradengleichung

$$y = mx + b \tag{3.1}$$

dargestellt werden. Hierbei werden die Steigung m und der y-Achsen-Abschnitt b im späteren Verlauf der Algorithmus-Entwicklung ermittelt (vgl. Formel 3.14 und 3.15).

Da das entstandene Steigungsdreieck rechtwinklig ist, kann die Länge der beiden Katheten $straight_a$ und $straight_b$ aus der Differenz der jeweiligen x- beziehungsweise y-Koordinaten der beiden Punkte bestimmt werden:

$$straight_a = x_f - x_s \tag{3.2}$$

$$straight_b = y_f - y_s \tag{3.3}$$

Diese werden für die weitere Verwendung bei der Berechnung benötigt.

Damit die Gerade y über das Ende der Mittellinie hinausgeht und somit die kurzen Kanten des Segments schneidet, muss sie um einen bestimmten Faktor verlängert werden.

Abbildung 3.6.: Neue Punkte festlegen

Um die Strecke *y* verlängern zu können, ist es zunächst erforderlich, die beiden Punkte *FirstPoint* (x_f, y_f) und *SecondPoint* (x_s, y_s) um einen definierten Abstand und eine bestimmte Richtung zu verschieben. Damit die versetzten Punkte hiernach weiterhin auf der Geraden *y* liegen, muss deren Winkel im 2-dimensionalen Raum ermittelt werden. Im **1. Schritt** der Abbildung **3.6** ist zu erkennen, dass dies mittels Trigonometrie möglich ist. Somit ist der Tangens des Winkels β das Verhältnis der Längen von Ankathete und Gegenkathete:

$$\tan(\beta) = \frac{straight_b}{straight_a}$$
(3.4)

Stellt man diese Formel nun um, so erhält man den Winkel β:

$$\beta = \arctan\left(\frac{straight_b}{straight_a}\right) \tag{3.5}$$

3. Geschwindigkeitsanalyse

Ein zuvor definierter Wert *addLength* gibt die Länge der Verschiebung der Punkte und somit die Verlängerung der Geraden *y* in Pixeln an (Abbildung **3.6**, **2. Schritt**).

Abbildung 3.7.: Verlängerung berechnen

Unter Zuhilfenahme des errechneten Winkels β und der Strecke *addLength* lassen sich die Längen der Katheten *add_a* und *add_b* eines neuen rechtwinkligen Dreiecks bestimmen (**3. Schritt**), welches entsteht, wenn die Punkte *FirstPoint* (x_f , y_f) und *SecondPoint* (x_s , y_s) verschoben werden. Auch hier können die Werte unter Zuhilfenahme der Trigonometrie bestimmt werden. Da die Länge *addLength* und der Winkel β bekannt sind, sind folgende Zusammenhänge von Bedeutung: Das Verhältnis von Gegenkathete zu Hypotenuse ist der Cosinus des Winkels β , das von Ankathete zu Hypotenuse bestimmt den Sinus von β (vgl. Gleichung 3.6 und 3.7).

$$\cos(\beta) = \frac{add_{-a}}{addLength}$$
(3.6)

$$\sin(\beta) = \frac{add_{-b}}{addLength} \tag{3.7}$$

Stellt man die Formeln 3.6 und 3.7 um, so erhält man jeweils die Länge der Unbekannten *add_a* und *add_b*:

$$add_a = \cos(\beta) \cdot addLength$$
 (3.8)

$$add_b = \sin(\beta) \cdot addLength$$
 (3.9)

Mit den berechneten Längen von add_a und add_b lassen sich die x- und y-Werte der neuen Punkte *newFirstPoint* (x_{nf} , y_{nf}) und *newSecondPoint* (x_{ns} , y_{ns}) im Koordinatensystem berechnen. Da die Ursprungspunkte jeweils in eine andere Richtung verschoben werden, müssen für den Punkt *newFirstPoint* die neuen Kathetenlängen subtrahiert, für *newSecondPoint* jedoch addiert werden.

$$x_{nf} = x_f - add_a \quad \text{und} \quad y_{nf} = y_f - add_b \tag{3.10}$$

$$x_{ns} = x_s + add_a \quad \text{und} \quad y_{ns} = y_s + add_b \tag{3.11}$$

Somit ergeben sich für die Seiten straight_ a_n und straight_ b_n (3.5, 4. Schritt) die neuen Längen

$$straight_a = straight_a + add_a$$
 (3.12)

$$straight_b = straight_b + add_b$$
 (3.13)

Wurde die Verlängerung berechnet, kann die ermittelte Gerade y_n als neuer ROI betrachtet und der Algorithmus zur Ermittlung der Grauwertdifferenzen angewendet werden, um die kurzen Kanten zu detektieren. Wie in Kapitel 3.1 (Optische Merkmalsextraktion) beschrieben, ist auch hier ein wiederum herausstechendes Merkmal, dass das Liniensegment einen hohen Grauwert, der Untergrund jedoch einen sehr niedrigen Grauwert besitzt. In der folgenden Abbildung wurden mittels openCV die vertikalen Scanlinien und der neu berechnete ROI eingezeichnet.

3. Geschwindigkeitsanalyse

Abbildung 3.8.: Scanlinien eingezeichnet

Der **4. Schritt** der Abbildung 3.7 skizziert den Algorithmus, der durchgeführt wird, um o.g. Grauwertunterschiede im Bereich der neuen Scanlinie y_n festzustellen. Beginnend von Punkt *newFirstPoint* (x_{nf} , y_{nf}), wird die Linie Pixel für Pixel durchlaufen. Dabei wird, wie bereits bei der Detektion der Mittellinien-Segmente, der jeweils vorherige Grauwert mit dem Aktuellen verglichen. Tritt eine Differenz der Werte auf, die eine definierte Schwelle überschreitet, wird die Koordinate des aktuellen Pixel als gefundener Kantenpunkt gespeichert.

Im Unterschied zu der horizontalen Erkennung der Mittellinie, bei der der *y*-Wert gleich bleibt, muss hier nicht nur in *x*-Richtung gesucht werden, sondern der neue ROI y_n in einem Winkel β durchlaufen werden. Dies bedeutet, dass zu jedem Schritt in *x*-Richtung ein neuer *y*-Wert errechnet werden muss.

Da eine Winkelangabe für die Berechnung von *x*- und *y*-Koordinaten im Koordinatensystem nicht ohne größeren Rechenaufwand zu verwenden ist, werden die Variablen der Geradengleichung 3.1 (y = mx + b) genutzt. Die Steigung *m* der Geraden y_n entspricht dem Verhältnis von

straight_ b_n zu straight_ a_n .

$$m = \frac{straight_b_n}{straight_a_n} \tag{3.14}$$

Des Weiteren ist der *y*-Achsen-Abschnitt *b* durch Umstellung der Geradengleichung 3.1 zu ermitteln. Die Steigung *m* ist nun bekannt und für *x* und *y* können die Werte von einem der bekannten Punkte *newFirstPoint* (x_{nf} , y_{nf}) oder *newSecondPoint* (x_{ns} , y_{ns}) eingesetzt werden.

$$b = y_{nf} - m \cdot x_{nf} \quad \text{oder} \quad b = y_{ns} - m \cdot x_{ns} \tag{3.15}$$

Nachdem alle nötigen Parameter berechnet wurden, kann die neue Scanlinie nun pixelweise durchlaufen werden. Hierbei wird zunächst der aktuelle *x*-Wert um einen Schritt erhöht und gespeichert (vgl. Gleichung 3.16). Um den neuen *y*-Wert zu errechnen, wird dieser dann in die Geradengleichung (vgl. Gleichung 3.1) eingesetzt und als *nextY* gespeichert.

$$nextX = x_{nf} + 1 \tag{3.16}$$

$$nextY = m \cdot (nextX) + b \tag{3.17}$$

Dies geschieht so lange, bis der Wert von *nextY* dem Wert y_{ns} des Punktes *newSecondPoint* gleicht und somit der gesamte neue ROI durchlaufen wurde. Die gefundenen Punkte werden als *edge1* und *edge2* gespeichert.

In der folgenden Tabelle ist die Veränderung der genutzten Variablen im Verlauf der Algorithmus-Entwicklung dargestellt:

3. Geschwindigkeitsanalyse

#	Input	Output	Nutzung
1	Ursprungskoordinate für	FirstPoint (x_f, y_f)	Erstellung der
	Scanlinie	SecondPoint (x_x , y_s)	horizontalen ROIs, um Mit-
			telliniensegment zu detek-
			tieren
2	FirstPoint (x_f, y_f)	straight_a	Bestimmung der Katheten
	SecondPoint (x_x , y_s)	straight_b	des entstandenen Stei-
			gungsdreiecks
3	straight_a	β	Berechnung von Winkel,
	straight_b	m	Steigung und y-Achsen-
		b	Abschnitt der Steigungs-
			Geraden
4	addLength	add_a	Feststellung der Werte
	β	add_b	für die Erweiterung des
			Steigungsdreicks
5	FirstPoint (x_f, y_f)	newFirstPoint (x_{nf}, y_{nf})	Bestimmung der neuen
	SecondPoint (x_x , y_s)	newSecondPoint (x_{nx} , y_{ns})	Werte für FirstPoint
	add_a		und SecondPoint
	add_b		
6	newFirstPoint (x_{nf}, y_{nf})	edge1	Strecke zwischen
	newSecondPoint (x_{nx} , y_{ns})	edge2	newFirstPoint und
	m		newSecondPoint gilt
	b		als neuer ROI; kurze Kan-
			ten werden gespeichert

Tabelle 3.2.: Veränderung der genutzten Variablen

Zum besseren Verständnis der Nutzung der in Tabelle 3.2 genannten Daten ist nachfolgend der Datenfluss grafisch veranschaulicht:

Abbildung 3.9.: Verarbeitungsablauf

Laufzeitverbesserung

Der vorher beschriebene Algorithmus zu Detektion der kurzen Linienkanten (vgl. Kapitel 3.2) wird, wie nachfolgend beschrieben, nach Hensel (vgl. Hensel (2012)) erweitert:

Anstatt die komplette Linie vom ersten zum zweiten Punkt durchgängig zu scannen (Abb. 3.10), bietet sich als **2. Variante** die Möglichkeit, aus dem gesamten ROI zwei Bereiche zu schaffen, die nur das vordere und das hintere Ende der Mittellinie scannen, da die Erstellung der Punkte *FirstPoint* (x_f , y_f) und *SecondPoint* (x_s , y_s) bereits die Erkennung eines durchgängigen Mittelliniensegments impliziert und zwischen diesen Punkten keine kurzen Kanten existieren können. Somit wird der Rechenaufwand für die Kantenerkennung reduziert.

Ein weiterer Vorteil ist, dass die gespeicherten Positionen der kurzen Segmentkanten hierdurch besser auseinander gehalten werden können. Es werden die Formeln 3.16 und 3.17 zum Durchlaufen der Scanlinie nur auf die Bereiche zwischen *FirstPoint* und *newFirstPoint* beziehungsweise *SecondPoint* und *new SecondPoint* beschränkt.

Abbildung 3.10.: Scan-Varianten

Die Detektion der kurzen Kanten wird nun in einem definierten Abstand auf einer im Bild weiter entfernten Mittellinie nochmals durchgeführt und die gefundenen Punkte gespeichert. Während sich das Fahrzeug fortbewegt, ändern sich die Koordinaten der kurzen Linienpunkte im Bild. Aufgrund dieser Verschiebung kann die Geschwindigkeit des Fahrzeugs ermittelt werden. Hierzu werden die Koordinaten der jeweils gespeicherten Punkte, sowie deren Detektionszeitpunkt, miteinander verglichen und aus der Differenz die gefahrene Strecke und die vergangene Zeit ermittelt. Mittels des Weg-Zeit-Verhältnisses kann somit die Geschwindigkeit berechnet werden, mit der sich das Versuchsfahrzeug bewegt.

Komplexität

Der Algorithmus zur Kantenfindung wird im Programmablauf für jedes einzelne erstellte horizontale ROI-Paar aufgerufen. Im Verlauf des Algorithmus werden die einzelnen Parameter zum Erstellen und Durchlaufen des ROI neu berechnet. Da hierfür jeweils die selbe Berechnung für *m*, *b*, β , *straight*_a und *straight*_b (vgl. Tabelle 3.1) durchgeführt wird, liegt die Komplexität bei $\mathcal{O}(1)$.

Im weiteren Verlauf der Funktion wird in einer Schleife der jeweilige neu erstellte ROI pixelweise durchlaufen. Die Komplexität hierfür ist O(n), da dieser Schleifenaufruf nicht weiter verschachtelt ist.

Die Schrankenfunktion für den Algorithmus zur optischen Kantendetektion ist also linear und liegt somit bei O(n).

3.3. Konzept zur Feststellung der Geschwindigkeit

Die Geschwindigkeit eines Fahrzeugs wird ermittelt, indem zwei Messungen hintereinander an einem hierfür vorgesehenen Sensor durchgeführt werden. Aus der Relation zwischen der Messwertdifferenz und der für die Messung benötigten Zeit kann die Geschwindigkeit ermittelt werden. Dabei ist es notwendig, Kenntnis über die gefahrene Strecke zu haben, die sich auf eine Messeinheit auswirkt. Als Beispiel ist hier der in Kapitel 1.3 analysierte Hall-Sensor zu nennen. Da Radumfang und Anzahl der Magnete bekannt sind, kann die Wegstrecke errechnet werden, die einen Impuls auslöst (vgl. Gleichung 1.1).

Ähnlich verhält es sich mit der optischen Geschwindigkeitsmessung. Mit der entwickelten Erkennung der kurzen Kanten eines Mittelliniensegments ist es möglich, eine Veränderung der Bilddaten über die Zeit festzustellen.

Jedes neue Bild, das von der Kamera an die Software übergeben wird, wird mittels des Algorithmus zur Kantenfindung (vgl. Kap. 3.2) analysiert und gefundene Kantenpunkte werden gespeichert. Bei der Speicherung der Koordinaten einer Kante wird gleichzeitig ein Zeitstempel gesetzt, der der Kante zugeordnet wird. Sobald das nächste Bild auf die selbe Art untersucht wurde, kann die Differenz von Koordinaten und Zeitstempeln eines Kantenpunktes genutzt werden, um die Geschwindigkeit des Fahrzeugs zu ermitteln (vgl. Abbildung 3.11).

Die Strecke zwischen den beiden Punkten wird hierbei mit dem Satz des Pythagoras festgestellt. Wie schon bei der Ermittlung des neuen ROI (vgl. Kapitel 3.2) kann die Verschiebung des Punktes im Koordinatensystem durch ein rechtwinkliges Dreieck dargestellt werden. Mit dem o.g. Satz ist es somit möglich, die Streckendifferenz Δs der Punkte $edge1(x_{e1}, y_{e1})$ und $edge2(x_{e2}, y_{e2})$ zu bestimmen:

$$\Delta s = \sqrt{(y_{e2} - y_{e1})^2 + (x_{e2} - x_{e1})^2}$$
(3.18)

Abbildung 3.11.: Zurückgelegte Strecke bestimmen

Aufgrund der festgestellten Streckendifferenz Δs (in cm) und der Differenz der Zeitstempel (in ms) kann nun das Verhältnis von Strecke zu Zeit als Geschwindigkeit, also in **cm/s** oder auch **km/h** ausgedrückt werden.

Voraussetzungen

Für die korrekte Berechnung ist ausschlaggebend, dass die Werte folgende Richtlinien einhalten:

- Bilddaten wurden durch eine kalibrierte Kamera erstellt
- · Linsenverzeichnung wurde herausgerechnet
- · projektive Transformation wurde berechnet

Eine falsche oder ungenaue Kalibrierung der Kamera verfälscht die Berechnung der Geschwindigkeit, ähnlich wie die in der Einleitung erwähnte Abnutzung der Reifen für einen Hall-Sensor. Die Entzerrung der Linsenverzeichnung spielt gerade in Zusammenhang mit sog. "Fisheye-Objektiven", welche im FAUST-Projekt genutzt werden, eine große Rolle. Diese ermöglichen zwar einen großen Sichtbereich, verfälschen aber die Bilddarstellung der realen Welt ungemein. Deswegen ist das Herausrechnen dieser Verzerrung für die Ermittlung korrekter Bilddaten unabdingbar (vgl. Kapitel 2.1.1).

Aufgrund perspektivischer Gegebenheiten ist eine Berechnung der Verschiebung der Punkte unter ebenfalls Berücksichtigung der projektiven Transformation nötig. Das nicht Beachten hätte zur Folge, dass Veränderungen im "hinteren" Bildbereich eine geringere Streckenlänge ergeben würden, als im "Vorderen" (Kapitel 2.1.2).

3.3.1. Einbeziehung des Hall-Sensors

Eine Erweiterung des Konzeptes zur Feststellung der Geschwindigkeit, die im Rahmen dieser Bachelorarbeit umgesetzt wurde, stellt die unterstützende Einbeziehung des auf dem Fahrzeug montierten Hall-Sensors dar. Zwar liefert dieser, wie in der Fehleranalyse (vgl. Kapitel 1.3) aufgezeigt, keine genauen Werte, es kann jedoch, angesichts des festgestellten relativen Fehlers, ein Näherungswert angenommen werden.

Die Werte des Hall-Sensors werden genutzt, um die optisch gemessene Geschwindigkeit zu verifizieren.

3.4. Implementierung des Algorithmus

Das folgende Kapitel beschreibt den Vorgang, der nötig war, um eine genaue Geschwindigkeitsanalyse erstellen zu können. Hierbei ist zu beachten, dass die Koordinatenangaben unterschiedlich ausgedrückt werden. So ist es teilweise notwendig, die Daten in Welt-Koordinaten vorliegen zu haben, Berechnungen werden jedoch oft in Bild-Koordinaten durchgeführt (vgl. Abbildung 2.2 - Kameramontage (Jenning, 2008)).

Vorbereitung

Zu Beginn der Entwicklung muss eine Umgebung geschaffen werden, deren Parameter sich wiederholen und vorhersagen lassen. Im konkreten Fall bedeutet dies, dass die Werte des Algorithmus auf einem einzelnen Bild entwickelt werden. Hierbei handelt es sich um ein Einzelbild aus der Aufzeichnung einer Testfahrt. Wichtig ist, dass das Bild folgende Kriterien erfüllt:

- 1. das Bild wurde mit einer kalibrierten Kamera aufgenommen
- 2. das Fahrzeug befindet sich in optimaler Position (siehe Kapitel 3.1.1)
- 3. ein Mittelliniensegment befindet sich an einer sehr guten Position

Die Abbildung 2.3 zeigt das Ursprungs-Bild, auf dem anfangs die Algorithmus-Entwicklung stattfand.

Erster Schritt - Mittelliniensegment erkennen

Als Grundlage für die Erkennung der kurzen Kanten eines Mittelliniensegmentes ist es, wie in Kapitel 3.2 beschrieben, notwendig, mittels horizontaler Scanlinien / ROIs zwei Punkte auf eben diesem Mittelliniensegment zu finden. Hierbei wird eine horizontale Scanlinie verwendet, wie sie in Abbildung 3.2 gezeigt ist. Auf dem festen Testbild werden also die Positionen für zwei Scanlinien ermittelt, die ein Mittelliniensegment schneiden. Hierbei wird darauf geachtet, dass die Scanbereiche jeweils im ersten und letzten Drittel des Segments liegen.

Zunächst wird der Bereich definiert, in dem die erste Scanlinie platziert werden muss. Diese dient dann als Ursprung für alle weiteren verwendeten Scan-Bereiche. Als Initialwert für den Beginn der ersten Scanlinie wurden folgende Werte ermittelt:
3. Geschwindigkeitsanalyse

Beginn	Scan-	x-Koordinate	y-Koordinate
Linie			
vordere		7	-33

Tabelle 3.3.: Initialwerte

Wie zuvor erwähnt, wird die Position der zweiten Linie anhand der Koordinaten der initialen Scanlinie festgelegt. Hierfür ist in Welt-Koordinaten ein Abstand zu definieren, der die Verschiebung in x-Richtung definiert. Als optimale Entfernung wurde hier ein Wert von 5 Zentimetern ermittelt.

Zweiter Schritt - Konzept für neuen ROI

Das im ersten Schritt erstellte ROI-Paar wird nun genutzt, um zwei Punkte des Mittelliniensegments zu detektieren. Anhand dieser Punkte ist es im weiteren Verlauf möglich, einen neuen ROI zu erstellen, der direkt auf dem Mittelliniensegment liegt.

Das Konzept hierfür beinhaltet zunächst, die beiden gefundenen Punkte auf der Mittellinie miteinander zu verbinden (vgl. Tabelle 3.1, *FirstPoint* und *SecondPoint*). Unter der Vorraussetzung, dass die Punkte des im ersten Schritt erstellten ROI-Paares mittig auf dem Mittelliniensegment liegen, wird durch das Verbinden dieser Punkte automatisch eine Linie auf die Mittellinie gelegt (vgl. Abbildung 3.5, Gerade *y*).

Um das Verbinden der Punkte zunächst optisch darstellen zu können, wird die Linie unter Verwendung von openCV erstellt. Hierbei stellt sich klar heraus, dass zwar eine Verbindung zwischen den gefundenen Punkten besteht, die kurzen Linienkanten des Mittelliniensegments allerdings nicht erkannt werden können (die Linine reicht nicht wie gewünscht über das Ende der Mittellinine heraus). Es muss also zunächst eine Möglichkeit gefunden werden, die Verbindung zwischen den im ersten Schritt gefundenen Punkten so weit in beide Richtungen zu verlängern, dass sie über die Enden der Mittellinine herausragt.

Dritter Schritt - Neuen ROI korrekt formatieren

Der erste Ansatz für die Verlängerung der Verbindung zwischen den beiden gefundenen Punkten des Mittelliniensegments beinhaltete das Multiplizieren der Katheten *straight_a* und *straight_b* (vgl. Tabelle 3.1) um einen einstellbaren Faktor. Hierbei wurde bereits auf den Winkel des ROI im Raum Rücksicht genommen.

Nach einigen Tests stellte sich jedoch heraus, dass die neu berechnete Länge der ROI stark von

dem Winkel im Raum abhängt. So wird der ROI schnell länger, wenn der Winkel kleiner wird. Nach einigen Überlegungen wurde dann das Konzept, wie es in Kapitel 3.2 - Algorithmus zur Kantenfindung beschrieben ist, umgesetzt. Anstatt die Linie von sich aus zu verlängern, werden zunächst die neuen Endpunkte des ROI berechnet, um die Linie erst dann zu verlängern bzw. zu nutzen.

Vierter Schritt - ROI durchlaufen

Nachdem ein ROI geschaffen wurde, der den Anforderungen entspricht, nämlich sowohl direkt auf dem Mittelliniensegment zu liegen, als auch über die kurzen Enden des Segments hinauszuragen, gilt es herauszufinden, wie diese kurzen Enden detektiert werden können. Die einfache und dennoch wirkungsvollste Lösung hierfür ist die Nutzung der Idee, den ROI pixelweise zu durchlaufen und dabei die Grauwerte der jeweils nebeneinanderliegenden Pixel miteinander zu vergleichen (vgl. Kapitel 3.1.2 - ROIs nutzen). Anstatt jedoch jeweils nur den x-Wert zu erhöhen (für einen vertikal liegenden ROI), muss der Winkel des neuen Scanbereichs beachtet werden und auch der entsprechende y-Wert eines neuen x-Wertes errechnet werden. Hierbei werden zunächst die bekannten Werte des Startpunktes *newFirstPoint* (vgl. Tabelle 3.1) verwendet und in allgemeine Geradengleichung

$$y = m \cdot x + b \tag{3.19}$$

eingesetzt. Die Steigung *m* und der y-Achsen-Abschnitt *b* sind bereits aus vorherigen Berechnungen bekannt (vgl. Formel 3.14 und 3.15). Der nächste Bildpunkt wird festgelegt, indem der x-Wert um 1 erhöht wird und der dazugehörige y-Wert durch Umstellung der Gleichung 3.19errechnet wird.

Durch den Vergleich der Grauwerte der beiden Pixel kann nun festgestellt werden, ob es sich um einen schwarz-weiß- bzw. weiß-schwarz-Übergang handelt.

Fünfter Schritt - Scaneigenschaften verbessern

In Anlehnung an die Masterarbeit von E. Hensel (vgl. Hensel (2012)) wird das im vierten Schritt erläuterte Durchlaufen des neuen ROI verändert, indem nicht mehr der gesamte Scanbereich durchlaufen wird, sondern nur die Abschnitte, in denen sich logisch betrachtet eine kurze Kante eines Mittelliniensegmentes befinden kann. Der Bereich zwischen den im ersten Schritt detektierten Punkte enthält niemals eine der gesuchten Kanten und kann somit ausgeschlossen werden (vgl. Abbildung 3.10).

Für die Umsetzung der Idee wird das Konzept genutzt, wie es im vierten Schritt beschrieben

ist. Aus einem ROI werden jedoch Zwei geschaffen, wodurch auch der Suchalgorithmus ein zweites Mal ausgeführt werden muss. Als Startwert für den jeweiligen ROI wird hierfür der ursprünglich detektierte Linienpunkte gewählt. Je nach Suchrichtung muss nun der x- und der zugehörige y-Wert erhöht **oder** verringert werden. Den Endwert des Suchalgorithmus stellt jeweils die neu festgelegten Endpunkte *newFirstPoint* bzw. *newSecondPoint* des neuen ROI dar (vgl. Abbildung 3.10).

In diversen Versuchsreihen wurde der entwickelte Algorithmus (vgl. Kapitel 3.2) auf dem Versuchsfahrzeug getestet. Die Ergebnisse der Messungen wurden unter dem Aspekt zweier relevanter Kriterien ausgewertet. Zum Einen handelt es sich um das Hauptmerkmal des Algorithmus, nämlich die festgestellte Geschwindigkeit, und zum Anderen die Zeit für die Berechnung eben dieser Feststellung.

Um den Vergleich von verschiedenen Messungen besser darstellen zu können, werden hier nicht nur die Ergebnisse der Tests auf dem Versuchsfahrzeug, sondern auch die Testdaten vergleichbarer Simulationen auf unterschiedlichen PC-Plattformen hinzugezogen.

4.1. Testdurchführung

Wie eingangs erwähnt, wurden die Tests auf verschiedenen Plattformen durchgeführt. In erster Linie sind jedoch die Ergebnisse der Versuche auf dem Fahrzeug von Bedeutung. Die Vergleichbarkeit festgestellter Daten ist hierbei von großer Wichtigkeit. Es wurde also eine Methode angewendet, die die gespeicherten Werte aller getesteten Plattformen kompatibel macht:

Der zur Geschwindigkeitsdetektion entwickelte Algorithmus (vgl. Kapitel 3.2) wird durch einen *Scheduler*¹ regelmäßig während des Programmablaufs aufgerufen. Wird bei einem Aufruf die Geschwindigkeit festgestellt, so wird das Ergebnis in einem Terminal bzw. in einer Datei ausgegeben. Dies geschieht fortlaufend und dient zur späteren Auswertung der Messergebnisse. Ähnlich verhält es sich mit der Feststellung der Geschwindigkeit durch den am Fahrzeug angebrachten Hall-Sensor: Die Funktion zur Messung der Geschwindigkeit mittels dieses Sensors ist in die Methode integriert, in der auch der o.g. Algorithmus aufgerufen wird. Bei jedem Aufruf wird der aktuelle Messwert zur Ermittlung der zurückgelegten Wegstrecke und somit zur gefahrenen Geschwindigkeit festgestellt. Bei Bedarf wird auch dieser Wert in das Terminal bzw. die Datei zur späteren Auswertung ausgegeben.

¹Steuerprogramm für die Ausführung mehrerer Prozesse

Die Ermittlung der Rechenzeit, also der Zeit, die benötigt wird, um die Methode mit samt des Algorithmus zur Geschwindigkeitsdetektion auszuführen, wird schlicht mit der Verwendung zweier Zeitstempel realisiert: Bei einem Aufruf der Methode wird zu Beginn ein Zeitwert gemessen und gespeichert. Nach Ausführung des Algorithmus wird eine weitere Zeit gemessen, von der der anfangs ermittelte Wert subtrahiert wird. Die so festgestellte Differenz stellt die Zeit (üblicherweise in Millisekunden) dar, die für die Berechnung erforderlich war. Auch diese Werte werden schließlich ausgegeben.

Zum Vergleich der Daten aller Plattformen werden diese tabellarisch erfasst (vgl. Anhang) und zusammenfassend in Kapitel 4.2 erläutert.

Zur besseren Übersicht ist die Erfassung der Daten in der folgenden Darstellung bildlich verdeutlicht.

Abbildung 4.1.: Feststellung der Ergebnisse

Vergleichbarkeit von Messwerten

Für die Auswertung der Messdaten wurden jeweils mehrere Tests auf den verschiedenen Plattformen durchgeführt. Bei den Versuchen mit dem Fahrzeug wurden die Daten ausgewertet, die direkt von den Live-Bildern für den Geschwindigkeitsalgorithmus, beziehungsweise den aktuellen Werten der Sensoren für die sensorische Geschwindigkeitsfeststellung geliefert wurden.

Die Simulationen konnten mittels der aufgezeichneten Werte ausgewertet werden. Die gespeicherten Daten beinhalten sowohl aufgenommene Bilddaten der Kamera, als auch die zu jedem Bild gehörigen Werte der Sensorik des Fahrzeugs. Somit wird die Vergleichbarkeit von Simulations- und Echtzeitdaten sichergestellt.

Veränderbare Einstellungen

Um die Funktion des Algorithmus zur optischen Geschwindigkeitsdetektion (vgl. Kapitel 3.2) unter verschiedenen Testbedingungen optimal nutzen zu können, ist es möglich, diverse Parameter mittels einer Web-Oberfläche zu ändern, die sich auf die Funktion des Algorithmus auswirken. Folgende Werte können hierbei variiert werden:

Parameter	Standardwert	Erläuterung	
priority	3	Priorität, mit der der Scheduler die Methode	
		aufruft	
addLenght	35	Distanz in Pixeln, um die die Punkte <i>FirstPoint</i> ²	
		und <i>secondPoint</i> ² jeweils verschoben werden	
		sollen	
draw	1	Schaltet das Einzeichnen der Scanlinien ein oder	
		aus (Werte 1 oder 0)	
getSpeedSensorOutput	1	Schaltet die Ausgabe der Geschwindigkeit des	
		Hall-Sensors ein oder aus (Werte 1 oder 0)	
initialXPos	7	Ursprungs-X-Koordinate für die erste Scanlinie ³	
initialYPos	33	Ursprungs-Y-Koordinate für die erste Scanlinie ³	
maxTime	1	maximale Zeit, die für die Messung der Diffe-	
		renz zweier Kantenpunkte genutzt wird	
roiInterval	5	Abstand zwischen den horizontalen Scanlinien	
		eines ROI-Paares in Pixeln	
roiSpacing	15	Abstand zwischen den jeweiligen horizontalen	
		ROI-Paaren in Pixeln	
roiWidth	18	Breite einer horizontalen Scanlinie in Pixeln	
showImage	1	Schaltet das Anzeigen der Kamerabilder in ei-	
		nem neuen Fenster ein oder aus (Werte 1 oder	
		0)	
showImageHeight	480	Höhe des anzuzeigenden Bildes in Pixeln	
showImageWidth	752	Breite des anzuzeigenden Bildes in Pixeln	
threshold	15	Grenzwert für die Erkennung einer Grauwer	
		differenz	

Tabelle 4.1.: Parameter

Im Verlauf der verschiedenen Testdurchführungen wurde der Algorithmus jeweils durch Veränderungen der oben aufgezeigten Parameter angepasst, um optimale Ergebnisse erzielen zu können. Diese Parameter werden im folgenden Kapitel aufgezeigt.

²vgl. Tabelle 3.1

³vgl. Kapitel 3.4 - Erster Schritt

4.2. Feststellung korrekter Messergebnisse in Anlehnung an Sensorwerte

Dieses Kapitel beinhaltet den Vergleich der Messungen zwischen dem Algorithmus zu optischen Geschwindigkeitsdetektion und den Werten des Hall-Sensors. Hierbei wird festgestellt, in wie fern die Ergebnisse übereinstimmen.

Für die Simulationen wurden immer die selben Aufnahmen des Testfahrzeugs *Diamond* verwendet, um Vergleichbarkeit herzustellen. Die Veränderungen der Parameter in Bezug auf die Standard-Parameter aus Tabelle 4.1 wurden farblich hinterlegt.

Simulation auf dem Computer

Die ersten Simulationsdaten wurden mittels einer virtuellen Maschine auf dem bereitgestellten Computer der HAW Hamburg ermittelt. Die Spezifikationen des Rechner sind aus dem Anhang zu entnehmen (vgl. Anhang C).

Parameter	Wert
priority	3
addLenght	45
draw	1
getSpeedSensorOutput	1
initialXPos	1.0
initialYPos	-33.0
maxTime	1
roiInterval	12
roiSpacing	26
roiWidth	20
showImage	1
showImageHeight	480
showImageWidth	752
threshold	50

Folgende Einstellungen der Parameter wurden genutzt, um optimale Ergebnisse zu erzielen:

Tabelle 4.2.: Parameter Computer-Simulation

Die Option *addLenght* wurde erhöht, um den vertikalen Scanbereich zu erweitern (vgl. Abbildung 3.7). Um auch in engeren Kurven eine Erkennung zu gewährleisten, wurden die Parameter *roiInterval, roiSpacing* und *roiWidth* vergrößert. Der *threshold* wurde erhöht, um die Erkennung von Schwarz-Weiß-Unterschieden etwas "aufzuweichen".

Bei einer Messreihe, die im Anhang A einzusehen ist, wurde mit dem entwickelten Algorithmus eine durchschnittliche Geschwindigkeit von **31,50 cm/s** bzw. **1,13 km/h** festgestellt. Die sensorische Messung ergab **31,34 cm/s** bzw. **1,13 km/h**. Die Geschwindigkeit des Algorithmus weicht bei dieser Messung also um **0,53** % ab.

Simulation auf dem Notebook

Eine weitere Simulation wurde auf einem privaten Notebook durchgeführt, dessen Spezifikationen ebenfalls im Anhang A zu finden sind. Bei diesen Versuchen wurde die selbe virtuelle Maschine genutzt, wie bereits in der o.g. Simulation mit dem Computer. Die verwendeten Parameter gleichen denen des Tests mit dem Computer, da hier die selben Bilddaten verwendet wurden und somit eine Anpassung nicht notwendig war.

Die Messreihe ergab folgende Ergebnisse: Die durchschnittliche Geschwindigkeit, die mit dem Algorithmus gemessen wurde, betrug **23,59 cm/s** bzw. **0,85 km/h**. Mit dem Sensor wurden **29,96 cm/s** bzw. **1,08 km/h** festgestellt. Die Abweichung beträgt somit durchschnittlich **21,23** %.

Messungen mit dem Fahrzeug

Aufgrund ständig variierender Einflüsse für das Fahrzeug, beispielsweise veränderte Lichtverhältnisse oder Streckenführungen, werden hier verschiedene Messreihen dargestellt, die für das Fahrzeug durchgeführt wurden. Die Ergebnisse wurden mit unterschiedlichen Parametern erzielt, welche jeweils im Folgenden aufgeführt werden. Die farbliche Markierung der Veränderungen von Parametern bezieht sich hierbei nur bei der ersten Messung auf die Standardwerte. Die Hervorhebungen der folgenden Messungen beziehen sich dann jeweils auf den vorhergehenden Versuch. Die genauen Messergebnisse der Messreihen könne im Anhang B eingesehen werden.

1. Messreihe:

Parameter	Wert
priority	3
addLenght	35
draw	1
getSpeedSensorOutput	1
initialXPos	0.0
initialYPos	-22.0
maxTime	1
roiInterval	9
roiSpacing	14
roiWidth	13
showImage	0
showImageHeight	480
showImageWidth	752
threshold	60

Im Vergleich zu den Standard-Parametern (vgl. Tabelle 4.1) wurde der Ursprung des ersten ROI verschoben. Außerdem wurden Breite und Abstände der ROIs angepasst; der *threshold* wurde heraufgesetzt.

Der entwickelte Algorithmus stellte im Schnitt eine Geschwindigkeit von 22,88 cm/s bzw. 0,82 km/h fest. Der Sensor maß 36,76 cm/s bzw. 1,32 km/h. Der Unterschied entspricht 37,78 %.

Tabelle 4.3.: Parameter Messreihe 1

2. Messreihe:

Parameter	Wert
priority	3
addLenght	35
draw	1
getSpeedSensorOutput	1
initialXPos	0.0
initialYPos	-22.0
maxTime	1
roiInterval	9
roiSpacing	14
roiWidth	13
showImage	0
showImageHeight	480
showImageWidth	752
threshold	15

Tabelle 4.4.: Parameter Messreihe 2

Im Gegensatz zu Messreihe 1 wurde lediglich der *threshold* herabgesetzt.

Mit dem Algorithmus wurden im Mittel **31,78 cm/s** bzw. **1,14 km/h** gemessen. Der Sensor stellte hier eine Geschwindigkeit von **37,01 cm/s** bzw. **1,33 km/h** fest. Die Geschwindigkeitsabweichung liegt also bei **14,08** %.

3. Messreihe:

Parameter	Wert
priority	3
addLenght	40
draw	1
getSpeedSensorOutput	1
initialXPos	-5.0
initialYPos	-22.0
maxTime	1
roiInterval	8
roiSpacing	14
roiWidth	13
showImage	0
showImageHeight	480
showImageWidth	752
threshold	15

Tabelle 4.5.: Parameter Messreihe 3

4. Messreihe:

Parameter	Wert
priority	3
addLenght	40
draw	1
getSpeedSensorOutput	1
initialXPos	-5.0
initialYPos	-22.0
maxTime	1
roiInterval	9
roiSpacing	18
roiWidth	13
showImage	0
showImageHeight	480
showImageWidth	752
threshold	10

Tabelle 4.6.: Parameter Messreihe 4

Mit *addLenght* wurde die Länge des Scanbereichs heraufgesetzt. Die Koordinate des Ursprungs - ROI wurde geändert (*initialXPos*) und der Abstand der einzelnen ROI wurde um 1 verringert (*roiInterval*).

Bei dieser Messreihe wurden mit dem Algorithmus **37,04 cm/s** bzw. **1,33 km/h** gemessen, mit dem Sensor wurden **37,13 cm/s** bzw. **1,34 km/h** festgestellt. Die Geschwindigkeitsabweichung beträgt also **0,26** %.

In der Messreihe 4 wurden die jeweiligen Abstände zwischen den einzelnen ROIs und den ROI-Paaren verändert. Des Weiteren wurden der *threshold* ein weiteres Mal herabgesetzt.

Der Algorithmus stellte hier durchschnittlich 43,06 cm/s bzw. 1,55 km/h fest. Der Sensor maß 36,73 cm/s bzw.1,31 km/h und weicht somit um 17,24 % von der Geschwindigkeitsmessung des Algorithmus ab.

44

5. Messreihe:

Parameter	Wert
priority	3
addLenght	40
draw	1
getSpeedSensorOutput	1
initialXPos	-5.0
initialYPos	-22.0
maxTime	1
roiInterval	9
roiSpacing	18
roiWidth	14
showImage	0
showImageHeight	480
showImageWidth	752
threshold	8

Tabelle 4.7.: Parameter Messreihe 5

In der letzten Messreihe wurden sowohl die Breite der ROIs noch einmal um 1 erweitert, als auch der *threshold* für die Erkennung des Grauwertunterschieds um 2 verringert.

Im Schnitt betrug die durch den Algorithmus berechnete Geschwindigkeit **29,43 cm/s** bzw. **1,06 km/h**. Der Sensor maß durchschnittlich **40,39 cm/s** bzw. **1,45 km/h**. Dies entspricht einer Abweichung von **27,12** %.

4.3. Zusammenfassung der Ergebnisse

Die in Kapitel 4.2 - Feststellung korrekter Messergebnisse in Anlehnung an Sensorwerte erläuterten Ergebnisse der verschiedenen Testreihen sind in der nachfolgenden Tabelle 4.8 noch einmal zusammengefasst:

Messreihe	Sensor	Algorithmus	% - Abweichung	Ø- Abweichung
Computer-	29,96 cm/s	23,59 cm/s	21,23 %	16,69 %
Simulation				
Notebook-	31,34 cm/s	31,50 cm/s	-0,52 %	-2,23 %
Simulation				
1. Messreihe	36,76 cm/s	22,88 cm/s	37,78 %	28,39 %
2. Messreihe	37,01 cm/s	31,79 cm/s	14,08 %	-0,14 %
3. Messreihe	37,13 cm/s	37,04 cm/s	0,26 %	-20,38 %
4. Messreihe	36,72 cm/s	43,06 cm/s	-17,24 %	-34,30 %
5. Messreihe	40,39 cm/s	29,43 cm/s	27,12 %	16,61 %

Tabelle 4.8.: Zusammenfassung Messreihen

Hieraus geht hervor, dass mit der Geschwindigkeitserkennung mittels der Simulation auf dem Notebook die größte Präzision erzielt werden konnte. Die Messergebnisse wichen hier nur um 0,52% von den sensorischen Werten ab. Auch die durchschnittliche Abweichung von 2,23% der einzelnen Messergebnisse (vgl. Anhang B) bestätigen die Genauigkeit.

Die Parameterwahl der 3. Messreihe sind eine Gute Wahl für die Anwendung des Algorithmus auf dem Versuchsfahrzeug *Diamond*. Zwar weichen die Endergebnisse der Messung um 14,08% voneinander ab, der durchschnittliche Unterschied zwischen den Daten des Algorithmus und denen des Sensors beträgt jedoch nur 0,14%.

Die wiederholten Testreihen zeigen, dass der Algorithmus je nach Einstellung der Parameter starke Abweichungen aufzeigt. Da der Hall-Sensor, wie in Kapitel 1.3 - Geschwindigkeits-/Fehleranalyse dargestellt, eine Abweichung von circa 5 % zu der eigentlich gefahrenen Geschwindigkeit hat, sollte davon ausgegangen werden, dass die Werte der optischen Detektion um 5 % höher liegen. Dies ist nur durch die jeweilige optimale Einstellung der Parameter zu erreichen, die den Umgebungsvariablen, wie Licht und Streckenführung, angepasst werden muss. Außerdem stellte sich in der Testphase heraus, dass der Hall-Sensor einen Defekt aufwies, der in Kapitel 5.3 - Komplikationen erläutert wird.

5. Zusammenfassung und Aussichten

5.1. Zusammenfassung

Als Grundlage für diese Arbeit diente die autonome Fahrzeugplattform "Saphir", die im Rahmen des Projektes FAUST an der HAW Hamburg aufgebaut und entwickelt wurde. Ziel war es, die vorhandene Kamera des Fahrzeugs und den montierten Rechner zu nutzen, um die Geschwindigkeit mittels Bildverarbeitung feststellen zu können. Die Verwendung von Sensoren sollte hierbei ausschließlich zur Verifikation der ermittelten Daten genutzt werden.

Vor der Entwicklung des Algorithmus zur optischen Geschwindigkeitserkennung wird analysiert, welche Ungenauigkeit der montierte Hall-Sensor aufweist. Außerdem wird erörtert, in welcher Form die Bilddaten der Kamera vorliegen und nutzbar gemacht werden können. Hierbei wird vor allem auf die Linsenverzeichnung und die perspektivische Transformation eingegangen. Diese müssen für die weitere Bearbeitung bekannt sein und in die Berechnungen mit einbezogen werden.

Der Hauptteil der Arbeit beinhaltet die Konzeption des Algorithmus, der für die Feststellung der Geschwindigkeit verantwortlich ist. An erster Stelle steht eine Analyse der Kameradaten auf eindeutig identifizierbare Merkmale, wobei sich die Segmente der Mittellinie als geeignet herausstellten. Durch wiederholte Anwendung eines Algorithmus zur Erkennung markanter Grauwertunterschiede wird ein weißes Mittelliniensegment auf schwarzen Untergrund erkannt und gespeichert. Im weiteren Verlauf werden diese gespeicherten Punkte genutzt, um mittels des oben genannten Algorithmus die kurzen Linienkanten zu detektieren. Da die kurzen Enden der Mittelliniensegmente bei Bewegung des Fahrzeugs in Richtung der Kamera laufen, können die Strecke und die dafür benötigte Zeit für diese Bewegung zur Errechnung der Geschwindigkeit genutzt werden.

Die Testergebnisse unter verschiedenen Bedingungen zeigen, dass der Algorithmus durchaus verwendbar ist. Veränderbare Parameter machen die Ausführung flexibel und der Algorith-

mus lässt sich an die jeweiligen Umgebungs- und Fahrzeugeigenschaften anpassen. Zwar unterliegen die einzelnen Messdaten im Vergleich zu sensorischen Messungen teilweise Ungenauigkeiten, im Mittel jedoch stellen sich die Werte als äußerst präzise dar.

Die Intention, eine Geschwindigkeitserkennung für autonome Fahrzeuge zu schaffen, die keine sensorischen Werte benötigt und alleine mittels Bildverarbeitung modelliert wird, konnte umgesetzt werden.

5.2. Einsatzmöglichkeiten

Für den Einsatz der optische Geschwindigkeitserkennung gibt es diverse Möglichkeiten, die hier konzeptionell erörtert werden.

Es ist durchaus denkbar, den Algorithmus als alleinige Messeinheit für die Geschwindigkeit eines Fahrzeugs zu nutzen. Hierbei muss jedoch beachtet werden, dass eine Vielzahl von unregelmäßigen Umgebungsvariablen stark variieren können. So kann zwar der Einfluss nachlassender Motorleistung oder starker Abrieb der Reifen vernachlässigt werden, jedoch wirken sich Veränderungen der Fahrbahn, gerade in Bezug auf die Mittelliniensegmente, stark auf die Funktion des Algorithmus aus. Auch die Beeinflussung unterschiedlicher Lichtverhältnisse und deren Auswirkung auf die Kameradaten muss berücksichtigt werden. Als sinnvoll stellt sich also die Nutzung auf genormten Fahrbahnen, wie sie beispielsweise im Carolo-Cup zu finden sind, heraus.

Die Nutzung des entwickelten Algorithmus als unterstützende Einheit stellt eine weitere Einsatzmöglichkeit dar. Hierbei kann die optische Geschwindigkeitserkennung zum Abgleich sensorisch ermittelter Daten unterstützend genutzt werden. Unterschiede zwischen den Messungen können als Hinweis auf diverse Vorkommnisse gewertet werden. So kann unter Anderem der Ausfall eines Sensors schnell erkannt werden. Auch die oben genannten physikalischen Einflüsse wie Reifenabrieb oder nachlassende Motorleistung können registriert werden. Als mögliche Reaktion sind optische Meldungen als Textausgabe auf einem Terminal oder das Einschalten einer Warnleuchte denkbar. Stark abweichende Werte können final auch für ein Sicherheitssystem genutzt werden und das Fahrzeug stoppen, wenn beispielsweise wegen einer ausgefallenen Kamera keine optischen Daten ermittelt werden können, die Sensoren jedoch noch Bewegung anzeigen.

5.3. Komplikationen

Bei der Erstellung dieser Arbeit und den anschließenden Tests traten Hürden auf, die an dieser Stelle erwähnt werden sollten.

Zum Zeitpunkt der Entwicklung des Algorithmus zur optischen Geschwindigkeitsmessung existierten zwei unterschiedliche Linux Kernelversionen, die je auf einem der Fahrzeuge installiert waren. Der eigentliche Entwurf für den neueren Kernel 3.2 musste unterbrochen werden, da dieses Fahrzeug nach Teilnahme an dem Carolo-Cup nicht fahrbereit war. Um die Weiterentwicklung nicht unterbrechen zu müssen, wurde die Programmierung auf den älteren Kernel 2.6 umgestellt. Hauptaugenmerk liegt hierbei auf der Veränderung der openCV-Version. Während der Kernel 3.2 openCV 2 benutzt, arbeitet der Kernel 2.6 noch mit openCV 1. Der Unterschied besteht hauptsächlich in der Nutzung und dem Aufruf von Methoden, sowie den Eingabeparametern, die bei der Umstellung geändert werden mussten.

Die im Rahmen dieser Bachelorabeit genutzte Hardware unterliegt ständigen Veränderungen. So wurde gegen Ende der Arbeit eine Erneuerung der Hardware an beiden Versuchsfahrzeugen durchgeführt, um diese Bau- und Funktionsgleich zu machen. Der für die Verifikation der optischen Geschwindigkeitsdaten genutzte Hall-Sensor existiert nach dem Umbau nicht mehr. Dafür ist jedoch ein im Elektromotor bereits vorhandener Hall-Sensor nun ansprechbar. Des Weiteren wurde der Pico-PC, mit dem die Berechnungen des Algorithmus durchgeführt werden, durch ein performanteres Gerät ersetzt. Auch die Kameralinse wurde ersetzt, was jedoch nach ordentlicher Kalibrierung für die Funktion des Algorithmus keine Einbußen bedeutet.

Nach Beendigung der Testphase stellte sich heraus, dass der genutzte Hall-Sensor einen Defekt aufwies. Aufgrund häufiger Nutzung des Fahrzeugs hatten sich zwei der 20 Neodym-Magnete gelöst. Hierdurch fehlten demnach bei jeder Radumdrehung zwei Ticks, die das Ergebnis stärker verfälschten, als in Kapitel 1.3 nachgewiesen. Dies wirkt sich ebenfalls leicht auf die dargestellten Testergebnisse aus.

5.4. Bedeutung für die Zukunft

In der Automobilindustrie werden kontinuierlich neue Ideen und Konzepte entwickelt, die das Fahren einfacher und komfortabler machen. Hierzu zählen auch die Fortschritte im Bereich der optischen Systeme. Ob in unterstützender Form, wie beispielsweise als Rückfahrhilfe oder Informationseinrichtung, oder in sicherheitsrelevanter Hinsicht - Kameras sind fester Bestandteil moderner Fahrzeuge.

In Anbetracht dieser Entwicklungen ist der im Rahmen dieser Bachelorarbeit entworfene Algorithmus auch außerhalb des universitären Rahmens anwendbar. Die genutzte Arbeitsumgebung bildet die realen Verhältnisse im Straßenverkehr zwar nur eingeschränkt ab, zeigt jedoch einen guten Überblick über die Möglichkeiten, die durch weitere Ausformung dieser Arbeit geboten werden können.

Literaturverzeichnis

- [Carolo-Cup 2013] CAROLO-CUP: Carolo-Cup. 2013. URL http://www.carolo-cup. de
- [FAUST 2013] FAUST: Carolo Cup v.2. 2013. URL http://faust.informatik. haw-hamburg.de/index.php?section=fahrzeuge&sub=1
- [Hensel 2012] HENSEL, Enrico: Kamerabasierte Fahrspuridentifikation und -repräsentation unter Berücksichtigung eines kinematischen Bewegungsmodells. 2012
- [Jacobi 2009] JACOBI, Dirk: Identifikation und räumliche Lokalisierung skalierungsinvarianter Merkmale für die visuelle Navigation. 2009
- [Jenning 2008] JENNING, Eike: Systemidentifikation eines autonomen Fahrzeugs mit einer robusten, kamerabasierten Fahrspurerkennung in Echtzeit. 2008
- [Liedtke 2011] LIEDTKE, Andreas: Realisierung eines robusten Verfahrens zur Identifikation von Positionsmarken unter Verwendung von Bildverarbeitung in Videobildern. 2011
- [OpenCV 2013] OPENCV: About. 2013. URL http://opencv.org/about.html
- [Tamiya 2013] TAMIYA: Tamiya. 2013. URL http://www.tamiya.de

Abbildungsverzeichnis

1.1.	Das Versuchsfahrzeug Saphir	3
1.2.	Hall-Sensor (FAUST, 2013)	5
2.1.	Verzeichniskorrektur (Jenning, 2008)	10
2.2.	Kameramontage (Jenning, 2008)	11
2.3.	verzeichnetes Kamerabild	12
3.1.	optimale Fahrzeugposition	14
3.2.	Scan-Algorithmus	15
3.3.	kurze Linienkanten	16
3.4.	Steigungsdreieck im Bild	19
3.5.	Skizziertes Steigungsdreieck	19
3.6.	Neue Punkte festlegen	21
3.7.	Verlängerung berechnen	22
3.8.	Scanlinien eingezeichnet	24
3.9.	Verarbeitungsablauf	27
3.10.	Scan-Varianten	28
3.11.	Zurückgelegte Strecke bestimmen	30
4.1.	Feststellung der Ergebnisse	38

Tabellenverzeichnis

1.1.	Distanzmessung (1 Meter) 7	1
1.2.	Distanzmessung (5 Meter) 77	1
3.1.	Nomenklatur	;
3.2.	Veränderung der genutzten Variablen)
3.3.	Initialwerte	;
4.1.	Parameter)
4.2.	Parameter Computer-Simulation	-
4.3.	Parameter Messreihe 1 43	;
4.4.	Parameter Messreihe 2	;
4.5.	Parameter Messreihe 3	ŀ
4.6.	Parameter Messreihe 4	ŀ
4.7.	Parameter Messreihe 5	;
4.8.	Zusammenfassung Messreihen	;

A. Messdaten der Simulationen

Computer-Simulation

	Sensor		Algorithmus		Prozentuale Abweichung
	cm / s	km / h	cm / s	km / h	
1	30,5984	1,1015424	43,4537	1,5643332	-42,0129810709
2	36,445	1,31202			
3	31,0514	1,1178504	38,0178	1,3686408	-22,4350592888
4	30,4106	1,0947816	26,2325	0,94437	13,7389594418
5	31,7196	1,1419056			
6	30,8152	1,1093472			
7	31,3094	1,1271384	26,4672	0,9528192	15,465642906
8	30,0758	1,0827288	23,117	0,832212	23,1375391511
9	31,9515	1,150254			
10	30,8964	1,1122704			
11	31,2104	1,1235744			
12	30,4254	1,0953144	25,2869	0,9103284	16,8888494482
13	31,2483	1,1249388	39,4209	1,4191524	-26,1537427636
14	31,0592	1,1181312	24,1938	0,8709768	22,1042396456
15	31,5198	1,1347128	30,2445	1,088802	4,0460282108
16	30,4151	1,0949436	35,6317	1,2827412	-17,1513491654
17	31,1489	1,1213604	32,129	1,156644	-3,1464995554
18	31,1503	1,1214108	26,8221	0,9655956	13,8945692337
19	31,4786	1,1332296			
20	30,8753	1,1115108			
21	30,7082	1,1054952	30,3787	1,0936332	1,073003302
22	30,8924	1,1121264	30,2192	1,0878912	2,1791767554
23	31,7308	1,1423088			
24	30,5128	1,0984608	25,0196	0,9007056	18,0029364726
25	31,2172	1,1238192	46,7256	1,6821216	-49,6790231026
26			29,5633	1,0642788	
27	30,5133	1,0984788	29,2652	1,0535472	4,0903474878
28	31,4206	1,1311416	29,7374	1,0705464	5,3569950924
29	31,4668	1,1328048			
30	30,8519	1,1106684	37,8432	1,3623552	-22,6608409855
31	30,8903	1,1120508	28,029	1,009044	9,2627782832
32	30,874	1,111464	23,7662	0,8555832	23,0219602254
33	31,6177	1,1382372			
34	30,6953	1,1050308	30,1298	1,0846728	1,8423015901
35	31,5013	1,1340468			
36	31,5013	1,1340468			
37	31,1778	1,1224008			
38	30,5919	1,1013084	31,331	1,127916	-2,4159990063
39	31,0122	1,1164392	31,8511	1,1466396	-2,7050644585
40	31,6129	1,1380644			
41	30,449	1,096164	32,8742	1,1834712	-7,9647935893
42	30,9437	1,1139732	32,4734	1,1690424	-4,9434941523
43	31,2946	1,1266056	30,9992	1,1159712	0,9439328191
44	31,473	1,133028			
45	30,8147	1,1093292			
46	31,2985	1,126746			
47			34,0465	1,225674	

Computer-Simulation

48	30,0975	1,08351	21,2413	0,7646868	29,4250353019
49	31,8173	1,1454228			
50	31,008	1,116288			
51	31,2461	1,1248596			
52	30,3953	1,0942308	34,4824	1,2413664	-13,4464867924
53	31,7373	1,1425428			
54	30,6839	1,1046204	46,2028	1,6633008	-50,5766867967
55	30,7831	1,1081916	24,1996	0,8711856	21,3867349292
56	31,3013	1,1268468	29,0106	1,0443816	7,3182263995
57	31,0982	1,1195352	5,026	0,180936	83,8382928916
58	30,9137	1,1128932	4,51372	0,16249392	85,3989655072
59	31,5659	1,1363724	5,62407	0,20246652	82,1830836441
60	31,0286	1,1170296			
61	30,6082	1,1018952	48,7152	1,7537472	-59,1573499912
62	31,178	1,122408	40,4944	1,4577984	-29,8813265764
63	30,7854	1,1082744	29,9097	1,0767492	2,8445301994
64	31,6606	1,1397816	38,6077	1,3898772	-21,9424142309
65	30,7504	1,1070144	34,1514	1,2294504	-11,0600187315
66	30,7006	1,1052216	27,8925	1,00413	9,1467267741
67	31,7832	1,1441952			
68	31,0078	1,1162808			
69	30,5895	1,101222	29,9812	1,0793232	1,9885908563
70	31,373	1,129428			
71	31,234	1,124424			
72	31,0171	1,1166156			
73	31,0568	1,1180448			
74	31,0441	1,1175876			
75	30,9295	1,113462			
76	31,1656	1,1219616			
77	30,9639	1,1147004			
78	32,5876	1,1731536	42,965	1,54674	-31,844628018
79	31,3405	1,128258			
80	30,7398	1,1066328	33,7473	1,2149028	-9,7837331407
81	31,1235	1,120446			
82	29,113	1,048068	78,6052	2,8297872	-170,0003434892
83	33,6403	1,2110508			
84	30,9506	1,1142216			
85	30,8302	1,1098872			
86	31,3402	1,1282472			
87	47,7501	1,7190036			
Ø	31,3389	1,1282004	31,50297426	1,134107073	-2,2307197408
				Prozentual:	-0,523548227

Notebook_Simulation

Prozentuale Abweichung

51,3287301437

2,7878648587

75,1111562141

-8,1548288815

3,8812083411

55,2986763169

16,270932101

21,5850976443

53,514486032

5,3065954906

-34,4748777834

25,4405282782

40,546064968

-31,0797055058

19,6287941212

65,5472555802

-149,0322974344

12,907672956

64,9786535304

39,0609150606

50,093388121

37,188207857

-20,3295549269

-5,3859430434

44,6620391325

77,6563638159

-71,7394515964

28,4089311462

Algorithmus cm / h km / h 14,3516 0,5166576 29,6079 1,0658844 0.26487504 7,35764 31,2389 1,1246004 17,5065 0,630234 0,23257008 6,46028 25,2202 0,9079272 23,6744 0,8522784 11,2669 0,4056084 13,2804 0,4780944 27,0444 0,9735984 29,6593 1,0677348 29,1428 1,0491408 41,8939 1,5081804 19,0813 0,6869268 23,0561 0,8300196 17,2483 0,6209388 40,9493 1,4741748 23,7992 0,8567712 10,0499 0.3617964 77,5377 2,7913572 13,4918 0,4857048 25,9644 0,9347184 10,664 0.383904 18,2632 0,6574752 15,6312 0,5627232 28,9104 1,0407744 18,7453 0,6748308 19,1328 0,6887808 1,3199796 36,6661 34,9181 1,2570516 1,1869956 32,9721 8,56632 0,30838752 0,5765868 16,0163 7,23907 0,26060652 49,987 1,799532 21,8962 0,7882632

	Sensor				
	cm / s	km / h			
	34.281	1.234116			
2	29,4868	1,0615248			
	32,6593	1,1757348			
	30,457	1,096452			
2	9,9731	1,0790316			
	29,562	1,064232			
2	28,8835	1,039806			
1	8,2134	0,6556824			
3	30,3073	1,0910628			
1	4,4521	0,5202756			
3	30,8638	1,1110968			
3	30,1212	1,0843632			
3	30,1912	1,0868832			
3	33,0504	1,1898144			
2	28,5689	1,0284804			
3	31,3214	1,1275704			
3	31,1537	1,1215332			
3	30,9231	1,1132316			
	, 30,7872	1,1083392			
2	9,0112	1,0444032			
	31,24	1,12464			
2	29,6116	1,0660176			
2	29,1701	1,0501236			
3	81,7938	1,1445768			
3	31,1356	1,1208816			
2	29,8125	1,07325			
	30,45	1,0962			
	29,9696	1,0789056			
	31,3209	1,12/5524			
	31,8913	1,1480868			
	30,5395	1,099422			
2	29,8436	1,0743696			
3	80,4714	1,0969704			
	31,287	1,126332			
2	28,9427	1,0419372			
3	32,3988	1,1663568			
2	29,1063	1,0478268			
3	80,5851	1,1010636			

47

Notebook_Simulation

48	29,5799	1,0648764	14,4093	0,5187348	51,2868535729
49	30,0268	1,0809648	26,2665	0,945594	12,5231459896
50	31,8837	1,1478132	23,5797	0,8488692	26,0446560468
51	31,6517	1,1394612			
52	29,6605	1,067778	7,90407	0,28454652	73,3515281266
53			14,3134	0,5152824	
54	31,4093	1,1307348	11,0424	0,3975264	64,8435336031
55	31,8729	1,1474244			
56	27,8849	1,0038564	39,3215	1,415574	-41,0135951716
57	28,5252	1,0269072	14,0832	0,5069952	50,6289175887
58	17,7896	0,6404256	32,7392	1,1786112	-84,0356163152
59	29,8085	1,073106	61,8313	2,2259268	-107,4284180687
60	30,7877	1,1083572	30,9376	1,1137536	-0,4868827486
61	29,968	1,078848	15,2265	0,548154	49,1908035238
62	29,4903	1,0616508	8,98902	0,32360472	69,5187231056
63	33,2326	1,1963736			
64	28,4259	1,0233324	63,2075	2,27547	-122,3588347247
65	29,7407	1,0706652	16,7017	0,6012612	43,8422767453
66	31,2382	1,1245752			
67	31,8391	1,1462076			
68	17,4335	0,627606	20,0128	0,7204608	-14,7950784409
69	29,4578	1,0604808			
70	29,398	1,058328	12,3924	0,4461264	57,8461119804
71	32,8839	1,1838204	27,3721	0,9853956	16,7613938736
72	30,9011	1,1124396	39,2025	1,41129	-26,8644158299
73	31,6449	1,1392164	20,4841	0,7374276	35,2688742894
74	29,5088	1,0623168	17,5783	0,6328188	40,4303123136
75	32,6087	1,1739132			
76	29,402	1,058472	28,5993	1,0295748	2,7300863887
77	31,5697	1,1365092	26,0511	0,9378396	17,4806855941
78	29,8341	1,0740276	10,7807	0,3881052	63,8645040407
79	30,8089	1,1091204	24,4132	0,8788752	20,7592611226
80	31,7997	1,1447892			
81	28,1588	1,0137168	9,15099	0,32943564	67,5022017984
82	33,6183	1,2102588	25,9556	0,9344016	22,7932405862
83	30,0753	1,0827108	12,8986	0,4643496	57,1123147566
84	30,9431	1,1139516			
85	29,1858	1,0506888			
86	33,6679	1,2120444			
87	30,9207	1,1131452			
88	30,9374	1,1137464			
89	31,0021	1,1160756			
90	31,0937	1,1193732			
91	31,0655	1,118358			
Ø	29,95768642	1,078476711	23,59901215	0,849564438	16,6873361143
				Prozentual:	21,2255184757

B. Messdaten auf dem Fahrzeug

Diamond -	Messreihe 1	
-----------	-------------	--

	Sen	Sensor		ithmus	Prozentuale Abweichung
	cm / s	km / h	cm / s	km / h	
1	30,8851	1,1118636	6,27972	0,22606992	79,6674771977
2	36,6209	1,3183524			
3	36,1774	1,3023864	8,92241	0,32120676	75,3370612592
4	25,9272	0,9333792	12,3275	0,44379	52,4534080039
5	36,1105	1,299978			
6	36,2377	1,3045572			
7	25,9188	0,9330768			
8	41,4232	1,4912352			
9	36,2422	1,3047192			
10	25,9006	0,9324216	2,88018	0,10368648	88,8798715088
11	46,1919	1,6629084	11,2353	0,4044708	75,6769043923
12	25,966	0,934776			
13	41,4769	1,4931684			
14	36,2538	1,3051368	2,62281	0,09442116	92,7654204525
15	46,8854	1,6878744			
16	36,2107	1,3035852			
17	51,8345	1,866042			
18	30,9959	1,1158524			
19	46,5769	1,6767684	5,79481	0,20861316	87,5586181133
20	36,185	1,30266			
21	36,2814	1,3061304	3,7377	0,1345572	89,6980270883
22	41,3986	1,4903496			
23	31,0362	1,1173032			
24	41,4037	1,4905332			
25	36,1359	1,3008924	28,1396	1,0130256	22,1284096978
26	25,9603	0,9345708			
27	41,345	1,48842			
28			27,6737	0,9962532	
29	25,7257	0,9261252	44,8781	1,6156116	-74,4485086898
30	36,5959	1,3174524			
31	35,988	1,295568	7,70055	0,2772198	78,6024508169
32	30,8671	1,1112156	23,5247	0,8468892	23,7871390574
33	41,683	1,500588			
34	36,3652	1,3091472			
35	30,8647	1,1111292			
36			37,1805	1,338498	
37	46,5683	1,6764588	24,515	0,88254	47,3568929937
38	30,949	1,114164	5,3192	0,1914912	82,8130149601
39	41,6369	1,4989284	32,7379	1,1785644	21,3728687775
40	36,0938	1,2993768			
41	36,3809	1,309/124			
42	41,2295	1,484262	25.2000	4.0740450	
43	24.0000	4 4 4 9 9 9 7 9	35,3282		00 4744050507
44	31,0000	1,11839/6	23,8671	0,8592156	23,1744059537
45	41,4516	1,4922576	20.000	1 0220 40	20.0040504044
40	36,2308	1,3043088	28,693	1,032948	20,8049504841
47	36,2188	1,3038768			

Diamond - Messreihe 1

48	41,4166	1,4909976	12,2573	0,4412628	70,4048618187
49			4,65865	0,1677114	
50	36,1861	1,3026996	44,6039	1,6057404	-23,2625234551
51	46,6204	1,6783344	5,22295	0,1880262	88,7968571698
52	31,0869	1,1191284			
53	41,2509	1,4850324	36,1492	1,3013712	12,3674877397
54	36,4273	1,3113828			
55	30,9041	1,1125476			
56	41,4763	1,4931468	46,0832	1,6589952	-11,1073070645
57	30,9919	1,1157084			
58	36,2431	1,3047516	8,86283	0,31906188	75,546159131
59	41,3279	1,4878044	38,0083	1,3682988	8,0323461874
60	31,2267	1,1241612			
61	14,194	0,510984			
62	41,5679	1,4964444	34,8476	1,2545136	16,1670423572
63	31,0309	1,1171124	12,8266	0,4617576	58,6650725567
64	41,4367	1,4917212	33,4379	1,2037644	19,3036607645
65	36,2531	1,3051116			
66	41,3085	1,487106	4,54948	0,16378128	88,9865766126
67	36,3187	1,3074732			
68	31,028	1,117008			
69	41,4118	1,4908248			
70	36,1527	1,3014972	33,6019	1,2096684	7,0556279337
71	46,6237	1,6784532			
72			8,69887	0,31315932	
73	31,0165	1,116594	13,8299	0,4978764	55,4111521287
74	46,5078	1,6742808	46,7285	1,682226	-0,474544055
75	41,5938	1,4973768			
76	31,0097	1,1163492			
77	41,3205	1,487538	32,7261	1,1781396	20,799361092
78	31,1811	1,1225196			
79			6,40616	0,23062176	
80	41,1887	1,4827932	10,139	0,365004	75,3840252302
81			29,3203	1,0555308	
82	36,2372	1,3045392	45,7733	1,6478388	-26,3157749495
83	31,2128	1,1236608			
84	46,3756	1,6695216	6,69133	0,24088788	85,5714427414
85	25,8848	0,9318528	24,4467	0,8800812	5,5557701817
86	36,3504	1,3086144			
87	41,3948	1,4902128			
88	25,7997	0,9287892			
89			36,2635	1,305486	
90	46,3938	1,6701768	35,3131	1,2712716	23,8840103635
91	36,3477	1,3085172			
92	41,3252	1,4877072	41,9456	1,5100416	-1,5012631518
93	46,6653	1,6799508			
94			12,3137	0,4432932	
95	36,0864	1,2991104	16,844	0,606384	53,3231355857
96			40,3498	1,4525928	
97	41,3564	1,4888304	36,4009	1,3104324	11,9824259365

36,5317 46,4336 31,0007 36,1053 36,4132 31,127 41,4613	1,3151412 1,6716096 1,1160252 1,2997908 1,3108752 1,120572	4,50872	0,16231392	
46,4336 31,0007 36,1053 36,4132 31,127 41,4613	1,6716096 1,1160252 1,2997908 1,3108752 1,120572	4,50872	0,16231392	07.51000.10077
31,0007 36,1053 36,4132 31,127 41,4613	1,1160252 1,2997908 1,3108752 1,120572	4,50872	0,16231392	07 54000 40077
36,1053 36,4132 31,127 41,4613	1,2997908 1,3108752 1,120572	4,50872	0,16231392	07 54000 40077
36,4132 31,127 41,4613	1,3108752			87,5123042877
31,127 41,4613	1 120572			
41,4613	1,120012			
	1,4926068			
36,2147	1,3037292			
36,1147	1,3001292			
41,3762	1,4895432			
36,0511	1,2978396	38,8769	1,3995684	-7,838318387
46,8498	1,6865928			
30,8763	1,1115468	43,3376	1,5601536	-40,3587865126
41,7375	1,50255			
41,0673	1,4784228	10,5072	0,3782592	74,4146802931
31,1439	1,1211804	55,8188	2,0094768	-79,2286772048
41,3535	1,488726			
31,1272	1,1205792	2,80643	0,10103148	90,9839947056
36,108	1,299888	2,01625	0,072585	94,4160573834
36,1224	1,3004064	22,4631	0,8086716	37,8139326291
25,989	0,935604			
41,4371	1,4917356	27,7367	0,9985212	33,0631245912
36,1825	1,30257	28,1721	1,0141956	22,1388792925
30,7627	1,1074572			
46,2379	1,6645644	26,5034	0,9541224	42,680355293
31,2387	1,1245932			
36,76365664	1,323491639	22,8755041	0,823518148	38,3882659077
	36,2147 36,1147 41,3762 36,0511 46,8498 30,8763 41,7375 41,0673 31,1439 41,3535 31,1272 36,108 36,1224 25,989 41,4371 36,1825 30,7627 46,2379 31,2387	36,21471,303729236,11471,300129241,37621,489543236,05111,297839646,84981,686592830,87631,111546841,73751,5025541,06731,478422831,14391,121180441,35351,48872631,12721,120579236,1081,29988836,12241,300406425,9890,93560441,43711,491735636,18251,3025730,76271,107457246,23791,664564431,23871,1245932	36,2147 1,3037292 36,1147 1,3001292 41,3762 1,4895432 36,0511 1,2978396 36,0511 1,2978396 36,0511 1,2978396 36,0511 1,2978396 36,0511 1,2978396 36,0511 1,2978396 36,0511 1,2978396 36,0511 1,2978396 30,8763 1,1115468 41,7375 1,50255 41,0673 1,4784228 10,5072 1,05072 31,1439 1,1211804 55,8188 41,3535 41,3535 1,488726 31,1272 1,1205792 2,80643 2,01625 36,108 1,299888 2,01625 36,1224 36,108 1,299888 2,01625 28,1721 30,7627 1,1074572 46,2379 1,6645644 31,2387 1,1245932 36,76365664 1,323491639 22,8755041 36,755041	36,2147 1,3037292 36,1147 1,3001292 41,3762 1,4895432 36,0511 1,2978396 36,0511 1,2978396 36,0511 1,2978396 36,0511 1,2978396 36,0573 1,1115468 46,8498 1,6865928 30,8763 1,1115468 41,0673 1,4784228 10,5072 0,3782592 31,1439 1,1211804 55,8188 2,0094768 41,3535 1,488726 31,1272 1,1205792 2,80643 0,10103148 36,108 1,299888 2,01625 0,072585 36,1224 1,3004064 25,989 0,935604 41,4371 1,4917356 27,7367 0,9985212 36,1825 1,30257 30,7627 1,1074572 46,2379 1,6645644 31,2387 1,1245932 36,76365664 1,323491639

37,7768530369

Prozentual:

	Sensor		Algorithmus		Prozentuale Abweichung
	cm / s	km / h	cm / s	km / h	
1	41,4822	1,4933592			
2	41,2408	1,4846688			
3			6,83043	0,24589548	
4	20,386	0,733896	8,42109	0,30315924	58,6917982929
5	41,5329	1,4951844	44,1492	1,5893712	-6,2993434121
6	20,2473	0,7289028			
7	20,9036	0,7525296			
8			50,1995	1,807182	
9	39,4563	1,4204268	36,3917	1,3101012	7,7670739527
10	44,1128	1,5880608			
11	41,1375	1,48095	37,2609	1,3413924	9,4235186873
12	41,7171	1,5018156	12,5717	0,4525812	69,8643961349
13	41,6843	1,5006348	44,7914	1,6124904	-7,4538855156
14	60,3733	2,1734388	34,0197	1,2247092	43,6510841713
15	21,0208	0,7567488	44,882	1,615752	-113,5123306439
16	41,9964	1,5118704	26,9398	0,9698328	35,852120658
17			13,7815	0,496134	
18	20,6266	0,7425576	67,5474	2,4317064	-227,4771411672
19	20,7665	0,747594	45,2995	1,630782	-118,1373847302
20			37,6618	1,3558248	
21	40,4479	1,4561244	9,44874	0,34015464	76,6397266607
22	41,0169	1,4766084	19,1199	0,6883164	53,385311908
23	42,6347	1,5348492			
24	41,6273	1,4985828	40,9385	1,473786	1,6546833448
25	62,222	2,239992	33,3475	1,20051	46,4056121629
26	41,434	1,491624	35,4624	1,2766464	14,4123183859
27	20,6694	0,7440984			
28	41,7129	1,5016644			
29	20,5798	0,7408728			
30	41,6457	1,4992452			
31	20,5223	0,7388028	10,978	0,395208	46,5069704663
32			24,7915	0,892494	
33	60,9433	2,1939588	46,343	1,668348	23,9571864339
34			49,7092	1,7895312	
35	42,0049	1,5121764	23,7515	0,855054	43,4554063931
36	41,7945	1,504602			
37	41,2458	1,4848488	12,8175	0,46143	68,9241086365
38	41,4365	1,491714			
39	41,2006	1,4832216	15,4197	0,5551092	62,5740887269
40	20,6504	0,7434144	43,5816	1,5689376	-111,0448223763
41	20,8073	0,7490628	20,2113	0,7276068	2,8643793284
42	41,3257	1,4877252	61,3218	2,2075848	-48,3865972022
43	41,5555	1,495998			
44	39,6726	1,4282136			
45			35,0867	1,2631212	
46	41,665	1,49994	15,5387	0,5593932	62,7056282251
47			47,2276	1,7001936	

Diamond - Messreihe 2

48			11,2473	0,4049028	
49	40,6002	1,4616072	62,5946	2,2534056	-54,1731321521
50			41,0984	1,4795424	
51	42,0972	1,5154992	22,4941	0,8097876	46,5662799426
52	41,6172	1,4982192	40,8259	1,4697324	1,9013773151
53	40,5239	1,4588604	35,7729	1,2878244	11,7239456222
54	41,8783	1,5076188	40,9898	1,4756328	2,1216238482
55			37,7036	1,3573296	
56	43,6175	1,57023	26,438	0,951768	39,3867140483
57	40,7319	1,4663484			
58	42,2173	1,5198228			
59	60,9277	2,1933972			
60	42,3357	1,5240852			
61			11,4986	0,4139496	
62	39,6659	1,4279724	11,3288	0,4078368	71,4394479893
63			52,6615	1,895814	
64	21,6445	0,779202	55,1989	1,9871604	-155,025064104
65	41,2244	1,4840784	11,5241	0,4148676	72,0454391089
66	42,3833	1,5257988			
67	,		42,0678	1,5144408	
68	20,0445	0,721602	23,0045	0,828162	-14,7671431066
69	,	,	7,48237	0,26936532	
70	21.2526	0.7650936	39.2029	1.4113044	-84.4616658668
71	,		96.0088	3,4563168	
72	60.8966	2.1922776	48.7328	1,7543808	19.9745141765
73	42.8226	1,5416136		,	
74	41.2351	1,4844636	29.5307	1.0631052	28.3845558759
75	41.231	1.484316	31.0835	1.119006	24.6113361306
76	,	,	6.39917	0.23037012	
77	41,3199	1,4875164	26,6258	0,9585288	35,5617995203
78	20,4967	0,7378812	37,7562	1,3592232	-84,2062380773
79	,	,	34,1664	1.2299904	,
80	41.0788	1.4788368	29.909	1.076724	27.1911545615
81	42,1581	1,5176916	48.1215	1.732374	-14,1453243861
82	20.6262	0.7425432	- , -	,	
83	20.5823	0.7409628	41.026	1.476936	-99.3266058701
84	62,9472	2,2660992	56.2696	2.0257056	10.608255808
85	41.2113	1.4836068	34,3348	1.2360528	16.6859574922
86	41,1923	1,4829228		.,	
87	40,9616	1,4746176			
88	63,9956	2 3038416			
89		_,	11,5285	0.415026	
90	20 3824	0 7337664	14 7505	0.531018	27 6311916163
91			12,296	0.442656	
92	20 6529	0.7435044	20 2548	0.7291728	1 9275743358
93		0,1 100014	29,1629	1,0498644	1,0210110000
94	20.6789	0 7444404	30 3357	1 0920852	-46 6988089308
95	20,0700	0,7777707	22 8165	0.821394	.0,00000000
96	20 7274	0 7461864	18 3225	0 65961	11 6025164758
97	20,1214	0,7401004	17 796/	0.6406704	11,0020104700
91			17,7304	0,0400704	

	Diamond - Messreihe 2					
98	0	0	26,7417	0,9627012		
Ø	37,006112	1,332220032	31,79657568	1,144676724	-0,1403278221	
				Prozentual:	14,0775024524	

	Sen	sor	Algorithmus		Prozentuale Abweichung
	cm / s	km / h	cm / s	km / h	
1	41.3752	1.4895072			
2	41,1187	1,4802732	41,8044	1,5049584	-1,6676110869
3	41,825	1,5057	55,0233	1,9808388	-31,5560071727
4	41,5329	1,4951844	,	,	
5	,	,	6,45399	0,23234364	
6	40,7945	1,468602	44,1515	1,589454	-8,2290504847
7	41,8917	1,5081012	37,8341	1,3620276	9,6859282388
8			61,9036	2,2285296	
9			33,764	1,215504	
10	41,0063	1,4762268	27,0385	0,973386	34,0625708733
11	41,7743	1,5038748	41,9436	1,5099696	-0,4052730985
12	39,6149	1,4261364	43,9375	1,58175	-10,9115509568
13	43,6138	1,5700968			
14	61,5143	2,2145148	49,2815	1,774134	19,8861077831
15	41,1564	1,4816304			
16	41,3445	1,488402			
17	21,0267	0,7569612			
18	41,593	1,497348			
19	20,6793	0,7444548			
20			11,4178	0,4110408	
21	40,5381	1,4593716	9,17911	0,33044796	77,3568322146
22	20,9867	0,7555212			
23	61,8994	2,2283784			
24	41,5804	1,4968944	102,21	3,67956	-145,8129310925
25			43,8735	1,579446	
26	41,0665	1,478394	74,9502	2,6982072	-82,5093445996
27			13,8882	0,4999752	
28	41,0609	1,4781924	14,9529	0,5383044	63,5836038665
29			33,5585	1,208106	
30	20,9438	0,7539768	32,0706	1,1545416	-53,1269397149
31	41,0853	1,4790708	54,6664	1,9679904	-33,0558618289
32	20,8762	0,7515432	17,6104	0,6339744	15,6436516224
33	20,66	0,74376	40,4936	1,4577696	-96
34			6,74242	0,24272712	
35	41,6366	1,4989176	27,3469	0,9844884	34,3200453447
36	41,7296	1,5022656			
37			31,1341	1,1208276	
38	40,5644	1,4603184	37,3952	1,3462272	7,8127619292
39			47,0639	1,6943004	
40	41,4671	1,4928156	59,994	2,159784	-44,6785523945
41	41,8952	1,5082272			
42	41,2268	1,4841648	49,3293	1,7758548	-19,6534778348
43	41,3983	1,4903388			
44	40,8897	1,4720292	44,8403	1,6142508	-9,6616018215
45	21,2108	0,7635888			
46	20,6954	0,7450344			
47	41,4805	1,493298			

Diamond - Messreihe 3

41,1358	1,4808888			
41,2416	1,4846976			
41,7221	1,5019956			
40,3509	1,4526324	13,5225	0,48681	66,487736333
42,6322	1,5347592			
41,0023	1,4760828	33,2545	1,197162	18,8960131505
41,3752	1,4895072	82,6752	2,9763072	-99,8182486127
		27,9259	1,0053324	
20,8341	0,7500276	42,1621	1,5178356	-102,3706327607
20,729	0,746244			
		13,6898	0,4928328	
40,6073	1,4618628	28,4078	1,0226808	30,0426278034
41,6339	1,4988204	29,6265	1,066554	28,8404401221
40,6536	1,4635296	30,7222	1,1059992	24,4293248322
62,8873	2,2639428	60,7092	2,1855312	3,4634973993
		47,2021	1,6992756	
40,0155	1,440558	21,8903	0,7880508	45,2954480139
		42,8169	1,5414084	
42,0595	1,514142	52,641	1,895076	-25,1584065431
		39,0318	1,4051448	
20,7212	0,7459632	7,05745	0,2540682	65,94092041
42,0928	1,5153408	26,979	0,971244	35,9059031473
40,8897	1,4720292	37,4686	1,3488696	8,3666546832
20,9556	0,7544016	51,6689	1,8600804	-146,5636870335
41,5013	1,4940468	43,3423	1,5603228	-4,4360056191
41,3677	1,4892372	21,3618	0,7690248	48,3611610024
42,0809	1,5149124			
41,0732	1,4786352			
41,1564	1,4816304			
		9,64102	0,34707672	
61,7284	2,2222224	21,2506	0,7650216	65,5740307541
		21,7145	0,781722	
20,4792	0,7372512	92,9647	3,3467292	-353,9469315208
		49,2407	1,7726652	
42,3712	1,5253632	37,3258	1,3437288	11,9076164942
		33,2972	1,1986992	
20,3504	0,7326144	30,5727	1,1006172	-50,2314450822
		39,4204	1,4191344	
21,0524	0,7578864	44,3218	1,5955848	-110,5308658395
		40,5789	1,4608404	
41,3199	1,4875164	36,8247	1,3256892	10,8790195523
		14,8774	0,5355864	
41,3835	1,489806	120,892	4,352112	-192,1260889002
		34,9966	1,2598776	
41,5664	1,4963904	57,2795	2,062062	-37,8024077139
20,885	0,75186	38,0593	1,3701348	-82,2327028968
20,7789	0,7480404	-		
		6,43293	0,23158548	
20,4444	0,7359984	22,0071	0,7922556	-7,643657921
		15,0826	0,5429736	

98			12,4744	0,4490784	
99	20,7041	0,7453476	11,3689	0,4092804	45,0886539381
Ø	37,13063151	1,336702734	37,03558	1,33328088	-20,3812236046
				Prozentual:	0,2559921633
Diamond - Messreihe 4

	Sensor		Algorithmus		Prozentuale Abweichung
	cm / s	km / h	cm / s	km / h	
1	20,9201	0,7531236			
2	20,25	0,729	50,1734	1,8062424	-147,7698765432
3	41,8308	1,5059088	35,6572	1,2836592	14,7585033038
4	41,4124	1,4908464	41,1827	1,4825772	0,5546647864
5	41,7137	1,5016932	52,0569	1,8740484	-24,7956906244
6	41,5312	1,4951232			
7			16,0554	0,5779944	
8	40,9601	1,4745636	9,01444	0,32451984	77,9921435739
9	41,4588	1,4925168			
10	41,8342	1,5060312			
11	20,4635	0,736686	32,4938	1,1697768	-58,7890634544
12	41,8173	1,5054228	33,0057	1,1882052	21,0716617285
13	20,0523	0,7218828	7,10407	0,25574652	64,5722934526
14	21,2408	0,7646688	22,3781	0,8056116	-5,3543181048
15	41,2244	1,4840784	4,2803	0,1540908	89,6170714431
16	41,7474	1,5029064	48,4817	1,7453412	-16,1310644495
17	41,172	1,482192	75,5271	2,7189756	-83,4428737977
18	41,5845	1,497042	58,0502	2,0898072	-39,5957628443
19	61,9587	2,2305132	11,0926	0,3993336	82,0967838254
20	41,226	1,484136	55,9874	2,0155464	-35,8060447291
21	,	,	2,72353	0.09804708	
22			3,407	0,122652	
23	20,5333	0,7391988	23,5979	0,8495244	-14,9250242289
24	,	,	126,164	4,541904	
25	41,718	1,501848	42,9874	1,5475464	-3,0428112565
26			34,0064	1,2242304	
27	20,6476	0,7433136	11,8846	0,4278456	42,4407679343
28			36,1948	1,3030128	
29	20,7506	0,7470216	54,6331	1,9667916	-163,2844351489
30	41,4696	1,4929056	54,617	1,966212	-31,7037058472
31	62,4094	2,2467384	47,835	1,72206	23,3528923528
32	41,2416	1,4846976	45,2727	1,6298172	-9,7743540503
33	41,5228	1,4948208	48,4404	1,7438544	-16,6597628291
34	41,9079	1,5086844			
35	41,3018	1,4868648			
36	41,3075	1,48707			
37	41,2465	1,484874			
38			47,5822	1,7129592	
39			64,7015	2,329254	
40			19,9542	0,7183512	
41	62,1309	2,2367124	32,7786	1,1800296	47,2426763494
42	41,3454	1,4884344	127,644	4,595184	-208,7260009578
43	41,8605	1,506978			
44	40,6248	1,4624928	41,5935	1,497366	-2,3845040468
45	41,8867	1,5079212	39,026	1,404936	6,8296141735
46	62,0243	2,2328748	42,0892	1,5152112	32,1407899807
47	20,8501	0,7506036			

Diamond - Messreihe 4

48	40,9577	1,4744772	22,8234	0,8216424	44,2756795426
49	20,7062	0,7454232	44,1877	1,5907572	-113,4032318822
50		0	2,83871	0,10219356	
51	20,688	0,744768	21,9891	0,7916076	-6,2891531323
52	41,8655	1,507158	45,0614	1,6222104	-7,6337318317
53	41,7186	1,5018696			
54	40,6241	1,4624676	60,5277	2,1789972	-48,9945623411
55	41,4547	1,4923692	46,71	1,68156	-12,6772115104
56	41,6364	1,4989104	40,1815	1,446534	3,4942982583
57	61,5997	2,2175892	44,0057	1,5842052	28,5618274115
58	21,0738	0,7586568			
59	41,2244	1,4840784			
60	20,5557	0,7400052	5,33969	0,19222884	74,0233122686
61	20,643	0,743148	89,7485	3,230946	-334,7648113162
62			11,3957	0,4102452	
63	40,9975	1,47591	135,123	4,864428	-229,5883895359
64			110,995	3,99582	
65	20,8028	0,7489008	46,4826	1,6733736	-123,443959467
66			17,1404	0,6170544	
67	61,9575	2,23047	89,1761	3,2103396	-43,9310817899
68			72,5972	2,6134992	
69	20,8224	0,7496064	31,7791	1,1440476	-52,6197748578
70	41,7246	1,5020856	31,1013	1,1196468	25,4605196934
71	39,8414	1,4342904	5,0087	0,1803132	87,4284036204
72	41,924	1,509264	30,6134	1,1020824	26,978818815
73	41,5037	1,4941332	67,2859	2,4222924	-62,1202447011
74	20,3268	0,7317648	118,821	4,277556	-484,5533974851
75	21,3882	0,7699752			
76	20,4744	0,7370784	10,0489	0,3617604	50,9196850701
77			9,3923	0,3381228	
78	41,841	1,506276	42,129	1,516644	-0,6883200688
79			31,852	1,146672	
80	40,7929	1,4685444	40,387	1,453932	0,9950260952
81	41,7339	1,5024204	74,4138	2,6788968	-78,3054063962
82			30,1549	1,0855764	
83	41,1179	1,4802444	95,7511	3,4470396	-132,8696261239
84	20,8195	0,749502	49,8535	1,794726	-139,4557986503
85	41,4266	1,4913576			
86	41,1571	1,4816556	11,3808	0,4097088	72,3479059506
87	20,724	0,746064	38,1471	1,3732956	-84,0720903301
88	41,4847	1,4934492	35,05	1,2618	15,5110197253
89	20,7673	0,7476228			
90	21,0747	0,7586892			
91	40,9456	1,4740416			
92	20,5369	0,7393284			
93	61,6376	2,2189536	32,237	1,160532	47,6991316988
94			40,0073	1,4402628	
95	41,9921	1,5117156	48,2615	1,737414	-14,9299511099
96	20,8766	0,7515576	47,2698	1,7017128	-126,4248009733
97	62,1982	2,2391352			

Diamond - Messreihe 4

98	20,799	0,748764			
99	41,4597	1,4925492	16,9756	0,6111216	59,0551788846
100	20,7038	0,7453368			
101	20,6926	0,7449336	29,2894	1,0544184	-41,5452867209
102	41,2202	1,4839272	58,4163	2,1029868	-41,7176529954
103	41,6482	1,4993352			
104	20,6897	0,7448292	63,0261	2,2689396	-204,6254899781
Ø	36,72450357	1,306528221	43,0559605	1,550014578	-34,5826981286
				Prozentual:	-17,2404152891

Diamond - Messreihe 5

	Sensor		Algorithmus		Prozentuale Abweichung
	cm / s	km / h	cm / s	km / h	
1	42,5951	1,5334236			
2	40,7762	1,4679432			
3	42,2493	1,5209748	31,3122	1,1272392	25,8870561169
4	40,5032	1,4581152	48,572	1,748592	-19,9213889273
5	42,3037	1,5229332	42,2589	1,5213204	0,1059009023
6			8,0766	0,2907576	
7	40,213	1,447668	39,4355	1,419678	1,9334543556
8	21,5167	0,7746012			
9	20,1503	0,7254108			
10	42,4033	1,5265188	12,0911	0,4352796	71,4854740079
11			43,8723	1,5794028	
12	40,1731	1,4462316	128,359	4,620924	-219,5147997043
13	42,8305	1,541898			
14			45,8501	1,6506036	
15	59,8231	2,1536316	86,3023	3,1068828	-44,262500606
16	42,8296	1,5418656	48,1068	1,7318448	-12,3213852102
17	60,7691	2,1876876			
18			17,4841	0,6294276	
19	20,9569	0,7544484	35,7349	1,2864564	-70,5161545839
20	40,644	1,463184	31,8836	1,1478096	21,5539809074
21	21,519	0,774684			
22	40,9991	1,4759676			
23	40,5484	1,4597424	41,6973	1,5011028	-2,8334040307
24	42,4686	1,5288696			
25			5,54566	0,19964376	
26	40,1334	1,4448024	28,3229	1,0196244	29,4281072623
27	42,2743	1,5218748	41,6861	1,5006996	1,3913890946
28	61,0679	2,1984444	34,1113	1,2280068	44,1420124157
29	21,2413	0,7646868	10,9227	0,3932172	48,5780060542
30	40,402	1,454472	36,9285	1,329426	8,597346666
31	42,4572	1,5284592	46,3466	1,6684776	-9,1607548307
32	20,2156	0,7277616	45,8194	1,6494984	-126,6536734007
33	42,3227	1,5236172	33,4467	1,2040812	20,9721969534
34	40,8421	1,4703156			
35	41,9869	1,5115284	13,9484	0,5021424	66,779162072
36	40,7433	1,4667588			
37	63,7302	2,2942872			
38			8,05212	0,28987632	
39	40,8196	1,4695056	41,0701	1,4785236	-0,6136757832
40			52,4437	1,8879732	
41	39,9777	1,4391972	32,1624	1,1578464	19,5491486504
42	43,5332	1,5671952			
44	40,4005	1,454418	38,3035	1,378926	5,1905298202
45	42,6883	1,5367788			
46	62,2955	2,242638			
47	39,9908	1,4396688	42,0009	1,5120324	-5,0264060734
48	42,9159	1,5449724			

Diamond - Messreihe 5

49	61,4877	2,2135572	1,96403	0,07070508	96,8058164478
50			41,6272	1,4985792	
51	20,1268	0,7245648	11,7051	0,4213836	41,8432140231
52	43,0567	1,5500412			
53	20,4461	0,7360596	61,7014	2,2212504	-201,7758888003
54	39,9707	1,4389452	18,8214	0,6775704	52,9120080459
55	43,2213	1,5559668			
56	41,3314	1,4879304			
57			6,2993	0,2267748	
58			11,7591	0,4233276	
59	39,9629	1,4386644	3,61679	0,13020444	90,9496307826
60	43,1538	1,5535368			
61	41,131	1,480716	6,60231	0,23768316	83,9480926795
62			34,4672	1,2408192	
63	40,0378	1,4413608	40,6644	1,4639184	-1,5650210551
64	43,2811	1,5581196			
65			47,5913	1,7132868	
66	40,8228	1,4696208	32,3798	1,1656728	20,6820698237
67	40,6823	1,4645628	6,08888	0,21919968	85,033097932
68	42,6726	1,5362136			
69	41,1392	1,4810112	31,9383	1,1497788	22,3652866366
70	60,5477	2,1797172	25,017	0,900612	58,6821629889
71	42,302	1,522872	30,8497	1,1105892	27,0727152381
72			7,84884	0,28255824	
73			4,85126	0,17464536	
74	40,317	1,451412	49,3496	1,7765856	-22,4039487065
75	21,5755	0,776718			
76	41,1474	1,4813064	14,6853	0,5286708	64,3105032153
77	41,0462	1,4776632			
78	20,9599	0,7545564			
79	41,3462	1,4884632			
80	41,3273	1,4877828			
81			11,2398	0,4046328	
82	40,1668	1,4460048	21,4963	0,7738668	46,4824183156
83	42,9452	1,5460272			
84	40,9002	1,4724072	12,5581	0,4520916	69,295749165
85	62,0058	2,2322088			
86	20,9909	0,7556724			
87	41,4207	1,4911452			
88	20,6963	0,7450668			
89	40,1109	1,4439924	4,43279	0,15958044	88,9486648268
90	42,85	1,5426			
91	41,0023	1,4760828	3,93746	0,14174856	90,3969777305
92	40,2238	1,4480568	15,378	0,553608	61,7689029878
93	42,6461	1,5352596	28,6781	1,0324116	32,7532881084
94	61,6964	2,2210704			
95	20,9774	0,7551864			
96	41,2244	1,4840784			
97	41,7061	1,5014196			
98	41,4514	1,4922504			

Diamond	-	Messreihe	5
---------	---	-----------	---

99	39,959	1,438524	6,40173	0,23046228	83,9792537351
Ø	40,39009277	1,45404334	29,4349695	1,059658902	16,6056581389
				Prozentual:	27,1232931629

C. Rechenzeitanalysen

Rechenzeitanalyse für Notebook mit verschiedenen Testbildern:

<u>Rechner – Spezifikation</u>

- Acer Aspire 5680
- Hauptspeicher: 3072 MB
- Betriebssystem: Windows 8 Professional x86

<u>Ausführungs – Spezifikation</u>

- Virtuelle Maschine
- Ausführung in: Oracle VM VirtualBox Manager
- Hauptspeicher: 1536 MB
- Betriebssystem: Linux Echtzeitbetriebssystem

Testimages_22

Durchschnittliche Zeit für Berechnung:	27,6482444 Millisekunden
davon doppelte Erkennung: einfache Erkennung:	30,9899655 Millisekunden 26,7352539 Millisekunden
Testimages_Diamond	
Durchschnittliche Zeit für Berechnung:	8,4001496 Millisekunden
davon	
doppelte Erkennung:	7,5046617 Millisekunden
einfache Erkennung:	8,6986456 Millisekunden

Rechenzeitanalyse für UNI-Rechner mit verschiedenen Testbildern:

Rechner - Spezifikation

- HP Compaq dc 7800
- Hauptspeicher: 2048 MB
- Betriebssystem: Windows 7 Professional x64

Ausführungs – Spezifikation

- Virtuelle Maschine
- Ausführung in: Oracle VM VirtualBox Manager
- Hauptspeicher: 1024 MB
- Betriebssystem: Linux

Testimages_22

Durchschnittliche Zeit für Berechnung:	2,1988131 Millisekunden
davon doppelte Erkennung: einfache Erkennung:	3,4938564 Millisekunden 1,8734368 Millisekunden
Testimages_Diamond	
Durchschnittliche Zeit für Berechnung:	6,9072342 Millisekunden

davon	
doppelte Erkennung:	8,2361483 Millisekunden
einfache Erkennung:	6,4642628 Millisekunden

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig verfasst und nur die angegebenen Hilfsmittel benutzt habe.

Hamburg, 12. April 2013 Bastian Meiners