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Abstract

This thesis investigates new ways to measure similarity, or distances, be-
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1 Introduction

Some people may say that music is the closest that human beings come to express-
ing our understanding of the natural complexities around us. They may even claim
that music is the most abstract of the arts because it has no meaning or purpose
other than to be itself (Adams, 1987). Regardless of that, one can not deny that
music plays an important role in our everyday life and is, in combination with the
Internet, ubiquitous and manifold. A huge amount of new music is circulating in the
Internet everyday, by new artists and established ones.

Because the huge amount of variety in music is impossible to manage for a sin-
gle person, tools were invented to categorize and weight tracks by several social
and technical aspects like their genre and popularity. One of the most popular ap-
proaches to categorization is the use of the users themselves, who associate similar
sounding songs while hearing them. But as it is often the case, opinions diverge,
especially in taste of music. So what the crowd says about a piece of music is not
necessarily the same as what a single person would say about the same track, even
if there is a consensus for music classification in general.

In the real world, for example in a record store, the situation is different. The staff
listens to music and is building their very own, predictable opinion about pieces of
music. As a consequence, their recommendations are much more precise in ref-
erence to the individual. One goal of the Music Information Retrieval community is
to provide a system which does the same as the record store staff, but personal-
ized and over a much larger database of songs. A small step towards realization of
such a task is to start measuring similarities between musical pieces, or, measur-
ing distances between them and thus measuring dissimilarities. This thesis builds
upon the works of (Ness et al., 2011) and others to search for effective distance
measurements between musical pieces. Additionally, and, as a consequence of
the lack of ground truth data, a survey was conducted to test whether there is a
consensus of musical similarity and to gather reference data for distance method
implementations.

This thesis is structured in five parts which build upon each other. While this chap-
ter gives an introduction, explaining the motivation, the following chapter introduces
the actual problem. It analyzes the problem of musical similarity, possible use cases
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for working solutions, documents the execution of the conducted survey and pro-
poses new distance measurement features. The implementation chapter discusses
the implementation details and measurements for some of the proposed distance
methods, as well as the tool chain used to implement said methods. Summariz-
ing the measurements, the results chapter presents the test results of the imple-
mented features and compares the distance methods to the survey data. As there
are several tasks which are still to do, as well as new tasks which emerged during
the implementation and testing, the future work chapter documents these. Finally,
the conclusion chapter summarizes the things done, encountered problems and
lessons learned.



2 Analysis

As already mentioned in the introduction, this thesis emphasizes on the measure-
ment of similarity between musical pieces. Musical similarity can be defined in
many ways, one example would be to define musical similarity using melody only,
i.e., when both songs have the same melody, they are equal. In this thesis, musical
similarity is defined as a measurement between two musical pieces that is propor-
tional to the perception of the similarity a person perceives between these two. This
similarity can be translated to a distance, which then resembles a measurement for
dissimilarity. This thesis operates mainly on distances instead of similarities.

From the similarity definition follows, that human perception is the reference for mu-
sical similarity. Therefore it is necessary to acquire ground truth data from humans
and to test whether the definition can be expanded to a broader audience than just
a single human. For this reason, a survey was conducted which is documented in
section 2.2 of this chapter.

Before the topic of similarity and distance measurement is expanded further, the
first section of this chapter discusses use cases and implications for a working
distance measurement. After that follows the survey documentation and evaluation.
The actual definition of new distance methods is introduced by subsection 2.3.1,
which discusses the general approach to these distance measurements, while the
following section, section 2.4, describes them in detail.
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2.1 Use Cases

The introduction of this thesis already discussed music recommendation as a pop-
ular use case for musical similarity or musical distance measurements and indeed
more and more services today rely on musical or audio similarity measures and
music information retrieval. With the rise of on-demand audio streaming services
and social music sites, as well as online music shops, the need for recommendation
systems arises. Online shops want to recommend similar music to their customers
to sell more music. Audio streaming services may generate playlists based on
the similarity of the songs. Artists could benefit from music recommendation as
well: with a good, balanced musical similarities measurements, the long-tail effect
(Celma, 2010) could be compensated.

Figure 2.1: “The Long Tail for artist popularity. A log–linear plot depicting the total
number of plays. Data gathered during July, 2007, for a list of 260,525
artists.” (Celma Herrada, 2009). Image credit: (Celma Herrada, 2009).

The long-tail effect in music described by (Celma, 2010) states that only a very
small amount of all digital music tracks accounted for a very large number of plays,
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due to the biased recommendation systems of today’s online shops and recom-
mendation systems. The effects can be seen in Figure 2.1 from (Celma Herrada,
2009), which represents artist popularity for a list of 260,525 artists. It can be clearly
seen that there is a bias towards a small group of artists, which make up most of
the plays. With good recommendation systems, less known artists could be rec-
ommended to the user, making them more popular, thus balancing the sales rates
over the available music tracks. Search providers could offer similar services like
query by humming, textual search for songs given by tags or finding similar songs
by a given reference.

With the ever more growing amount of music available on the internet, it is possible
to create fully automated systems which build indexes of music to setup services
as mentioned above. It is apparent that these kind of service can be used for good
and to help users find more music they like.
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2.2 Analyzing musical similarity

This chapter discusses why the concept of musical similarity is actually applicable
to human beings and evaluates how to retrieve test data. Said test data can then be
used to compare musical similarity as experienced by a person to different computer
generated similarity measurements.

After all, it is possible, that every human has a different perception of musical sim-
ilarity, e.g. due to differences in musical taste, which would render any attempt to
create a universal musical similarity measurement impossible and useless.

The question, whether humans have a comparable judgment in musical similarity
or not, can be formulated as a null hypothesis, which then may be proven wrong:

Hypothesis 2.1 The correlation of distances between songs, as judged by people,
is zero.

This null hypothesis states, that people have no shared sense of musical similarity,
as the distances chosen by every human does not correlate with the rest of the
distances chosen by others.

If the null hypothesis is rejected, the alternative hypothesis is true:

Hypothesis 2.2 The correlation of distances between songs, as judged by people,
is significantly higher than zero.

The alternative hypothesis implies that there is a common sense for musical simi-
larity, as people judge distances between songs similarly.

The presented approach for testing the perception of similarity in this chapter, is to
ask a sufficient number of persons to sort or categorize a list of songs by their sim-
ilarity. If the results of this study are not evenly distributed, e.g. there are spikes for
specific musical pieces, the presented hypothesis is proven to be wrong. However,
doing a survey like this introduces a number of problems:

• How to present a measurement for similarity to the attendee?

• How many songs can a user judge in a reasonable amount of time?

• How to represent the songs to the attendee?
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This chapter discusses these problems, along with implementation details in sub-
section 2.2.3, and the results of the study that was carried out in the scope of this
thesis in subsection 2.2.5. The last part of this section consists of some words
about future work and a conclusion.

For clarity, the terms user and attendee used in this chapter refer to a participant
of the study.

2.2.1 Problem of a proper presentation

It is vital to choose the right presentation for the attendee, so that he can judge the
similarities of the music as intuitively as possible for an accurate result of the survey.
Furthermore, it is important that the presentation does not limit the informational
value of the attendees data too much.

Possible ways of presenting musical pieces to the attendee are discussed and com-
pared in this section, looking for an optimal trade-off between usability, being intu-
itive and precision of the data.

For the study, the Drag and Drop presentation was chosen as it was relatively easy
to implement and use.
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Ranking

Figure 2.2: The user is presented with all necessary combinations of songs and can
rate each song, in relation to the reference song, from not similar to very
similar using radio buttons.

The ranking attempt represents all songs as a list, with each list item containing a
further list of all other songs which were not yet compared to the current song.

The user needs to assign a ranking to the songs in the sub-list, which then states
the relation of the selected song to the parent song, that is, the song containing the
sub-list.

For the ranking a range from zero to five was chosen, with zero being the least
similar rating and five the most similar.

The total number of songs the user has to rate can be cropped down to
∑n−1

1 due
to the symmetry of similarity.

This approach is similar to the approach used by (Lee, 2010), which offers a ranking
of ‘Not similar’, ‘Somewhat Similar’ and ‘Very Similar’.

However, this sort of presentation turned out to be not very usable. Test persons
found it difficult to express similarity of songs in a fixed range of numbers. Also,
fixed classes are to vague for comparison with the result of algorithms, as these
tend to generate distance values and not classes, which then results in a loss of
accuracy when comparing the values.
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Drag and Drop

Figure 2.3: The songs are represented as movable boxes which can be dragged
around using the mouse cursor. The distance between the songs rep-
resents the similarity. A far distance means that the song is not similar,
near means similar.

Another way of expressing similarity is, to move similar things together. This can
be done with music as well. The drag and drop rating method represents every
song as a movable object, which can be dragged on the screen using the mouse.
The music plays as long as the user’s mouse cursor stays in the boundaries of the
object.

By placing the squares close together, the user is expressing that those songs
sound similar to her. Due to the symmetry of similarity, moving one object declares
similarity for two or more songs, which results in quicker and more intuitive decisions
made by the user.

Drag and Drop with connections

The concept introduced in this section is based upon the Drag and Drop concept,
applying the concept of dragging the songs around, but adds the ability to choose
what connections are actually relevant and which are not.
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Figure 2.4: Songs can be moved around like before but the user can specify groups
of songs for which the distances have meaning. Songs not in the group
are not affected by the distances.

As the user moves songs around in the containment area, every time she places
a song somewhere, this song has a distance to every other song, even if the user
does not find any similarity between these. By letting the user choose on which
songs the placement has influence on, the problem of unintentional similarities can
be circumvented.

A drawback of this layout is the rather complex usage and the fact that too many
connections between songs may confuse the user too much.

2.2.2 Chosen Songs

All songs were manually selected from the creative commons music distribution
website jamendo.com1 so that they fulfill the following criteria:

• There should be at least two songs of the same artist to test for artist similarity

• At least one representative of the following genres should be included: Jazz,
Hip-Hop, Metal, Techno, Rock, Classic

1http://www.jamendo.com/

http://www.jamendo.com/
http://www.jamendo.com/
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It was clear, that the attendees are not able to offer much more than 30 minutes of
time for the study, on average probably not more than 15 minutes. Because of this,
the number of songs was limited to 15.

To prevent any influence of the song or artist name, the survey only uses one-time
randomly generated nick names for each song.

Artist Title Nick name Genre
AFTER WORK Giù Lobnart Jazz
Brad Sucks Dropping out of

School
Jobbimp Pop/Rock

Brad Sucks Making Me Ner-
vous

Pacsua Pop/Rock

BS Sin Maulbop Techno
Distemper Îäåÿëà Èç Êðûø Mefpiis Ska
Gianluca Luisi Partita No. 1 - 4.

Sarabande
Mujschi Classic

Imprintz Imprintz In the
Limo

Cig Techno / DnB

KEPAY Cule Cule Bom
Bom

Rasch Ska

Marc Teichert Inspiration Raalneur World
Nesto Sales histoires Spaspet Hip-Hop
Nex2012 & DJ H Funk y Salsa por

favor
Meicje Latin / Electronic

OnClassical Partita in c-minor,
I. Sinfonia

Jein Classic

S.U.N. Another Recipe Dam Hip-Hop
The Gasoline
Brothers

Stardust, Baby! Ginsput Rock

Wasted Heroes Keep It In Your
Arms

Yadstis Metal
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2.2.3 Implementation

General technical design

For presenting the study to the user, using web technology seemed to be the
best choice, because web browsers are available almost everywhere and there-
fore makes the study available to a broader audience. Also there is a big set of
software libraries ready to use.

The following software components were needed:

• Web Server, serving the content, namely the music and the study itself, to the
participant

• Study, presented as a web page, which describes the purpose of the survey,
introduces the participant and acts as a form to accept the input of the user.

The following implementation decisions were made:

• Web back-end (Serving, Evaluation, Storage) written in Go2

• HTML5 /JavaScript front-end using the jQuery and jQuery UI3 framework

• Audio playback using the jQuery based jPlayer4

• Storage of survey data using the JSON format

Layout

The web page holding the content was sectioned in two parts, the description and
the survey. The description contains an introduction into the purpose of the study
and how to use it. The second part is the area containing the movable song ele-
ments, fitted to the user’s screen width.

The songs the user judges are presented as squares with pseudo-names as de-
scriptions. The squares are contained in a bigger square, which limits the area
in which the squares may be moved. The containment area may vary in size to
support different screen sizes. Figure 2.5 shows a visual example.

If the mouse cursor is hovering over a song square, the respective music plays
using an HTML5 audio element. As soon as the mouse cursor leaves the square,
the playback stops. By performing the common drag gesture with the mouse, the

2http://www.golang.org/
3http://www.jquery.org/
4http://jplayer.org/

http://www.golang.org/
http://www.jquery.org/
http://jplayer.org/
http://www.golang.org/
http://www.jquery.org/
http://jplayer.org/
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Figure 2.5: General layout of the study. Each box represents a song, which is iden-
tified by a nick name. Hovering the mouse cursor over a box plays the
song. Dragging the box moves it. The gray bar can be used to seek in
the song.
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user is able to move the square to a position in the containment area. To support
users who want to hear specific sections of a song, a clickable seek bar is included
in every song object.

To help the user identify the songs that are identified as similar by the survey, the
moved song square changes its color, depending on the position in the containment
area.

The color distribution in the containment depends on the following rules:

• The lower on the y-axis, the greener is in the color

• The lower on the x-axis, the less red is in the color

• The higher on the y-axis, the bluer is in the color

At the end, when the user has finished adjusting the distance of the player objects,
she needs to press a submit button. The positions of the song objects, as well as
the dimensions of the containment area, are sent to the server software, which then
stores the result on the server side.

After a successful submission, the user sees a greeting page that contains an ac-
knowledgment, as well as a link to a page where she can review the overall re-
sults.

Stored Data

After the user submits her result of the survey, the following data is transmitted to
the web server:

• Dimensions of the containment area

• Positions of each song object relative to the containment area

The server stores the user’s data in a unique file using the JSON format for data
encoding. Listing 1 gives an example of how such a result may look like at the
end.
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Figure 2.6: The movable song boxes are colored to help the user identify what is
seen as similar and what is not.
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Listing 1: Example of a user’s survey result with two songs in JSON representation.

{

"Positions": [

{

"Name": "Ginsput",

"Position": [

675.4999847412109,

162.5

]

},

{

"Name": "Lobnart",

"Position": [

678.4999847412109,

27.5

]

},

],

"Dimensions": [

730,

730

]

}
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Computing the distance

The distance is computed using euclidean distance:

d(x, y) = sqrt(x2 + y2)

with
x = x1 − x0

and
y = y1 − y0 (2.1)

The point taken for measurement is the center of the song square.

Due to the usage of squares, objects naturally have a higher distance to each other,
if they are positioned diagonal.

Normalization

Because of the variable size of computer screens, the containment area of the
movable songs resizes itself to the browser window’s width to offer as much space
as possible. Due to this, the containment areas are not equally sized and area
normalization must applied to the coordinates of each song.

As not every participant uses all the space of the containment area, some partic-
ipant will place items near together, while others may use all the available space
of the containment area. To reduce the effects of such placing habits, distance
normalization needs to be applied for each computed distance.

Area Normalization Each point (x, y) is normalized using the width and the height
of the area the movable objects are in, giving us:

anorm(x, y) := (
x

width
,

y

height
) (2.2)

It is important that width = height , or otherwise the coordinates would lose their
relationship in scale. The jQuery UI framework ensures, that this constraint is main-
tained.
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Distance Normalization The distance normalization is achieved by using a min-
max stretch:

dnorm(distance) =
distance−min(distances)

max(distances)−min(distances)
(2.3)

This ensures, that the result is independent of the used containment area and the
space used between the song objects.

2.2.4 Analysis of the user data

For proper analysis, the results of the study need to be presented to give as much
information as possible. The distances are presented as a triangular matrix with
song names as column and row descriptions. This way, it is very easy to see
which song has what distance to another song. Additionally to the overall distances,
the average distances between all songs, as well as the biggest and the smallest
distance was computed.

The same matrix presentation used for the distances, is used to present the stan-
dard deviation. Along with the deviation data there is a table with the average devia-
tion and the biggest /smallest deviation. The benefit of having the results displayed
as a table is, that it is possible to join the distance table with the deviation sam-
ple, making it easier to see how certain the users were about the specific distance
value.

To support the analysis, the mentioned tables are colored according to their mini-
mum and maximum values. Cells of the table containing smaller values were col-
ored greener whereas cells with higher values were colored redder.

2.2.5 Results

This section presents the cleaned and reviewed results and compares them with
the uncleaned results. The first part of this section summarizes the study and intro-
duces the further course through this section.

A statistical analysis of the results is carried out in the middle part of this section,
followed by the features of the distances and deviations. At the end, the results of
the two children are examined in comparison to the rest of the attendees.
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Introduction

The study was carried out as a qualitative one. The participants were hand picked
and each participant received a personalized link, which however did not reveal the
identity of the person.

A total of 42 persons with different expertise in music were asked for their opinions.
The average age of the participants was 33 years. 40 persons were from Germany
and two from the USA. The two children, siblings, were 8 and 10 respectively.

Some of the results needed to be omitted, as some attendees misunderstood the
goal of the study and simply created clusters of songs which seemed similar to
them. An example result with this properties can be seen in Figure 2.7. The problem
with these results is, that they are not defining any distances between the songs in
the clusters.

Figure 2.7: Some attendees tended to form clusters of similar sounding songs, re-
gardless of the neighbors, resulting in unintentional similarities. In this
figure, the Metal song “Yadstis” is very close to the Jazz song “Lobnart”.
Also, there are no notable differences between the songs in the clusters.
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As mentioned, some users did not complete the survey successfully and the results
turned out to be unusable. For documentary purposes, this list shows the IDs of the
unusable results:

• 1442443444

• TT98283905

• WF75882414

• NF75661670

• NF55759641

• TT44636702

• YH84375849

• YH66547383

• TT10565066

• TT67152040

• TT36831498

Most of the time, the reason for the results being unusable was that the user did not
understand the purpose of the survey, misinterpreting it as a task for classification.
One result (NF75661670) was rendered unusable by a malfunction in the survey in-
terface, which led to songs being placed outside the containment area. In total,
having 10 partially useful and 1 broken, the remaining 31 results were examined
as ‘cleaned results’. All 41 results were evaluated as ‘uncleaned results’ in Equa-
tion 2.2.5, which concludes that the uncleaned results are, in average, 10% more
vague and thus are not significantly worse than the cleaned results. Due to this
rather small difference the analysis of the results is based solely on the cleaned
results.

The distance table shown in Figure 2.9 disproves the initial null hypothesis 2.1 vi-
sually. Statistical analysis of the results is done in the following section to verify that
the null hypothesis can be rejected and the result is significant.
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Distribution and statistical analysis

In this section the statistical properties of the results are examined. The main tool
used is the statistical programming language R (R Core Team, 2012), which is fed
with the data from the survey using an export routine in the survey software that can
be called using HTTP. An example call is shown by Listing 2 later in this section.

According to the null hypothesis from the survey introduction section 2.2, the cor-
relation of the distance between the users is the most important data of the survey.
If the mean correlation is zero or insignificantly higher than zero, one can say that
the null hypothesis is true and there is no musical similarity for humans. The null
hypothesis also holds in case of negative correlations. Negative correlation values
occur when high values correspond to low values, meaning that some users tend
to have high distances for songs and others think of the opposite. Clearly such a
behavior would speak against a common sense for musical similarity.

In Figure 2.8 one can see, that most of the correlations gather around the mean
correlation of 0.3269, displayed by the vertical line in the plot, following a normal
distribution. The code written in R used to produce this histogram can be reviewed
in Listing 2.

Listing 2: R code used to generate the histogram in Figure 2.8

> library(Hmisc)

> t <- read.table('http://localhost:8080/results?export=tabularfull')

> mt <- matrix(unlist(t), ncol=length(t))

> rs <- rcorr(mt)$r

# Strip the diagonal 1.0 values from the self-correlations

> rs <- rs[rs != 1.0]

> hist(rs, col="lightblue", breaks=20, main="",

+ xlab="Correlation Values", ylab="Occurences")

> abline(v=mean(rs))

As already mentioned in this section, negative mean correlation would indicate that
the results are contradictory. Because the mean value of the correlations is not
negative, the null- and alternative hypothesis can be formalized in Equation 2.4 and
Equation 2.5 respectively. Notable is, that the hypotheses are one-sided as only the
positive correlations matter.

H0 : µ = µ0 = 0 (2.4)
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Figure 2.8: The correlations of the distances between the users seem to follow a
normal distribution. This histogram, made with 20 bins, shows that
most of the results are near the mean correlation of 0.3269, marked
with a vertical line in the plot. The amount of negative correlations is in
comparison to all positive values insignificantly low.
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H1 : µ > µ0 (2.5)

Hypothesis H0 states, that the sampled mean correlation is equal to the value pro-
posed in the null hypothesis, which is zero. The alternative hypothesis H1 on the
contrary, claims that this is not the case, so the mean correlation is significantly
bigger than the proposed value of zero.

The mean correlation is already known to be r = 0.3269 from the calculation shown
in Listing 2. To test if this value is significantly higher than zero and not random
noise, the Student’s t-statistics is used. This statistic needs a parameter to guess
the actual t-distribution of the data, which is the degree of freedom (df). The actual
t-Value, which is used along with the degrees of freedom, can be computed using R
as follows, while the formula to retrieve the t-value is the one used in the pspearman5

module from R:

> t <- r / sqrt((1 - r^2)/(n-2))

> t

[1] 1.862752

> p <- pt(t, df = 31-2, lower.tail = F)

> p

[1] 0.03632779

The results of the statistical analysis are shown in the R console listing above. The t-
value of 1.863 was calculated with 31 degrees of freedom. This t-value corresponds
to a one-tailed p-value of 3.6%. Therefore, it is safe to say that the null-hypothesis
can be rejected with p < 5%.

Distances

The distances of the cleaned results are analyzed first in this section, followed by
the distances of the uncleaned results, as described in the introduction of the results
section subsection 2.2.5.

Several songs have very small distances, for example the two classical /piano
songs, Jein and Mujschi. Also very close are Mujschi, Jein and Raalneur, which
are rather quiet and chilling. The second closest pair in the table is Spaspet and
Dam. Both are from the same genre and have a very typical Hip-Hop beat.

Pretty much all songs which share a genre have low distances to each other. Fur-
ther examples are the three songs classified as Ska: Mefpiis, Meicje and Rasch,
as well as the songs from the techno-ish genres: Cig and Maulbop.

5http://cran.r-project.org/web/packages/pspearman/index.html

http://cran.r-project.org/web/packages/pspearman/index.html
http://cran.r-project.org/web/packages/pspearman/index.html
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Figure 2.9: Distances computed from the cleaned results of the survey. The greener
the cell, the lower the distance. The row and column labels name the
songs used in the survey while the values are the average distance
between the songs.

The two songs from the same artist, Pacsua and Jobbimp, have an average distance
of 0.2, which is also relatively low. This short distance was predicted, as the songs
do not differ in genre and are from the same artist, which inherently results in a
similar style.

Regarding the Jazz song, Lobnart, strong similarities exist to the classical pieces,
as well as the world song Raalneur, which might have something to do with the
piano being played in all songs and the relatively chilling mood. To finish the analy-
sis, the Metal song Yadstis’s only strong similarities are with the other more rocky
songs, like the pop/rock song Jobbimp, the Ska song Mefpiis and the rock song
Ginsput.

The following table shows key data about the distances shown in Figure 2.9:

Biggest distance Mujschi - Dam 0.741
Smallest distance Mujschi - Jein 0.029
Average distance N/A 0.461
Median distance N/A 0.475

In comparison to the uncleaned samples shown in Figure 2.10, the cleaned results
are spread a bit broader, with the average distance being 0.46 opposed to 0.44 in
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the uncleaned distances. However, the overall song relations, as discussed above,
do not change.

Figure 2.10: Distances computed from the uncleaned results of the survey. The
greener the cell, the lower the distance.

The change in the biggest distance, from Mujschi-Dam to Mujschi-Spasbet, as seen
in the table below, is not of great importance. The distances of the songs Dam and
Spaspet are very close. So with a little fluctuation, as it happens in the uncleaned
results, both swap places.

As the general direction of the distances remains the same but the deviances are, in
average, 10% higher with the uncleaned results, the uncleaned results are ignored
in further sections.

Biggest distance Mujschi - Spaspet 0.691
Smallest distance Mujschi - Jein 0.037
Average distance N/A 0.443
Median distance N/A 0.459

Deviations

While there are different deviation measurements, such as the mean deviation, the
standard deviation was used to compare the results. The standard deviation em-
phasizes outliers so that these can be detected quickly.
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The formula used for the Standard Deviation is the following, where xavg is the
average distance of the song, xi is the user supplied distance and n is the number
of results.

√√√√ 1

n− 1

n∑
i=1

(xavg − xi)2 (2.6)

Figure 2.11: Standard deviation computed from the cleaned results of the survey.
The greener the cell, the lower the deviation.

Figure 2.9 shows the deviances of the distances from the cleaned results. The most
notable feature of the table is, that the two classical pieces, Mujschi and Jein are
very definite with a deviance of 0.04. A possible explanation for the high uncertainty
of the song pair Cig and Yadstis is, that both songs are dark /aggressive sound-
ing but the genre of Cig, Drum and Bass, is not well known, which could lead to
uncertainties.

Biggest deviance Cig - Yadstis 0.275
Smallest deviance Mujschi - Jein 0.049
Average deviance N/A 0.203
Median deviance N/A 0.204
Standard deviation N/A 0.145

The table shown above states some basic facts of the deviations as seen in Fig-
ure 2.9. In this case, average and median deviance is, the average and median pair
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deviance. That is, taking all the pair deviances and averaging /building the median.
The median deviation is at 0.20 , which equals 20% of the distance. The standard
deviation of the distances is at 0.145 , where higher values mean more variation
in similarities. Higher variation in similarities is a good thing, as this means that
some songs are more similar than others, which proves the null-hypothesis wrong,
as mentioned before.

Almost all relations (71%) between Jein and other songs are below or equal the
deviance median. The other classical song, Mujschi, is not far behind with 64% re-
lations lower or equal to the median. This means that most of the relations between
the classical songs are fairly certain for all attendees. The songs that can be clearly
identified as rock songs, Jobbimp, Ginsput and Mefpis, are also on the top of the
table.

The following table shows the distribution of songs below the median deviation in
percentage. A lower percentage means higher uncertainty, as more values lie over
the median deviation.

Maulbop 14.29%
Meicje 21.43%
Spaspet 28.57%
Yadstis 35.71%
Dam 42.86%
Pacsua 42.86%
Raalneur 50.00%
Rasch 57.14%
Lobnart 57.14%
Cig 57.14%
Mujschi 64.29%
Mefpiis 71.43%
Ginsput 71.43%
Jein 71.43%
Jobbimp 71.43%

Results of children

This section shows, that the two children, who took the survey, did not land off
too much from the results of the grownups. There are some differences but, for
example, the classical and rocky songs are classified equally to the grownups.
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Figure 2.12: Distances computed from the childrens’ results of the survey. The
greener the cell, the lower the distance.

The following table shows the songs which are very similar, according to both chil-
dren. Every song which has a distance smaller than half of the median distance,
0.265 in this case, is considered very similar.

Jein Mujschi 0.01
Jein Raalneur 0.08
Mefpiis Meicje 0.11
Rasch Jobbimp 0.11
Yadstis Cig 0.11
Mujschi Raalneur 0.17
Spaspet Pacsua 0.23
Maulbop Meicje 0.23
Yadstis Mefpiis 0.24

Like in the results of the grown ups, there are strong similarities between the two
classical pieces and the world song, Raalneur. The two ska songs Mefpiis and
Meicje are also in the tops, so are the rocky songs Rasch and Jobbimp. As already
discussed in the analysis of the grown ups’ results, there is a high deviation be-
tween Cig and Yadstis, which can be seen in the results of the children as well.
The children seem to find both songs similar despite the fact, that both are using
completely different instruments and the metal song even uses voice while the other
song does not have voice in it.
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Distances:

Biggest distance Maulbop - Dam 0.865
Smallest distance Mujschi - Jein 0.011
Average distance N/A 0.503
Median distance N/A 0.529

2.2.6 Conclusion

The initial null hypothesis 2.1 for this study is rejected in the statistical analysis
section, backing that there is something like musical similarity for humans. This
result is also backed by the results of (Lee, 2010).

While it may seem unnecessary to conduct this study, especially with the limited
amount of participants, the lack of freely available test data to test own features,
and the interest in creating another interface for a similarity survey, justify this study.
(Berenzweig et al., 2004) states, that there is still a lack for ground truth data in
the Music Information Retrieval Community. While there are projects like the Mil-
lion Song Database ongoing, there is still further research to be done. Sites like
jamendo.com, which offer freely accessible music, are very well suited to use them
in the quest for ground truth data. Test data for features in form of distance pairs be-
tween the songs, like the data successfully acquired in this study, is still needed.

The interface used in the study has proven itself to be usable and quite intuitive.
Less technically experienced users, like the children, had no problems using it.
However, as 26% of the users misunderstood the concept of the study, it would
have been better to communicate the concept using, for example, introductory im-
ages or videos instead of a textual description.

2.2.7 Future work and open questions

This study has lots of room for improvement and there are questions that cannot
be answered with the given data due to missing information or due to the limited
amount of available data.

For example, this study does not provide information about the distances of songs
in a shared genre. While the question of how humans judge similarities across
genres was examined (e.g. Jazz vs. Heavy Metal), the question of how they judge
songs in the same genre (e.g. Bach vs. Beethoven) is left untouched.
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It would have been interesting to have test data for this case, as genres often have
sub-genres which are very distinct to another but different enough to form a sub-
genre.

So, while this study provides test data for inter-genre similarity, inner-genre similarity
cannot be tested with it.

A further problem is the limited amount of data due to the number of participants.
Running this study using crowd sourcing tools like Amazon Mechanical Turk, as
done by (Lee, 2010), looks promising. However, the process of the survey needs
a bit tweaking for that task, to prevent, or at least to detect, fake entries. This may
be achieved by using a timer, to count how much time the attendee used, or by
checking whether all songs were listened to and how long.

When releasing the survey to a bigger audience, one might also want to add more
songs, which in turn makes it necessary for each user to take part in the survey
to cover all songs. For this to happen, some sort of motivation must be given, e.g.
some sort of game. One example for such a game would be, that users may get
achievements for special actions, for example taking part the second time or rating
the same song twice. However, the options for such games are very limited, as
such games must not influence the decision making of the attendee regarding the
similarities, which forbids comparisons of results and other participants to some
extent.
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2.3 Finding similarity

2.3.1 Approach

Defining a measurement for similarity based on audio signal data is a difficult task.
The used frequencies and the frequency spectrum bias of the audio signal may give
information about a general sound direction, maybe enough to tell certain songs
apart, but ignores tempo and changes in pitch completely. For a similarity mea-
sure it is insufficient to rely solely on frequency statistics. Amongst other things,
the tempo of the songs as well as the limitations of the human ear and neurons
are important. The feature vector for musical similarity can grow very large: for ex-
ample, the ‘genome’ database used by the Music Gnome Project holds “up to 450
distinct musical characteristics” (Pandora, 2013) per song. The approach made in
this thesis is not to match with a feature vector like the one from the Music Genome
Project but to find suitable approximations for musical similarity while being reason-
ably scalable to large quantities of songs.

At the beginning of this thesis it was planned to extract as many features as possible
by frequency analysis and by using an onset strength signal analysis for beat and
tempo analysis, which was successfully applied by (Holzapfel and Stylianou, 2010).
However, after further research, this was given up in favor to the Auditory Image
Model (Patterson et al., 1995). This model resembles every important step from
the ear to the brain based on empirical data, and, thus featuring the psychological
and physiological effects described by the field of psychoacoustics. The generated
images of the neuronal signals even captures some temporal information of how the
audio signal evolves over time. It seems reasonable to choose the Auditory Image
Model as a foundation for further research, as it looks promising and offers many
features combined at once while trying to emulate human hearing.

Additionally to using the Auditory Image Model, the idea of using string represen-
tations for audio features as proposed by (Casey and Slaney, 2006) is appealing,
as string analysis is well understood and performs well. With these two ideas, the
general approach used in this thesis can be broken down to the following steps:

1. Compute auditory image from a song

2. Translate the auditory image into a string representation

3. Analyze strings and extract features

4. Measure distance between feature vectors
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The following section shortly explains what the auditory image is, while the Features
section section 2.4 and its subsections discuss the way how such an auditory image
is translated into strings and the details of how these strings are processed.

2.3.2 Auditory Image Model

Auditory images are an attempt to simulate the images that our brain receives when
confronted with audio signals. Firstly, the audio signal is processed by filters which
simulate the mechanical motions that occur with the basilar membrane. After that,
the conversion to neural signals is simulated. Eventually the result is stabilized
to compensate the phase lag resulting from the filters responsible for the lower
frequencies.

(Patterson et al., 1995) introduces the first popular implementation of the Auditory
Image Model, called AIM-C, while (Walters, 2011) gives detailed information over
the current state and additions made over time. The main semantical stages to
produce an auditory image basically remained and can be described in the following
steps:

1. Middle ear filtering

2. Spectral analysis→ Basilar membrane motion

3. Neural encoding→ Neural Activity Pattern

4. Time-interval stabilization→ Stabilized Auditory Image

[][impl:aimvq] in the implementation chapter contains a more detailed explanation
of each module and its responsibilities by the means of an actual implementation of
the auditory image. However, the Stabilized Auditory Image, the end product of the
Auditory Image Model as shown in Figure 2.13, is discussed here to give the reader
an idea of what data is processed by the distance measurement features presented
in the next sections.

The horizontal axis of the Stabilized Auditory Image (SAI), as shown in Figure 2.13,
represents a time interval, sometimes called lag, while the vertical axis names the
center frequencies of the available frequency channels. The SAI is a short snapshot
of an audio signal. The input sound is split into several frequency channels where
every channel, each representing a neuron, is responsible for a certain frequency
range of which the center frequency is stated by the frequency axis. For example,
the channel at 3.9kHz for this image may be responsible for 3.9 kHz ±263 Hz.

As the filters of the channels introduce a phase lag, the signal needs to be stabi-
lized, hence the name Stabilized Auditory Image. By searching for special points
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Figure 2.13: Example of a Stabilized Auditory Image. The sub-graph on the bottom
shows the average neural activity for that time and the sub-graph at
the right side shows the average of the neural activity over time. Every
wave line represents the action in a single frequency channel. Image
credit: (Walters, 2011).

in each frequency channel, for example local maxima, called strobes, the signal
gets phase aligned along the found strobe points. This works by inserting channel
values into the image only in case a strobe was detected. The time delay between
the strobe and the other values behind it determines the place where that value will
be inserted into the image. A value 10ms behind a strobe will be inserted to the
image at t = 0 when the strobe is at t = 10. Because of this method the time axis
represents an interval instead of continuous time. The interval time represents the
time from a value to the last detected strobe. It also shows the time a data point
was inserted into the image, for example, a data point at 30.8 ms was inserted in
the image 30.8 ms ago. In the figure at t = 8.975 the effect of the phase aligning
can be seen best. A comparison of how the unstabilized image would look like can
be seen in Figure 3.2.

The additional graphs below and to the side of Figure 2.13 show the averaged
frequency values for that time and the averaged frequencies for the whole interval
respectively. One can see that at t = 8.975 the most channels were active. It can
also be seen that the values are getting smaller over time, which is due to the decay
factor for strobes and their values.

For further reading and details, Chapter 2 of (Walters, 2011) discusses in full detail
the whole process of the Auditory Image Model chain in its current state. More
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compact information can be found in (Ness et al., 2011), which summarizes the
process of the auditory image model.

The auditory image model was successfully used for melody recognition in (Walters
et al., 2012) and for sound recognition tasks in (Ness et al., 2011).
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2.4 Features

This section discusses various methods of getting features from vector quantized
auditory images introduced in subsection 2.3.2. Not all of the discussed ideas were
implemented, either due to lack of time or because basic analysis showed the fea-
tures to be ineffective.

Vector Quantization

Vector quantization (VQ) essentially associates blocks of data with a similar struc-
tured vector from another list of vectors called a codebook. The similarity is defined
on a per number basis and determined using, for example, a k-nearest neighbor
method. The result of this process is the index of the vector from the codebook.
Figure 2.14 illustrates the simplified process of vector quantization. An input is
matched against a codebook using a nearest neighbor method and the index with
the nearest neighbor, having the smallest distance to the input, is the result.

(1,2,0,0) 0: (0,0,0,0)

1: (2,2,2,2)

2: (4,4,4,4)

Input CodebookQuantization Result

index 0
?

Figure 2.14: Visualization of vector quantization. A input vector is matched against
a codebook in the proess of quantization. The index of the closest
vector from the codebook is the result.

This thesis focuses on mapping the indices from the vector quantization to an al-
phabet and applying string analysis on the concatenated characters gathered by
quantizing the input data. So, before the features can be described, firstly the al-
phabet has to be defined. The alphabet must be of at least the length of the used
codebook, so that no information is lost. The number of characters is closely re-
lated to the number of codewords in a codebook. As the number of codebooks can
grow bigger than 25 characters, a feasible solution is to use characters from the uni-
code character set for the alphabet. The actual alphabet used for the implemented
features is discussed in the implementation chapter chapter 3.
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2.4.1 String edit distance of vector quantized songs

The method presented in this section is inspired the works of (Casey and Slaney,
2006): using a string edit distance on a string of vector quantized audio. The
method can be described by the following steps:

1. Compute vector quantizations of auditory images of songs

2. Compare characters using Levenshtein distance

3. The distance of the songs is the Levenshtein distance

In (Casey and Slaney, 2006) this method was used to show that temporal informa-
tion is important. One experiment was to retrieve the used characters in a section,
sort them in a stable manner to get rid of the temporal information and compare the
resulting string using the Levenshtein distance (Levenshtein, 1966). The Leven-
shtein distance computes distances between two strings by measuring insertions,
deletions and swaps of characters. For example the two strings “audo” and “audi-
tory” have a Levenshtein distance of 5 as one swap and 4 insertions or deletions are
necessary to convert one string into the other. The results presented in this paper
have shown that this method performed poorly in comparison with methods which
kept temporal information. However, this indicator function is used in this thesis to
see what impact the Auditory Image Model may have on the results, as the image
preserves temporal information. The method is described as follows:

1. Compute vector quantizations of auditory image of songs

2. Extract used characters

3. Sort characters to get rid of temporal information

4. Compute the distance using Levenshtein distance

The output of the vector quantization is mapped to an alphabet of some size. This
output, a string, is then stripped of all content but the used characters. The resulting
string is sorted, e.g. alphabetically, so that the result only depends on the characters
occurring and not the order. Finally, a string edit distance method, e.g. Levenshtein
distance, is used to generate the distance measure between the two songs.

This method is referred to as string indicator in the following sections.

The string indicator does not neither regard the temporal features of the symbols,
nor when the characters are mentioned, in which pattern or with what frequency.
For comparison a second method is introduced which regards temporal features.

The idea of the second string-edit distance method is, to compare the complete
string of the song with the other song string:
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1. Compute vector quantizations of auditory images of songs

2. Compute the distance using Levenshtein distance

This method is called string distance in the following sections.

To normalize the Levenshtein distance the following formula was used, despite be-
ing not a metric (De La Higuera and Mico, 2008):

d =
d(s1, s2)

max(s1, s2)
(2.7)

The problem with the normalization above is that the triangle equality does not hold,
as described by (De La Higuera and Mico, 2008). However, this may also be very
well the case for musical similarity, as described by (Berenzweig et al., 2004):

“The triangle inequality can be violated because of the multifaceted na-
ture of similarity: for example, Michael Jackson is similar to the Jackson
Five, his Motown roots, and also to Madonna. Both are huge pop stars
of the 1980s, but Madonna and the Jackson Five do not otherwise have
much in common.”

The results may or may not be improved by using normalizations as proposed by
(De La Higuera and Mico, 2008) or (Marzal and Vidal, 1993).

2.4.2 Histogram of used characters in vector quantized songs

(Casey and Slaney, 2006) describes the use of histograms on the vector quantized
data. (Foote, 1997) also uses a similar technique as well as (Ness et al., 2011).
The basic method used is the following:

1. Compute vector quantizations of auditory images of songs

2. Count character or word frequency

3. Create histogram from frequencies

4. Compute distance of histograms

This feature makes use of the frequency of characters which is ignored by the string
edit distance feature discussed previously, but still disregards temporal properties.
This can be improved by using words rather than single characters when creating
the histogram. However, the word approach is difficult for histograms to achieve, as
all combinations of words have to be regarded in the vector which can grow quickly
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out of hand. Histograms as shown in Figure 2.15 are well suited for comparison
using distance measures, as they are sorted by the alphabet and not too large.

Figure 2.15: Histograms of the two least distant songs according to the survey, Jein
and Mujschi. The x-axis represents the character index in the used
alphabet.

There are certain distance measures throughout the literature which are promoted
to give good results. Amongst them are the Euclidean distance, cosine distance
and the Earth Mover’s Distance of which the cosine distance performed best.

2.4.3 Pattern and redundancy in vector quantized songs

This section introduces the detection of patterns and sequences in the stream of
characters produced by vector quantization. Finding those patterns may yield a
way to detect the speed and rhythm properties of the song and may even result in
catching, for example, the refrain or repeating guitar riffs or the like.

A general way to do this would be the following:
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1. Compute vector quantizations of auditory images of songs

2. Find redundancies and patterns, e.g. by using a suffix tree

3. Compare pattern occurrences in other songs

4. Number of occurrences is a feature

Some algorithms described by (Crawford et al., 1998) could be used to detect
patterns and repetitions. Once found, they may yield information about the beat.
However, it is yet to be proven whether this may be necessary or even possible
when using auditory images.

As this topic’s outcome is not very clear, it is not further discussed in this thesis.

2.4.4 Mood State Machine

neutralstart

happy

sad

angry
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Figure 2.16: Examplary image of a mood state machine. States change to different
moods due to the input characters.

This section introduces the idea of a mood state machine, which is a state machine
constructed to react on inputs which would change the mood of the listener, as
shown exemplarily in Figure 2.16. If, for example, the state machine is in neutral
mood and an input classified as happy is given, the state machine would change it’s
state to ‘happy’. To prevent permanent switches between the same states, thresh-
olds, probabilities of transitions or stack based counts, which hold information about
the amount of characters that led to the state, could be applied. A general use could
be realized as follows:

1. Compute vector quantizations of auditory images of songs

2. Feed each generated character in a mood state machine
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3. Read mood at the end of the song

As characters are generated from a window of auditory images, one can build a
state machine, which maps single, or, combinations of characters to moods, when
the following prerequisites are fulfilled:

1. Each character from the vector quantization process is comparable and adds
information

2. It is known which character produces or influences the mood in what way

3. The mood of a song is not too much dependent on personality of the listener

The semantic of each character can be determined as it represents a certain time
window in a song. Humans can then create ground-truth data for said time windows,
which in turn is then used to either train a neural network for mood classification, or,
train the quantizer directly so that the quantized characters carry mood information.
This would solve point two as well.

Point three is optional, as there might exist a personalized mood state machine as
well. However, a general idea of mood seems to exist amongst different human
beings as well (Wood and O’Keefe, 2005) (Scherer and Zentner, 2001).

This idea was not realized in scope of this thesis, as it requires quite some time to
even get the moods sorted out on a per song basis. The CAL500 (Turnbull et al.,
2007) dataset may be a good resource for test data as it contains mood data.



3 Implementation

This chapter discusses the implementation of the features introduced in section 2.4
including the needed tools. It also gives an overview of Marsyas’ auditory image
model implementation in section 3.2 as this helps to understand the workings of the
Auditory Image generation in general.

After describing the inner workings of Marsyas’ auditory image model implemen-
tation, the process of test data acquisition and processing is discussed. Handled
processing topics are, amongst others, the mapping of quantizations to characters
and already available tools for analyzing the data. Following that, section 3.4 de-
scribes the general implementation layout, which tools were created and how the
tools interact with each other. Finally, the implementation of the string distance,
indicator and histogram features is discussed, including a performance analysis.
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3.1 Evaluated Software Tools and Libraries

While writing the analysis software, certain audio and mathematical toolkits were
examined. This section is an evaluation of tools suitable for implementing the fea-
tures discussed in section 2.4.

3.1.1 Bregman

Bregman1 is a toolkit for various music information retrieval tasks and supports
basic psychoacoustics like the critical bands and the Bark scale. Support for the
Bark scale was appealing as it was used successfully in (Wood and O’Keefe, 2005).
It offers many examples and tutorials as well, which makes it easy to get into using
the toolkit. However, in contrast to Marsyas the Auditory Image Model was not
supported directly which renders Bregman unsuitable.

3.1.2 Marsyas

(Tzanetakis, 2007) describes Marsyas2 as “an open source audio processing
framework with specific emphasis on building Music Information Retrieval sys-
tems”. It can be used for rapid prototyping and has a comprehensive selection
of sound analysis modules, for example the Auditory Image Modules described in
section 3.2. Benefits of Marsyas are its modular structure and the direct support of
MP3 files, as well as the sufficient amount of examples. Another feature of Marsyas
is the support for Python, which enables the use of suites like SciPy, which is intro-
duced later in this section.

The used version of Marsyas at the time of writing is the Subversion revision r5064.
Custom patches were applied to circumvent a bug which prevents double buffering
of the auditory image, as described in section 3.2.5, and to prevent a bias to zero
values when the song sample rate is to small as described in subsection 3.2.7.

1http://bregman.dartmouth.edu/bregman/
2http://marsyas.info/

http://bregman.dartmouth.edu/bregman/
http://marsyas.info/
http://bregman.dartmouth.edu/bregman/
http://marsyas.info/
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3.1.3 AIM-C

AIM-C3 is the main implementation of the works described by (Patterson et al.,
1995). While it is the reference implementation for the Auditory Image Model and
partly supports some compressed music file formats, it does not offer a Python
interface and lacks the flexibility of Marsyas.

3.1.4 SciPy /NumPy

SciPy4 is a rich open-source library for the Python language. It implements various
methods suited for statistical analysis, mathematical problems, etc. The library
depends on NumPy, which offers efficient processing of numerical arrays in Python.
These Python modules alone are not sufficient for audio analysis. Thus the Python
support for Marsyas was used to combine SciPy and Marsyas.

In this thesis, these tools are used for quick testing of distance measurements,
visualization of results and for the main implementation of the AimVQ method, as
described later in this chapter.

The version of SciPy used in this thesis was 0.10.1 and NumPy was at version
1.6.2.

3.1.5 Python Levensthein

python-Levenshtein5 was used to compute the Levenshtein distance in the imple-
mentations of the features. As it offers a native implementation for the Levenshtein
distance in C the efficiency exceeds Python implementations.

The version used was 0.10.2.

3http://code.google.com/p/aimc
4http://www.scipy.org/
5http://pypi.python.org/pypi/python-Levenshtein/

http://code.google.com/p/aimc
http://www.scipy.org/
http://pypi.python.org/pypi/python-Levenshtein/
http://code.google.com/p/aimc
http://www.scipy.org/
http://pypi.python.org/pypi/python-Levenshtein/
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3.2 The AimVQ process in Maryas

In this chapter, the generation of an auditory image is explained using Marsyas’
AIM-C implementation as an example. As Marsyas’ auditory image model modules
are used for the implementation of the features discussed in this thesis, this section
also describes the data retrieval process for the features. The Auditory Image Model
modules for Marsyas were ported from the original AIM-C software in scope of
(Lyon et al., 2010).

3.2.1 Overview

The basic functionality of the auditory image generation process can be summa-
rized by the following semantical tasks:

1. Simulate the hearing of humans using an auditory image

2. Cut the data into processable boxes

3. Use Vector Quantization on the data in the boxes

The process of analysis consists of chaining a list of modules, each module gener-
ating an output matrix from an input matrix, in the following order:

1. Sound File Source

2. AimPZFC

3. AimHCL

4. AimLocalMax

5. AimSAI

6. AimBoxes

7. AimVQ

The modules from the listing above are described in the following subsections, ex-
cept for the sound file source, which has nothing to do with the actual process-
ing. Before diving deeper into the module descriptions, the following code example
aims to give an overview over how the AIM modules are used in combination with
Marsyas. The presented code plots a histogram of the used codewords as done in
(Ness et al., 2011). The implementation language is Python, as it is very easy to
understand without much knowledge about the syntax.
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The example program, split up in three parts for the sake of clarity, begins with
importing the required modules. When Marsyas is compiled with Python support,
two modules are available: marsyas and marsyas_util. The first being the bindings
to the native library and the second being an utility module which offers, amongst
other things, helper methods for creating a Marsyas network from lists and conver-
sion methods for Marsyas vectors to NumPy vectors.

Listing 3: First part

import marsyas

import marsyas_util

import numpy

import sys

import pylab

# Network definition: 'net' is a series of modules.

aimNetwork = ["Series/net", [

"SoundFileSource/asrc",

"AimPZFC/aimpzfc",

"AimHCL/aimhcl",

"AimLocalMax/aimlocalmax",

"AimSAI/aimsai",

"AimBoxes/aimBoxes",

"AimVQ/vq",

]]

The Marsyas network is defined using lists, where each network component, for
example the component of type Series, which is named net, has a list of modules
or sub-networks. In this case there is only one Series module, which contains
all the modules as described at the beginning of this section. The next step is to
build the network from the list definition using marsyas_util.create(aimNetwork),
which registers and sets up the modules in Marsyas. After setting up the network,
the code expects a filename as first parameter of the script, which is the input
audio file. Said input filename is then fed to the SoundFileSource module using
net.updControl(), which can set variables by supplying a string, which encodes
the path to the module in the network as well as the type and name of the variable
to update. In this case the string

"SoundFileSource/asrc/mrs_string/filename"

addresses a variable with the name filename of type mrs_string from the
SoundFileSource module named asrc.
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Listing 4: Second part

# Compile the network in Marsyas.

net = marsyas_util.create(aimNetwork)

# Read a file from the command line (first parameter).

filename = sys.argv[1]

# Use a smaller samples per window size to speed calculation up.

net.updControl("mrs_natural/inSamples", 512);

# Feed the file name to the SoundFileSource.

net.updControl("SoundFileSource/asrc/mrs_string/filename", filename)

This is the only setup the network needs to be run. The next step is initializing the
histogram creation loop and the display of the results using the pylab module.

Listing 5: Third part

firstRun = True

histogram = []

# Loop as long as the sound file source has data available.

while net.getControl("SoundFileSource/asrc/mrs_bool/hasData").to_bool():

# Run the network for one processing tick.

net.tick()

# Get data from the network and convert it to a numpy array.

vq = net.getControl("mrs_realvec/processedData").to_realvec()

vq = marsyas_util.realvec2array(vq)[0]

# Accumulate the sparse vectors from the AimVQ module.

if firstRun:

histogram = vq

firstRun = False

else:

histogram = histogram + vq

# Show a bar plot with the accumulated sparse vectors (a histogram).

pylab.bar(range(len(histogram)), histogram, width=1)

pylab.show()
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The while-loop, which runs as long as the SoundFileSource in the network has
data available, calls the network once per iteration and reads the available data.
Said data is a realvec, a vector type used to pass information between Marsyas
modules. The realvec, identified as vq in the code, is the sparse vector produced
by the AimVQ module. The produced vector is 8800 entries long and represents the
codewords of 44 codebooks, each having 200 codewords. The values of the vector
are mostly zeros, a one indicates that the codeword at this index was used. For
example, if every quantization results in the first codeword, every 200th index of the
8800 entries long vector would contain a 1 and every other value would be 0. This
vector is then summed up, effectively creating a histogram of each codeword. At the
end, this vector is printed using a bar plot provided by the pylab module. Figure 3.1
shows the resulting histogram of 8800 values.

Figure 3.1: The output of the example program: a histogram of 8800 codewords for
the song Spaspet used in the survey described in section 2.2.
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3.2.2 AimPZFC

Dick Lyon’s Pole-Zero Filter Cascade

Usually gammatone filters are used in AIM-C to simulate the basilar membrane mo-
tion (Patterson et al., 1995). (Lyon, 2011) introduces the pole-zero filter cascade
which uses cascaded pole- and zero crossing filters and “provide a good match
to human psychophysical and physiological data.” (Lyon, 2011). The PZFC was
introduced to the Auditory Image Model by (Walters, 2011). While there is an
AimGamma module in Marsyas, the AimPZFC module is used because it was used
successfully in related experiments like (Walters et al., 2012).

Expected Input Matrix

An array of samples from a sound file is expected to be the input, e.g. from the
SoundFileSource module.

Produced Output Matrix

The output matrix is n-dimensional, with n being the number of supported frequency
channels. These channels are limited by the maximum and minimum center fre-
quencies, which default to 6kHz and 100Hz respectively. However, the actual num-
ber of channels is computed from more parameters than that.

The structure of the output matrix is shown in the matrix below, filled with dummy
values for illustration purposes. The rows labeled with c refer to a frequency channel
and the cf rows refer to the respective center frequencies of the channels. The
columns, labeled with s, correspond to the the samples from the song.

s0 s1 ... sn



c0 1 1 ... 1

c1 1 0 ... 1

... 0 1 ... 1

cn 0 0 ... 1

cf0 1 1 ... 1

cf1 1 0 ... 1

... 0 1 ... 1

cfn 0 0 ... 1
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3.2.3 AimHCL

Half-wave rectification, compression and low-pass filtering

In short, the Half-wave rectification Compression Low-pass filtering (HCL) module
is used to generate a Neural Activity Pattern (NAP) from a gammatone filterbank
(Patterson et al., 1995), or, in this setup, from the pole- zero filter cascade. In case
of the pole-zero filter cascade, only half wave rectification and low-pass filtering are
needed to simulate the motion of the hair cells in the inner ear that are responsible
for translating the mechanical motions to neural excitement. This process then
results in the neural activity pattern which represents the state of the neurons when
excited by the mechanical motions of the basilar membrane at a given time, as
shown in Figure 3.2. The used frequencies are Equivalent Rectangular Bandwidth
(ERB) frequencies, which simulate the bandwidths of the filters in the inner ear
using band-pass filters as simplification.

Figure 3.2: An example Neural Activity Pattern “for a short segment of the vowel
/a/” (Walters, 2011). Each frequency channel corresponds to a neuron.
The amplitudes per channel show the excitement of the corresponding
neuron. Image credit: (Walters, 2011).
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The neural activity pattern, as seen in Figure 3.2, is shifted to the right the lower
the frequency channel gets. This phase shift is not wanted and has to be stabilized.
For this purpose the following modules are needed.

Expected Input Matrix

The output matrix from AimPZFC or AimGamma is expected, which holds filtered
values of an audio signal.

Produced Output Matrix

The output matrix has the same structure as the one produced by AimPZFC. The
channel values are changed by this module, but the center frequencies are left
untouched.

The number of channels is computed from the number of input rows divided by two.
This works, as the output coming from AimPZFC has channels · 2 rows (channel
values and channel center frequency values).

3.2.4 AimLocalMax

Local maximum strobe criterion: decaying threshold with timeout

The NAP generated from the HCL module is not stable. That is, there is a phase
shift which grows the broader the frequency bandwidth of the corresponding filter
is. (Patterson, 1987) and the aim95 manual state that “this phase lag has to be
enormous (> 4ms) to affect what we hear; indeed, reversing the phase lag with
synthetic stimuli does not change what we hear (Patterson, 1987)” (Patterson and
Bleeck, 1995). As a result of these findings, “Phase information that appears in
the basilar membrane motion but which we do not hear, is removed in the third
module by the strobe mechanism of the temporal integration process.” (Patterson
and Bleeck, 1995). This means that the phase shift is corrected using a temporal
integration process, of which the first step is done by this module.

To align the phases, strobes are searched. Said strobes can then be used to align
the frequency channels along the strobes. They are found by searching for local
maxima in the signal of the channel. The details of this and others methods are
discussed and compared deeply by (Walters, 2011). This module only finds the
strobes, whereas the next module, AimSAI, correlates the strobes with the signal to
produce a stable auditory image.
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Figure 3.3: Found strobes in a NAP are highlighted red. Image credit: (Walters,
2011).
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Expected Input Matrix

The output matrix from AimHCL is expected, containing half-wave rectified and ad-
ditionally filtered audio signal data.

Produced Output Matrix

The following visualizes the generated output matrix. While the values are actually
dummy values, it is to note that the strobe values are either zero or one, where a
one indicates a strobe.

s0 s1 ... sn



c0 1 1 ... 1

c1 1 0 ... 1

... 0 1 ... 1

cn 0 0 ... 1

cf0 1 1 ... 1

cf1 1 0 ... 1

... 0 1 ... 1

cfn 0 0 ... 1

st0 1 1 ... 1

st1 1 0 ... 1

... 0 1 ... 1

stn 0 0 ... 1

The produced output matrix of the AimLocalMax module now has three times the
number of frequency channels in rows. The first third is the signal (c rows), the next
third are the center frequencies (cf rows) and the third block consists of the strobes
calculated (st rows) in this module.

3.2.5 AimSAI

Stabilised Auditory Image

As already elaborated in the AimLocalMax (subsection 3.2.4) module description,
the Neuron Activity Pattern generated by the AimPZFC (subsection 3.2.2) and
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AimHCL (subsection 3.2.3) filterbanks, as seen in Figure 3.2, introduces a phase
lag and is therefore not stable. In this case stable means that the loudness of a
periodic sound is fixed and not fluctuating, which would not be the case with the
phase lag.

“In the high-frequency channels, the filters are broad and the glottal
pulses generate impulse responses which decay relatively quickly. In
the low-frequency channels is the phase lag, or propagation delay,

of the cochlea, which arises because the narrower low-frequency filters
respond more slowly to input.” (Patterson et al., 1995)

Low-frequency channels are lagging behind the high-frequency channels, and
therefore the image needs stabilization to compensate the lag. For this reason
strobes are generated by AimLocalMax. These strobes are used in a way described
in detail by (Walters, 2011, p. 100):

“The stabilised auditory image (SAI) is a two dimensional representation
of an input sound. A single SAI is a snapshot of the audio in a short win-
dow around a point in time. The SAI changes continuously with time, and
successive snapshots can be concatenated to make a movie of these
two dimensional frames. The first dimension of an SAI frame is simply
the spectral dimension added by the filterbank. The second dimension
comes from the strobed temporal integration process by which an SAI
is generated. Strobed temporal integration works by locating prominent
peaks, or ‘strobes’, in the incoming signal and calculating ‘lags’ rela-
tive to these times. These peaks are most commonly associated with
the pulses in pulse resonance sounds, for example the glottal pulses in
speech. When a strobe occurs in a channel, a short segment of the
signal following the peak in that channel is added to a buffer, starting at
zero lag. The signals following multiple strobe points add constructively
in the buffer. This process leads to a stable spectrotemporal represen-
tation of the microstructure in the signal following each pulse in the input
sound.”

To summarize, the procedure of phase alignment is done to compensate the phase
shift in the NAP. There is a buffer for each frequency channel which starts at zero
lag and each time a strobe occurs. A segment of the signal with the strobe is
added to the buffer. This is done for each frequency channel, so that strobes are
synchronizing the auditory image. The buffer length in the implementation defaults
to 11.63266 ms. Figure 3.4 shows how a NAP looks after the phase alignment.
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Figure 3.4: Stabilized Auditory Image. Image credit: (Walters, 2011).

Expected Input Matrix

AimSAI expects the output matrix from AimLocalMax, which contains the filtered
audio signal data as well as found strobes for correlation.

Produced Output Matrix

The output is a m×n matrix where m is the number of frequency channels and n is
the number of samples per frame, which depends on the number of input samples
and the configured frame period in milliseconds, which defaults to 11.63266 ms, the
same value as the maximum strobe delay.

s0 s1 ... sn


c0 1 1 ... 1

c1 1 0 ... 1

... 0 1 ... 1

cn 0 0 ... 1
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Broken double buffering

At the time this thesis was carried out, there was a bug in AIM-C and Marsyas’ AIM
implementation, which prevented double buffering of the SAI. This leads to slightly
different results, as there are less samples being generated from the same boxes.
Figure 3.5, generated in scope of the string indicator implementation (subsec-
tion 4.2.2), compares the unbuffered and double buffered quality of performance.
The figure is generated using the absolute difference between two matrices: the
averaged distances of the participants of the survey and the distances calculated
by the string indicator method. The absolute difference of the matrices is then av-
eraged for each of the codebooks. Said average value is then used for comparison
where lower values indicate better results, as the mean difference to the survey
results is lower.

If the process works with double buffering, as it is intended to, results are only
populated to the next module when a full image is rendered. Without the double
buffering working properly the output matrix is constantly updated without waiting
for a full image. This leads to more intermediate images or tearing and thus to
noisy data. While the general direction of the results did not change significantly,
the quality of some results improved, which can be seen by the local minimum at
x = 38.

Detailed implementation specific information is available online in the AIM-C issue
tracker6.

3.2.6 AimBoxes

‘Box-cutting’ routine to generate dense features

The box-cutting is a very important step, as it reduces the high dimensional Stabi-
lizied Auditory Image into a single vector of, in case of this thesis, temporalSize +
spectralSize = 32 + 16 = 48 values, which can be matched easily afterwards using
vector quantization. The dimensions are the same as they were used for base line
testing in (Lyon et al., 2010):

In our baseline we use rectangles of size 16 × 32 and larger, each di-
mension being multiplied by powers of two, up to the largest size that fits
in an SAI frame. (Lyon et al., 2010, p. 29)

6http://code.google.com/p/aimc/issues/detail?id=4

http://code.google.com/p/aimc/issues/detail?id=4
http://code.google.com/p/aimc/issues/detail?id=4
http://code.google.com/p/aimc/issues/detail?id=4
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Figure 3.5: String indicator results for different codebooks. The absolute difference
of the string indicator feature result matrix (Mindicator) to the survey re-
sults matrix (Msurvey). The red line represents the unbuffered results
whereas the green results are double-buffered.
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Figure 3.6: Box cutting of a Stabilized Auditory Image into two 32 × 16 boxes with
different input areas. The first, most left, box uses 32× 16 input values,
whereas the second box uses 64× 16 input values from the SAI.
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The boxes itself are always fixed in width and height: 32×16 (width×height) values
in this case. The width determines how many values in the lag/temporal dimension
are covered. The height defines how many frequency channels, or neurons, are
covered. However, to cover all possible details of the SAI, multiple box input areas
with different resolutions are used, so that “different box sizes and shapes capture
both different large-scale image structure, corresponding to pitch and temporal co-
herence, and the micro structure corresponding to the resonances following each
pulse. Wide boxes capture long-term temporal patterns; [. . . ]” (Lyon et al., 2010,
p. 30).

While, for example, small temporal coverage may suffice for tiny changes in the
signal, the broader development of the signal gets lost. The idea is to create boxes
with growing input areas, as shown in Figure 3.6. In the figure there is one box which
uses an input area of 32× 16 values and a second one, which uses twice as much
area in temporal direction. The second area would catch twice as much temporal
information and has therefore more information about the temporal development of
the signal. Said input areas are always reduced to the box size of 32 × 16 values.
The input area extends in temporal direction by powers of two and is limited by the
length of the SAI, which itself is limited by the sample rate of the sound. Additionally
to temporal growth, the spectral side of the input area grows as well. Instead of
powers of two, the area is moved up in the spectral values by the size of itself. After
the top of the SAI is hit by the input area, the process starts anew at the bottom but
with the spectral input area doubled in size.

Because the values of the input area are fitted into the box, which is usually smaller
than the input area, the overlapping values are reduced to a single value using the
mean value. For example, an input area of 64× 16 values does not fit into a 32× 16
box as there are twice as much temporal values. The overlapping temporal values,
two for each value in the target box, are then averaged and the resulting single
value can be put into the box without problems.

Expected Input Matrix

The output matrix from AimSAI is expected.

Produced Output Matrix

In the following visualization, a row labeled with a c represents a box column and a
r row represents a box row respectively. The column b labels stand for box. As in
the examples before, the values in the matrix are just dummy values.
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b0 b1 ... bk



c0 1 1 ... 1

c1 1 0 ... 1

... 0 1 ... 1

cn 0 0 ... 1

r0 1 1 ... 1

r1 1 0 ... 1

... 0 1 ... 1

rm 0 0 ... 1

With a box size of 32×16, n is the amount of columns, which is equal to the temporal
size of the box and therefore corresponds to the value 32. The value m on the other
hand equals 16, being the number of rows. The box count k depends on the audio
input. Different dimensions of the SAI, for example lower width due to less samples,
shrinks the amount of possible boxes cut from the SAI.

Every box generated consists of spectralSize+ temporalSize = 16 + 32 = 48 rows,
first the averaged columns and then the averaged rows.

3.2.7 AimVQ

Vector Quantization via kNN trees

Box cutting and using more than one codebook for the different boxes is done to
catch the temporal development of the SAI. By splitting the image in several smaller
boxes, each emphasizing on a specific region, the temporal information is saved in
various resolutions. Therefore, each quantization is influenced by different portions
of the SAI. This technique is described in (Faundez-Zanuy and Pascual-Gaspar,
2011).

Expected Input Matrix

AimVQ expects as input a matrix like the one that AimBoxes generates.
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Produced Output Matrix

The output matrix is a series of concatenated sparse vectors generated from the
input boxes. Each vector consists of zero values except for a single value which is
one. (Ness et al., 2011) uses concatenated sparse vectors to build a histogram of
the used words. The following example shows a possible output matrix. m denotes
the number of input boxes and n the number of values per box. n is a known value,
as it is the spectral/temporal size mentioned above, being 48 values.

sparsevector



b0,0 1

b0,1 0

... 0

b0,n 0

b1,0 1

b1,1 0

... 0

b1,n 0

... ...

bm,0 1

bm,1 0

... 0

bm,n 0

Zero Value Bias

The AimVQ module expects the input matrix to have at least as much boxes as
there are codebooks. If this is not the case, which may be when having down-
sampled music, AimVQ takes an vector filled with zeros, that the vector quantizer
then translates to an index. This results in a bias on a specific character when not
treated. In the scope of this thesis a patch to prevent this behavior and to just abort
the computation was applied.
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Characteristics of the codebooks

The codebooks are the one presented in (Ness et al., 2011), which are optimized
for music retrieval. The codebooks were generated from a sound database con-
taining environmental sounds like crickets, audiences laughing, etc. The following
quote describes the process of generating the codebooks:

“We first preprocessed a collection of 1000 music files from 10 genres
using a PZFC filterbank followed by strobed temporal integration to yield
a set of SAI frames for each file. We then take this set of SAI and
apply the box- cutting technique described above. The followed by the
calculation of row and column marginals. These vectors are then used to
train dictionaries of 200 entries, representing abstract “auditory words”,
for each box position, using a k-means algorithm.” (Ness et al., 2011, p.
9–10).
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3.3 Data Retrieval

Having data to test and to guide the direction of the implementation is important.
Thus, this section explains which songs were used as test data and introduces the
methods to retrieve the test data from said songs.

3.3.1 Test Data

For testing the quality of the features, the songs of the previous user study are used
as a reference, as well as the similarities found in the study.

Furthermore, the covers80 dataset (Ellis, 2007) is used, which provides 80 pairs
of cover songs. This dataset has the advantage of not needing human reference
data, as song covers can be assumed to be similar. The disadvantage is that even
covers can be so different that a human would not judge them as similar. The
first ten songs from the covers80 database were used, resulting in 20 songs being
compared. As there is no reference data but the cover songs themselves, which are
supposed to have a high similarity for their covered partner song, an ideal matrix
is used for comparison. Said matrix has value 0.0 for each cover song pair and
1.0 everywhere else. This is then compared to the result of the algorithm. In the
string indicator implementation (subsection 4.2.2) the impracticality of this approach
is discussed.

All songs used for testing were sampled with 44kHz and 512 samples per window.

The reference data and the data from the algorithms mostly differ in scale, that is,
they have different maximum values, which makes them difficult to compare. This
was compensated by fitting the algorithm data to the maximum value of the refer-
ence data. At first, the results were fitted to the matrix with the higher maximum
value, but it soon became apparent that this does not yield comparable results, as
the algorithm data varies and therefore does the source of the fitting. Consequently,
the distance matrix produced by the algorithm was normalized to the distance ma-
trix of the survey using the following formula:

Mcomparable =Malgorithm ·
max(Msurvey)

max(Malgorithm)
(3.1)
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3.3.2 Alphabet

As the features presented in section 2.4 mainly operate on strings, it is necessary
to map the audio data, or more specifically, the Stabilized Auditory Image (SAI) to
characters. To do this, an alphabet is required, which serves as a translation table
between vector quantization indices and characters.

The length of the alphabet is determined by the amount of words per quantization
codebook. The AimVQ module uses 44 codebooks with 200 words each. Conse-
quently, the bare minimum to represent one codebook is an alphabet of 200 charac-
ters, one for each codeword. Characteristics of the used codebooks are described
in subsection 3.2.7.

The formula for how many characters are needed for a given number of codebooks
n is the following:

n · 200 (3.2)

For example, the first codebook may be mapped to the characters in [0; 200) where
the second codebook uses the characters in [200; 400) and so on. To map each
quantization to it’s own codebook, one would require an alphabet with the size of
|quantizations| · |codebooks| = 44 · 200 = 8800 characters.

The alphabet is constructed from a string of printable unicode characters. This
string is sorted alphabetically and consists of all characters in the unicode classes
Lu, Ll, Lt, Lm, Lo, Nd, Nl, No, Pc, Pd, Ps, Pe, Pi, Pf, Po, Sm, Sc, Sk and So, which are

printable and punctuation characters7. Using unicode characters has the benefit
of being able to scale the size of the alphabet up to the maximum number of 8800
characters just by adjusting the upper limit of the alphabet. For example, when using
only 200 characters for the alphabet, one would only use the 200 first characters of
the unicode string.

The actual mapping of the codebook to the alphabet is described in each experi-
ment.

7http://www.unicode.org/reports/tr44/#GC_Values_Table

http://www.unicode.org/reports/tr44/#GC_Values_Table
http://www.unicode.org/reports/tr44/#GC_Values_Table
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3.3.3 Translation modes

As the alphabet described in the previous chapter is limited in length and the quan-
tized indices range from zero to the length of the quantization vector (8800 entries
with the used implementation, 44 codebooks and 200 codewords each), the output
must be translated to the alphabet in some way. This section describes the methods
to map the quantization output to the alphabet. The general process of translation
is shown in Figure 3.7.

Quantizations of SAI

Translation method

Translated Result

10 214 444 677

Boxes cut from SAI

10 214 444 677

10

'k' Alphabet lookup

Figure 3.7: Visualization of the quantization vector translation as well as the map-
ping of the translated vectors to the alphabet. The translation method
used in this example is the single method with box index 0, therefore
only the first box is used.

Every translation mode used for the implementation of the various features is de-
scribed in its own subsection below. The subsection title used in the following sec-
tions is the common name of the method.

Single

Use only one selected quantization from the available quantizations and discard the
rest, as shown in Figure 3.8. This method maps each used quantization codeword
to a character from the alphabet. The influence of this single feature depends on the
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selected index, as the index effectively represents a box cut from the SAI. Boxes
from the SAI are differently sized before cut down to the actual box size as de-
scribed in subsection 3.2.6, so it is likely that each quantization performs differently,
depending on the box size.

Quantizations of SAI

Select quantization

according to index

Result

Figure 3.8: Example of the Single translation mode. Only one selected quantization,
the first one in this case, is returned.

Accumulate

Summarize all indices yielded by the quantization and take the result modulo al-
phabet size. The process is visualized in Figure 3.9. This method yields most or
all characters from the alphabet, as the sum of the indices modulo alphabet size
is very likely to repeat itself constantly, resulting in the same characters. Only an
alphabet of |quantizations| · |codebook| = 44 · 200 would prevent the characters from
reoccurring. This method distributes all quantizations, and therefore all different
views on the SAI, to one string. Therefore, this method unifies all different box sizes
and quantizers and should perform well.
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Quantizations of SAI

Use all quantizations

Result

+ mod |alphabet|

Figure 3.9: Example of the Accumulate translation method. The resulting indices
from the quantization process are summarized and the result is taken
modulo the size of the alphabet.

EachIndex

Instead of generating only one character per quantization, all quantized characters
are added. This is done by iterating over the found indices and getting the character
from the alphabet at position index mod alphabetSize. A visualization of this pro-
cess is given by Figure 3.10. This method has the same problem as Accumulation,
i.e., most of the characters from the alphabet will be used and therefore an alpha-
betically sorted string of used characters has little information when compared to
equally extracted strings. However, using this method to pre-process the songs the
Single method as well as the Accumulate method can be derived from the produced
data. Therefore, this method is used for calculating the quantizations, as described
in the next section.
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Quantizations of SAI

Use all quantizations

modulo |alphabet|

Result

Figure 3.10: Example of the EachIndex translation method. All quantizations are
returned.

The data is precomputed from the audio using the EachIndex method, with which all
other methods can be derived from. Single can be derived from EachIndex by taking
the n-th character of each word. Accumulate can be achieved by summarizing
the index of each character in each word and getting the new character from the
alphabet using the accumulated index. The next section describes how this pre-
computation was done.

3.3.4 Data Extraction

This section brings together the methods and formalities discussed before and sum-
marizes the process of converting a song into a dataset of characters from an al-
phabet.

The resulting implementation in Python utilizes Marsyas to create a network of the
Auditory Image Components described in section 3.2. For completeness the net-
work is listed again in compact form:

1. SoundFileSource - The song to analyze

2. AimPZFC - Simulating Basilar Membrane Motion

3. AimHCL - Generating a Neural Activity Pattern

4. AimLocalMax - Detecting stabilization strobes

5. AimSAI - Generating a Stabilized Auditory Image

6. AimBoxes - Cutting down to uniformed vectors
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7. AimVQ - Quantize the vectors

The tool to extract the data accepts three important parameters: the input filename,
the name of the output file where the analyzed data will be stored and the size of
the alphabet. While processing a song it runs the Marsyas network and collects
the output of the AimVQ module. The output is then mapped to the alphabet as
described by subsection 3.3.3. The tool also supports printing the currently quan-
tized characters while simultaneously playing the song back, so the listener can get
a feeling for which sound caused the generation of which character.

Said tool writes its JSON formatted output to the destination file name given at start
time. This is particularly helpful because the computation is not optimized and takes
some time. The JSON format consists of a mapping with five keys. An example file
can be seen below:

Listing 6: Examplatory JSON output of the vector quantization.

{

"Encoding": "eachIndex",

"Alphabet": "ABCDEFGHIJKL",

"WordSize": 1,

"Usage": [["A",2],["B",5]],

"Data": "ABBABBB"

}

In detail, the JSON format consists of the following keys with the given semantics
types of the data they hold.

• "Encoding": The translation method used described by a string. The tool
is capable of changing the translation method, as the each index transla-
tion method was introduced last, and therefore, first attempts used the single
method. This is merely a legacy feature. Possible values are: "eachIndex",
"accumulate" and "ignore", whereas ignore refers to the single method.

• "Alphabet": This value holds the used alphabet as a alphabetically sorted
string.

• "WordSize": Every translation mode has a number of characters generated
from each quantization. accumulate and single generate words consisting of
one character while eachIndex creates words where the length depends on
the number quantizations. The survey data, for example, has a word size of
44 characters, so this field holds the integer number 44 in that case.
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• "Usage": The usage value is a histogram of the used characters of the alpha-
bet. It is a list of lists, representing a list of tuples. Each tuple consists of the
character, a string, and the number of times it occurs in the complete output
string, an integer.

• "Data": As every translation yields a certain amount (see "WordSize") of
characters, these characters are accumulated to a string. This field repre-
sents said string. It is the complete output of the whole process.

All features operate on the JSON format described in this section. As discussed
before, only the eachIndex method was used in the experiments because all other
methods can easily be derived from that and one does not have to run the lengthy
extraction process for each method and parameter.
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3.4 General implementation layout

Essentially, the whole implementation consists of three tools: the data extraction
tool which uses Marsyas to retrieve the vector quantized data, the feature imple-
mentations and a tool to compare the results of the features to the test data. This
section describes the data- and work flow of the tools as well as the intermediate
formats.

Data acquisition tool

The data acquisition tool analyzes a music file and stores the results in a JSON
file, as described in subsection 3.3.4. After that, the song can be analyzed using
the analysis tool, which implements the features. The feature tool generates dis-
tances from two sets of files and writes the results in a new JSON file. The third
tool can now compare these results with the results of the survey or with other re-
sults generated by the distance tool. The whole simplified process is visualized in
Figure 3.11.

Data Acquisition
Distance 

Measurement

Distance 

Comparison

Figure 3.11: Visualization of the tool chain and the purpose of the single tools. At
first, the results are computed using the Marysas network, then the
second tool measures the distances between the results. Finally the
measured distance can be compared to the results of the survey.

Distance measurement tool

The feature implementations are not that lengthy, which made it possible to unify the
distance computation of all features in a single tool. Three parameters define the
behavior of the distance measurement tool. The first parameter, which is optional,
is the character index to use. When specified, it defines which character is used of
each word in the data. As the word size is known, those words can be found easily.
This parameter makes it possible to use eachIndex data as a base for single data
by selecting the wanted index. The second parameter determines whether to use
the Levenshtein distance or the histogram distance. Finally the third parameter
describes the specific method of distance computation to use, e.g., indicator or
cosine.
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For the Levenshtein distance measurements, there is the normdistance method,
which takes the Levenshtein distance and normalizes it as described earlier in sub-
section 2.4.1 and there is the distance method, which just computes the Leven-
shtein distance without normalization.

The histogram distance has several methods, which are all related to the distance
measurement used. The string supplied regarding the method defines the SciPy
method to be used. Examples are cosine for cosine distance and euclidean for
euclidean distance between the histogram vectors.

After generating the distances, the results are written to a JSON file, which is a
O(n2) mapping of songs, holding the distance values of each song relation. The
comparison tool then can use this file to compare the results with the results of the
survey or other results. An example of this JSON file is shown in Listing 7.

Listing 7: Examplary JSON output of distance measurement tool. The values depend on the parameters of the distance
measurement.

{

"Song1": {

"Song2": 0.10,

"Song3": 0.20

},

"Song2": {

"Song1": 0.10,

"Song3": 0.80,

},

"Song3": {

"Song1": 0.20,

"Song2": 0.80

}

}

Tool usage

To visualize how the tools are used, the following examplatory calls are listed be-
low:

• $ aimvq.py �method eachIndex Nesto_-_Sales_histoires.mp3 results_eachIndex/

spaspet.json

Use the Marsyas network to generate a JSON file as described in Listing 6 from an
input audio file.
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• $ ./distances.py �levenshtein �method indicator �char-index 3

results_eachIndex/results_eachIndex/indicator.png

Use the Levenshtein distance to compute the distances between the results in the
supplied directory results_eachIndex by building an indicator string from the fourth
character of every quantized word. A quantized word represents all quantization
indices translated to characters that is acquired for one and only one SAI. The
result is plotted and written as an image to indicator.png. The result can be seen
in Figure 3.12.

• $ ./distances.py �method cosine results_eachIndex/results_eachIndex/

cosine.png

Generate a histogram distance plot using cosine distance between the histograms
and write it to cosine.png.

• $ ./distances.py �method cosine �export results_eachIndex/results_eachIndex/

cosine.json

Generate the same histogram distance plot as before but export results to an inter-
mediate JSON file called cosine.json.

• $ ./compare.py survey.json cosine.json

Compare the exported histogram results to the survey results. The result of this
command can be seen in Figure 3.13.

Figure 3.12: The result of the indicator example command.
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Figure 3.13: The result of the cosine histogram comparison example command.
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3.5 String distance

The Python code in Listing 8 explains the basic implementation of this feature. The
levenshtein method is provided by the Python-Levenshtein package described in
the tools section (section 3.1).

Listing 8: Python code to illustrate the distance algorithm.

def distance(vqString1, vqString2):

# Normalized Levenshtein distance between two vqString strings.

distance = levenshtein(vqString1, indicator2)

return float(distance) / max(len(vqString1), len(indicator2))

As computations of the Levenshtein distance over large strings is expensive, with
O(|s1| · |s2|), it is not feasible to compute strings with lengths of more than 10,000
characters. As acquisition methods like eachIndex tend to generate these amounts,
this distance method was only tested by extracting certain characters and ignoring
the rest, as described by the single and accumulate method.

With the single method the best result in comparison to the distances acquired in
the survey (section 2.2) is achieved with the 35th codebook. Each SAI is split into
boxes with varying dimensions, which are then fed to the 44 quantizers and their
underlying codebooks. Figure 3.14 compares the performances of the codebooks,
and thus, of the box dimensions by using the mean of the absolute difference be-
tween the distances of the survey and the algorithm. The smallest mean value is
the best, as the distance differences are small.

Clearly, certain boxes and codebooks perform better than others. The boxes from
index 0 to 39 cover 16 frequency channel values of the SAIs. The covered temporal
values for each SAI can be described by 25+(i%5) with i being the box index. As of
box index 40, the spectral size is doubled to 32 and the temporal value continues
as before. This process is described in detail by subsection 3.2.6.

Figure 3.14 shows that smaller box sizes, and therefore less coverage of the SAI,
perform better. A temporal value of 32 produces both, the smallest mean difference,
as well as the smallest overall mean difference. On the other hand, temporal value
coverage of 256 and 512 values perform almost equally bad, with 128 temporal val-
ues being slightly better. Figure 3.15 compares the best result, performed using the
35th codebook, to the survey results. In the absolute difference graph, shown in the
third panel of Figure 3.15, it can be seen that the classical songs Raalneur, Mujschi
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Figure 3.14: The result of each codebook is compared to the survey results pre-
sented in subsection 2.2.5. The lines constant to the y-axis are the
mean values for a given temporal box size, to see which temporal box
size performs best.
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Figure 3.15: Comparison of the distances generated by using the characters from
the codebook 35 to the survey distances using the string distance
method.
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and Jein are the most prominent outliers while the rest of the songs matches well
with the survey results.

The same mean difference analysis was done with the selected songs from the
covers80 dataset, resulting in the graph shown in Figure 3.16. Because of the
lower sampling rates of the covers80 songs, there are less temporal values per SAI
and thus less temporal values available for the boxes.

Figure 3.16: Performance of each codebook measured to the ideal reference ma-
trix mentioned in subsection 3.3.1. The mean performance for every
temporal box size used are shown by the lines with constant y-value.

In the case of the covers80 dataset, the parameters of the box at each index is
different, as the music has a lower sample rate (16 kHz). The temporal size can be
described by 25+(i%3), ranging from 32 to 128. The spectral size is 16 for all indices
below 24, otherwise 32. The mean values shown in Figure 3.16 show clearly that
in the case of the covers80 songs, higher temporal window sizes perform better.

The accumulate method was not successful. The accumulation with a codebook
size of 200 led to too many repetitions of characters, thus giving no distinguishable
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Figure 3.17: Comparison of the ideal comparison matrix to the results of the algo-
rithm with the 14th codebook.
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result. The effect can be seen in the algorithm result shown in Figure 4.3. However,
this might be compensated by using a bigger alphabet. The main task to accomplish
would then be to find the optimal alphabet size. This was not investigated in the
scope of this thesis, though.

Figure 3.18: Results of the string distance using accumulated VQ data. Almost all
songs have the same distance to each other due to the extreme re-
usage of characters from the alphabet.
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3.6 String indicator

The implementation of this method is straight forward. The following code describes
the used algorithm which is embodied by the distance function. The two string pa-
rameters holding the quantized and translated output are acquired as described
in the song conversion section (subsection 3.3.4). The levenshtein method is
provided by the Python-Levenshtein package described in the tools section (sec-
tion 3.1).

Listing 9: Python code to illustrate the indicator algorithm.

def extractUsedCharacters(string):

# Store each unique character of the string only once and return them.

occurrences = dict((char, True) for char in string)

return occurences.keys()

def indicator(vqString):

# Return alphabetically sorted indicator strings in ascending order.

return sort(extractUsedCharacters(vqString))

def distance(vqString1, vqString2):

# Normalized Levenshtein distance between two indicator strings.

indicator1 = indicator(vqString1)

indicator2 = indicator(vqString2)

distance = levenshtein(indicator1, indicator2)

return float(distance) / max(len(indicator1), len(indicator2))

3.6.1 Single

In Figure 3.19 it can be seen which codebook indices result in the smallest average
difference between the survey results and the results of the string indicator algo-
rithm. As the figure shows, the codebook and therefore the box configuration at
index 38 yields the best result.

The area of values covered at the best performing box, which has the Codebook
index 38 shown in Figure 3.19, is 256 on the temporal scale and 16 in the spectral
scale. On the other hand, the worst results were performed using a box with 32
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Figure 3.19: This figure shows the mean values of |Msurvey−Mindicator| with different
codebook indices. The mean values of the differences are blended in
as straight lines for each temporal window size.
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temporal and 16 spectral values. The following table lists the box area parameters
of notable indices in the figure.

index spectral temporal
0 16 32
4 16 512
31 16 64
32 16 128
34 16 512
35 16 1
38 16 256
42 32 128

The table above and the graph Figure 3.19 show that a high area in the temporal
direction yields better results. This makes sense, as on the one hand this method
generally discards temporal information by sorting the indicator string and on the
other hand the higher the temporal window is, the more temporal information holds
each quantized character. The higher temporal information of the boxes therefore
compensates the loss of temporal information by the string sorting.

Due to the way the box cutting is implemented, lower spectral sizes are computed in
various configurations before switching to higher spectral sizes. Because of the lim-
ited amount of codebooks and because each box is mapped to only one codebook,
the higher spectral values are not exhaustively tested here. It is also noteworthy
that the boxes which cover more values in the spectral scale perform better than
their pendants with the same temporal width but smaller spectral height. For exam-
ple, index 32 and 42 share the same temporal width, however 42 performed better.
It would be interesting to see the performance of the values with higher spectral
scale, as noted in the future work chapter chapter 5.

Figure 3.20 presents a comparison of cover song reference data and distances
computed using the string indicator. An example of such a comparison is pre-
sented in Figure 3.21. The following table represents notable box parameters for
the different indices shown in Figure 3.20.
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Figure 3.20: The smallest mean distance value to the comparison matrix of cover
songs is at x=30. The worst identification can be found at x=13.
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Figure 3.21: Comparison of the best string indicator results with the ideal results
where all but the matched cover songs have the maximum distance.
This result is achieved using the 30th codebook.
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index spectral temporal
0 16 32
5 16 128
8 16 128
10 16 64
12 16 32
13 16 64
14 16 128
20 16 128
30 32 32

While with the survey data higher temporal sizes yield better results, the opposite
is the case with the cover songs. This behavior was already noticed in section 3.5.
A possible explanation is that these algorithms are not focused enough on cover
detection as much as the intervalgram is (Walters et al., 2012). Another problem is
that almost all values in the reference data are 1.0 and only a small fragment of the
values is 0.0. Therefore, the best result is where most of the values are 1.0 and not
0.0. The results with overall high distances are mostly generated using low temporal
sizes in case of the string indicator method and high temporal sizes using the string
distance method. Therefore, the ‘good’ results favor bad configurations. It can be
concluded, that the proposed method of comparing cover songs is not suitable for
this sort of algorithms and it is an interesting task for the future to perform a suitable
comparison.

Figure 3.22 shows the best comparison with the indicator string made from box 38.
The two classic songs Mujschi and Jein have high distances to the other songs
while being similar to each other. The two mostly electronic songs, Maulpop and
Cig, are close and so are the two hip/hop songs Dam and Spaspet.

3.6.2 Accumulate

Using the accumulate method to generate the indicator string does not yield a us-
able result. With an alphabet of size 200 and 44 quantizations for each SAI, the
whole alphabet gets covered with every song, resulting in a distance of zero for
each song. A feasible workaround is to increase the alphabet size so it can hold
the maximum value of quantization words, as mentioned in the alphabet section
subsection 3.3.2.

This method grants every quantization, and therefore every box size, the possibil-
ity to participate in the resulting indicator string. This method performs on aver-
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Figure 3.22: Comparison of best indicator results to the survey results. The classi-
cal pieces, Mujschi and Jein distinguish themselves best from the rest
and are very close. This result is achieved by using the 38th codebook.
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Figure 3.23: Comparison of the survey data to the indicator string generated from
accumulated data over the biggest alphabet of 8800 characters.
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age about as good as the best single character, however strong nuances like the
distances of the classical songs or the distance between the two hip-hop songs
Spaspet and Dam seem to vanish.

The effect of using more than one character to generate a string from which the
indicator string is derived, e.g. using two characters from two codebooks, can be
seen in Figure 3.24 and Figure 3.25. The first uses the output of two codebooks and
the latter uses 20 characters where there was only one in the original experiment.
It becomes clear that the generalization properties become weaker the more char-
acters are used. This behavior is expected, as each indicator string gets more and
more specialized to the song and is harder to compare to other indicator strings.

Figure 3.24: Distances calculated using indicator strings with two quantizations in-
stead of one. All songs but the classical songs Mujschi and Jein have
very low values and are mostly indistinguishable.

3.6.3 EachIndex

Creating the indicator string from used words instead of single characters was not
implemented in this thesis. The general idea is to use all quantizations from a
run as a word and build an indicator string from that. It is doubtful whether this
has any practical value, as it would generate very large strings due to the many
combinations possible with, in this case, 48 codebooks.
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Figure 3.25: Distances calculated using indicator strings with 20 quantizations in-
stead of one. Even the classical songs, that were still distinguishable
using two codebooks, are vanished now.



3 Implementation 96

3.7 Distance of Used Character Histograms

This section discusses the implementation of the histogram comparison feature
discussed in subsection 2.4.2. The only significant translation method is eachIndex,
which is defined previously in this chapter. The accumulate and ignore methods
were unsuccessful, as there was either not enough correlation in case of ignore
or too much repetition in the codewords, due to the limited alphabet size in case of
accumulation.

Each row of the box cut from the stabilized auditory image is matched against a
different codebook, resulting in an index of the used codeword. This index is then
matched against the alphabet and translated into a character. The resulting string
of characters is then converted into a histogram which is then used for distance
measurement. The process is described by the following Python code, beginning
with the distance function.

Listing 10: Python code to illustrate the histogram algorithm.

import scipy.spatial.distance

def histogram(alphabet, string):

# Return the occurences of each alphabet character as a vector.

return [string.count(char) for char in alphabet]

def distance(alphabet, vqString1, vqString2):

# Return the cosine distance between the histograms of each

# supplied vector quantized string.

histogram1 = histogram(alphabet, vqString1)

histogram2 = histogram(alphabet, vqString2)

return scipy.spatial.distance.cosine(histogram1, histogram2)

This method is very similar to the method presented in (Lyon et al., 2010) and
(Ness et al., 2011) but without the classifiers, as this thesis focuses on distances
only:

“The VQ codeword index is a representation of a 1-of-N sparse code for
each box, and the concatenation of all of those sparse vectors, for all the
box positions, makes the sparse code for the SAI image. The resulting
sparse code is accumulated across the audio file, and this histogram
(count of number of occurrences of each codeword) is then used as
input to an SVM [5] classifier[3]” (Ness et al., 2011, p. 7)
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The method presented in this section also determines a codeword index for each
row of the box and concatenates the result into a larger vector, from which a his-
togram is generated. However, instead of resolving a number for each box row, a
character is resolved, using the VQ index as an index for the alphabet.

Figure 3.26: Histogram of two cover songs, both analyzed using the eachIndex

method. One can clearly identify matching sections. The numbers on
the x-axis represent the index of the used character from the alphabet.

The example histogram shown in Figure 3.26 presents promising similarities be-
tween the histograms of the two cover songs. This is backed up by the distance
map shown in Figure 3.27, where 80% of the cover song pairs are at least consid-
ered similar and 30% of the pairs have the cover song as closest partner. Only two
cover song pairs are not considered similar, Abracadabra and Between the Bars.

Figure 3.28 represents the comparison of the algorithm to the survey results. There
are some consistencies with the survey results, for example that the classical songs
Mujschi and Jein are most similar to each other and that they are similar to the world
song Raalneur. However, overall coverage is worse than with the string indicator
method.
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Figure 3.27: Distance map of the covers80 songs using cosine distance. Three of
ten pairs match closest with the cover song. Eight of ten songs are
rated at least similar.
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Figure 3.28: Results of comparing the songs used in the survey to each other by us-
ing the histogram method and the cosine distance with an alphabet of
200 characters. The classical songs Mujschi and Jein are only similar
to each other and a bit similar to the World song Raalneur.



3 Implementation 100

Using bigger alphabets decreases the performance as shown by Figure 3.29. The
bins of the histogram are getting smaller while the histogram gets wider, which
reduces recognizability. This approach is similar to the one used in (Ness et al.,
2011).

While several distance methods were tested due to the variety of ScyPy’s (subsec-
tion 3.1.4) spatial.distance module8, the cosine distance performed best. This
corresponds to the findings of (Foote et al., 1997) as well.

8http://docs.scipy.org/doc/scipy/reference/spatial.distance.html

http://docs.scipy.org/doc/scipy/reference/spatial.distance.html
http://docs.scipy.org/doc/scipy/reference/spatial.distance.html
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Figure 3.29: In comparison with the survey data, the approach of using a full alpha-
bet (44 · 200 characters) was, as expected, no success.



4 Results

Some results were already discussed in length, for example the study results and
some results of the features implementations. However, to summarize this chapter
gathers the key results and presents them in comparison to the other results. The
survey results are also summarized in this chapter, along with references to the
in-detail results section of the survey.
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4.1 Survey

As already described in subsection 2.2.5, the survey introduces a new interface
to ask humans for music similarity measurements and successfully provides test
data for the algorithms featured in this thesis. Furthermore, the initial alternative
hypothesis, that musical similarity for humans exists, is backed by this study, which
was proven in the statistical analysis Figure 2.2.5.

There is a great potential for the survey interface to be combined with services like
Amazon Mechanical Turk for data collection on a grand scale as further ground truth
data is highly appreciated and needed in the MIR community (Berenzweig et al.,
2004). This is also discussed in the survey’s future work section subsection 2.2.7.
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4.2 Musical Distance Measurement

This section compares and summarizes the results of the methods implemented in
the scope of this thesis. Each implementation and their variations are discussed in
the respective subsections starting with the string distance feature.

It turns out that the best results are achieved with the string indicator method, fol-
lowed by the string distance. The least effective of the methods is therefore the
histogram distance. Furthermore, the method used with the string distance and
indicator method for cover song comparison proved itself to be ineffective. This
method favors bad results over good ones to match the ideal reference matrix. As
a result, the cover song distances are not representative for the tested methods.

4.2.1 String distance

Generally, this method does not scale well in comparison to the string indicator
method, as it takes longer the longer the song is. Additionally, the EachIndex vari-
ation of this feature is not applicable as it would lengthen the string even further,
making it ineffective to compute with the Levenshtein distance. The single method
performs best but is still behind the best result of the string indicator feature.

Single

As already discussed in the implementation of this feature in section 3.5, the best
result is achieved with a box size of 32 × 16 while the worst result uses boxes of
512 × 16. The performances of the box sizes in comparison to the survey were
shown in Figure 3.14. Figure 4.1 and Figure 4.2 compare the best and the worst
results are to the survey results.

The best result, shown in Figure 4.1, has a mean absolute difference of 0.12 and
the highest outliers are the classical songs. It is notable that the classical songs
Muschji, Jein and Raalneur have a high distance to every other song, including
themselves, albeit these songs should have a low distance to each other. This
indicates that the single string distance method does not perform well with classical
music because it does not seem to be able to compare classical music to one
another.

Having only a very small range of distances, the worst result shown in Figure 4.2
is very different to the survey results. There are notable differences between the
distances with the same characteristics as shown in the best results, however due
to the small range the result is not comparable. While a min-max stretch could have
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Figure 4.1: The best string distance results were achieved using the 35th codebook.
Here they are compared to the survey results.
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Figure 4.2: The worst string distance results using codebook 14 in comparison with
the survey results.
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compensated that, these results indicate a big amount of character swaps between
the strings. Thus, the codebook does not seem to classify well enough.

Accumulate

The 200 character sized codebook is too small for the accumulate method. Too
many repetitions of characters make the resulting string nearly indistinguishable
from other strings created with this method. Figure 4.3 shows the result in compar-
ison to the survey distances. The low range of the values of the algorithm and the
low variance underline the indistinguishableness of the results.

Figure 4.3: Results of the string distance using accumulated VQ data. Almost all
songs have the same distance to another due to the extreme re-usage
of characters from the alphabet.

Using a bigger alphabet is likely to give better results, however this was not tested
in the scope of this thesis.

EachIndex

As stated before in subsection 4.2.1, computation of the Levenshtein distance over
a large string as generated by this method is simply not feasible. Therefore, a direct
comparison of whole songs is not possible.
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However, for small amounts of data such as in speech recognition or matching song
snippets this method may perform well. This was not analyzed in the scope of this
thesis but is noted in the Future Work chapter in chapter 5.

4.2.2 String indicator

This method produces the best results of all the features implemented in this thesis.
It is also computationally efficient as it limits the string which is computed to a length
significantly shorter than the actual number of characters.

Single

As not every codebook yields the best results, the best performing character and
the worst performing characters were selected for comparison. According to the
graph presented in Figure 3.19, these values correspond to x = 38 for the best and
x = 30 for the worst result. With the best result shown in Figure 4.4, the songs
from the same artist, Jobbimp and Pacsua, are not particularly similar according
to the algorithm. This conflicts with the results from the survey. Rasch is the only
song which does not match with the survey results at all. According to the algorithm
results, Rasch has low distances with Muschji, Lobnart and Jein, which is contra-
dictory to the survey results. Even if more ground truth data is used to compare the
results, it is unlikely that Rasch will ever be judged similar to one of said songs, so
it can be concluded that this song creates many false positives.

Interestingly, with the worst results, shown in Figure 4.5, the roles of Rasch and
Yadstis swap with Yadstis being the song having the most differences with the sur-
vey results. Looking at the algorithm results, the mild rating of most of the songs
may be the cause: almost all songs receive a rating around 0.4 which, by chance,
matches up with the survey results, except for Yadstis.

For the future, it would be interesting if the same character, or more specifically, the
same box configuration yields the best results in a larger test as well so it is sure
that this result is not generated by chance.
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Figure 4.4: Results of the best indicator run using the 38th codebook and a 128×16
(temporal × spectral) sized box. The indicator results match the survey
results very good, the only consistent outlier is the Ska song Rasch.
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Figure 4.5: Results of the worst indicator run using the 30th codebook and a 32×16
(temporal× spectral). Yadstis is the song having the most contradictions
with the survey results.
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Accumulate

The worst result encountered was with the 200 character sized alphabet. As already
discussed in the implementation of this features, the alphabet is simply too small
and therefore the indicator string of every song contains all available characters
of the alphabet. Of course, this leads to a overall distance of zero amongst all
songs. A solution to this, is to increase the alphabet size. Figure 4.6 shows the
comparison of the results with the accumulated results using the full alphabet of
44× 200 characters.

While the results in Figure 4.6 tend to overlap widely with the survey results, the
main properties tend to get lost. Like in the string distance results discussed be-
fore, the relationship of the classical songs are very different to the survey results.
While in the survey the classical songs have a low distance between each other,
Jein, Muschji and Raalneur are not very similar to each other. In fact, the classical
songs have a high distance to every other song in general. It is very likely that
the high correspondence with the survey result is just a result of the fact that many
survey results are rated with distances around 0.5 and only some values differ very
explicitly.

4.2.3 Distance of Used Character Histograms

The histograms of the used characters presented in this section are produced from
two configurations of the survey songs. One configuration uses an alphabet of 200
characters while the other uses the full alphabet of 8800 characters. Using the full
alphabet equals the histograms used in the MIREX 2010 comparison presented in
(Ness et al., 2011). The first result presented is that of the 200 character alpha-
bet shown in Figure 4.7. In addition to comparing to the survey results, a cover
song detection is attempted using the first 10 songs of the covers80 database. All
distances between the song histograms are computed using cosine distance.

Some of the dominant factors from the survey results can be found in the result
shown in Figure 4.7. The close relationship between the classical songs Jein,
Muschji and Raalneur are present as well as some of the Rock relationships, for
example Pacsua, Jobbimp and Meiscje. However, the median of the values is very
low, meaning that most of the values are in the lower third of the range, making all
songs somewhat equal to another and just a few really distinguishable.

The second comparison features the histogram created using the 8800 character
alphabet as shown in Figure 4.8. While the first comparison has a very low median,
this comparison in contrast has a very high median. Combined with the relatively
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Figure 4.6: String indicator results generated using accumulated quantized indices
in comparison to the survey results. The underlying alphabet consists
of 8800 characters.
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Figure 4.7: Comparison of the survey songs to themselves with the histogram
method using cosine distance and an alphabet of 200 characters.
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Figure 4.8: Comparison of the survey songs to themselves with the histogram
method using cosine distance and an alphabet of 8800 characters.
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high mean value, this means that most values have a high value >0.5, which makes
them indistinguishable in the same ways as in the first comparison.

Concluding, it can be said that varying the alphabet size makes no big difference
in the average absolute difference of the result matrices. The first histogram has
a mean absolute difference of 0.19 while the second histogram’s mean absolute
difference is at 0.21. This leads to the conclusion that the better results are achieved
with smaller alphabet sizes. Assuming that 200 is the best result, this method
performs worse than the other methods discussed in this chapter. However, it would
be interesting if this method can be used differently, for example by using only the
characters from boxes which performed well in the string indicator or string distance
methods.

Figure 4.9: Comparison of cover song pairs using cosine distance and an alphabet
of 200 characters.

Figure 4.9 shows the distances acquired comparing the covers80 songs. In contrast
to the survey results, this compares pairs of cover songs instead of using the same
songs. Ideally, all values on the diagonal would be 1.0. However, only for 4 of 10
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songs it holds that the value on the diagonal is the smallest distance. In conclusion,
the configuration of this method is not suitable for reliable cover detection with only
40% detection rate.



5 Future Work

While future work of the survey is already described in subsection 2.2.7, some
tasks are worth mentioning again. For example the lack of freely available test data
or tests. It would benefit the MIR community a lot if services existed which provide
an automated testing based on ground truth for own feature implementations, or,
at least a feature independent music database, which the million song database is
not. While the Music Information Retrieval Evaluation eXchange (MIREX) is a step
in the right direction, automated tests would speed up development and quality of
the features submitted to the MIREX. Speaking of the MIREX, it would be interesting
to see the features implemented in the scope of this thesis submitted to the MIREX
to test them against the MIREX Evalutron 6000 dataset (Gruzd et al., 2007).

Because the implemented features were only tested roughly, further tests and im-
provements may be made in the future. The single modules used to create the
Stabilized Auditory Image may be tuned to match the music recognition task more
as proposed by (Ness et al., 2011). Even simpler tunings, for example adjust-
ing the filter bandwidth and maximum frequencies or creating vector quantization
codebooks using broader databases may improve the results. After all, the Auditory
Image Model was mainly tested for speech recognition tasks and may need further
tuning to better match music.

The feature configurations may be tuned as well. For example the string indicator
feature mainly used boxes with 16 channel values instead of 32. A broader in-
vestigation of the box characteristics with music recognition could yield interesting
results. With the histogram method it would be interesting to see whether certain
boxes yield better results for the comparison task, as seen in the string indicator
method comparisons. Moving on to tasks with smaller amounts of data, the string
distance method combined with the eachIndex translation method may perform well
for speech recognition or similar tasks.

Most of the cover song comparisons turned out to be ineffective. There is room
to investigate different approaches to measure the match rate of cover songs, for
example simply counting the amount of best matches.

Finally, new ways to operate on the SAIs like the intervalgram proposed by (Walters
et al., 2012) show good results and it may be worth thinking of new ways to process
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the SAIs. Some ways were proposed in the feature section section 2.4 of this thesis,
like the mood state machine which may be used as a way for future per-user song
recommendations depending on the current mood setting of the user.



6 Conclusion

This thesis introduces several new ways to evaluate stabilized auditory images,
building on top of the work of (Ness et al., 2011), while implementing three of
them. The tests conducted during this thesis show that these features yield results
that point in the right direction but lack fine tuning, further evaluation and testing, as
discussed in the future work chapter, chapter 5.

In addition to the implementations done, the thesis provides results of a music dis-
tance measurement survey using freely accessible music, so that others may use
these to test their features with. Furthermore, a successfully tested survey inter-
face was created as a byproduct of said survey. This interface may be used in large
scale surveys using, for example, Amazon’s Mechanical Turk service.

The Auditory Image Model seems to perform well and the Marsyas implementation
of the model is easy to use, inviting developers to build their own features and
optimizations upon them.
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Glossary

AIM-C
Auditory Image Model reference implementation written in C/C++.. 49

AIM
The Auditory Image Model is a model of human hearing which applies the lim-
itations and pre-processing of the human ear and neural processing to audio
signals.. 38

Bandwidth
The range defined by the difference of the upper frequency to the lower fre-
quency of, e.g., a filter.. 55

BMM
Basilar Membrane Motion: The motion of the basilar membrane, a part of the
human ear. It translates the sound waves into motion and, by that, affects tiny
hair cells which generate a neural response.. 54

ERB
Equivalent Rectangular Bandwidth: The bandwidth of a specific center fre-
quency of a simplified version of a human audio filter in the ear. Those filters
are simplified to be rectangular band-pass filters.. 55

Marsyas
Comprehensive modular audio framework which supports rapid prototyping of
audio signal processing applications.. 48

NAP
Neural Activity Pattern: A pattern generated by the movement of hair cells in
the inner ear. Said hair cells are moved by the motions of the Basilar Mem-
brane.. 55

NumPy
Fast numerical array computations for Python.. 49
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Samples
Data points of the discrete signal acquired by the sampling function, for exam-
ple the Discrete Fourier Transform.. 68

SciPy
Comprehensive scientific Python framework.. 49

SAI
The Stabilized Auditory Image is one possible end-product of the Auditory
Image Model. It is the Neural Activity Pattern generated by the inner ear
simulation in a stabilized form.. 38

Temporal
Something relating to time. A temporal shift, for example, can relate to a shift
in time.. 37

VQ
Vector Quantization: The translation of an input vector to an index of a code-
book. Said codebook contains vectors which the input vector is matched
against using a nearest-neighbor method. The closest match determines the
result, which is the index of the matched vector.. 41

Window
Window function: A function which limits the input to an interval and zeros
the values not in the range. Often used to slice a longer signal into smaller
blocks.. 68
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