Hochschule fir Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

Fakultédt Technik und Informatik Faculty of Engineering and Computer Science
Studiendepartment Informatik Department of Computer Science

Markus Vahlenkamp

Design and Implementation of a Software-Defined Approach
to Information-Centric Networking

Master Thesis eingereicht im Rahmen der Masterpriifung
im Studiengang Master Informatik

am Studiendepartment Informatik

der Fakultét Technik und Informatik

der Hochschule fir Angewandte Wissenschaften Hamburg

Betreuender Professor: Prof. Dr. Thomas C. Schmidt
Zweitgutachter: Prof. Dr.-Ing. Martin Hibner

Abgegeben am 2. Dezember 2013

Hochschule fiir Angewandte Wissenschaften Hamburg
Fachbereich Technik und Informatik
Zusammenfassungsblatt zur Master Thesis

Markus Vahlenkamp

Title of the Master Thesis / Titel der Master Thesis
Design and Implementation of a Software-Defined Approach to Information-Centric
Networking

Keywords / Stichworte
Future Internet, Information-Centric Networking (ICN), Content-Centric Networking
(CCN), Software-Defined Networking (SDN)

Abstract

This work is concerned with the integration of the two networking paradigms of ICN and
SDN in order to provide an enhanced evolutionary path from today’s IP networks towards
ICN. We introduce a scheme that allows for the operation of SDN based infrastructure,
which provides network-wide ICN awareness. Further, an advanced approach, which
allows for the forking of ICN packets throughout the SDN domain is developed and eval-
uated. This approach introduces the ability of aggregating requests and a mechanism
to populate off-path caches as well as the parallel requesting of multiple caches. The
qualitative advances that the SDN supported deployment provides compared to a pure
overlay deployment are investigated plus the quantitative results of our Implementation.

Kurzzusammenfassung

Die vorliegende Arbeit beschaftigt sich mit der Integration der beiden Netzwerkparadig-
men ICN und SDN. Dabei wird das Ziel verfolgt, einen evolutionare Migrationspfad von
heutigen IP Netzwerken hin zu ICN zu bieten. Wir zeigen ein Schema auf, dass die
initiale Bereitstellung eine SDN gestltzten Netzwerks mit erweiterter ICN Verarbeitung
ermoglicht. Dariiber hinaus wird ein erweiterten Ansatz entwickelt und evaluiert, der die
SDN interne Duplizierung von ICN Paketen erlaubt. Hierdurch wird neben der Zusam-
menfihrung von Inhalteanfragen und Mechanismen zur Beflllung von nicht auf dem
direkten Ubertragungsweg befindlichen Caches auch die parallele Anfrage mehrerer
Caches ermdglicht. Die qualitativen Vorteile eines SDN gestiitzten, gegenilber einem
reinen Overlay-Betrieb werden ebenso beleuchtet, wie quantitativen Ergebnisse unserer
Implementierung.

In cooperation with:

NEC Laboratories Europe
Kurflirsten-Anlage 36
69115 Heidelberg
Germany
www.netlab.nec.de

CONTENTS v
Contents

1 Introduction 1

2 Related Work 3

2.1 Information-Centric Networking 3

2.1.1 Concept/OQverview 4

212 NDN/CCNX e 6

2.2 Software-Defined Networking 10

221 Concept/OQverview 10

222 OpenFlow 13

23 ICNoverSDN 16

2.3.1 Software-Definded Internet Architecture 16

2.3.2 CONET e 17

233 PURSUIT 20

2.3.4 Info-Centric Data Center Network (IC-DCN) 21

2.3.5 Discussion 22

3 ICN Research Challenges 24

3.1 State managementinICN 24

3.2 Security threats to ICN infrastructure 25

3.3 Scalability problemsinICN 26

3.4 DeploymentchallengesinICN 27

3.5 Challengesof ICNover SDN 29

4 Concept 31

4.1 Objectives 31

4.2 Initialapproach Lo 33

421 ModeofOperation 33

4.2.2 |ICN-SDN network integration 37

4.2.3 Detailed requestprocessing 39

4.2.4 Detailed response processing 41

CONTENTS \'

425 Transit ICN-SDN deployment 42
426 Discussion 43

4.3 Advanced approach o 44
4.3.1 ICN packet forkinguse-cases. 44
43.2 Requestforking 47
4.3.3 Request aggregation / response forking 50
4.3.4 Flowentry countper SDNswitch 52
435 Costestimation L . 55
4.3.6 Discussion 64

4.4 Additionaladvances 66
4.4.1 Combined request and response forking 66
442 EnableTCP 66
443 State managementtrade-offs. 68

5 Implementation 70
5.1 CCNxhostspecifics 70
5.2 CCNx-SDN network integration 71
5.3 CCNx-SDN controller architecture 72
5.4 CCNx-SDN controller mode of operation 74
55 Flowrulesetup L 76
5.6 Learning and managing objectlocations 78
6 Evaluation 80
6.1 Measurementenvironment 80
6.2 Measurementsetupo 81
6.2.1 Dataofinterest oL 81
6.2.2 Evaluationtopologies 82
6.2.3 From generated topology to executable network 82
6.2.4 FIBpopulation/routing 85
6.2.5 Parametrization Lo 86
6.2.6 Procedure 87

6.3 Measurementresults L L 88
6.3.1 Transmissiontimes 89
6.3.2 Processingtimes, 92
6.3.3 Dataplaneload L. 95
6.3.4 Controlplaneload 99

6.4 EvaluationSummary 100

LIST OF FIGURES Vi

7 Summary 102
7.1 Conclusion e 102
7.2 Futurework 103

References 105

A Basic approach evaluation 111
A1 Emulationsetup & scenarioso 111
A2 Measurements e 112

List of Figures

2.1 Conceptual view of one-step resolve /retrieve 6
2.2 Conceptual view of two-step resolve /retrieve 7
2.3 Abstract CCNxoverview 8
2.4 CCNxrouteroverview o 9
2.5 CCNxpacketstructure, 9
2.6 Datapathelementdesign. oL 11
2.7 SDN architecture overview 13
2.8 CONET packet formatoptions 19

4.1 Example data plane topology for the ICN enabled SDN ISP deployment . 35
4.2 Example control plane topology for the ICN enabled SDN ISP deployment 36

4.3 Overall ICN-SDN operation overview 38
4.4 ICN-SDN request processing and forwarding 40
4.5 ICN-SDN response processing and forwarding 41
4.6 Possible ICN-SDN request forking scenario 47
4.7 Possible ICN-SDN response forking scenario 51
4.8 Message cost functions of the SDNICN and the pure ICN case 58
4.9 Impact of certain parametersonthemodel 60

4.10 Relative message cost gain of the ICN-SDN approach - Request forking . 63
4.11 Relative message cost gain of the ICN-SDN approach - Response forking 65
4.12 ICN-SDN request and response forking 67

5.1 ICN-SDN implementation architecture 73

LIST OF TABLES VI

5.2 CCNx-SDN controller data structures 75
5.3 Controller packet processing work flow 76
5.4 Disseminationtree creation 00, 77
6.1 Topologies used for evaluation 83
6.2 lllustration of the same topology in SDNandICNcase 84
6.3 Effects of the forking factor on the avg. transmission times 89
6.4 Effects of the number of pre-cached chunks on the avg. transmission times 90
6.5 Effects of the ICN to SDN cache fill ratio on the avg. transmission times . 91
6.6 Packetprocessingtimes 92
6.7 Hop count dependent processingdelay 95
6.8 Effects of the ICN to SDN cache fill ratio on the network load 96
6.9 Effects of the forking factor on the networkload 97
6.10 Effects of the number of pre-cached chunks per ICN cache on network load 98
6.11 Controlplaneload, 99
A.1 Evaluation environment Lo oL 112
A.2 5 MiB content transfer time comparison 113

List of Tables

2.1 OpenFlow 1.0 match structure 15
4.1 Transit request packetrewritingo 0oL 43
4.2 Transit response packetrewriting 43
4.3 Request forking — header rewriting for request forwarding 49
4.4 Request forking — header rewriting for response forwarding 50
4.5 Response forking — header rewriting for request forwarding 52
4.6 Response forking — header rewriting for response forwarding 53
6.1 Parameter space used for the evaluation 87

6.2 Average per chunk processing delay components 94

Chapter 1

Introduction

The Internet usage is constantly rising. More and more users gain access to this global
network in recent times, not only via traditional computers but also via rapidly spreading
tablet computers and smart phones. The main usage of the Internet is thereby stead-
ily shifting from mostly host-centric communication towards the repetitive distribution of
pictures, music and videos — in general all sorts of static content. This host-centric In-
ternet of today needs to specifically support the distribution of the vast amounts of traffic
generated by major players and their response time requirements. Additions like Con-
tent Delivery Networks (CDNs), load-balancers and the like have been applied atop the
current Internet infrastructure layers to fix these shortcomings.

However, rising interest is generated by the Information-Centric Networking (ICN)
paradigm, which differs from today’s Internet in various aspects. ICN introduces content
awareness into the network. The network maintains information about content and the
location that the information can be acquired from. Further it builds up on the request /
response paradigm, thus the communication is driven by the content receiver. Instead
of requesting the network to deliver information to a particular entity in the network, the
request for content is handed over to the network, which is subsequently responsible for
finding suitable sources for the desired content, as well as forwarding it to the requester.
Sources are further not only origin but also cache nodes, which serve as an inherent
component of the network infrastructure.

All of today’s ICN protocols support their operation atop of today’s Internet infra-
structure. They mostly support the use of Transmission Control Protocol (TCP)/Internet
Protocol (IP) as a convergence layer, which allows ICN enabled parties to form overlay
networks on top of the Internet. However, the modification in the basic operation prin-
cipals requires the network infrastructure to support this new paradigm to exploit its full
potential. The routing system has to know where the requested content can be acquired
from. Further the forwarding elements need to provide storage for the purpose of caching
the forwarded content.

This work presents a scheme for the initial deployment of ICN protocols via Software-

CHAPTER 1. INTRODUCTION 2

Defined Networking (SDN) mechanisms. This will be achieved by providing a generic,
not ICN protocol specific way of enabling ICN-awareness throughout the network, without
requiring any changes to the end-hosts or the SDN forwarding elements. The SDN
capable infrastructure is utilized to support enhanced ICN traffic forwarding.

The remainder of this document is structured as follows. Chapter 2 is divided into
three main parts. The first subsection introduces the general ICN concept. Afterwards
the Named Data Networking (NDN) scheme along with its actual implementation termed
CCNx is introduced in further detail. The second subsection deals with SDN. It also
starts with a general overview and continues with a specific elaboration of the OpenFlow
SDN protocol. In Chapter 2.3 we give an introduction to the work of related projects and
papers that also deal with the integration of ICN and SDN.

Chapter 3 details the explicit problems we deal with throughout this work. First of
all the state management of ICN is discussed in Section 3.1. Subsequently security
threads (Section 3.2) and scalability issues (Section 3.3) are addressed. The challenges
faced when starting to deploy ICN today are listed in Section 3.4 before we detail the
challenges that apply to the deployment of ICN over SDN in further detail in Section 3.5.

Chapter 4 introduces the concept of this work. The actual focus and goals are refined
in greater detail in Section 4.1. We introduce our basic approach in Section 4.2. This
approach as a first step leaves open some of the requirements introduced in Section 4.1.
Hence, in Section 4.3 we introduce and further enhance the basic to the advanced ap-
proach that allows for ICN request and response forking operations. Additionally this
section comprises an analytical estimation of the complexity of our forking approach.
Section 4.4 finally covers additional advances that are applicable to both, the basic as
well as the advanced approach.

Chapter 5 gives detailed information on the implementation of the concept delineated
in the previous section. First the CCNx specialties in accordance to our general ICN
over SDN approach are emphasized. This is followed by the overview of the ICN-SDN
controller architecture. Subsequently the mode of operation is specified. The measures
required to perform the forwarding rule provisioning are detailed. The two last sections
finally describe the missing information, to finally put the running system into place. It
is illustrated how CCNx client nodes have to be configured and a basic mechanism to
register ICN name prefixes with the ICN-SDN controller is shown.

Chapter 6 provides information about the evaluation we performed. Section 6.1 gives
detailed information about the hardware and software components used throughout the
measurements. Following, the measurement setup is delineated in Section 6.2. This
includes a description of the topologies used, the data that is collected, how the environ-
ment is initialized and the procedure description of how the measurements are conduc-
ted. The corresponding results are then summarized and discussed in Section 6.4.

Finally the entire work is summarized in Chapter 7 along with an outlook on future
work and research directions.

Chapter 2

Related Work

In Section 2.1 we will give an overview of the general concepts that ICN is composed
of. Subsequent the concrete ICN implementation of CCNx, which relies on the NDN
scheme is introduced. Furthermore, Section 2.2 starts of with an introduction to the
general building blocks of SDN, before providing a detailed insight to the SDN approach
of OpenFlow. Finally this chapter closes with Section 2.3, the presentation of different
projects that already provide ideas and actual work on the integration of ICN and SDN.

2.1 Information-Centric Networking

ICN is a paradigm to computer networks that is focused on the dissemination of content
objects. Therefore, the network itself is enriched with knowledge about the content that
it is supposed to transfer. This contradicts the mechanics of today’s Internet, which has
only the notion of IP addresses and thus only the capability to address hosts. This
mutation is thus a fundamental paradigm shift.

Different ICN proposals have been developed in the past, all implementing the gen-
eral idea of ICN. Among them are for instance TRIAD [1], DONA [2], NDN [3, 4], PSIRP /
LIPSIN [5, 6] and NetInf [7]. They all take slightly different approaches in one or the other
design choice, but aim for the general ICN goals such as content caching and location
independent naming as described in [8, 9].

In the following we will first introduce the general concept and give an overview of ICN
before presenting the NDN approach, which is the most popular one. Further we explain
CCNYx, the prototype implementation of NDN, which we chose as a representative of an
ICN approach throughout the evaluation of our approach.’

"This ICN section originates in most parts from our previous work [8].

CHAPTER 2. RELATED WORK 4

2.1.1 Concept / Overview

Each node participating in an ICN explicitly addresses content, instead of using host
identifiers of content sources as the primary addressing scheme. Enabled by this
paradigm alteration a variety of actions can be performed, whilst other actions have to be
performed by ICN intermediary and end devices. A non-exhaustive list of those actions
is listed in the following. Further details can be found in [8, 9, 10].

Caching Through caching network resources can be saved. Whenever some content is
delivered to a content consumer, the content is cached within the network in order
to satisfy subsequent requests from a nearby replica.

This behaviour carries different implications for the content distribution. On the one
hand the network and server load is reduced. The content doesn’t have to be trans-
mitted all the way from the origin server to the client. Thus the work is offloaded
to the caches, holding the benefit of reduced network bandwidth utilisation as well
as origin server resource savings. On the other hand the delivery properties such
as transmission delays caused by for instance network congestions are positively
influenced through the use of a nearby cache. The overall Quality-of-Experience
(QoE) for the end user will increase.

Naming Today DNS hostnames are used to reference content. Thus CDNs manipulate
DNS responses and perform HTTP redirections to steer users towards different
spatial distributed replicas. All this needs to be done due to the properties of
Uniform Resource Locators (URLs). URLs identify the content, but they are also
used to map the identifier to the content’s location within the network.

This coupling of the identifier and locator of URLs is for instance one of the reasons
why consumers suffer content unreachability. Content may still be available, but
resides on a different server or a path on a server and is thus no longer accessible
through its previous URL.

ICN names though provide content identification without the coupling to the con-
tent’s location. This property is in consequence also exploited to better support
the in network caching properties of ICN [11, 12].

Security Today’s network security techniques, especially when it comes to secure data
distribution, mainly consist of securing the communication channel, instead of
securing the data itself. SSL and TLS are used for the secure transmission of
data end-to-end. This is something that is not expedient when using intermediary
caches distributed all over the network. Thus some mechanism for secure data
dissemination is required that supports some kind of man-in-the-middle caches
spread all over the network, without violating security or privacy properties.

CHAPTER 2. RELATED WORK 5

For instance in the existing ICN projects mechanisms for data integrity checks
are popular to be coupled with the naming of content objects. They provide a
mechanism called self-certifiability, in which the names of a particular object re-
flects the hash values of the data it refers to. This is somehow comparable to the
concept of cryptographically generated IPv6 addresses [13] where also parts of
the addresses are generated through the use of cryptographic hashes. The use
of cryptographic hash functions provide sufficient strength to be able to proof the
data integrity today. Further, RFC6920 [14] specifically deals with the use of hash
based naming in ICN.

Routing and Forwarding As suggested by the already published ICN proposals and
prototypes [9], two general approaches for routing and forwarding emerge. The
one-step resolve / retrieve method where content requests are immediately routed
towards an origin node, and the two-step resolve / retrieve where a Name Res-
olution Service (NRS) is queried for the information that is needed to deliver the
content request towards an instance of the content.

One-step resolve / retrieve Figure 2.1 displays the one step resolve / retrieve
mechanism. It is divided into two phases. In the first phase the rendezvous
between the request message and the content itself is performed. In the
second phase the content is delivered towards the requester. The illustration
depicts a request for some piece of content that is to be retrieved. This
request arrives at Node1 where the name of the requested content is looked
up in the name routing table to further be delivered towards the source. When
the request arrives at a node that is able to provide the requested content,
the requested content is delivered to the content consumer. The content
forwarding is then usually performed via a Reverse Path Forwarding (RPF)
scheme. The RPF entries are created on each involved node, when passing
on the request.

Two-step resolve / retrieve Figure 2.2 displays the two-step resolve / retrieve
mechanism. Depicted above the ICN nodes is the NRS that introduces a
layer of indirection, which is used to map ICN content names to topological
network addresses. For the implementation of the NRS different options are
known today. As depicted in Figure 2.2 the use of distributed hash tables or
distributed databases are amongst them.

In contrast to the one-step approach, the two-step approach comprises three
phases. In the first phase, the NRS is utilised to resolve content names
to topological addresses. These topological addresses are subsequently, in
phase two, used to route the request towards a copy of the requested con-
tent. Finally in the third phase, the content is delivered towards the requester.

CHAPTER 2. RELATED WORK 6

Routing Table Routing Table
Name Direction Name Direction|

p Facebook Node2 p Facebook NodeXYZ

= <
L
@ Facebook/pic/... >§ § ‘
- S 7 S 7

Nodel Node2

REQUEST

Figure 2.1: Conceptual view of one-step resolve / retrieve

Typically the topological address of the requester is attached to the request
so the content can be delivered towards the requester.

2.1.2 NDN/CCNx

The NDN concept [15] originates from the Palo Alto Research Center (PARC). NDN is
the concept that serves as the basis for the prototype implementation of CCNx [16].
Figure 2.3 depicts the general mode of operation of NDN. Interest packets are created
by a content consumer to request any content, the Interest packets are then routed in a
hop-by-hop fashion towards a known source of the content.

Content that should be made available via CCNx needs to be published so that con-
tent consumers will be able to retrieve the content through issuing request messages,
known as Interests. Every piece of content in CCNx is made available through the use
of certain names. These content names are used to identify and locate the actual con-
tent and thus to forward the requests. In some way they take over certain parts of IPs
responsibilities of today’s networks. Like in IP networks every content router needs to
know where particular parts of the namespace are located. This information is distrib-
uted between name-based content routers through the use of a name-based routing
protocol [17].

The name-based routing information populates the Forwarding Information Base
(FIB)-table of the name-based router and is used to route incoming requests towards
the content source.

Figure 2.4 depicts the architecture of a CCNx based router. The Faces indicated on
the right side of the box are the generalization of an interface in the NDN scheme. This
may be a connection to other nodes or a connection to an application running locally
on the actual node. Besides the already mentioned FIB-table the router consists of the
Pending Interest Table (PIT) and the Content Store. The PIT is used to store information

CHAPTER 2. RELATED WORK 7

Distributed
o8

Name <-> Topology Address

Network Topology Routing Table
Address Direction
WXY NodeXYZ

Network Topology Routing Table

E
Ei

Node2

X
o3
N

-—ﬁ i N ——
\\ \ e
@ Facebook/pic/...) % y

N
N

i
N
i
A\

Nodel Node2

Figure 2.2: Conceptual view of two-step resolve / retrieve

about Interest messages while they are passed on to the next content router or a local
application.

Interests in fact are the representation of a request message of the NDN concept that
is propagated from a content requester towards a content source. The main purpose
of the PIT though is to aggregate content requests. For pending Interest messages,
which request the same piece of content, at most one Interest is forwarded towards a
neighbour router. Subsequent Interests that arrive at the content router while an active
Interest is pending, are noted in the PIT but their forwarding is suppressed. When the
content chunks subsequently arrive at the router, following the reverse path of the Interest
message, they are delivered towards every requesting consumer that previously sent
an Interest for that particular chunk. This behaviour apparently results in a per chunk
multicast like dissemination behaviour.

The Content Store is used to cache the received content to be able to deliver it
to consumers that subsequently issue an Interest for the particular piece of content.
It also allows the underlying mechanism to evolve from synchronous to asynchronous
multicast. Without the Content Store, the multicast like behaviour will just be exploited
when additional Interests for already pending but not already satisfied Interests arrive at
a CCNx node. The Content Store alleviates this temporal coupling by locally storing the
acquired content for later requests, resulting in an asynchronous per chunk multicast like
dissemination.

Due to the request / response approach, the communication is always driven by the

CHAPTER 2. RELATED WORK 8

consumer

response

request

consumer

response

request
g request

intermediary

intermediary

request

origin

Figure 2.3: Abstract CCNx overview — adapted from [9]

response

response

receiver. Through the generation of an Interest, the client announces its willingness
to receive a particular piece of content. This Interest is send to a content router that
processes the Interest message in the following way [18].

1. Content store lookup is performed. If a content object matching the Interest is
found within the Content Store, it is transmitted out the arrival interface of the
Interest message. The Interest message is then dropped because it is satisfied
and no further processing in needed.

2. PIT lookup is performed. If a PIT entry matching the content name already exists,
meaning that an Interest for that piece of content is already forwarded to neigh-
bouring routers, the incoming face is just added to the corresponding PIT entry
and the Interest message is discarded.

3. FIB lookup is performed. A corresponding prefix for the name of the Interest packet
is looked up in the FIB-table. If a matching prefix is found, an entry is created within
the PIT describing the Interest. Subsequent the Interest is forwarded out one or
more faces noted within the FIB.

4. No FIB match found. The node has no chance to satisfy the Interest, thus the
Interest message is discarded.

These steps are performed on every content router on the way up to a source of the
name. Whenever a particular piece of requested content arrives at a content router,
a PIT lookup is performed to find all faces a corresponding Interest was received on.
The resulting list of faces is used to transmit the data chunks towards all requesters
that issued an Interest for that particular piece of content. Once the pending Interest is
satisfied, the PIT entry is removed and the content object is stored within the local nodes’
Content Store for future requests.

CHAPTER 2. RELATED WORK 9

4 Content Store R
Name Data A
Face0 i
] :)
/parc.com/videos/WidgetA.mpg/v3/s0 : R) ﬁ%
]
. oe— [
1
Index - QQ
Pending Interest Table (PIT) ptr [type
Prefix Requesting _F_age_ 1_
Face(s) @ | C ' 1
1
e p . <~
/parc.com/videos/WidgetA.mpg/v3/s1 0 A : o —>
L}
@ | F Loy
C=Content store F 2
FIB Fre s
1
Prefix | Face list !
, <o -
. ' Application
, O——>
/parc.com 0,1 1]
[—
- J

Figure 2.4: CCNXx router overview [3]

Interest packet Data packet
$ Content Name $ # Content Name #
Selector $ Signature %
(order preference, publisher filter, scope, ...) (digest algorithm, witness, ...)
Nonce Signed Info
(publisher ID, key locator, stale time, ...)
Data $

Figure 2.5: CCNx packet structure [3]

PIT entries use a soft-state model. If they are not satisfied or refreshed within a cer-
tain period of time, the PIT entries are dropped by a cleanup mechanism to prevent the
PIT from overflowing. Further, if content arrives that no PIT entry exists for, the forward-
ing of the particular content is interrupted. However, according to the CCNx technical
documentation [18], it is up to the implementation to cache the content or to simply drop
it2,

Figure 2.5 shows the structure of an Interest message as well as a data packet. Both
of them carry a content name identifier that is used to either lookup the corresponding
routing entry in the FIB or the outgoing Face in the PIT. Further the data packet also
contains signature information to assure the authenticity of the data that follows.What is

20ur examination revealed that the official CCNx implementation adds the content to its local cache.

CHAPTER 2. RELATED WORK 10

omitted in this illustration is the type indicator, which is the first header field in each CCNx
packet.

2.2 Software-Defined Networking

Fostered by for instance an increasing demand for flexible computing infrastructure, such
as Platform-as-a-Service (PaaS), Infrastructure-as-a-Service (laaS) and the like, SDN
has become a vibrant topic in the field of computer networks. SDN as a term is mean-
while associated with different meanings. However, according to [19] SDN encompasses
the separation of the control and data plane of datapath elements as depicted in Fig-
ure 2.6 — this is the understanding of SDN we also stick to throughout this work. Via this
separation the control plane is externalized and forms an own entity by itself, the SDN
controller. It communicates with the actual data plane via a SDN protocol. This sep-
aration of functionalities and responsibilities entails different advantages but also chal-
lenges, which we elaborate next. Throughout this section we will also give a more de-
tailed overview of the general concept of SDN before eventually introducing OpenFlow,
a standardized SDN protocol.

2.2.1 Concept/ Overview

Due to the disintegration of the data and the control plane a (logical) centralized con-
troller can provide its service for multiple datapath elements at once. This allows the
control plane to utilize a comprehensive perspective of the whole network. The global
network view introduces a distributed state abstraction and thus allows for enhanced
decision making when controlling the data plane behaviour. Furthermore, as soon as
there is a central entity controlling the data plane of various datapath elements it also
becomes easier to provide an integrated interface to controlling the network. Applica-
tions do not need to have any enhanced knowledge of the underlying network structure
or how to provision a certain communication channel in detail. By providing distributed
network control abstraction with appropriate interfaces, the controller applications are
able to partially hide the network complexity from business applications. Hence, as soon
as applications are enabled to define and provision the network like they need it, a huge
boost in service provisioning times accrues and the flexibility of the infrastructure rises.

Also the evolvability of the network is in focus of the SDN efforts. By defining the
forwarding behaviour of datapath elements via standardized interfaces, the introduction
of new protocols or mechanism to handle packets is simplified — of course just within the
limited scope of the SDN. Nevertheless, it is possible to independently evolve the control
and the data plane via SDN.

CHAPTER 2. RELATED WORK 11

Controller

Control Plane

Control Plane

Data Plane ¢

Datapath element

Data Plane

Datapath element

(a) Pre-SDN (b) SDN

Figure 2.6: Datapath element design

On the downside, the separated control plane also introduces increased latencies.
Data plane packets have to be carried towards the controller for inspection and instruc-
tions on how to handle them need to be communicated back. Also the increased load
caused by the aggregation of the control plane of various datapath elements within a (lo-
gical) centralized controller may lead to scalability issues and might provide single points
of failures. All these are limitations which one has to keep in mind when dealing with
SDN driven networks.

Different approaches exist on how to use SDN to configure the network. These
approaches enclose the flow granularity, flow setup and the controller distribution.

Flow granularity The granularity of flow entries allow a coarse respectively finer match-
ing on particular packet flows. Individual flows mostly consist of exact matches
on certain header fields, whereas the aggregated flow entries rely on wildcard
matches, which fit a broader value range. Individual fine-grained flow matching is
seen as a good fit for network edge forwarding, whereas aggregated large-scale
flow forwarding is considered the right fit for backbone parts of the network. Fur-
ther, by for instance matching on certain additional fields the network might be
able to split up flows for the same destination across multiple paths. Hence, the
flow match granularity specifies the granularity with which traffic streams that are
transmitted through the network can be controlled. It might be worth mentioning
that the amount of provisioned flows is seen as one limiting factor of the SDN ap-
proach, since the Ternary Content-Addressable Memory (TCAM), like commonly
used for line-speed forwarding lookups in network elements, is quite energy con-
suming and expensive. Hence, the available TCAM size per datapath element is
quite limited.

CHAPTER 2. RELATED WORK 12

Flow setup policy The setup time for network flows may vary. Utilizing reactive
flow provisioning policies are just created whenever they are explicitly needed.
Whenever packets arrive, for which the datapath element has no matching flow
entries, the controller is triggered to provide the necessary instructions. The other
extreme represents the proactive flow setup. Flow entries are installed prior to
being triggered by arriving packets. This reduces the delay that the first packet
is subject to, in case of the reactive mechanism. No delays for packet redirection
towards the controller, its processing and flow setup occur. On the other hand un-
used flow entries may populate the flow tables that for instance consume valuable
TCAM space.

Controller distribution The placement and cardinality of controllers to datapath ele-
ment associations is not predefined. There can exist one dedicated controller for
each datapath element, located right next to the datapath element, or even re-
mote accessible, or a centralized controller for multiple datapath elements. When
deploying controllers on a per switch basis, the advantage of a unified view of
the network is reduced, at least at this layer. However, the controllers might of
course implement some communication mechanism — which is not considered in
SDN standardization at the moment — to share information amongst each other.
Otherwise the latency path might be reduced by placing the controller besides the
datapath element. Also the per controller load is reduced and can thus be utilized
for enhanced packet processing.

There exist different projects and initiatives that develop and try to standardize SDN
protocols. Further, different network equipment vendors introduced their own SDN
strategies with proprietary approaches, which maybe extended by interfaces of com-
monly available standards. The Forwarding and Control Element Separation (ForCES)
working group of the Internet Engeneering Taskforce (IETF), to name only one, already
published [20] in 2003, a document describing the requirements for separation of IP con-
trol and forwarding. Since 2008 a new approach called OpenFlow [21] is present. Both
efforts follow the similar idea of separating the control from the data plane by standard-
izing the protocol for information exchange between both planes. However, according to
[22] both protocols differ with respect to their architecture, the forwarding model and their
interfaces.

Since OpenFlow is the technology with the broadest implementation base, we will
examine OpenFlow in detail in what follows.

CHAPTER 2. RELATED WORK 13

2.2.2 OpenFlow

OpenFlow [21], as mentioned above, is the most popular of the already available SDN
protocol standards. The initial OpenFlow specification was created in 2008 at the Stan-
ford University. Since version 1.1.0 was published in 2011, the Open Networking Found-
ation (ONF) is responsible for the evolution, further development and standardization of
OpenFlow. The actual version of the OpenFlow specification at the time of writing this
document is 1.3.1, published in September 2012. Since most of the implementation base
is only OpenFlow 1.0 enabled, we will continue by giving an overview of the functionalit-
ies of version 1.0 and subsequently elaborate on the key changes that have been made
in the subsequent specifications.

As depicted in Figure 2.7 OpenFlow is a protocol used for communication between
the externalised controllers and the datepath elements. To enable secure communica-
tion a Transport Layer Security (TLS) secured communication channel can be utilized
between the datapath elements and the controllers.

APPLICATION LAYER

API =] AP
CONTROL LAYER ‘ ‘ ‘
[
SDN [
Controller Network Services

ontrol' - Data Plane
INFRASTRUCTURE LAYER (e.g- OpenFlow)

Network Device Network Device Network Device
Network Device Network Device

Figure 2.7: SDN architecture overview — adapted from [23]

The OpenFlow specification deals with a model that comprises of Flow Tables, Flow
Entries, Matches and Actions. The Flow Tables host multiple Flow Entries. Each
Flow Entry in turn consists of a Match expression as well as a corresponding Action.
Whenever packets enter an OpenFlow datapath element, the initial Flow Table is evalu-
ated to lookup an appropriate Flow Entry in order to subsequently apply the associated

CHAPTER 2. RELATED WORK 14

Actions. The lookup is performed on certain packet header fields. These Actions can
result in further lookups in a different Flow Table, in rewriting certain header fields as well
as packet transmission actions, to name only some. These Actions are not even mutual
exclusive and hence can be combined.

Further the OpenFlow protocol consists of various types of messages, which are
used for communication between control and data plane. We will now introduce the
most essential message types that the present work relies on.

Packet_In messages are send from the datapath elements towards the controller,
whenever the datapath element does not have a matching flow entry available
in its Flow Table or the matching Flow Tables explicitly requests the packet deliv-
ery towards the controller. Packet_In messages contain the packet that triggered
the controller interaction either partly or as a whole. Having the necessary packet
information available enables the controller to inspect the packet and in the further
course allows for the instruction of the switch on how to handle the packet.

Packet_Out messages are send from the controller towards the datapath elements. Via
Packet_Out messages the controller is either able to send self-carfted packets via
the control plane to a datapath element, which are subsequently forwarded by that
datapath element, or the controller can instruct the datapath element to forward a
buffered packet. The Packet Out message basically tells the datapath element on
which physical port to output the packet. It is also possible to add additional packet
modification instructions that the datapath element applies before forwarding the
actual packet.

Flow_Mod messages are send from the Controller towards the datapath elements to
either add, modify or delete existing flow entries on datapath elements. These
flow entries may also comprise of rewrite and output instructions.

Port_Status messages are generated by the datapath element to inform the controller
about port state changes or if ports have been added or removed from the datapath
element.

xy_Statistics messages are used by the controller to gather statistics about flow
entries, flow tables, ports, etc.

Packet_Out and Flow_Mod messages carry the information about which action is
to be performed by the datapath element, either to a buffered or a contained packet
(Packet_Out) or to future packets (Flow_Mod). These actions comprise of simple in-
structions like forward packet out of particular ports, but packet rewriting actions are also
applicable. Hence, VLAN tags can be added or removed, IP or MAC addresses and fur-
ther header fields can be rewritten. Multiple of those actions are allowed per Packet_Out

CHAPTER 2. RELATED WORK 15

Ingress | Ether | Ether | Ether | VLAN | VLAN | L3 | L3 L3 L3 | L4 | L4
port src dst type id prio | src | dst | proto | ToS | src | dst

Table 2.1: OpenFlow 1.0 match structure; L3 = IPv4; L4 = TCP/UDP

and Flow_Mod message, hence, a combination of different packet modification opera-
tions is possible.

To define which packets should be altered, the Flow_Mod message also contains a
match structure that defines which values must be present for the associated actions to
be triggered. The match structure of OpenFlow 1.0 is a fixed field structure containing
the fields shown in Table 2.1. This structure is apparently not very flexible and lacks
extensibility. For instance IPv6 fields are missing besides other desirable fields. Hence,
with version 1.2 of the OpenFlow specification, the extensible match structure was in-
troduced. The match part is changed from a fixed length entity to a Type-Length-Value
(TLV) structure. Enabled by this change the IPv6 as well as the Multiprotocol Label
Switching (MPLS) header field match structures have been specified. Further the match
classification has been divided into different classes. One class is the OpenFlow basic
class that all fields mentioned so far belong to. Another class is the experimenter class
that can be used by developers to evaluate certain new matches. Doing so, developers
are enabled to implement their own match types to extend the OpenFlow capabilities
even further. More classes are designated, which we do not rely on in this work.

The major specification changes of the OpenFlow protocol are listed in what follows
[24].

OpenFlow 1.0 First OpenFlow version with broad vendor support.

OpenFlow 1.1 Added support for multiple Flow Tables, Group Tables, Virtual Ports and
MPLS.

OpenFlow 1.2 Added support for extensible matches, IPv6, controller role change and
experimenter extensions.

OpenFlow 1.3.0 Added support for per-flow meters, IPv6 Extension Header handling
and Provider Backbone Bridging (PBB). Refactored capability negotiation and in-
creased Flow Table Miss handling flexibility.

OpenFlow 1.3.x Clarifications and corrections.

CHAPTER 2. RELATED WORK 16

2.3 ICN over SDN

In the past there have already been initiatives to allow ICN to be operated over SDN. In
what follows, we will give an overview of these different approaches and their modes of
operation.

2.3.1 Software-Definded Internet Architecture

Raghavan et al. argue in their paper [25] that the coupling of the architecture and infra-
structure of networks result in substantial costs for the development and deployment of
new network protocols. The authors advocate the decoupling of network architecture and
infrastructure by leveraging the SDN paradigm in conjunction with a distinction between
the core and edge forwarding mechanisms like known for instance from MPLS.

The Software-Definded Internet Architecture (SDIA) called design approach prom-
ises to ease the adoption of new Internet architectures, like for instance ICN. Raghavan
et al. criticize that any significant change to network layer protocols requires the substi-
tution of all forwarding devices, since the forwarding logic is protocol specific and often
times implemented in hardware. This implementation in hardware is done to speed up
the processing but at the same time limits the flexibility for the evolution of the protocols.

The design builds up on the separation of core and edge network addressing
schemes like previously proposed for instance in [26, 27]. For the intra-domain design
a “fabric-like” approach is proposed, which utilizes arbitrary and decoupled forwarding
mechanisms in the core and at the edge of the network. Furthermore, the control plane
protocols and mechanisms are independent per network domain. As a consequence of
this claim, the three communication patterns edge-to-edge, edge-to-host and host-to-
host have to be supported.

Network edge nodes are according to their design expected to use software defined
forwarding instructed by the SDN controller that savvies both addressing schemes and
is thus able to decide how to handle edge and core packet delivery. For establishing the
inter-domain communication each domain is represented by a single logical server in the
algorithm used to compute inter-domain routes.

As the authors also point out, the concept of decoupling architecture from infrastruc-
ture can help to deploy ICN services. Hence, our take aways for the operation of an ICN
over SDN are that ICN has to be operated via a common core forwarding mechanism,
which is preferably not specific to ICN. Therefore a scheme must be developed for the
mapping of ICN to SDN core addresses and vice versa. Further, the core forwarding
mechanism can be different in distinct domains. The responsible (logical) SDN control-
lers of the domains do only have to agree up on a mechanism and format for their routing
information and packet exchange.

CHAPTER 2. RELATED WORK 17

Further, OpenFlow in the sight of the authors improves the situation in terms of de-
coupling architecture and infrastructure to some extent. Nevertheless, they do argue that
entirely general packet matching capabilities would be required to overcome the current
limitations as a whole, which is not expected to happen soon due to substantially higher
component costs.

2.3.2 CONET

Blefari-Melazzi et al. [28, 29] in the course of the European research project OFELIA
propose and evaluate their approach on how the ICN functionality can be supported via
the use of the SDN paradigm. Their work is based on Content Network (CONET) [30], a
NDN based ICN implementation.

2.3.2.1 Changes to CCNx

CONET differs in some aspects from the CCNx implementation, of which we want to
point out just two pivotal changes.

Forwarding-by-Name CONET introduces a routing logic centralization to CCNx. There-
fore NRS nodes are used as a central component in each domain. CONET for-
warding elements still comprise of the FIB and PIT. However, other than in the
CCNx implementation, an entire FIB — which is called Routing Information Base
(RIB) — is only maintained by the NRS nodes. The forwarding nodes FIB is used
as a cache for the NRS maintained RIB entries. Whenever a required forward-
ing entry is missing on the CONET node, the NRS is queried and the received
forwarding information is cached in the local FIB.

The NRS nodes of different domains form the inter-domain routing infrastructure.
Hence, the NRS nodes are in some sense comparable to a Border Gateway Pro-
tocol (BGP) Route Reflector (RR) [31]. BGP nodes, in contrast to CONET , main-
tain a full routing table instead of using the RR as a fallback for cache misses.
Further, the NRS nodes of CONET itself establish connections to NRS nodes of
other domains for the purpose of exchanging inter-ICN routing information. This
architecture is put into place to prevents the propagation of all name forwarding
entries to each forwarding node on a global scale. Nevertheless, all global NRS
nodes need to be notified in case of a routing table change.

Segmentation and transport Since CCNx chunks are by default 4 KByte in size, CCNx
relies on fragmentation or segmentation of underlying protocol layers (IP/User Da-
tagram Protocol (UDP)/TCP) to fulfill the Maximum Transmission Unit (MTU) re-
quirements of the underlying network. By performing those kind of operations, the

CHAPTER 2. RELATED WORK 18

naming information that is put in front of each chunk is only present in the packet
carrying the first segment. Hence, in the following packets this information is no
longer available to intermediate network devices, they consequently cannot base
their decisions on this information. To overcome this issue, Blefari-Melazzi et al. in-
troduce a novel protocol layer that provides a new segmentation mechanism. The
chunks are thus split into so called Carrier-Packets [32, 33] that meet the MTU
requirements and at the same time carry the required name information as part of
the header in each packet (Figure 2.8b).

2.3.2.2 Packet formats

The authors elaborate on different packet formats, which might be used to transport
CONET Carrier-Packets within IP and further extend these by measures to support effi-
cient Application-Specific Integrated Circuit (ASIC) based matching.

IP option The first proposal, depicted in Figure 2.8a, introduces a new IP option header.
This proposal is according to the evaluation of the authors basically possible but
carries certain drawbacks [30]. The evaluation shows that routers on some paths
drop IP option carrying packets on a statistical basis or in the worst case even
all of them. The measurements further show that even with low bandwidth trans-
missions of below 6 Mbit/s, the throughput is in all cases lower than without the
CONET IP option. The same applies for the measured delays, which also in-
creased in all cases. These effects are caused by the fact that packets with IP
options are sometimes discarded as a cautionary measures to Denial-of-Service
(DoS) attacks. Packets that carry IP option headers have to be processed by the
processor of various routers instead of being processed purely via ASICs. Frans-
son et al. [34] also confirm these results of slight increases in delay and jitter and
a severe increase in loss rate.

CONET transport Figure 2.8b illustrates the proposed transport layer protocol
(Information-Centric Transport Protocol (ICTP)) that the authors designed for
basic delivery through today’s Internet. The IP protocol number carries the spe-
cific value assigned to ICTP indicating that ICTP is used as the transport layer
protocol. Subsequently all ICN related information is carried only within the IP
payload.

CONET transport + Tag Explicitly for the transport of CONET packets via SDN an ad-
ditional tag is introduced, like shown in Figure 2.8c. Since the name component
of CCNXx is of variable length and matching of variable length data with ASICs is
a complex and costly operation, an 8 byte fixed length tag field is introduced in

CHAPTER 2. RELATED WORK

19

IP Header . IP Payload

IP Proto IP Option

Content CONET Carrier Packet Payload
CONET Name (Interest/Data)

(a) IP Option
IP Header IP Payload
IP Proto
CONET Carrier Packet Payload

CONET Content y

Name (Interest/Data)

(b) CONET Transport

IP Header IP Payload
IP Proto
Content | CONET Carrier Packet Payload
CONET } [TAG I Name (Interest/Data)
(c) CONET Transport + Tag
IP Header IP Payload
IP Proto IP Option UDP Header UDP Payload

ubP }

))
Content TAG CONET Carrier Packet Payload
Name (Interest/Data)

2

Figure 2.8: CONET packet format options — adapted from [28]

(d) UDP / Tag OpenFlow

between IP header and its ICTP payload. This tag field should further be used
by SDN switches to perform their flow entry matching on. By introducing such
new tag field, the OpenFlow protocol needs to be extended to support these novel
header fields. Consequently this approach is just applicable to OpenFlow protocol
versions >= 1.2 running on switches that are also modified, able to understand and
perform matching on this newly introduced header field.

Further the use of MPLS and Virtual Local Area Network (VLAN) tags is mentioned
as an implementation opportunity, which is then quickly declined due to possible
interference that arise if those techniques are already in use in a particular domain.

UDP / Tag OpenFlow To overcome the limitation in applicability introduced by the
above approach, a combination of the /P option and CONET transport + Tag is
presented in Figure 2.8d. The indicated IP protocol field is set to UDP, but the

CHAPTER 2. RELATED WORK 20

packet is not provided with a valid UDP header. The UDP header fields are abused
to carry the forwarding tag. Since the UDP header consists of four fields, namely
source and destination port, length and checksum of which only the source and
destination ports (2 * 2 byte) are OpenFlow matchable, the tag size is reduced
to 4 byte and encoded in these fields. The ensuing content starts in the middle
of the regular UDP header, which is possible since the hosts network stack is
modified such that no regular UDP processing of the packets is performed. As a
consequence of this protocol field abuse no UDP communication is possible any
more, at least on the underlying IP address. Nevertheless, by these measures it
is possible to implement a fixed length tag matching for ICN even with OpenFlow
version 1.0.

2.3.2.3 SDN implementation

Blefari-Melazzi et al. opted for the UDP / Tag OpenFlow approach, mainly because their
testbed did not support the flexible matching feature of OpenFlow 1.2. Their SDN bor-
der nodes, supported by the NRS, perform the tagging of incoming packets. The NRS
is used to ensure that the association between content names and tags is unambigu-
ous, since each border node requests these tags. Furthermore, the NRS is responsible
for establishing paths for the tagged content through the network. Edge nodes, when
serving as egress nodes for Interest packets, maintain content name to tag associations
in order to map returning content to the specific return path.

To maintain the ability of transporting regular UDP packets through the SDN special
purpose IP addresses are used. Hence, if packets are matched for their tag value, the
match also contains these reserved IP addresses. Unique IP addresses are assigned to
both, Interest and data packets to explicitly distinguish these types.

2.3.3 PURSUIT

The PURSUIT [35] approach to ICN relies on so called zFilters for packet forwarding.
zFilters as described in [36] are bloom-filter structures that are used to identify the links
a packet has to traverse on its way through the network. Each link on all forwarding
elements is assigned a specific bloom-filter link-id that is determined in the switch boot-
strapping phase from an entity called the Topology Manager. Packets that are to be
delivered through the network carry a forwarding identifier with them, which is the bitwise
OR combination of the link-ids of all links the packet is supposed to traverse. Whenever
a PURSUIT node requests content, it sends its request to the rendezvous system, which
in turn looks up the location of the requested content and with the support of the Topo-
logy Manager constructs two forwarding filters. One forwarding filter for the path from

CHAPTER 2. RELATED WORK 21

rendezvous system towards the publisher and another from publisher to requester. The
latter forwarding identifier is then along with the requested content name delivered to the
publisher via the help of the first identifier. The publisher uses the provided information
to subsequently deliver the requested content to the requester.

The authors of [37] adopt the same mechanism for their SDN approach. Requests
are delivered to the Topology Manager, which determines the bloom-filter forwarding
identifiers and subsequently instructs the OpenFlow controller to provision the required
forwarding rules for all affected switches. The source and destination Media Access
Control (MAC) address fields are used to carry the forwarding identifier in each packet.
By changing the semantics of the MAC layer address fields the whole network needs to
be SDN enabled. Further the network stack of the involved ICN nodes needs to be put
into promiscuous mode, because packets that need to be processed carry part of the
zFilter in the destination MAC address instead of the actual destination MAC.

Since a bit-wise wildcard match on MAC addresses is not supported by OpenFlow
yet, the forwarding rules installed by the controller are exact matches. This constraint
limits the benefits of using the bloom-filters. For each path through the network a separ-
ate forwarding rule needs to be installed, instead of only one bit-wise wildcard forwarding
rule per interface, like in the SDN-less PURSUIT implementation.

2.3.4 Info-Centric Data Center Network (IC-DCN)

The authors of [38] propose the integration of the SDN and ICN paradigm as a new
architecture for Data Center Networking (DCN).

Jun Ko et al. follow the previously introduced concept of using fixed-length labels for
data forwarding on the data plane. Packets are mapped onto network paths as soon as
they enter the SDN domain and are then forwarded according their particular label.

However, the authors present varying ideas to improve the efficiency and scalability
of the general approach of using fixed-length label based forwarding. They argue that
due to the rather static topology in DCN environments with fairly infrequent changes, the
routing service is less stressed than in more flexible environments with a higher degree
of node mobility. Consequently, to improve the cache efficiency the implementation of
cache-aware routing is suggested. Through the use of en-route caching, cache hits take
place only opportunistically, while in SDN the centralized controller allows for cache-
aware routing. The authors propose a hierarchical routing strategy to improve the hit
ratio. The idea of this hierarchical routing is for paths of different consumers to merge
as early as possible on the path towards a producer. Therefore the controller computes
multiple Shortest Path Trees (SPTs) rooted at each producer. Whenever a content re-
quest arrives, the controller, by utilizing hash-based assignment, maps the request to a
particular SPT rooted at a particular producer that is providing the requested data. An

CHAPTER 2. RELATED WORK 22

even more complex strategy is the preservation of routing requests along with the as-
signed label such that subsequent requests — also of different consumers — follow paths
of the previously selected SPT, which includes a higher probability of having a cached
copy available.

In particular their SDN controller maintains the following functions:

* Routing service — Collects topology and content location information and decides
on routing paths

» Naming service — Assigns namespaces for producers and assures consistency
together with the integrity of publications

* Policy service — Provides policy repository for the management of the system

The authors also explicitly take up on the issue of the scalability of the approach. They
propose to utilize a name to label mapping cache at the edge nodes. Further, multiple
path assignment servers are used. Hash functions are used to consistently select the
valid servers to query for name to label mappings. For redundancy and fault tolerance
purpose, different hash functions are used.

2.3.5 Discussion

The various approaches introduced so far impose different requirements or restrictions
on the environment that they are operated in.

PURSUIT requires the ICN-SDN nodes network interfaces to operated in promiscu-
ous mode in order to hand over the data to the upper layers. The implementation of
the zFilters with their generic wildcard based matching and forwarding on link identifi-
ers sounds beneficial, also for the implementation in combination within SDN networks.
However, the limitation that MAC address are only matchable via exact matches in Open-
Flow version 1.0 immediately ruin these possible benefits.

The work of Blefari-Melazzi et al. shows that the integration of CONET and SDN is
applicable. However, they also revealed different weak points.

IP option The forwarding in pre-OpenFlow 1.2 networks relies on the utilization of IP
option headers. This is no problem in closed environments, however, if the inter-
connection of CONET domains is performed through the public Internet, the ser-
vice level is likely degraded due to the IP option handling of certain intermediate
forwarding devices.

Border nodes Border nodes need to be ICN aware. They are required to perform en-
capsulation and decapsulation operations, which is an easy task for custom soft-
ware to run on a general purpose computer, but leads to difficulties with today’s
ASIC based forwarding network elements.

CHAPTER 2. RELATED WORK 23

Network stack changes The network stack of CONET nodes need to be modified, to
support the abuse of the IP protocol field with the UDP value while not carrying a
UDP packet. Thereby generally prohibiting regular UDP communication with other
hosts.

The design presented by Jun Ko et al. relies on the integration of ICN and SDN
nodes. SDN nodes are required to understand the ICN protocol and provide cache
space. Further, the cache-aware routing provides just a partial improvement by chan-
ging from probabilistic to more predictable cache selection while still being limited to
on-path caches. The approach of improving the scalability by utilizing hash functions to
deterministically distribute the path label requests requires the ICN nodes to be aware
of the hash function and its parameters as well as being able to perform this operation,
which is not possible with today’s standard OpenFlow equipment.

Introducing these requirements and restrictions makes the implementation and de-
ployment of these approaches difficult. Therefore, we think that the elimination of these
points is key to improve the deployability of ICN over SDN.

Chapter 3

ICN Research Challenges

In the following, we will give a detailed overview of the problem space this work is con-
cerned with. In Section 3.1, we start by elaborating on the challenge of state man-
agement in ICN, followed by security threats that can harm the ICN infrastructure in
Section 3.2 as well as scalability and deployment issues ICN suffers in Section 3.3. Fi-
nally, we elaborate on the challenges that arise when deploying an ICN-aware SDN in
Section 3.5.

3.1 State management in ICN

ICN introduces new states to the network to perform the required actions of processing
content requests and providing the requested data. The content must be located within
the network and subsequent be delivered to the requester.

ICN utilizes a routing or publication system to locate content within the network. It
relies either on the FIB in the one-step resolve / retrieve or the NRS in the two-step
resolve / retrieve based ICN implementations. The routing / publication systems are
used to map the location independent identifier to a topology dependent one. Therefore,
the NRS points directly to location addresses, whereas the FIB points towards the origin
of the content on a hop-by-hop basis. The two-step resolve / retrieve approach leaves
the actual forwarding of content to the underlying network layer protocol. Whereas the
one-step resolve / retrieve approach performs the localization of the content solely via
the forwarding of the actual ICN request.

The subsequent delivery of content is handled different in various ICN proposals.
The one-step resolve / retrieve leaves RPF states on all hops along a traversed path
while forwarding the request in accordance with the information maintain in the local FIB.
These RPF states are maintained on a per request basis and are thus present in large
quantities as well as being subject to frequent creation and deletion. The data plane

CHAPTER 3. ICN RESEARCH CHALLENGES 25

consequently interacts with and thereby influences the control plane of ICN forwarding
nodes on a constant basis. This behavior is contradistinctive to the behavior of the
prevalent routing system where control and data plane interact in a way that only explicit
routing protocol messages result in the modification of control plane state while regular
packet handling requires only the lookup of control plane related information. Ultilizing
the two-step approach, typical IP addresses are used for the location identification of
content. An exception is for instance PURSUIT, which uses Bloom filters to describe the
interfaces a packet has to traverse [6]. In the IP case, the content is send back to the
sender of the request simply by swapping the source and destination location identifier
while PURSUIT requests explicitly contain the Bloom filter used to deliver the content.

Altogether, ICN introduces the new states of content publication and in certain ICN
types RPF states to the network. They are essential for the functioning of the ICN ap-
proaches. Further they are present in large amounts and also quite dynamic, considering
the deletion and creation of RPF states per content request. The underlying infrastruc-
ture must be capable of maintaining these states.

3.2 Security threats to ICN infrastructure

Introducing these new states to the network opens the door to multiple security threats,
we reported about earlier on in [39, 40, 41]. The RPF states, which are logically part
of the control plane, are driven by the data plane of the network and are thus directly
influenced by the users. Requests passing by on the data plane trigger the creation of
RPF states on the control plane. This design decision allows to seriously restrain the
service level of network elements. We specifically identified the following threats:

Resource exhaustion The RPF states have to be stored for a period of time, either
until the requested content is received or until the request times out, hence, some
amount of memory is consumed per each RPF entry. If bulks of those states are
already created and no further memory is available, the ICN forwarding node is
not capable of storing mandatory information required for content response for-
warding. As a consequence, the ICN node is not able to properly perform the
ICN packet forwarding anymore. Further, processor resources are required for
the state maintenance operations and can therefore also pose a bottleneck and a
security threat — either maliciously or not.

State decorrelation RPF states must exist for each hop. An entire path needs to be
established and functioning. This requirement increases the probability of path
failures. Due to dropped forwarding states the packet forwarding is interrupted
somewhere in the network. This effect is reinforced with increasing path lengths.

CHAPTER 3. ICN RESEARCH CHALLENGES 26

In Addition to that, valuable RPF memory space is taken on nodes upwards in dir-
ection of the requester, which have to await the RPF state expiration or its refresh.
This might even lead to a pile up of states on these particular nodes.

Further, the publication system has to be opened up to users. The users must be able
to publish content. ICN approaches that rely on a hierarchical content name structure
might suffer less on this problem, a general routing entry allows for the publication of
content under a more specific name in the namespace. However, ICN proposals using
non-hierarchic namespaces do not allow for this aggregation. Hence, each unique piece
of content has to be registered on its one, increasing the load and thereby the pressure
on the publication system. Consequently this can be exploited for DoS attacks.

3.3 Scalability problems in ICN

The step of exposing knowledge about content to the network itself places a high burden
on the infrastructure. Today’s network routing protocols deal with subnets, an aggrega-
tion of network nodes. BGP as the prevalent global routing protocol actually has to deal
with a routing table that contains nearly 5 10° entries [42]. However, ICN has to take
the actual content into account that is served by nodes in the network. Dependent on
the ability to employ aggregation or not, the numbers of registered second level Domain
Name Service (DNS) domains or the amount of unique URLs in the index of the web
search engines serves as a rough estimator. The amount of registered second level
DNS domains amounted to 2.52 % 108 in April 2013 [43] and raised further to 2.65 x 108
entries in Q3 of 2013 [44]. Even bigger is the amount of indexed URLs contained in
the web search engines. Googles search index, according to their own information [45]
contained 10'2 entries back in the year 2008. Both of these numbers increase over time
and of course the publication / routing system must even meet future requirements.

The bottom line is that ICN has to managing a much bigger content name space that
is also even more dynamic than today’s network node addressing. In the worst case
ICN has to keep track of pieces of content and their location. Also the registration of
multiple content copies within the NRS can increases the complexity and thereby acts as
an opponent of scalability.

Additionally, per request states like introduced by some of the ICN approaches limit
the scalability. Resources for the maintenance of the required RPF states increase with
the number of users and their content requests. It is no longer only the bandwidth and
FIB lookup speed that influences the throughput of a network device. Furthermore, the
memory size and state maintenance performance, respectively the processing power
influences the forwarding efficiency to a great extent.

CHAPTER 3. ICN RESEARCH CHALLENGES 27

3.4 Deployment challenges in ICN

The deployment of ICN is also considered a challenge. The network layer protocol is by
concept the convergence layer that all packet forwarding parties have to agree up on.
The data link layer specifics only have to be agreed up on by adjacent nodes and the
transport layer specifics are negotiated between the communication endpoints. These
days the entire Internet mainly converged to an infrastructure that is dedicated to and
thus optimized for the forwarding of IP packets. Introducing a new protocol into this
well established ecosystem raises major challenges. Since network layer protocols are
what each transient packet forwarding party needs to deal with, the introduction of novel
protocols, replacing IP or even running them in parallel is not an easy task.

The deployed network infrastructure performs packet forwarding in hardware to reach
the line speed of today’s core network interfaces. This infrastructure can thus not be
enabled to support ICN functionality via the rollout of a simple software upgrade. Further
also the resource requirements in terms of memory will exceed the available resources
to store the increased amount of information introduced by the content name routing, at
least in case of a one-step resolve / retrieve ICN. Additionally, the inherent functionality
of caching requires further storage capabilities. Network nodes need to be provided with
memory or storage for passing packets.

Due to these limitations all ICN protocols offer the capability to be operated over the
actual IP enabled network infrastructure. In what follows, we provide a specific list of
different deployment scenarios and the certain challenges they entail.

Integrated A two-step resolve / retrieve ICN approach can utilize the IP infrastructure as
the underlying packet transport mechanism. To recollect, the NRS is used to map
content names to topological identifier. The network layer protocol though does
not necessarily have to be newly invented and ICN customized. Hence, TCP/IP
can be used to exchange content between ICN nodes.

This method is rather easy to achieve in today’s networks. The basic transport
infrastructure does already exist. Operators do only need to deploy and provide
the NRS and make it available to ICN users. However, certain ICN approaches will
benefit from the introduction of their specifically tailored transport protocols.

Overlay A one-step resolve / retrieve ICN approach can also utilize the IP infrastructure
for packet forwarding. But other than the two-step resolve / retrieve systems no
connections towards arbitrary nodes are established in an ad-hoc manner. The
connections are pre-configured and serve as the emulation of direct connections
between specific nodes.

The bootstrapping of the overlay network has to take place and entry points into the
overlay must be known to new ICN nodes. The configuration of multiple transport

CHAPTER 3. ICN RESEARCH CHALLENGES 28

tunnels between nodes is required that subsequently act as neighbor nodes in the
overlay. However, they might network proximity-wise be quite far apart. Hence, the
content is carried long distances without being ICN-wise processed by intermedi-
ary nodes on the way. This in fact counteracts the general idea of ICN, to cache
content close to the users. To prevent the manifestation of these unfavorable con-
stellations, the topological coordination of the overlay is desirable. A coordination
mechanism that organizes the topology and thereby prevents unfavorable connec-
tions to be established.

Native The native deployment requires the nodes involved in the packet forwarding pro-
cess to be ICN enabled. No underlying protocol like IP or TCP/UDP is required.
All nodes on the path are ICN enabled and perform regular ICN forwarding while
additionally providing supportive functionalities like content caching.

This method requires the most modification of the network. All forwarding ele-
ments have to be removed and replaced by ICN enabled counterparts — in case
of devices that perform the forwarding process in hardware — or at least get up-
graded to introduce the ICN processing capabilities. These measures encompass
high investments for network operators and will thus very unlikely be performed
in one step. Nevertheless, this method is mostly efficient since all nodes cooper-
atively support the ICN paradigm and can thus perform optimal processing and
forwarding operations.

These specified deployment methods all encompass their own challenges and draw-
backs. It is desirable to support a close to native deployment without the costly step of
replacing all boxes throughout the network.

Further, ICN utilizes the content-oriented communication pattern. Content is first of
all published within the network and subsequently delivered from cache nodes or the
origin towards the requesting node. According to Detti et al. [30] the conversational
communication pattern are less focused in the ICN community. However, it is charac-
teristic for Voice-over-1P, Video Telephony, Management traffic and the like. Schemes
exist to support this conversational pattern, see [46], but the effectiveness and benefits
compared to IP is according to the authors questionable. Hence, an ICN only network
as proposed by some projects would give advantage to the content dissemination use
case, but at the same time adversely affect the conversational communication.

It is visible that an evolutionary path from IP to ICN networks is required and taking
the concerns about the conversational communication pattern into account, maybe also
the long term co-existence of both networking approaches is favourable.

CHAPTER 3. ICN RESEARCH CHALLENGES 29

3.5 Challenges of ICN over SDN

SDN technologies these days are mainly developed with focus on the conversation ori-
ented IP protocol. OpenFlow makes no exception in this case. The SDN forwarding
elements are optimized for the matching of the fixed length headers like present in these
IP packets. ICN implementations like CCNx on the other hand use variable length name
fields that the forwarding decision are based on. Hence, performing these variable length
matches on the ICN packets is not feasible for SDN forwarding elements. Raghavan et al.
[25] underline this while claiming generic full packet matching for their SDIA design ap-
proach. However, the authors themselves do not believe in this being implemented in
hardware forwarding elements, due to an essential increase in equipment costs.

The challenge of combining these networking techniques without fundamentally
changing the basic working principals of both along with the requirement of operating
ICN side-by-side with IP, either for the evolutionary migration or the general parallel op-
eration, exists.

Further, the control plane of the SDN forwarding network devices is centralized within
the controller. The SDN controller thereby maintains an enhanced view of the topology
and the actual traffic condition. It is thereby enabled to oversee the cache status, whether
content was previously requested or not and further, if it is available in a cache some-
where within its controlled SDN domain.

Similar to the NRS in the two-step resolve / retrieve ICN approaches, the controller
is aware of content locations respectively the topological identifiers of the nodes provid-
ing the content. Hence, the ICN-SDN approach enables a one-step resolve / retrieve
approach to harness NRS capabilities and for instance utilize off-path caches. The con-
troller can monitor the cache nodes that belong to its own domain and collect certain
performance parameters. The range of information can thereby reach from the available
storage over the processing resources to the interface utilization of the cache nodes. All
these information can subsequently be considered in the cache node selection process
with the objective of preventing the overflow of already saturated nodes. The same ap-
plies to network resources. If the controller is provided with the necessary information
it can establishes explicit paths through the network and designate them to the actual
content requests and responses in order to avoid overloaded links when forwarding ICN
packets.

Additionally, the controller is able to group content regarding certain namespaces,
content types or any other content information that is deducible from the ICN header
onto particular cache nodes. Doing so, the amount of network wide storage can be
reduced while at the same time the cache hit probability is increased. Content is not held
available in multiple nodes but within the node or cache group that is responsible for the
type of content or the particular name space. Hence the content is available only once

CHAPTER 3. ICN RESEARCH CHALLENGES 30

within the entire network, or a particular region. Consequently, a lower overall amount
of network storage can hold a larger amount of de-duplicated content. Of course, this
might result in increased distances between requester and cache and thus can result in
increased latencies since the actual cache might be a few hops further away. However,
for the initial deployment it is supposed to be beneficial that through the de-duplicated
content caching, the overall amount of required cache space is reduced, while at the
same time the hit rate is increased, through the direct steering of requests towards the
designated ICN caches.

At last, the necessity to additionally introduce an overlay management, either manu-
ally or via a network service that keeps track of the location of ICN nodes and makes
sure that the connections among the nodes is proximity-wise advantageous, is made
redundant. The SDN controller has the topology information available to provide paths
through the SDN network in any case. Beyond that, the controller is able to take even
inactive paths into account that the regular overlay management has no notion of.

Chapter 4

Concept

In Section 4.1 the introduction of our approach to the initial deployment of ICN over SDN
starts with the elaboration of the objectives we pursue. The chapter continues in Sec-
tion 4.2 with the introduction of the basic approach for an SDN that enables enhanced
ICN-aware forwarding. Section 4.3 covers the advancements we apply to the basic ap-
proach namely allowing for multiple caches to be queried in parallel, to perform request
aggregation or to drive cache population.

4.1 Objectives

We aim at the integration of ICN and SDN. The primary goal thereby is to investigate an
evolutionary path from existing IP networks towards an initial real deployment of ICN in
islands like for instance Data Center (DC) environments or throughout Internet Service
Provider (ISP) networks. It is necessary to continue to provide connectivity for prevalent
network protocols while at the same time enabling a close to native processing of ICN
packets. The Overlay as well as the Integrated approach entail certain drawbacks as
already mentioned in Section 3.4. It shall be evaluated whether an ICN-aware SDN
approach can provide benefits for the initial deployment of ICN protocols.

The following catalogue lists requirements that an ICN enabled SDN approach must
meet.

Island interconnection For the ICN-SDN approach an interconnection scheme must
exist. It is not sufficient to operate a standalone ICN island. Islands have to
be inter-connected and must further also be able to communicate with non-SDN
based ICN domains or clients. Therefore the controller has to have basic inform-
ation about external ICN nodes that might be used as next hop communication
partners. Hence, some name routing protocol needs to be in place and supported
by the controller to exchange the required information.

CHAPTER 4. CONCEPT 32

ICN diversity Multiple ICN approaches and proposals in different maturity levels exist.
Further, the research on ICN is still in a fairly early stage. Hence, a universally
applicable mechanism not only usable with one specific ICN approach is beneficial
and even deployments of different ICN implementations will be operated in the
same network.

Network stack Former approaches, which intent to support the delivery of ICN over
SDN like [30, 37] require the modification of the regular network stack. Thereby
preventing the processing of other valid network communications like UDP in case
of CONET. To allow for a simplified deployment, the replacement of the actual
network stacks of common ICN nodes is to be prevented.

Parallel deployment A crucial requirement is the ability for the co-existence of the ICN
along with the IP protocol in the network. Since the general focus is on the initial
deployment of ICN, IP connectivity has to be provided at least transiently.

OpenFlow v1.0 The only OpenFlow version that is broadly supported by hardware
switches these days is OpenFlow v1.0. Hence, to support the implementation
of ICN-SDN already today the approach is meant to be executable even with this
version.

Cache knowledge The ICN-SDN must be able to deal with caches and steer requests
towards them to emulate a native ICN deployment including caches throughout the
network.

Request aggregation CCNx is able to detect multiple concurrent requests via the use
of its PIT and prevents the upstream forwarding of more than one request towards
the content origin. The returning data is subsequently duplicated and delivered
downstream to all requesting nodes. Such request aggregation mechanism should
even be possible SDN wide. The controller is aware of pending requests and is
thereby able to aggregate them network wide, without being limited to on-path
aggregation.

Response forking Response forking describes the process of duplicating the content
response without the prior reception of a request. This mechanism is further inten-
ded to be used for the steered population of content caches. The controller should
be able to decide which content to store in which cache and subsequently drive
the cache population.

Request forking By duplicating request packets, the ability to query multiple ICN cache
nodes for the requested content is intended. Hence, the controller does not need

CHAPTER 4. CONCEPT 33

precise knowledge of cache content, but is enabled to query a group of caches in
parallel.

Controller redundancy A viable redundancy concept is required. A scheme to, for in-
stance, group multiple physical controllers into one distributed logical controller
such that in case of a controller failure the network remains operational.

4.2 Initial approach

In the following we are going to introduce our initial approach by describing the basic
mode of operation in Section 4.2.1. Subsequently Section 4.2.2 is concerned with the
integration of the ICN-SDN into the network. In Section 4.2.3 and 4.2.4 the request and
response processing is detailed. The utilization of the ICN-SDN as a transit network is
covered in Section 4.2.5 before Section 4.2.6 finally closes this section with a discussion
about this initial approach and the achieved objectives.

4.2.1 Mode of Operation

The initial approach builds up on a division of the network addressing, comparable to
MPLS [47]. The addressing scheme is split into a network internal and a network external
part. Inside the SDN an addressing scheme is used that the SDN forwarding elements
are able to process while the externally addressing relies on the common ICN forwarding
atop the convergence layer of TCP or UDP.

For the SDN internal forwarding, protocols are used that are already supported by
the SDN devices. In our case, we misuse IP and transport layer header fields to carry
the identifier (Message IDs (MsglDs)) that determine the packet forwarding paths. To be
able to do so, an abstraction layer is introduced that maps internal to external addresses.
In fact, content names are mapped to MsglDs. The controller determined MsgID value is
assigned to the actual ICN packet at the ingress node into the ICN-SDN. Subsequently
the packet is forwarded along the MsgID dependent path. Hence, not only basic packet
header matching capabilities of the SDN forwarding nodes are required but also packet
header rewriting capabilities. As a result, our ICN-SDN approach is capable of explicitly
establishing edge-to-edge forwarding paths between pairs of ICN nodes while taking
advanced ICN and network information into account.

SDN nodes and the ICN cache nodes are thereby separated entities and considered
as such in the future course of this work. The controller is only able to instruct SDN
forwarding elements on how to forward certain packets. Consequently all established
paths only traverse SDN nodes. ICN and SDN nodes can of course be deployed co-
located with each other but as a result, intermediary on-path caches do not inherent

CHAPTER 4. CONCEPT 34

exist on paths within the ICN-SDN. ICN cache nodes have to be explicitly included in the
network forwarding process and appear as a communication end-point from the SDN
perspective.

Our approach is further not specifically designed for a particular ICN implementa-
tion, it just relies on a small set of requirements, in terms of the protocols and network
equipment in use:

ICN-aware SDN controller The SDN controller needs to be able to extract the content
names of request and response packets. It also needs to maintain an ICN routing
table to determine the SDN external next-hop ICN node. Furthermore, to carry
the packets towards the likewise determined SDN edge nodes, the controller is
also required to provision forwarding paths throughout the network via the setup
of forwarding rules in SDN network elements.

ICN content names Each ICN packet transferred through the SDN network needs to
carry the name of the requested content with it. The naming scheme is not of
relevance for the approach but the controller must be able to determine the name
of the content that is requested via each packet. Hence, the approach is applicable
for flat as well as for hierarchical namespaces.

ICN protocol identifier The ICN protocol identifier is used to recognize packets that rely
on our ICN-SDN approach and therefore requires explicit ICN-aware forwarding
decision making via the controller. We propose to use a specific transport protocol
port number to identify the relevant packets. Consequently the SDN forwarding
elements need to be able to match on IP and the transport header fields.

SDN-IP prefix The SDN-IP prefix is used to attract packets of ICN nodes. Packets direc-
ted at this IP prefix are delivered towards the ICN-SDN edge. The SDN-IP is used
as the next-hop identifier for ICN clients. It is further carried as the destination IP
address in request and the source IP address in response packets.

Message ID (MsgID) The MsgID is used by the forwarding elements to identify the ac-
tions that have to be applied to arriving ICN packets. The MsglDs are encoded in
the regular TCP/IP header of each packet. They are determined by the ICN-SDN
controller.

TCP/IP rewriting support The TCP/IP rewrite support is required since the MsgID we
introduced needs to be written into the packet header of each ICN packet. To
efficiently perform these actions, the rewriting has to be supported by the SDN
forwarding elements without relying on the controller.

S \\Q S
\\sﬂ'

ICN cache node

Key
% SDN datapath node

Figure 4.1: Data plane view of an example topology for the envisioned ICN enabled SDN ISP deployment

ISP-Core
7S %
\.. S\
i\ I

1d3ONOO ¥ H41dVHO

ge

SDN
Domain___

- -
- =< - S

J/ N / \ - SN

/ SDN \\\
Controller

SDN control plane network 0

g g 1
‘
/
S~ /7
N ’
1 ,
1 2 S
\ U
\
’
’
\ ’

’
N , .
. . Pl
S [N Pt . -
4 - N . ~o _- , N/ ~
S ~ . . v R
\\ ’/ — _—
~< -7 -, e
] \
-~ F \ 1
——— - ~
.7 S 4 N -~ p /
/ v N ,
- \ - /
, b N 1 \
/ N \ \
[} \ \ 1
\ 1 o U
S / 1 ’

Figure 4.2: Control plane view of an example topology for the envisioned ICN enabled SDN ISP deployment

1d3ONOO ¥ H41dVHO

9¢

CHAPTER 4. CONCEPT 37

Depicted in Figure 4.1 and Figure 4.2 is a characteristical ICN-SDN deployment scen-
ario. Figure 4.1 thereby depicts the data plane view. The network consists of a core and
multiple Points of Presence (PoPs). Two of the PoPs provide connectivity to the public
Internet. All of the PoPs further provide users, acting as ICN content requester with the
connection to the global network. The entire network topology consists of multiple SDN
datapath nodes. Some of the SDN nodes are accompanied by directly attached ICN
cache nodes.

Further Figure 4.2 depicts a logical view of the SDN control plane network. This is
used by the SDN forwarding nodes to communicate with the central controller deployed
in the center of the ISP core network.

All the traffic created by or directed to the users is handled within the SDN domain.
This applies to ICN as well as to the regular IP communication. Whenever a user triggers
the creation of a content request, it is handed over to the ICN-SDN edge, more specific
the SDN forwarding node that the user is connected to. The forwarding element inspects
the packet and determines that it is directed to the SDN-IP. The request is subsequently
handed over to the SDN controller, which further inspects the packet and extracts the
content name. After performing a forwarding respectively routing lookup it is able to
provision the required path through the network, either towards a particular ICN cache
node, another ICN user or towards the public Internet. Finally, the instructions on how to
forward the packet are send towards the ICN-SDN edge node.

This method of network integration is not mandatory. Further, if the SDN-IP prefix is
announced in the IP routing, there might even be IP routers between the requester or
origin node and the ICN-SDN edge. Hence, in the most extreme case, even ICN nodes
from the public Internet are able to direct their traffic towards the ICN-SDN.

4.2.2 ICN-SDN network integration

For the ICN-SDN to communicate with non-SDN parts of the network, the SDN island
is assigned an IP prefix. This prefix is used by the ICN nodes as the next hop identifier
for packets, which are supposed to enter the ICN-SDN. Considering ISP customers or
DC nodes, the entire namespace would probably be mapped to that particular prefix’.
The actual IP prefix used by the ICN-SDN operator might thereby be distributed via a
Dynamic Host Configuration Protocol (DHCP) option [48] or configured manually. In
addition, a specific transport layer port is specified towards which end nodes direct their
ICN requests. This combination of IP address and transport layer port is further used by
the ICN-SDN edge nodes to identify packets that need special ICN treatment.

Figure 4.3 illustrates the overall operation of our approach. Depicted in the figure is
an ICN host that issues content requests as well as the controller that is managing the

TCCNx for instance might utilize a default routing entry for ccnx : / pointing to the ICN-SDN [P prefix.

CHAPTER 4. CONCEPT 38

00
SDN
Controller
Q[Q
Switch 2
(SDN enabled)

A:/ G)\
., .
4
3
\J

A)

A Y

A)

Switch 1
(SDN enabled)

RORO

. Content
’ source

Host

)) ’

Switch 3

Figure 4.3: Overall ICN-SDN operation overview — adapted from [49]

SDN network elements. Furthermore on the right side an ICN node is depicted that is
capable of serving requested content.

The request / response cycle illustrated works as follows:

(0) The Host issues a content request that is transmitted towards the SDN edge.

(1) The issued request arrives at the SDN ingress switch. This switch uses common
SDN packet matching mechanisms and detects that the packet is an ICN request.

(2) The packet is subsequently forwarded to the SDN controller.

(3) The controller extracts the requested content name and via its ICN routing table
subsequently determines where to forward the request to.

(4) As soon as the location of the requested content is known, the controller installs for-
warding rules for the request, as well as for the corresponding content reply. This rule
provisioning is performed on all switches that the packets have to traverse. Eventu-
ally the ingress switch is instructed by the controller to start forwarding the packet.

CHAPTER 4. CONCEPT 39

(5) Subsequent, the request is forwarded along the established path.

(6) The content source replies with the requested content that is forwarded along the
backwards path, which was already provisioned in step (4).

(7) Switch 1 indicates the response message reception to the controller.
(8) The controller can purge all state of that particular request.

(9) Eventually the response is delivered to the requesting host.

4.2.3 Detailed request processing

Figure 4.4 illustrates the request forwarding and packet header rewriting process of our
approach in a more detailed manner. We assume that the SDN-IP is already known to
the host such that requests can immediately be direct to the actual SDN island. (0) The
depicted host creates its request packet with the parameters specified in Figure 4.4b.
The request is directed to the SDN-IP and the dedicated ICN port while the source fields
carry the IP and port number that the requesting hosts ICN process runs on. As the
payload of the requests, the ICN implementation specific format is used, thereby carrying
at least the name of the solicited content.

As soon as the first SDN enabled switch receives the ICN packet, a corresponding
forwarding entry is looked up in the flow table. The packet matches on the pre-configured
flow rule for SDN-IP and ICN port as the destination header fields. (2) The associated
action prompts the switch to send the packet towards the SDN controller. (3) Upon the
receipt of the packet the controller will examine it and extract the name of the requested
content. Subsequently, a source for the solicited content is looked up, a path through the
SDN part of the network is calculated and a MsglID is temporarily assigned. The associ-
ation between MsgID and the source IP as well as the transport protocol port combination
is preserved on the controller for further lookups. Next, the packet rewriting instructions
are constructed. The source IP equals the determined MsgID and the source port is set
to the Internal Routing Identifier (IRI) of Switch 1. The corresponding destination fields
are set to the IP address and port number of the selected content source.

The IRl is a SDN internal identifier that uniquely identifies a SDN forwarding element.
It is used to aggregate response paths through the SDN and thereby reduces the amount
of provisioned flow rules. Response messages are routed towards the egress forwarding
element using the IRI value previously attached to the ICN request. The detailed process
of the response forwarding is presented in Section 4.2.4.

In step (4) the rewriting rule, as well as the basic forwarding rules, are installed on the
corresponding forwarding elements. The basic forwarding rules match on the destination
IP and ICN port of the content source. Using the actual IP address of the content source

CHAPTER 4. CONCEPT 40

Controller

Switch 2
(SDN enabled)

@

Host Switch 1 . Content
0s (SDN enabled) . source
Switch 3
(a) ICN request forwarding visualization
@ ‘ Source Destination
@ ‘ Source Destination IP MsgID Content source
IP Host-IP SDN-IP Port | IRI(Switch 1) ICN-Port
Port | Host-Port ICN-Port

(c) Header of packet after SDN ingress re-
(b) Header of packet as send by requester write

Figure 4.4: ICN-SDN request processing and forwarding

CHAPTER 4. CONCEPT 41

as the destination value would now also allow for the delivery of the request packet
through the non-SDN part of the network (Switch 3). Eventually at the end of step (5)
the content request arrives at the content source where the ICN process handles the
request.

4.2.4 Detailed response processing

Figure 4.5 visualizes the process of response forwarding that is performed when the
previously requested content is transferred through the SDN.

(2)

SDN
Controller

Y

Switch 2
(SDN enabled) |,
Host Switch 1 ' " Content
0s (SDN enabled) [. source
IORE O
Switch 3
(a) ICN content forwarding visualization
@ ‘ Source Destination @ ‘ Source Destination
IP | Content source MsglID IP SDN-IP Host-IP
Port ICN-Port IRI(Switch 1) Port | ICN-Port Host-Port
(b) Header of response packet issued by con- (c) Header of response packet after rewrite

tent source operation of Switch 1

Figure 4.5: ICN-SDN response processing and forwarding

In step (1) the content source performs the default TCP/IP processing by swapping

CHAPTER 4. CONCEPT 42

source and destination ports as well as IP addresses of the former received content
request to construct the response packet (see Figure 4.5b). In Figure 4.5a the content
source is already SDN-enabled. (2) The packet matches the source port rule (source
port = ICN-Port), which prompts the first SDN-enabled node — in this case the content
source itself —to direct the packet to the controller. However, if the first SDN node already
received a more specific rule from the controller that matches the MsgID included in the
response packets the packet is processed according the associated forwarding actions
(see step (5)). (3) The controller inspects the received packet and looks-up the MsgID via
the name field of the ICN packet to determine the egress forwarding element including
the physical egress port. In step (4) the controller deploys the determined flow rules to
the switches that form the path from content response ingress to the response egress
switch.

All switches, except the egress switch are configured to forward the packet according
to the IRI, which is contained in the destination port of the response packet. The SDN
egress switch is configured to perform the last header rewrite operation (6). The source
IP and port is finally set to the parameter values that the request was directed to. Fur-
ther the destination fields are set to match the source fields of the initial request (see
Figure 4.5¢). Doing so, the ICN-SDN appears like a general TCP/IP node that performs
regular source / destination field swapping when sending packets back and forth. The
content is subsequently delivered to the requesting host and finally the content egress
switch informs the controller of the finalized content delivery. This might for instance be
triggered through the expiration of an idle timer, which is attached to the flow rule. After
the controller knows that the MsgID is no longer actively in use for content transmis-
sion, the associated state is removed and the controller can make use of the MsgID for
subsequent content requests.

Since we included a legacy switch it is worth noting that the response forwarding in
contrast to the request forwarding is impossible to be performed through the non-SDN
parts of the network. The response has to traverse the SDN because the destination IP
field contains the arbitrarily selected MsgID that is not compatible with basic IP forward-

ing.

4.2.5 Transit ICN-SDN deployment

When ICN nodes are not directly connected to the SDN, our approach is still applicable
but requires additional packet rewriting steps. The request egress node has to change
the source IP address of the outgoing request to the IP of the SDN. Thereby the content
packet will arrive at the ICN-SDN after the content source performed the IP source /
destination field swapping. The field values of the packet are transferred trough the
SDN, as shown in Table 4.1a. Table 4.1b depicts the values after the request packet

CHAPTER 4. CONCEPT 43

| Source Destination | Source Destination
IP MsgID Content source IP SDN-IP Content source

Port | IRI(Switch 1) ICN-Port Port | IRI(Switch 1) ICN-Port

(a) Header of request packet within the SDN (b) Header of request packet when leaving
the SDN
Table 4.1: Transit request packet rewriting

| Source Destination | Source Destination

IP | Content source SDN-IP IP | Content source MsgID
Port ICN-Port IRI(Switch 1) Port ICN-Port IRI(Switch 1)

(a) Header of response packet when entering (b) Header of response packet within the SDN
the SDN

Table 4.2: Transit response packet rewriting

left the ICN-SDN. Furthermore, Table 4.2 shows the same header fields for the content
packet that is issued in reply to the request. Listed in Table 4.2a are the values the
packet carries when residing outside the borders of the SDN while Table 4.2b represents
the header after re-entering the ICN-SDN.

One might perceive that there is no unique mapping from the SDN-IP in the response
packets destination IP in Table 4.2a to the MsgID in Table 4.2b. The packet is doomed
to be inspected by the SDN controller to establish this mapping. It extracts the content
name from the packet and further determines the MsgID the packet belongs to.

4.2.6 Discussion

Through our basic approach, we are now able to utilize SDN as a supportive techno-
logy for the enhanced deployment of ICN. We decomposed the problem into the smaller
components of mapping the external addressing scheme to an internal one and back, as
well as the internal forwarding itself. The ICN-SDN controller is able to establish paths
through the network that solely rely on IP and transport layer header information. The es-
tablished paths through the network are optimized for ICN forwarding, since the controller
is aware of the network condition and at the same time takes information deducible from
the ICN protocol layer into account. However, we still do not meet all the requirements
introduced in the the beginning of this chapter.

The requirement of supporting the different ICN packet forking mechanism is not met
by this initial approach. In case of response forking or request aggregation the utilization
of the IRI entails that packets are always delivered to the request ingress SDN node, fur-

CHAPTER 4. CONCEPT 44

ther no packet duplication takes place within the ICN-SDN. To effectively perform these
response forking actions, individual content needs to be identified when entering the
ICN-SDN. Since ICN nodes can issue multiple requests at the same time, it is import-
ant to be able to distinguish different responses to subsequently apply diverse actions.
This is not envisaged in this basic approach. It is only clear where packets have to be
delivered and how the headers have to be rewritten when leaving the ICN-SDN to reach
the requester. Beyond that, the processing in case that the ICN-SDN is utilized as a
transit network is suboptimal. It is not that only requests have to be inspected by the
controller also responses have to be examined to be successfully mapped to the content
requests and thereby determine the outbound parameters.

Finally, also the duplication of request packets is not yet provided along with desirable
mechanisms to suppress the duplicate delivery of content through the SDN network.
To handle these outstanding requirements and correct the shortcomings, we revise the
initial and thereby develop an advanced approach, which is detailed in the following
section.

4.3 Advanced approach

To further benefit from operating an ICN over SDN, the utilization of packet forking is
proposed. ICN forking enables the duplication and delivery of ICN packets through the
SDN network. This forking treatment can be applied to request as well as to content
packets. Allowing for the aggregation of multiple equal concurrent requests, for the sim-
ultaneous filling of caches while delivering content to the requester or the querying of
multiple cache nodes in parallel.

We can further observe that the ICN-SDN needs to be able to uniquely map each
arriving content to its corresponding request packet to efficiently perform the required
forwarding actions. In the basic approach, without the explicit support of the controller,
we are only able to identify the requester of an arriving content packet since the request
is tied to a requester dependent MsgID. But for the sake of scalability, we want to achieve
this mapping without or with the least possible additional controller involvement.

4.3.1 ICN packet forking use-cases

For the future course of our analysis, we stick to particular scenarios that we are going
to describe after introducing the design space for the deployment of forking enabled
ICN-SDNs:

CHAPTER 4. CONCEPT 45

4.3.1.1 Design space

The design space of the ICN packet forking approach is dividable into different areas as
delineated in the following.

Response forwarding strategy We anticipate two response forwarding strategies for
the ICN-SDN request forking approach:

Delay Optimized (DO) If all flow rules for the content responses, including those
of the egress node are pre-provisioned, the response is directly send to the
requesting node. No further controller interaction is required. However, if the
SDN nodes send a notification about the forwarded data to the controller, it is
up to the controller to decide which response paths to prune. This decision
eventually results in the provisioning of drop rules on all other than the se-
lected egress node and thereby prevents multiple subsequent deliveries. No
additional delay is introduced when applying this mechanism. Responses
are delivered as quickly as possible towards the requesting node, but mul-
tiple deliveries of the same content chunks are possible at least until the drop
rules are installed by the controller.

Bandwidth Optimized (BO) If the egress switches are not already provisioned
with rules for the forwarding of content responses, the ICN-SDN nodes will
query the controller on how to handle the response packet. It is thus again
up to the controller to decide which response to deliver to the consumer node
while fully preventing all other responses from being propagated through the
network. A viable strategy for this decision process might be to use the node
which replies fastest. All additional responses can be discarded via drop
rules already at the edge of the ICN-SDN. This mode, of course, implies
an increased processing load for the ICN-SDN controller but prevents the
network from waisting valuable core bandwidth.

Cache knowledge The controllers level of knowledge about the cached content also
influences the usefulness of the forking approach. Its knowledge might range from
full over partial — also in different nuances — to no cache content knowledge. If
the controller has full knowledge about each ICN cache nodes content, no forking
would be necessary. The controller would always know if and where the requested
content is cached. It would be able to select the best cache for the content at each
time, whereas best is not rigidly defined. It can be network proximity wise closest,
least loaded, bandwidth-wise favourable or the like. However, this mode of oper-
ation potentially adds a high burden on the controller. It would have to be notified
about all cache modifications like addition and eviction actions. This information
exchange will become increasingly extensive depending on the network size and

CHAPTER 4. CONCEPT 46

utilization. In the partial knowledge category, the controller only has a basic notion
of where content might be cached, instead of being sure where exactly, or even
if it is cached at all. This case occurs when the controller for instance only tries
to learn cached content by observing the ICN traffic, or when groups of available
caches coordinate the caching among themselves without keeping the controller
informed. Hence, forking ICN requests might be beneficial when the controller
has no knowledge about cache mapping, it might also be worth choosing mul-
tiple caches randomly or by querying all available caches, depending on the cache
node count and the network load.

Forking cases For the forking strategy also different approaches exist. The forking ap-
proach might be applied to particular content, namespaces or content types. An-
other forking strategy might be to only fork initial requests of coherent pieces of
content until the controller is able to decide which ICN node is the preferred one
to serve the remaining content and subsequently truncate all dispensable forks.
Additionally a combined strategy could be utilized to perform the request forking of
initial requests just for certain namespaces or content types.

4.3.1.2 Considered scenarios

Considering the above mentioned design space, we focus on the case in which ICN
caches are deployed within the SDN domain. In general, we do not expect the controller
to have any in-depth cache knowledge, since this would add high processing overhead
for quickly changing cache content and thereby reduce the scalability of the approach.
Hence, we assume that the controllers knowledge is limited to only the existence and
location of ICN cache nodes.

Specifically we envision the following two cache constellations:

Explicit cache No content mapping function exist or is known to the controller. The
caches are deployed within the SDN domain close to the ICN-SDN edge, as well
as next to particular core SDN nodes. The controller will determine cache nodes
of the ICN-SDN network through some sort of heuristic and directed requests im-
mediately towards these caches, in hopes the content is available in any of the
selected caches. Therefore the request is forked and forwarded towards each of
the candidate caches. As soon as one of the caches replies, the controller can
truncate all other content replies of the remaining caches and further only utilize
that particular cache to direct all remaining requests to. This mechanism pays of
best in cases in which the content is large and only the initial requests are forked
to determine a cache that is able to answer the request.

CHAPTER 4. CONCEPT 47

Load-balanced cache The content chunks of a particular piece of content are spread
over different cache nodes such that each of the x cache nodes holds % of the
content chunks, with x > y. By forking the requests, all nodes receive the requests
for all chunks. Just those nodes that have the content chunks available reply with
the content. By doing so, a balanced distribution of load is achieved across the
involved cache nodes.

This approach requires only slight additional knowledge of the controller. Only a
mapping of content to a cache group is needed. Furthermore, the added over-
head for duplicated requests is tolerable since requests are orders of magnitudes
smaller than the content responses.

4.3.2 Request forking

Since in the ICN paradigm, content is not bound to any specific host, different network
nodes may be able to provide the data that is requested by the content consumers. It
can thus be beneficial to fork content requests and query multiple possible ICN nodes
to provide the content. Figure 4.6 illustrates such forking scenarios. The Requester (R)
issues a content request that the controller decides to deliver towards the three Content
Origins (C). In the first instance, the request is thus delivered towards the Fork node
(F), which then duplicates the request and sends it off towards the three Content Origin
nodes. Subsequently non to all nodes might respond to the request, depending on their
cache contents. The requester will then dependent on the response forwarding strategy
receive non, one or multiple responses.

Content
Origin

Content

R Origin

Requester Ingress

Content
Origin

Figure 4.6: Possible ICN-SDN request forking scenario

CHAPTER 4. CONCEPT 48

4.3.2.1 Mode of operation

In the following the mode of operation of the request forking mechanism is discussed in
detail. The roles that ICN-SDN nodes might act as are introduced in the first step. Finally
the packet matching and rewriting workflow is shown.

Node roles Like illustrated in Figure 4.6 our approach relies on different roles that the
ICN-SDN nodes perform. They might differ for each content dissemination. Further-
more, these roles are also non-exclusive such that in the extreme case all roles can be
performed by a node at once.

The roles we identified are:

Ingress (I) Ingress nodes are nodes through which requests enter and responses leave
the ICN-SDN island.

Forwarding (FW) Forwarding nodes are nodes that forward the ICN packets throughout
the network according to the switch-id that is carried as part of the packet.

Egress (E) Egress nodes are nodes through which the requests leave and the content
response subsequently enter the ICN-SDN island.

Forking (F) Forking nodes are nodes that duplicate request or response packets and
send them towards multiple different next hop nodes.

Each switch is assigned at least one unique switch-id, maybe more if the amount of 2!
MsgIDs is insufficient. These switch-ids are carried in the IP fields of network packets
within the ICN-SDN domain to indicate a packets destination. Destination in this case
refers to a node that has to apply special processing to a packet, like the Fork, Ingress
or Egress node. To not interfere with publicly routed IP addresses, we encourage using
the private IP address space as introduced in [50] for the switch-ids.

Matching and rewriting process Table 4.3 and 4.4 illustrate the packet header values
the actual ICN packets carry when they are forwarded through the ICN-SDN. The caption
indicates between which type of nodes the packet carries the particular values, while the
highlighted cells indicate the header fields that the subsequent nodes provisioned flow
rules match on.

Interest packets, when issued by the requesting node, carry the SDN-IP and the
default SDN port as the destination identifier (Table 4.3a). The ingress switch is perform-
ing its packet matching on these ICN-SDN specific values (highlighted cells). By this
measure it identifies if the packet is supposed to be handled via the special ICN pro-
cessing or via general bridging mechanisms. The source fields reflect the IP address of

CHAPTER 4. CONCEPT 49

| Source Destination | Source Destination
IP R-IP SDN-IP IP | SW-ID(F) SW-ID(F)
Port | R-Port = SDN-Port Port | MsglD2 MsglD2
(a) Packet header R — | (b) Packet header | — FW;
FW — FW
| Source Destination | Source Destination
IP | SW-ID(F) SW-ID(F) IP | SW-ID(E,) SW-ID(E,)
Port | MsglD2 MsglD2 Port | MsglD3 MsgID3
(c) Packet header FW — F (d) Packet header F — FW;
FW — FW
| Source Destination | Source Destination
IP | SW-ID(E,) SW-ID(E,) IP | SDN-IP C,-IP
Port | MsgID3 MsglD3 Port | MsglD4 C,-Port
(e) Packet header FW — E, (f) Packet header E, — C,

Table 4.3: Request forking — header rewriting for request forwarding — highlighted cells
indicate fields the subsequent node performs matching on

the requester and the transport layer port the ICN daemon operates on. At the ingress
node into the ICN-SDN, the packet is rewritten as depicted in Table 4.3b. Source and
destination |IP addresses carry the switch-id of the forking switch. The two port fields
carrying the MsglD2 are set to a fork node dependent, unique MsgID value. Packets
are forwarded by the ingress and forwarding nodes according to this switch-id towards
the fork node. The fork node identifies packets that it has to handle in a special way by
matching on its own unique switch-id in the source and destination IP fields of the packet.
The controller provisions a flow entry that, besides matching the switch-id, also matches
the particular MsgID2 to distinguish between different flows that require different actions
(Table 4.3c). This forwarding and forking mechanism is allowed to happen multiple times
at multiple nodes throughout the network. For the simplicity of illustration we just conduct
the forking once. After being forked each request is forwarded (Table 4.3d) to its egress
node in the same fashion, see Table 4.3b. The egress switch-ids are used to guide the
packet towards each egress node (E,). The combination of SW-ID(E,) and MsgIDS3 is
again unique for the particular content transfer. The flow rules installed on the egress
switch (Table 4.3e) lead to the required rewriting and forwarding action such that the
packet is subsequently delivered towards the content origin / cache (C,), like depicted in
Table 4.3f.

Table 4.4 illustrates the packet rewriting in case of content response forwarding. The

CHAPTER 4. CONCEPT 50

egress switches perform matching on the content origin IP address for the source, as
well as the SDN-IP and the MsglD4 for the destination fields. In this way, the content
responses can be uniquely mapped to the flow rules that form the path back to the re-
questing node (Table 4.4b). The egress node identifies the action to perform by matching
for its own switch-id and the MsgID1 to identify the appropriate flow rule (Table 4.4c). This
flow rule causes the switch to adjust the header fields for the packet to be delivered to
the requester, like illustrated in Table 4.4d.

| Source Destination | Source Destination
IP C,-IP SDN-IP IP | SW-ID(l) SW-ID(I)
Port | Cy-Port MsglD4 Port | MsgID1 MsglD1
(a) Packet header C — E (b) Packet header E — FW;
FW — FW
| Source Destination | Source Destination
IP | SW-ID(l) SW-ID(I) IP SDN-IP R-IP
Port | MsgID1 MsglD1 Port | ICN-Port R-Port
(c) Packet header FW — | (d) Packet header | — R

Table 4.4: Request forking — header rewriting for response forwarding — highlighted cells
indicate fields the subsequent node performs matching on

4.3.3 Request aggregation / response forking

Request aggregation describes the capability of merging content requests in the network.
Multiple requesting nodes issue content requests that are subsequently recognized as
requests for the same content. They are subsequently forwarded only once towards an
ICN node. The ICN-SDN approach thereby overcomes the limitation of providing only
on-path and allows for network wide request aggregation.

Response forking can thereby be seen as a sub-case of request aggregation in which
the controller decides which cache to populate with the content without prior reception of
an additional content request from that node.

A sample process of forking and forwarding the requested content is depicted in
Figure 4.7. A request is issued by the Requester (R) in the left half of the picture. SUb-
sequently the controller either received an additional request from the Requester (R) in
the upper right corner, which is aggregated with the previous one or decides itself that
the Cache (R) should receive the content. As a result, it adjusts the forwarding rules
such that the provisioned forwarding paths ensure that the packets are forwarded to the

CHAPTER 4. CONCEPT 51

Response Fork node (F), which duplicated the packets and sends them on towards the
left Requester (R) and the Cache / Requester (R) in the upper right corner.

Cache /
Ingress Requester

R
R
Requester Ingress c
Response Egress Content
Fork Origin

Figure 4.7: Possible ICN-SDN response forking scenario

4.3.3.1 Mode of operation

Table 4.5 illustrates the different packet header modifications of the request packet with
the successor nodes match fields indicated via the highlighted cells.

The ingress SDN node receives the packet directed at the SDN-IP and the SDN-
Port with the corresponding source fields of the requester. The switch matches on the
SDN-IP and the SDN-Port and thus identifies that the packet is designated to explicit
ICN-SDN forwarding (Table 4.5a). After the controller has determined the egress switch
and provisioned the egress rule, the packet is forwarded through the SDN network. This
forwarding is performed according to the switch-id of the egress switch (Table 4.5b).
Arrived at the egress node, the egress node matches on its own switch-id as well as
the MsglD2 to determine the rewriting rule it has to apply to the packet (Table 4.5c).
Eventually the packet is send towards the content origin with the specific ICN-SDN values
as the source parameters, as depicted in Table 4.5d.

After the request packet arrived at the content origin node, it replies with the actual
content response. It is not relevant for the processing if the flow rules for the response
paths are already provisioned at the time of request provisioning or just when the re-
sponse packets arrive at the SDN edge. In the following, we assume that the response
paths already exist.

The response arrives at the ICN-SDN edge with the SDN-IP and the MsgID3 as des-
tination fields (Table 4.6a). The match condition comprises of the SDN-IP, the MsgID3
as well as the content origin source IP. The edge switch rewrites the packets IP fields
with the switch-id of the request forking switch and the forking switch dependent MsgIiD4

CHAPTER 4. CONCEPT 52

| Source Destination | Source Destination
IP R SDN-IP IP | SW-ID(RE) SW-ID(RE)
Port | R-Port = SDN-Port Port MsglD2 MsglD2
(a) Packet header R — | (b) Packet header | — FW;
FW — FW
| Source Destination | Source Destination
IP | SW-ID(RE) SW-ID(RE) IP | SDN-IP C-IP
Port | MsglD2 MsglD2 Port | MsglD3 C-Port
(c) Packet header FW — E (d) Packet header E — C

Table 4.5: Response forking — header rewriting for request forwarding — highlighted cells
indicate fields the subsequent node performs matching on

as the transport layer port values (Table 4.6b). The fork switch identifies its own switch-id
in the packet and thus also takes the MsglD4 into account, to identify the special packet
rewriting and duplication flow rule it has to apply (Table 4.6c). The packet is further
forwarded to each edge node (I,) that has to deliver the packet towards a requester or
cache (R,)(Table 4.6d). All edge nodes match on their switch-id as well as the depend-
ent MsglD5, as soon as the packet arrives (Table 4.6e). The edge nodes then rewrite
the packet so that the response can be delivered to the actual requesters or caches
(Table 4.6f).

4.3.4 Flow entry count per SDN switch

One of the limiting factors in SDN driven networks is the amount of flow rules a SDN
node is able to handle. Therefore, we analyse the amount of flow rules that need to be
installed for our approach to function. Following, we will separately analyse the different
roles an ICN-SDN node can perform and what impact each role has on the amount of
flow table entries.

To shape our formulas, we introduce the following variables that the amount of switch
flow rules rely on.

o
Amount of concurrent® content requests per unique ICN client node.

Fork factor that defines which fraction of the concurrent® requests are forked.

3 Active or not already timed out requests

CHAPTER 4. CONCEPT

53

| Source Destination

| Source Destination

P
Port

C-IP SDN-IP
C-Port MsglD3

(a) Packet header C — E

\ Source Destination

IP
Port

SW-ID(F) SW-ID(F)
MsglD4 MsglD4

(b) Packet header E — FW;
FW — FW

\ Source Destination

P
Port

SW-ID(F) SW-ID(F)
MsglD4 MsglD4

(c) Packet header FW — F

\ Source Destination

P
Port

SW-ID(I,) SW-ID(I,)

MsgID5 MsglD5

(d) Packet header F — FW;
FW — FW

| Source Destination

P
Port

SW-ID(l,) SW-ID(l,)
MsglD5 MsgID5

(e) Packet header FW — |

P
Port

SDN-IP R.-IP
SDN-Port R,-Port

(f) Packet header | — R

Table 4.6: Response forking — header rewriting for response forwarding — highlighted
cells indicate fields the subsequent node performs matching on

B 0, if allincoming chunk requests need to be processed by controller.
r= , if SDN ingress switch is able to identify sets of chunk requests.

Y
1
#AN
Number of ICN-SDN associated ICN nodes.
#SN

Amount of SDN enabled nodes within the ICN-SDN island.

In the following steps, we are going to create a formula that describes how many flow
rules will have to be maintained by an SDN node, taking part in our ICN-SDN forking

approach.

Due to the complexity, which partly result from the dependence on a large parameter
space, we have to simplify the general assumptions we draw for the overall operation
of the system. Hence, this approximation describes the upper boundary of the number
of flow rules in which all requests that reach the ICN-SDN are processed by only one

particular ICN-SDN node.

FR; = (axy+1)*#AN

(4.1)

CHAPTER 4. CONCEPT 54

The amount of flow rules installed on the ingress node dependents on the amount of
requests that it serves as the first hop node within the ICN-SDN. For each requester,
the ingress node needs a rule defining the packet rewriting operations that are to be
performed for the content responses. Dependent on the ICN protocol, it may be possible
to identify coherent subsequent chunk requests. In this case (y = 1), rules for each active
content request (o =« #AN) will be deployed to the ingress. While increasing the amount
of flow rules, the general control plane load is dramatically reduced, which is beneficial
for the overall scalability of the system.

FRpw = #SN (4.2)

Forwarding nodes only need to forward packets according to the switch-ids, which are
associated to ICN-SDN enabled network nodes. Hence, the number of flow rules is
limited by the number of SDN nodes that reside within the particular ICN-SDN island.

FRg =2xax#AN (4.3)

Egress nodes will be provided with two flow rules per each content request that leave the
ICN-SDN island via them. The first rule describes the packet rewriting that needs to be
applied to the outgoing request packet, the second rule is used to subsequently handle
the incoming response.

FRp = o x 3 x#AN (4.4)

Forking nodes, which are in fact special forwarding nodes, need a particular rule for each
ICN request or content response that they are supposed to fork. This is approximated
by the amount of concurrent requests in the network (a x #AN) along with the expected
forking factor (B).

By applying the above formula in the basic operation case, we expect the amount of
flow rules per SDN node to be limited as follows:

FRpasic operation) = FR; + FRpw + FRE (4.5)
F R pasic operation) = #AN + 30t x #AN + #SN

If we also consider the request forking case in our estimation, we end up with the follow-
ing formula.

FR(request forking) — FR(basic operation) + FRp (4-7)
FR(request forking) = (143a+ P o) «#AN +#SN

Assuming the following relation of the parameters #SN < #AN and f3 being less than
1, it is obvious that the role with the highest demand in flow rules is the egress role
(Formula 4.3) and in certain cases also the Ingress role (Formula 4.1).

CHAPTER 4. CONCEPT 55

As indicated above, the resulting formulas describe the worst case scenario in which
all functions are performed by only one node. Egress and ingress roles will likely be
mixed together. Nevertheless, we are able to spilt up these roles to a certain extend.
Requester facing nodes are more likely to act as ingress nodes, whereas nodes at inter-
connection points are to some extend configurable via the controller and the ICN routing
protocol to act as ingress or egress nodes and for which namespaces they do so.

By these measures, the amount of flow rules that today’s OpenFlow hardware
switches are able to handle are sufficient as a starting point. For instance the NEC Pro-
grammableFlow switch PF5240 supports 64K-160K (Maximum) flow entries [51]. This
eventually results in 32K-80K concurrent content transfers that can be handled by one
egress ICN-SDN node.

4.3.5 Cost estimation

To further assess the applicability of the forking approach we evaluate the complexity
in terms of resulting network load and the amount of exchanged control and data plane
messages, in what follows.

4.3.5.1 Assumptions

Since we are using CCNXx as the basis for our implementation, we consider that consec-
utive request packets that belong to a related content request are not distinguishable by
the SDN forwarding elements. Consequently, to decide how the packets should further
be processed, each chunk request has to be delivered to the controller.

For our estimation, we further assume that request and response paths are symmet-
rical such that all response paths can be pre-provisioned along with the request paths.
This also implies that request egress nodes are assumed to also serve as the ingress
nodes into the ICN-SDN for the content packets.

The content ingress nodes are not populated with the necessary response forwarding
rules. Following the previously mentioned BO case, the controller has to be informed
about each incoming content packet. Based on this notification, it is up to it, to reactively
provision flow rules to forward the traffic of one of the SDN switches, while at the same
time providing the other switches with rules to discard the corresponding packets.

To keep the analysis manageable, we also assume that all content requests are
forked just once throughout the network so each resulting branch has the same length
and thus consists of the same amount of hops. Figure 4.6, for example, depicts a con-
stellation which meets these assumptions. The analysis is meant to compare packet
forking in the ICN case to packet forking in the SDN case. To preserve the comparability,
the ICN topology is assumed to look the same like the ICN-SDN topology, meaning that
the ICN packets have to traverse the same amount of hops in both cases.

CHAPTER 4. CONCEPT 56

Throughout the process of building a (simplified) model for the packet forking ap-
proach, we assume that the generic switch-id dependent forwarding rules have to be
installed each time a request for content is issued. This represents the worst case of
operation, since for normal forwarding operations through the network we rely on switch-
ids that identify the node that have to apply special treatment to the packet. This special
treatment may be that the packet needs to be forked by that node or the node acts as
the ingress or egress node and has to rewrite the packet accordingly.

4.3.5.2 Request forking

Besides the controllers limitation to examine a restricted amount of incoming packets,
which can probably be scaled by utilizing a logical controller instance out of multiple
physical nodes, the amount of exchanged packets between controller and the switches
(Packet_In, Packet_Out and Flow_Mod) also restricts the applicability of our approach.
The switches need to process the OpenFlow messages and adjust their TCAM config-
uration accordingly. In the following, we will especially assess the data plane load to
estimate the required network capacity for the request forking approach.

Load per content request To determine the load that our request forking approach
creates, we will now build a rough analytical model for the ICN-SDN as well as for a pure
ICN forking case. By doing so, we are able to determine under which conditions the
ICN-SDN forking is efficiently applicable.

In what follows, we utilize the following variables to build the model.

RC, with x € {SDN,ICN}
Cost for request forking in case of an ICN-SDN or ICN implementation.
mc, with x € {PI,PO,FM,R,D}
Cost per SDN control plane message; Packet_In (PI), Packet_Out (PO) and Flow_-

Mod (FM), as well as the data plane packets containing content data (D) and con-
tent requests (R).

I, withx € {F,E}
Length of path from first hop to the actual fork node (F) and from fork node to the
egress nodes (E).

The branching degree that describes how many packets are send out of the forking
node for each incoming content request.

CHAPTER 4. CONCEPT 57

We start creating our model by only taking the amount of packets into account that are
exchanged on the control as well as on the data plane.

Each incoming ICN packet to the SDN triggers a Packet_In (mcpj) at the control-
ler. After having processed the packet the controller replies with a Packet_Out message
(mcpo) containing the instructions for the switch on how to handle the packet. Further
the controller sends Flow_Mod messages to the fork node (mcrjs) and all egress nodes
(mcpp = d) for the request forwarding. Additionally the ingress node is provided with
a flow rule for the response rewriting and forwarding (mcgy). The egress nodes are
not provided with response forwarding flow rules (BO case) such that an incoming re-
sponse triggers another Packet_In (mcpy). According to its policies, the controller then
instructs the egress node to forward the packet via a Packet_Out (mcpp), whereas the
other egress nodes are provided with drop rules (mcpp * (d — 1)). Eventually the ICN
request and response costs are also added up in the model. The content request is just
forwarded once up to the request forking node, since all other responses are discarded
at the edge (mcp * (Ig + Ir)).

The model of the pure ICN case consists of only ICN request and response packets.
The request is delivered to the fork node (mcg * [F). The fork node duplicates the request
and sends it into the different directions (mcg * (Ig % d)). In contrast to the ICN-SDN, the
pure ICN fork node receives the content replies of all its forks, hence, the message cost
for the data dissemination towards the fork node consists of (d * [g * mcp). Subsequently
the fork node delivers only one response towards the requester (I xmcp).

The resulting formulas for the calculation of the request forking cost look like the
following.

RCspy = 2 (mcpp +mcpo) +mepy + (2% d) (4.9)
+mcg* (Ip +1g xd) +mep * (Ip + Ig)
RC]CN:mCR*(lF+lE*d)+mCD*(ZF+lE*d) (4.10)

In our opinion, the length of the fork branches (I/g) as well as the forking degree (d)
are the main parameters that influence the efficiency of the request forking approach.
Before scrutinizing their influence, we first determined reasonable values for all remaining
parameters.

All message cost parameters are normalized to the size of a response packet (MCp),
which we assume to be in line with a MTU size of 1500 Byte. All other packet costs are
given as the fraction of the 1500 Byte data packet. They are chosen via actual packet
analysis. Further for the length of the path from the ingress to the forking node, we chose

CHAPTER 4. CONCEPT 58

a constant value of 4, which we consider a reasonable value.

MCp=1.0 MCr =0.11
MCp; =0.16 MCpp =0.11
MCgp =0.1 lr = 4 [Hops]

In Figure 4.8 both formulas (4.9 and 4.10) are drawn with the above mentioned parameter
values, in dependence of the fork branch length (/g) and the forking degree (d). It is
visible that the costs of the ICN implementation quickly outweigh the costs of our ICN-
SDN approach. A closer analysis is performed later on, first we take a look at how much
each of the parameters influences the trend of the break even line of the functions.

Costs

Length branches® 7 3 N
910

— 4 S Forking degree

Figure 4.8: Message cost functions of the ICN-SDN and the pure ICN case, in depend-
ence from the branch length and the forking degree.

Figure 4.9 with its subfigures displays the influence the different parameters have on
the break even line of the cost functions. The previously determined default values are
taken and in each of the graphs one of the variables is varied to illustrate its impact on
the whole model. The cost values are varied between 0.05 and 0.4, in steps of 0.05

CHAPTER 4. CONCEPT 59

(Figure 4.9a - 4.9d). The hop count up to the fork point [z on the other hand is evaluated
between 2 and 10 (Figure 4.9e).

Analysing the graphs, one can see that the variables mcpp and mcp; (Figure 4.9a and
4.9b) influence the break even point in the same way, which is reasonable since they have
the same multiplier. The Flow_Mod cost (Figure 4.9¢) has the highest influence on the
profile of the graph, at least when considering short branch lengths. The graph depicting
the hop length to the fork node (Figure 4.9e) shows that at a path length of up to eight
hops the ICN-SDN forking approach is still beneficial to the content dissemination. A look
at the influence of the ICN request costs (Figure 4.9d) reveals that the relative costs of
pure ICN compared to the ICN-SDN approach does not change, instead only the overall
cost (hidden z-axis) is influenced.

Figure 4.10 shows the relative cost difference of both functions of Figure 4.8, whereas
the pure ICN cost is taken as the reference value. We expect our request forking mech-
anism to be beneficial for every branch length and degree combination above the 0%
level. Of course, these results rely on the assumptions we draw according to the en-
vironment that the approach is operated in. Further, the formula only applies to values
above a forking degree of two, less than two forks are no forking hence the costs have
to be calculated different. Hence, starting at two branches with branch length of one hop
already saves 0.9% of the load created in the ICN forking case. With a fork length of
two hops, the savings even amount to above 10%. This effect manifests itself when the
branch lengths or forking degree is increased.

4.3.5.3 Request aggregation / response forking

In what follows, we also take a closer look at the network load in case of request aggreg-
ation respectively response forking.

Load per aggregated request The parameters our request aggregation model relies
on are specified below.

RC, with x € {SDN,ICN}
Cost for request aggregation in SDN or ICN case.

mc, with x € {PI,PO,FM,R,D}
Cost per control plane message; Packet_In (PI), Packet_Out (PO) and Flow_Mod
(FM) as well as the data plane packets containing content data (D) and content
requests (R).

I, withx € {F,E}
Length of path from first SDN content hop to the actual fork node (F) and from fork
node to the content egress nodes (E).

CHAPTER 4. CONCEPT 60
MCp)
i MCp
From: 0.05
To: 0.4
Steps: 0.05
< -
¢
g
g o
[=)
g
@
~ -
-
T T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10
Branch length
(a) Variation of Packet_In message cost
MCpo
0 o MCpo
From: 0.05
To: 0.4
Steps: 0.05
< -
8
iy
E o
Q
g
@
~ -
-

Branch length
(b) Variation of Packet_Out message cost

Figure 4.9: Impact of certain parameters on the model

CHAPTER 4. CONCEPT 61
MCgpy
[Tl MCeum
From: 0.05
To: 0.4
Steps: 0.05
< -
¢
g
= ™
[}
]
o
~ -
-
T T T T T T T T T l
1 2 3 4 5 6 7 8 9 10
Branch length
(c) Variation of Flow_Mod message cost
MCR
0 - MCr
From: 0.05
To: 0.4
Steps: 0.05
< -
8
g
s o
o
g
@
N \K
o
T T T T T T T T T l
1 2 3 4 5 6 7 8 9 10

Branch length

(d) Variation of request message costs

Figure 4.9: Impact of certain parameters on the model (cont.)

CHAPTER 4. CONCEPT

n o I
From: 2
To: 10
Steps: 2
< -
[
Qo
[o2
3
< ™
[S]
c
o
o
NI
-
T T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10

Branch length

(e) Variation of hop length to fork node

MCp=1.0 MCg =0.11
MCp;=0.16 MCpp = 0.11
MCrpy = 0.1 Ip =4

(f) Default values used

Figure 4.9: Impact of certain parameters on the model (cont.)

CHAPTER 4. CONCEPT 63

Branch degree

Branch length

Figure 4.10: Relative message cost gain of the ICN-SDN approach in case of request
forking, with ICN costs as the reference value.

The branching degree that describes how many packets are send out of the forking
node for each incoming content request.

In case of request aggregation, the ICN-SDN costs consist of the following parts. Each
ingress ICN-SDN node delivers the received content request via a Packet_In message
to the controller (d « mcpy), which responds via Packet_Out messages (d * mcpp) that
discards all but one request; probably the first. This content request is delivered all the
way from the requester to the content source (mcg * (Ir 4 Ig)). The edge switch facing
the content source is instructed to rewrite and forward the request (mcrys). The fork
node is also instructed to duplicate, rewrite and forward the content packets (mcray).
Finally the edge nodes towards each requester (mcrgys * d) has to be setup via Flow_-

CHAPTER 4. CONCEPT 64

Mod messages. All forwarding nodes in between do not need explicit rules, they perform
the forwarding according to the default provisioned switch-id forwarding rules. Eventually
the requested content is forwarded along the path from source to fork node (I * mcp)
and from fork node towards each requester ((Ig xd) * mcp).

In the pure ICN case, the content requests of all requesting nodes are forwarded up
to the point where their paths merge. From there on only one copy of the request is for-
warded further towards the source ((Ir + Ig *d) x mcg). The same path is then taken in
reverse by the content packets on their way from content source to the request aggrega-
tion node and then further towards each content requester ((Ig + g *d) * mcp). Hence,
the following formulas result from our environment and the assumptions we applied.

RCspy = d % (chI —|—I’I’ZCp0) + (d + 2) *MCEM (4.11)
+ (Ip +1g) *mcg + (Ip + g xd) xmcp
RCicny = (lp + g *d) * (mcR +mcD) (4.12)

Figure 4.11 depicts the relative cost difference of both functions for the parametriza-
tion described in Figure 4.9f. Hence, all parameters are equal to Figure 4.10. The pure
ICN cost is again taken as the reference value against which our ICN-SDN approach
is compared. The entire graph consists of only negative values, indicating that the re-
sponse forking approach, within the plotted parameter space, creates a higher load in
the network than the general CCNx response forking creates. In the constellation of two
branches with a length of two hops, the disadvantage of the ICN response forking ap-
proach is the biggest, while with a rising number of branches and degree, the efficiency
difference between both is reduced. The values below a degree of two are in this case
irrelevant, since forking is only applicable with multiple branches. The maximum differ-
ence with this approach is at two branches with a length of one where it adds up to 11%
more network load that is created by the ICN-SDN response forking.

4.3.6 Discussion

The advanced approach enables the utilisation of ICN packet forking throughout the ICN-
SDN network. Thereby, the requirements of allowing for ICN request aggregation as well
as ICN response and request forking are fulfilled.

In the analysis, performed in Section 4.3.5, we only considered the size of messages
that traverse the data and the control plane. We have not taken into account any specific
processing load that is introduced by various specific packets on the controller. Also no
weighting of message types has been carried out. A weighting that regards control plane
packets are more valuable than data plane messages, since control plane issues can
easily influence the functioning of the entire network, while data plane issues probably
only influences links or certain forwarding nodes.

CHAPTER 4. CONCEPT 65

Branch degree

Branch length

Figure 4.11: Relative message cost gain of the ICN-SDN approach in case of response
forking, with ICN costs as the reference value.

The theoretical evaluation of the approaches indicates that the request forking ap-
proach is able to outperform pure CCNXx forking through the ability of preventing unne-
cessary responses from being forwarded through the network. The picture is different
when taking a look at the response forking. Within the plotted parameter space the ICN
forking performs more efficient compared to our advanced approach. However, it is still
quite good compared to the overlay case in which none of the network nodes in between
is ICN aware and the content would have to be transferred end-to-end for each node.

Finally, via our advanced approach, we are able to additionally provide the required
ICN packet forking capabilities that where missing in the basic approach. In addition to
that the regular transit processing is improved and does no longer require the explicit
interaction with the controller to map the response to a certain requester. However, one

CHAPTER 4. CONCEPT 66

crucial point is still missing, which is the concept for controller redundancy, to prevent
network outages due to single controller issues.

4.4 Additional advances

In the following, we present some minor additions that might further improve the ICN-
SDN approach.

4.4.1 Combined request and response forking

We are not limited to operate request or response forking on its own. Both mechanisms
can also be combined as illustrated in Figure 4.12. In this scenario the content cache
as well as the content source are queried for content. If the cache is able to provide
the requested data, it is delivered to the requesting node (Figure 4.12b). If on the other
hand only the source can provide the content, the content is forked within the SDN and
delivered to the caches and the requesting nodes (Figure 4.12c).

4.4.2 Enable TCP

All mechanisms discussed so far base on the utilization of UDP as the transport protocol
for the ICN packets. When using TCP as the underlying transport protocol, four major
challenges arise:

1. The TCP connection is established — via TCPs three-way handshake mechanism
— before any higher layer data is transferred. Hence, the name of the data to be
requested is only transmitted after the TCP connection — with a particular node —is
already established. Within this connection establishment phase the controller is
not able to decide which content source to use, and thus where to send the initial
TCP-SYN packet to.

2. In case of a content miss, the source can not seamlessly be changed. A new
connection setup to an actual source of the content is required.

3. Copying and forking of content responses to multiple requesters is not supported
by TCP. Explicit handshakes have to be performed, sequence numbers and the
like have to match.

To enable the use of TCP regardless of the above mentioned challenges, we envision
two possible solutions.

CHAPTER 4. CONCEPT 67

Egress Cache

Requester Ingress Request
Fork

Egress Source

(a) Content request is forked

Egress Cache

Eie—Ee—()e

<®< FW)e—(FW)

Requester Ingress

()
W—E)—C)

Egress Source

(b) Cache responds

Egress Cache

(D)@
Requester Ingress @ o ®‘

Response Egress Source
Fork

(c) Source responds and cache is populated

Figure 4.12: ICN-SDN request and response forking

CHAPTER 4. CONCEPT 68

1. TCP + UDP signaling packet — Right before initiating the TCP connection by
sending the TCP-SYN packet, the content requesting host issues a UDP packet
that contains the content name which will be requested in the following TCP ses-
sion. In addition, the source port number is required for the controller to distinguish
different concurrent ongoing content transfers. The UDP signaling packet is pro-
cessed by the controller and subsequently dropped. As soon as the TCP-SYN
packet arrives at the ICN-SDN, the controller already knows which content will be
requested within the TCP session and is thus already able to forward the TCP-SYN
packet towards a controller selected appropriate content source.

2. TCP proxying — The controller redirects the TCP packets to a dedicated TCP
proxy node that is used to terminate the TCP connection. Subsequently the proxy
node is able to use either TCP or UDP to acquire the content in place of the
requesting node.

While the first approach only solves the first challenge, the second approach allows to
cope with all of the three challenging constellations but of course at the price of increased
complexity and processing requirements. The second challenge could also be solved by
including a TCP proxy in the content serving nodes such that in case of a content miss
the node is able to act as a TCP proxy and requests the content for the requesting node,
relaying and at the same time caching it for subsequent requests. By using UDP for this
content acquisition the forking approach can again be used.

4.4.3 State management trade-offs

The proposed ICN-SDN approach allows for the trade-off of state management between
entities. Hence, it is possible to shift the state management complexity between control-
ler and forwarding elements to varying extents.

To reduce the state in SDN network forwarding elements, the following measures are
feasible:

» The amount of flow table entries can be reduced by aggregating particular entries.
For example, the content forwarding rules can be aggregated by only taking the
switch-ids into account, different content requests — entering the ICN-SDN at the
same switch — carry the same switch-id and can thus simply be forwarded accord-
ing to the request ingress switch. All SDN forwarding elements only need to know
their egress interface towards the specific switch-ids. Consequently just the con-
tent egress switch needs specific rules on how to rewrite and forward the packets
for each requesting node in particular.

CHAPTER 4. CONCEPT 69

» The most extreme way to reduce forwarding element states is to provision no rules
at all. Hence, each forwarding element will have to query the controller one after
another. The controller has to process each packet multiple times, once for each
switch the packet traverses.

Furthermore, measures to reduce the controller maintained states are also applicable.

» As soon as the request packet enters the ICN-SDN and the controller determines
the MsglDs, all parameters for the response path are already known. Hence, the
response forwarding path can be provisioned along with the request path. This
procedure avoids the necessity for the controller to also process the response
packets.

» The response path egress packet re-writing rules can also be pre-configured. By
doing so no MsgID to request origin information needs to be maintained by the
controller.

* In combination with SDN flow rule inactivity timers, the rule provisioning can be
performed such that the controller does not have to maintain any state and soft
state timers on the rules that are provisioned in the network.

To reduce the overall state on the controller and SDN switches, the forking approach can
be fine-tuned to specific content types or namespaces, like mentioned in Section 4.3.1.1
“Forking cases”. Hence, as soon as the necessity for specific content identification and
treatment does not exist any longer, the assignment of one MsgID per content request
can be changed to a per requester MsglD, thereby reducing the required flow rules sig-
nificantly.

Chapter 5

Implementation

In the previous chapter we introduced our basic as well as the advanced approach of
operating an ICN over SDN. We implemented our basic approach and performed a rudi-
mentary evaluation, which is attached in Appendix A. This implementation then evolved
to the implementation allowing for advanced ICN packet forking. In the further course we
are going to apply specifically the advanced approaches to the ICN scheme of NDN.

In Section 5.1 we provide an overview of the CCNx specifics, which are of importance
for our approach. Subsequently we elaborate on how the CCNx nodes cooperate with
the controller in Section 5.2. This is followed by the actual controller architecture in
Section 5.3. Thereafter Section 5.4 provides a description of the mode of operation of
our Trema [52] based CCNx-SDN-Controller. The process of determining and setting up
the required flow rules is described in Section 5.5. Eventually this chapter is closed with
a description of the name-prefix announcement mechanism, we build to allow for some
flexibility in content locations and ease of measurement conduction in Section 5.6.

5.1 CCNXx host specifics

In the basic approach it is assumed that each content request is issued from a different
transport protocol port. MsglDs are created for the combination of the requester IP
address and the port. They uniquely identify a content request at a time. NDN on the
other hand follows a different approach and therefore the mode of operation of the CCNx-
SDN needs to be adjusted.

The forwarding daemon of the CCNx implementation uses a single port for its com-
munication with external CCNx nodes. The routing daemon ccnd does not bother about
the source of a packet in terms of the sending host (IP address and transport layer port).
Packets are distinguished only by their type and name fields that are carried as the first
pieces of information within the ICN protocol layer of each packet. New connections are

CHAPTER 5. IMPLEMENTATION 71

only initiated once a new host is contacted. The connections are reused for all content
exchanges between each pair of CCNx nodes. However, even connections to new hosts
still use the same UDP source port number, meaning that connections to multiple hosts
are multiplexed to one and the same local port. Consequently all Interests of a single
CCNx node arrive at the SDN edge with the same source port, which contradicts the
assumptions made in the approach in Chapter 4 that related requests carry the same
transport layer protocol port. Since related request are thus not specifically identifiable
as such on the layers below ICN, each Interest has to be processed and mapped by the
controller. Consequently the controller load is increased, but the ICN-SDN approach is
still applicable.

Further, no special adaption is needed on the consumer side to allow CCNx to com-
municate with our CCNx-SDN. It is only necessary to add name routing entries to the
CCNx nodes FIB that point to the SDN-IP. This might be done in a default route fashion,
but can also be performed for specific namespaces only.

5.2 CCNx-SDN network integration

The CCNx-SDN controller is assigned an IP address, already referred to as the SDN-IP.
This IP address is used by the CCNx daemons of the consumer nodes to pointer parts of
the ICN namespace to. To successfully accomplish data transmissions between CCNx
nodes and the SDN-IP, the CCNx-SDN controller application in our actual configuration
also needs to be assigned a unique MAC address. The controller has to respond to
Address Resolution Protocol (ARP) requests for the SDN-IP with its unique MAC address
via an ARP response. Only afterwards will packets, destined to the SDN-IP, be forwarded
towards the edge switch that forwarded the ARP response. This mechanism also works if
the requester node is not directly attached to the OpenFlow switch, since ARP request for
MAC addresses unknown to switches are flooded throughout a bridged network domain.
The ARP response will update the MAC address tables of the intermediary switches as
well as the ARP table of the requester node. This mechanism assures that subsequent
packets are in turn forwarded right towards that ICN-SDN edge switch.

For the forwarding of ICN packets towards the controller, two different methods ex-
ist. One valid option is to install flow entries on each switch, prompting it to deliver all
packets directed to the SDN-IP and the specific ICN port explicitly towards the control-
ler. Contrary to this mechanism we opted for the implicit alternative, which is not to
install any matching flow entry. By doing so, the default action defined in the OpenFlows
specification is executed, and thus the packet is delivered towards the controller in this
manner.

Further, for the proper operation of the ICN-SDN, the UDP port space utilized for Ms-
gIDs has to be restricted. Two distinct UDP ports have to be reserved and thus excluded

CHAPTER 5. IMPLEMENTATION 72

from the MsgID generation. One is the default CCNx UDP port such that CCNx nodes
are able to deliver their Interest packets towards the CCNx-SDN controller. Besides
that, another port is required to be exclusively used for the exchange of name-prefix
announcements.

5.3 CCNx-SDN controller architecture

The controller implementation is divided into different components as depicted in Fig-
ure 5.1. For each controlled switch, the Trema Switch Manager (not depicted) forks a
Switch Daemon. Each of these Switch Daemons is subsequently responsible for the
communication with its associated OpenFlow Switch. All packets delivered to the Open-
Flow controller arrive at this specific Switch Daemon. The Switch Daemon forwards the
packets to the Packet _In Filter, whose task is to filter out Link Layer Discovery Protocol
(LLDP) packets and hand them over to the Topology component, while delivering all
other packets to the CCNx-SDN controller. The Topology component is likewise gen-
erating and receiving these LLDP packets for the purpose of determining the network
topology.

The CCNx-SDN controller processes the incoming packets and in the further course
sends information back to the OpenFlow Switches. These Packet_Out messages contain
the processing information. They are handed over to the Switch Daemon responsible
for the particular switch. The CCNx-SDN controller further utilizes the Topology com-
ponent to calculate paths through the network. When queried with ingress and egress
Datapath_IDs the Topology component provides a list of Datapath_IDs and their associ-
ated ingress and egress ports, which form the requested path.

To perform its requested tasks the CCNx-SDN controller component relies on four
different ICN related data structures. An overview of the data structures is given in the
following, as well as being displayed in Figure 5.2.

Switch dependent MsgID store The switch dependent MsgID data structure is used
for the maintenance of MsglDs, which are unique per switch and thus used in con-
junction with a switch-id. The controller maintains one of these data structures
independently for each of its associated switches. These switch dependent Ms-
gIDs are used whenever a switch has to perform additional actions other than just
forwarding packets, for instance packets which need to be forked, or the switch
acts as the ICN-SDN edge node. In these cases packets have to be rewritten
to carry either ICN-SDN internal or external forwarding identifiers. The controller
provisions these actions via flow rules. These switch dependent MsglDs are used
for the switch to identify which of the multiple provisioned actions to apply to each

CHAPTER 5. IMPLEMENTATION 73

Trema Controller
Framework

CCNx-SDN
s | Controller
!

P
%

Packet_In %,

(! LLDP) /%
Packet_In
Packet_In (LLDP)
_ Topology
Filter

Packet_Out (LLDP)

OpenFlow
y

OpenFlow [|[Ethernet] CCNXx

H------ >

Switch Node

Figure 5.1: ICN-SDN implementation architecture

particular packet. The switch reads them out of the packet and looks up the action
in the OpenFlow flow rule table.

The controller keeps track of MsgIDs that are actively in use in order to prevent
erroneous multiple MsglID assignments. The actual actions that need to be per-
formed reside only within the switches flow rule table.

Global MsgID store Whenever requests leave the ICN-SDN the external addressing
scheme has to be applied to the packets. To associate each arriving content packet
with its initial request, the source IP (SDN-IP) and port (Global MsgID) along with
the destination IP of a request leaving the ICN-SDN is meant to uniquely map
to specific content. This mapping is used to prevent the necessity to make the
controller examining each incoming content packet. The IP and port information
can be examined by the SDN switches themselves, who are then able to apply the
previously provisioned rewriting rules. These global MsgIDs also need to be used
only once at a certain point in time. Therefore the controller keeps track of the
already assigned values. After the content transfer is completed this correlation

CHAPTER 5. IMPLEMENTATION 74

is invalidated and thus the three-tuple can be used to identify subsequent content
request-response mappings.

Datapath store The datapath store is used to keep track of the OpenFlow Datapath to
ICN-SDN MsgID association. Whenever a new switch connects to the controller,
the controller assigns a switch-id. Hence, the datapath store is used to keep track
of already assigned switch-ids. By utilizing the Topology Manager, the shortest
paths between the nodes are calculated and rules for the associated switch-ids
are installed such that each switch knows where to forward packets in order to
reach any of the active switch-ids.

Forwarding Information Base (FIB) The FIB structure and maintenance functions of
the CCNx-SDN controller are directly extracted from the original CCNx imple-
mentation. We just aligned the data structure that is returned as the result of
a FIB lookup to meet our requirements. Hence, it consists of the MAC and the
IP address as well as the UDP port of the content serving node along with the
Datapath_ID and physical port number on which this nodes packet arrives at the
ICN-SDN edge.

5.4 CCNx-SDN controller mode of operation

As soon as a switch establishes its connection with the controller, the switch is assigned
a switch-id. Since the controller knows the exact topology of the network, it provisions all
forwarding rules for the new switch. Via this measure new switches get to know how to
forward packets directed to switch-ids other than their own. Subsequently also already
existing switches will be provided with the necessary information about the new switch
and how to forward packets containing its switch-id.

Figure 5.3 illustrates the packet processing work flow performed by the CCNx-SDN
controller component. Whenever a Packet_In message is handed over to the CCNx-
SDN controller, it checks if the actual packet is an ARP request referring to the SDN-IP.
If the packet matches this criteria, the controller creates a corresponding Packet_Out
message containing the ARP response which is subsequently handed over to the switch
that yielded the Packet_In message. If the packet is no ARP request for the SDN-IP, the
destination IP address is checked for the SDN-IP value.

When the destination IP differs from the SDN-IP, basic bridging mechanism are per-
formed as defined by the routing switch Trema application [53], which we took as a
starting point for our CCNx-SDN controller. If the packet is directed to the SDN-IP, the
destination port is evaluated. In case the port corresponds with the name-prefix an-

CHAPTER 5. IMPLEMEN

TATION

75

CCNx-SDN C

ontroller

Global MsglD store

Switch MsglID store - Switch n

ngontent Name ! r

MsgID

i Content name i MsgID, Src-IP |

A

\

A \/

X1, Y1 z X1: Y1 z
(MsglID, Src-IP) (Conten} name) (MsglID, Src-IP) (Conten} name)
X2,¥2 Zy X2,Y2 Z
Datapath store
X1 Z1
Datapath ID Switch ID))
% Z Forwarding Information Base (FIB)

Key:
i Hash data structure |

Figure 5.2: CCNx-SDN controller data structures

nouncement port, the enclosed prefix is either added to or removed from the controllers
FIB.

Whenever the destination port equals the default CCNx port, the source IP and port
information is used to acquire a host identifying, switch dependent MsgID. If still valid,
an already assigned MsgID or otherwise a newly created one is returned. If the MsgID is
newly created, a new rule, which will handle the content packets that the actual request
will trigger, is installed. It matches the particular ingress node switch-id that the rule is
installed on and the newly created MsgID. The matching packets are altered in a way
such that they carry the ICN-SDN specific IP and port information in the source fields
and the requesting nodes information in the destination fields.

Following, the CCNx mechanisms for FIB lookups is triggered to determine potential
content origins. This information is subsequently used to build a packet dissemination
tree for the forwarding and forking of packets.

CHAPTER 5. IMPLEMENTATION 76

<>

ARP request
(ICN-SDN IP)

Respond (ICN-
SDN MAC)

UDP port yes Add / drop

= Name FIB entry
announcement
Perform basic Process
bridging ICN request

Process ICN
response

Figure 5.3: Controller packet processing work flow

5.5 Flow rule setup

To form the dissemination tree and thus figure which roles the involved nodes have to
perform, the following processing is applied.

A single path from the requesting towards each content serving node is calculated via
the support of the Topology Manager. Each returned path consists of switch-ids and their
outgoing port numbers. The returned paths are subsequently added to a tree structure
rooted at the ICN-SDN ingress node. An example of such dissemination tree is depicted
in Figure 5.4a. Each node of the tree holds the information about all its successor nodes
as well as the information if it acts as the egress for an adjacent content serving node.

The resulting tree is subsequently collapsed, only nodes that have to perform roles
which require special actions (Ingress, Egress, Fork) remain in the tree. The ingress

CHAPTER 5. IMPLEMENTATION 77

node is simply identified as the root of the tree. Fork and Egress nodes on the other
hand are identified via their amount of successor nodes. If these are greater than one,
the node acts as a forking node. If the egress flag is explicitly set or the amount of
successor nodes is zero, the node acts as an egress node. All intermediate nodes do
not have to perform any special action other than forwarding the packet according to their
general forwarding entries. Only the nodes that remain after the collapse are nodes that
need additional rules. For the previously introduced dissemination tree in Figure 5.4a,
the collapsed tree is illustrated in Figure 5.4b.

Ingress Fork

(b) Collapsed dissemination tree

Figure 5.4: Dissemination tree creation

The collapsed tree is subsequently traversed in post-order. For each of those
switches in the dissemination tree, a unique MsgID is created. All actions that need
to be performed with the packet that triggered the whole process are referenced via the
switch-ids and the associated MsglDs. The MsgID of each switch is handed over to the
parent node within the tree such that previous nodes on the dissemination path can in-

CHAPTER 5. IMPLEMENTATION 78

stall rules to rewrite the MsgID of the packet to the values expected by the subsequent
nodes (towards content origin). As soon as all these child node dependent MsglDs are
determined and provisioned, the rule provisioning for the actual node is straight forward.
All particular rewrite and output actions are concatenated and subsequently deployed via
a Flow_Mod message to the switch. In this way the request packet rewriting and forking
rules are deployed from the egress towards the ingress node. This order of flow installa-
tion also prevents the packet from arriving at a switch that is maybe not yet provisioned,
which would cause additional load on the controller, since these packets would trigger
additional Packet_In events.

This method only describes the setup of the request forwarding flow rules. Neverthe-
less, the flow rule provisioning process for the content responses does work accordingly.
Instead of being rooted at the ingress, the tree would be rooted at the egress node, which
serves as the first hop into the ICN-SDN for content packets.

We are talking about the process of building a dissemination tree, which conveys
the impression that this mechanism is only applicable in the forking case. However, the
whole algorithm is generally applicable also if only a single content origin node exists. In
that case the whole path collapses into two sequential nodes, ingress and egress, which
can further be provisioned accordingly.

5.6 Learning and managing object locations

We ourselves defined a simple protocol that is used to quickly (de-)register name prefixes
with the controller. By this mechanism content providers are able to notify the CCNx-SDN
controller about their ability to provide content for specific namespaces. This information
is then added to the CCNx-SDN controller FIB. We also opted for using the SDN-IP ad-
dress for the name-prefix protocol instead of an additional controller IP address and the
delivery of the packets via general bridging. Thereby, the advanced knowledge that the
processing via the OpenFlow controller provides is used. The benefit is that whenever
FIB entries have to be created, the Datapath_ID and Datapath port is already available
in the Packet_In structure via which the edge switch delivers the packet to the control-
ler. Just the prefix that is (de-)registered is appended as the payload of the name-prefix
announcement packet. Further, using the SDN-IP also simplifies the configuration since
only one IP address for name-prefix registration and FIB entries needs to be configured.
Additionally there is no direct dependence on a specific controller. Whenever the con-
troller of the SDN changes, due to failures, maintenance or the like, the controller that
receives the name-prefix announcements changes as well.

For our prototype implementation we also refrained from including the listening port
of the CCNx daemon on the prefix announcing node, since we stick to using the CCNXx
default port. However, it may be worth mentioning that we expect some pitfalls in case

CHAPTER 5. IMPLEMENTATION 79

of intermediate Network Address Translation (NAT) devices where some sort of port
modification is performed. One solution for this issue would probably be to utilize the
CCNx daemon itself to transport the name-prefix announcements. Doing so, the packet
modifications would be applied in the same way that they are applied for all other CCNx
packets. As a consequence, the port could still be read out of the Packet_In arriving
at the controller. In this case, no explicit port needs to be reserved for the name-prefix
registration procedure but a particular namespace is required.

Chapter 6

Evaluation

To analyse our ICN-SDN forking approach in conjunction with the scenario drawn out
in Section 4.3.1, we setup and perform the measurements described in the following.
This measures are performed to evaluate the analytically gained performance values
described in Section 4.3 and check the applicability of the whole approach.

Following, we will first give an overview of the components of the measurement envir-
onment in Section 6.1. Subsequently, in Section 6.2 the measurement setup is detailed
with the description of the network topologies used, the data that is gathered throughout
the evaluation runs, how the environment is initialized and the procedure description of
how the measurements are conducted. The corresponding results are then summarized
and discussed in Section 6.4.

6.1 Measurement environment

We conduct the evaluation experimentations in a virtualized environment. The entire net-
work topology with all its nodes — CCNx sources and sinks, SDN-controller and switches
— are executed on a single evaluation computer. Therefore, the Mininet framework [54]
in version 2.0.0 is utilized in combination with CCNx in version 0.7.2. Mininet utilizes
lightweight network namespace isolation [55] such that all emulated nodes run atop the
same kernel and thus share the same resources except for the separated network view.
Each network namespace has its own configuration including (virtual or physical) net-
work adapters, IP addresses, configured latencies etc. The network namespaces are
then connected to one another to form the desired network topology. On the other hand,
the file system and process namespaces are not separated, which requires the definition
of unique unix-domain sockets per namespace instance. Otherwise the start up of addi-
tional ccnd instances is prevent. The ccnd also needs to be instructed on which IP ad-
dresses to listen for incoming connections, thereby the loopback IP address (127.0.0.1)

CHAPTER 6. EVALUATION 81

needs to be explicitly excluded. Cabral et al. meanwhile published a modified version of
Mininet, called Mini-CCNXx [56, 57], which is shipped with already CCNx enabled node
templates. Mini-CCNx is available via [58].

By using these lightweight node emulation mechanisms, we are able to execute the
evaluation environment on an Intel Core i5 quad core workstation at 3.2 GHz with 8 GB of
RAM running Ubuntu 12.10 x64 with a Kernel version of 3.10.9. For the SDN switches we
use the Open vSwitch [59] implementation in version 1.4.3. These switches are further
managed by our Trema based CCNx-SDN controller.

6.2 Measurement setup

We performed only rudimentary evaluations of our basic approach and focus on the
evaluation of the advanced approach. The results of the basic approach evaluation are
attached in A. Hereinafter, we provide detailed information on the measurements per-
formed with the advanced approach.

6.2.1 Data of interest

We compare our approach of Interest forking via the ICN-SDN controller to cases in
which the pure CCNXx is also performing Interest forking. Like previously introduced we
are able to operate our controller in two different modes. The content transmission may
be performed Bandwidth Optimized (BO) or Delay Optimized (DO). Both approaches
differ in their resulting transmission times as well as their utilized network resources.
Hence, we are going to evaluate both modes. Since we expect the data plane load
to be reduced via the ICN-SDN BO approach that is able to stop superfluous replies,
the imposed data plane load is collected once per each link. We will thereby be able
to determine the effect of this mechanism. The ICN-SDN DO approach on the other
hand is optimized for response times, introducing the least control delay possible. To
measure this effect the per chunk response delays are collected. Thus, the time it takes
from issuing a request till the content chunk arrives at the requesting node. Further,
SDN utilizes the centralized controller, thereby introducing the control plane network. To
evaluate the load our approach imposes on the control plane, the amount, type and size
of the control plane packets is collected.

To gather the required data we are going to request multiple content chunks through
the use of the CCNx included tool named ccncatchunks2. The general output of this
tool already yields the per chunk transmission times required for our analysis. For the
analysis of the amount of consumed network resources the network packet analyzer and
capture program Wireshark [60] is used. On each link used in the content dissemination
one node is selected to perform a packet capture, which is saved for later evaluation.

CHAPTER 6. EVALUATION 82

Additionally, in the ICN-SDN cases a packet capture is created for the loopback interface
(lo), which is shared among all SDN switch namespaces for their communication with
the controller. This further allows detailed control plane load analysis.

6.2.2 Evaluation topologies

We generated different network topologies, as depicted in Figure 6.1. For the creation
of the topologies, we used the |Gen topology generator [61]. Each of the topologies
consists of 50 nodes of which the red nodes form the backbone of the network, while
the gray nodes perform as edge nodes. The topologies 1 and 2 (Figure 6.1a, 6.1b)
consist of edge nodes that are connected to two different core nodes, topologies 3 and
4 (Figure 6.1c, 6.1d) consist of three and topologies 5 and 6 (Figure 6.1e, 6.1f) consist
of four core node connections per each edge node.

In all topologies the link delays are consistent. Core links are assigned 20 ms, while
edge links are assigned 5 ms latency. This difference in link delays is introduced due to
the greater distance we assume between core nodes compared to adjacent edge nodes.
Further the control plane delay is set similarly for all SDN nodes to 5 ms. Thereby, the
equal configuration of this value for all nodes is a result of the restrictions of the Mininet
framework.

6.2.3 From generated topology to executable network

The topologies created via the IGen topology generator are processed and converted
into Mininet scripts that consist of the topology information as well as additional instruc-
tions used to perform particular measurement runs.

The topology description is converted such that in the ICN case each node is mapped
to a CCNx node while in the SDN case all nodes are generally converted into SDN nodes.
To emulate the content origin being network proximity-wise far apart, the requester and
origin nodes are placed on nodes that are maximum diameter hops away from each
other.

For the two SDN cases the caches towards which the Interests will be forked are also
determined in this pre-measurement phase. To account for the central view the controller
has on the network and thus the knowledge it can base its decision making process on,
we decided to place the caches (proximity-wise) in the same half of the network that also
the requester resides in. The topology nodes, which are selected to perform the origin
and cache functions in the SDN cases are each accompanied by an ICN node, which
is directly connected to the SDN node. These ICN nodes run the CCNx software and
performs the actual ICN processing and serve the content. An illustration is depicted
in Figure 6.2. Figure 6.2a shows the resulting ICN and Figure 6.2b the SDN topology.

CHAPTER 6. EVALUATION

83

(d) Topology 4 (e) Topology 5

Figure 6.1: Topologies used for evaluation

Y \‘L‘ \ 1\

1\‘ > ‘Vl’“"f/
VRGN

V|
N
“ﬁ}}p,

(f) Topology 6

CHAPTER 6. EVALUATION 84

They are all configured as dead-end caches, hence, they are not provided with additional

@)

O

++_
()

10,20
A (s

R

(a) ICN (b) SDN

Figure 6.2: lllustration of the same topology in SDN and ICN case with a fork factor of 2
and an exemplary cache selection (/=ICN node, S=SDN forwarding node, R=Requesting
ICN node, O=Origin ICN node)

forwarding information they will not forward requests they are unable to reply to via their
cache content. On the opposite the ICN case does not need this explicit cache selection,
since the cache nodes in the ICN case are implicitly those nodes on the path towards
the origin.

In the ICN case each of the CCNx nodes is equipped with multiple network interfaces
that serve as point-to-point links, directly connecting nodes without intermediary switches
or the like. Further, the nodes are configured with host routes which point to their dir-
ect adjacent neighbors. By doing so, we want to emulate a close to native deployment
in which ICN packets are transported hop-by-hop. To ease the identification of nodes
throughout the network and especially in the packet captures, each node is assigned
only one IP address, which is bound to the loopback interface. Enabling the IP_For-

CHAPTER 6. EVALUATION 85

warding option in the Linux Kernel allows us to operate the interfaces between nodes in
unnumbered mode. Hence, no IP address is explicitly assigned to each interface itself.
Incoming packets are thus routed according to the routing table configuration, which de-
livers IP packets for the single node IP address towards the local loopack interface and
thereby to the CCNx application.

Throughout the evaluation we explicitly leave aside the aspects of how the caches
are populated with content since we focus on the effectiveness of the forking approach.
However we do envision different possibilities, for instance by forking requester driven
responses towards particular cache nodes or any other method. Nevertheless, for our
measurements we need to populate the caches with content. Therefore, the CCNXx
nodes, which are subsequently utilized as caches, start loading content into their cache,
themselves, via a local mechanism prior to each measurement run. This cache popula-
tion is deterministic per one similarly configured ICN, SDN BO and SDN DO pass.

6.2.4 FIB population / routing

Furthermore, FIB entries have to be configured in the ICN case since we want to avoid
the overhead of running an ICN routing protocol between the nodes. In this phase of
the Mininet topology generation, further referenced as pre-measurement phase, a topo-
logy graph is build, which is used to calculate shortest paths between the direct adjacent
nodes of the requester and the origin node. The FIB entries are then configured to cre-
ate the branches on the requesting node towards its neighbors and from there on the
shortest path towards the origin node. Of course this implies that our topologies them-
selves contain a certain node degree. According to the outcome of this calculation, the
FIB entries of all on-path nodes from requester to origin are configured to be able to suc-
cessfully forward incoming content requests for the measurement namespace. Further
the calculated shortest paths are used to specifically start packet capture processes only
on the nodes and their interfaces involved in the content transmission.

The caches selected by the controller are also determined in this pre-measurement
phase and configured similarly in both SDN cases (BO and DO). The selected cache
nodes are configured to register the namespace used for the measurement via the name-
prefix registration mechanism previously described. Hence, at run time, in the measure-
ment setup phase, the controller receives the information towards which ICN nodes to
fork requests that belong to the particular namespace. The controller itself will then cal-
culate the paths through the network via the use of the previously introduced Topology
Manager component.

CHAPTER 6. EVALUATION 86

6.2.5 Parametrization

We execute comparative runs of ICN, SDN BO and DO with the same initial setup ac-
cording to (i) origin and requester node placement within the topology and (ii) the pre-
population of caches with a fraction of the chunks used for the measurement. The set of
content used for the measurements thereby consists of 50 data chunks with a CCNx pay-
load length of 1000 bytes. This data is accessible via the CCNx Repository application,
which serves as a non-volatile chunk level cache.

The general content cache size per ICN node is larger than the amount of 50 content
chunks. This is to assure that throughout the ICN measurements no cache eviction ac-
tions takes place. All content, which is not available when the content request arrives will
be cached when the content arrives from an upstream node. Thereby, all pre-populated
content chunks stay available in the cache throughout the measurement without being
prematurely evicted.

The chunk size has to be limited, since the CCNx protocol layer is not considering the
MTU of lower network layers. Content chunks that would result in packets bigger than the
IP MTU are thus subject to IP fragmentation. IP fragmentation however is not supported
in our environment. When IP performs fragmentation, the transport layer header is only
included in the first IP fragment. Since our approach relies on matching transport layer
header information to forwarding rules to perform the packet forwarding, this information
has to be present in each and every packet. However, this is not the case when IP
fragmentation is utilized.

The MTU of Ethernet amounts to 1500 bytes. This is further reduced by the IP and
the UDP header. Additionally the CCNx header reduces the maximum payload size such
that we decreased the chunk size to 1000 byte as stated above.

The parameter set we explicitly evaluate consists of (i) the amount of content pre-
populated in the cache (Table 6.1a), (ii) the ratio of pre-populated content between ICN
and SDN caches (Table 6.1b) and (iii) the fork factor (Table 6.1c). We analyze each of
the parameter combination stated in Table 6.1 via the topologies depicted in Figure 6.1.

Pre-cached content per node The per node pre-cached content parameter determ-
ines the number of node-wise randomly chosen content chunks out of our eval-
uation content set, which are already available per cache node. Since our set
of content chunks is quite limited and we want to avoid long cache initialization
phases through random request generation and conduct the SDN BO and DO
cases as comparable as possible, we chose to explicitly populate the caches with
content prior to the actual measurement run. Furthermore, to evaluate different
cache hit ratios the per node pre-cached content is introduced.

Ratio of pre-populated content ICN to SDN The SDN case always populates the

CHAPTER 6. EVALUATION 87

(a) Pre-cached content per

node [# chunks] (b) ICN to SDN cache ratio (c) Fork factor
10 1/1 2
20 1/2 3
30 1/4 4

Table 6.1: Parameter space used for the evaluation

caches with “per node pre-cached content” number of chunks, while the amount
of chunks per ICN cache is multiplied with this value.

We introduced this factor to account for the fact that in the SDN case we expect
a cache population mechanism in place that will aggregate for instance certain
namespaces deterministically on a group of nodes, thereby reducing the prob-
ability for the content to be overwritten. Since not every SDN node will have an
ICN cache co-located with it, beyond that, the few caches deployed will likely be
provided with higher caching capacity. Finally, content will not be stored multiple
times throughout the network, in each traversed ICN node, occupying the cache
space multiple times while evicting other objects from the cache.

Fork factor The fork factor defines the duplication coefficient. In the SDN case this
parameter defines the number of caches that the requests are delivered to while in
the ICN case not only the forking factor but also the path length defines the number
of caches, which are queried when the request passes through.

Since in the ICN case the request issuing node performs the forking, the topologies
have to allow for the defined amount of forks by providing enough connections
towards a diverse set of core nodes. Therefore, they are created with different
amounts of connections per edge node towards the core. Thus the topologies
used to execute the measurements are dependent on the fork factor.

6.2.6 Procedure

The following steps are performed for each scenario (ICN, SDN BO and SDN DO) and
every combination of the parameters described in Section 6.2.5.

1. The Mininet script is executed and the predefined topology is initialized.

ICN: Each individual node is assigned one IP address, which is configured on its
loopback interface. Furthermore, the IP host routes are added to the IP routing
table. The network interfaces directly connect pairs of ICN nodes.

CHAPTER 6. EVALUATION 88

6.3

SDN: The OpenFlow switches as well as the ICN nodes are instantiated. The
interfaces, which connect the ICN nodes to the OpenFlow switches are directly
configured with an IP address.

. The CCNx daemon is started on each ICN node.

. A CCNx Repository daemon is started per each ICN node. This repositories con-

tain all content chunks used in the evaluation measurement. The Repository auto-
matically registers with the local CCNx daemon such that requests for the meas-
urement namespace will be forwarded to the local Repository.

Each ICN node requests the content chunks individually determined for it in the
pre-measurement phase. The local Repository receives the request and responds
with the chunks. Thereby, the ccnd caches the chunks for future requests. The
amount of chunks requested and thus cached is dependent on the per node pre-
cached content parameter.

. The Repository is stopped on all but the selected origin node.

. The ccnd FIB is modified.

ICN: The FIB of each but the origin and requester node is adjusted such that
the measurement namespace follows the previously calculated shortest path. The
origin node FIB does not need to be adjusted, since the Repository registers itself
with the required namespace. The requester node is configured to perform the
request forking multiple FIB entries.

SDN: The FIB of the requester node is adjusted to forward requests for the meas-
urement namespace to the SDN-IP.

The packet capturing processes are started.

. The actual measurement takes place. Therefore, the total set of 50 content chunks

is requested once from the selected requester node. The per chunk retrieval times
are automatically recorded via the ccncatchunks2 tool saved for later analysis.

Finally the packet captures are stopped, the capture files are saved and the entire
Mininet environment is unloaded and shut down.

Measurement results

We ran multiple measurements that consisted of the three scenarios ICN forking, SDN
BO and SDN DO with all combinations of the previously introduced parameters. Similar

CHAPTER 6. EVALUATION 89

parametrized runs are executed up to seven times in different topologies with different
requester, origin and cache nodes. This procedure in total leads to about 180 measure-
ments per each ICN, SDN BO and SDN DO run.

In the following we will take a close look at the measured data of transmission and
processing times as well as the data plane and control plane load.

6.3.1 Transmission times

We deduced the average per chunk transmission times for individual measurement runs.
These values are grouped according their respectively scrutinized parameters and used
as the data basis for the following plots. These boxplots depict the median value as the
thick black line. The solid box starts at 25% (first qurtile) and reaches up to 75% (third
quartile) it thereby frames the 50% of the measured values that are called the inter-
quartile. The dots that appear in some of the graphs are the statistical outliers. These
outliers are measurement values that are more then 1.5 times the inter-quartile range
away from the first or the third quartile. The whisker are thereby adjusted to stop at the
last data point before the inter-quartile range is exceeded. Since boxplots contain this
wide range of information in one plot, it is an adequate means to gain an overview of our
measured data set.

o

0 2 3 4

N

200
!

150
!

100
!

Transmission time [s]

50

T T T T T T T T T
ICN SDN SDN ICN SDN SDN ICN SDN SDN
DO BO DO BO DO BO

Figure 6.3: Effects of the forking factor on the avg. transmission times

Figure 6.3 depicts the influence of the forking factor on the transmission times. The

CHAPTER 6. EVALUATION 90

parameter space covers 2, 3 and 4 forks. The transmission times of the ICN case remain
similar except the increase in the runs with 3 forks (center segment) where the transmis-
sion times are spread wider. We assume this spread is influenced by some noise in the
measurements, since in the 4 fork runs the results are again more narrow.

Both the SDN cases DO and BO show the effect that by increasing the fork count the
transmission times also increase. Furthermore, the dispersion increases. This behavior
can be explained via the increased processing the ICN-SDN controller has to perform.
For each fork the forwarding paths are calculated, which subsequently have to be merged
in the transmission tree. More nodes have to be processed to create and subsequently
collapse the tree. Finally, more egress, but probably also more forking nodes have to
be provisioned. Hence, adding forks inevitably increases the controller processing and
thereby also the transmission time in the SDN cases. Figure 6.4 displays the effects of

10 20 30

250
|

200
!

_ O

(e}

150
!

100
!

o
—_ o —_
— .
|
.
|

B e R ==

Transmission time [ms]

T T T T T
ICIN SIIDN SIIDN ICIN SDN SDN ICN SDN SDN
DO BO DO BO DO BO

Figure 6.4: Effects of the number of pre-cached chunks per ICN cache on the avg.
transmission times

varying amounts of pre-cached chunks per ICN cache on the transmission times. It is
visible that the increase of pre-cached chunks per cache node has a positive influence
on the transmission times. In all scenarios the transmission times decline. This effect
manifests itself, since the amount of content located closer to the requesting node is
increased. Hence, content needs to be transmitted on shorter paths, which leads to
the reduced transmission delays. It is visible that this parameter does not provide an

CHAPTER 6. EVALUATION 91

essential change in the relation between the scenarios. All cases are influenced in the
same manner.

o
LD —
I\
— g | °
g < — | T
o .
E B4
5 04 S
C [
S '
3 8 4 — . -
E < -
) ! .
. - I
£ 3 - —
o -
I T T T T
ICN ICN ICN SDN SDN
1/1 1/2 1/4 DO BO

Figure 6.5: Effects of the ICN to SDN cache fill ratio on the avg. transmission times

Figure 6.5 illustrates the effects of varying ratios of pre-cached content chunks
between the ICN and the SDN cases. Since this parameter effects the ICN measure-
ments, only the ICN variations are shown. If the number of content chunks is the same
in both cases, the ICN is in the average case able to respond roughly twice as fast as
the SDN approach does. This advantage is reduced the further the relative amount of
pre-cached content chunks is decreased. With a ratio of 1/4th of the content cached in
the SDN case, the average transmission times of the ICN are about the same, whilst the
distribution of the transmission times in the SDN cases are broader. The transmission
times of the DO case are only slightly better than those of the BO case.

This behaviour is comprehensible since what happens is in general the reduction of
the size of the ICN cache, which is somehow similar to the measurement depicted in
Figure 6.3 with the difference that only the ICN cache size is varied while it stays fixed
in the DO and BO case. Consequently the relative difference between ICN and the SDN
cases decreases.

CHAPTER 6. EVALUATION 92

Q - Content
~ Interest Content
o reply

w0 :
E - —
G) —_—
£
L o o i
g - o
7
s e
g W e —

o - —_—— % —_—3

[

T T T T 1
CCNx Controller CCNx Controller ContentStore Repo

Figure 6.6: Packet processing times

6.3.2 Processing times

To gain a deeper understanding of the resulting transfer times, we performed additional
time measurements. In Figure 6.6 the processing times for Interest as well as Content
packets of native CCNx and the ICN-SDN controller are presented. Further, we depict
the response times in case the requested content is available in the cache as well as
when the requests have to be processed by the Repository to be satisfied.

Interest We measure the time it takes for an Interest to pass a CCNx node as well as
the time it takes for an Interest to be forwarded towards an adjacent node, from
entering the node until it leaves the node. Thereby, the usual ICN processing is
carried out. A Content Store lookup is performed. Subsequent the PIT is con-
sulted if request aggregation can be performed and afterwards the FIB is used to
determine the next hop node. Finally, the Interest is emitted on the determined
interface.

In the ICN-SDN case, the plotted values show the time from the reception of the
Packet_In at the controller until the associated Packet Out is transmitted. In this
time frame, a content serving node is determined, the linear forwarding path is
collapsed into the ingress and the egress node and the corresponding Flow_Mod
for the packet rewriting are send, before the Packet_Out is issued.

CHAPTER 6. EVALUATION 93

It is visible that the processing times of our controller are nearly three times higher
than the optimized CCNXx processing. The results get even worse, considering
that the processing time on the data plane is already included in the ICN case.
The data is actually already forwarded, while in the SDN case the controller has
just calculated where to forward the packet to. The actual data plane forwarding
operations still have to be performed. On the other hand, this costly controller
processing only has to be performed once for the entire path to be determined and
set up. The illustrated ICN processing, on the other hand, is performed on each
and every hop.

Content The processing of content responses in the CCNx case covers the time span
from the packet entering an interface until it is forwarded towards a next hop node.
Primarily a content name lookup in the PIT is performed to determine the output
interface for the packet before subsequently dispatching it. The ICN-SDN control-
ler on the other side also just needs to lookup the content name to determine the
SDN egress port and the associated rewriting parameters before the correspond-
ing Packet_Out is issued.

The processing times for content objects in the ICN-SDN controller are also higher
than in the ICN case. Nevertheless, does this difference manifest itself in a different
scale. 0.21 ms avg. in the ICN case versus 0.91 ms avg. in the SDN case.

Content reply To also get an impression of the response times of the Content Store
compared to the ICN Repository, we issued requests for content that was either
available in the cache or had to be fetched from the Repository. If the content
is available in the Content Store, the CCNx daemon skips the PIT and FIB look-
ups because the cache lookup already yields the requested content. However, if
the cache misses the content in addition to the Content Store lookup, the FIB is
queried. Since the Interests needs to be forwarded towards the Repository, the
registration of the forwarded Interest in the PIT is performed.

In case of the content being available in the Content Store, the delay until the con-
tent is transmitted out of the nodes interface is comparable to the content forward-
ing times, which is reasonable, since the content is available in memory and the
Content Store lookup is in general the first step for the CCNx daemon to perform.
However, getting a response from the Repository takes slightly longer than the
Interest forwarding time, which is plausible since the whole cycle of Content Store
check, PIT check and FIB lookup have to be performed to subsequently hand the
request over to the local Repository. Additionally the content forwarding time is
added on top because the response also has to pass the content processing.

For Open vSwitch, according to [62]

CHAPTER 6. EVALUATION 94

Component Multiplier Time [ms]

Interest processing delay h 4.70
Content processing delay h 0.21
(a) ICN case

Component Multiplier Time [ms]

Interest processing delay 1 14.39
Content processing delay 1 0.91

Forwarding delay h <0.05!

Control plane delay 2 5.00

(b) Bandwidth Optimized SDN case

Table 6.2: Average per chunk processing delay components (h = number of hops)

Table 6.2 shows the itemized delay components, which are introduced in the dissem-
ination process. Table 6.2a depicts the average delays for the ICN case along with their
multiplier. Since CCNx performs hop-by-hop forwarding, the Interest is processed by
each hop, the same applies to the resulting content packets. Thus, the measured times
have to be multiplied with the amount of traversed hops (h). Table 6.2b shows a different
composition of the times. The Interest and content processing delays are only introduced
once per request-response cycle (considering a non-forking case). The forwarding delay
is introduced by each SDN switch to forward the packet towards the next hop. Addi-
tionally, the control plane delay has to be considered. In Table 6.2b we considered the
general 5 ms control plane delay we defined, once for the Packet_In from the switch and
once for the Packet Out towards the switch.

The Interest processing delay of around 4.7 ms mean in the ICN case might quickly
add up on longer forwarding paths since the ICN forwarding is performed hop-by-hop.
The Open vSwitch forwarding delay is according to [62] below 50 psec, which is less
impacting on longer paths. figure 6.7 clearly depicts this correlation. Processing times
for the ICN case rise quickly while the SDN BO increase only slowly.

To work out the actual transmission delays, the data plane connection latencies have
to be taken into account as well. The times for the actual request and response propaga-
tion is not included. However, the paths between the caches in the SDN cases and the
ICN case are most likely diverse and thus not directly related.

CHAPTER 6. EVALUATION 95

== ICN
— SDNBO

40

30

Processing delay [ms]
20

10

Hops

Figure 6.7: Hop count dependent processing delay

6.3.3 Data plane load

Again, we evaluate the influence of the parameters of Table 6.1, namely the ICN to SDN
cache fill ratio, fork factor and the number of cached chunks. This time, we focus on the
network load created by our advanced approach compared to the ICN forking case.

Therefore, the following graphs show the relative data plane load for the SDN BO
and DO forking scenarios compared to the respective ICN scenarios. The data plane
load of each set of runs, consisting of the ICN, BO and DO cases with similar cache
pre-population and origin placement, are put into relation. The ICN data plane load is
taken as the reference value and thus defines the 100% mark. The BO and DO cases
are drawn according this value. Multiple of these sets are grouped into the correlating
parameter category to subsequently draw the box plots shown in the following.

Figure 6.8 depicts the influence of the ICN to SDN cache fill ratio on the relative
network load between the SDN BO and DO case and the ICN forking case. It is visible
that the variance in the mean network load of the BO and DO case compared to the
ICN case is reduced by decreasing the relative amount of ICN cached content. In the

CHAPTER 6. EVALUATION 96

L o

~ S - 11 172 1/4

O _

S .

o O

= 9

E (4p]

o

%)

g8 —

e O L

o !

=g |- —+ |—3] —

O O A [e

- L

£ ;] ——

= — L _—

2 o o

@© T T T T T T

o SDN SDN SDN SDN SDN SDN
DO BO DO BO DO BO

Figure 6.8: Effects of the ICN to SDN cache fill ratio on the network load

worst of the DO runs the network load is nearly four times higher, but in the best case
also better than the network load in the ICN case. The results are broadly spread when
utilizing similar cache pre-population amounts. This effect is reduced by changing the
pre-population ratio. The values of the BO runs decline through the increased ratio.
They are already completely below the ICN threshold starting at a ratio of 1/2.

The displayed values depict that the ICN to SDN cache fill ratio has a noticeable
impact on the generated data plane network load. This behavior arises since each ICN
cache node holds a smaller fraction of the requested content. Hence, the request in the
ICN case has to travel longer distances until it reaches a copy of the requested content,
which consequently creates a higher network load when the content is delivered all the
way back. In the ICN case, each traversed node checks its local cache, whereas in the
SDN case just the selected cache nodes, which might be some hops away, are utilized.
This results in a general disadvantage for the SDN cases on the first sight. By tuning the
ICN to SDN cache fill ratio, we reduce the per cache hit probability for the ICN and thus
the packets have to traverse an increased amount of hops, which results in an increased
network load.

Adjusting the cache size in the ICN and SDN cases individually is a valid way for the
evaluation of our approach. The caches throughout the network can be populated more
purposeful due to the centralized knowledge, which increases the network wide cache

CHAPTER 6. EVALUATION 97

hit probability. In the SDN cases, the content is cached in a node or small group of nodes
explicitly dedicated to the actual namespace or content type while in the ICN case re-
quested content is stored multiple times on the traversed ICN nodes. This uncoordinated
caching in fact reduces the overall storage capacity for individual content and the lifetime
of content within each of the caches.

<
S o
S o
L o
e 84 ° o g
g @ 0 8
E o
2|~ "
o - [e)
e o —
E]
s 9| —— - —
g 7 =
i=] o)
=
2 o+
@®© T T T T T T
@ SDN SDN SDN SDN SDN SDN
DO BO DO BO DO BO

Figure 6.9: Effects of the forking factor (2, 3 & 4) on the network load

Figure 6.9 illustrates the effects that different numbers of forks have on the data plane
load. While in the 2 fork scenario all runs of the DO case created more load than the ICN
runs, even 25% of the DO runs in the 4 fork scenario created less network load. While
in the 2 fork scenario already creating less data plane load in almost every run. The BO
in fact still outperforms the ICN case in all runs for the 4 fork runs.

The resulting numbers can be explained via the diverse paths that the requests take
in the ICN case. If a cache hit is achieved in a diverse part of a path, multiple replies
are triggered, which are delivered up to the forking node. On the forking node, all except
one reply are stopped due to the elimination of the PIT state by the first arriving reply.
Other, if the caches are not populated with the requested content, the requests of the
different forks merge latest at the last hop towards the origin node. Duplicated request
packets will be ruled out by that node, when requests with the same nonce value arrive,
the transmission of multiple responses is suppressed. If, however, in the SDN BO case
multiple replies are triggered, all additional replies are stopped at the first SDN switch be-

CHAPTER 6. EVALUATION 98

fore entering the network core. Whereas, in case of the DO scenario, multiple responses
will likely traverse the network. The rule adjustment that leads to the suppression of su-
perfluous replies takes some time. During this time additional responses might already
be forwarded.

$

= 10 20 30

S o

) o

o O o

= 9

E (40

o

2g -

2 ~

o o

=] o : — \

i‘j S B s S eSO I S I s

- L

£ — ——

. - -

@© T T T T T T

o SDN SDN SDN SDN SDN SDN
DO BO DO BO DO BO

Figure 6.10: Effects of the number of pre-cached chunks per ICN cache on the network
load

Figure 6.10 shows the effects that occur when the amount of pre-cached chunks
per cache are varied. For the DO case the resulting data plane load relative to the ICN
case increases while the BO case benefits from the rising amount of pre-cached content
chunks per cache. In the 10 content chunks per cache case, the introduced network load
of the DO runs is mostly higher than the mean ICN load. It even increases and spreads
up to nearly 300% of the ICN load in the 30 chunks per cache case, leaving aside the
outliers. The BO case shows a tendency towards declining data plane load while at the
same time being increasingly distorted.

Through the increase in pre-cached content chunks per cache, the probability of
content being available in multiple caches raises. This results in even more chunk trans-
missions in the case of DO. In the BO case the increase does not influence the network
load. Only one response is always forwarded through the network. However, the prob-
ability of a nearby cache holding the content is increased, thereby the number of hops
towards a cache hit is reduced as well as the overall network load.

CHAPTER 6. EVALUATION 99

6.3.4 Control plane load

Throughout the measurements we also monitored the imposed control plane load. De-
picted in Figure 6.11 are the inter-quartile means of the measured values over the com-
plete set of runs. We split up the control plane traffic into Packet_Ins used to transport
Interest packets (Pkt_In - Interest) and content packets (Pkt_In - Content) towards the
ICN-SDN controller as well as other OpenFlow messages (OpenFlow w/o Pkt _In). This
class contains the ICN-SDN related Packet Out, Flow_Mod and Flow_Remove mes-
sages.

O OF Pkt_In - Content

S | @ OF w/o Pkt_In
. ™ ® OF Pkt_In = Interest
)
X 4
3
° 8 |
o N
c
o
= 4
°
= O
c O
o
(@)

o |

Yol

o - |

SDNBO SDNDO

Figure 6.11: Control plane load derived via the inter-quartile mean over the entire meas-
urement set

Taking a look at the SDN BO numbers, it is visible that the share of control plane
load caused by Packet_Ins triggered through CCNXx Interests is quite small, it does only
account for 3.36% of the load. The Packet_Ins caused by content packets on the other
hand amount to 50.26% of the control plane load. Finally, the remaining 46.36% are the
share that allots to the remaining OpenFlow messages mentioned above. The amount
of Interest driven Packet_Ins remains the same in both cases, which is plausible since
we request 50 chunks of content in each run that all trigger one of those messages.
The OpenFlow Packet_Out, Flow_Mod and Flow_Removed traffic amount is higher in
the DO runs. This effect is caused by the Flow_Mod packets that carry the content
ingress rule. They carry not only the request egress packet processing information but
also the content ingress information for each request egress node. In the BO case,
this information is only send to the specific node that is expected to forward the packet.
All other nodes are provided with discard rules that do not need the additional packet
rewriting information. Furthermore, the flow rules are configured with an idle timeout

CHAPTER 6. EVALUATION 100

and the instruction to notify the controller about the expiration of the rule. Setting up
rules that carry the flow removed notification bit also results in additional control plane
packets, since the controller is informed as soon as the rule expires. Finally, the Packet_-
In message triggered by content carrying packets are of course not present in the SDN
DO case since the required flow rules for the content forwarding are already provisioned
when the content arrives.

The results show that the volume of content packet triggered Packet_Ins cause 50%
of the control plane traffic in the SDN BO case. This value is of course dependent
on the fork count and the amount of cache hits per request. Each content packet that
arrives at the SDN edge is delivered as a whole towards the controller. In general this
behaviour can be optimized by only sending the first part of the packet, containing the
name information towards the controller. This piece of information is sufficient for the
controller to evaluate on how to further handle the packet. Hence, in the worst case,
according to our parameters with four branches that might yield the data and a cache hit
ratio of 30/50 chunks, the amount of content initiated Packet_Ins should theoretically be
(30/50*4 =) 2.5 times the load of the control plane load created by the Interest Packet_-
Ins. This assumption is made, since the Interest packet also includes the requested
name. The amount of data is thus sufficient to read the complete content name from the
responses as well. However, this approach introduces a new challenge when it comes
to ICN implementations that utilize variable length content names like CCNx does. The
name can vary in size, there might not even be an upper boundary for the length of
a name. Hence, the question arises on how much data per packet is needed for the
controller to base its decisions on. Utilizing fixed length content names instantly resolves
this issue because it is clearly defined where the content name ends.

6.4 Evaluation Summary

The presented results show that in terms of transmission times, the ICN forking outper-
forms the ICN-SDN forking approach in most of the constellations. It was only possible to
achieve comparable transmission times by reducing the ratio of pre-cached content per
node compared to the SDN cases. However, we mentioned that we expect less caches
with higher capacity to be deployed in certain parts of the network, which in combination
with the ability to work around the purely opportunistic on-path caching might even result
in a higher cache hit probability in bigger networks.

According to the processing times of ICN packets, our ICN-SDN controller is also
slower. However, the controller determines and provisions the rules for multiple for-
warding elements at once, which reduces the per hop processing times since only for-
warding rule matching has to be performed. ICN forwarding nodes in contrast have to
perform more costly cache, PIT and FIB lookups at each hop. Nevertheless, we do ex-

CHAPTER 6. EVALUATION 101

pect that both the implementations of CCNx as well as our ICN-SDN controller still have
potential for performance improvements since the actual implementations do not base
on production-ready code.

The ICN-SDN approach is in term of the SDN BO instantiation able to compete with
and in most cases even provide better results than the ICN forking. The SDN DO num-
bers are almost always worse then the results of the ICN forking case. Admittedly, this
is what we expected from the design phase on since we aimed at the reduction of trans-
mission delays, at the expense of the network bandwidth. However, the DO mode does
not in general provide better transmission times compared to the ICN forking.

Chapter 7

Summary

We will now close by summarizing and concluding this work as well as providing an
outlook for future research directions.

7.1 Conclusion

This work shows that the evolutionary path from IP to ICN is feasible via SDN. The
introduced requirements where met, except the controller redundancy, which did not
perceive sufficient attention throughout this work and thus requires further investigation.
However, compared to earlier work on the integration of ICN and SDN does our approach
not require changes to the network stack of involved ICN nodes or modifications to the
ICN implementations. Hence, the common utilization of network protocols like IP, TCP
and UDP is still possible.

The centralized view that the SDN controller has on the network provides certain be-
nefits. It is able to spot bottleneck links and can subsequently re-rout forwarding paths,
avoiding these links. Further, through the collection of additional information about the
deployed ICN cache nodes it is also able to avoid steering requests towards these over-
loaded nodes. Via the capabilities of content namespaces identification and the ability
to steer requests through the SDN network, the controller is even able to cache certain
name spaces or content types on particular groups of ICN cache nodes. Further, did we
introduce the capability of ICN packet forking within the SDN, to enable the network wide
aggregation of ICN requests, as well as the parallel querying of multiple caches at once.

A theoretical analysis was conducted that compared CCNx packet forking with ICN-
SDN packet forking. This analysis revealed that the forking of requests provides ad-
vantages according the data plane load. Less network bandwidth is consumed in the
ICN-SDN case compared to CCNXx forking. This advantage already manifests itself when
utilized with two forks and increases with the number of forks. Beyond that, we roughly

CHAPTER 7. SUMMARY 103

estimated the amount of flow rules needed by our approach. Therefore, we defined dif-
ferent roles which are needed in the forwarding process, namely ingress, egress, fork
and forwarding. The egress role was thereby identified as the most demanding role in
terms of the number of flow rules. Two rules are necessary per each content transfer,
one for the request and the other for the response forwarding. We considered the NEC
ProgrammableFlow switch PF5240 as an example SDN device. Doing so, our approach
would theoretically support 32K-80K concurrent content transfers per egress switch.

The evaluation results show that with our actual implementation we are not able to
compete with ICN request forking in terms of response times, but the amount of data
transferred on the data plane can be reduced. Further, the results revealed that the
control plane load, dependent on the utilized ICN protocol, is quite high. Hence, it is a
mechanism that will unlikely be performed for all requests within an ICN-SDN domain.
It is advisable to not use this mechanisms for each and every content dissemination but
for initial content requests in environments where the controller has no full knowledge
of cached content. Thereby requests are forked until a cache, containing the required
content is found, subsequently all requests can solely be directed towards one of the
responding nodes without the utilization of the ICN request forking approach.

As a side effect, we where able to identify properties which are desirable or even
recommended to be met, in case ICN is operated over SDN.

Name information Each of the packets that are delivered through the network should
represent a self-contained ICN packets. Hence, the type of information — request
or response — and the name of the content have to be present in each packet.
Otherwise no intermediate node will be able to make appropriate decisions if ne-
cessary.

Fragmentation handling To comply with the first bullet point, a proper protocol layer
has to be in place that chops data into MTU compliant fragments while preserving
the requirement of each packet carrying the type and content name attributes.’

Label forwarding For the forwarding of ICN packets through the SDN network a fixed
length tag or label attached to the packets is necessary. Since fully generic packet
forwarding is according to [25] not be feasible in the near future, matchable fixed
length identifiers are needed to perform cost efficient ICN-SDN forwarding.

7.2 Future work

One of the outstanding challenges that exist in conjunction with our approach is the con-
sistent provisioning of OpenFlow rules. If the forwarding rules are not already send out

See also [30].

CHAPTER 7. SUMMARY 104

to the upstream SDN element and committed to their TCAM, the packet may trigger mul-
tiple, unnecessary Packet_In messages at the controller and thus results in an increased
load on the control plane. Quite a lot of work already exists that elaborate on the problem
of network wide forwarding rule consistency, like [63, 64], to nhame just two. Hence, we
leave this challenge aside for the time being.

Also the controller is expected to suffer a high burden, due to the load caused by the
inspection of bulks of Packet_In messages. The content names extraction, as well as
the path calculation and provisioning. Therefore it is at some point inevitable to come
up with a controller partitioning and redundancy scheme that allows multiple controllers
to operate as one logical entity. We have not yet payed much attention to the controller
redundancy, but we keep this in mind as an important point for the applicability of the
approach and will focus on this in our future research.

More research has to be performed on increasing scalability of the approach. The
burden that is put on the controller needs to be reduced. A promising attempt might be
the utilization of software based forwarding at the edge of the network as already men-
tioned in the SDIA proposal [25]. This would easily allow for whole packet generic match-
ing and thus introduce some more flexibility in the matching and forwarding process. The
European Telecommunications Standards Institute (ETSI) is actually working on Network
Function Virtualisation (NFV) [65, 66], a generalized framework for the implementation of
network functions via virtualization techniques on general purpose computer hardware.
The goal of NFV is to allow for rapid and cost efficient deployment of network functions
like for instance firewalls, Virtual Private Network (VPN) services and could thereby also
provide benefits for the deployment of ICN services.

Bibliography

[1] M. Gritter and D. R. Cheriton, “An Architecture for Content Routing Support in the
Internet,” in Proc. USITS’01. Berkeley, CA, USA: USENIX Association, 2001, pp.
4-4.

[2] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker, and
|. Stoica, “A Data-Oriented (and beyond) Network Architecture,” SIGCOMM Com-
puter Communications Review, vol. 37, no. 4, pp. 181-192, 2007.

[3] L. Zhang, D. Estrin, J. Burke, V. Jacobson, and J. D. Thornton, “Named Data Net-
working (NDN) Project,” PARC, Tech.report ndn-0001, 2010.

[4] V. Jacobson, D. K. Smetters, J. D. Thornton, and M. F. Plass, “Networking Named
Content,” in Proc. of the 5th Int. Conf. on emerging Networking EXperiments and
Technologies (ACM CoNEXT'09). New York, NY, USA: ACM, Dec. 2009, pp. 1-12.

[5] “The PSIRP Homepage,” http://www.psirp.org, 2012.

[6] P. Jokela, A. Zahemszky, C. E. Rothenberg, S. Arianfar, and P. Nikander, “LIPSIN:
Line Speed Publish/Subscribe Inter-networking,” in Proc. of the ACM SIGCOMM
2009. New York, NY, USA: ACM, 2009, pp. 195-206.

[7] B. Ahlgren et al., “Second NetInf Architecture Description,” 4Ward EU FP7 Project,
Tech.report D-6.2 v2.0, 2010.

[8] M. Vahlenkamp, “Information-Centric Networking - a related work survey,” HAW
Hamburg, Tech. Rep., 2012. [Onling]. Available: http://inet.cpt.haw-hamburg.de/
teaching/ss-2012/master-projects/markus_vahlenkamp_aw?2.pdf

[9] B. Ahigren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlmann, “A Survey of
Information-Centric Networking (Draft),” Dagstuhl Seminar Proceedings, Tech. Rep.
10492, 2011.

[10] D. Kutscher, S. Eum, K. Pentikousis, I. Psaras, D. Corujo, and D. Saucez, “ICN
Research Challenges,” IETF, Internet-Draft — work in progress 00, February 2013.

http://www.psirp.org
http://inet.cpt.haw-hamburg.de/teaching/ss-2012/master-projects/markus_vahlenkamp_aw2.pdf
http://inet.cpt.haw-hamburg.de/teaching/ss-2012/master-projects/markus_vahlenkamp_aw2.pdf

BIBLIOGRAPHY 106

[11] F Hermans, E. Ngai, and P. Gunningberg, “Global source mobility in the
content-centric networking architecture,” in Proceedings of the 1st ACM workshop
on Emerging Name-Oriented Mobile Networking Design - Architecture, Algorithms,
and Applications, ser. NoM ’'12. New York, NY, USA: ACM, 2012, pp. 13-18.
[Online]. Available: http://doi.acm.org/10.1145/2248361.2248366

[12] W. Wong and P. Nikander, “Secure Naming in Information-Centric Networks,” in
Proc. of Re-Architecting the Internet Workshop (ReARCH °10). New York, NY,
USA: ACM, 2010, pp. 12:1-12:6.

[138] T. Aura, “Cryptographically Generated Addresses (CGA),” IETF, RFC 3972, Mar.
2005.

[14] S. Farrell, D. Kutscher, C. Dannewitz, B. Ohlman, A. Keranen, and P. Hallam-Baker,
“Naming Things with Hashes,” IETF, RFC 6920, April 2013.

[15] “The Named Data Networking Homepage,” http://www.named-data.net, 2013.
[16] PARC, “The CCNx Homepage,” http://www.ccnx.org, 2012.

[17] L. Wang, A. K. M. M. Hoque, C. Yi, A. Alyyan, and B. Zhang, “OSPFN: An
OSPF Based Routing Protocol for Named Data Networking,” Tech. Rep., Jul. 2012.
[Online]. Available: http:// www.named-data.net/techreport/TR003-OSPFN.pdf

[18] “The CCNx Technical Documentation,” http://www.ccnx.org/documentation/
ccnx-technical-documentation-index, 2013.

[19] B. Davie, “Network Virtualization: Delivering on the Promises of SDN.” Open
Networking Summit, 2013.

[20] H. Khosravi and T. Anderson, “Requirements for Separation of IP Control and For-
warding,” IETF, RFC 3654, Nov. 2003.

[21] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation in Campus Networks,”
SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69—74, Mar. 2008. [Online].
Available: http://doi.acm.org/10.1145/1355734.1355746

[22] Z. Wang, T. Tsou, J. Huang, X. Shi, and X. Yin, “Analysis of Comparisons between
OpenFlow and ForCES,” IETF, Internet-Draft — expired 01, Mar. 2012.

[23] ONF, “Software-Defined Networking: The New Norm for Networks,” Open Network-
ing Foundation, Tech. Rep., 2012.

http://doi.acm.org/10.1145/2248361.2248366
http://www.named-data.net
http://www.ccnx.org
http://www.named-data.net/techreport/TR003-OSPFN.pdf
http://www.ccnx.org/documentation/ccnx-technical-documentation-index
http://www.ccnx.org/documentation/ccnx-technical-documentation-index
http://doi.acm.org/10.1145/1355734.1355746

BIBLIOGRAPHY 107

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

The OpenFlow Switch Specification 1.3.1, Open Network Foundation Std. [Online].
Available: https://www.OpenNetworking.org

B. Raghavan, M. Casado, T. Koponen, S. Ratnhasamy, A. Ghodsi, and
S. Shenker, “Software-Defined Internet Architecture: Decoupling Architecture
from Infrastructure,” in Proceedings of the 11th ACM Workshop on Hot Topics in
Networks, ser. HotNets-XI. New York, NY, USA: ACM, 2012, pp. 43—48. [Online].
Available: http://doi.acm.org/10.1145/2390231.2390239

D. Jen, M. Meisel, H. Yan, D. Massey, L. Wang, B. Zhang, and L. Zhang, “Towards
a New Internet Routing Architecture: Arguments for Separating Edges from Transit
Core,” HotNets-VII, Oct. 2008.

D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon,
and S. Shenker, “Accountable Internet Protocol (AIP),” in Proceedings of
the ACM SIGCOMM 2008 conference on Data communication, ser. SIGCOMM
'08. New York, NY, USA: ACM, 2008, pp. 339-350. [Online]. Available:
http://doi.acm.org/10.1145/1402958.1402997

N. Blefari-Melazzi, A. Detti, G. Morabito, S. Salsano, and L. Veltri, “Information Cent-
ric Networking over SDN and OpenFlow: Architectural Aspects and Experiments on
the OFELIA Testbed,” CoRR, vol. abs/1301.5933, 2013.

L. Veltri, G. Morabito, S. Salsano, N. Blefari-Melazzi, and A. Detti, “Supporting
information-centric functionality in software defined networks,” in ICC, 2012, pp.
6645-6650.

A. Detti, N. Blefari Melazzi, S. Salsano, and M. Pomposini, “CONET: A Content
Centric Inter-Networking Architecture,” in Proceedings of the ACM SIGCOMM
workshop on Information-centric networking, ser. ICN ’11. New York, NY, USA:
ACM, 2011, pp. 50-55. [Online]. Available: http://doi.acm.org/10.1145/2018584.
2018598

T. Bates, E. Chen, and R. Chandra, “BGP Route Reflection: An Alternative to Full
Mesh Internal BGP (IBGP),” IETF, RFC 4456, Apr. 2006.

S. Salsano, A. Detti, M. Cancellieri, M. Pomposini, and N. Blefari-Melazzi,
“Transport-layer issues in information centric networks,” in Proceedings of the
second edition of the ICN workshop on Information-centric networking, ser. ICN
12. New York, NY, USA: ACM, 2012, pp. 19-24. [Online]. Available:
http://doi.acm.org/10.1145/2342488.2342493

https://www.OpenNetworking.org
http://doi.acm.org/10.1145/2390231.2390239
http://doi.acm.org/10.1145/1402958.1402997
http://doi.acm.org/10.1145/2018584.2018598
http://doi.acm.org/10.1145/2018584.2018598
http://doi.acm.org/10.1145/2342488.2342493

BIBLIOGRAPHY 108

[33] S. Salsano, A. Detti, N. Blefari-Melazzi, and M. Cancellieri, “ICTP - Information
Centric Transport Protocol for CONET ICN,” IETF, Internet-Draft — work in pro-
gress 01, Nov. 2012.

[34] P. Fransson and A. Jonsson, “End-to-end measurements on performance penalties
of IPv4 options,” in Global Telecommunications Conference, 2004. GLOBECOM
'04. IEEE, vol. 3, 2004, pp. 1441-1447 Vol.3.

[385] D. Trossen and G. Parisis, “Designing and Realizing an Information-Centric Inter-
net,” Communications Magazine, IEEE, vol. 50, no. 7, pp. 60—67, 2012.

[36] P. Jokela, A. Zahemszky, C. Esteve Rothenberg, S. Arianfar, and P. Nikander,
“LIPSIN: line speed publish/subscribe inter-networking,” in Proceedings of
the ACM SIGCOMM 2009 conference on Data communication, ser. SIGCOMM
'09. New York, NY, USA: ACM, 2009, pp. 195-206. [Online]. Available:
http://doi.acm.org/10.1145/1592568.1592592

[37] D. Syrivelis, G. Parisis, D. Trossen, P. Flegkas, V. Sourlas, T. Korakis,
and L. Tassiulas, “Pursuing a Software Defined Information-Centric Network,”
in Proceedings of the 2012 European Workshop on Software Defined Networking,
ser. EWSDN ’12. Washington, DC, USA: IEEE Computer Society, 2012, pp.
103—108. [Online]. Available: http://dx.doi.org/10.1109/EWSDN.2012.20

[38] B. J. Ko, V. Pappas, R. Raghavendra, Y. Song, R. B. Dilmaghani, K.-w. Lee,
and D. Verma, “An Information-Centric Architecture for Data Center Networks,’
in Proceedings of the second edition of the ICN workshop on Information-centric
networking, ser. ICN '12. New York, NY, USA: ACM, 2012, pp. 79-84. [Online].
Available: http://doi.acm.org/10.1145/2342488.2342506

[39] M. Wahlisch, T. C. Schmidt, and M. Vahlenkamp, “Backscatter from the Data Plane
— Threats to Stability and Security in Information-Centric Network Infrastructure,”
Computer Networks, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.comnet.
2013.07.009

[40] ——, “Lessons from the Past: Why Data-driven States Harm Future Information-
Centric Networking,” in Proc. of IFIP Networking. Piscataway, NJ, USA: |IEEE
Press, 2013.

[41] ——, “Bulk of Interest: Performance Measurement of Content-Centric Routing,”
in Proc. of ACM SIGCOMM, Poster Session. New York: ACM, August 2012, pp.
99-100. [Online]. Available: http://conferences.sigcomm.org/sigcomm/2012/paper/
sigcomm/p99.pdf

http://doi.acm.org/10.1145/1592568.1592592
http://dx.doi.org/10.1109/EWSDN.2012.20
http://doi.acm.org/10.1145/2342488.2342506
http://dx.doi.org/10.1016/j.comnet.2013.07.009
http://dx.doi.org/10.1016/j.comnet.2013.07.009
http://conferences.sigcomm.org/sigcomm/2012/paper/sigcomm/p99.pdf
http://conferences.sigcomm.org/sigcomm/2012/paper/sigcomm/p99.pdf

BIBLIOGRAPHY 109

[42] “The potaroo.net Homepage,” http://bgp.potaroo.net, Nov. 2013.

[43] “The Domain Name Industry Brief” Apr. 2013. [Online]. Available: http:
/lwww.verisigninc.com/assets/domain-name-brief-april2013.pdf

[44] “The Domain Name Industry Brief — Q3 Highlights,” Apr. 2013. [Online]. Available:
http://www.verisigninc.com/assets/domain-name-brief-april2013.pdf

[45] http://googleblog.blogspot.it’2008/07/we-knew-web-was-big.html, 2008.

[46] V. Jacobson, D. K. Smetters, N. H. Briggs, M. F Plass, P. Stewart,
J. D. Thornton, and R. L. Braynard, “VoCCN: Voice-over Content-centric
Networks,” in Proceedings of the 2009 Workshop on Re-architecting the Internet,
ser. ReArch ’09. New York, NY, USA: ACM, 2009, pp. 1-6. [Online]. Available:
http://doi.acm.org/10.1145/1658978.1658980

[47] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label Switching Architec-
ture,” IETF, RFC 3031, January 2001.

[48] S. Alexander and R. Droms, “DHCP Options and BOOTP Vendor Extensions,” IETF,
RFC 2132, March 1997.

[49] M. Vahlenkamp, F. Schneider, D. Kutscher, and J. Seedorf, “Enabling Information-
Centric Networking in IP Networks Using SDN,” in Proc. of IEEE SDN4FNS, Nowv.
2013.

[50] Y. Rekhter, R. G. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear, “Address
Allocation for Private Internets,” IETF, RFC 1918, February 1996.

[51] N. Corporation, “The NEC ProgrammableFlow PF5240 Switch Datasheet.”
[Online]. Available: http://www.nec.com/en/global/prod/pflow/images_documents/
ProgrammableFlow_Switch_PF5240.pdf

[52] “The Trema Homepage,” http://trema.github.io/trema, 2013.
[53] “The Trema-Apps Homepage,” http://trema.github.io/trema/apps, 2013.
[54] “The Mininet Homepage,” http://mininet.org, 2013.

[55] R. Rosen, “Resource management: Linux kernel Namespaces and cgroups,’
Haifux, Tech. Rep., May 2013. [Online]. Available: http://www.haifux.org/lectures/
299/netLec?.pdf

http://bgp.potaroo.net
http://www.verisigninc.com/assets/domain-name-brief-april2013.pdf
http://www.verisigninc.com/assets/domain-name-brief-april2013.pdf
http://www.verisigninc.com/assets/domain-name-brief-april2013.pdf
http://googleblog.blogspot.it/2008/07/we-knew-web-was-big.html
http://doi.acm.org/10.1145/1658978.1658980
http://www.nec.com/en/global/prod/pflow/images_documents/ProgrammableFlow_Switch_PF5240.pdf
http://www.nec.com/en/global/prod/pflow/images_documents/ProgrammableFlow_Switch_PF5240.pdf
http://trema.github.io/trema
http://trema.github.io/trema/apps
http://mininet.org
http://www.haifux.org/lectures/299/netLec7.pdf
http://www.haifux.org/lectures/299/netLec7.pdf

BIBLIOGRAPHY 110

[56] C.M. Cabral, C. E. Rothenberg, and M. F. Magalhées, “Mini-CCNx: Fast Prototyping

[57]

[58]
[59]
[60]
[61]

[62]

[63]

[64]

[65]

[66]

for Named Data Networking,” in Proceedings of the 3rd ACM SIGCOMM Workshop
on Information-centric Networking, ser. ICN *13. New York, NY, USA: ACM, 2013,
pp. 33—34. [Online]. Available: http://doi.acm.org/10.1145/2491224.2491236

——, “Reproducing Real NDN Experiments Using mini-CCNXx,” in Proceedings
of the 3rd ACM SIGCOMM Workshop on Information-centric Networking, ser. ICN
13. New York, NY, USA: ACM, 2013, pp. 45-46. [Online]. Available:
http://doi.acm.org/10.1145/2491224.2491242

“The Mini-CCNX Homepage,” https://github.com/carlosmscabral/mn-ccnx, 2013.
“The Open vSwitch Homepage,” http://openvswitch.org, 2013.

“The Wireshark Homepage,” https://www.wireshark.org, 2013.

“The IGen Homepage,” http://igen.sourceforge.net, 2013.

C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore, “OFLOPS:
an open framework for openflow switch evaluation,” in Proceedings of the
13th international conference on Passive and Active Measurement, ser. PAM'12.
Berlin, Heidelberg: Springer-Verlag, 2012, pp. 85-95. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-28537-0_9

M. Reitblatt, N. Foster, J. Rexford, and D. Walker, “Consistent Updates for
Software-De?ned Networks: Change You Can Believe In!” in Proceedings of
the 10th ACM Workshop on Hot Topics in Networks, ser. HotNets-X. New York,
NY, USA: ACM, 2011, pp. 7:1-7:6. [Online]. Available: http://doi.acm.org/10.1145/
2070562.2070569

P. Peresini, M. Kuzniar, N. Vasi¢, M. Canini, and D. Kosti¢, “OF.CPP: Consistent
Packet Processing for OpenFlow,” in Proceedings of HotSDN’13, Aug 2013.

“The NFV Homepage,” http://www.etsi.org/technologies-clusters/technologies/nfv,
2013.

ETSI, Network Functions Virtualisation — Introductory White Paper, European
Telecommunications Standards Institute, Oct. 2012. [Online]. Available: http:
//portal.etsi.org/NFV/NFV_White_Paper.pdf

http://doi.acm.org/10.1145/2491224.2491236
http://doi.acm.org/10.1145/2491224.2491242
https://github.com/carlosmscabral/mn-ccnx
http://openvswitch.org
https://www.wireshark.org
http://igen.sourceforge.net
http://dx.doi.org/10.1007/978-3-642-28537-0_9
http://doi.acm.org/10.1145/2070562.2070569
http://doi.acm.org/10.1145/2070562.2070569
http://www.etsi.org/technologies-clusters/technologies/nfv
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://portal.etsi.org/NFV/NFV_White_Paper.pdf

Appendix A

Basic approach evaluation

To analyse the applicability of our basic approach and to get a first impression of the
expectable performance values, we setup an emulated network environment to run ex-
periments with our ICN-SDN approach in comparison to a simple bridged configuration
also consists of multiple CCNx-aware hops.

A.1 Emulation setup & scenarios

The network as depicted in Figure A.1 is used for a quick evaluation of the basic ap-
proach. It is configured with individual link delays via netem, the Linux integrated net-
work emulation functionality. Edge links connecting CCNx nodes to the network are
configured with 10 ms delay while the overall delay introduced by the linear arrangement
of switches also add up to 10 ms. The delay between each Open vSwitch and the con-
troller depends on the executed scenario. When utilizing the CCNx-SDN controller, we
apply a 5 ms delay to account for the centralization of the controller, whereas no delay is
applied for the reference measurements, hence, to mimic usual standalone switches. All
edge and core links carry a capacity of 10 Mbit/s each.

We use the CCNx included tools ccnsendchunks2 and ccncatchunks to run the differ-
ent comparative measurement scenarios. Via ccnsendchunks2 we published fixed size
files from one CCNx node in the network that we request via ccncatchunks on another
CCNXx node.

Within all scenarios H1 is used as the content producing node, while H3 is running the
content consuming application. Scenarios that we evaluated include at first the (i) CCNXx-
SDN approach in which our Trema CCNx-SDN controller is employed. The CCNx routing
tables default entry (ccnx:/) of all nodes is thus configured to point at the SDN-IP address
(ii) 1 Hop Bridged in which all switches connect to the standard Open vSwitch controller,
which is performing usual switching functionalities while H3 holds the direct association

APPENDIX A. BASIC APPROACH EVALUATION 112

[Trema Controller]

A AN Y
A

< --=-====

Mininet

Figure A.1: Evaluation environment

between the namespace used for the measurement and the IP address of H1 (i) 2 Hop
Bridged where an additional CCNx hop is introduced into the path. Hence, the name
entry for our measurement points to CCNx node H2, which in turn points eventually to
H1, the content serving node.

The 1 Hop Bridged case represents the optimal scenario of non-SDN operation in
which the content consumer is aware of the actual node that serves the requested con-
tent. Hence, no additional hops are to be traversed. We do not assume that this will be
the common case, additional hops that perform CCNx routing decisions will be required
to reach a content serving node. Since the CCNx-SDN controller also performs these
kind of elevated forwarding decisions, it is rather comparable with at least the 2 Hop
Bridged case.

A.2 Measurements

Figure A.2 illustrates the measurement results of 15 iterations per each of the three
scenarios. In the 1 Hop Bridged scenario, the transfer times reside between 5.77 and
6.34 seconds. Transfer times of our ICN-SDN approach though are spread less broad
and vary by only ~ 0.5 seconds in the range of 6 to 6.5 seconds. By introducing a second
hop, the bridged scenario times increase significantly such that the quartile is around 8
and slightly above 8.5 seconds, which is a wider scattering than we have seen in both
other cases. Also the maximum value is even above 9 seconds, resulting in a variation
of over one second in our measurements. The times, of course, increased because of
the additional 20 ms delay introduced by the two additional link traversals towards the
node and back to the switch. It is quite plausible that by saving an additional CCNx hop,

APPENDIX A. BASIC APPROACH EVALUATION 113

10
g SR
)
b — _
AR N e — —
[}
£
|_
ko
2 4
©
=
2 —]
0 —]
| | |
Bridged Bridged CCNx-SDN
1-Hop 2-Hop Controlled

Figure A.2: 5 MiB content transfer time comparison

the delay can be reduced, but further on, one can also see that the variance in transfer
times is lower in the ICN-SDN approach. Overall the results yield that the transfer times
increase slightly, which is evident due to the detour Interest packets take through the
controller, but they are even lower than they get when introducing an additional CCNx
hop.

Our results show that the approach introduced in Section 4 is applicable to CCNx.
Due to the detour introduced by handing up the interests to the controller, it is slightly
slower than the direct communication between content requester and origin. Neverthe-
less, since we do not expect this 1 hop dissemination to be the default case, the SDN
approach can improve the content transmission compared to the 2 Hop Bridged scen-
ario. When even further enhanced, for instance through a centralized and cache aware
request steering process in networks of greater complexity, we expect the effects to gain
even more traction.

APPENDIX A. BASIC APPROACH EVALUATION

114

To check the measured values for plausibility, we add up the different delay compon-
ents introduced in the network and compare them to the measured values.

Delay ost-to-SDN-Edge) = 10 Ms
Delay(s1_to_55) =10 ms
DeIaY(SX_tO_C) =5ms

RTT(1Hop) = Delays1.10-s5) + 2 * Delay post.t0-sSDN-Edge) ~ (A-4)

=10ms+2*x10ms =30 ms

RTT 2Hop) = RTT(1Hop) + 2 * Delay Host-10-SDN-Edge) (A.6)

=30ms+2*x10ms =50 ms

RTT(SDN) = RTT(1 Hop) + 2% Delay(SX_to_C)
=30ms+2x5ms=40ms

Filesize = 5 MB = 40 Mbit
#-Chunks ~ 5000
Link-BW = 10 Mbit/s
Initial Transmission Window = 80 Chunks

- . Filesize 40 Mbit
Transmission Tlme(Link) (tt(Link)) = Lk BW = 10 Mbit/s =

#-Transmission Windows (#-tw) =

#-Chunks B 5000

> >
© @

A.10
A1
A2
A.13

~ o~ o~ o~
—_ ~— ~— ~—

(A.14)

Transmission Time(yn) ~ #-tw x RTT (1Hop) + tt(Link)
~62,5x30ms+4s=5.875s

Transmission Timeop) ~ #-tw x RTT 2Hop) + tt(Link)
~62,5x50ms+4s="7.125s

Initial Transmission Window

= 62,5
(A.15)

80

APPENDIX A. BASIC APPROACH EVALUATION 115

Transmission Timespn) ~ #-tw x RTT(spn) + ttLink) (A.20)
~62,5x40ms+4s=65s (A.21)

The above calculations show that the measured times are in line with the expected values
according to this model. The SDN approach lies in between the 1 and the 2 hop cases
and also the values are comparable — keeping in mind that they are estimates that for
instance do not include processing times.

Since the CCNx included tool we use for the transmission, namely ccncatchunks2,
issues multiple requests at a time to fully utilize network links, we additionally check the
initial windows size, which we chose as 80 for out measurements.

Link-BW «RTT

Min. Window size = ———— (A.22)
Chunksize

10 Mbit/s 50
Min. Window size(aiop) = l'kZ;e ™ 625 (A.23)

It is visible that the transmission window of 80 chunks is sufficient, Round Trip Time
(RTT)-wise worst case of 2 Hop Bridging requires a transmission window of 63 chunks
to fully utilize the link, leaving aside the processing delay.

Versicherung uber Selbststandigkeit

Hiermit versichere ich, dass ich die vorliegende Arbeit im Sinne der Priifungsordnung
nach §22(4) bzw.§24(4) ohne fremde Hilfe selbststdndig verfasst und nur die angegebe-
nen Hilfsmittel benutzt habe.

Hamburg, 2. Dezember 2013 Markus Vahlenkamp

	Introduction
	Related Work
	Information-Centric Networking
	Concept / Overview
	NDN / CCNx

	Software-Defined Networking
	Concept / Overview
	OpenFlow

	ICN over SDN
	Software-Definded Internet Architecture
	CONET
	PURSUIT
	Info-Centric Data Center Network (IC-DCN)
	Discussion

	ICN Research Challenges
	State management in ICN
	Security threats to ICN infrastructure
	Scalability problems in ICN
	Deployment challenges in ICN
	Challenges of ICN over SDN

	Concept
	Objectives
	Initial approach
	Mode of Operation
	ICN-SDN network integration
	Detailed request processing
	Detailed response processing
	Transit ICN-SDN deployment
	Discussion

	Advanced approach
	ICN packet forking use-cases
	Request forking
	Request aggregation / response forking
	Flow entry count per SDN switch
	Cost estimation
	Discussion

	Additional advances
	Combined request and response forking
	Enable TCP
	State management trade-offs

	Implementation
	CCNx host specifics
	CCNx-SDN network integration
	CCNx-SDN controller architecture
	CCNx-SDN controller mode of operation
	Flow rule setup
	Learning and managing object locations

	Evaluation
	Measurement environment
	Measurement setup
	Data of interest
	Evaluation topologies
	From generated topology to executable network
	FIB population / routing
	Parametrization
	Procedure

	Measurement results
	Transmission times
	Processing times
	Data plane load
	Control plane load

	Evaluation Summary

	Summary
	Conclusion
	Future work

	References
	Basic approach evaluation
	Emulation setup & scenarios
	Measurements

