

Björn Kiencke

 Conception and Implementation of a Software
Distribution to Facilitate the Usage of an Energy

Data Monitoring

Bachelorthesis

Faculty of Engineering and Computer Science
Department of Information and

Electrical Engineering

Fakultät Technik und Informatik
Department Informations- und
Elektrotechnik

Björn Kiencke

Conception and Implementation of a Software
Distribution to Facilitate the Usage of an Energy

Data Monitoring System

Bachelorthesis eingereicht im Rahmen der Bachelorprüfung
im Studiengang Informations- und Elektrotechnik
am Department Informations- und Elektrotechnik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer : Prof. Dr. Thomas Klinker
Zweitgutachter : Prof. Dr. Franz Schubert

Abgegeben am 20. Februar 2013

Björn Kiencke

Thema der Bachelorthesis

Entwurf und Implementierung einer Softwarezusammenstellung mit Energie-
datenmonitoring-Funktionalität

Stichworte

Direktstartbetriebssystem, Energiedatenmonitoring, Remastering, Java, JEVis,
Ubuntu, Kernel

Kurzzusammenfassung

Diese Arbeit umfasst den Entstehungsprozess einer Lösung, die Energieda-
tenmonitoring für Test- und Schulungszwecke zur Verfügung stellt. Program-
me zum Monitoring von Energiedaten werden eingesetzt, um die Energieeffi-
zienz von Unternehmen zu erhöhen und somit den Anforderungen von Ener-
giemanagementsystemen, wie sie beispielsweise die ISO 50001 vorschreibt,
gerecht zu werden. Das genutzte Monitoring Programm setzt mehrere Kom-
ponenten, u. a. eine Datenbanksoftware, voraus und benötigt daher erhebli-
chen Konfigurationsaufwand. In der vorliegenden Arbeit wird der Ansatz eines
Direktstartbetriebssystems mit Energiedatenmonitoring-Funktionalität umge-
setzt. Zur Vereinfachung des Remastering-Prozesses wird ein Programm ent-
worfen.

Björn Kiencke

Title of the paper

Conception and Implementation of a Software Distribution to Facilitate the Us-
age of an Energy Data Monitoring System

Keywords

Live System, Energy Data Monitoring, Remastering, Java, JEVis, Ubuntu,
Kernel

Abstract

This report comprises the development process of a solution which offers en-
ergy data monitoring for testing and training. This kind of program is used to
increase the energy efficiency of industrial companies and hence to implement
the requirements of energy management systems according to standards like
ISO 50001.The JEVis Data Monitoring System depends on several compo-
nents, e.g. a database server. Therefore a huge overhead on configuration is
demanded. In the thesis presented the approach of a live system to facilitate
using an energy data monitoring system is taken. Furthermore, a program to
simplify the remastering-process is designed.

Contents

1 Introduction 1

2 Background 3

2.1 Motivation . 3

2.2 Envidatec GmbH . 4

2.3 Data Monitoring Software . 6

2.3.1 JEVis . 6

2.4 Open Source . 9

2.4.1 General Principles . 9

2.4.2 Benefits for Business . 10

2.5 Open JEVis . 11

2.5.1 Analyzing the Open Source Community Structure 11

2.5.2 Improvement suggestions . 13

2.6 Live Operating Systems . 14

2.6.1 Basics . 14

2.6.2 Operating Systems and Kernels . 15

3 Conception and Design 17

3.1 Use Cases . 17

3.1.1 Energy Data Monitoring System . 18

3.1.2 Creating a JEVis Monitoring Test System 20

3.2 Requirements . 21

3.2.1 Data Monitoring Test System . 22

3.2.2 Distribution . 22

3.2.3 Solution to Create Test Systems . 23

3.3 Design . 23

3.3.1 Approach of a Live System . 23

3.3.2 Approach of a Remastering Program . 24

D

4 Implementation 25

4.1 Remastering . 25

4.2 Remastering in Detail . 27

4.3 Customization . 34

4.3.1 Look and Feel . 34

4.3.2 JEVis . 35

4.3.3 Presentation . 35

4.4 Distribution . 38

4.4.1 Presentation . 38

4.5 JEVis Live Creator . 38

4.5.1 Programming Techniques . 39

4.5.2 Execute Scripts within JAVA Programs 40

4.5.3 Script Parser . 42

4.5.4 Presentation . 46

4.6 Packages . 47

4.6.1 Repository . 49

4.6.2 Presentation . 51

5 Conclusion and Outlook 52

5.1 Conclusion . 52

5.2 Outlook . 54

5.2.1 Integration of Datasources . 54

5.2.2 Further Projects . 56

Glossary I

List of Figures V

List of Tables VI

List of Listungs VII

Bibliography VIII

1 Introduction

Since the age of industrialization world’s economy is reliant on resources of any kind, enabling

humanity to run all kinds of power taking devices, may they deliver mobility, comfort, productiv-

ity or medical capability. However, during the recent decades especially non-renewable resources

are running short and although renewable energy sources are on the rise, new technology can not

close the gap as quickly. Moreover, political decisions contribute to this problem significantly

which has lead to a dramatic increase of energy prices since the turn of the millennium. The

price of oil can be taken as a good example for this and it is commonly accepted that the peak

was already reached during the last years (cf. Kausch et al. 2011, p. 11). For industry, mother

earth’s signs of exhaustion and the above mentioned lack of alternatives means facing the costly

effects of this development. Therefore, energy efficiency has become the key word for companies

CEO’s to get control over this problem. In addition, costumers get increasingly conscious about

ecological sustainability during the method of production of a product. A promising way to

realize a resource-optimized method of production of such a kind is the implementation of an

energy management system basically enabling the company to monitor the energy the process

needs in every production step over time.

To implement a suitable energy management system companies are commonly advised by service

providers. One of these is the Envidatec GmbH where this thesis was performed. For the purpose

of analysis, control and surveillance energy data monitoring programs are used. In line with

this thesis a modular software solution is dealt with. This implies a pedestrian and complex

installation which is not appropriate for an - concerning this project - unskilled person. Within

this thesis multiple concepts where established to create an easy way of testing allowing users

to let the program run out of the box and by that enabling a broad audience to work with this

software.

Therefore, the aim of this thesis is the establishment of an energy data monitoring live system.

For this a Linux distribution was remastered. This means, that the energy data monitoring

application was integrated in the OS and further minor and major modifications were performed.

1

1 Introduction

As an example of a minor modification the adaption in design and the addition of icons for easy

handling of the system can be mentioned. Furthermore, major modifications enable the user to

install the OS together with the ready to run monitoring software on a local drive. With respect

to the hardware available this leads to a faster system and can be used for test and research

purposes. Last but not least a continuously advancing development of this software shall be

facilitated since this is an open source project. For this the remastering process is implemented

in a self-programmed application to provide developers an easy and time-saving way of creating

a new version.

To relieve reading this thesis here is an overview of the contained sections. The second chapter

gives detailed information about the motivation of implementing energy management systems.

Furthermore it deals with background facts on the company, their monitoring software, issues

of founding an open source community and subjects of live systems. The third and fourth

chapter document the process of conception. This includes the procedure given by modern

software engineering: generating use-cases, extracting requirements and specifying the design.

Subsequently the next chapter is about the implementation containing explanations of the used

programming techniques and examples of implementation in source code. Furthermore the results

of the development are presented. The last chapter reviews the implemented solution and sketches

out its advantages and disadvantages. Finally, the outlook section gives information about further

steps, which are already planned.

2

2 Background

2.1 Motivation

During the last years energy economic issues have become increasingly important for companies.

Limited resources available and the growing demand for energy are leading to higher prices. In

addition, political decisions have impact on the price of energy. Especially in Germany, companies

are encouraged to optimize their energy consumption. The feed-in tariffs for renewable energies

whose additional costs are known as EEG surcharge raise by 2013 up to almost 5.3 ct/kWh.

The contribution of the industry to achieve the planned aims implies exploiting energy saving

potentials. The Policy Report by the Fraunhofer Institute by order of the Federal Ministry for

the Environment Nature Conservation and Nuclear Safety sees a reduction potential of 52 percent

on final energy demand compared to the baseline. The major amount of 75 percent savings can

be exploit by making use of cross-cutting technologies1 (cf. Boßmann, Eichhammer, and Elsland

2012, p. 18).

An indicator for the success of the efforts is the energy productivity. It is defined by the consump-

tion of primary energy on products and services in comparison to the gross domestic product.

The reference for the derived statistic is set to 100 percent on the data of 1990. The German

government is aiming to double the energy productivity until 2020 compared to 1990. As shown

in figure 2.1 the value already improved by almost 50 percent. Considering the aims increased

efforts are necessary. In particular the industry has to take activity for optimization. A common

way to improve the energy efficiency is given by the specification ISO 50001. The process of im-

plementing an energy management system (EnMS) according to this standard provides the tasks

of monitoring, measurement, and analysis. There are certain good reasons using energy data

monitoring software to implement this. The most important are the quantity of data samples

1Efficient steam and hot water generation as well as optimization of entire systems relying on electric drives.

3

2 Background

Energy productivity (1990=100)

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

0

20

40

60

80

100

120

140

Year

Figure 2.1: Germany’s energy productivity (Data: DESTATIS)

delivered by energy meters and clustering of distributed data devices. That gives the opportu-

nity to store data of various measurement points centralized to visualize, combine, and compare

them. In this way data monitoring systems contribute to save energy. Therefore, a wide distri-

bution of them is desirable. In particular the availability for university education, partners, and

interested persons establishes the idea of monitoring energy data. Furthermore these interested

parties participate with ideas, feedback, and work on development to improve the solution. The

work done as part of the thesis aims to facilitate the distribution to encourage these processes.

The German company Envidatec GmbH, where the author was working on this thesis, offers ser-

vices in the field of energy management. Company’s philosophy encloses the ideas of innovating

energy data monitoring in the sketched way. The following section gives basic information about

the Envidatec GmbH and its business area.

2.2 Envidatec GmbH

Envidatec GmbH was founded in 2001. The company with headquarter in Hamburg offers energy

services for industrial customers. Since 2008, new tasks arising from new laws and standards

concerning energy management systems, e.g. the international standard ISO 50001, have been

evolved for the company.

4

2 Background

Figure 2.2: Energy management system model (Source: International Organization for Standard-

ization 2011, p. 8)

The model shown in figure 2.2 describes the approach of the energy management system model

according to ISO 50001. It is implemented as a plan do check act circle that is often used in

business economics.

Plan: conduct the energy review and establish the baseline, energy performance indi-

cators, objectives, targets and action plans necessary to deliver results in accor-

dance with opportunities to improve energy performance and the organization’s

energy policy.

Do: implement the energy management action plans.

Check: monitor and measure processes and the key characteristics of its operations

that determine energy performance against the energy policy and objectives and

report the results.

Act: take actions to continually improve energy performance and the EnMS.

(see International Organization for Standardization 2011, p. 7)

5

2 Background

Appropriate to services like energy efficiency analyzes or creating guidelines for energy manage-

ment Envidatec provides its own energy data monitoring software:

Additionally, the Envidatec GmbH provides a software for automated logging, an-

alyzing and visualization of energy and operating data, the JEVis system. This

monitoring solution has been distributed meanwhile as open source license. It will

not only be used by commercial companies but also from many universities world-

wide. For this reason the Envidatec GmbH has built up an international university

network for research and development topics based on the JEVis system.

(see Envidatec GmbH 2013, p. 2)

As a part of the already mentioned research and development program the author handled a

project at the Envidatec GmbH, which is the topic of this thesis. The structure of Envidatec’s

data monitoring software is briefly described in the following section to phase in technical back-

ground of the work.

2.3 Data Monitoring Software

The role of data monitoring software in the process of implementing an energy management

(according to ISO 50001) is enabling identification of weaknesses, measurement of improvements,

and a possibility to protocol efforts.

2.3.1 JEVis

The JEVis Energy Data Monitoring solution appears to the end user in form of a portal page

that contains links to two java programs. To launch these programs Java Web Start technique

is used. To launch a program according to this technique a Java Network Launching Protocol

(JNLP) file is deposited on a server. It contains information about the path to the program, the

name of the main class and additional parameters for the program (cf. Marinilli 2002, p. 272).

Since the path can be a network resource the user has the benefit of getting an always up to date

software.

After logging in to the JEGraph program the user can load previously saved analyses. The user

is able to add data rows to plugins, set threshold limits, zoom into graphs and link plugins.

6

2 Background

Figure 2.3: JEVis data monitoring software

Taking a closer look on the third plugin displaied in figure 2.3 a vibration of the machine can be

seen. Knowledge of consumption helps to scale machines correctly to exploit their best efficientcy

point. Advanced tasks can be done in the second program JEConfig, which offers alarming, set

up of devices, user management and Octave (MATLab syntax) calculations.

Structure of the JEVis System

Like quite a number of other complex software the JEVis data monitoring system contains

multiple modules and various participants. The server is the most complex component in the

system. Its sub-modules provide different functionality. For example this contains the task of

controlling necessary operations like requesting data from measurement points will be done by

the server. The second type of component are data-sources in the measurement infrastructure.

Typically these are devices like common industrial energy-meters. The task of visualization is

implemented in software on client machines. The technical structure of the JEVis Energy Data

Monitoring solution is shown in the following figure.

7

2 Background

Server

Database

Servlet Container

JDBC

JEWebService

axis 2

JECAPI

Client

JEGraph JEConfig

Measurement

Device

Figure 2.4: JEVis System Setup

The activities of the JEVis System components shown in figure 2.4 can be briefly described as

follows:

Server

The server assumes the role of data storage. It is the interface between the data producers

that are summarized as measurement infrastructure and client devices that display charts and

analyses.

Measurement Infrastructure

JEVis supports connecting different types of engergy meters. Connections are realized via the

JEADFWeb tool, that supports various web protocols. It includes functionality for HTTP, FTP,

SOAP, and SQL web protocols. The data can have CSV or XML format. At the moment a second

but already deprecated option exists, that implements a direct connection to the JEWebService.

The principle is explained in detail within the section about including data sources 5.2.1.

8

2 Background

The JEADFWeb can read out data from any device, that is reachable via that pro-

tocols and which’s data is stored in one of that formats. If a device needs a protocol

or format that has not been added yet, the tool is easily extendable: When creating

a data structure in the JEVis System, every device gets its driver. You can add the

driver parts offered by the system, or add you own one.

(see OpenJEVis.org 2013[a], p. 2)

Clients

Every PC with Java environment can be a JEVis client if the server is reachable inside client’s

network. The client software programs JEGraph and JEConfig offer a login dialog on start-up.

Therefore, users can log in to the monitoring system using their accounts on any machine.

Remarkable on the JEVis Energy Data Monitoring Solution is the fact it is an open source

software. Thus, the next section gives an insight into topics around open source.

2.4 Open Source

The success of a software essentially depends on users acceptance. Therefore software developers

rely on feedback from them. Particularly in the case of software with limited distribution and

any budget for usability testing the contact to the customer is crucial. This way of software

development is a remarkable feature about open source and specifically about OpenJEVis. With

other general characteristics deals the following chapter, while section 2.4.2 outlines the benefits

of open source.

2.4.1 General Principles

The open source initiative was founded in 1998 by Eric Raymond and Bruce Perens. It is the

committed aim to encourage the idea of open source. Therefore they are distributing an overview

about existing open source licenses (see Bandel 2010, p. 8). There is a list of ten points available

on the official Open Source website that enumerates the general principles of this kind of software.

They are meant to be essential preconditions for successful and effective software engineering:

1. Free redistribution

9

2 Background

2. Source code

3. Derived works

4. Integrity of the author’s source code

5. No discrimination against persons or groups

6. No discrimination against fields of endeavor

7. Distribution of license

8. License must not be specific in a product

9. License must not restrict other software

10. License must be technology-neutral

(cf. Open Source Initiative 2012)

Without getting too much into detail the most important points shall be explained: One of the

main aspects about open source besides its free distribution (no. 1) is that modification and

copying of a source has to be permitted (no. 4). This concept is realized with a specified license

model (no. 7 to 10). To be more concrete, both use and release must be allowed as an executable

file (no. 2). Furthermore, it is to stress that there do not exist any restrictions against certain

groups of users and fields of activity what can be seen as a great enrichment of open source (no.

5 and 6). (see Envidatec GmbH 2012).

2.4.2 Benefits for Business

What is the motivation for businesses to support open source projects? Which specific benefits

can be advertised? These questions will be answered in this section. In the concept of open source

proprietors, a management or employees do not exist. Therefore anybody has the right to profit

from the usage, development or change of the software (see Nüttgens and Tesei 2000, p. 10). As

explained in the section below, the concept of open source is network based meaning that many

participants are developing a product. Also commercial businesses are getting more and more

interested in open source – in other words: They pursuit being part of that network. In general,

a successful process results in a collective increase of efficiency, which in turn has positive effects

on the competitive position of a single company (see ibid., p. 13). Getting more into detail, new

business models which belong to the new strategy of involving open source software can result

10

2 Background

in profit (see Bandel 2010, p. 5). An abstract of business models that are already implemented

in companies business strategies are listed below:

• Companies distribute open source software to generate potential customers for additional,

compatible software products that are chargeable.

• Companies like RedHat offer chargeable support and service contracts binded to the open

source software they distribute.

• Companies like Apple offer chargeable hardware, e.g. a mobile phone, in combination with

software applications that base on open source software (see ibid., pp. 53-54).

To summarize the increase of the consumer surplus is the main motivation of enclosing open

source software in a business strategy. Businesses are highly interested in the know-how, skills,

and creativity of the open source community to have advantages in the competition. Furthermore,

they have low hardware costs and benefit from the free testing within the community (see ibid.,

p. 54). All in all the coexistence of open source software and proprietary software products inspirit

the market.

2.5 Open JEVis

Envidatec points out to offer the monitoring software as open source. As its basic strategy for

further charged services this is an unique selling point of the company. The realization of the

development as open source keeps several advantages. This business model enables external

partners to participate on increasing the function range of JEVis. Hardware manufactures and

universities are typical partners.

2.5.1 Analyzing the Open Source Community Structure

The approach of an open source project needs some special infrastructure. One basic thought

is to make hurdles to entry as low as possible. The mindmap show in figure 2.5 deals with the

important aspects when getting in touch with JEVis.

11

2 Background

Get started

Attention

Information

Testing

Testserver

Account

Virtual

Machine

Live

System

Installation

Package

Concept

Installer

Manual

Documen-

tation

Community

Figure 2.5: Get in touch with JEVis

The mindmap displays the process of getting in touch with Jevis resp. the OpenJEVis Commu-

nity from the viewpoint of a person which is interested in an energy data monitoring solution.

Starting from this the aspects are visualized in figure 2.5 and annotated in the following. Thus,

the figure contains the analysis of the existing structure and ideas for improvements which are

formatted underlined and italic.

Attention

The first hurdle for a software is to be noticed by potential users. In addition to the traditional

distribution channels and online presence there are some special ideas fitting well to the open

source philosophy. Workshops about energy efficiency and online events like the OpenJEVis

Days are already practiced by the company.

12

2 Background

Information

In the following the user’s impression depends on quality of the information and communication.

The most important platform for sharing information is the community website.

Testing

In the case of the information have convinced the user, he will make concrete efforts to check

whether the software fits to his requirements. While working on the thesis the common option

to test the software was to create a guest account. New ideas are addressed to advanced users

who want to have their own system. Both concepts base on an operating system with an “out

the box” running monitoring system. Benefits of using a separate system are undisturbed trying

without registration and full control of own data.

Installation

For productive usage of the system a customized installation is necessary. A comfortable tech-

nology to install and update software known as “package managers" exists for linux systems.

This tool may be interesting for simple JEVis installations.

Community and Documentation

All other nodes deal with structural organization. As usual for open source projects documen-

tation and communication issues are placed on the community website.

2.5.2 Improvement suggestions

The structure of an open source project has to be considered to assess weaknesses correctly.

Aspects like transparency, quality of communication, and documentation contribute a lot to the

success of a project. Detecting the most critical aspects was done before start working on this

thesis and are identified within the offers of testing and installation: The option of a guest account

requires the user’s action on registration. An incentive for users that do not want to register is a

live system which offers easier testing and the possibility to apply own changes without any risk.

The work on this live system with energy data monitoring functionality is the central purpose

13

2 Background

of this thesis. Another suggestion in the scope of installation is the package concept which is

used on Linux operating systems to organize installations and updates. Intending to fulfill as

many improvement suggestions as possible chapter 3 specifies usage scenarios and the resulting

requirements on the software distribution.

2.6 Live Operating Systems

Thus, the solution of a live system seems adequate the following section overviews its history

and its actual importance.

2.6.1 Basics

One of the most important milestones in the young history of live systems was Knoppix Linux.

It was developed by the German engineer Klaus Knopper, who published the first version of

his live system in the year 2000. In the preface of “Knoppix Hack”, he said his idea was driven

by giveaways. At that time, Linux based rescue discs were given away at computer expos and

Knopper started his work on a “personal rescue CD” (cf. Jones 2008, pp. 11-12).

That way, it would be possible to use software that I needed from a CD, rather than

carry around an expensive and fragile laptop. Computers are available everywhere

anyway, so why not just have the software in your pocket instead.

(see Knopper and Rankin 2007, foreword)

The sparsely standardized hardware for computers is reasoning the central problem of a live

system: the hardware support. Because the approach of minimal hardware requirements is not

suitable for most of the software the live system, first of all, has to provide automatic configuration

of PC hardware. The second important technology is the compression of containing software that

makes it possible to provide a whole working system on a single CD. The question that arises

is why open source operating systems could occupy the field of live systems without appreciable

competitive. R. Hattenhauer instances economic interest of the big software manufacturers

to sell as much as possible full versions (cf. Hattenhauer 2005, p. 16). Since that time, more

and more projects of live operating systems with highly diverse functional range have been

started. Nowadays, the majority of Linux distributions are shipped with the functionality of a

live system. There are almost hundred active Linux distributions that provide a live medium

14

2 Background

listed at www.distrowatch.com, a website that provides overview on Linux distributions. In fact,

the popularity of different distributions varies quickly but there are some base frames that are

steadily gaining popularity. The family of Debian based distributions is the biggest of the base

frames. The most famous member is Ubuntu and its fork Mint. The second big player is Fedora

that is supported by the company RedHat. The next section deals with basics on operating

system and the differences between the underlying concepts.

2.6.2 Operating Systems and Kernels

To facilitate the comprehension of the work, this section gives overview on the underlying con-

cepts of operating systems. Most operating systems are using kernels and the basic idea is for

all of them the same: provide the interface between hardware and software.

Applications

Kernel

Hardware

Figure 2.6: Layers on a PC system

As shown in figure 2.6 the kernel can be regarded as the connecting part between application

and hardware layer. It provides the lowest level abstraction layer for resources (as devices, CPU

and memory) that usually uses system calls and inter-process communication. 2

There are two classical designs of kernels with different advantages. One concept known as

monolithic kernels uses address space to execute all operating system code. The other concept

is the family of micro kernels that are using the user space to run most parts of the operating

system. The benefit is a modular implementation with better maintainability. On the other

hand using servers in user space generates much more communication overhead compared with

direct function calls used in monolithic kernels. That promises better performance of systems

with monolithic kernels.

2For more detailed information about functionality of Unix based operating systems the lecture script of

"Echtzeitbetriebssysteme" by Prof. Dr. Schneider (HAW) is highly recommended.

15

2 Background

The evolution of operating systems led to new kernel concepts with the intention of combining

advantages of both kernel implementations. The approach of hybrid kernels makes use of both

concepts in the way of running some important services (e.g. network stack) in kernel space to

reduce performance overhead. Specific codes like drivers are still running as servers in user space.

Modern generations of Microsoft Windows and Apple Mac OS X belong to this group. Linux

belongs to the family of Unix-like operating systems that use monolithic kernels. However the

monolithic concept is enhanced of the functionality to provide loading of modules at running time.

These modular kernels are able to load binaries to kernel space on demand. Once the background

of live operating systems is considered, the next chapter focuses on the origin problem again.

16

3 Conception and Design

3.1 Use Cases

Before start thinking on concrete implementation some basic work on the definition of scenarios

and the resulting requirements has to be done. The idea of textual, structural and visual modeling

techniques for specifying use cases were formulated by Ivar Jacobson in 1986. Nevertheless,

these techniques are part of modern software engineering approaches like eXtreme Programming.

The template style used here is the casual use case structure defined by Alistair Cockburn (cf.

Cockburn 2001, p. 236). This use case template consists of title (goal), primary actor, scope,

level and the story. The story is the body of the use case and contains a short text that describes

informally what happens. The description of possible scenarios is split up in two general points

of view. On the one hand scenarios of end users like customers and potential new community

members are shown. On the other hand there are the necessities of the company have to be

taken into consideration.

17

3 Conception and Design

3.1.1 Energy Data Monitoring System

The following use case include the scenarios that belong to the features of the live energy data

monitoring system. They are formulated as generic as possible to enable different approaches.

The idea is to document the interests in a short and clear way.

Use Case 1 Test JEVis Energy Data Monitoring System

Primary Actor: End-User

Stakeholders and

Interests:

• Customer: Get an impression of the software.

• Training: Provide a training system for each

participant.

• Marketing: Showcase JEVis even if network is

not available. Get in contact with interested

parties.

• Developer: Test developed software in a sand-

box environment.

Scope: JEVis Energy Monitoring System

Level: User-goal

Main Scenario:

1. The actor is interested in testing the monitoring solution. He can get the

software online or on a memory medium. With the help of the enclosed

documentation the user can start the monitoring software and try it out

by means of sample data.

18

3 Conception and Design

Extensions:

1.a Communication:

1. The actor is informed about news concerning the monitoring soft-

ware.

2. Extentions are offered to the actor after registration on website.

1.b Sandbox system:

1. The actor can save changes.

2. The actor can restore test system to original state.

1.c The actor can install the monitoring system.

To visualize the interests listed above a use case specialized UML diagram can be used. Figure

3.1 shows use case 1.

JEVis System
JEVis System

Customer

Interested Person

Research Associate

Envidatec

Training

Testing ServiceService

Figure 3.1: UML use case diagram of use case 1

The use case package “JEVis System” includes the use cases training and testing. The actors

are associated to the use cases with lines. The actor “Interested Person” inherits the “Research

Associate” actor. Figure 3.1 simplifies the tabular use case.

19

3 Conception and Design

3.1.2 Creating a JEVis Monitoring Test System

The continuous development of Linux and the monitoring software leads to the use case of

managing to create new versions of the live system. The stakeholder is in this case the company.

Use Case 2 Create JEVis Monitoring Test System

Primary Actor: IT specialist of the company

Stakeholder and Interest: Company: Offer easily up to date versions

Scope: JEVis Energy Monitoring System

Level: Company-goal

Main Scenario:

1. The actor can create a test system according to use case 1.

2. The actor can update the test system when a new version of JEVis data-

monitoring solution is released.

Extensions:

2.a Customization:

1. The actor can customize the test system.

2. The actor can distribute the test system.

2.b Distribution:

1. The actor can choose between different distribution media.

On basis of the use cases the requirements on the solution are determined in chapter 3.2.

20

3 Conception and Design

3.2 Requirements

As done before in the use cases chapter, the requirements on the test system and the creation

process will be discussed separately. For professional development a standard of IEEE on soft-

ware requirements specification exists. Although a specification of requirements according to

the aforementioned IEEE 830 goes beyond the scope of this thesis, a minimal discourse follows.

Requirements specify what features are expected. In the context of software engineering this

means the expectation of a stakeholder on a software system. The term stakeholder generalizes

all parties involved in system’s requirements (cf. Balzert 2009, pp. 455-456). Requirements are

classified in functional and non-functional ones. The functional group defines functions pro-

vided by the software system. Non-functional requirements by contrast define the way of doing.

Requirements should fulfill the following characteristics: unitary, complete, consistent, atomic,

traceable, current, unambiguous and verifiable (cf. IEEE Computer Society 1998, p. 4).

The figure 3.2 of the process splits the problem into three different aspects.

Figure 3.2: The aspects of scope

The first aspect represents the requirements that result from use case 2. The second box deals

with the options of distribution. The last and most important aspect contains the requirements

on the implementation of the solution to provide the data monitoring system.

21

3 Conception and Design

3.2.1 Data Monitoring Test System

The table below lists the direct (1) and indirect (2) requirements that result of requirement no.

1.4.

No. Description

1 Test data monitoring system

1.1 Can run on PCs

1.2 Can run without network connection

1.3 Can display news

1.4 Gets along with any installation

1.5 Offers a complete JEVis system

1.6 Offers an installation routine for JEVis system

2 Environment

2.1 Installed Java JDK runtime environment

2.2 Installed and configurated Tomcat Java Servlet and server

2.2.1 Axis2 Web Services Engine

2.3 Installed and configurated database

Table 2.1: Requirements on the test system

3.2.2 Distribution

No. Description

3 Distribution

3.1 Provide creation of copys

3.2 Supports various distribution channels

Table 2.2: Requirements on distribution

22

3 Conception and Design

3.2.3 Solution to Create Test Systems

No. Description

4 Creation

4.1 Process is reproducible

4.2 Can be done within appropriate time

Table 2.3: Requirements on the solution to create test systems

Once the requirements are defined the concept for further development can be fleshed out in the

following.

3.3 Design

This section is about the design decisions. In the first step the requirements that call for decisions

will be identified and the questions on design will be formulated. In the second step approaches to

solve tasks begged by the questions are discussed and finally design specifications are generated.

3.3.1 Approach of a Live System

The requirements on the environment for the data monitoring test system (prefix 2) are lead-

ing to a central problem. As the section 2.3.1 about the structure of JEVis points out the

requirements no. 2.1 to 2.4 are the basis for running JEVis. The JEVis Installation Manual (see

OpenJEVis.org 2013[b]) shows on nine pages how to install and configurate Java JDK runtime

environment, Tomcat Java Servlet Server, Axis2 Web Services Engine, MySQL Database and

finally JEVis. This overhead for a simple installation contradicts to requirement no. 1.4 that

implies no installation is necessary for testing the energy monitoring solution. Consistently the

test solution needs to contain the environmental requirements. The options to afford this facility

are the approaches of both portable applications and live systems. A Portable Application is

a standalone program that runs on compatible operating systems without being installed. Al-

though there exist portable applications that have managed the implementation of a needed

environment1 managing the major difficulty to accomplish the requirements on the environment.
1To name an example XAMPP is working as an completely portable webserver.

23

3 Conception and Design

Moreover requirement no. 1.6 that implies offering an installation possibility is hard to realize.

The second approach of a Live System contains many capabilities. As already mentioned in

section 2.6.1 several derivatives of live systems with highly diverse scopes already exsist. Almost

all JEVis system installations up to now are running on Linux servers. While only a marginal

group of desktop computers uses Linux, the number of servers running Linux keeps growing (cf.

Vaughan-Nichols 2013). Even today working with Linux on servers is not unusual. Pondering the

pros and cons of the possible solutions leads to the design decision to use a Linux Live System

to manage the tasks.

3.3.2 Approach of a Remastering Program

In due consideration of requirements no. 4.1 and 4.2 it is incidental to automate the process

of creating new versions of a live system. The program shall be able to guide the remastering

process without resticting the options on customization. Furthermore, the program has to offer

a possibility to copy the remastered live system onto media. Because of the necessary shell

commands the program is only runnable on Linux operating systems. Many design decissions on

the program design depend on the further work on the live system and can not be formulated at

this stage. The next chapter starts with the implementation of remastering.

24

4 Implementation

This chapter is structured as follows: Each scope of implementation is justified, exemplary car-

ried out and finally presented. Structuring the tasks like previously done in the requirements

chapter lead to the topics remastering, distribution and live system as shown in figure 4.1.

Figure 4.1: Aspects of scope

The result of an energy data monitoring live system requires a distribution and the process of

remastering. The term remastering is taken from the audio production process and describes

the process of customizing an operating system or software. Taking account of the structure of

operating systems which was topic of section 2.6.1 remastering of an operating system requires

many steps to customize the different parts of it.

4.1 Remastering

Before the decision to implement remastering with low level commands was taken, existing tools

were tested for their suitabiliy for the task of creating a data monitoring live system. Systems

that are qualified to be base frame are Knoppix, Ubuntu and Fedora. Taking into account the

wide distribution, dynamics of development, and good community structure Ubuntu is favored.

25

4 Implementation

For Ubuntu exists the customization tool “Ubuntu Customization Kit”. The user can enter a

path to an up to date Ubuntu image. With UCK it is possible to chose the display manager, set

names, and add software. The tool offers to create a set of languages that will be available on

live system.

UCK is a tool that helps you customizing official Ubuntu Live CDs (including Kubun-

tu/Xubuntu and Edubuntu) to your needs. You can add any package to the live

system like, for example, language packs, applications, etc.

Features: Create bootable LiveCD with predefined languages based upon an orig-

inal Ubuntu/Kubuntu live CD using graphical wizard. Build live CD with special

features using scripts. It is possible to customize the root filesystem (for example

install/remove packages), ISO contents (add/remove docs, change names) and initrd

(add modules to boot, change boot sequence).

(see Balliano and Lichota 2013)

An other approach is implemented via the Remastersys tool. This program offers the option

to create a backup or a live system from the running operating system. Many customizations

like default live session user, choice of plymouth boot theme or GRUB background image can

be applied. This program appeals to be most matured of all tested alternatives. Certainly the

options for customizing other modules of the live system are not given and on testing occurred

problems.

Remastersys is a tool that can be used to do 2 things with an existing Debian, Ubuntu

or derivative installation.

It can make a full system backup including personal data to a live cd or dvd that you

can use anywhere and install. It can make a distributable copy you can share with

friends. This will not have any of your personal user data in it. The resulting iso

file can be used on any other PC that still meets the original minimum requirements

of Ubuntu or Debian. Things like the graphics card and other hardware will be

configured and setup automatically and you do not have to use identical hardware.

Ubuntu’s live boot tool, casper, currently blacklists Nvidia and AMD proprietary

drivers so they will not be available on the live system and will need to be reinstalled

after installation of your custom system.

26

4 Implementation

(see Remastersys.com 2013)

The main disadvantage of the tested tools is the missing possibility to run the database server

during the remastering process. For the installation of JEVis a database is required. Taking

into account the previously listed problems the way of manual remastering which means doing

it without existing programs with graphical user interface is chosen.

4.2 Remastering in Detail

To understand the functionality of live systems and spot the steps of remastering the parts of a

live system are shown in 4.2 and are discussed in the following.

Figure 4.2: Components of a live system

Usual mediums to distribute operating systems are compact discs (CD), digital versatile disc

(DVD) and newly USB flash drives or flash media cards. The crucial difference between disks

and flash drives is the option of savings on the medium at runtime. Furthermore the time needed

for loading the system depends on used medium. The medium contains a bootable partition,

bootsectors and is marked as bootable. This enables the start of bootmanager when BIOS calls

system start on the device. The bootmanager organizes start of basic operating system with

optionally state of arguements. As explained in 2.6.1 linux basic systems are made up of kernel

and kernel modules. For live systems this includes a lot of drivers in basic configuration. To

complete the setup basic programs like a window manager are provieded. The possibility of

persistent storage can be realized by adding a partition or a persistent file.

27

4 Implementation

Prepare System

Extract Image

Extract Live-System

Edit Live-System

Pack Live-System

Create USB-Stick

Figure 4.3: Sequence of remastering process

The remastering steps shown in figure 4.3 result from the knowledge of the components of live

system media. The different images are extracted into folders on the host system. Once the

data is copied changes can be applied and finally the new system can be packed again. The

following paragraphs are dealing with more detailed information about the steps in the remaster

process.

Prepare Creating System

Starting point for the system to create a new version of live system is Ubuntu 12.04 LTS instal-

lation with default software selection. In expectation of using a 32 bit architecture image it is

a good idea to use a creating system with same architecture. Some additional tools are needed

during remastering process.

1 sudo apt−get i n s t a l l s qua sh f s−t o o l s

Listing 4.1: Prepare

28

4 Implementation

To install the needed programs the command line tool apt-get is used. Squashfs-tools are

needed to extract and compress file system images in squashfs file system format. In the following

many commands need higher rights. These rights can be granted with the sudo command.

of lines

Extract Image

1 # Make Work Fo l d e r and Ente r

2 mkdir JEVisL ive_v$ {VERSION}

3 cd JEVisL ive_v$ {VERSION}/

4

5 # Mount Image and Copy

6 mkdir i s o

7 sudo mount −o loop ${SRCIMAGE} . / i s o /

8 mkdir c p i s o

9 sudo r s y n c −a . / i s o / . / c p i s o /

10 sudo umount . / i s o

11 rmd i r . / i s o

Listing 4.2: Extract Image

By using the mount and the rsync commands (line 7-10) a copy the content of an Ubuntu

hybrid image1 is saved to the remaster directory. Many tries of remastering failed because of

using the rm command. It seems like some files or links are not copied correctly with it. The

workaround on this problem is using rsync for exactly copying files. Related to figure 4.2 the

components are now located in the directory as listed in table 2.1.

1Images that can be used to create CDs and USB media

29

4 Implementation

Part Location

Bootloader configuration boot/grub/grub.cfg

Kernel casper/vmlinuz

Kernel modules (RAM filesystem) casper/initrd.lz

System data (SquashFS filesystem) casper/filesystem.squashfs

Persistent memory Second partition labeled as casper-rw

Table 2.1: Location of system contents

Extract Live-System

The compressed image that contains the system data of the live system gets unpacked in a

separate directory.

1 sudo mount −t s q u a s h f s −o loop . / c p i s o / c a sp e r / f i l e s y s t e m . s qu a s h f s . / c a s p e r /

2 mkdir cp ca spe r

3 sudo r s y n c −a . / c a s p e r / . / cpca spe r /

4 sudo umount . / c a s p e r

5 rmd i r . / c a s p e r

Listing 4.3: Extract Live-System

When the copy with rsync was successful the mount-folder can be deleted. The copy is now

the starting point for editing the live system.

Edit Live-System

To customize the operating system the extracted live system can be entered with the chroot

command. With this command it is possible to change the root directory on terminal. Several

tasks have to be done to customize the system. Many of them can be realized by using the

Debian Package concept which is topic of section 4.6.

1 # Prepare Chroot

2 sudo cp / e t c / r e s o l v . con f / e t c / ho s t s . / cpca spe r / e t c

3 mkdir . / r e s o u r c e s

30

4 Implementation

4 sudo mount −o b ind ${RESOURCES} . / cpca spe r /mnt

5

6 # Ente r Chroot I n s t a l l So f tware and Crea te De f au l t User

7 sudo ch roo t . / cpca spe r /

8 mount −t p roc none / proc

9 mount −t s y s f s none / s y s

10

11 # Add Repo s i t o r y s

12 sudo add−apt−r e p o s i t o r y −−ye s "deb http://archive.ubuntu.com/ubuntu $(lsb_release -sc)

universe"

13 sudo add−apt−r e p o s i t o r y −−ye s ppa : webupd8team/ j a v a

14 sudo add−apt−r e p o s i t o r y −−ye s ppa : gwendal−l e b i h an−dev/cinnamon−s t a b l e

15

16 sudo apt−get update

17 # sudo apt−get upgrade

18

19 # I n s t a l l Java

20 sudo apt−get i n s t a l l o r a c l e−j ava6− i n s t a l l e r

21 echo "JAVA_HOME=/usr/lib/jvm/java-6-oracle/" | t e e / e t c / env i ronment

22

23 # Remove So f tware

24 sudo apt−get purge openjdk−∗

25 sudo apt−get purge gnome−games−data

26 sudo apt−get purge un i t y−l e n s−shopp ing

27 sudo apt−get purge rhythmbox

28

29 sudo dpkg −− i n s t a l l /mnt/plymouth−theme−o p e n j e v i s . deb

30 sudo update−a l t e r n a t i v e s −−c o n f i g d e f a u l t . p lymouth

31 sudo apt−get i n s t a l l −−ye s cinnamon

32

33 # JEVis I n s t a l l a t i o n Dependenc i e s

34 sudo apt−get i n s t a l l −−ye s tomcat6 l i b t c n a t i v e −1 mysql−s e r v e r o p e n s s l unz i p oc tave

35 echo "JAVA_HOME=/usr/lib/jvm/java-6-oracle/" | t e e / e t c / d e f a u l t / tomcat6

36

37 # Add De f au l t User

38 adduse r j e v i s

39 # passwd −d j e v i s # Remove Password

40 usermod −aG sudo j e v i s

41 e x i t

42

43 # Ente r Chroot w i th De f au l t User

44 sudo ch roo t . / cpca spe r /

45 su j e v i s

46 # JEVis I n s t a l l a t i o n

47 sudo mkdir / opt / j e v i s

48 sudo chown j e v i s : j e v i s / opt / j e v i s

49 sudo usermod −a −G tomcat6 j e v i s

31

4 Implementation

50 e x i t

51 su j e v i s

52 unz ip /mnt/JEVis_2_2_0_20121026 . z i p −d ~/

53 cd ~/JEVis_2_2_0_20121026/

54 j a v a − j a r . / J E I n s t a l l e r . j a r

55 mv / va r / l i b / tomcat6/webapps/ROOT / va r / l i b / tomcat6/webapps/OLDROOT

56 l n −s / va r / l i b / tomcat6/webapps/ j e v i s / va r / l i b / tomcat6/webapps/ROOT

57 sudo s e r v i c e mysql r e s t a r t

58 sudo s e r v i c e tomcat6 r e s t a r t

59 e x i t

60 e x i t

Listing 4.4: Edit Live-System

The preparation of the chroot environment is done in lines 1-4 and includes overwriting the

network configuration with the files of the host system. This is necessary to etablish a connection

within the chroot environment. Additionally a shared folder is linked to the environment. Up

next one of the most important steps for remastering is taken: The chroot command allows

to change the root directory within the terminal window. Furthermore the current user of the

terminal changes to root user. This implies the possibility to apply changes to the content of

the directory in the way it can be done usually only within a running system. The proc and sys

folders contain system information which is necessary for execution of programs. The mount

commands (lines 7-10) provide the integration of this file system contents. At this point the

requirements to install and uninstall software are fulfilled. Lines 11 to 35 illustrate the removal

and the adding of software packages and repositories exemplarily. The following lines perform

the installation and configuration of the data monitoring system. The biggest problems while

the installation of JEVis as illustrated are caused by system services: the Tomcat server and

the MySQL database service have undocumented requirements on the chroot environment. For

example the installation fails when a MySQL service is already running on the host system.

Furthermore the re-logins done are required to apply the set user-rights.

Pack Live-System

When the customization of the live system is finished the directory containing the edited files has

to be packed again. Furthermore a list of installed packages is needed. The filesystem.manifest

file lists packages used on the live system. The filesystem.manifest-desktop contains a list that is

needed for a system installation of the distribution.

32

4 Implementation

1 sudo su

2 # Genera te Package−L i s t s

3 ch roo t . / cpca spe r dpkg−query −W −−showformat=’${Package} ${ Ve r s i on }\n ’ > . / c p i s o / c a sp e r

/ f i l e s y s t e m . man i f e s t

4 cp . / c p i s o / c a s p e r / f i l e s y s t e m . man i f e s t . / c p i s o / c a sp e r / f i l e s y s t e m . man i f e s t−desk top

5

6 # Compress L ive−System

7 rm . / c p i s o / c a sp e r / f i l e s y s t e m . s qu a s h f s

8 mksquashfs . / cpca spe r / . / c p i s o / c a s p e r / f i l e s y s t e m . s qu a s h f s

9

10 # Ove r r i d e I n i t r d . l z

11 cp . / cpca spe r / boot / i n i t r d . img∗ . / c p i s o / c a sp e r / i n i t r d . l z

12 e x i t

Listing 4.5: Pack Live-System

Create USB-Stick

Finally the USB flash device has to be prepared for the generation of live system device. In order

to this old partitions are removed, new partitions are created, formatted, and the edited system

is copied to the device.

1 DEV=/dev/ sdc

2

3 # Crea te Pa r t i o n s

4 sudo umount ${DEV}∗

5 sudo pa r t ed −s ${DEV} rm 1

6 sudo pa r t ed −s ${DEV} rm 2

7 sudo pa r t ed −s ${DEV} rm 3

8 sudo pa r t ed −s ${DEV} mk labe l msdos

9 sudo pa r t ed −s ${DEV} mkpart p r imary f a t 3 2 5 30%

10 sudo pa r t ed −s ${DEV} mkpart p r imary ex t2 30% 60%

11 sudo pa r t ed −s ${DEV} mkpart p r imary f a t 3 2 60% 100%

12 sudo pa r t ed −s ${DEV} s e t 1 boot on

13 sudo mkfs . v f a t −n JEV i sL i v e ${DEV}1

14 sudo mkfs . ex t2 −L caspe r−rw ${DEV}2

15 sudo mkfs . v f a t −n Resource ${DEV}3

16

17 sudo umount ${DEV}1

18

19 # Copy

20 sudo mkdir . / par1

33

4 Implementation

21 sudo umount ${DEV}1

22 sudo mount ${DEV}1 . / par1

23 sudo r s y n c −a . / c p i s o / . / par1

24

25 # I n s t a l l Boo t l oade r

26 sudo grub− i n s t a l l −−boot−d i r e c t o r y =./ par1 / boot −−no−f l o p p y ${DEV} −−f o r c e

27 sudo cp . / r e s o u r c e s / grub . c f g . / par1 / boot / grub / grub . c f g

Listing 4.6: Create USB-Stick

To copy the live system onto a USB flash device the media first has to be partitioned and

formatted. This tasks are done with lines 4 to 17. After the preparation of the media is complete

the system is copied to the device (line 23). Finally the boot manager has to be installed onto

the media und the configuration of it gets overwritten (lines 26 and 27).

4.3 Customization

There are certain parts of a live system that can be customized to match the style guidelines of

the community. In addition the data included in delivery has to be defined.

4.3.1 Look and Feel

The desired aim of an uniform appearance of products, projects and documentation implies

customizing parts of the live system. Some components are editable with appropriate effort.

Regarding a live system from users point of view the boot routine is the first seen component

which is editable. The boot manager offers two operating modes: The default mode starts

the system with the opportunity of savings while the save mode does not permit storage of

data. Once the user has chosen an option the boot routine continues. It encloses loading of

kernel, kernel-modules and systems data while displaying a boot animation. The live system

uses a customized boot screen which is implemented on a system named Plymouth. There exist

examples of creating own boot animations. When booting is finished an automatic log in with

the default JEVis user is performed. Now the display manager is already started and the user is

able to handle the system. Assuming that most of the users are familiar with Microsoft Windows

the Cinnamon Display Manager that is similar to it is installed.

34

4 Implementation

4.3.2 JEVis

To test the monitoring system feasible data to analyze are necessary. A set of suitable data for

testing exists on the OpenJEVis Alpha Test Server. Data can be copied with the mysqldump

command. During the remastering process the exported file has to be imported to the live

system’s database. No longer used data have to be deleted and additionally a clean up of the

database has to be performed.

4.3.3 Presentation

Figure 4.4: Customized boot screen

Figure 4.4 shows the animation that is displayed while starting the system. The logo is a

transparent png image and the animation scripts enables glowing of the images contours.

35

4 Implementation

Figure 4.5: Desktop environment

Figure 4.5 shows the desktop provided by the Cinnamon display manager. The customizations

aims to create a intuitive for most users with similar desktop concepts to Microsoft Windows.

Figure 4.6: Test the Monitoring Solution

The JEVis Live System contains a customized portal page. This page is able to detect an internet

connection and can display content loaded from the update.openjevis.org server. If no connection

is available the portal page displays the default content.

36

4 Implementation

Figure 4.7: Test the Monitoring Solution

The already included example data enables the possibility to test the functions of the JEVis

programs. For the most users JEGraph is the starting point like shown in 4.7 For advanced users

jobs like MATLab calculations can be configured with JEConfig and the menu items provide the

possibility to start the calculation, which is on a normal system started periodically.

Figure 4.8: Installation Routine

For users that decides to work with JEVis the installation routine of the live system is useful. The

37

4 Implementation

dialog captured in figure 4.8 guides the installation and offers many options for the installation.

4.4 Distribution

The options on distribution of the presented live systems are DVD’s, offering download and

USB flash devices. The option of using DVDs as media is impracticable because savings are not

possible. Envidatec’s management decided to use the option of USB flash devices. The reasons

are the usability of them in connection with events like workshops and trainings.

4.4.1 Presentation

Figure 4.9: JEVis USB flash device

The chosen USB flash devices have a size of 8 GB and are labeled with the JEVis logo. The speed

of the live system depends highly on the used flash media. While a high performance USB flash

device boots the live system within 50 seconds 2 ordinary flash devices needs approximability

two and a half minute.

4.5 JEVis Live Creator

The approach a of remastering tool previously discussed in section 3.3.2 aims to facilitate more

comfortable editing of the live systems. That includes on the one hand the possibility to do

settings on the customization and on the other hand to provide the procedure to copy it on

2tested with a Kingston DataTraveler Ultimate G2 3.0 on a USB 3.0 supporting PC.

38

4 Implementation

flash devices. In consideration of the possibilities for program’s design the questions arises which

programming language is to use. Of course C has to be debated because it offers good access

to command line functions. Even today many programs especially on Linux are written in C

and indeed there are also libraries available to create graphical user interfaces. For example the

GTK+ (Gimp Tool Kit) contains a lot of GUI components. Nevertheless an object orientated

programming language establishes more comfortable development and usage of design patterns.

Within the scope of the study of electrical engineering the opportunity of learning fundamentals

on object orientated programming with Java exists. That encloses first steps with the Java Swing

library. However the task of combining shell commands and a Java user interface begs problems.

This will be discussed in section 4.5.2. Previously some general program design decisions have

to be ruled.

4.5.1 Programming Techniques

The implementation makes use of the JavaFX library to create the graphical user interface. The

program is realized with programming patterns. The following paragraphs describe the Singleton

and the Model View Control (MVC) Pattern.

Singleton

The Singleton Pattern ensures that only one instance of a class is created. Listing 4.7 shows an

example of a Singleton implementation in Java.

1 p u b l i c f i n a l c l a s s S i n g l e t o n {

2 p r i v a t e s t a t i c S i n g l e t o n t h e I n s t a n c e = n u l l ;

3 p r i v a t e S i n g l e t o n () {} ;

4 p u b l i c s t a t i c S i n g l e t o n g e t I n s t a n c e () {

5 i f (t h e I n s t a n c e == n u l l)

6 t h e I n s t a n c e = new S i n g l e t o n () ;

7 r e t u r n t h e I n s t a n c e ;

8 }

9 }

Listing 4.7: Singleton Pattern

The chosen implementation does not provide thread safety because the program does not make

use of multithreading (cf. Eilebrecht and Starke 2010, p. 35).

39

4 Implementation

Model View Control Pattern

The MVC Pattern splits the tasks within a program into three different parts shown in 4.10.

Figure 4.10: Model View Control Design Pattern (cf. Heinisch, Goll, and Müller-Hofmann 2007,

p. 822)

The view is used for outputting representation. It requests information from the model that

the view needs to generate output. The user sees the data shown by the view and uses the

controller for commanding the program. The controller implements the event handling. It is

able to send commands to its associated view and model to update them. Methods that touches

data of the model belong to the model itself. The update of the view is bind to the state of

the model which notifies its associated views and controllers when there has been a change in

its state. This notification allows the view to produce updated output, and the controller to

change the available set of commands (see Eckstein 2008). Other programming techniques used

are explained in the following documentation of concrete implementations.

4.5.2 Execute Scripts within JAVA Programs

In exception of the tasks the program has to offer a solution to run scripts. This enables executing

scripts generated by the script parser that is topic of section 4.5.3.

Executing scripts usually causes output that is written to the terminal window the script is

launched. By launching the scripts within the program the output has to be redirected:

40

4 Implementation

1 s t a t i c c l a s s StreamHandler e x t end s Thread {

2 I nputSt ream i s ;

3

4 S t r i n g type ;

5

6 StreamHandler (InputSt ream i s , S t r i n g type) {

7 t h i s . i s = i s ;

8 t h i s . t ype = type ;

9 }

10

11 p u b l i c vo i d run () {

12 t r y {

13 I nputSt reamReader i s r = new InputSt reamReader (i s) ;

14 Buf f e r edReade r br = new Bu f f e r edReade r (i s r) ;

15 S t r i n g l i n e = n u l l ;

16 wh i l e ((l i n e = br . r e adL i n e ()) != n u l l)

17 System . out . p r i n t l n (type + " " + l i n e) ;

18 } ca tch (IOExcept i on i o e) {

19 i o e . p r i n t S t a c kT r a c e () ;

20 }

21 }

22 }

Listing 4.8: Stream

Java offers a runtime class to execute external programs. The path to bash which is the programm

that executes shell scripts and the path to the script are combined to the command.

1 // Execute s the s c r i p t

2 p u b l i c s t a t i c vo i d e x e cu t e (S t r i n g s c r i p t) {

3 i f (s c r i p t . l e n g t h () <1) {

4 System . out . p r i n t l n ("USAGE: java ShellScriptExecutor script") ;

5 System . e x i t (1) ;

6 }

7

8 t r y {

9 S t r i n g osName = System . g e tP r op e r t y ("os.name") ;

10 S t r i n g [] cmd = new S t r i n g [2] ;

11 cmd [0] = "/bin/sh" ; // Path to s h e l l

12 cmd [1] = s c r i p t ;

13

14 Runtime r t = Runtime . getRunt ime () ;

15 System . out . p r i n t l n ("Run " + cmd [0] + " " + cmd [1]) ;

16 Proce s s proc = r t . exec (cmd) ;

41

4 Implementation

17 // E r r o r messages

18 StreamHandler e r r o rS t r e amHand l e r = new StreamHandler (

19 proc . g e tE r r o rS t r eam () , "ERR") ;

20

21 // Output messages

22 StreamHandler outputSt reamHand le r = new StreamHandler (

23 proc . ge t InputS t r eam () , "OUT") ;

24

25 // S t a r t h a n d l e r s

26 e r r o rS t r e amHand l e r . s t a r t () ;

27 outputSt reamHand le r . s t a r t () ;

28

29 // E r r o r messages o f p r o c e s s

30 i n t e x i t V a l = proc . wa i tFo r () ;

31 System . out . p r i n t l n ("ExitValue: " + e x i t V a l) ;

32 } ca tch (Throwable t) {

33 t . p r i n t S t a c kT r a c e () ;

34 }

35 }

Listing 4.9: Module to run scripts

4.5.3 Script Parser

At this point the program is able to execute scripts. The next task is to find a way to combine

the users choice in the graphical interface with the remastering scripts of chapter 4.2. This can be

done according to figure 4.11 by reading a template script and replacing previous set wild-cards.

This procedure offers the possibility to show the user the generated script before it gets executed.

Figure 4.11: Principle of generating scripts

The interface shown in listing 4.10 specifies the necessary methods when programming a class

that implements the interface.

42

4 Implementation

1 package org . o p e n j e v i s . j e v i s l i v e c r e a t o r . model ;

2

3 impor t j a v a . u t i l .Map ;

4

5 p u b l i c i n t e r f a c e S c r i p t a b l e {

6 /∗∗

7 ∗ I n i t i a l i z e s c r i p t . Template needs to be s e t

8 ∗/

9 vo i d i n i t i a l i z e () ;

10

11 /∗∗

12 ∗ @re tu rn Map<s t r i n g , s t r i n g > va r

13 ∗ s e t p a i r s to be r e p l a c e d

14 ∗/

15 Map<St r i ng , S t r i ng > d e f V a r i a b l e s () ;

16

17 /∗∗

18 ∗ @re tu rn boo l ean s t a t u s

19 ∗ s t a r t r e p l a c e

20 ∗/

21 Boolean r e p l a c e () ;

22

23 vo i d s e t S c r i p t (S t r i n g s c r i p t) ;

24 S t r i n g g e t S c r i p t () ;

25 vo i d se tTemplate (S t r i n g t emp la t e) ;

26 S t r i n g getTemplate () ;

27 vo i d s e tVa r s (Map<St r i ng , S t r i ng > va r s) ;

28 Map<St r i ng , S t r i ng > getVar s () ;

29 vo i d g e n e r a t e S c r i p t (S t r i n g s c r i p t) ;

30 }

Listing 4.10: Interface of script creation

The abstract class provides shared used methods.

1 package org . o p e n j e v i s . j e v i s l i v e c r e a t o r . model ;

2

3 impor t j a v a . i o . Bu f f e r edReade r ;

4 impor t j a v a . i o . Bu f f e r e dWr i t e r ;

5 impor t j a v a . i o . F i l e ;

6 impor t j a v a . i o . F i l eR e ad e r ;

7 impor t j a v a . i o . F i l eW r i t e r ;

8 impor t j a v a . i o . IOExcept ion ;

9 impor t j a v a . u t i l .Map ;

10

43

4 Implementation

11 p u b l i c a b s t r a c t c l a s s S c r i p t implements S c r i p t a b l e {

12 p r i v a t e S t r i n g t emp la t e ;

13 p r i v a t e S t r i n g s c r i p t ;

14 p r i v a t e Map<St r i ng , S t r i ng > va r s ;

15

16 p u b l i c vo i d s e t S c r i p t (S t r i n g s c r i p t) {

17 t h i s . s c r i p t=s c r i p t ;

18 }

19 p u b l i c S t r i n g g e t S c r i p t () {

20 r e t u r n s c r i p t ;

21 }

22 p u b l i c vo i d se tTemplate (S t r i n g t emp la t e) {

23 t h i s . t emp la t e=temp la t e ;

24 }

25 p u b l i c S t r i n g getTemplate () {

26 r e t u r n t emp la t e ;

27 }

28 p u b l i c vo i d s e tVa r s (Map<St r i ng , S t r i ng > va r s) {

29 t h i s . v a r s=va r s ;

30 }

31 p u b l i c Map<St r i ng , S t r i ng > getVar s () {

32 r e t u r n t h i s . v a r s ;

33 }

34 p u b l i c vo i d g e n e r a t e S c r i p t (S t r i n g s c r i p t) {

35 s e t S c r i p t (s c r i p t) ;

36 r e p l a c e () ;

37 }

38 p u b l i c Boolean r e p l a c e () {

39 t r y {

40 // Open F i l e s

41 F i l e i n f i l e=new F i l e (getTemplate ()) ;

42 i f (! i n f i l e . e x i s t s ()) {

43 System . out . p r i n t l n ("Template not exists") ;

44 r e t u r n f a l s e ;

45 }

46

47 F i l e o u t f i l e=new F i l e (g e t S c r i p t ()) ;

48 i f (! o u t f i l e . e x i s t s ()) {

49 i f (! o u t f i l e . c r e a t eNewF i l e ()) {

50 System . out . p r i n t l n ("Script can not be created") ;

51 r e t u r n f a l s e ;

52 }

53 }

54

55 Buf f e r edReade r i n = new Bu f f e r edReade r (new F i l eR e ad e r (i n f i l e)) ;

56 Bu f f e r e dWr i t e r out = new Bu f f e r e dWr i t e r (new F i l eW r i t e r (o u t f i l e)) ;

57

44

4 Implementation

58 // Crea te map o f v a r i a b l e s

59 s e tVa r s (d e f V a r i a b l e s ()) ;

60

61 S t r i n g l i n e ;

62 // Read temp la t e f i l e by l i n e

63 wh i l e ((l i n e = i n . r e adL i n e ()) != n u l l) {

64 // For each key−va lue−p a i r

65 f o r (Map . Entry<St r i ng , S t r i ng > e : v a r s . e n t r yS e t ()) {

66 // Rep lace key wi th v a l u e

67 l i n e=l i n e . r e p l a c e (e . getKey () , e . ge tVa lue ()) ;

68 }

69 // Write to s c r i p t f i l e

70 out . w r i t e (l i n e) ;

71 }

72 // C lo s e f i l e s

73 i n . c l o s e () ;

74 out . c l o s e () ;

75 }

76 ca tch (IOExcept i on e) {

77 e . p r i n t S t a c kT r a c e () ;

78 }

79 r e t u r n t r u e ;

80 }

81 }

Listing 4.11: Abstract methods for script creation

To give an example of the functionality the implementation of the script that copies the system

to an USB device is shown below.

1 package org . o p e n j e v i s . j e v i s l i v e c r e a t o r . model ;

2

3 impor t j a v a . u t i l . HashMap ;

4 impor t j a v a . u t i l .Map ;

5

6 p u b l i c c l a s s S c r i p t C r e a t e ex t end s S c r i p t {

7

8 @Over r ide

9 p u b l i c Map<St r i ng , S t r i ng > d e f V a r i a b l e s () {

10 Map<St r i ng , S t r i ng > va r s = new HashMap<St r i ng , S t r i ng >() ;

11

12 // Model

13 ModCreate modCreate=new ModCreate () ;

14

15 // Add v a r i a b l e s

45

4 Implementation

16 v a r s . put ("$WORKDIR" , model . getWorkDir ()) ;

17 v a r s . put ("$DEV" , modCreate . g e tDev i c e ()) ;

18 v a r s . put ("$MOUNT_USB" , modCreate . getUSBMount ()) ;

19 v a r s . put ("$SIZE_LIVE" , modCreate . g e t S i z eP a r L i v e ()) ;

20 v a r s . put ("SIZE_PERS" , modCreate . g e t S i z ePa rPe r s ()) ;

21 v a r s . put ("$NO_PERS" , modCreate . g e tPe r s ()) ;

22 v a r s . put ("$useDef" , modCreate . u s eD e f a u l t I s o . ge tVa lue () . t o S t r i n g ()) ;

23 r e t u r n v a r s ;

24 }

25

26 @Over r ide

27 p u b l i c vo i d i n i t i a l i z e () {

28 se tTemplate (model . ge tSc r i p tTemp la t eUsb ()) ;

29 }

30 }

Listing 4.12: Example for script implementation

4.5.4 Presentation

Figure 4.12: Copy live system to media

Figure ?? shows the dialog to copy the JEVis Live System to a flash device.

46

4 Implementation

4.6 Packages

Distributing software centralized offers benefits like predefined paths, enhanced configuration,

version control, satisfy of dependencies, and update mechanisms. New versions of popular OS are

mostly shipped with a build-in solution of software centers. While this feature on MS Windows

has been implemented in 2012 (Windows 8) for the first time onto Linux systems concepts of

an unified way to install software has been established for a long time. However there exist

different implementations inside the distribution groups. One of the leading concepts is the

RPM Package Manager 3, which has been developed since the 1990ies and has been specified

in the Linux Standard Base. The RPM is for instance used by Fedora and Suse Linux. This

packages are managed on client’s side with the yum tool. The second important implementation

is provided on Debian based distributions and are called Debian packages (.deb). They are

managed with the dpkg, aptitude or usually apt-get tool.

Because Ubuntu Linux which belongs to the Debian based Linux derivatives is used for the

realization Debian Packages are created. The procedure of making a package is exemplary shown

in the following.

The file name of a Debian Package shall be built up containing the program’s name, its version

information and the architecture of target system.

programs-name_version.sub_version_debian_revision_version_architecture.deb

Debian packages have a default structure of folders and configuration files as shown in figure

4.13, that contains the default configuration for a local running JEVis system. The creation of

the packages can be automated by the following script:

1 echo "=== Make Package ==="

2 SRC=./ j e v i s − l i v e − j e v i s −

3 DEB=./ j e v i s − l i v e − j e v i s . deb

4

5 r ead −p "Path to package sources: " − i $SRC −e SRC

6 r ead −p "Target file: " − i $DEB −e DEB

7

8 echo "Change permissions"

9 f i n d $SRC −t ype f −p r i n t 0 | x a r g s −0 sudo chmod 644 # s e t f i l e s to 644

10 f i n d $SRC −t ype d −p r i n t 0 | x a r g s −0 sudo chmod 755 # s e t f o l d e r s to 755

11 f i n d . / −t ype f −name "*.sh" −p r i n t 0 | x a r g s −0 sudo chmod +x # make s c r i p t s e x e c u t a b l e

3primary meaning RedHat Package Manager

47

4 Implementation

12 #f i n d . / −t ype f −name "∗ . j a r " −p r i n t 0 | x a r g s −0 sudo chmod +x # make s c r i p t s e x e c u t a b l e

13

14 chmod 0755 −R $SRC/DEBIAN/ p o s t i n s t # rwx , rx , r x to s c r i p t s

15 chmod 0755 −R $SRC/DEBIAN/prerm # rwx , rx , r x to s c r i p t s

16

17 echo "Clean sources"

18 f i n d $SRC −t ype f −name "*~" −exec rm −f {} \ ; # d e l e t e g e d i t auto−save

19 rm − r f ‘ f i n d $SRC −t ype d −name . svn ‘ # d e l e t e svn i n f o

20

21 echo "Make deb package"

22 f a k e r o o t dpkg −b ${SRC} ${DEB}

23 l i n t i a n ${DEB}

Listing 4.13: Create a Package

To build packages of good quality the file permissions have to be set correctly. Furthermore, not

needed files are deleted and the package is created under usage of a fakeroot environment. The

program lintian offers a check of the built package.

jevis-live-jevis

DEBIAN

changelog

control

copyright

preinst

postinst

opt

jevis

etc

jevis.cnf

jevis-live

Figure 4.13: Folder structure of an example package

The DEBIAN folder contains configuration files. They are used to provide information about

license, platform, depencies and more. Analog to the procedure sketched ahead within the work

on the live system the packages listed in table 6.1 are created. These packages take part during

the remastering process.

48

4 Implementation

Name description

jevis-live-bin-links Places run scripts in bin.

jevis-live-casper Place settings for casper environment.

jevis-live-cinnamon Overrides default session-setting.

jevis-live-defaultconf Default pre-configuraton for JEVis-installation.

jevis-live-desktop-icon-jecalc Shows JECalc button on desktop.

jevis-live-desktop-icon-jeconfig Shows JEConfig button on desktop.

jevis-live-desktop-icon-jegraph Shows JEGraph button on desktop.

jevis-live-desktop-icon-portal Shows JEPortal butoon on desktop.

jevis-live-desktop-icon-readme Shows readme-icon on desktop.

jevis-live-documentation Local documentation of JEVis.

jevis-live-exampledata Copy example data to JEVis system.

jevis-live-fix-apport Suppress crash reports of apport.

jevis-live-icons Icons for JEVis.

jevis-live-jeconfig JEConfig - set up the monitoring system configuration.

jevis-live-jevis Copy and run JEInstaller.

jevis-live-languages Install language packages (DE,RU,EN,UK)

Table 6.1: Created packages

4.6.1 Repository

To create an repository the command line program reprepro is used.

“Creating an APT repository involves creating a set of directories to hold the packages

and using a tool to create the supporting files for the APT tools to use to access the

repositories.”

(Sally 2009)

In the first step packages that are added to the repository have to be signed with with a GPG

key.

1 # i n s t a l l t o o l to s i g n packages

2 sudo apt−get i n s t a l l dpkg−s i g n

49

4 Implementation

3 # expo r t key

4 gpg −−armor −−output . / r e p o s i t o r y / p u b l i c k e y . gpg −−e xpo r t i n f o@ o p e n j e v i s . o rg

5 # s i g n a package

6 dpkg−s i g −−s i g n b u i l d e r . / packages / j e v i s − l i v e −i c o n s . deb −k 47E56ABD

Listing 4.14: Sign packages

Next steps are creating a folder named conf and a configuration file named distributions

in it. The repository needs the configuration to organize clients access to the repository. Clients

need to know what types of packages they can expect to find.

1 Or i g i n : o p e n j e v i s . o rg

2 Codename : e x p e r imen t a l

3 A r c h i t e c t u r e s : i 386 amd64

4 Components : main

5 De s c r i p t i o n : Debian−Packages o f OpenJEVis . o rg

6 SignWith : 47E56ABD

7

8 Or i g i n : o p e n j e v i s . o rg

9 Codename : quan ta l

10 A r c h i t e c t u r e s : i 386 amd64

11 Components : main

12 De s c r i p t i o n : Debian−Package o f OpenJEVis . o rg

13 SignWith : 47E56ABD

Listing 4.15: Distributions configuration file

After the repository is set up package files can be added to the repository with this command:

1 # i n s t a l l needed t o o l

2 sudo apt−get i n s t a l l r e p r e p r o

3

4 # se t r e p o s i t o r y base d i r

5 e xpo r t REPREPRO_BASE_DIR=’/repository’

6

7 # add packages w i th r e p r e r o

8 r e p r e p r o i n c l u d e b e x p e r imen t a l j e v i s − l i v e −i c o n s . deb

9

10 # To remove a package from

11 r e p r e p r o remove e x p e r imen t a l j e v i s − l i v e −i c o n s

Listing 4.16: Add and remove packages

50

4 Implementation

Subsequently the content of the repository folder has to be uploaded except of db and conf

which are only needed locally for configuration.

4.6.2 Presentation

Once the repository is available clients can adapt it to their package sources. The procedure is

described briefly at http://update.openjevis.org.

Figure 4.14: Ubuntu software center

Figure 4.14 shows how packages are presented on the software center. If new versions of the

packages are uploaded to the repository clients are notified about the update. The short presen-

tations of the results are associated within the last chapter and the impact on the initial situation

is revealed.

51

http://update.openjevis.org

5 Conclusion and Outlook

5.1 Conclusion

To estimate the impact of the implemented improvements on usability of OpenJEVis, and espe-

cialy the necessary efforts to test and install JEVis, subsequently the initial and actual situation

have to be compared. The fields of initial usability and distribution infrastructure became the

main topics of this thesis. To remind the reason for starting research on distribution alternatives

figure 5.1 shows the weaknesses again.

Testing

Testserver

Account

Virtual

Machine

Live

System

Installation

Package

Concept

Installer

Manual

Figure 5.1: Fields of work

The figure displays the existing and the within the project planned (underlined italic) options

of testing and installing. The initial situation required the registration on the website and

requesting of a guest account to try out JEVis without complex installation. The only way to

install JEVis was given by the JEInstaller and a nine page long installation manual.

The main efforts were taken on the development of the JEVis Live System. The final result of the

52

5 Conclusion and Outlook

research on it is a solution that eliminates many weak points. By taking a closer look on inten-

tions and actual results the live system approach provides a crucial easier way for testing. The

live system is able to save data, do calculations, display news, perform installation and contains

example data. Up to this point about 100 JEVis Live USB flash devices have been produced.

Particularly new possibilities to perform installations were created which are discussed later on.

For time reasons the planned feature of integrating a data source was not implemented.

Aiming at creating a sustainable solution becomes apparent on the developed program. The

JEVis Live System Creator offers creating new versions of the Live System and the reproduction

of Live System USB flash devices. A graphical user interface based on JavaFX and the realization

of remastering tasks which go back to terminal scripts are chosen in this implementation. The

adaption of scripts bases on templates and a parsing algorithm of the program. Adapted scripts

can be executed with the implemented shell script launcher.

New options besides the live system are offered by the concept of Debian Packages. The used

synergies flow into alternative installation options. Within the scope of this thesis the presenta-

tion of possibilities are published on an own domain1 which is integrated on the OpenJEVis.org

community. Approaching to distribute the software via repository would offer a technical solu-

tion to perform updates more comfortable. Thus, this topic is examined in the following outlook

section.

1The results are available on http://update.openjevis.org/

53

http://update.openjevis.org/

5 Conclusion and Outlook

5.2 Outlook

5.2.1 Integration of Datasources

The initial purpose includes the integration of datasources. As already mentiond in the pre-

vious section the current version of the JEVis Live System does not implement an own active

datasource. The reflections done on this topic during working on this thesis are used to outline

possibilities of datasource integration in the following.

Normally the live system is only running for limited periods. That causes undynamic data for

long sequences. Interrupted data recording has impact on the group of matching sources because

hardly any of them can provide definite data rows. Some sources provide data that changes

only while the system is running. As a consequence values for undetermined data sequences can

be reconstructed. Examples for this kind of data are disk space or network traffic that do not

change when the system is turned off.

Other data values change while the system is not running. In times the recording service does not

capture data the values are undetermined. This thought can be proved taking CPU temperatures:

Sensors can only deliver temperatures in uptime but the value will change after turning off the

system.

Data Sources

There are different possibilities to realize the transmission of data to the JEVis software. The

concepts differ in level of abstraction and deepness of access to the monitoring software.

Taking into account the limitation that the data source is only used on local system a service

program is a solution to connect data sources to the monitoring system. Within the JEVis ar-

chitecture the JECAPI contains the functionality of basic input- and output-operations.

Former devices often use the way of a direct connection to the energy monitoring system as

shown in the figure above. Direct binding leads to the benefit of less overhead and thus a good

performance. The following described approach enables a more flexible and easier possibility to

realize binding energy meters.

54

5 Conclusion and Outlook

JEVis Live System

Database

Servlet Container

JDBC

JEWebService

axis 2

JECAPI

Service Program

Datasource

Figure 5.2: JECAPI direct binding

JEADFWeb Concept

JEVis Live System

Database

Servlet Container

JDBC

JEWebService

axis 2

JECAPI

HTTP or FTP Server

Datasource

Figure 5.3: JEADFWeb concept

The JEADFWeb concept sketched in figure 5.3 is the common used solution to connect energy

meters. As denoted within the 2.3.1 section it supports various protocols. The better choice to

demonstrate function principle, advantages and conception of JEVis is therfore the JEADFWeb

55

5 Conclusion and Outlook

concept.

5.2.2 Further Projects

As mentioned before Envidatec GmbH cooperates with different universities in various countries

to expedite research and development and education, too. A concept of laboratory experiment at

Perm National Research Politechnic University in Russia contains the installation of measurement

hardware. The laboratory places shall be equipped with computers running JEVis energy data

monitoring software. For this concept the JEVis Live System can be considered as a valuable

innovation especially for pre- and postprocessing experiments.

Another point deals with the delivery of drivers and custom written software to customers. The

idea of Envidatec’s management is to send them a portfolio including the manual and an USB

flash device containing the ordered software and additionaly the JEVis Live System. Boxing

software, even if a physical media is not mandatory, is not unusual, e.g. mass market software

like office products.

All in all these examples prove that the project contributes to future development both in the

company and for interested open source users.

56

Glossary

C programming language is a general-purpose programming language initially developed by

Dennis Ritchie between 1969 and 1973 at AT&T Bell Labs.

Canonical Ltd.) is a UK-based privately held computer software company founded (and funded)

by South African entrepreneur Mark Shuttleworth to market commercial support and re-

lated services for Ubuntu and related projects.

Chief Executive Officer is the highest-ranking corporate officer (executive) or administrator in

charge of total management of an organization.

Cinnamon (user interface) is a user interface. It is a fork of GNOME Shell, initially developed

by (and for) Linux Mint.

Debian is a computer operating system composed of software packages released as free and open

source software.

Energy Management System is a system of computer-aided tools used by operators of electric

utility grids to monitor, control, and optimize the performance of the generation and/or

transmission system.

German Renewable Energy Act (in German: Erneuerbare-Energien-Gesetz, EEG) was designed

to encourage cost reductions based on improved energy efficiency from economies of scale

over time.

GNU Privacy Guard is a GPL Licensed alternative to the PGP suite of cryptographic software.

Graphical User Interface is a type of user interface that allows users to interact with electronic

devices using images rather than text commands.

Institute of Electrical and Electronics Engineers is a professional association headquartered in

New York City that is dedicated to advancing technological innovation and excellence.

International Organization for Standardization is an international standard-setting body com-

posed of representatives from various national standards organizations.

I

Glossary

ISO 50001 is a specification created by the International Organization for Standardization (ISO)

for an energy management system.

Java programming language is a general-purpose, concurrent, class-based, object-oriented com-

puter programming language that is specifically designed to have as few implementation

dependencies as possible.

JavaFX software platform is a software platform for creating and delivering rich internet ap-

plications (RIAs) that can run across a wide variety of devices.

JEConfig is a program to configure the JEVis software.

JEGraph is a program used to visualize energy data; it is a part of the JEVis software.

JEVis is a energy data monitoring software developed by Envidatec GmbH.

Linux is a generic term referring to the family of Unix-like computer operating systems that use

the Linux kernel.

Model–View–Controller is a software architecture pattern which separates the representation

of information from the user’s interaction with it.

My Structured Query Language is an open source relational database management system.

Plymouth is a bootsplash for Linux. It supports animations. It makes use of Direct Rendering

Manager (DRM) and kernel-based mode-setting (KMS). It gets packed into the initrd.

Primary energy is an energy form found in nature that has not been subjected to any conversion

or transformation process.

Structured Query Language is a special-purpose programming language designed for managing

data held in a relational database management systems.

Ubuntu is a computer operating system based on the Debian Linux distribution and distributed

as free and open source software.

II

Glossary

Overview of Commands

This contains an overview of commands used in the thesis with a short description.

add-apt-repository Adds a repository into the /etc/apt/sources.list or /etc/apt/sources.list.d or

removes an existing one

adduser create a new user or update default new user information

apt-get is the command-line tool for handling packages, and may be considered the user’s “back-

end” to other tools using the APT library. Several “front-end” interfaces exist, such as

synaptic and aptitude.

update Used to re-synchronize the package index files from their sources. The indexes of

available packages are fetched from the location(s) specified in /etc/apt/sources.list(5).

An update should always be performed before an upgrade or dist-upgrade.

upgrade Used to install the newest versions of all packages currently installed on the system

from the sources enumerated in /etc/apt/sources.list(5). Packages currently installed

with new versions available are retrieved and upgraded; under no circumstances are

currently installed packages removed, nor are packages that are not already installed

retrieved and installed. New versions of currently installed packages that cannot be

upgraded without changing the install status of another package will be left at their

current version. An update must be performed first so that apt-get knows that new

versions of packages are available.

install this option is followed by one or more packages desired for installation

cd change directory

cp copy files and directories

chown change file owner and group

chroot run command or interactive shell with special root directory

exit cause normal process termination

grub-install install GRUB to a device

ln make links between files

III

Glossary

mkdir make directories

mkfs build a Linux filesystem

mksquashfs tool to create and append to squashfs filesystems

mount mount a filesystem

mv move (rename) files

nano small editor

parted a partition manipulation program

rsync a fast, versatile, remote (and local) file-copying tool

service run a System V init script

su run a shell with substitute user and group IDs

sudo execute a command as another user

umount unmount file systems

unzip list, test and extract compressed files in a ZIP archive

usermod modify a user account

IV

List of Figures

2.1 Germanys Energy Productivity . 4

2.2 Energy management system model . 5

2.3 JEVis data monitoring software . 7

2.4 JEVis System Setup . 8

2.5 Get in touch with JEVis . 12

2.6 Layers on a PC system . 15

3.1 UML use case diagram of use case 1 . 19

3.2 The aspects of scope . 21

4.1 Aspects of scope . 25

4.2 Components of a live system . 27

4.3 Sequence of remastering process . 28

4.4 Customized boot screen . 35

4.5 Desktop environment . 36

4.6 Test the Monitoring Solution . 36

4.7 Test the Monitoring Solution . 37

4.8 Installation Routine . 37

4.9 JEVis USB flash device . 38

4.10 Model View Control Design Pattern . 40

4.11 Principle of generating scripts . 42

4.12 Copy live system to media . 46

4.13 Folder structure of an example package . 48

4.14 Ubuntu software center . 51

5.1 Fields of work . 52

5.2 JECAPI direct binding . 55

5.3 JEADFWeb concept . 55

V

List of Tables

2.1 Requirements on the test system . 22

2.2 Requirements on distribution . 22

2.3 Requirements on the solution to create test systems 23

2.1 Location of system contents . 30

6.1 Created packages . 49

VI

List of Listungs

4.1 Prepare . 28

4.2 Extract Image . 29

4.3 Extract Live-System . 30

4.4 Edit Live-System . 30

4.5 Pack Live-System . 33

4.6 Create USB-Stick . 33

4.7 Singleton Pattern . 39

4.8 Stream . 40

4.9 Module to run scripts . 41

4.10 Interface of script creation . 43

4.11 Abstract methods for script creation . 43

4.12 Example for script implementation . 45

4.13 Create a Package . 47

4.14 Sign packages . 49

4.15 Distributions configuration file . 50

4.16 Add and remove packages . 50

VII

Bibliography

Balliano, Fabrizio and Krzysztof Lichota (January/2013). Ubuntu Customization Kit. Available

online, visited on February 20. 2013. url: {http://sourceforge.net/projects/

uck/} (cit. on p. 26).

Balzert, H. (2009). Lehrbuch Der Softwaretechnik: Basiskonzepte Und Requirements Engineer-

ing. Lehrbücher der Informatik. Spektrum Akademischer Verlag GmbH. url: {http:

//books.google.de/books?id=vmfIb9R2QikC} (cit. on p. 21).

Bandel, G. (2010). Open Source Software: Fördert Oder Hemmt Diese Art Der Softwareentwick-

lung Den Wettbewerb? Diplomica Verlag Gmbh. url: {http://books.google.de/

books?id=1498NifAmlEC} (cit. on pp. 9, 11).

Boßmann, Tobias, Wolfgang Eichhammer, and Rainer Elsland (2012). Policy Report Contribution

of Energy Efficiency Measures to Climate Protection within the European Union until 2050.

Fraunhofer ISI for the Federal Ministry for the Environment, Nature Conservation and

Nuclear Safety (BMU) of Germany. url: {http://www.isi.fraunhofer.de/isi-

media/docs/e/de/publikationen/BMU_Policy_Paper_20121022.pdf} (cit. on

p. 3).

Cockburn, A. (2001). Writing effective use cases. Agile software development series. Addison-

Wesley. url: {http://books.google.de/books?id=VKJQAAAAMAAJ} (cit. on

p. 17).

Eckstein, Robert (2008). Java SE Application Design With MVC. url: {https://blogs.

oracle . com / JavaFundamentals / entry / java _ se _ application _ design _

with} (cit. on p. 40).

Eilebrecht, Karl and Gernot Starke (1/2010). Patterns kompakt: Entwurfsmuster für effektive

Software-Entwicklung. 3. Aufl. 2010. Spektrum Akademischer Verlag. url: {http://

amazon.de/o/ASIN/3827425255/} (cit. on p. 39).

VIII

{http://sourceforge.net/projects/uck/}
{http://sourceforge.net/projects/uck/}
{http://books.google.de/books?id=vmfIb9R2QikC}
{http://books.google.de/books?id=vmfIb9R2QikC}
{http://books.google.de/books?id=1498NifAmlEC}
{http://books.google.de/books?id=1498NifAmlEC}
{http://www.isi.fraunhofer.de/isi-media/docs/e/de/publikationen/BMU_Policy_Paper_20121022.pdf}
{http://www.isi.fraunhofer.de/isi-media/docs/e/de/publikationen/BMU_Policy_Paper_20121022.pdf}
{http://books.google.de/books?id=VKJQAAAAMAAJ}
{https://blogs.oracle.com/JavaFundamentals/entry/java_se_application_design_with}
{https://blogs.oracle.com/JavaFundamentals/entry/java_se_application_design_with}
{https://blogs.oracle.com/JavaFundamentals/entry/java_se_application_design_with}
{http://amazon.de/o/ASIN/3827425255/}
{http://amazon.de/o/ASIN/3827425255/}

Bibliography

Envidatec GmbH (2012). JEVis Energy and Operating Data System. Internal presentation (cit.

on p. 10).

— (Februrary/2013). Company Profile. An Overview of the Company Envidatec GmbH, Ref-

erence Projects and Expertise. Internal document (cit. on p. 6).

Hattenhauer, Rainer (4/2005). Linux-Livesysteme: Knoppix, Ubuntu, Morphix, Kanotix, Mepis,

Quantian & Co. (Galileo Computing). 1. Negernbötel: Galileo Computing. url: {http:

//amazon.de/o/ASIN/3898426319/} (cit. on p. 14).

Heinisch, C., J. Goll, and F. Müller-Hofmann (2007). Java als erste Programmiersprache. Teub-

ner. url: {http://books.google.de/books?id=Q8_zG0muPiEC} (cit. on

p. 40).

IEEE Computer Society, Software Engineering Standards Committee (1998). IEEE recom-

mended practice for software requirements specifications. IEEE (std.) Institute of Electrical

and Electronics Engineers. url: {http://books.google.com.ec/books?id=

MYBGAAAAYAAJ} (cit. on p. 21).

International Organization for Standardization (2011). Win the energy challenge with ISO 50001.

url: {http://www.iso.org/iso/iso_50001_energy.pdf} (cit. on p. 5).

Jones, P. (2008). Knowing Knoppix: The Beginner’s Guide to Linux That Runs from Cd. Cre-

ateSpace. url: {http://books.google.de/books?id=KW-6TU19THkC} (cit. on

p. 14).

Kausch, P., J. Gutzmer, M. Bertau, and J. Matschullat (2011). Energie Und Rohstoffe: Gestaltung

Unserer Nachhaltigen Zukunft. Spektrum Akademischer Verlag GmbH. url: {http://

books.google.de/books?id=ixajES_KlfsC} (cit. on p. 1).

Knopper, Klaus and Kyle Rankin (2007). Knoppix hacks - tips and tools for using the Linux

live CD to hack, repair, and enjoy our PC: includes Knoppix on DVD (2. ed.). O’Reilly,

pp. I–XXV, 1–391 (cit. on p. 14).

Marinilli, M. (2002). Java Deployment with JNLP and WebStart. Kaleidoscope Series. Sams.

url: {http://books.google.de/books?id=lbvUD6LUyV8C} (cit. on p. 6).

IX

{http://amazon.de/o/ASIN/3898426319/}
{http://amazon.de/o/ASIN/3898426319/}
{http://books.google.de/books?id=Q8_zG0muPiEC}
{http://books.google.com.ec/books?id=MYBGAAAAYAAJ}
{http://books.google.com.ec/books?id=MYBGAAAAYAAJ}
{http://www.iso.org/iso/iso_50001_energy.pdf}
{http://books.google.de/books?id=KW-6TU19THkC}
{http://books.google.de/books?id=ixajES_KlfsC}
{http://books.google.de/books?id=ixajES_KlfsC}
{http://books.google.de/books?id=lbvUD6LUyV8C}

Bibliography

Nüttgens, M. and E. Tesei (2000). Open source - Marktmodelle und Netzwerke. Veröffentlichungen

des Instituts für Wirtschaftsinformatik. Iwi. url: {http://books.google.de/books?

id=bBMPPwAACAAJ} (cit. on p. 10).

OpenJEVis.org (2013[a]). JEADFWeb. JEVis Automatic Data Fetch via Webprotocol. url:

{http://openjevis.org/projects/jeadfweb} (cit. on p. 9).

— (February/2013[b]). JEVis Installation Manual. Available online. visited on March 1. 2013.

url: {http://www.openjevis.org/documents/12} (cit. on p. 23).

Open Source Initiative (2012). The Open Source Definition. Available online. url: {http:

//opensource.org/osd} (cit. on p. 10).

Remastersys.com (January/2013). Remastersys. A Unique Linux Backup to Live Media Tool for

Debian and Ubuntu. Available online, visited on February 18. 2013 (cit. on p. 27).

Sally, G. (2009). Pro Linux Embedded Systems. The Expert’s Voice in Linux. Apress. url:

{http://books.google.de/books?id=3pBP5Y_fLDkC} (cit. on p. 49).

Vaughan-Nichols, Steven J. (2013). Linux servers keep growing, Windows and Unix keep shrink-

ing. url: {http://www.zdnet.com/blog/open-source/linux-servers-keep-

growing-windows-and-unix-keep-shrinking/10616} (cit. on p. 24).

X

{http://books.google.de/books?id=bBMPPwAACAAJ}
{http://books.google.de/books?id=bBMPPwAACAAJ}
{http://openjevis.org/projects/jeadfweb}
{http://www.openjevis.org/documents/12}
{http://opensource.org/osd}
{http://opensource.org/osd}
{http://books.google.de/books?id=3pBP5Y_fLDkC}
{http://www.zdnet.com/blog/open-source/linux-servers-keep-growing-windows-and-unix-keep-shrinking/10616}
{http://www.zdnet.com/blog/open-source/linux-servers-keep-growing-windows-and-unix-keep-shrinking/10616}

Bibliography

Versicherung über die Selbstständigkeit

Hiermit versichere ich, dass ich die vorliegende Arbeit im Sinne der Prüfungsordnung nach §16(5)

APSO-TI-BM ohne fremde Hilfe selbstständig verfasst und nur die angegebenen Hilfsmittel be-

nutzt habe. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen habe ich

unter Angabe der Quellen kenntlich gemacht.

Ort, Datum Unterschrift

XI

	Introduction
	Background
	Motivation
	Envidatec GmbH
	Data Monitoring Software
	JEVis

	Open Source
	General Principles
	Benefits for Business

	Open JEVis
	Analyzing the Open Source Community Structure
	Improvement suggestions

	Live Operating Systems
	Basics
	Operating Systems and Kernels

	Conception and Design
	Use Cases
	Energy Data Monitoring System
	Creating a JEVis Monitoring Test System

	Requirements
	Data Monitoring Test System
	Distribution
	Solution to Create Test Systems

	Design
	Approach of a Live System
	Approach of a Remastering Program

	Implementation
	Remastering
	Remastering in Detail
	Customization
	Look and Feel
	JEVis
	Presentation

	Distribution
	Presentation

	JEVis Live Creator
	Programming Techniques
	Execute Scripts within JAVA Programs
	Script Parser
	Presentation

	Packages
	Repository
	Presentation

	Conclusion and Outlook
	Conclusion
	Outlook
	Integration of Datasources
	Further Projects

	Glossary
	List of Figures
	List of Tables
	List of Listungs
	Bibliography

