Hochschule für Angewandte Wissenschaften Hamburg

Fakultät Life Sciences

Department Biotechnologie

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Etablierung und Generierung von Antikörper-Phagenbanken aus cDNA eines Multiplen Myelom Patienten

Bachelor-Thesis

angefertigt am Universitätsklinikum Hamburg-Eppendorf

im Forschungslabor der II. Medizinischen Klinik für Onkologie und Hämatologie,

AG Cancer Biology

vorgelegt von

Nicole Pritzlaff

Studentin Biotechnologie

August 2013

- 1. Gutachter: Prof. Dr. Claus-Dieter Wacker (HAW Hamburg)
- 2. Gutachter: PD Dr. med. Mascha Binder (UKE)

Danksagung

Bedanken möchte ich mich bei Prof. Dr. Claus-Dieter Wacker für die wissenschaftliche Betreuung meiner Bachelorarbeit.

Bedanken möchte ich mich bei PD Dr. med. Mascha Binder, die mir die Möglichkeit zur Anfertigung einer Bachelorarbeit gegeben hat, für die wissenschaftliche Betreuung, sowie die stetige Hilfsbereitschaft.

Meinen besonderen Dank schulde ich Friederike Braig (M. Sc.) für ihre engagierte Betreuung, für eine andauernde Unterstützung, die Motivation, Hilfsbereitschaft und Geduld. Außerdem möchte ich mich für das Korrekturlesen bedanken.

Außerdem bedanke ich mich bei Anita Jacholkowski, Fabian Hofmann, Benjamin Thiele, Marie Kloster und Fabrice Viol, für eine kollegiale Unterstützung, sowie die schöne und lustige Zusammenarbeit.

Ich danke meiner Freundin Mirja Bürger für die Anregungen und Ideen während der Erstellung der Arbeit und dem Korrekturlesen.

Danken will ich auch meiner Familie, besonders meinen Eltern, die mir dieses Studium ermöglicht haben.

Inhaltsverzeichnis

lr	nhalts	verze	ichnisI
A	bkürz	zungs	verzeichnisIV
1	Eiı	nleitu	ng1
	1.1	Mul	tiples Myelom 1
	1.2	Anti	körper 1
	1.3	Bild	ung von Antikörpern 3
	1.4	Die	Phage-Display Technologie4
	1.5	Ziel	der Arbeit und Zusammenfassung der strategischen Vorgehensweise 4
2	Ма	ateria	ien7
	2.1	Lab	orgeräte7
	2.2	Ver	prauchsmaterialien
	2.3	Che	mikalien, Puffer und Lösungen9
	2.3	3.1	Chemikalien9
	2.3	3.2	Puffer für Agarosegele und Zusätze10
	2.3	3.3	Stocklösungen10
	2.4	Mol	ekularbiologische Materialien11
	2.4	1.1	Bakterienstämme11
	2.4	1.2	Bakteriophagen12
	2.4	1.3	Medien für die Kultivierung der Bakterien12
	2.4	1.4	Plasmide13
	2.4	1.5	Primer14
		2.4.5.	Primer für die Amplifizierung ohne Schnittstellen14
		2.4.5.2	2 Primer für die Amplifizierung mit Schnittstellen16
	:	2.4.5.3	3 Sequenzierungsprimer17
	2.4	1.6	Enzyme, korrespondierende Puffer und Lösungen18
	:	2.4.6.	1 Restriktionsenzyme, Puffer und Lösungen18
		2.4.6.2	2 Sonstige Enzyme und Puffer18
	2.5	Kit-	Systeme19
	2.6	DN	A Marker19
	2.7	Soft	ware19

3	Met	hode	n	20
3	.1	Mole	kularbiologische Methoden	20
	3.1.	1	Isolierung von RNA aus PBMC's	20
	3.1.	2	Synthese von cDNA	20
	3.1.	3 I	Polymerase-Kettenreaktion	20
	3	.1.3.1	Amplifizierung der schweren Kette (HC) IgG und IgM	21
	3	.1.3.2	Amplifizierung der leichten Kette (LC) κ	22
	3	.1.3.3	Kolonie-PCR	24
	3.1.	4 I	Restriktionsverdau	25
	3.1.	5 I	Dephosphorylierung von DNA	26
	3	.1.5.1	Aufreinigung von DNA-Fragmenten mittels Agarosegel-Elektroph	orese.
				26
	3. F	.1.5.2 lektro	Aufreinigung von Restriktionsansätzen mittels Agarosegel-	27
	ר ב	153	Aufreinigung einer Bakterienkultur über Minipräparation	27
	3	154	Aufreinigung einer Bakterienkultur über Maxipräparation	27
	3	155	Aufreinigung von DNA mittels Ethanoloräzipitation	28
	3.1.	6 I	Die Ligation	
	3.1.	7	Die Sequenzierung	29
	3.1.	8 I	Konzentrationsbestimmung von DNA	29
3	.2	Mikro	obiologische Methoden	29
	3.2.	1 1	Kultivierung und Lagerung von Bakterien	29
	3.2.	2 I	Herstellung von elektrokompetenten Zellen	30
	3.2.	3 -	Transformation in Bakterien mittels Elektroporation	30
	3.2.	4 I	Bestimmung der Transformationseffizienz	31
3	.3	Präp	aration von Bakteriophagen	31
	3.3.	1 I	Herstellung von Helferphagen M13K07	31
	3.3.	2 I	Präparation der Antikörper-Phagenbank	32
	3.3.	3 -	Titration von Helferphagen	32
4	Erg	ebnis	Se	33
4	.1	Amp	lifikation der Inserts	33
4	.2	Rest	riktionsverdau der Vektoren und Inserts	34
4	.3	Koloi	nie-PCR	36
4	.4	Sequ	ienzierung der Klone	37
4	.5	Analy	yse der Sequenzen	39
4	.6	Besti	immung der Diversität	40

4	1.7	Die Titer der Antiköper-Phagenbank	40
5	Dis	kussion	41
5	5.1	Die Generierungen der Antikörper-Phagenbanken	41
5	5.2	Restriktionsverdau des Vektors und der Inserts	42
6	Zus	ammenfassung und Ausblick	43
6	6.1	Zusammenfassung	43
6	6.2	Ausblick	44
7	Lite	raturverzeichnis	45
Ab	bildu	ngsverzeichnis	49
Tał	beller	nverzeichnis	50
A .	Anha	ng	i
		Destriktioneverden der zweiten Klanierung	
A	4.1	Restriktionsverdau der Zweiten Kionierung	I
A A	A.1 A.2	Kolonie-PCR	ı ii
A A A	4.1 4.2 4.3	Kestriktionsverdau der zweiten Kionierung Kolonie-PCR Die Vektorsequenz pFB-Fab	1 ii iii
A A A	A.1 A.2 A.3 A.4	Kestriktionsverdau der zweiten kionierung Kolonie-PCR Die Vektorsequenz pFB-Fab Vergleich der verwendeten Zelllinien	1 ii iii .vii

Abkürzungsverzeichnis

A, T, C, G	Adenin, Tymin, Cytosin, Guanin
Amp	Ampicillin
AP	alkalische Phosphatase
bp	Basenpaare
С	Konzentration
CL	konstante Domäne der leichten Kette
C _H	konstante Domäne der schweren Kette
cDNA	complementary DNA, komplementäre DNA
CFU	Colony forming unit, Koloniebildende Einheit
cm	Zentimeter
ddH ₂ O	double-distilled water, doppelt-destilliertes Wasser
DNA	Desoxyribonucleic acid, Desoxiribonukleinsäure
dNTP	Desoxyribonukleosidtriphosphate
E	Extinktion
E. coli	Escherichia coli
EDTA	Ethylendiamintetraacetat
Fab	Fragment antigen binding, Antigen bindendes Fragment
fw	forward, vorwärts
h	Stunde
H ₂ O	Wasser
HAW	Hochschule für Angewandte Wissenschaften
HC	heavy chain, schwere Kette
lgG	Immunglobulin G
IgM	Immunglobulin M
kb	Kilobase
kDa	Kilodalton
kV	Kilovolt
I	Liter
LСк	light chain kappa, leichte Kette Kappa
LCλ	light chain lambda, leichte Kette Lambda
μ	Mikro
μf	Mikrofarad, elektrische Kapazität
μg	Mikrogramm
m	Masse
Μ	DNA-Marker

mg	Milligramm
min	Minute
mm	Millimeter
mM	Millimolar
Μ	Mol/Liter
MM	Multiples Myelom
mm ²	Quadratmillimeter
ng	Nanogramm
nm	Nanometer
OD	optische Dichte
ORI	Origin of Replication, Replikationsursprung
PBMC	Peripheral Blood Mononuclear Cell, mononukleäre Zellen des
	peripheren Blutes
PBS	phosphate buffered saline, phosphatgepufferte Salzlösung
PCR	polymerase chain reaction, Polymerase-Kettenreaktion
PEG	Polyetylenglycol
pg	Pikogramm
RNA	Ribonucleic adid, Ribonukleinsäure
rpm	revolutions per minute, Umdrehungen pro Minute
RPMI	Roswell Park Memorial Institute, Medium für Zellkultur
rev	reverse, rückwärts
RT	Raumtemperatur
SS	Schnittstelle
ssDNA	single stranded DNA, einzelsträngige DNA
sec	Sekunde
TAE	Tris-Acetat-EDTA-Puffer
U	Units, Enzymeinheit
UKE	Universitätsklinikum Hamburg-Eppendorf
UV	ultraviolett
V	Volt, elektrische Spannung
V _H	variable Domäne der schweren Kette
VL	variable Domäne der leichten Kette
Ω	Ohm, elektrischer Widerstand
α	Alpha
Y	Gamma
δ	Delta
3	Epsilon

μ My λ Lambda κ Kappa

1 Einleitung

In der vorliegenden Arbeit wird die Etablierung und Generierung von Antikörper-Phagenbanken aus cDNA eines Multiplen Myelom Patienten vorgestellt. Dieses System ermöglicht die Expression von einem Immunglobulin-Repertoires auf Bakteriophagen und dem damit verbundenen Antikörper-Targeting von Tumoren. Hierbei können die Epitope identifiziert und analysiert und das Bindungsverhalten von tumorassozierten Antigenen des Multiplen Myeloms untersucht werden. Als langfristiges Ziel wird der Einsatz tumorspezifischer Antikörper in der Therapie dieser Erkrankung angestrebt. Das Multiple Myelom ist eine maligen Erkrankung des Krochenmarks, die bis heute noch nicht heilbar ist. Diese Krebserkrankung wird mit Medikamenten, Chemotherapien und Knochenmarktransplantation behandelt.

Diese Bachelor-Thesis repräsentiert die Generierung von Antikörper-Phagenbanken aus dem Antikörperrepertoire eines Myelompatienten, was die Grundlage für die Isolierung von therapeutischen Antikörpern gegen das Multiple Myelom bildet.

1.1 Multiples Myelom

Das Muitiple Myelom (MM), auch Plasmozytom genannt, ist eine maligne Krebserkrankung des Knochenmarks, welche etwa 10% aller hämatologischen Neoplasien ausmacht [Kyle und Rajkumar, 2004; Kyle und Rajkumar, 2008]. Charakteristische Merkmale sind: die Akkumulation von Plasmazellen im Knochenmark, sowie der Nachweis von einem monoklonalen Protein im Serum und Urin [Kyle und Rajkumar, 2004]. Das Multiple Myelom ist eine Alterskrankheit und tritt nur selten vor dem 40. Lebensjahr auf. Diagnostiziert wird die Krankheit meist zwischen dem 63. und 70. Lebensjahr [Harousseau *et al.*, 2008].

1.2 Antikörper

Antiköper, auch Immunglobuline (Ig) genannt, sind globuläre Proteine, welche an Antigenen, körperfremde Strukturen, binden können und im Wirbeltierserum vorkommen.Es gibt fünf verschiedene Klassen, welche von Plasmazellen synthetisiert werden, die als α -, γ -, δ -, ϵ - und µ-Ketten bezeichnet werden und in folgende Antikörperklassen eingeteilt werden: IgG, IgM, IgA, IgD und IgE [Rehm und Letzel, 2010]. Antikörper weisen eine "Y"-Form auf und bestehen aus zwei identischen leichten Ketten (light chain, LC) und zwei identischen schweren Ketten (heavy chain, HC), welche durch Disulfidbindungen kovalent, aber auch durch nicht kovalente Kräfte miteinander verbunden sind [Schroeder und Cavacini, 2010]. Die 25 kDa großen identischen leichten Ketten [Janeway und Travers, 2008] weisen zwei verschieden Arten auf, welche κ und λ genannt werden. Die schweren Ketten, 50-70 kDa

groß, sind über Disulfidbindungen miteinander verbunden. Die LC und HC bestehen jeweils aus einer konstanten (C) und einer

Abbildung 1: Schematische Darstellung eines lgG-Antikörpers. Die Abbildung stellt ein IgG-Antikörper mit seinen funktionellen Domänen dar. Die schwere Kette (heavy chain, HC) besteht aus der variablen V_H-Region und drei konstanten (C_H1, C_H2 und C_H3) Domänen. Die leichte Kette (light chain, LC) besteht aus einer variablen (VL) und einer konstanten (CL) Domäne. Die variablen Domänen der schweren und der leichten Kette binden das Epitop des Antigens und besitzen durch die CDR-Regionen (hier: türkis) eine ausgesprochen hohe Variabilität. Die Sequenzen der verschiedenen konstanten Regionen variieren zwischen den verschieden Hauptklassen, sind aber innerhalb einer Klasse sehr ähnlich. Die hellblauen Verbindungen repräsentieren die ausgebildeten Disulfidbrücken im Molekül. Im Ig-Molekül sind zwei funktionelle Bereiche zu unterscheiden, das Antigen bindende Teil (Fab-Fragment) und der Fc-Teil, welche enzymatisch durch Papain (gepunktete Linie) gespalen werden können. In der hinge-Region (hier: lila) sind die Ketten über Disulfidbrücken miteinander verbunden. Bild: (Latypov et al., 2012)

variablen Region (V), welche mit den Indizes H (heavy) und L (light) gekennzeichnet sind. Antikörper können durch das Enzym Papain drei verschiedene Teile gespalten werden. Somit entstehen zwei Fab-Fragmente und ein Fc-Fragment (Abbildung 1). Das Fab-Fragment (Fragmentantigen binding), bestehend aus variablen und konstanten Teilen der schweren und leichten Kette, besitzt die Fähigkeit zur Antigenbindung. Diese spezifische Antigenbindungsstelle wird als Complementary Determining Region (CDR) bezeichnet. Das Fc-Fragment (fragment cristalline), welches sich unterhalb der *hinge*-Region befindet, besteht aus den C_H2- und C_H3-Regionen der schweren Kette und dient der Antigenerkennung.

Die in dieser Arbeit verwendeten Klassen sind IgG und IgM: Immunglobuline M (IgM), werden als erste Immunglobuline von Plasmazellen synthetisiert und besitzt eine

Molekülmasse von 900 kDa.

Immunglobuline G (IgG), sind Antiköper der Antikörperklasse G und weisen eine Molekülmasse von 150 kDa auf und sind die am häufigsten vorkommenden Antikörperklasse (ca. 80 %) [Brehme und Meimcke, 1998]. Das IgG ist ein Monomer und besitzt, wie das IgM, die Fähigkeit der Agglutination.

1.3 Bildung von Antikörpern

B-Lymphozyten, auch B-Zellen genannt, sind in der Lage Antikörper zu synthetisieren, wenn sie durch Antigene, körperfremde Stoffe, aktiviert werden. Nach dem ersten Kontakt mit den Antigenen, können sich die B-Zellen zu Gedächtniszellen oder antikörperproduzierenden Plasmazellen differenzieren. Plasmazellen sezernieren eine große Menge Antikörper, während Gedächtnis-B-Lymphozyten selbst keine Antikörper produzieren können. B-Zellen können auf ihrer Membranoberfläche Immunglobuline ausbilden, den B-Zell-Rezeptor. Dieser Rezeptor ist in der Lage körperfremde Antigene nach dem Schlüssel-Schloss-Prinzip zu binden. Wie bereits erwähnt bestehen Antikörper aus zwei identischen HC.

Der menschliche Organismus ist in der Lage, mehr als 10¹¹ unterschiedliche Antikörpermoleküle zu sezernieren, welche durch Rekombination zustande kommt. Diese Umlagerung bezeichnet man als somatische Rekombination oder V(D)J-Rekombination. Die V(D)J-Rekombination sorgt dafür, dass eine möglichst hohe Variabilität von Antikörpern erzeugt wird. Hierbei werden unterschiedliche DNA-Bereiche der Gene für die leichten und schweren Ketten der Antikörper zufällig miteinander kombiniert, was zu einer hohen Diversität führt. Um die Affinität nach dem Kotakt zum Antigen zu erhöhen, kommt es zu Punktmutationen in den variablen Regionen. Diesen Prozess bezeichnet man als somatische Hypermutation [Raul Mostoslavsky et al., 2004]. Die variablen Regionen eines Antikörpers werden von mehreren Gensegmenten codiert. Die variablen Regionen der schweren Kette (V_H) werden codiert von den Segmenten V (variable segment), D (diversity segment) und J (joining segment). Die variablen Regionen der LC (V_L) werden von den Segmenten J und V codiert. Das V-Segment wird durch 95 bis 101 Aminosäuren codiert. Durch die Kombination der variablen Regionen der schweren und leichten Kette entsteht eine Vielzahl von Antikörpern. Diese Diversität der Immunglobuline macht man sich bei der Generierung der Phagen-Bibliotheken zunutze. Das Antikörperrepertoire sowie weitere nicht-natürliche Kombinationen aus schwerer und leichter Kette werden auf filamentösen Phagen präsentiert. Aus solch einer Bibliothek können dann mittels PhageDisplay geeingente Binder gegen Targets zu isolieren werden.

1.4 Die Phage-Display Technologie

Die Phage-Display Technologie [Smith, 1985] wurde zu Beginn der 90er Jahre entwickelt, um Antikörper als Alternative zur Hybridomtechnologie [Koehler und Milstein, 1975] zu gewinnen. Die Phage-Display Technologie basiert auf der Präsentation von Proteinen, Peptiden oder Antiköpern auf filamentösen Bakteriohagen.

Die ca. 860 nm langen und 6 nm dicken stäbchenförmigen Bakteriophagen gehören zu den Viren. Für die Generierung von Antikörper-Phagenbanken werden häufig M13-Bakterionphagen (Abbildung 2) verwendet. M13-Phagen sind gut charakterisiert [Haq et al., 2012] und in der Lage gram-negative Bakterien, wie E. coli, über deren F-Pilus (Fertilitätsplasmid) zu infizieren. Für die Infektion ist das Protein pIII notwendig [Winter et al., 1994]. Die Proteine oder Teilstücke von

Abbildung 2:Schematischer Aufbau des M13-Phagen. M13-Phagen sind filamentöse Phagen und besitzen im inneren die einzelsträngige, zirkuläre DNA (single stranded DNA, ssDNA), welche von einer Proteinhülle, dem pVIII, umschlossen ist. Die Proteine pVII und pIX sind an einer Phageseite lokalisiert. Die Proteine pIII und pVI sind an der gegenüberliegenden Phagenseite lokalisiert. Der Phage hat eine Länge von ca.860 nm und einen Durchmesser von 6 nm. Bild: variierte Darstellung [Kierny *et al.*, 2012]

Proteinen werden durch die single stranded DNA (ssDNA) [Zhou et al., 2009] des Phagemids, welche sich innerhalb des Phagens befindet, codiert. Hierbei können DNA-Sequenzen in das Phagemid ligiert werden und anschließend exprimiert der Phage das Fusionsprotein und baut es in seine Hülle ein. Diese generierten Antikörper-Phagenbanken ermöglichen die Identifizierung und Charakterisierung von Epitopen, aber auch die Selektion von immunisierten Antikörpern, welche Anwendung in der Diagnostik und Therapeutik finden.

1.5 Ziel der Arbeit und Zusammenfassung der strategischen Vorgehensweise

Die Generierung der Antikörper-Phagenbanken [Shui et al., 2009] erfolgte in zwei

aufeinanderfolgenden Klonierungsschritten. Zunächst wurden Antikörper-produzierende B-Zellen, aus dem Blut eines Myelompatienten, isoliert. Hieraus wurde wiederum die mRNA isoliert und mit der enzymatischen reversen Transkriptase in cDNA umgeschrieben. Dann erfolgte die Amplifikation der antikörpercodierenden cDNA mit Hilfe der Polymerase-Kettenreaktion. Für jede Bank wurden klassenspezifische Primerpools verwendet, um ein möglichst großes Antikörperrepertoire zu erhalten. Die entstandenen Amplifikate wurden anschließend um die Restriktionsschnittstellen elongiert. Die Abbildung 3 stellt die schematische Amplifizierungsstrategie der schweren Kette zur Generierung der Antiköper-Phagenbank dar.

Abbildung 3:Schematische Darstellung der Amplifizierungsstrategie der schweren Kette (HC) zur Generierung einer Antikörper-Phagenbank. Im ersten Schritt wird die C_H1- und V_H-Region aus der cDNA des Myelompatienten mit den Primern herausamplifiziert. Im darauf folgenden Schritt wird das PCR-Produkt um die Schnittstellen *Ncol* und *Mlul* elongiert. Die Pfeile markieren die Position der jeweiligen Primer. Bild: (Friederike Braig, 2012) (Schroeder und Cavacini, 2010)

Die Abbildung 4 stellt die schematische Amplifizierungsstrategie der leichten Kette zur Generierung der Antiköper-Phagenbank dar.

Abbildung 4: Schematische Darstellung der Amplifizierungsstrategie der leichten Kette (LC) zur Generierung einer Antikörper-Phagenbank. Im ersten Schritt wird die C_L- und V_L-Region aus der cDNA des Myelompatienten mit den Primern herausamplifiziert. Im darauf folgenden Schritt wird das PCR-Produkt um die Schnittstellen *Sall* und *Nhel* elongiert. Die Pfeile markieren die Position der jeweiligen Primer. Bild: (Friederike Braig, 2012; Schroeder und Cavacini, 2010)

Um eine Antikörper-Phagenbank zu generieren, kloniert man die C_{H} 1- und V_{H} -Regionen der schweren Kette und darauf die V₁- und C₁-Regionen der leichten Kette κ in ein passenden Vektor [Baskar et al., 2009, Wu et al., 2001]. Die Ligationsansätze werden mittels Elektroporation in geeignete E. coli-Stämme transformiert und anschließend auf Agarplatten ausplattiert. Im ersten Klonierungsschritt wurden die antikörpertragenden Plasmide mit der schweren Kette in den E.coli-Stamm DB3.1 (ccdB-resistent) transformiert. Im zweiten Schritt wurden die Plasmide mit der schweren und leichten Kette in den E.coli-Stamm DH10B (ccdB-sensitiv) transformiert. Die Produktion der Antiköper-Phagenbank erfolgte in E.coli TG1 Zellen, da diese das für die Helferphageninfektion benötigte F'-Plasmid enthalten. Anschließend wurden die Antikörper-Phagen in PEG/NaCl reversibel gefällt und aufgereinigt.

Die Antikörpervielfalt des Patienten wird in Form der Fab-Fragmente auf der Oberfläche der filamentösen M13-Phagen repräsentiert.

Abbildung 5: Schematische Darstellung zur Konstruktion einer Antikörper-Phagenbank. Antikörperproduzierende Zellen werden aus dem Blut isoliert. Hieraus wird die mRNA isoliert und mit der enzymatischen reversen Transkriptase in cDNA umgeschrieben. Die antikörpercodierende cDNA wird mittels PCR amplifiziert und um die Restriktionsschnittstellen elongiert. Die Amplifikate (hier: C_H1- und V_H-Region der HC und die V_Lund C_L-Regionen der LC) werden sequenziell in der Vektor (hier: pFB-Fab) ligiert und in *E. coli*-Stämme (hier: DB3.1, DH10B) transformiert. Die Antikörper-tragenden Vektoren werden in *E. coli* TG1 transformiert und, nach hyperinfektion durch Helferphagen, produziert. Die entstandenen filamentösen Phagen präsentieren die Antikörper-Fragmente (hier: Fab-Fragment) auf ihrer Oberfläche. Bild: [Hoogenboom et al., 1998]

2 Materialien

2.1 Laborgeräte

Tabelle 1: Verwendete Geräte

Gerät	Hersteller
Biophotometer	Eppendorf AG, Hamburg, Germany
Brutschrank Heraeus [®] Function Line	Thermo Scientific, Rochester, USA
Concentrator 5301	Eppendorf AG, Hamburg, Germany
Gelkammer DNA Sub	Bio-Rad Laboratories, München, Germany
Geldokumentationssystem	Peqlab Biotechnologie GmbH, Erlangen,
	Germany

_

Incubator Shaker Series innova [®] 40	New Brunswick Scientific, Ayrshire, USA
Kryo-Einfrierbox	Thermo Scientific, Rochester, USA
Laborbench Microflow	Nalge Nunc International, New York, USA
Mastercycler Gradient	Eppendorf AG, Hamburg, Germany
MicroPulser Elektroporator	Bio-Rad Laboratories, München, Germany
Mikrowelle Express	Sharp Electronics GmbH, Hamburg,
	Deutschland
Präzisionswaage Pioneer [™]	Ohaus, New York, USA
Schüttelinkubator Certomat [®] IS	B. Braun Biotech International GmbH,
	Melsungen, Germany
Spectrophotometer NanoDrop ND-100	Peqlab Biotechnologie GmbH, Erlangen,
	Germany
SpeedVac [®] Plus SC110A	Thermo Scientific, Rochester, USA
System für Reinstwasser	membraPure, Berlin, Germany
Universal Vacuum System Plus UVS400A	Thermo Scientific, Rochester, USA
Vortexer Reax 2000	Heidolph, Schwabach, Germany
Wasserbad	GFL, Burgwedel, Deutschland
Zentrifuge Eppendorf 5417R	Eppendorf AG, Hamburg, Germany

2.2 Verbrauchsmaterialien

Tabelle 2: Verwendete Verbrauchsmaterialien

Materialen	Hersteller
Cell Scraper 25 cm	Sarstedt AG & Co., Nümbrecht, Germany
Bioshere Fil. Tip 10 farblos	Sarstedt AG & Co., Nümbrecht, Germany
Bioshere Fil. Tip 200 farblos	Sarstedt AG & Co., Nümbrecht, Germany
Bioshere Fil. Tip 1000 blau	Sarstedt AG & Co., Nümbrecht, Germany
Kryoröhrchen	Greiner Bio-One, Frickenhausen, Germany
Kulturröhrchen	Sarstedt AG & Co., Nümbrecht, Germany
Gene Pulser® Cuvette, 0.1 cm	Bio-Rad Laboratories, München, Germany
Petrischalen 30 x 30 cm	Sarstedt AG & Co., Nümbrecht, Germany
Pipetten 5 ml	Falcon, Franklin Lakes, USA
Pipetten 10 ml	Falcon, Franklin Lakes, USA
Pipetten 25 ml	Falcon, Franklin Lakes, USA
Safe-Lock Tubes 0,2 ml	Eppendorf AG, Hamburg, Germany
Safe-Lock Tubes, 0,5 ml	Eppendorf AG, Hamburg, Germany
Safe-Lock Tubes ,1,5 ml	Eppendorf AG, Hamburg, Germany

Save-Lock Tubes, 2 ml	Eppendorf AG, Hamburg, Germany
Zentrifugenröhrchen 15 ml	Greiner Bio-One, Frickenhausen, Germany
Zentrifugenröhrchen 50 ml	Greiner Bio-One, Frickenhausen, Germany

2.3 Chemikalien, Puffer und Lösungen

Alle Chemikalien, Puffer und Lösungen wurden vor Gebrauch autoklaviert oder steril filtriert.

2.3.1 Chemikalien

Tabelle 3: Verwendete Chemikalien

Chemikalien	Hersteller
Ampicillin sodium salt	AppliChem GmbH, Darmstadt, Germany
Bacto [™] Agar	Becton, Dickinsin and Company, Sparks, USA
Bacto [™] Tryptone	Becton, Dickinsin and Company, Sparks, USA
Bacto [™] Yeast Extract, Technical	Becton, Dickinsin and Company, Sparks, USA
Biocoll Separatin Sotution	Bichrom AG, Berlin, Germany
D(+)-Glucose	Carl Roth GmbH + Co. KG, Karlsruhe, Germany
D(+)-Saccharose	Carl Roth GmbH + Co. KG, Karlsruhe, Germany
Essigsäure 99-100 %	J.T. Baker, Deventer, Netherlands
Ethanol absolut reinst	Th. Geyer GmbH und Co. KG, Renningen, Germany
Ethanol vergällt ≥70 %	Carl Roth GmbH + Co. KG, Karlsruhe, Germany
Ethidiumbromid	Invitrogen, Carlsbad, USA
Flüssigstickstoff	-
Glycerol	Sigma-Aldrich Chemie GmbH, Steinheim, Germany
Kaliumchlorid	Merck KGaA, Darmstadt, Germany
Trizma base	Sigma-Aldrich Chemie GmbH, Steinheim, Germany
Magnesiumchlorid-Hexahydrat	Carl Roth GmbH + Co. KG, Karlsruhe, Germany
Natriumchlorid	Carl Roth GmbH + Co. KG, Karlsruhe, Germany
Natronlauge 2 mol/l	Carl Roth GmbH + Co. KG, Karlsruhe, Germany
2-Propanol	Sigma-Aldrich Chemie GmbH, Steinheim, Germany
Polyethylenglycol 8000	Carl Roth GmbH + Co. KG, Karlsruhe, Germany
UltarPure [™] Agarose	Invitrogen, Carlsbad, USA
Xylencyanol	Carl Roth GmbH + Co. KG, Karlsruhe, Germany

2.3.2 Puffer für Agarosegele und Zusätze

Tabelle 4: Puffer für Agarosegele und Zusätze

Puffer und Lösung	Zusammensetzung
Agarose	10-20 g/l (in 1x TAE)
6x DNA Loading Dye	25 mg Bromphenolblau
	25 mg Xylencyanol
	4 g D(+)-Saccharose
	Auffüllen auf 10 ml mit ddH ₂ O
50x TAE	24,2 g/l Trizma base
	100 ml 0,5 M EDTA pH-Wert 8,0
	57, 10 ml Essigsäure
	Auffüllen auf 1 I mit ddH ₂ O,
	Arbeitskonzentration 1x
10x PBS	80 g/l NaCl
	2 g/l KCL,
	14,4 g/l Na ₂ HPO ₄ ,
	2,4 g/l KH ₂ PO ₄ ,
	pH-Wert 7,4, Auffüllen auf 1 l mit
	ddH ₂ O und autoklavieren
	Arbeitskonzentration 1x
20 % PEG/2,5 M NaCl	200 g/l PEG 8000
	233,8 g/l NaCl
	Auffüllen auf 1 I mit ddH ₂ O
	und autoklavieren
	-

2.3.3 Stocklösungen

Tabelle 5: Verwendete Stocklösungen

Chemikalie	Konzentration
Ampicillin	Stocklösung 150 g/l,
	Arbeitskonzentration 1:1000,
	steril filtriert

Kanamycin	Stocklösung 50 mg/ml,
	Arbeitskonzentration 1:1000
	steril filtriert
Tretrazyklin	Stocklösung 5 mg/ml,
	Arbeitskonzentration 1:250
Ethidiumbromid	Stocklösung 10 mg/ml,
	Arbeitskonzentration 1:10000
Glucosestocklösung	Stocklösung 1 M, steril filtriert
C C	
Glucoselösuna	40 %. steril filtriert
MaCl2-Lösuna	Stocklösung 1 M. steril filtriert

2.4 Molekularbiologische Materialien

2.4.1 Bakterienstämme

Für die Bakterienkultivierung wurden ausschließlich Escherichia coli-Stämme verwendet.

Bakterien	Genotyp	Hersteller
E. coli DB3.1,	F- gyrA462 endA1 glnV44 Δ(sr1-	Invitrogen, Carlsbad,
Elektroporationkompetente	recA) mcrB mrr hsdS20(r _B ⁻ , m _B ⁻)	USA
Zellen	ara14 galK2 lacY1 proA2	
	rpsL20(Sm') xyl5 Δleu mtl1	
<i>E. coli</i> DH10B, T1 Phage	F⁻mcrA Δ(mrr-hsd RMS-mcrBC)	Invitrogen, Carlsbad,
Resistant Cells,	Φ80dlacZΔM15 Δ lacX74 endA1	USA
Elektrokompetente Zellen	recA1 deoR Δ(ara, leu)7697	
	araD139 galU galK nupG rpsL λ ⁻	
<i>E. coli</i> TG1,	supE thi-1 Δ(lac-proAB) Δ(mcrB-	Stratagene, La Jolla,
Elektroporationkompetente	hsdSM)5($r_{\kappa} m_{\kappa}$) [F' traD36 proAB	USA

Zellen	lacl⁰Z∆M15]	
<i>E. coli</i> K12 ER2738	F´proA+B+ laclq _(lacZ)M15	NEB, Ipswich, UK
	zzf::Tn10(TetR)/ fhuA2	
	gInV _(lac-proAB) thi-1	
	_(hsdS-mcrB)5	

2.4.2 Bakteriophagen

Tabelle 7: Bakteriophagen

Bakteriophage	Hersteller	Information
Helferphage M13K07	NEB, Ipswich, UK	Infektion von Bakterien

2.4.3 Medien für die Kultivierung der Bakterien

Alle Kultivierungsmedien wurden vor der Benutzung autoklaviert. Alle hitzesensiblen Zusätze (Glucose, MgCl₂, Antibiotika) wurden steril filtriert und zu dem autoklavierten Medium gegeben.

Tabelle 8: Medienzusammensetzun

Lösung	Zusammensetzung
	TM
LB-Medium	10 g/l Bacto [™] Tryptone
	5 g/I Bacto [™] Yeast Extract
	10 g/l NaCl
	Auffüllen mit ddH ₂ O
LB-Agar	10 g/l Bacto [™] Tryptone
	5 g/I Bacto [™] Yeast Extract
	10 g/l NaCl
	15 g/l Bacto [™] Agar
	Auffüllen mit ddH ₂ O

2 x YT Medium	16 g/l Bacto [™] Tryptone 10 g/l Bacto [™] Yeast Extract 5 g/l NaCl Auffüllen mit ddH₂O und pH-Wert auf 7,0 einstellen
SOB-Medium	20 g/l Bacto [™] Tryptone 5 g/l Bacto [™] Yeast Extract 500 mg/l NaCl 186 mg/l KCl Auffüllen mit ddH₂O und mit 20 %iger NaOH- Lösung auf pH-Wert 7,0 einstellen
SOC-Medium	48,5 ml SOB Medium 1 ml 1 M Glucoselösung 500 μl 1 M MgCl₂-Lösung
Phagen-Top-Agar	10 g/l Bacto [™] Agar 5 g/l NaCl 10 g/l Bacto [™] Tryptone Auffüllen mit ddH₂O
2x YT-Agar	16 g/l Bacto [™] Tryptone 10 g/l Bacto [™] Yeast Extract 15 g/l A Bacto [™] Agar 5 g/l NaCl Auffüllen mit ddH₂O

2.4.4 Plasmide

Für die Hauptklonierungsschritte wurde ausschließlich das Plasmid pFB-Fab eingesetzt. Der Vektor pUC18 diente als Kontroll-Plasmid, um die Transformationseffizienz zu ermitteln. Tabelle 9: Verwendete Plasmide

Abbildung 6: Das Plasmid pFB-Fab. Das Plasmid besteht aus 6045 Basenpaaren. Das Plasmid verfügt über ein AmpR-Gen, welches ihm eine Ampicillinresistenz verleiht. Dieses Gen dient als Selektionsmechanismus. Die zwei *ccdB*-Gene sind sogenannte "Suizid-Gene" und dienen als zusätzliches Selektionssystem. ORI (Origin of Replication) ist der Replikationsursprung. Das LacO (Lac Operon) dient zur kontrollierten Induktion der Expression. Die Schnittstellen für die Restriktionsnucleasen kommen nur einmal auf dem Plasmid vor. Ihre Positionen sind als Nukleotidnummern eingetragen. Die Sequenz des Vektors befindet sich im Anhang.

2.4.5 Primer

Alle Primer wurden von der Firma Metabion International AG synthetisiert. Die Primer wurden auf eine Arbeitskonzentration von 10 pmol/ml mit ddH₂O verdünnt.

2.4.5.1 Primer für die Amplifizierung ohne Schnittstellen

Alle eingesetzten sequenzspezifischen Primerpaare für die Amplifizierung ohne Schnittstellen waren so konstruiert, dass deren Schmelztemperatur nahezu identisch war.

Tabelle 10: Verwendete Primer für die Amplifizierung ohne Schnittstellen

Oligoname	Oligosequenz 5'-3'	Schmelztemperatur	
		[°C]	
VK_pool-fw			
VK2N1-fw	AGATGCTGTGTGAMCCAGCCT	60,1	
VK2N2-fw	TCCCTCCAAGTTCACATCCTGAG	58,3	
VK1_fw	GACATCCRGDTGACCCAAGTCTCC	60,7	
VK246_fw	GATATTGTGMTGACBCAGWCTCC	55,5	
VK3_fw	GAAARRGTRWTGACRCAGTCTCC	55,6	
VK5_fw	GAAACGACACTCACGCAGTCTC	58	
CG_pool-fw			
CG_VH1_fw	CGCAGGTCCAGCTKGTRCAGTCTGG	65,3	
CG_VH157_fw	CGCAGGTGCAGCTGGTGSARTCTGG	66,9	
CG_VH2_fw	CGCAGRTCACCTTGAAGGAGTCTG	60,3	
CG_VH3	CGGAGGTGCAGCTGKTGGAGWCY	64,6	
CG_VH4_fw	CGCAGGTGCAGCTGCAGGAGTCSG	68,2	
CG_VH4-DP63_fw	CGCAGGTGCAGCTACAGCAGTGGG	66,2	
CG_VH6_fw	CGCAGGTACAGCTGCAGCAGTCA	63,8	
CG_VH3N_fw	CGTCAACACAACGGTTCCCAGTTA	59,4	
FB_lgK_rv	ACACTCTCCCCTGTTGAAGCTCTT	59,9	

2.4.5.2 Primer für die Amplifizierung mit Schnittstellen

Alle eingesetzten sequenzspezifischen Primerpaare für die Amplifizierung mit Schnittstellen waren so konstruiert, dass deren Schmelztemperatur nahezu identisch ist.

Tabelle 11: Verwendete Primer f	iür die	Amplifizierung m	it Schnittstellen
---------------------------------	---------	------------------	-------------------

Oligoname	Oligosequenz 5'-3'	Schmelz-
		temperatur
		[°C]
Vκ_pool_Sall-fw		
VK2N1_Sall_fw	CAAAGTCGACAGATGCTGTGTGAMCCAGCCTC	65,5
VK2N2_Sall_fw	CAAAGTCGACTCCCTCCAAGTTCACATCCTGAG	63,8
VK1_Sall_fw	CAAAGTCGACGACATCCRGDTGACCCAGTCTCC	66,3
VK246_Sall_fw	CAAAGTCGACGATATTGTGMTGACBCAGWCTCC	62,8
VK3_Sall_fw	CAAAGTCGACGAAATTGTRWTGACRCAGTCTCC	61,9
VK5_Sall_fw	CAAAGTCGACGAAACGACACTCACGCAGTCTC	64,5
CG_pool_Ncol-tw		
CG_VH1_Ncol	CATGCCATGGCGCAGGTCCAGCTKGTRCAGTCTG G	70,9
CG_VH157_Ncol	CATGCCATGGCGCAGGTGCAGCTGGTGSARTCTG G	72
CG_VH2_Ncol	CATGCCATGGCGCAGRTCACCTTGAAGGAGTCTG	67,8
CG_VH3_Ncol	CATGCCATGGCGGAGGTGCAGCTGKTGGAGWCY	70,9
CG_VH4_Ncol	CATGCCATGGCGCAGGTGCAGCTGCAGGAGTCS G	73
CG_VH4- DP63_Ncol	CATGCCATGGCGCAGGTGCAGCTACAGCAGTGG G	71,7

Molekularbiologisch	e Materialien	Materialien
CG_VH6_Ncol	CATGCCATGGCGCAGGTACAGCTGCAGCAGTCA	70,4
CG_VH3N_Ncol	CATGCCATGGCGTCAACACAACGGTTCCCAGTTA	67,3
lgG_hinge_2-rev	ACAGCTTTTGGGCTCAACTBTCTTGTCCACCTTGG TGTTGC	68,6
lgG_hinge_2_Mlu I-rev	GATCGACGCGTACAGCTTTTGGGCTCAACT	65,1
HC_Ncol- elongated_fw	CGAGACCTCATGCCATGGCG	61
FB_lgK_Nhel_rev	CGCTAGCTAGCACACTCTCCCCTGTTGAAGCTCT T	66,9
FB_lgL_Nhel_rev	CGCTAGCTAGCTGAACATTCYGTAGGGGCMACTG	66,4
FB_IgM_CH1_Mlu I_rev	GATCGACGCGTTGGAAGAGGCACGTTCTTTCTT TG	65,6

2.4.5.3 Sequenzierungsprimer

Tabelle 12: Verwendete Sequenzierungsprimer

Oligoname	Oligosequenz 5'-3'	Schmelztemperatur
		[°C]
-96 gIII Seq. rv	CCCTCATAGTTAGCGTAACG	52,5
LMB3-fw	CAGGAAAAACAGCTATGAC	48,5

2.4.6 Enzyme, korrespondierende Puffer und Lösungen

2.4.6.1 Restriktionsenzyme, Puffer und Lösungen

Tabelle 13: Verwendete Restriktionsenzyme, Puffer und Lösungen

Enzym	Sequenz 5'-3'	Enzymaktivität	Hersteller
Restriktionsenzyme			
Nhel	GCTAGC	10.000 U/ml	NEB, Ipswich, UK
Mlul	ACGCGT	10.000 U/ml	NEB, Ipswich, UK
Sall-HF [™]	GTCGAC	20.000 U/ml	NEB, Ipswich, UK
Ncol-HF [™]	CCATGG	20.000 U/ml	NEB, Ipswich, UK
Reaktionspuffer und			
Lösungen			
NEBuffer 3		10x	NEB, Ipswich, UK
NEBuffer 4		10x	NEB, Ipswich, UK
BSA		100x	NEB, Ipswich, UK

2.4.6.2 Sonstige Enzyme und Puffer

Tabelle 14: Sonstige Enzyme und Puffer

Enzym	Konzentration	Hersteller
Ligase		
T4 DNA Ligase	100 U/ml	NEB, Ipswich, UK
Phosphatase		
FastAP Thermosensitive Alkaline	1 U/µI	Thermo Scientific, Rochester, USA
Phosphatase		
Polymerase		
Phusion Hot Start II High-Fidelity	2 U/µl	Thermo Scientific, Rochester, USA
DNA Polymerase		
Reaktionspuffer und Lösungen		
Phusion HF Buffer	5x	Thermo Scientific, Rochester, USA

Kit-Systeme		Materialien
Phusion GC Buffer	5x	Thermo Scientific, Rochester, USA
DMSO	100 %	Thermo Scientific, Rochester, USA
FastAP Buffer	10x	Thermo Scientific, Rochester, USA
T4 DNA Ligase Reaction Buffer	10x	NEB, Ipswich, UK

2.5 Kit-Systeme Tabelle 15: Verwendete Kits

Kit	Hersteller
QIAGEN Plasmid Maxi Kit (25)	Qiagen GmbH, Hilden, Germany
HiYield Plasmid Mini Kit	Süd-Laborbedarf GmbH, Gauting, Germany
PCR clean-up Gel extraction	Macherey Nagel, Düren, Germany
RNeasy [®] Mini Kit	Qiagen GmbH, Hilden, Germany
QIAshredder™	Qiagen GmbH, Hilden, Germany
Omniscript [®] RT Kit	Qiagen GmbH, Hilden, Germany

2.6 DNA Marker

Tabelle 16: DNA Marker

DNA-Marker	Hersteller
Quick-Load 100 bp DNA Ladder	NEB, Ipswich, UK
Quick-Load 1 kb DNA Ladder	NEB, Ipswich, UK

2.7 Software

Tabelle 17: Verwendete Software

Software	Hersteller
Microsoft Word	Microsoft Corporation, Redmond, USA
Microsoft Excel	Microsoft Corporation, Redmond, USA

3 Methoden

3.1 Molekularbiologische Methoden

Die molekularbiologischen Standardmethoden, wie Polymerase-Kettenreaktion, Restriktionsverdau, Agarose-Gelelektrophorese, **DNA-Extraktion** Ligation, aus Agarosegelen, Plasmid-Präparation wurden etablierten Protokollen etc. nach durchgeführt.

3.1.1 Isolierung von RNA aus PBMC's

Die mononuklearen Zellen des peripheren Blutes (PBMC's) wurden zuvor mittels Ficollgradienten separiert und wahlweise bei -80 °C oder -180 °C gelagert. Für die Isolierung der Ribonukleinsäure (RNA) wurden 7x10⁶ Zellen 2 min im 37 °C temperierten Wasserbad aufgetaut und anschließend mit 6 ml RPMI-Medium versetzt und 10 min bei 1500 rpm zentrifugiert. Dann erfolgte die RNA-Isolierung mit Hilfe des RNeasy Kits und welches in Kombination der Qiashredder-Säulen. verwendet wurde. Die Aufreinigungsschritte erfolgten nach Angaben des Herstellerprotokolls.

3.1.2 Synthese von cDNA

Die komplementäre DNA (cDNA) wurde mit dem Enzym Reverse Transkriptase des Omniscript RT-Kits aus der zuvor isolierten RNA synthetisiert. Es wurde das vom Hersteller mitgelieferte Protokoll verwendet.

3.1.3 Polymerase-Kettenreaktion

Die Polymerase-Kettenreaktion (PCR) dient zur *in vitro* Amplifizierung von DNA-Fragmenten [Mullis *et al.*, 1986]. Die hier eingesetzten Primer wurden so gewählt, dass das zu entstehende Amplifikat an seinen Enden definierte Sequenzabfolgen besitzt, welche bei der Klonierung von großer Bedeutung sind. Grundlegend beruhen die PCR-Reaktionen auf drei aufeinanderfolgenden Reaktionsschritte, die zyklisch wiederholt werden. Im ersten Schritt wird die zu amplifizierende DNA denaturiert. Hierbei wird der DNA-Doppelstrang durch thermische Einwirkung in seinen Einzelstrang zerlegt. Im zweiten Schritt lagern sich die sequenz-spezifischen Primer an den ihnen komplementären DNA-Strang an (Annealing). Durch die Zugabe von hitzestabiler DNA- Polymerase wird der komplementäre Strang im dritten Schritt von ungebundenen Desoxyribonukleosidtriphosphate (dNTP's) verlängert (Elongation). Der zyklische Ablauf von Schmelzen, Anlagerung und Verlängerung kann beliebig oft wiederholt werden bis die nötige DNA-Menge synthetisiert ist, jedoch wurden maximal 30 Zyklen verwendet. Zudem wurden alle Primerpaare so konstruiert, dass deren Schmelztemperatur nahezu identisch war.

3.1.3.1 Amplifizierung der schweren Kette (HC) IgG und IgM

Die Antiköperfragmente der HC IgG wurden in zwei aufeinanderfolgenden PCR-Ansätzen amplifiziert und elongiert. Die Antiköperfragmente der HC IgM wurden in einem einzigen PCR-Ansatz amplifiziert und elongiert. Als primäres Template diente cDNA eines Myelompatienten. Die PCR wurde nach dem aufgeführten Schema pipettiert und anschließend im Mastercycler Gradient von Eppendorf amplifiziert.

In der ersten PCR wurde die zu amplifizierende schwere Kette IgG einseitig um eine Schnittstelle *Ncol* elongiert. An der anderen Seite wurde die Hingeregion elongiert.

PCR-Ansatz: HC IgG	50 µl
H ₂ O	32 µl
5x GC-Buffer	10 µl
DMSO	1 µl
dNTPs	1 µl
CG_pool_Ncol-fw	2,5 µl
lgG_hinge_2-rev	2,5 µl
cDNA	0,5 µl
Phusion Hot Start II High-Fidelity	0,5 µl

Tabelle 18: Amplifizierung der schweren Kette mit einer Schnittstellen

Tabelle 19: PCR-Programm zur Amplifizierung der schweren Kette IgG mit einer Schnittstellen

PCR-Programm: HC IgG mit einer			
Schnittstelle			
1.	98 °C	30 sec	
2.	98 °C	10 sec	
3.	62,3 °C	30 sec	
4.	72 °C	22 sec	

5.	go to 2, 2x	
6.	98 °C	10 sec
7.	77 °C	30 sec
8.	72 °C	22 sec
9.	Go to 6, 26x	
10.	72 °C	10 min
11.	4 °C	hold

Analog zur Amplifikation der schweren Kette IgG wurde die schwere Kette IgM amplifiziert. Als Template diente die cDNA eines Myelompatienten. Die Primer waren FB_IgM_CH1_MluI_rev und CG_pool_NcoI-fw. Das PCR-Programm war analog dem PCR-Programm zur Amplifizierung der schweren Kette IgG mit einer Schnittstelle. Die Annealingtemperatur betrug im ersten Schritt 65,3 °C und wurde zweimal wiederholt. Im zweiten Schritt betrug die Annealingtemperatur 69,1 °C und wurde 26x zyklisch wiederholt.

Im Anschluss an jede PCR erfolgte eine Aufreinigung der Amplifikate über ein 1%iges Agarosegel mit einer Ethidiumbromidkonzentration von 1:10000. Die entsprechende Bande wurde mittels Skalpell ausgeschnitten und mit dem PCR clean-up Gel extraction Kit von Macherey & Nagel aufgereinigt. Es wurde das vom Hersteller empfohlene kProtokoll verwendet.

In der darauf folgenden PCR wurden die amplifizierten schweren Ketten IgG einseitig um einen Überhang verlängert, welche keine weitere Schnittstelle enthielt. Die Hingeregion wurde um die Schnittstelle *Mlul* elongiert. Der PCR-Ansatz wurde analog zu Tabelle 18 hergestellt. Als Template diente das zuvor aufgetrennte PCR-Produkt aus dem ersten Amplifikationsschritt. Die Primer waren HC_Ncol-elongated_fw und IgG_hinge_2_Mlulrev. Das PCR-Programm war analog dem PCR-Programm zur Amplifizierung der schweren Kette IgG mit einer Schnittstelle. Die Annealingtemperatur betrug im ersten Schritt 55 °C und wurde zweimal wiederholt. Im zweiten Schritt betrug die Annealingtemperatur 66,5 °C und wurde sechsmal wiederholt.

3.1.3.2 Amplifizierung der leichten Kette (LC) κ

Die Antiköperfragmente der LC κ werden in zwei aufeinanderfolgenden PCR-Ansätzen amplifiziert und elongiert. Als primäres Template diente die cDNA eines Myelompatienten,

im Folgenden gekennzeichnet mit MM047. Die PCR wurde nach dem aufgeführten Schema pipettiert und anschließend im Mastercycler Gradient von Eppendorf amplifiziert.

PCR-Ansatz: LCk ohne SS	50 µl
H ₂ O	33 µl
5x HF-Buffer	10 µl
dNTPs	1 µl
VK_pool-fw	2,5 µl
FB_IgK_rv	2,5 µl
cDNA MM047	0,5 µl
Phusion Hot Start II High-Fidelity	0,5 µl

Tabelle 21: PCR-Programm zur Amplifizierung der leichten Kette κ ohne Schnittstellen

PCR	PCR-Programm: LCк ohne Schnittstellen			
1.	Denaturierung	98 °C	30 sec	
2.	Denaturierung	98 °C	10 sec	
3.	Annealing	58 °C	30 sec	
4.	Elongation	72 °C	22 sec	
5.	Anzahl der Wiederholungen	go to 2, 2x		
6.	Denaturierung	98 °C	10 sec	
7.	Annealing	67,7 °C	30 sec	
8.	Elongation	72 °C	22 sec	
9.	Anzahl der Wiederholungen	Go to 6, 26x		
10.	Final Extension	72 °C	10 min	
11.	Lagerung	4 °C	hold	

Nach der Inkubationszeit im PCR-Cycler wurden die PCR-Produkte entnommen und in einem Agarosegel anhand ihrer Größe aufgetrennt. Die entsprechende Bande wurde mittels Skalpell ausgeschnitten und mit dem PCR clean-up Gel extraction Kit von Macherey & Nagel aufgereinigt. Es wurde das vom Hersteller empfohlene Protokoll verwendet.

In der darauf folgenden PCR wurden die amplifizierten LCκ-Fragmente beidseitig um Überhänge verlängert, die jeweils eine spezifische Restriktionsschnittstelle trugen. Der PCR-Ansatz wurde analog zu Tabelle 20 hergestellt. Als Template diente das zuvor aufgetrennte PCR-Produkt aus dem ersten Amplifikationsschritt. Die Primer waren Vk_pool_Sall-fw und FB_IgK_Nhel_rev.

Das PCR-Programm war analog zu dem PCR-Programm zur Amplifizierung der leichten Kette κ ohne Schnittstellen. Die Annealingtemperatur betrug 67,6 °C. Die Schritte 2-5 wurden ausgelassen und Schritte 6-8 insgesamt 15-mal wiederholt.

Im Anschluss an jede PCR erfolgte eine Aufreinigung der Amplifikate über ein 1%iges Agarosegel mit einer Ethidiumbromidkonzentration von 1:10000. Die entsprechende Bande wurde mittels Skalpell ausgeschnitten und mit dem PCR clean-up Gel extraction Kit von Macherey & Nagel aufgereinigt. Es wurde das vom Hersteller empfohlene Protokoll verwendet.

3.1.3.3 Kolonie-PCR

der HC IaG

Die Kolonie-PCR diente zur Identifizierung der gepickten Kolonien. Der jeweilige Klon wurde mit einer sterilen Pipettenspitze aufgenommen und in 30 µl sterilem Wasser resuspendiert und 2 µl als Template eingesetzt.

Die PCR für die HC IgG und der LCk wurden nach folgendem Schema pipettiert und anschließend im Mastercycler Gradient von Eppendorf amplifiziert.

PCR-Ansatz: HC IgG	20 µl
H ₂ O	11
5x GC-Buffer	4
dNTPs	0,4
DMSO	0,4
CG_pool_Ncol-rev	1
lgG_hinge_2-rev	1
Aspirierter Klon	2
Phusion	0,2

Tabelle 22: Reaktionsansatz zur Amplifizierung

der LCK	
PCR-Ansatz: LC к	20 µl
H ₂ O	11,4
5x HF-Buffer	4
dNTPs	0,4

Tabelle 23: Reaktionsansatz zur Amplifizierung

dNTPs	0,4
Vκ_pool_Sall-fw	1
FB_lgK_Nhel_rev	1
Aspirierter Klon	2
Phusion	0,2

PCR-Programm: HC IgG und LCк			
1	98 °C	30 sec	
2	98 °C	10 sec	
3	66,5 °C	30 sec	
4	72 °C	22 sec	
5	go to 2, 29x	(
6	72 °C	10 min	
7	4 °C	hold	

Tabelle 24: PCR-Programm zur Amplifizierung der HC IgG und der LCk

Im Anschluss an die PCR erfolgte die Analyse in einem 1 %igem Agarosegel mit einer Ethidiumbromidkonzentration von 1:10000.

Die erfolgreiche Klonierung der HC IgM wurde analog zur Kolonie-PCR der HC IgG durchgeführt. Die verwendeten Primer waren CG_pool_Ncol-fw und FB_IgM_CH1_Mlul_rev. Die Annealingtemperatur betrug 69,1°C.

3.1.4 Restriktionsverdau

Der Vektor pFB-Fab und die Inserts der HC wurden mit den Restriktionsendonukleasen *Nhel* und *Mlul* verdaut. Für den zweiten Klonierungsschritt wurde der Vektor pFB-Fab mit bereits enthaltener HC IgG oder HC IgM sowie das LCK-Insert mit den Restriktionsendonukleasen *Sall-HF*TM und *Nhel-HF*TM 4,5 h bei 37 °C verdaut. Alle Restriktionsansätze wurden für 4,5 h bei 37 °C inkubiert. Anschließend wurden die Restriktionsenzyme 20 min bei 65 °C inaktiviert.

Tabelle 25: Restriktionsverdau des Vektors pFB-Fab		Tabelle 26: Restrik Fragmente	Tabelle 26: Restriktionsverdau der DNA- Fragmente	
Komponenten	Ansatz	Komponenten	Ansatz	
Vektor	20 µg	Insert	10 µg	
Ncol	20 U	Ncol	10 U	
Mlul	20 U	Mlul	10 U	
Buffer 3	1x	Buffer 3	1x	
BSA	1x	BSA	1x	

Tabelle 28: Restriktionsverdau der LCk

mponenten	Ansatz	Komponenten	Ansatz
ektor	20 µg	Insert	10 µg
Sall HF™	20 U	Sall HF [™]	20 U
Nhel HF™	20 U	Nhel HF [™]	20 U
Buffer 4	1x	Buffer 4	1x
BSA	1x	BSA	1x

Tabelle 27: Restriktionsverdau des Vektor mitder klonierten HC

Die Auftrennung des verdauten Vektors und der Antikörper-Inserts erfolgte über eine Agarosegelelektrophorese mit anschließender Gelaufreinigung.

3.1.5 Dephosphorylierung von DNA

Der verdaute Vektor wurde anschließend mit einer thermosensitiven alkalischen Phosphatase dephosphoryliert, um einer möglichen Religation des Vektors entgegenzuwirken. Mit einem unit Phosphatase wird ein µg DNA dephosphoryliert. Zunächst wurde der Ansatz 10 min bei 37 °C und abschließend für 5 min bei 75 °C inkubiert, um die Reaktion zu inaktivieren.

3.1.5.1 Aufreinigung von DNA-Fragmenten mittels Agarosegel-Elektrophorese

Die DNA-Fragmente wurden mittels horizontaler Agarose-Gelelektrophorese aufgetrennt. Die Agarose-Gelelektrophorese dient als molekularbiologische Standardmethode für die Trennung, Reinigung, Identifizierung von linearen DNA-Fragmenten, aber auch superhelikaler Plasmid-DNA. Hierbei wandert die negativ geladene DNA durch ein elektrisches Feld und wird ihrer Größe nach aufgetrennt. Mit Hilfe der Variationen der Agarosenkonzentrationen können 0,1-60 kb große DNA-Fragmente der Größe nach aufgetrennt werden. Die Gelelektrophorese ist eine qualitative, aber auch als quantitative Analysemethode.

Es wurden ausschließlich 1 %ige Agarosegele in 1x TAE-Puffer verwendet. Die Detektion der aufgetrennten DNA erfolgte mittels UV-Licht, indem die Gele zuvor mit einer Ethidiumbromidkonzentration von 1:10000 gefärbt wurden. Diese Agarosekonzentration ist zur Auftrennung und Identifizierung von DNA-Molekülen im Bereich von 250-12000 bp geeignet. Als Standard diente ein 100 bp Marker und 1 kb Marker.

3.1.5.2 Aufreinigung von Restriktionsansätzen mittels Agarosegel-Elektrophorese

Amplifizierte DNA-Fragmente und verdaute Reaktionsansätze wurden über ein 1%iges Agarosegel ihrer Größe nach aufgetrennt. Die entsprechende Bande wurde mit einem sterilen Skalpell ausgeschnitten und mit dem PCR clean-up Gel extraction Kit von Macherey & Nagel aufgereinigt. Es wurde das vom Hersteller empfohlene Protokoll verwendet.

3.1.5.3 Aufreinigung einer Bakterienkultur über Minipräparation

Bei Plasmiden handelt es sich um extrachromosomale, ringförmige DNA-Moleküle mit einer Größe von 3-20 kb, welche neben der chromosomalen DNA in Bakterien vorkommen. Die Plasmide können, z.B. über Resistenzgene gegenüber Antibiotika, Bakterien Überlebensvorteile bieten. Dies wird bei Klonierungen als Selektionsmarker ausgenutzt.

Für die Präparation der Plasmid-DNA diente ein Plasmid Mini Kit der Firma HiYield. Zuvor wurde der jeweilige Klon gepickt und in 4 ml LB-Medium mit Glucose und Ampicillin über Nacht bei 37 °C und 225 rpm im Schüttelinkubator kultiviert. Anschließend wurde nach dem vom Hersteller mitgelieferten Protokoll gearbeitet.

3.1.5.4 Aufreinigung einer Bakterienkultur über Maxipräparation

Für die Extraktion des transformierten Plasmids aus *E. coli* im größeren Maßstab diente das Plasmid Maxi Kit der Firma Qiagen.

Für die Präparation wurden 400 ml LB-Medium mit 20 ml 40 %iger Glucose versetzt. Da das Plasmid über eine Ampicillinresistenz verfügt, wurde das Medium mit Ampicillin versetzt, welches der Selektion diente.

Die Kolonien, die auf einer (30x30) cm² Petrischale angezüchtet wuchsen, wurden abgeschabt und 1 h bei 37 °C schüttelnd kultiviert. Die Präparation erfolgte nach dem Protokoll des Herstellers.

Die extrahierte DNA wurde in 1 ml ddH₂O resuspendiert.

3.1.5.5 Aufreinigung von DNA mittels Ethanolpräzipitation

Die Ethanolpräzipitation dient zur Aufreinigung von Ligationsansätzen. Dazu wurde der Ansatz mit 3 M Natriumacetat (10 % des Ligationsausgangsvolumen, pH-Wert 5,8) und mit Reinstethanol (250 % des Ligationsausgangsvolumen) versetzt. Durch die Zugabe dieser Komponenten fällt die DNA in wässriger Lösung aus. Um den Vorgang zu beschleunigen, wurden die Proben mit Hilfe von Flüssigstickstoff tiefgefroren und anschließend für 10 min bei 12000 rpm und 4 °C zentrifugiert. Der Überstand wurde vorsichtig dekantiert und verworfen. Das entstandene DNA-Pellet wurde mit 70%igem Ethanol gewaschen, tiefgefroren und wie zuvor zentrifugiert. Die extrahierte DNA wurde luftgetrocknet und in 20 µl ddH₂O resuspendiert.

3.1.6 Die Ligation

DNA-Ligasen sind Enzyme, die DNA-Fragmente enzymatisch und unter ATP-Verbrauch verknüpfen, indem eine Phosphodiesterbindung zwischen einer freien 5´-Phosphatgruppe des einen Fragments und einer freien 3´-Hydroxylgruppe des anderen Fragments geknüpft wird [Lehman *et al.*, 1974].

Der Vektor und die Antikörper-Inserts wurden in einem Verhältnis von 1:3 in Bezug auf deren Molarität eingesetzt. Das Massenverhältnis von Vektor zu Antikörper-Insert der Ligationen entsprach 1000 ng:400 ng.

Komponenten	Ansatz
Insert	400 ng
Vektor	1000 µg
10x T4 Ligase	1,33 µl/ 20µl Ansatz
T4 Ligase Reaction Buffer	1x
H ₂ O	Auffüllen bis Endvolumen

Zuvor wurden H₂O, Insert und Vektor 2 min bei 65 °C inkubiert, um eventuelle angelagerte kohäsive Enden zu schmelzen. Anschließend wurde der Reaktionsansatz mit der 10x T4 Ligase und dem T4 Ligase Reaction Buffer vervollständigt und 16 h bei 16 °C inkubiert. Nach der Inkubationszeit wurde die DNA mittels Ethanolpräzipitation aufgereinigt.

3.1.7 Die Sequenzierung

Zur Sequenzierung wurden 350 ng Vektor mit dem jeweiligen Primer zur Firma SeqLab, Göttingen geschickt. Die Sequenzierung der jeweiligen Proben erfolgte von beiden Seiten.

3.1.8 Konzentrationsbestimmung von DNA

Die Konzentrationsbestimmung der DNA erfolgte mittels photometrischer Messung bei einer Absorption bei 260 nm und 280 nm. Proteine besitzen ein Absorptionsmaximum bei 280 nm, aufgrund der Absorption der aromatischen Aminosäurereste. Das Absorptionsmaximum der Nukleinsäuren liegt bei 260 nm.

 $OD_{260nm} = 1,0$ doppelsträngiger DNA entsprechen etwa 50 µg DNA / ml $OD_{260nm} = 1,0$ einzelsträngiger DNA entsprechen etwa 33 µg DNA / ml $OD_{260nm} = 1,0$ einzelsträngiger RNA entsprechen etwa 40 µg RNA / ml

Der Quotient der jeweiligen Absorptionsmaxima gibt an, welche Reinheit das Plasmid aufweist. 70-95 % reine DNA-Lösung sollte einen OD_{260/280}-Wert von 1,8 bis 2,0 aufweisen.

3.2 Mikrobiologische Methoden

Die mikrobiologischen Standardmethoden, wie Kultivierung und Lagerung von Bakterien, sowie die Transformation in *E. coli*-Stämme, erfolgte nach etablierten Standardprotokollen.

3.2.1 Kultivierung und Lagerung von Bakterien

Escherichia coli, ein Stäbchenbakterium, welches zur Gruppe der Enterobacteriaceae gehört, ist einer der am häufigsten verwendeten Organismus zur Herstellung rekombinater Proteine. Optimale Wachtumsbedingungen des Bakteriums sind 37 °C und ein neutrales Milieu.

Die Bakterienstämme wurden bei 37 °C in LB-Medium schüttelnd kultiviert.

Die hier verwendeten Plasmide verfügen über ein AmpR-Gen, welches den Bakterien eine Ampicillinresistenz verleiht. Dieses Gen dient als Selektionsmechanismus gegenüber Bakterien ohne Plasmid. Kurzfristig wurden Bakterien, die auf Agarplatten mit Antibiotikazusätzen kultiviert wurden, bei 4 °C gelagert. Für eine langfristige Lagerung von Bakterien wurden 30%ige Glycerol-Stocks hergestellt und bei -80 °C gelagert.

3.2.2 Herstellung von elektrokompetenten Zellen

Für eine effiziente Transformation werden elektrokompetenten Zellen bevorzugt. Am ersten Tag wurde der Bakterienstamm auf einer Agarplatte ohne Zusätze mittels Dreiösenausstrich ausgestrichen und über Nacht bei 37 °C inkubiert. Am zweiten Tag wurde eine Kolonie von der Platte gepickt und in 125 ml SOB-Medium für 16-18 h bei 37 °C und 250 rpm schüttelnd kultiviert. Dies diente als Inokulum für die Hauptkulturen. Am dritten Tag wurde 1 I SOB-Medium mit der Übernachtkultur im Verhältnis 1:1000 inokuliert. Bis zu einem OD-Wert von 0,7-0,8 wurde die Kultur bei 37 °C und 250 rpm schüttelnd kultiviert. Das entstandene Pellet wurde mit 1 l eiskalten Wasser gewaschen, wie zuvor zentrifugiert, erneut in 0,5 I 10%igem Glycerol resuspendiert und zentrifugiert. Der Überstand wurde vorsichtig mit einer Pipette entfernt. Das Pellet wurde in 1-2,5 ml eiskaltem 10%igem Glycerol resupendiert, sodass ein Endvolumen von 3-4 ml entstand. Anschließend wurden 50 μl Aliquots angefertigt und bei -80 °C gelagert.

3.2.3 Transformation in Bakterien mittels Elektroporation

Die Transformation erfolgte sequenziell in drei verschiedene Bakterienstämme. Für die beiden Hauptklonierungsschritte wurden die *E. coli*-Stämme DB3.1 (*ccdB*-resistent) und DH10B (*ccdB*-sensitiv) verwendet. Für die Produktion der Antiköperphagenbank wurden *E.coli* TG1 Zellen verwendet, da diese das für die Phageninfektion benötigte F'-Plasmid enthalten.

Die Transformation der Plasmide in Bakterien erfolgte mittels Elektroporation [Neumann *et al.,* 1982], da diese deutlich effektiver ist als Hitzeschockmethoden. Hierbei wird ein elektrischer Impuls bei 1,8 kV, 200 Ω und 25 μ F durch ein sich entladener Kondensator erzeugt, welcher kurzzeitig Bruchstellen in den Bakterienmembranen hervorruft und zirkulärer Fremd-DNA ungehindert Zutritt verschafft. Erfolgreiche Elektroporationen wurden dann erwarten, wenn die Zeitkonstante zwischen 4,8 und 5,2 ms lag.

Für die Transformation wurden jeweils 100 ng Vektor in ein Mikroreaktionsgefäß vorgelegt und die elektrokompetenten Zellen auf Eis aufgetaut. Anschließend wurden 100 ng DNA und 50 µl elektrokompetente Zellen vermischt, in eine vorgekühlte Genepulser-Küvette überführt und sofort einem elektrischen Impuls ausgesetzt. Anschließend wurde der Ansatz umgehend mit 950 µl 37 °C temperierten SOC-Medium supplementiert ,in ein Kulturröhrchen überführt und für 1 h bei 37 °C und 180 rpm inkubiert. Nach der Inkubationszeit wurden 100 µl der Zellen auf LB-Agar ausplattiert und über Nacht bei 37 °C kultiviert [Dower *et al.*, 1988].

3.2.4 Bestimmung der Transformationseffizienz

Um die Transformationseffizienz zu testen, wurde pUC18 Kontroll-Plasmid eingesetzt.

Berechnung der Transformationseffizienz:

$$\frac{CFU}{\mu g} = \frac{A_{CFU}}{x} * \frac{1*10^6 \, pg}{\mu g} * \frac{V_T}{V_P} * F_V \tag{1}$$

Mit:

F_V= Verdünnungsfaktor V_T=Transformationsvolumen V_P= ausplattiertes Volumen

A_{CFU}= Anzahl der Kolonien auf der Kontrollplatte

x= Konzentration der transformierten pUC18 Kontroll-DNA

3.3 Präparation von Bakteriophagen

3.3.1 Herstellung von Helferphagen M13K07

M13K07 sind Helferphagen, die in der Lage sind *E. coli* Bakterien, die Fab-Fragmente tragen, zu infizieren und somit Bakteriophagen zu synthetisieren. Die Bakteriophagen exprimieren die Fab-Fragmente anschließend auf ihrer Oberfläche [Russel *et al.,* 1986]. Zunächst wurde eine 1:10 M13K07-Helferphagen-Verdünnungsreihe (10^{-1} - 10^{-11}) in PBS hergestellt. 4 ml des 43 °C temperierten Phagen-Top-Agar wurden mit 200 µl der Bakterienkultur *E. coli* TG1 (OD₆₀₀-Wert 0,5-0,7) und 100 µl der zuvor verdünnten Helferphagen (10^{-5} - 10^{-11}) in einen Kulturröhrchen vermischt und sofort auf eine 2x YT-

Agarplatte ausplattiert. Die Platten wurden über Nacht bei 37 °C kultiviert. 4 ml 2x YT-Medium + Kanamycin wurden mit einem gepickten Plaque inokuliert und 3-4 h bei 37 °C schüttelnd kultiviert. Mit 1 ml dieses Vorkultur wurden 50 ml 2x YT-Medium + Kanamycin angeimpft und über Nacht bei 37 °C kultiviert. Die Übernachtkultur wurde am nächsten Tag für 30 min bei 4000 rpm zentrifugiert. Der Überstand wurde in ein neues Zentrifugenröhrchen dekantiert und das entstandene Bakterienpellet verworfen. Die im Überstand befindlichen Helferphagen wurden mittels PEG/NaCl auf Eis für 1 h gefällt. Die gefällten Phagen wurden wie zuvor zentrifugiert. Die pelletierten Phagen wurden für 5-15 min luftgetrocknet und anschließend in 500 µl PBS resuspendiert.

3.3.2 Präparation der Antikörper-Phagenbank

Nach der Transformation des Antikörpersequenzen-enthaltenden Plasmids in *E. coli* TG1 und der Kultivierung auf LB-Agar mit Glucose und Ampicillin über Nacht bei 37 °C im Brutschrank wurden die Kolonien von den Agarplatten abgeschabt und in 400 ml LB-Medium mit Ampicillin 1 h schüttelnd kultiviert. Die Bakterienkultur wurde anschließend für 15 min bei 10000 rpm zentrifugiert. Das Pellet wurde in 8 ml 30%igem Glycerol resuspendiert und in 1 ml-Aliquots bei – 80 °C weggefroren.

Mit 200 µl eines Glycerolstocks wurde zuvor temperiertes 2 YT-Medium (mit Ampicillin) inokuliert und bis zu einem OD₆₀₀-Wert von 0,5-0,7 bei 37 °C kultiviert. Die Kultur wurde in 4 x 50 ml Falcons überführt, mit 2,5x10¹² M13K07 Helferphagen infiziert und im 37 °C temperierten Wasserbad 30 min inkubiert. Die zuvor infizierte Kultur wurde 15 min bei Raumtemperatur und 4000 rpm zentrifugiert, das Pellet in 200 ml 2x YT-Medium mit Ampicillin, Kanamycin und 0,1 %iger Glucose resuspendiert und über Nacht bei 30 °C und 180 rpm inkubiert. Die Übernachtkultur wurde bei 4000 rpm für 30 min zentrifugiert und das Pellet verworfen. 42,5 ml des klaren Überstandes wurden zu 7,5 ml PEG/NaCl gegeben, invertiert und für mindestens 1 h auf Eis gefällt. Anschließend erfolgte ein weiterer Zentrifugationsschritt unter gleichen Bedingungen, wie der Vorherige. Der Überstand wurde dekantiert, das weiße Phagenpellet 5-10 min getrocknet, in 500 µl PBS resuspendiert und in ein Mikroreaktionsgefäß überführt.

3.3.3 Titration von Helferphagen

Um den Titer der Helferphagen M13K07 zu ermitteln wurden je 100 μ l einer 1:10 M13K07-Verdünnungsreihe (10⁻¹ bis 10⁻¹¹) in PBS vorbereitet. Nur die Verdünnungen 10⁻⁷ bis 10⁻¹¹ wurden anschließend mit 100 μ l *E. coli* TG1 (OD₆₀₀-Wert 0,5 bis 0,7) inokuliert und bei Raumtemperatur 30 min inkubiert. 2 x 10 µl der infizierten *E. coli* TG1 wurden für eine Doppelbestimmung als Tropfen auf 2x YT-Agar + Kanamycin + Glucose gegeben. Die Platten wurden über Nacht bei 37 °C inkubiert.

Am nächsten Tag konnten die gewachsenen Kolonien ausgezählt werden und der Titer ermittelt werden.

$$\frac{Phagen}{\mu I} = CFU^*V^*F \tag{2}$$

Mit:

CFU = Anzahl der gezählten Bakterienkolonien

V = Volumen

F = Verdünnungsfaktor

4 Ergebnisse

4.1 Amplifikation der Inserts

Die Amplifikate der HC (IgG, IgM) und LC κ wurden mittels Gelelektrophorese aufgetrennt und anschließend aufgereinigt.

Abbildung 7: Agarosegelelektrophorese der Amplifikate LC κ und HC IgG. a) Aufgetrennte Amplifikate der HC IgG. Pro Spur wurden 20 μ l aufgetragen. b) Das Amplifikat der LC κ . Pro Spur wurden 15 μ l aufgetragen. Es wurde ein 100 bp DNA-Marker verwendet.

In der Abbildung 7 sind die PCR-Produkte der LC κ und der HC IgG ihrer Größe nach aufgetrennt. Die 700 bp großen Amplifikate wurden mit einem Skalpell ausgeschnitten und mittels Kit aufgereinigt. Anschließend erfolgte eine Konzentrationsmessung, um die genauen Massen der Inserts zu ermitteln. Waren die synthetisierten Inserts zu gering konzentriert, dann erfolgte darauf aufbauend ein weiterer Amplifikationsschritt des

jeweiligen Inserts.

4.2 Restriktionsverdau der Vektoren und Inserts

Der verdaute und dephosphorilierte Vektor wurde mittels Gelelektrophorese aufgetrennt und anschließend aufgereinigt. Der Grundvektor pFB-Fab wurde mit den Restriktionsenzymen *Mlul* und *Ncol* verdaut.

Abbildung 8: Agarosegelelektrophorese des Vektorverdaus von pFB-Fab. Es wurden 20 µg Vektor mit den Enzymen *Mlul* und *Ncol* verdaut. Pro Spur wurden 20 µl Probe aufgetragen. Die fünfte Spur zeigt den unverdauten Vektor in den drei Konformationen. Als Standard diente ein 100 bp und 1 kb DNA-Marker.

Die Abbildung 8 zeigt den verdauten Grundvektor pFB-Fab nach der Auftrennung mittels Gelelktrophorese. Es ist deutlich zu erkennen, dass sich der verdaute und der unverdaute Vektor voneinander unterscheiden. Der unverdaute Vektor weist das typische Bandenmuster auf. Die stärkste Bande des unverdauten Vektors liegt bei 3 kb. Hierbei handelt es sich um die supercoiled Form des Plasmides. Auf der Höhe von ca. 10 kb befindet sich die entspannt zirkuläre Form des Vektors. Bei einer Bandenstärke größer 10 kb befindet sich die linearisierte Form des Vektors, welche entsteht, wenn der Vektor an einer Stelle aufgebrochen ist.

In den Spuren 1-4 läuft der verdaute Vektor auf einer Höhe von ca. 5,3 kb. Auf einer Höhe ca. 700 bp ist die herausgeschnittene *ccdB*-Kasette zu erkennen. Der verdaute Vektor wurde mit einem sterilen Skalpell ausgeschnitten und mittels Kit aufgereinigt.

Die simultan verdauten Antikörper-Inserts wurden mittels Agarosegelelektrophorese analysiert und aufgetrennt. Aufgrund minimalster Größenunterschiede der verdauten und unverdauten Antikörper-Inserts, konnten gelelektrophoretisch keine Unterschiede analysiert werden, weshalb auf eine unverdaute Vergleichsprobe verzichtet wurde.

Abbildung 9: Verdautes HC IgG-Insert und LCk-Insert. Als Stardard diente ein 100 bp DNA-Marker.

Die Abbildung 9 zeigt das verdaute HC IgG-Insert und das LCk-Insert nach der Auftrennung mittels Gelelektrophorese. Die verdauten Inserts wurden mit einem sterilen Skalpell ausgeschnitten und mittels Kit aufgereinigt.

In der folgenden Tabelle 30 sind die erhaltenen Endkonzentrationen nach dem Restriktionsverdau und der Aufreinigung über ein Agarosegel und Affinitätssäule dargestellt.

Restriktionsverdau	c in ng/µl	Elutionsvolumen in µl	m in ng
pFB-Fab	44,8	100	4480
LCκ	12	100	1200
HC IgG	8,5	60	510
HC IgM	16,6	50	830
pFB-Fab _{HC lgG}	38,6	100	3860
pFB-Fab _{HC IgM}	34	100	3400

 Tabelle 30: Endkonzentrationen nach dem Restriktionsverdau

4.3 Kolonie-PCR

Die Kolonie-PCR diente zur Analyse der Klonierung. Als Primer wurden die Amplifizierungsprimer des jeweiligen Antikörper-Fragments verwendet. Da die LC κ sowie die Variable und erste konstante Region der HC IgG und IgM jeweils ca. 700 bp lang sind, wurde in der Kolonie-PCR eine Bande auf eben dieser Höhe erwartet.

Exemplarisch dargestellt sind die Agarosegelbilder (Abbildung 10) der Kolonie-PCR nach der Klonierung der LC κ (C_L, V_L) in den Vektor pFB-Fab, der bereits die HC IgG (V_H, C_H1) enthielt. Weitere Kolonie-PCR-Bilder der übrigen Klonierungsschritte sind im Anhang enthalten (A.2 Kolonie-PCR).

Abbildung 10: Kolonie-PCR der klonierten Antikörperinserts HC lgG und LCk von MM047 nach dem 2. Klonierungsschritt. Jede Spur (1-10) enthält 20µl des PCR-Produkts einer separaten Kolonie-PCR. Klone in beiden Gelen mit der gleichen Nummer gehen auf denselben Klon zurück. a) 10 Kolonie-PCR-Produkte der LC k, b) 10 Kolonie-PCR-Produkte der HC lgG. Es wurde ein 100 bp DNA-Marker verwendet.

Die Generierungen der Antikörper-Phagenbanken erfolgte in zwei Klonierungsschritten, welche einem speziellen Selektionsmechanismus unterlag. Diese spezielle und effektive

Klonierungsstrategie beruht auf einem "Suizid-Gene" (Selbstmordgen), dem ccdB-Gen, welches das Plasmid trägt. Das ccdB-Gen, dessen Genprodukt, ein Zytotoxin, interferiert mit DNA-Gyrase von E. coli-Zellen [Bernard et al., 1993]. In jedem Klonierungsschritt wurde das ccdB-Gen durch das Antikörper-Fragment substituiert. Nach einer erfolgreichen Klonierung beider Antikörperfragmente bildeten nur die Bakterien mit Plasmiden ohne ccdB-Gen oder mit spezieller Resistenz eine Kolonie, da sich selektiv nur diese Bakterien vermehren konnten [Bernard et al., 1994]. Zunächst wurden die verdauten Amplifikate der HC IgG (V_H, C_H1) in den verdauten Grundvektor pFB-Fab ligiert und anschließend über Elektroporation in E. coli DB3.1 transformiert. E. coli DB3.1 ist ein ccdB-resistenter Stamm, welcher das gyrA462-Gen besitzt und somit über eine Resistenz verfügt [Bernard et al., 1994]. Die entstandenen Klone wurden kultiviert und deren Plasmide isoliert. Die LC κ -Inserts (C_L, V_L) und der Vektor pFB-Fab_{HC-laG} wurden mit den Enzymen *Nhel-HFTM* und *Sall-HFTM* verdaut. Anschließend konnte die Ligation und die Transformation in E. coli DH10B erfolgen. E. coli DH10B ist ein ccdB-sensitiver Bakterienstamm, welcher keine Klone bildet, wenn das aufgenommene Plasmid ein aktives ccdB-Gen auf dem Plasmid besitzt. Die entstandenen Kolonien wurden mittels Kolonie-PCR analysiert.

Die Ergebnisse der jeweiligen Kolonie-PCR, nach jedem Klonierungsschritt, sind in der Tabelle 31 zusammengefasst.

Tabelle 31	Ergebnisse	der Koloni	e-PCR
------------	------------	------------	-------

iii iiioiiioi angosoinitt	2. Riomerungsschntt
10/10 positive Klone HC IgG	10/10 positive Klone HC IgG
	10/10 positive Klone LC κ
10/10 positive Klone HC IgM	10/10 positive Klone HC IgM 10/10 positive Klone LC κ
	10/10 positive Klone HC IgG 10/10 positive Klone HC IgM

4.4 Sequenzierung der Klone

Zur Überprüfung des positiven Kolonie-PCR-Ergebnisses, wurden die Antikörper-Sequenzen einiger Klone sequenziert. Die im Folgenden angegebenen Sequenzen stammen beide aus derselben Bakterienkolonie. Die Sequenzen wurden mit Hilfe verschiedener Programme simultan untersucht und sind den Tabelle 32 und 33 in der Nukleotidform dargestellt. Tabelle 32: Ergebnis der Sequenzierung der HC IgG

MM047#Klon1/1 Sequenz 5'-3'

GCAATTTTGATGAGCCAGTTGAAATTCTGGGAACTGCCTTTTGGTTGTGTGCCCTGCT TGAATAAATTTTTTATCCCCAGAGAGGGGCCAAAGTTCCAGTGGAAAGGTGGATAACG GCCTTCCAATCGGGTAATTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAG CACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACA AAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGC CAAGGAGACAGTCATAATGAAATACCTATTGCCTACGGCAGCCGCTGGATTGTTATT ACTCGCGGCCCAGCCGGCCATGGCGCAGGTGCAGCTGCAGGAGTCGGGCCCAGGA CTGGTGAAGCCTTCACAGACCCTGTCCCTCAGCTGCACTGTCTCTGGTGGCTCCATC AACAATGATAATTACCTCTGGAGCTGGATCCGCCAGCACCCAGGGAAGGGCCTGGA GTGGATTGGGTACATCTCTTACAGTGGGAGCGCCTACTACAACCCGTCCCTCGAGA GTCCAGTTACCATATCAATTGACACGTCTAAGAACCAGTTCTCCCTGAGGCTGAGCT CTGTGACTGCCGCGGACACGGCCGTATATTACTGTGCGAGAGAAGTAATAGCAACAT CTGATACGGATGCTTTTGATATTTGGGGGCCAAGGGACAATAGTCACCGTCTCTCAG CCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCGCCCTGCTCCAGGAGCACCTCC GAGAGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGA CGGTGTCGTGGAACTCAGGCGCTCTGACCAGCGGCGTGCACACCTTCCCGGCTGTC CTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGACCTCCAGCAA CTTCGGCACCCAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGG TGGACAAGACAGTTGAGCCCAAAAGCTGTACGCGTCATCACCACCATCACCACTAGG GATCCAAAGATATCAGAGCTGAAACTGTGAAAGTTGTTAGCAAAACCTCATACAGAAA ATTCATTACAACGTCGAAGCGCATGCAAAAA

Wie bereits beschrieben ist in blau das klonierte ca. 700 bp Fragment zu erkennen. Orangemarkierte Abschnitte definieren hier die vorhandenen Restriktionsschnittstellen *Mlul* und *Ncol*. Mit den Schnittstellen umfasst das klonierte Fragment 692 Nukleotide.

Tabelle 33: Ergebnis der Sequenzieung der LC κ

MM047#Klon1/2 Sequenz 5'-3'

TTTTCCACTAGAGAGTCTAGTGAACAAGCACTATTGCACTGGCACTCTTACCGTTACT GTTTACCCCTGTGACAAAGGCGGTCGACGATATTGTGCTGACCCAGACTCCAGCCAC CCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTG TTAGCAGCTACTTAGCCTGGTACCAACAGAAACCTGGCCAGGCTCCCAGGCTCCTCA TCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAGCCTGAAGATTTTGCAGTT TATTACTGTCAGCAGCGTAGCAACTCCCTCACTTTCGGCGGAGGGACCAAGGTGGA GATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCA GTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGA GGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGA GTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACG CTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAG GAGTAAAAGCTTGCATGCAAATTCTATTTCAAGGAGACAGTCATAATGAAATACCTAT TGCCTACGGCAGCCGCTGGATTGTTATTACTCGCGGCCCAGCCGGCCATGGCGCAG GTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCACAGACCCTGTCCCT CAGCTGCACTGTCTCTGGTGGCTCCATCAACAATGATAATTACCTCTGGAGCTGGAT CCGCCAGCACCCAGGGAAGGGCCTGGAGTGGATTGGGTACATCTCTTACAGTGGGG AGCGCCTACTACAACCCGTCCCTCGAGAGTCCAGTTACCATATCAATTGACACGTCT AAGAAACCAGTTCTCCCTGAAGGCTGAACTCTTGTGACTGCCCGCGGACACCGGCC CGTAATATTACTGGTGCGAGAAGAAGTAATAAGCAACATTCTGAAAACGGAATGCTTT TTGAATTTTTGGGGGCCAAAGGGACAAATAAGTCACCCGTTCTCTTTCAAGCCTCCC ACCAAAGGGGCCCATTCGGGTCTTTCCCCCTTGGGCCGCCCTTGTTTCCAGGGAGG CACCT

In blau ist das klonierte ca. 700 bp Fragment zu erkennen. Orangemarkierte Abschnitte definieren die vorhandenen Restriktionsschnittstellen *Sall* und *Nhel*. Die Vektorsequenz ist schwarz coloriert. Mit den Schnittstellen umfasst das klonierte Fragment insgesamt 651 Nukleotide.

4.5 Analyse der Sequenzen

Mittels des Programms IMGT/V-QUEST konnten die erhaltenen Sequenzen, welche sich in dem Plasmid befinden, identifiziert werden. Hierbei wurden die erhaltenen Sequenzen mit bereits bekannten Daten verglichen. Die Nukleotid-Sequenz von MM047#1/1 ergab mit einer Identität von 94,83 %, dass es sich um ein Immunglobulin der heavy chain IgG mit der variablen Regionen 4-31 handelt. Die Nukleotid-Sequenz von MM047#1/2 ergab mit einer Identität 98,57 %, dass es sich um ein Immunglobulin κ mit den variablen Regionen 3-11 handelt.

4.6 Bestimmung der Diversität

Um die Diversität zu bestimmen, wurde die Anzahl der auf der Agar-Platte befindlichen Bakterienklone ermittelt und die Transformanten pro µg DNA berechnet. Um den Hintergrund zu bestimmen, wurde zusätzlich ein verdauter und dephosphorilierter Vektor, ohne Antikörperinsert, transformiert, um den Religationshintergrund zu ermitteln [Schirrmann und Hust, 2010]. In der Tabelle 34 sind die Diversitäten nach dem jeweiligen Klonierungsschritten aufgeführt.

Ermittlung der Diversität von MM047

pFB-Fab _{HC IgG+LCк}			
	CFU/µg DNA	Diversität	Hintergrund in %
1. Klonierungsschritt			
Klonierung der HC IgG	4,8*10 ⁴	3,4*10 ⁴	0,1
2. Klonierungsschritt	Die Diversität des 2. Klonierungsschrittes konnte nicht		
Klonierung der LCĸ	ermittelt werden, da die Agarplatten zu bewachsen		
	waren.		

Ermittlung der Diversität von MM047

pFB-Fab _{HC IgM+LCк}

	CFU/µg DNA	Diversität	Hintergrund in %
1. Klonierungsschritt	1,1*10 ⁶	7,7*10 ⁵	0,09
Klonierung der HC IgM			
2. Klonierungsschritt Klonierung der LСк	2,2*10 ⁵	1,5*10 ⁵	0,04

4.7 Die Titer der Antiköper-Phagenbank

Mit Hilfe der Phagentiterbestimmung kann die Anzahl der infektionsbereiten Phagen in einer Suspension ermittelt werden. Die in den 10 µl ausgetropfter infizierter Bakterienkultur gewachsenen Klone wurden ausgezählt und auf die Anzahl der Phagen in einem ml Phagensuspension zurückgerechnet. Somit konnte anschließend der Titer ermittelt werden. Die Ergebnisse der Titer sind in der nachfolgenden Tabelle 35 dargestellt.

Phagenbank	Phagentiter [Phagen/ml]
Phagenbank MM047 IgM + LC κ	6,9*10 ⁹
Phagenbank MM047 IgG + LC κ	3,9*10 ⁹

Tabelle 35: Ergebnisse der Titer der Antikörper-Phagenbanken

5 Diskussion

5.1 Die Generierungen der Antikörper-Phagenbanken

Das Phage-Display ist eine sehr moderne und zukunftsorientierte Technologie, bei der das Antikörper-Repertoire, in Form von Fab-Fragmente, auf filamentösen Bakteriophagen [Smith, 1985] präsentiert wird.

Die Generierung der Antikörper-Bibliotheken begann mit der Isolierung von Antikörperproduzierenden Zellen. Der Spender MM047 war ein Patient mit einem Multiplen Myelom. Die mononuklearen Spenderzellen des peripheren Blutes wurden mittels Ficollgradienten separiert. Die mRNA der mononuklearen Zellen wurde in cDNA umgeschrieben, um anschließend die Antikörperfragmente zu amplifizieren. Wie bereits erwähnt, wird in jedem Klonierungsschritt die ccdB-Kasette durch das entsprechende Antikörper-Fragment substituiert. Zunächst wurden die verdauten Amplifikate der HC IgG oder IgM (V_H, C_H1) in den verdauten Grundvektor pFB-Fab ligiert und anschließend über Elektroporation in E. coli DB3.1 transformiert. E. coli DB3.1 ist ein ccdB-resistenter Stamm [Bernard et al., 1994], welcher trotz des Vorhandenseins der ccdB-Kasette in der Lage ist Klone zu bilden. Die Ergebnisse zeigen deutlich, dass nach dem ersten Klonierungsschritt der Hintergrund, also die religierten Vektoren, aber auch Vektoren mit einer intakten ccdB-Kasette, kleiner gleich 0,1 % war. Deshalb wird der erste Klonierungsschritt als erfolgreich angesehen. Im zweiten Klonierungsschritt wurden zunächst die LC κ amplifiziert und um die Schnittstellen elongiert. Die LCk-Inserts (CL, VL) und der Vektor pFB-FabHC-laG/HC-laM wurden verdaut, ligiert und in E. coli DH10B transformiert. E. coli DH10B ist ein ccdBsensitiver Bakterienstamm, welcher nur Klone bildet, wenn kein aktives ccdB-Gen auf dem Plasmid vorhanden ist. Nach diesem Klonierungsschritt verringerte sich der Hintergrund auf 0,04 %.

Generiert man Antikörper-Phagenbanken, so ist die Diversität diese Bank von großer Bedeutung, um ein möglichst breites Spektrum eines Antikörperrepertoires zu erhalten, weshalb auch die Antikörpergene unabhängig voneinander in der Vektor kloniert worden sind. Die Diversität der Antiköper-Phagenbank pFB-Fab _{HC IgG+LCk} konnte nicht ermittelt werden, da die Klonzahlen auf den Agarplatten zu hoch waren. Die Diversität der generierten Antiköper-Phagenbank pFB-Fab HC IgM+LCK lag bei 1,5*10⁵. Da das klonierte Antikörpergen eine ähnliche Größenordnung wie das ccdB-Gen besaß, wurden die Güte der Klonierung auf Einzelklonniveau nicht mittels analytischer Restriktionsanalyse bestimmt, sondern konnte nur mittels Kolonie-PCR untersucht werden. Da alle 10 der untersuchten Klone beide Antikörperketten enthielten, bestätigte dieser Fund das positive Ergebnis des zuvor ermittelten geringen Hintergrunds und somit die Güte der Bibliothek. Die unterschiedliche Bandenstärke der PCR-Amplifikate nach der Kolonie-PCR kann wie folgt erklärt werden: zum einen waren die gepickten Kolonien unterschiedlich groß, sodass die Ausgangsmaterialkonzentration an DNA für die PCR als unterschiedlich angenommen werden konnte. Eine weitere Ursache für die unterschiedlichen Bandenstärken im Agarosegel könnte die Verwendung von familien-spezifischen Primerpools darstellen. Je besser ein Template während der PCR amplifiziert wird, desto stärker ist die Bande im nachfolgenden Agarosegel. Um die Ergebnisse der Kolonie-PCR zu bestätigen wurden die gepickten Klone anschließend mit den spezifischen Primern -96 gIII Seq. rv und LMB3-fw sequenziert. Der gepickte Klon MM047#Klon1 trägt beide Antiköper-Fragmenten in seinem Plasmid, weshalb die Klonierungstrategie als erfolgreich angesehen werden konnte. Anhand der erhaltenen Sequenzen konnten Antiköper-Fragmente identifiziert werden. Die variablen Regionen der HC IgG-Sequenz stimmte zu 94,83 % mit der variablen Region einer bereits registrierten Antikörpersequenz überein. Der Unterschied zur Referenzsequenz erklärt sich daraus, dass die analysierte Sequenz Hypermutationen enthält. Diese erfolgen nach dem Kontakt der B-Zelle zum korrespondierenden Antigen und können zu einer Affinitätssteigerung führen. Je höher die Affinität eines Antikörpers, desto Stärker ist das Bindungsverhalten zwischen Antikörper und Antigen. Die LCk konnte mit einer Identität von 98,83 % in der variablen Region einer Referenzsequenz zugeordnet werden. Bei so geringen Unterschieden kann davon ausgegangen werden, dass hier noch keine Hypermutation stattgefunden hat. Generiert man Antikörper-Bibliotheken, so ist zu berücksichtigen, dass ein erheblicher Zeitaufwand für die Klonierungen, aber auch für die Analysen der einzelnen Teilergebnisse benötigt wird.

5.2 Restriktionsverdau des Vektors und der Inserts

Wird der Vektor nit den Restriktionsenzymen *Sall* HF^{TM} , *Nhel* HF^{TM} , *Mlul* und *Ncol* verdaut, so fällt, zusätzlich zum Vektorbackbone ein 700 bp großes DNA-Fragment, welches im Agarosegel zu erkennen ist. Dieses Fragment ist die ccdB-Kasette, die durch ein Antiköper-Fragment substituiert werden soll. War keine 700er Bande nach dem

Verdau erkennbar, so wurde die Probe verworfen. Um die Güte des Verdaus zu ermitteln wurde zudem ein unverdauter Vektor mit auf das Gel aufgetragen. So wurde ersichtlich, ob das DNA-Fragment vollständig geschnitten worden war. Diese unverdaute Kontrolle sollte die lineare, die supercoiled und die zirkuläre Konformation des Vektors aufweisen. Insgesamt wurden 20 µg Vektor mit den Restriktionsenzymen 4,5 h verdaut. Nach der Gelelektrophorese und anschließender Aufreinigung mittels Affinitätssäule betrug die Konzentration des Vektors nur noch 20 % der Anfangskonzentration. Das ergibt einen Gesamtverlust von 80 %, was vor dem Verdau im Hinblick auf die darauf folgenden Schritten zu beachten war. Allerdings konnte nur so unverdauter und nicht verdauten Vektoren signifikant unterschieden werden, was für die Güte der Bibliothek entscheidend war. Des Weiteren können Probleme bei dem Verdau von Antikörper-Inserts auftreten, da sich verdaute von unverdauten Inserts nur schwer unterscheiden lassen. Die Güte der Insert-Restriktion spiegelt sich jedoch in der Anzahl die Kolonien nach der Transformation wieder. Waren ein großer Anteil der Inserts vor der Ligation beidseitig verdaut, so erhielt man nach der Transformation viele Kolonien bei gleichzeitig sehr geringem Hintergrund. Dies war bei der Generierung der hier vorgestellten Bibliotheken der Fall.

6 Zusammenfassung und Ausblick

6.1 Zusammenfassung

Die Hauptaufgabe bestand in der Etablierung und Generierung von Antikörper-Phagenbanken aus cDNA eines Multiplen Myelom Patienten. Das Phage-Display von Antikörperbibliotheken ist eine sehr innovative und zukunftsorientierte Technologie, bei der das Antikörperrepertoire als Fab-Fragmente auf Bakteriophagen exprimiert wird. Somit können Antikörper-Phagenbanken gegen jegliche Art von Targets selektiert werden. Für die Generierungen der Antikörper-Phagenbanken wurden zunächst mononukleäre Zellen des peripheren Blutes des Spenders isoliert. Hieraus wurde die mRNA gewonnen und in cDNA mittel Reverse Transkriptase umgeschrieben. Die schweren Ketten IgG und IgM (V_H, C_H1) und die leichte Kette Kappa (V_L, C_L) wurden mit den familien-spezifischen Primern von der cDNA amplifiziert. Anschließend wurden die Antikörper-Amplifikate und der Vektor pFB-Fab mit den Restriktionsenzymen verdaut. Die Klonierungsstrategie unterlag einem speziellen Selektionsmechanismus und deshalb musste diese Strategie beachtet werden. Die verdaute schwere Kette (IgG, IgM) wurde zunächst in den verdauten und dephosphorilierten Vektor pFB-Fab ligiert. Im zweiten Klonierungsschritt wurde die verdaute leichte Kette Kappa in den verdauten und dephosphorilierten Vektor mit der schweren Kette ligiert. Der Erfolg der Klonierung wurde mittels Kolonie-PCR untersucht, um anschließend die Diversität des Antikörperrepertoires der Bank zu ermitteln. Damit Fab-Fragmente auf Bakteriophagen präsentiert werden, wurden die Plasmid tragenden Bakterien mit Helferphage infiziert, die Phagen produziert und nach der Aufreinigung titriert.

Diese Arbeit stellt die Etablierung und Generierung von Antikörper-Phagenbanken aus der cDNA dar. Das etablierte Verfahren und die generierten Antikörper-Banken bilden eine Grundlage für weiterführende Versuche in der Tumorerforschung.

6.2 Ausblick

Die in dieser Arbeit generierten Fab-Phagenbanken bilden das Immunglobulin-Repertoire eines Myelompatienten und darüber hinaus weitere Kombinationen dessen HC- und LC-Repertoires ab. In weiterführenden Arbeiten werden diese Bibliotheken genutzt, um per Phage-Display geeignete Binder gegen Tumor-Antigene des Multiplen Myeloms zu identifizieren. Diese Binder sollen zukünftig in der Therapie der Erkrankung Verwendung finden.

7 Literaturverzeichnis

[Bahassi *et al.*, 1995] Bahassi E. M., Salmon M. A., Melderen L. V., Bernard P., Couturier M., F plasmid CcdB killer protein: ccdB gene mutants coding for non-cytotoxic proteins which retain their regulatory functions. Mol Microbiol (1995), Nr. 6, S. 1031–1037

[Baskar *et al.*, 2009] Baskar S., Suschak J. M., Samija I., Srinivasan R., Childs R. W., Pavletic S. Z., Bishop M. R., Rader C., A human monoclonal antibody drug and target discovery platform for B-cell chronic lymphocytic leukemia based on allogeneic hematopoietic stem cell transplantation and phagedisplay. Blood (2009), Nr. 20, S. 4494– 4502

[Bernard *et al.*, 1993] Bernard P., Kezdy K. E., Melderen L. V., Steyaert J., Wyns L., Pato M. L., Higgins P. N., Couturier M., The F plasmid CcdB protein induces efficient ATP-dependent DNA cleavage by gyrase. J Mol Biol (1993), Nr. 3, 534–541

[Bernard *et al.*, 1994] Bernard P., Gabant P., Bahassi E. M., Couturier M., Positive-selection vectors using the F plasmid ccdB killer gene. Gene (1994), Nr. 1, S. 71– 74

[Brehme und Meimcke, 1998] Brehme S., Meincke I., Wissensspeicher Biologie. 1. Auflage, Volk und Wissen Verlag (1998), Berlin, S. 177

[Dower *et al.*, 1988] Dower W. J., Miller J. F., Ragsdale C. W., Highe_ciency transformation of E. coli by high voltage electroporation. NucleicAcids Res 16 (1988), Nr. 13, S. 6127–6145

[Haq *et al.*, 2012] Haq I. U., Chaudhry W. N., Akhtar M. N., Andleeb S., Qadri I., Bacteriophages and their implications on future biotechnology. A review. Virol J 9 (2012), S. 9

[Harousseau *et al.*, 2008] Harousseau J., Dreyling M., Multiple myeloma: ESMO clinical recommendations for diagnosis, treatment and follow up. Ann Oncol. (2008); Nr.2, S. 155–157 [Hoogenboom et al., 1998] Hoogenboom H. R., de Bruïne A. P., Hufton S. E., Hoet R. M., Arends J. W., Roovers R. C., Antibody phage display technology and its applications. Immunotechnology (1998), 4(1), S. 1-20

[Janeway und Travers, 2008] Janeway C. A., Travers P., Murphy K., (Hrsg.): Immunology. 8. Spektrum Akademischer Verlag (2008)

[Kierny *et al.*, 2012] Kierny M. R., Cunningham T. D., Kay B. K., Detection of biomarkers using recombinant antibodies coupled to nanostructured platforms. Nano Rev. (2012), 3: 10.3402

[Koehler und Milstein, 1975] Koehler G., Milstein C., Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256 (1975), Nr. 5517, S. 495–497

[Kyle und Rajkumar, 2004] Kyle R. A., Rajkumar S.V., Multiple myeloma. N Engl J Med. (2004), 351(18), S. 1860–73

[Kyle und Rajkumar, 2008] Kyle R. A., Rajkumar S.V., Multiple myeloma. Blood (2008), 111 (6), S. 2962–2972

[Latypov *et al.*, 2012] Latypov R. F., Hogan S., Hollis Lau, Gadgil H., Liu D., Elucidation of Acid-induced Unfolding and Aggregation of Human Immunoglobulin IgG1 and IgG2 Fc. J Biol Chem. (2012), 287(2), S. 1381–1396

[Lehman *et al.*, 1974] Lehman, I. R. et al.: DNA ligase: structure, mechanism, and function. Science 186 (1974), Nr. 4166, S. 790–7

[Mullis *et al.*,1986] Mullis K., Faloona F., Scharf S., Saiki R., Horn G., Erlich H., Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Biotechnology (1986), Nr. 24, S. 17–27

[Neumann *et al.*, 1982] Neumann E., Schaefer-Ridder M., Wang Y., Hofschneider P. H., Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. (1982), 1(7), S. 841-5 [Rahlff *et al.*, 2012] Rahlff J., Trusch M., Haag F., Bacher U., Horst A., Schlüter H., Binder M., Antigen-specificity of oligoclonal abnormal protein bands in multiple myeloma after allogeneic stem cell transplantation. Cancer Immunology, Immunotherapy (2012), 61 (10), S. 1639–1651

[Raul Mostoslavsky *et al.*, 2004] Mostoslavsky R., Alt F. W., Rajewsky K., The Lingering Enigma of the Allelic Exclusion Mechanism (Review), Cell (2004), Vol. 118, S. 539-544

[Rehm und Letzel, 2010] Rehm H., Letzel T., Der Experimentator Proteinbiochemie/ Proteomics, 6. Auflage, Spektum Akademischer Verlag Heidelberg

[Russel *et al.*, 1986] Russel M., Kidd S., Kelley M. R., An improved filamentous helper phage for generating single-stranded plasmid DNA. Gene 45 (1986), Nr. 3, S. 333–338

[Schirrmann und Hust, 2010] Schirrmann, T., Hust M., Construction of human antibody gene libraries and selection of antibodies by phage display. Methods Mol Biol 651 (2010), S. 177–209

[Schroeder und Cavacini, 2010] Schroeder H. W. Jr., Cavacini L., Structure and Function of Immunoglobulins. J Allergy Clin Immunol. (2010), 125(2 0 2), S. 41–52

[Shui *et al.*, 2009] Shui X., Jian Huang J., Li Y. H., Xie P. I., Li G. C., HybridomaConstruction and Selection of Human Fab Antibody Phage Display Library of Liver Cancer. Hybriboma (2009), 28(5), 341-347

[Smith, 1985] Smith G. P., Filamentous Fusion Phage: Novel Expression Vectors That Display Cloned Antigens on the Virion Surface. Science (1985) 228, Nr. 4705, S. 1315–1317

[Winter *et al.*, 1994] Winter G., Griffiths A. D., Hawkins R. E., Hoogenboom H. R., Making antibodies by phage display technology. Annu Rev Immunol. (1994) 12, S. 433-55 [Wu *et al.*, 2001] Wu B. P., Xiao B., Wan T. M., Zhang Y. L., Zhang Z. S., Zhou D. Y., Lai Z. S., Gao C. F., Construction and selection of the natural immune Fab antibody phage display library from patients with colorectal cancer. World J Gastroenterol (2001), Nr. 6, S. 811–815

[Zhou et al., 2009] Zhou B., Dong Q., Ma R., Chen Y., Yang J., Sun L., Huang C., Rapid isolation of highly pure ssDNA from phagemids. Anal Biochem. (2009), 389(2), S. 177–179

Abbildungsverzeichnis

Abbildung 1: Schematische Darstellung eines IgG-Antikörpers
Abbildung 2:Schematischer Aufbau des M13-Phagen
Abbildung 3:Schematische Darstellung der Amplifizierungsstrategie der schweren Kette
(HC) zur Generierung einer Antikörper-Phagenbank5
Abbildung 4: Schematische Darstellung der Amplifizierungsstrategie der leichten Kette
(LC) zur Generierung einer Antikörper-Phagenbank
Abbildung 5: Schematische Darstellung zur Konstruktion einer Antikörper-
Phagenbank7
Abbildung 6: Das Plasmid pFB-Fab14
Abbildung 7: Agarosegelelektrophorese der Amplifikate LC κ und HC IgG
Abbildung 8: Agarosegelelektrophorese des Vektorverdaus von pFB-Fab. r
Abbildung 9: Verdautes HC IgG-Insert und LCk-Insert
Abbildung 10: Kolonie-PCR der klonierten Antikörperinserts HC IgG und LCk von MM047
nach dem 2. Klonierungsschritt
Abbildung 11: Agarosegelelektrophorese des Restriktionsverdaus von pFB-Fab _{HC lgG} i
Abbildung 12: Kolonie-PCR des klonierten Insert HC IgG nach dem 1. Klonierungsschritt
Abbildung 13: Kolonie-PCR des klonierten Insert HC IgM nach dem 1. Klonierungsschritt.
Abbildung 14: Kolonie-PCR der klonierten Antikörperinserts HC IgM und LC κ von MM047
nach dem 2. Klonierungsschrittiii
Abbildung 15: Vergleich der verwendeten Zelllinienvii
Abbildung 16: Quick-Load [®] 1 kb DNA Ladder viii
Abbildung 17: Quick-Load [®] 100 bp DNA Ladder viii

Tabellenverzeichnis

Tabelle 1: Verwendete Geräte	7
Tabelle 2: Verwendete Verbrauchsmaterialien	8
Tabelle 3: Verwendete Chemikalien	9
Tabelle 4: Puffer für Agarosegele und Zusätze	.10
Tabelle 5: Verwendete Stocklösungen	.10
Tabelle 6: Verwendete Bakterienstämme	.11
Tabelle 7: Bakteriophagen	.12
Tabelle 8: Medienzusammensetzung	.12
Tabelle 9: Verwendete Plasmide	.14
Tabelle 10: Verwendete Primer für die Amplifizierung ohne Schnittstellen	.15
Tabelle 11: Verwendete Primer für die Amplifizierung mit Schnittstellen	.16
Tabelle 12: Verwendete Sequenzierungsprimer	.17
Tabelle 13: Verwendete Restriktionsenzyme, Puffer und Lösungen	.18
Tabelle 14: Sonstige Enzyme und Puffer	.18
Tabelle 15: Verwendete Kits	.19
Tabelle 16: DNA Marker	.19
Tabelle 17: Verwendete Software	.19
Tabelle 18: Amplifizierung der schweren Kette mit einer Schnittstellen	.21
Tabelle 19: PCR-Programm zur Amplifizierung der schweren Kette IgG mit einer	
Schnittstellen	.21
Tabelle 20: Amplifizierung der leichten Kette κ ohne Schnittstellen	.23
Tabelle 21: PCR-Programm zur Amplifizierung der leichten Kette κ ohne Schnittstellen.	.23
Tabelle 22: Reaktionsansatz zur Amplifizierung der HC IgG	.24
Tabelle 23: Reaktionsansatz zur Amplifizierung der LCκ	.24
Tabelle 24: PCR-Programm zur Amplifizierung der HC IgG und der LCk	.25
Tabelle 25: Restriktionsverdau des Vektors pFB-Fab	.25
Tabelle 26: Restriktionsverdau der DNA-Fragmente	.25
Tabelle 27: Restriktionsverdau des Vektor mit der klonierten HC	.26
Tabelle 28: Restriktionsverdau der LCк	.26
Tabelle 29: Ligationsansatz	.28
Tabelle 30: Endkonzentrationen nach dem Restriktionsverdau	.35
Tabelle 31: Ergebnisse der Kolonie-PCR	.37
Tabelle 32: Ergebnis der Sequenzierung der HC IgG	.38
Tabelle 33: Ergebnis der Sequenzieung der LCκ	.38

Tabelle 34: Ermittelte Diversitäten	40
Tabelle 35: Ergebnisse der Titer der Antikörper-Phagenbanken	41

A. Anhang

A.1 Restriktionsverdau der zweiten Klonierung

Die Abbildung 12 zeigt den Vektor pFB-Fab mit der bereits vorhandenen HC IgG nach dem Verdau.

Abbildung 11: Agarosegelelektrophorese des Restriktionsverdaus von pFB-Fab_{HC IgG}. Es wurden 20 µg Vektor mit den Enzymen *Sall-HFTM* und *Nhel-HFTM* verdaut. Pro Spur wurden 20 µl Probe aufgetragen. Die erste Spur zeigt den unverdauten Vektor in zwei Konformationen. Die Spuren 2-4 zeigt den verdauten Vektor pFB-Fab_{HC IgG}. Als Stardard diente ein 1 kb DNA-Marker.

A.2 Kolonie-PCR

In der Abbildung 12 ist die Kolonie-PCR des klonierten Insert HC IgG nach dem 1. Klonierungsschritt dargestellt.

Abbildung 12: Kolonie-PCR des klonierten Insert HC IgG nach dem 1. Klonierungsschritt. Jede Spur (1-10) enthält 20µl des PCR-Produkts einer separaten Kolonie-PCR. Es wurde ein 100 bp DNA-Marker verwendet.

In der Abbildung 13 ist die Kolonie-PCR des klonierten Insert HC IgM nach dem 1. Klonierungsschritt dargestellt.

Abbildung 13: Kolonie-PCR des klonierten Insert HC IgM nach dem 1. Klonierungsschritt. Jede Spur (1-10) enthält 20µl des PCR-Produkts einer separaten Kolonie-PCR. Es wurde ein 100 bp Marker verwendet.

In der Abbildung 14 ist die Kolonie-PCR der klonierten Insert HC IgM und LC κ nach dem 2. Klonierungsschritt dargestellt.

Abbildung 14: Kolonie-PCR der klonierten Antikörperinserts HC lgM und LC κ von MM047 nach dem 2. Klonierungsschritt. Es wurde ein 1% iges Agarosegel in 1x TAE Puffer und einer Ethidiumbromidkonzentration von 1:10000 zur Überprüfung der klonierten Inserts verwendet. Jede Spur (1-10) enthält 20µl des PCR-Produkts einer separaten Kolonie-PCR. Es wurde ein 100 bp DNA-Marker verwendet.

A.3 Die Vektorsequenz pFB-Fab

TAACGAGTTCATAAGATTTCAAAAGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCC GATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACG CAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCG TATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTAC GCCAAGCTTAAGGAGACAGTCATAGTGAAACAAAGCACTATTGCACTGGCACTCTTACCGTTA GACAGCGACAGCTATCAGTTGCTCAAGGCATATATGATGTCAATATCTCCGGTCTGGTAAGCA CAACCATGCAGAATGAAGCCCGTCGTCTGCGTGCCGAACGCTGGAAAGCGGAAAATCAGGAA GGGATGGCTGAGGTCGCCCGGTTTATTGAAATGAACGGCTCTTTTGCTGACGAGAACAGGGG ATGTACAGAGTGATATTATTGACACGCCCGGGCGACGGATGGTGATCCCCCTGGCCAGTGCA CGTCTGCTGTCAGATAAAGTCTCCCGTGAACTTTACCCGGTGGTGCATATCGGGGATGAAAG CTGGCGCATGATGACCACCGATATGGCCAGTGTGCCGGTCTCCGTTATCGGGGAAGAAGTGG CTGATCTCAGCCACCGCGAAAATGACATCAAAAACGCCATTAACCTGATGTTCTGGGGAATAT AAATGTCAGGCTCCCTTATACACAGCCAGTCTGCAGGTCGATACAGTAGAAATTACAGAAACT TTATCACGTTTAGTAAGTATAGAGGCTGAAAATCCAGATGAAGCCGAACGACTTGTAAGAGAA TAACTGAGTAAAAGCTTCATGCAAATTCTATTTCAAGGAGACAGTCATAATGAAATACCTATTG CCTACGGCAGCCGCTGGATTGTTATTACTCGCGGCCCAGCCGGCCATGGTATGCTATGAAGC AGCGTATTACAGTGACAGTTGACAGCGACAGCTATCAGTTGCTCAAGGCATATATGATGTCAA TATCTCCGGTCTGGTAAGCACAACCATGCAGAATGAAGCCCGTCGTCTGCGTGCCGAACGCT GGAAAGCGGAAAATCAGGAAGGGATGGCTGAGGTCGCCCGGTTTATTGAAATGAACGGCTCT CCGTTATCGTCTGTTTGTGGATGTACAGAGTGATATTATTGACACGCCCGGGCGACGGATGGT GATCCCCCTGGCCAGTGCACGTCTGCTGTCAGATAAAGTCTCCCGTGAACTTTACCCGGTGG TGCATATCGGGGATGAAAGCTGGCGCATGATGACCACCGATATGGCCAGTGTGCCGGTCTCC GTTATCGGGGAAGAAGTGGCTGATCTCAGCCACCGCGAAAATGACATCAAAAACGCCATTAAC CTGATGTTCTGGGGGAATATAAATGTCAGGCTCCCTTATACACAGCCAGTCTGCAGGTCGATAC AGTAGAAATTACAGAAACTTTATCACGTTTAGTAAGTATAGAGGCTGAAAATCCAGATGAAGCC GAACGACTTGTAAGAGAAAAGTATAAGAGTTGTGAAATTGTTCTTGATGCAGATGATTTTCAGG **ACTATGACACTAACGCGT**CATCACCACCATCACCACTAGGGATCCAAAGATATCAGAGCTGAA ACTGTTGAAAGTTGTTTAGCAAAATCCCATACAGAAAATTCATTTACTAACGTCTGGAAAGACG TTTGTACTGGTGACGAAACTCAGTGTTACGGTACATGGGTTCCTATTGGGCTTGCTATCCCTG AAAATGAGGGTGGTGGCTCTGAGGGTGGCGGTTCTGAGGGTGGCGGTTCTGAGGGTGGCGG TACTAAACCTCCTGAGTACGGTGATACACCTATTCCGGGCTATACTTATATCAACCCTCTCGAC GGCACTTATCCGCCTGGTACTGAGCAAAACCCCGCTAATCCTAATCCTTCTTTGAGGAGTCT CAGCCTCTTAATACTTTCATGTTTCAGAATAATAGGTTCCGAAATAGGCAGGGGGGCATTAACTG TTTATACGGGCACTGTTACTCAAGGCACTGACCCCGTTAAAACTTATTACCAGTACACTCCTGT ATCATCAAAAGCCATGTATGACGCTTACTGGAACGGTAAATTCAGAGACTGCGCTTTCCATTCT GGCTTTAATGAGGATTTATTTGTTTGTGAATATCAAGGCCAATCGTCTGACCTGCCTCAACCTC CTGTCAATGCTGGCGGCGGCTCTGGTGGTGGTTGTGGCGGCTCTGAGGGTGGTGGCTC TGAGGGTGGCGGTTCTGAGGGTGGCGGCTCTGAGGGAGGCGGTTCCGGTGGTGGCTCTGG TTCCGGTGATTTTGATTATGAAAAGATGGCAAACGCTAATAAGGGGGCTATGACCGAAAATGC CGATGAAAACGCGCTACAGTCTGACGCTAAAGGCAAACTTGATTCTGTCGCTACTGATTACGG

TGCTGCTATCGATGGTTTCATTGGTGACGTTTCCGGCCTTGCTAATGGTAATGGTGCTACTGG TGATTTTGCTGGCTCTAATTCCCAAATGGCTCAAGTCGGTGACGGTGATAATTCACCTTTAATG AATAATTTCCGTCAATATTTACCTTCTTTGCCTCAGTCGGTTGAATGTCGCCCTTATGTCTTTGG CGCTGGTAAACCATATGAATTTTCTATTGATTGTGACAAAATAAACTTATTCCGTGGTGTCTTTG CGTTTCTTTTATATGTTGCCACCTTTATGTATGTATTTTCGACGTTTGCTAACATACTGCGTAAT AAGGAGTCTTAATAAGAATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGG CGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGA GGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGCCTGATG CGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATACGTCAAAGCAACCATAGTA CGCGCCCTGTAGCGGCGCATTAAGCGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCT GCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTA CGGCACCTCGACCCCAAAAAACTTGATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCCTG ATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAA ACTGGAACAACACTCAACCCTATCTCGGGGCTATTCTTTTGATTTATAAGGGATTTTGCCGATTT CGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTA ACGTTTACAATTTTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGC CCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGC TTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACC GAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAAT AATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGGAAATGTGCGCGGAACCCCTATTTGTTT ATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAAT AATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTGC GGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGA TCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGA **GTTTTCGCCCCGAAGAACGTTTTCCAATG**ATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGG TATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATG ACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAAT GAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGGATCATGTAACTCGCCTTGATC GTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTA CAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCC GGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTG CAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAG GCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGG AGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGT TCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGC AAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTG

TCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACC TCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGT TGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGGTTCGTG CACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTAT GAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGT CGGAACAGGAGAGCGCACGAGGGAGGCTTCCAGGGGGGAAACGCCTGGTATCTTTATAGTCCT GTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAG CCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGC TCACATGTTCTTTCCTGCGTTATCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGA GCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGGTCAGTGAGCGAGGAAGCG GAAGA

- ccdB : [575 : 880 CW]
- ccdB : [1410 : 1715 CW]
- glll : [1940 : 3163 CW]
- ccdB-Cassette : [347 : 1062 CW]
- ccdB-Cassette : [1182 : 1897 CW]
- ccdB : [668 : 877 CW]
- ccdB : [1503 : 1712 CW]
- M13-fwd : [3190 : 3173 CCW]
- M13-rev : [228 : 248 CW]
- ColE1 origin : [5253 : 5881 CW]
- F1 ori : [3847 : 3407 CCW]
- M13 origin : [3402 : 3857 CW]
- LacZ alpha : [3261 : 3329 CW]
- LacO : [200 : 222 CW]

AmpR	: [4442 : 5101 - CW]
Amp prom	: [4174 : 4202 - CW]
lac	: [166 : 195 - CW]
6His	: [1904 : 1921 - CW]

A.4 Vergleich der verwendeten Zelllinien

Abbildung 15: Vergleich der verwendeten Zelllinien. Dargestellt sind die verwendeten Zelllinien *E. coli* DH10B und *E. coli* DB3.1. Hierbei wurden die *E. coli* DB3.1 in den Verhältnissen 1:100 und 1:1000 verdünnt.

A.5 DNA Marker

Base Pairs Mass (ng) - 1,517 45 1,200 35 **95** 27 - **1,000** - 900 - 800 24 21 - 700 18 - 600 500/517 97 400 38 - 300 29 - 200 25 - 100 48

Abbildung 16: Quick-Load[®] 1 kb DNA Ladder

Abbildung 17: Quick-Load[®] 100 bp DNA Ladder

Eidesstattliche Erklärung

Hiermit versichere ich, Nicole Pritzlaff, an Eides Statt durch meine eigene Unterschrift, dass ich die vorstehende Arbeit mit dem Thema "Etablierung und Generierung von Antikörper-Phagenbanken aus cDNA eines Multiplen Myelom Patienten" selbstständig und ohne fremde Hilfe angefertigt und alle Stellen, die wörtlich oder annähernd wörtlich aus Veröffentlichungen entnommen sind, als solche kenntlich gemacht und mich auch keiner anderen als der angegebenen Literatur bedient habe. Diese Versicherung bezieht sich auch auf die in der Arbeit gelieferten Zeichnungen, Skizzen, bildlichen Darstellungen und desgleichen. Mit der späteren Einsichtnahme in meine Bachelorarbeit erkläre ich mich einverstanden.

Datum

Unterschrift