
Fachhochschule Westküste
Hochschule für Wirtschaft & Technik

Masterthesis
Christian Heinze

Entwurf und Test eines Kalibrierungsverfahrens
zur Berechnung von metrischen Tiefenwerten für

3D-Lichtfeldkameras

Fachhochschule Westküste
Fachbereich Technik

Fachhochschule Westküste - University of Applied Sciences
Faculty of Engineering

Hochschule für Angewandte Wissenschaften Hamburg
Fakultät Technik und Informatik

Department Informations- und Elektrotechnik

Hamburg University of Applied Sciences
Faculty of Engineering and Computer Science

Department of Information and Electrical Engineering



Christian Heinze

Entwurf und Test eines Kalibrierungsverfahrens
zur Berechnung von metrischen Tiefenwerten für

3D-Lichtfeldkameras

Masterthesis eingereicht im Rahmen der Masterprüfung
im gemeinsamen Masterstudiengang Mikroelektronische Systeme
am Fachbereich Technik
der Fachhochschule Westküste
und
am Department Informations- und Elektrotechnik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr.Ing. S. Hußmann
Zweitgutachter: Prof. Dr. P. Kölzer

Abgegeben am



Christian Heinze

Thema der Masterthesis
Entwurf und Test eines Kalibrierungsverfahrens zur Berechnung von metrischen
Tiefenwerten für 3D-Lichtfeldkameras

Stichworte
Lichtfeldkamera, plenoptische Kamera, Raytrix, metrische Kamerakalibrierung, ra-
diale Tiefendistorsion, Mikrolinsenarray

Kurzzusammenfassung
Ziel dieser Arbeit ist, einen Algorithmus zur metrischen Kalibrierung einer Licht-
feldkamera zu implementieren und zu testen. Für die Kalibrierung wird eine Kalib-
riertafel mit der Lichtfeldkamera aufgenommen. Aus dem Bild der Tafel werden
die Positionen von Merkmalen extrahiert. Die so gewonnenen Punkte werden durch
ein geeignes Kameramodell projiziert, so dass eine Fehlerfunktion minimiert werden
kann.
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Abstract
The goal of this work is to implement and test an algorithm for metrically calibrating
a light field camera. For the calibration, an image of a calibration target is taken with
the light field camera. The positions of features are extracted from this image. The
points obtained in this way are then projected through a suitable camera model, so
that an error function can be minimized.
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1 Introduction

Light field cameras are capable of capturing 3D information about a scene with a single shot
and through a single main lens. This is achieved by placing a microlens array in front of the
image sensor of the camera. The 3D depth estimation process of a light field camera works
similarly to a stereo camera system and is based on disparities. With a light field camera, it
is possible to generate an intensity image and a corresponding depth map at the same time.
Once the depth map is known, the intensity image can be refocused to increase the depth of
field.

This work is created in collaboration with Raytrix GmbH1. The algorithms and camera mod-
els implemented for this work are to be incorporated in to the next release of the Raytrix
RxLive software package. The light field cameras manufactured by Raytrix give the dis-
tance from the camera in virtual depth units. The goal of this work is to implement a camera
calibration algorithm, so that the virtual depth values can be converted to metric depth val-
ues. This would for the first time allow metric measurements in 3D space with a Raytrix
light field camera.

To allow a precise metric measurement, it is not enough to find the relationship between
virtual depth and metric depth. It is also necessary to rectify any geometric distortions,
because these would affect the measurements. Therefore, state of the art models for main
lens aberrations are analyzed and implemented. For the first time, the rectification of the
main lens aberrations is extended to 3D space. Also, a novel way of rectifying geometric
aberrations related to the microlens array of the light field camera is introduced.

The metric calibration process is based on calibration targets, which are imaged with the
Raytrix light field cameras. Knowledge about the geometry of these targets is leveraged to
establish a relation between metric distances on the target and distances between features
detected in the images of these targets. The metric calibration process is designed so that it
can later be performed by users of the RxLive software. This means that the algorithm must
be very robust and tolerate input images taken under adverse conditions.

1http://www.raytrix.de
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This work is divided into three main parts. First, the theoretical background necessary to
implement the calibration algorithm is given. This includes details about main lens pro-
jection, geometric aberrations and the image formation in a light field camera. Also, the
algorithms necessary to build an automatic camera calibration are introduced.

Next, the implementation is detailed. This includes the design of a calibration target, which
must be optimally suited for light field cameras. The target design determines the algo-
rithms, which must be implemented to automatically and reliably detect features in the
image of the target. The final part of the implementation is an optimization step to minimize
the reprojection error function. For the implemented algorithms, flow diagrams are given
and the parameters of the algorithms are explained.

Finally, results are presented. These test the robustness and accuracy of the feature detection,
the target design and the projection models chosen for this work, and finally the optimization
step to find the parameters for the projection model.

After that, a short conclusion sums up this work and gives an outlook on future work.



2 Theoretical foundations

The next sections give an overview of the theory needed to implement a camera calibration
algorithm for a Raytrix light field camera. But first, a short introduction into general optical
systems is given. Figure 2.1 shows a schematic diagram of a basic imaging system.

Figure 2.1: Overview of an optical system

This camera consists of a main lens and a sensor. In this work, sensor can mean a digital
sensor as well as film, which is used to record the incoming light. When analyzing the
projection of light through the main lens, the coordinate system is best placed at the center of
the main lens, as seen in figure 2.1. TheX and Y axes lie in the plane of rotational symmetry
of the main lens, while the Z axis coincides with the optical axis and is perpendicular to this
plane. In general, the side of the main lens on which the sensor is located is called the image
space, while the other side of the lens is called the object space. When referring to lateral
coordinates, these are only the coordinates in X and Y direction, normal to the optical axis
(Z axis). Depth values or object/image distances are measured along the Z axis. Depth
values can be measured as absolute distances from the main lens, and so can be positive on
both the image side and the object side of the lens.

When analyzing images on the sensor or projections into the space behind the sensor, it is
more useful to center the coordinate system on the sensor, as in figure 2.2.
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Figure 2.2: Sensor coordinate systems

To measure distances on the sensor, both pixel values and millimeter values can be used
arbitrarily, because the pixel size and the number of pixels in X and Y direction on the
sensor are generally known.

The size of the pixels in millimeters and the number of pixels in X and Y directions are
the first of the so called intrinsic parameters of the camera system. The intrinsic camera
parameters describe the camera and the way the images are generated. Other intrinsic pa-
rameters are the focal length fL of the main lens, the focus distance TL the main lens is set
to, but also coefficients which describe projection errors of the main lens. Separate from
the intrinsic parameters are the extrinsic parameters of a camera system. These describe the
pose of the camera in 3D space. To allow a metric calibration, usually both the intrinsic and
the extrinsic parameters of the camera must be known. The next sections will introduce the
models which are controlled by these parameters.

2.1 Projection models

To be able to perform the metric calibration as described in this work, a mathematical model
of a light field camera with an associated main lens must be found. The three established
models for the projection of objects onto a sensor are the pinhole model, the thin lens model,
and the thick lens model. These models will be introduced here, based on the book Optics
by Eugene Hecht [1].
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Since a metrically calibrated light field camera is supposed to measure distances in 3D,
monochromatic aberrations of the main lens must be corrected. These aberrations show
themselves by distorting the geometry of the imaged object. A new distortion model is
introduced here, which allows for the first time to model and correct curvature of field.

2.1.1 Pinhole model

The pinhole model is used in many traditional approaches to camera calibration, since it is
the simplest model with which the occurring relationships can be described. This model is
based on the assumption that the complex main lens can be approximated by a pinhole in
a certain distance from the imaging sensor. This simplifies the actual optical phenomena
like diffraction at the boundaries between different optical media or the radii of the involved
lenses and replaces them with a proportional equation (see equation 2.1). This equation
describes the relationship between the image distance BP (distance between the imaging
sensor and the pinhole) and the object distance GP (distance between the object and the
pinhole). Let gP be the height of an object, then bP is the height of projection of this object
onto the sensor:

bP
BP

=
gP
GP

. (2.1)

Figure 2.3 shows the parameters used in the pinhole model.

Figure 2.3: Pinhole model

A special property of the pinhole model is that the infinitesimally small pinhole aperture
causes an infinite depth of focus. Every point of the object is imaged on the sensor by just
a single ray of light. This means that there is no focus point like there would be with a
lens, which means that there is no three dimensional projection from the object space to the
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image space. The distance of an object to the pinhole only affects the size of it’s image on
the sensor, but not the sharpness of the image. This can be seen from equation 2.1. Only the
lateral (X , Y ) position of a projection onto the imaging sensor can be calculated, but not the
distance in direction of the Z-axis.

Despite this limitation, the pinhole model can be used for many traditional camera calibra-
tion procedures. For objects which are in the depth of field of a real lens, the image distance
BP of the pinhole model behaves similarly to the focal length fL of a real lens. By using
this equivalence, the intrinsic lens parameters can be estimated with the pinhole model in
conventional camera calibration approaches. In these approaches, a known 2D position on
the image sensor is related to an estimation of a 3D position in the object space.

The calibration procedure detailed in this work is different, because a light field camera can
produce 3D information on the image side of the lens. This fact leads to an approach that
uses a 3D (object side) to 3D (image side) correspondence for the calibration. Since the
pinhole model only yields 2D data on the image side, it is not suited for the approach used
in this work.

2.1.2 Thin lens model

The thin lens model generalizes the pinhole model by adding the focal length fL of the main
lens. This main lens parameter is a measure of the refractive power of the modeled lens. The
thin lens model ignores the thickness of the lens in direction of the optical axis. The thick
lens model takes this thickness into account and will be introduced in the next section.

Figure 2.4: Thin lens model

Figure 2.4 shows an overview of the thin lens model with the newly introduced focal length
fL. The focal length is measured from the principal plane HL in both directions of the
optical axis. In contrast to the pinhole model, not only a single ray of light reaches the
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imaging sensor for each point on the object. Instead, the main lens refracts a cone of light
emitted from the object and focuses it into a single point. The distance BL where the cone
of light emitted from an object at distance GL converges to a single point can be calculated
using equation 2.2:

1

fL
=

1

GL

+
1

BL

. (2.2)

The first result this equation yields, is that objects at infinite distance from the lens will be
in focus at the focal length of the main lens. With the object distance GL becoming smaller,
the point of focus moves away from the lens as the image distance BL becomes larger. This
means that the thin lens model relates 3D information from the object side of the lens to 3D
information on the image side of the lens.

The limited depth of focus that real lenses have is also explained by the thin lens model.
Observing the cone of light on the image side of the lens, one can see that at distances
different from BL, the cone of light is not focused to a point, but has a growing lateral
extent depending on the distance from the point of focus. This means that the light of a
single object point is no longer projected to a single point in image space, but extends over
a large area and mixes with light coming from other points of the object. When a sensor
is placed at a distance different from BL, a loss of sharpness can be observed. This can
be perceived in many images taken with real lenses. This loss of sharpness is an important
factor when building correspondences between points in the image and known points in the
object space. The lateral position in the image can no longer be measured precisely, when
image sharpness is lost. A robust calibration technique must take this into account.

Figure 2.5: Focus distance TL in the thin lens model

For a real lens, the position of the principal plane of the lens is generally not known. This
information is critical for any camera calibration technique and can be calculated with the
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thin lens equation. Instead of the position of the principal plane, the focus distance TL is
supplied by the user (figure 2.5). The focus distance can either be measured or read from
the focus scale of the lens that is used. It is the sum of the image distance BL and the object
distanceGL and extends from the image sensor to the the plane in object space, which would
be in focus.

TL = BL +GL (2.3)

Calculating the image distance BL from the focus distance TL can be done through the
following equation:

BL =
TL
2

(
1−

√
1− 4

fL
TL

)
. (2.4)

Using the value for TL together with the focal length imprinted on the lens, a projection
from 3D object space to 3D image space can be calculated. This means that the thin lens
model satisfies all requirements and can be used in the calibration technique detailed in this
work.

2.1.3 Thick lens model

The thick lens model is a further generalization of the thin lens model. As it’s name implies,
it takes the thickness of the lens into account. It can be shown that any combination of thin
lenses can be approximated by a thick lens. Figure 2.6 shows that the thin lens model is
extended by splitting a thin lens into two. While the thin lens only had a single principal
plane HL, the thick lens has two principal planes HL1 and HL2. The thickness of the lens is
the distance between these two planes. For the thick lens model it is assumed that all rays
of light travel through this space parallel to the optical axis, without any influence by the
other parameters of the lens. This means that the thickness of the lens HL1 −HL2 is added
to any projection as an offset in direction of the optical axis, and has no other effect on the
projection.

The thick lens model should be applied when the thickness of a lens is large compared to
the focal length fL. Photographic lenses are usually made up of several glass elements,
which can have a significant total thickness when added up. Macro lenses used at 1 : 1
magnification and microscope optics must usually be modeled as a thick lens (see Johannsen
et al. [2], page 4).

Given these advantages of the thick lens model, it seems to be ideally suited for use in
this camera calibration algorithm. Unfortunately, the lens thickness HL1 − HL2 can not
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Figure 2.6: Thick lens model

be estimated in a robust way. Without access to the design specifications of a lens, no
initial value can be given for a parameter optimization of the lens thickness. Also, the
distance HL1−HL2 is a constant offset added to depth values during calculation and has no
discernible influence on the projected image.

Due to these reasons, the thin lens model is best suited for this calibration algorithm. It
allows calculating a metric projection through an ideal lens. Real lenses usually have aber-
rations, which can distort the geometry of the image. To make precise measurements in the
3D image space possible, the geometric distortions must be taken into account.

2.2 Main lens aberrations

The term monochromatic aberrations specifies a number of optical phenomena, which af-
fect all wavelengths of light in the same way. This must be differentiated from chromatic
aberrations, which affect the color reproduction of a lens. Figure 2.7 shows an image of a
black and white checkerboard, where chromatic aberration has influenced the imaging pro-
cess. These kinds of aberrations are not rectified through the calibration technique proposed
in this work.

This work is focused on rectifying the geometric distortions introduced by the main lens of
an optical system. Monochromatic aberrations have different kinds of effects which can be
described by different models. Figure 2.8 shows an example of geometric distortions which
are commonly found on lenses.

It can be seen that theses types of distortion must be rectified, before exact metric measure-
ments in the image are possible. The distortions shown in figure 2.8 are of the same type,



2 Theoretical foundations 19

Figure 2.7: Chromatic aberration causes colored fringing on high contrast edges

Figure 2.8: Examples of barrel and pincushion lateral distortion from
https://en.wikipedia.org/wiki/Distortion_(optics) [28.12.13]

because they affect the lateral position of points in the image. These images show the effect
created by applying the lateral distortion model detailed in the next section.

2.2.1 Lateral distortion

The lateral distortion model used in this work is a subset of Brown’s distortion model.
Brown’s model [3] was introduced in 1966 and is widely used to rectify geometric distor-
tion in camera calibration algorithms [4] [5]. Brown’s model is also implemented in many
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software libraries for camera calibration like for example the OpenCV calib3d module1 or
the MVTec Halcon image processing software2.

According to Brown’s model, the relation between an undistorted point (xu, yu) and a dis-
torted point (xd, yd) is given by equation 2.5:

xu = (xd − xo)(1 + k1r
2 + k2r

4 + ...)

+ (p1(r
2 + 2(xd − xo)2) + 2p2(xd − xo)(yd − yo))(1 + p3r

2 + ...)

yu = (yd − yo)(1 + k1r
2 + k2r

4 + ...)

+ (p2(r
2 + 2(yd − yo)2) + 2p1(xd − xo)(yd − yo))(1 + p3r

2 + ...)

(2.5)

The amount of distortion in radial direction is controlled by the parameters ki, while the
parameters pi allow for a distortion that is not radially symmetric. These coefficients act
depending on the radius r which is the euclidean distance from the distorted point xd, yd to
the center point of the distortion xo, yo. The center of the distortion usually coincides with
the image center, but the model allows arbitrary offsets.

The equation can be split into two parts, separating the purely radial distortion (equation
2.6)

(1 + k1r
2 + k2r

4 + ...) (2.6)

from the tangential distortion (equation 2.7)

(p1(r
2 + 2(xd − xo)2) + 2p2(xd − xo)(yd − yo))(1 + p3r

2 + ...), (2.7)

which depends on the radius and the lateral position in the image. Both the radial and the
tangential distortion only affect the lateral position of points in the image. Radial distortion
models the effects that an imperfect lens has on the projection. Tangential distortion on
the other hand, can be used to model a perfect lens, which is not perfectly aligned with the
sensor. Figure 2.9 shows the effect of tangential distortion on a square grid.

The tangential distortion model proposed by Brown is a heuristic way of modeling lens
alignment errors. In traditional 2D camera calibration approaches, it can be used to rectify
the effects of a skewed lens. Yet when using a light field camera, which can capture 3D data,
a representation based on physics can be found. The tangential distortion which is present
in the 2D image is only a side effect of the skewed lens system. When 3D data is available,
the lens skew results in skewed 3D points in the image space. When a plane is mounted

1http://docs.opencv.org/trunk/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
2http://www.halcon.com/
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Figure 2.9: Example of tangential distortion caused by a skewed lens from
https://ieeexplore.ieee.org/ieee_pilot/articles/06/ttg2009061307/assets/img/article_1/fig_8/large.gif
[28.12.13]

parallel to the sensor and imaged with a skewed lens, the resulting 3D data in image space is
a skewed plane. This can be seen in figure 2.10. This effect is known from the Scheimpflug
principle [6].

Since the skew of the plane can be recorded with a light field camera, it is more useful
to explicitly model the skew of the lens, than to use heuristic parameters for tangential
distortion.

Therefore the lateral distortion model used for this work is reduced to the radial distortion
component (equation 2.6), while the skew of the lens can be dealt with in 3D space, which
means it is no longer only a lateral form of distortion.

To model the skew of a lens, the pose of the lens in 3D space relative to the sensor must
be known. In general, this means that six degrees of freedom must be parametrized: the
translation from the sensor center to the lens center XL, YL, ZL and three rotation angles
σL, θL, ρL. Figure 2.11 shows that the three parameters for the translation are already
known. Equations 2.8 to 2.10 give these equivalences:

XL = xo (2.8)
YL = yo (2.9)

ZL = bL =
TL
2

(
1−

√
1− 4

fL
TL

)
(2.10)

The offsets of the lens center inX and Y directions are the same parameters, which are used
in the lateral distortion model for the offset of the distortion center (see equation 2.5). The



2 Theoretical foundations 22

Figure 2.10: Projection through a skewed lens

translation of the lens in direction of the optical axis ZL is equal to the image distance bL
(see figure 2.4).

To describe the orientation of the lens, only two new parameters are needed. The rotation
ρL about the optical axis Z does not need to be modeled, because lenses are generally
rotationally symmetric. This means that a rotation about the optical axis has no effect on
the image. Only the angles θL and σL must be added to the main lens model. The angle
between the optical axis of the main lens and the normal vector of the sensor in the X − Z
plane is θL, and the respective angle in the Y − Z plane is σL.

When these angles are used for projecting through the main lens, they will not only have an
effect on the lateral position of the projection, but also on the depth. The next section deals
with radial depth distortion, which only has an effect on the depth values.

2.2.2 Radial depth distortion

The final distortion that is rectified with this calibration algorithm is the curvature of field
of the main lens. This effect is also known as Petzval field curvature [7]. Curvature of field
means that a plane parallel to the sensor is projected to a curved surface in image space (see



2 Theoretical foundations 23

Figure 2.11: Lens pose parameters

figure 2.12). In traditional 2D camera systems, this effect leads to a loss of sharpness when
the curved surface diverges too much from the sensor plane.

The field curvature has to be corrected during lens design, and no form of 2D calibration can
rectify this aberration. But when using a light field camera, this distortion can be measured
in 3D space and undistorted with an appropriate model. In a recent work on calibrating
Raytrix light field cameras, the authors proposed a novel approach to this problem (see [2],
page 7).

Viewing the projection of a lens with residual curvature of field in 3D space (figure 2.13), it
becomes obvious that this kind of distortion can be modeled similarly to the radial distortion
(equation 2.6). The amount of distortion depends on the radial distance r from the distortion
center (xo, yo) and is controlled by the coefficients di. It must be noted that this distortion
does not act upon the lateral position of a point, but on the point’s depth value along the
optical axis.

In addition to this radial influence, the amount of distortion also depends on the distance of
the object from the main lens. This means that for example a plane at infinity distance is
projected to a flat plane in the image space, but a plane closer to the main lens is projected
to a curved surface. To account for this, an additional parameter dd is added to the radial
depth distortion model. This new model allows calculating the undistorted depth value of a
point zu from it’s radial position and it’s current (distorted) depth zd:
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Figure 2.12: Petzval field curvature distortion in direction of the optical axis

zu = zd + (1 + ddzd)(d1r
2 + d2r

4 + ...). (2.11)

As has been shown by Johannsen et al., the influence of the distorted depth zd is purely
linear. Therefore only one parameter dd is needed to model the relationship between the
depth and the amount of depth distortion (see [2], page 8). Using the correct parameters for
this new model, the main lens depth distortion can be rectified.

When using all the projection and distortion models as described in this chapter with the
correct values for the parameters, it is possible to measure correct metric values in 3D space
with a light field camera. The next chapter explains how the Raytrix light field camera is
able to record the 3D data.



2 Theoretical foundations 25

Figure 2.13: 3D image of a flat surface showing Petzval field curvature
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2.3 3D light field cameras

In the next sections, the plenoptic or light field camera will be introduced in detail. First,
a short account of the history of the light field camera is given. Then the principle be-
hind the Raytrix light field cameras is explained, with respect to both depth estimation and
computation of intensity images. Finally, an in-depth look is taken at distinctive features
of the Raytrix light field cameras, and how they can be used to improve the results of this
calibration algorithm.

2.3.1 History of light field cameras

The first descriptions of light field cameras date back to the early 1900s. The underlying
principle which links all light field cameras is to capture not only the intensity of the light
hitting each point on the sensor, but also the direction where the light is coming from. This
is usually done by recording a multitude of views from slightly different perspectives. The
earliest design by Yves in 1903 [8] proposes the use of an array of pinholes directly in
front of the film plate. Each pinhole would then project a small sub-image onto the film,
with the perspective differing a little between neighboring pinholes. In 1908, Lippmann
proposed using an array of small lenses [9] and from there the idea was developed further
until today.

With the advent of fast, low-cost computers and high resolution digital sensors, a computa-
tional analysis of these light field images was feasible for the first time. A recent effort was
the introduction of the first portable consumer light field camera by Lytro1, based on work
by Ng published in 2005 [10]. This camera is based on the light field 1.0 principle, where
the resolution of the computationally reconstructed image is equal to the number of lenses
on the microlens array (540 x 540 microlenses for the Lytro camera).

There have also been efforts to build light field cameras by using arrays of many 2D cam-
eras2. The methods required to calibrate these camera arrays are unfortunately quite differ-
ent to what is needed for a monocular light field camera. Therefore these camera arrays are
not discussed here any further.

This work is based on a light field 2.0 camera developed by the company Raytrix based in
Kiel, Germany. A detailed explanation of the principle behind light field 2.0 is given in the
work of Perwass published in 2010 [11]. The next sections will give a short introduction
into the topic.

1https://www.lytro.com/
2http://graphics.stanford.edu/projects/array/
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2.3.2 Depth estimation

In a plenoptic 2.0 camera like the ones produced by Raytrix, a microlens array is placed
directly in front of the image sensor. The placement of this microlens array (MLA) can be
seen in figure 2.14.

Figure 2.14: Schematic drawing of Raytrix light field camera

The total covering plane (TCP) is the plane, on which the main lens must be focused. If
the projection of the main lens is any closer to the sensor, no depth estimation is possible.
When the MLA is placed in the correct distance from the sensor, the microlenses will project
small sub-images onto the sensor. As can be seen in figure 2.15, each of these sub-images
shows a slightly different view of the object. When an object point can be seen in at least
two sub-images, the so called virtual depth of the object point can be estimated. This depth
estimation works similarly to stereo vision approaches [12] [13].

To identify a pair of points in the sub-images, areas with high local contrast are selected.
For these areas, the cross correlation of small pixel patches is computed across lens pairs.
If the cross correlation is above a certain threshold, the two patches can be assumed to
show the same object point. It is important, that only areas with high local contrast are
used. Comparing two patches without any contrasting features will result in a high cross
correlation in many places, and would therefore give ambiguous results. This means that
for good depth estimation results, the surface texture of an object must have high local
contrast.

To be able to calculate the virtual depth of an object point PV , the positions i1 and i2 of the
point pair as seen in two microlenses must be known. For these microlenses, the centers of
projection c1 and c2 must be known as well. Since only the 2D position of the points on the
sensor can be known, the pinhole model is sufficient to project the points behind the sensor
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Figure 2.15: Raw image captured with Raytrix light field camera

and into virtual 3D space. The depth where the two projected rays would intersect in 3D
space is the virtual depth v which corresponds to the distance of the object from the camera.
A schematic overview of this is given in figure 2.16.

The virtual depth v is defined as the ratio between the object distance a and the image
distance b:

v :=
a

b
. (2.12)

These distances are measured in the same direction from the principal plane of the microlens
array. Although the distance b is constant but generally not known and a is the metric dis-
tance of the projection behind the MLA which shall be found, it is still possible to calculate
the virtual depth v. Given the distance D between the centers of the microlenses c1 and c2
and the distance i1 − i2 between images of the same point in two microlenses, the virtual
depth v can be calculated with the intercept theorem (see [2], page 6):

v :=
a

b
=

D

D − (i1 − i2)
. (2.13)

From this equation ( 2.13 ) it follows, that to get metric information about the projection
behind the MLA, the virtual depth v and the distance from the MLA to the sensor b must be
known. This means that the value of b has to be determined by this calibration algorithm.
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Figure 2.16: Schematic drawing of depth estimation principle

When this depth estimation process is applied to the whole raw image, a depth map can be
generated. Figure 2.17 shows a scene with the associated depth map. The depth values are
represented as color coded virtual depth units. Blue means further away from the camera
and magenta is closer. Since depth estimation is only possible at some points of the image,
the sparse depth map was filled using a propagation algorithm.
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Total focus intensity image

Color coded depth image

Figure 2.17
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2.3.3 Image reconstruction

The Raytrix light field cameras are multi-focus plenoptic cameras. This means, that not
every microlens on the MLA is the same, but that there are different lens types with different
focal lengths. The multi-focus approach is detailed in greater depth in the works of Perwass
[11] and Lumsdaine [14]. The main motivation behind this approach is the extended depth
of field that can be achieved with a multi-focus MLA. First of all, depth estimation is only
possible when the object is in focus, because high local contrast is needed. This means
that an extended depth of field greatly increases the applicability of the camera. Then, after
the depth has been estimated, an image with a computationally enlarged depth of field can
be synthesized. This is done by combining the sub-images from the different lens types,
according to the object distance for which the lens type gives a sharp image.

To illustrate this, an example image with three different lens types is shown in figure 2.18.

Figure 2.18: Raw image showing focused microlens design

The lens type highlighted in blue can focus objects which are close to the camera, while
the red lens type focuses objects onto the sensor which are further away. The illustration
shows, that using only the red lens type as in a single-focus MLA makes depth estimation
impossible at this distance. The local contrast of the red lens type sub-images is too low to
allow contrast based feature matching.

When the depth map for the image has been calculated, the total focus image can be synthe-
sized. The pinhole model is used to project the points in 3D virtual space back to the raw
image. From the locations in the raw image, the intensity or color values can be extracted.
The synthesized image can be based on the 3D shape of the object, but also on any other
shape. Using a plane parallel to the sensor makes it possible to create defocus effects after
the image has been taken. Figure 2.19 shows a computationally defocused image. The raw
image information is the same that was used to create the images in figure 2.17.
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Figure 2.19: Computationally defocused image

The focus was put on the third screw from the left after the image was taken. By using a
multi-focus MLA, the image quality can be greatly enhanced as compared to a conventional
MLA. To make optimum use of multi-focus MLAs, the next section will introduce a novel
model for projection errors of multi-focus MLAs.

2.3.4 Microlens array aberrations

As in section 2.2, the most important aberrations concerning the metric calibration of a light
field camera are geometric distortions. A microlens array can generally exhibit different
kinds of chromatic aberrations. Additionally, the vignetting of individual microlenses must
be corrected to allow a robust depth estimation and image refocusing. Yet these effects are
not discussed here, since they must be dealt with regardless of whether a metric calibration
is performed or not.

There are two causes for geometric distortion in the virtual depth space behind the sensor.
First is a deviation of the ideal shape of the MLA on a large scale. This might be due to
a manufacturing error, when the MLA is not flat but curved on a large scale. Figure 2.20
shows an example of such a deformation.

This curvature will have a pronounced effect on the depth estimation, because the distance
b between the MLA and the sensor varies, and the depth estimation is very sensible to this
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Figure 2.20: A deformed MLA will also distort the TCP

parameter. Unfortunately, this defect can only be measured during the production of the light
field camera, by using either a mechanical profilometer or a special optical measurement
technique developed by Raytrix. When the camera is used with a lens, these large scale
effects can not be reliably separated from the effects of lens skew or radial depth distortion.
This means that large scale distortion can be rectified through the main lens undistortion
model, but not explicitly by an MLA undistortion model.

However for aberrations on a small scale, this work proposes a novel rectification approach.
When an image of a plane target parallel to the sensor is taken, it is expected that there is a
single plane of depth estimations in virtual space. Yet measurements have shown that there
are actually several distinct planes, one for each type of microlens in the MLA (see figure
2.21).

The difference in depth between these planes is constant over the image and varies linearly
with the virtual depth. Therefore a novel model is proposed, which assumes not one distance
b between the MLA and the sensor, but several different values bi, one for each lens type
index i. Figure 2.22 gives an insight into why there might be a systematic offset for each
lens type of an MLA. It shows an enlarged view of an idealized MLA.

If the microlenses are approximated by the pinhole model, one can see that the image dis-
tances bi are different for lens types with different curvatures. The different curvatures are
necessary to realize the different focal lengths for a multi-focus MLA. Calibrating and rec-
tifying this error can be done by using not one value for b, but i different values bi for
the projection from virtual depths to metric depths behind the sensor. Using the correct
bi would rectify the offset between depth estimations from different lenses. This novel ap-
proach could not only reduce the geometric distortion and allow for more precise measuring,
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Figure 2.21: Real MLA projects plane target to different depth planes, depending on lens
type

it could also reduce noise in the depth map. For object distances in which two or more lens
types provide overlapping depth estimations, there is no longer a depth offset between esti-
mations from different lens types. In an uncorrected image, there can be neighboring depth
values from different lens types. The systematic offset between these depth values adds
noise to the output depth map.

Now the projection model for a light field camera with main lens used for the calibration
algorithm is complete. The next section will show how the parameters of this model can be
optimized to give correct projection results.
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Figure 2.22: Influence of MLA geometry on projection
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2.4 Camera Calibration

The basic idea behind camera calibration can be summed up in three steps. A mathematical
model for the camera has to be found, which accounts for all relevant effects. Second, im-
ages are taken and some additional knowledge about the objects in the images is leveraged.
Finally, the parameters of the mathematical model are tuned until the information extracted
from the images matches with the prior knowledge about the imaged objects.

An example for this kind of calibration is the former procedure used for metrically cali-
brating Raytrix light field cameras. The camera is placed on a linear stage facing a noise
target. A noise target is a plane target, on which a random structure is printed to give opti-
mum depth estimation at different image sizes. Figure 2.23 shows an image of the setup at
Raytrix.

Figure 2.23: Camera and target on linear stage

The distance between the camera and the target can be controlled by a step-motor. The
calibration model used is a direct conversion from virtual depths behind the sensor to metric
distances in front of the sensor. This conversion is done by multiplying a virtual depth with
a polynomial, which directly yields the metric distance from the sensor.

The coefficients of the polynomial are found by observing the virtual depths for the known
distances to the target on the linear stage. Corresponding virtual and metric depths are found
by moving the target to known distances and then taking an image with the camera. Then
the virtual depth of the noise target is calculated. Figure 2.24 shows an example of virtual
depth values plotted over corresponding metric depth values. As a last step, a polynomial
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is fitted to the data points to allow converting virtual depth to metric depth at an arbitrary
point over the range.

Figure 2.24: Theoretical correspondence between virtual and metric depth

This example serves as an introduction into a basic camera calibration technique, but it also
shows the shortcomings of the former Raytrix camera calibration. Calibrating a camera
required expensive equipment which had to be operated very precisely. The calibration is
only applicable for the range over which depth estimations were calculated. Also, no form
of aberration can be rectified, and no values for the intrinsic camera parameters can be
obtained. Finally, the calibration procedure is time consuming and can only be performed
by someone instructed about the operation of the linear stage.

Ideally, it should be possible to perform a camera calibration in the field without any spe-
cialized equipment. This is possible by using target based camera calibration techniques.
The next section gives a short overview of such techniques.
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2.4.1 Target based camera calibration

For target based camera calibration, a target with a known geometry is imaged. Reference
points are then extracted from the image and put into correspondence with the known refer-
ence points on the target. Some common types of targets are shown in figure 2.25.

Figure 2.25: Checkerboard target, line target, circle pattern target

With checkerboard targets, the known geometry features which are leveraged for calibration
are usually the distances between the corners of the squares, and the fact that the lines on
the target are straight. A typical calibration algorithm will find corner locations in the image
and associate the locations of these corners on the sensor with the known geometry of the
target. Then the extrinsic pose of the camera in relation to the target is found by parameter
variation. A virtual 3D model of the target is generated. This model is then projected into
the image according to the camera calibration model. After the projection, the 2D distances
between the points in the image and the projection of the model are calculated. The pose
of the model is varied until this distance error becomes minimal. The same process is then
applied to the intrinsic parameters of the camera calibration model. If the model fits the real
camera close enough, the final parameters should minimize the distance error to below an
acceptable threshold. This means both the pose of the target in front of the camera as well
as the intrinsic parameters of the camera have been found.

A detailed description of a target based camera calibration algorithm is given by Tsai [4],
with comments and improvements by Horn [15]. A recent publication by Danserau et al. [5]
proposes using checkerboard targets to calibrate lenslet-based plenoptic cameras. Danserau
et al. use a Lytro plenoptic camera, which is based on light field 1.0 technology. The
calibration model is based on a correspondence between 4D rays on the image side of the
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camera and 3D points on the object side. The approach is generally similar to the one
presented in this work, as for example the main lens is also modeled as a thin lens and a
similar lens distortion model is used, but unfortunately not much else is applicable for the
problem described in this work.

Regardless of the specific approach used to calibrate a camera, many approaches face the
same problems which can be solved by employing the same algorithms. The next section
presents some applicable algorithms from the fields of image processing, classification, re-
gression and optimization.

2.4.2 Image processing algorithms for camera calibration

A target based camera calibration algorithm must be able to recognize the target features in
the image taken by the camera. Some calibration methods rely on user input to solve this
problem. The user is presented with the image of the target and has to click on the feature
locations in the right order. This solves both the problem of identifying the feature locations
in the image, as well as the correspondence of these features to the virtual model of the
target.

There are some ways to solve these problems automatically. For checkerboard targets, the
Hough transformation can be used to find the straight lines in the image1. The intersections
of these lines are candidates for feature points of the target. The coordinates of the cor-
ners can be calculated with subpixel accuracy. A paper published in 2010 by Escalera and
Armingol [16] gives a comprehensive overview over a state of the art automatic calibration
technique using checkerboard targets.

Figure 2.26 shows a checkerboard target where the corners identified by using the Hough
transformation have been refined, classified and drawn as an overlay on the image.

When using targets with a circle pattern like in figure 2.27, the features are identified by
using a blob detection algorithm. A simple method would be to use a global threshold to
binarize the image. For the remaining regions, the centroids can be calculated. This gives
feature locations with subpixel accuracy. Using a global threshold is not a robust way of
segmenting the image, because any variation in lighting will interfere with the algorithm.
More sophisticated implementations use the MSER (maximally stable extremal region)2

algorithm for detecting feature locations and will be more flexible and robust. Even further,
Mateos [17] proposes considering the effects of perspective on the circular features and
computes feature locations using knowledge about the local neighborhood of circles.

Image 2.27 shows a target with a circle pattern, with the final location and classification data
overlaid on the image.

1http://planetmath.org/HoughTransform
2http://www.vlfeat.org/overview/mser.html
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Figure 2.26: Checkerboard target Figure 2.27: Circle pattern target

Pictures of targets with detected features highlighted from
http://docs.OpenCV.org/trunk/doc/tutorials/calib3d/camera_calibration/camera_calibration.html

Having identified the locations of features in the image, the features must now be brought
into correspondence with the features on the target. Most approaches do this by leveraging
additional knowledge. There may be special markers used on the target, which indicate the
absolute orientation of the target in the image. With this information, a target coordinate
system can be built.

Now the feature coordinates found in the image can be transformed into the target coordinate
system, for example by applying a homography1. The feature locations in this coordinate
system are ordered into rows and columns just like on the actual target. Because the distance
between features on the real target is known, a virtual model of this target can be generated
with the geometry of the real target. This virtual target can then be rotated, translated,
distorted and projected into the image and distances between corresponding points of the
model target to the image of the real target can be calculated.

2.4.3 Classification algorithms for camera calibration

When classifying points for building these correspondences, it is often necessary to find
the k nearest neighbors to a certain point. The point coordinates are usually stored in an
unordered list. Explicitly calculating the euclidean distances to every other point and then
selecting only those other points with the k smallest distance values is very ineffective. A
more efficient way to do this calculation in two dimensions is by using a quadtree or a k-d
tree. Figure 2.28 shows examples of a quadtree and a k-d tree partitioning of 2D space.

To build a quadtree, the 2D points are sorted into smaller and smaller subdivisions of the
original area. For each step, the area is divided into four rectangles of equal size. The areas

1http://docs.opencv.org/doc/tutorials/features2d/feature_homography/feature_homography.html
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Quadtree k-d tree

Figure 2.28: Area partitioning structures from
https://en.wikipedia.org/wiki/Quadtree [28.12.13]
https://en.wikipedia.org/wiki/K-d_tree [28.12.13]

in which the points lie are stored in a tree structure, where every node has four children.
When searching for the nearest neighbor of a point, only the distances to points in adjacent
nodes have to be calculated.

Another variation of 2D space partitioning algorithms is the k-d tree. To build a k-d tree in
two dimensions, the space is partitioned into two parts, which means any k-d tree is always
a binary tree. This can be done by taking the median of all X coordinates. Those points
with smaller X coordinates go into one leaf, while those with greater X coordinates go into
the other leaf. When subdividing these new leaves, the points are split according to their Y
coordinate. The axis used for splittings keeps toggling between X and Y until the number
of points in any one leaf is low enough. To search for the nearest neighbor of a point, the
binary tree must be traversed recursively while performing checks to make sure that the
closest point is not actually in a different part of the tree.

While building the data structure for these algorithms can take up some time, the faster
searching speeds up the nearest neighbor search when there are hundreds or thousands of
points to consider. Further information on nearest neighbor search can be found in the
documentation of the ANN1 library for C++. Apart from the ANN library, there are many
other implementations of nearest neighbor search available, for example in the FLANN
toolbox of OpenCV2.

For building a 3D-to-3D camera calibration, it may be necessary to eliminate outliers in 3D
space. An easy way to do this for a planar target is to fit a plane to the 3D point cloud.
Figure 2.29 shows a cloud of points in 3D space. It can be seen that the distribution of the

1http://www.cs.umd.edu/∼mount/ANN/Files/1.1.2/ANNmanual_1.1.pdf
2http://docs.opencv.org/modules/flann/doc/flann_fast_approximate_nearest_neighbor_search.html
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Figure 2.29: 3D point cloud extracted
from plane target image

Figure 2.30: Point cloud after RANSAC
outlier rejection

points is generally planar, but with some noise and outliers present. To remove the outliers,
a plane can be fit to the 3D data and points too far away from this plane can be eliminated.

An explicit plane fit would calculate the plane, which would minimize the sum of squared
distance errors from this plane to all points in the set. For a high number of points, this
is very time consuming. Instead, the RANSAC algorithm can be used. The RANSAC
algorithm was introduced in 1981 by Fischler and Bolles [18]. RANSAC is an abbreviation
for RANdom SAmple Consensus. A simplified version of the RANSAC algorithm can be
described as follows: instead of fitting a plane to all points, a random subset of points is
chosen. A plane is fitted to this small set of points, and the sum of squared distance errors
for all points is calculated. Since it can not be guaranteed that this small set of randomly
chosen points is a good representation of the plane, this process is repeated many times.
Each time, the parameters of the fitted plane and the total error are saved. When all iterations
are complete, the plane parameters with the lowest total error are chosen. The advantage in
speed is derived from the fact, that fitting a plane generally involves some form of matrix
inversion. For large data sets, this inversion is much slower than randomly sampling many
small sets of data. Figures 2.29 and 2.30 shows how the outlier rejection performs for an
example data set.
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2.4.4 Optimization algorithms for camera calibration

The final class of algorithms needed for camera calibration is the optimization or minimiza-
tion algorithm. Though it is sometimes possible to find solutions for part of the calibration
problem explicitly, most approaches rely on an optimization step. Horn [15] calculates the
first steps of his camera calibration technique using an explicit approach by solving linear
equation systems. But to refine the parameters and adapt to the more complex errors terms,
he proposes switching to a non-linear optimization method. A good primer on optimization
techniques is an article published by Shewchuk in 1994 [19]. It gives an intuitive and richly
illustrated introduction into linear optimization algorithms.

The algorithm of choice for many camera calibration algorithms (for example [2] [5] [15]
) is the nonlinear Levenberg-Marquardt method [20] [21]. The free C++ implementation
levmar1 of the Levenberg-Marquardt method was documented by Lourakis [22].

As was mentioned in section 2.4, the optimization algorithm tunes parameters until the
minimum output value of an error function is found. The output of the error function is
also called the residuum. For most camera calibrations, the residuum is a list of euclidean
distances. The distances are calculated between each feature found in the image and it’s
associated model point. Each model point has been rotated, translated, distorted and pro-
jected according to the model parameters, and these model parameters are automatically
tuned by the Levenberg-Marquardt algorithm. Figure 2.31 shows a flow diagram of the
Levenberg-Marquardt algorithm.

The theoretical background necessary for this work has now been introduced, and the next
chapter will look at the implementation details.

1http://users.ics.forth.gr/∼lourakis/levmar/
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Figure 2.31: Flow diagram for generic calibration model optimization algorithm



3 Implementation

This chapter comprises not only the implementation of algorithms necessary for the metric
calibration of a light field camera, but also details the design of the calibration target. Gen-
erally, the algorithms have been built to be modular. The optimization for example, could
work with any set of target and model points for which an error can be calculated. This
means, that different camera models can be implemented easily. This calibration algorithm
could also be modified to calibrate standard 2D cameras or other types of 3D cameras, with
which a feature detection can be realized. Finally, the software environment in which this
algorithm will be used is presented.

3.1 Target design

The design of the target used for calibration should be one of the first steps when implement-
ing a camera calibration algorithm. The type of target used will determine the algorithms
needed to identify the features on the target. A feature may be anything that can be reliably
located with image processing algorithms. Examples for features would be intersections
of lines, the centroid of a circle or the corners of a checkerboard pattern (compare figure
2.25).

In general, the target should have as many detectable features as possible, and the detection
should work without producing any errors. Increasing the number of features means reduc-
ing their individual size. A balance must be found here, between the number of features
on the target and the size, at which the camera can reliably detect these features. While
the line target and the checkerboard target are generally quite comparable, the line target is
not well suited to being used at different image scales. Regardless of the type of camera
used or the resolution available, at some point the imaging system will no longer be able to
resolve a line of a certain thickness. Making the line thicker in the first place will reduce the
number of features which can be detected. For this reason, the line target is rarely used in
established camera calibration algorithms.

Whether a conventional or a light field camera is to be calibrated, economic aspects must
also be considered when designing a calibration target. Using a target which is not planar,
but has a known 3D structure may yield better results. But the cost of manufacturing a 3D
target with the needed precision is prohibitively high at the moment. Compared to that, a
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Defective total focus image of circle pat-
tern

Defective depth image of same circle pat-
tern

Figure 3.1

planar target printed with a office printer will generally give very good results for a very low
cost. Because of this, 3D targets are not considered any further.

With a Raytrix light field camera, special care has to be taken so that the target has enough
local contrast for the depth estimation to work (see section 2.3.2). Without a good depth
estimation, not only the depth map will be corrupted, but also the total focus image used for
finding the 2D feature locations will be defective. The pattern of the target should allow for
a reliable depth estimation with low noise in the calculated depth values. This noise can be
reduced by increasing the density of the points, where depth estimation is possible. If the
target has a high number of feature points, a single erroneous lateral or depth value will not
influence the total result by very much.

But care must also be taken, so that the self-similar nature of the target does not interfere
with the depth estimation. All target types proposed so far are made up of repeating patterns.
The Raytrix Light field camera estimates depth by measuring distances in the raw image
between features that match in two or more microlens images. If the spatial frequency of
the features on the target and the spatial frequency of the microlenses are a certain ratio, the
image in a neighboring microlens may not show the same target feature, but the next one on
the target. Figure 3.1 illustrates this issue with a circle pattern target.

The total focus image shows serious defects, which can be explained by looking at the depth
image. The depth estimation fails, because a correspondence in the microlenses is found for
two different circles on the target. Usually depth estimation works by finding the same point
of the object in several microlenses. But if different points of the object look exactly the
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Figure 3.2: Noisy depth estimation of a line target

same in the microlens images, the depth estimation can produce the systematic error that is
seen in figure 3.1. This effect can happen with line, checkerboard and circle pattern targets,
and is very noticeable due to the defective total focus image.

Another more subtle effect related to self-similarity can be observed with line or checker-
board targets. These targets are not only self-similar because the features form a repeating
pattern, but also the straight lines themselves are self-similar. Figure 3.2 shows a refocus
and a depth image of a line target. The green clusters of noise half between the intersections
are wrong depth estimations caused by the self-similarity of the line.

The depth values for the line are noisy, because the self-similarity produces many matches
with a high correlation. Since this effect is so subtle, it will still produce an acceptable total
focus image, while increasing the noise in the depth data. Due to this added noise, the depth
estimations of the target features will be randomly distorted, depending on the virtual depth
and the angle of the lines to the MLA.

To reduce random noise as much as possible, the target should be designed so that a number
of depth values can be associated with a single feature location. The simplest way to do
this, would be to take the arithmetic mean of all depth values in a certain radius around that
feature location. Figure 3.3 shows a detail view of a circular feature and the depth values
associated to it.

For all target types mentioned so far, it is also possible to use knowledge about the underly-
ing geometry of the target to provide a better depth extraction than by just taking the mean
of all values in a neighborhood. For line and checkerboard targets, it is possible to fit a line
to the depth values in 3D space. Then the depth value at the feature location can be extracted
by calculating the intersection between the two lines which define the feature location. For
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Total focus image Color coded depth image

Figure 3.3: Detail views of a circular target feature

a circular feature, a circle can be fit to the 3D depth data. After calculating the depth value at
the center of this circle, this value can be used for the depth of the feature. Both line fit and
circle fit reduce the noise of the final depth value by using many depth values and rejecting
outliers through the initial geometry fit.

The final criterion with which to assess a calibration target is the complexity of the algo-
rithms needed to automatically detect the features. For line or checkerboard targets, this
usually means using an edge enhancing filter and a Hough Transform to get the initial can-
didates for feature locations. When using a circle pattern target, a blob-detection must be
performed. The resulting centroids must then be filtered and ordered on a regular grid so
that a virtual model of the target can be built. The algorithmic complexity is moderately
high in both cases. At Raytrix, a sophisticated blob-detection algorithm is already required
for some other tasks. That makes using a calibration method based on blob-detection more
reasonable.

The requirements introduce have shown the strengths and weaknesses of different target
types, and the conditions under which targets give the best results for metric calibration.
Table 3.1 outlines the aspects covered so far.

The table shows that using a circle pattern target is a good choice for this light field camera
calibration algorithm. The most important advantage of the circle pattern is the robustness
against problems with self-similarity. With line or checkerboard targets, this problem can
not be detected or rectified. The amount of depth noise introduced by the false correlations
depends on the pose of the target relative to the camera. Even small rotations of the target
can increase the noise of the depth values greatly, but without any obvious influence on
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Table 3.1: Comparison of different target types
Lines Checkerboard Circle pattern

Prior work few many many
Handling of different image scales bad good very good
Problems with self-similarity bad bad good
Extracting feature depth value easy easy very easy
Algorithms reusable in house no no yes

the refocus image. Also, some amount of noise in the depth data will always be present,
regardless of the image scale. With circle pattern targets, the effects of false correlation can
be seen very easily. Only images with certain discrete depth values will suffer from these
defects and a small movement of the target will remedy the problem.

The choice of a circle pattern target is favorable when using a light field camera, yet it also
means that a lot of work has to be done in developing the algorithms needed. Especially
building the target model automatically means taking a new approach different to what
is currently used in other camera calibration techniques. The next section will detail the
algorithms implemented to realize this circle pattern based camera calibration, starting with
the blob-detection algorithm.
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3.2 Overview of implemented algorithms and data flow

To allow the use of a circle pattern target for the calibration of a light field camera, a num-
ber of algorithms must be applied to the input images. Figure 3.4 gives an outline of the
algorithms and the data flow implemented for this work.

The calibration procedure begins by using the standard Raytrix depth estimation algorithms
to calculate a number of depth images and a refocus image. More than one depth image is
calculated to allow calibrating the offset between different microlens types of the MLA (see
section 2.3.4). If the MLA has three lens types, three depth images will be calculated. Each
depth image contains depth values calculated by using only one lens type.

The total focus image is then used to perform the blob detection. This gives a list of cen-
troids, which is further refined in the next steps. The centroids not only contain 2D pixel
coordinates for the centroid location in the image, but also the parameters of an ellipse fit-
ted to the blob. Since the blob detection will detect some very large or very small blobs, a
filtering step is then applied. The rejection criteria are based on the 2D pixel-coordinates,
the radius, and the eccentricity of the ellipse. If a centroid is filtered out, it is not removed
from the list but flagged as an invalid 2D point, so that no information is lost.

Next the depth values for all centroids are extracted from the image. The centroids are now
3D points with depth values in virtual depth units. The next step filters the 3D centroids by
fitting a plane in 3D space and flagging all outliers as invalid 3D points.

Now the correspondences between points in the 3D space and the known target must be
found. This means building a virtual model of the target with metric distances between
points on a regular grid. For every valid centroid in 3D space, a corresponding point in the
virtual model must be generated.

All the steps above are repeated for several images of the calibration target in different
poses. This gives a set of points extracted from the image of the target and corresponding
model points for each of the images. All these point sets are then passed to the optimization
algorithm.

The initial parameters for the projection model consist of a common set of intrinsic cam-
era parameters, and one set of extrinsic parameters for each image of the target. The 3D
centroids are projected with the camera model and their respective parameters. Then the
residual distances between each 3D centroid and it’s associated model point are calculated.
When the sum of distances falls below a certain threshold, the optimization is terminated.
The set of intrinsic parameters giving the smallest reprojection error is the output of the
calibration algorithm.
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Figure 3.4: Flow diagram of implemented algorithms
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3.3 Blob detection and filtering

An overview of the blob detection and filtering is given in figure 3.5. For blob-detection,
the MSER algorithm implemented by OpenCV is used1. Input data to the MSER algorithm
is the 2D total focus image and the minimum area threshold value. Regions with an area
smaller than this value are discarded by the MSER algorithm. This is necessary to reduce
the number of false positive regions.

The output generated by the MSER algorithm is an unordered list of ellipses. Each entry
consists of the 2D pixel-coordinate of the detected centroid, the brightness value of the total
focus image at the centroid location, the approximate radius of the ellipse (major axis) and
the covariance matrix of the ellipse. The ellipses are then filtered to reject any outliers. To
do this, the mean of all radius values and all values for eccentricity are calculated. The user
can then supply thresholds that reject outliers which differ by more than a certain factor from
the mean. This will for example reject a small number of very large centroids, or centroids
that are highly eccentric while the majority of the ellipses are more circular.

As a last step, the ellipses are filtered according to the intensity value of the central pixel.
The targets used so far have black circles on white background. This check can eliminate
ellipses which are located over a bright area, and are therefore probably not valid. Entries in
the list of ellipses are labeled depending on how they performed in these filtering steps. No
entries are discarded completely, so that the user can get feedback on what the input data
was, and what caused rejection of ellipses. After these steps, it can be assumed that the data
is reasonably free from detection errors and can be processed by the following algorithms.

1http://code.opencv.org/projects/opencv/wiki/MSER
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Figure 3.5: Flow diagram of spot detection and filtering
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3.4 Depth Extraction

After the candidates for 2D feature locations have been found, depth estimation has to be
added to these features and they have to be filtered once again. Figure 3.6 gives an overview
of the data flow and the algorithms involved to do this.

The first step is to check if the 2D locations in the image are also valid 3D points. To do this,
the sparse depth estimations from the depth map have to be associated with the 2D locations
from the ellipse list. This is done by calculating the median value of all depth estimations in
a square region around the centroid of each ellipse. The size of the square region depends on
the radius of the ellipse. Figure 3.7 shows a total focus image, the associated sparse depth
map and the region from which the depth values are extracted.

After the median value has been found, a test is performed to see if there are enough valid
depth estimations in the square region. Figure 3.8 shows a case where ellipses can be de-
tected in 2D, but some ellipses only have very few associated depth estimations.

This case will always occur, when the target is held at an angle to the sensor plane and the
depth values leave the valid region of one lens type. In figure 3.8, the depth estimations of
the near lens type are shown. Since the target was angled away from the camera, the top
of the image is too far away for the near lens type. To counter this, ellipses are marked as
invalid when they have too few depth estimations in the square region.

This step is very important when several MLA distances bi are to be determined as described
in chapter 2.3.4. It can not be assumed that an ellipse will have a valid depth estimation from
all lens types, and this is the only way to reliably reject values from outside the lens type’s
valid depth region.

Finally, even if the depth estimation is dense, there can still be outliers in the depth esti-
mation process. To reject these outliers, the same methods as in other 3D classification
approaches can be used. Since the target is known to be planar, a plane can be fit to the 3D
point cloud using a RANSAC algorithm as described in chapter 2.4.3. Points which lie too
far away from this plane are marked as invalid and will not be used for calculating the error
function in the optimization step. But since the rejected points are valid 2D locations, they
may still be used for building the model of the target. This is detailed in the next section.
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Figure 3.6: Flow diagram of depth extraction algorithm
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Total focus image with fitted ellipse over-
laid

Depth image with square depth extrac-
tion region marked

Figure 3.7

Flawless total focus image Number of depth estimations varies

Figure 3.8
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3.5 Building the target model

This calibration algorithm relies on an optimization step to find the optimum parameters
for the projection model. The optimum set of parameters is the set, which minimizes the
projection error. To calculate the projection error, all valid 3D points from the section before
are projected from virtual space behind the MLA to metric space in front of the main lens.
Then the position of each 3D point is compared to the position of it’s corresponding point
on the model of the target. The steps described in this section detail how this model is
generated.

From the steps before, the positions of the features in the image are known. Also, the
original metric distance DM between circles on the printed checkerboard target is known.
Therefore, it is also known that two points which are next to each other in the image must
have had the distance DM between them before they were imaged with the camera. What
must be found now, is the correspondence of every point in our image to it’s original metric
position on the printed target.

Image 3.9 shows an example of point locations extracted from a total focus image using the
steps described above. For human eyes, the underlying rectangular structure of the points is
easy to see. Knowing that the original distance from point to point was for example 4mm,
it is easy to align the points on an orthogonal equidistant grid like in figure 3.10. These
virtual model points describe, what parts of the target have been seen by the camera. The
target used to create the image was of course much larger, but there were only model points
created for those points of the target, which were seen and detected. This is the desired
behavior, as it makes the calibration process much easier and more flexible for the user.

Figure 3.11 gives an overview of the first steps necessary to automatically perform this
assignment of model points to features in the image.
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Figure 3.9: Example of 2D circle locations (target points) overlaid on a total focus image

Figure 3.10: Example of orthogonal equidistant grid (model points) created from target
points above
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Table 3.2: Parameters used in spot detection and assignment algorithms
Parameter Value range Explanation
Minimum blob area threshold 16...1024 Blobs with fewer pixels are dis-

carded
Radius divergence threshold 2...10 Ellipses with radius diverging by

more than this factor from mean ra-
dius are discarded

Brightness threshold 32...192 Ellipses with brightness values
higher than this are discarded

Square region size factor 1...3 Factor controlling the size of square
region for depth extraction, inter-
nally multiplied with ellipse radius

Depth estimation percentage 5%...20% Ellipses must have at least this per-
centage of the square region with
valid depth estimations

Maximum inlier distance 0.01...0.1 Points further away from fitted
plane are rejected, value is in virtual
depth units

Candidate location tolerance 5...100 After calculating a candidate loca-
tion, the nearest neighbor must be
closer than this distance in pixels
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Figure 3.11: First part of algorithm to automatically assign model points to features found
in total focus image
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The algorithm starts by finding the middle of the target in the image. For images where
the target fills the whole frame, this is not important. But this calibration is also capable of
calibrating wide angle lenses, where the printed target only fills a small part of the frame.
Therefore the target center is detected, by calculating the barycenter of all detected ellipses.
Figure 3.12 shows an example image taken with a wide angle lens that can be used with this
calibration algorithm.

Figure 3.12: Calibration target imaged with wideangle lens

When the barycenter has been calculated, the point from the ellipse list nearest to it must be
found. This is done by using the k-nearest-neighbors algorithm as described in section 2.4.3.
The input to the k-nearest-neighbors algorithm is theX, Y pixel coordinate of the barycenter
and it returns the one point from the ellipse list that is closest to the barycenter. This point
is set as the origin of the target model. The metric coordinate (0mm, 0mm) on the target
model is added to this point’s entry in the ellipse list. This is the first point for which a
one-to-one correspondence between the pixel coordinate and the metric coordinate in the
target model has been found. The origin of the target model can be chosen at will because
the extrinsic pose of the camera allows for an arbitrary translation in three dimensions. Only
the distances between points of the target model must be correct.

To find the correspondences for the other points in the ellipse lists, the two principal axes
of the orthogonal target grid must be found. The k-nearest-neighbors algorithm is used
to search for the four points closest to the origin. These are candidates for defining the
direction of the two principal axes. Figure 3.13 illustrates this.

The four neighboring point are put into an unsorted list. The first point in this list is chosen
as the starting point PS . For each of the remaining points, the distance from a line connecting
PS and the currently chosen endpoint PEi to the origin is calculated.
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Figure 3.13: Origin of target model with nearest neighbor points.
The orange lines are generally shorty than the blue lines.

With the starting point

PS =

(
XS

YS

)
(3.1)

and the end point

PEi =

(
XEi

YEi

)
(3.2)

the vector aSEi is the difference
aSEi = PS − PEi (3.3)

between the points. To calculate the distances di from the line to the origin P0, the following
equation is used:

di =
‖aSEi × (P0 − PEi)‖

‖aSEi‖
. (3.4)

For each pair of points, the distance of the line to the origin is saved. After all combinations
of points have been dealt with, the two points with the lowest value for di form a line that
runs through the origin. If the value for di is below a threshold supplied by the user, the
first principal axis is found. The second principal axis must now consist of the two other
nearest neighbors. A check using equations 3.3 and 3.4 and the threshold is performed for
these points as well. If it passes, the second major axis has been found. Figure 3.14 shows
the lines connecting the starting point to each of the possible end points, and the distances
to the origin. The correct principal axis which goes through the origin is drawn in green, the
two other lines with too large distances di are drawn in red.
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Figure 3.14: Calculating point-to-line distances di to find first principal axis

There are some cases, in which the sanity checks will fail. If for example there is a false
positive detection closer to the origin than the four points which would form the principal
axes, no consistent set of axes could be found. To counter this, the algorithm actually
searches for more than just four nearest neighbors of the origin, and then tries to find the
set of points which gives correct principal axes. If the sanity check is still not passed with
this larger neighborhood, the algorithm is restarted with another point in the vicinity of the
former origin. This point is then used as a new candidate to find the origin, the nearest
neighbors and the two principal axes. This is repeated until the sanity checks pass and the
two principal axes are found.

Each line now consists of three points - the start, the origin and the end point. The new
points are now assigned metric values according to the known distance between features
on the printed target and the direction. Once again, the directions can be chosen arbitrarily
and do not have to line up with the X and Y axes of the image coordinate system. Now
the origin of the target model and the starting points for the two principal axes are known.
This concludes the first part of the algorithm overview (figure 3.11). The second part of the
algorithm is shown in figure 3.15.
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Figure 3.15: Second part of algorithm to automatically assign model points to points found
in total focus image
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So far, only the starting directions of the two principle axes have been found. Now the
axes need to be expanded over the whole target. First, the start, origin and end point of the
two lines are copied to two ordered lists. Since both the pixel coordinates in the image and
the metric coordinates on the target model are known for every point in the lists, it is now
possible to extend the lines by adding points at the end. The principle of this algorithm is
illustrated in figure 3.16. To add points at the current end of the line, the vector between the
point at the very end of the line and the point one before it is calculated. When looking at
the upper end of the list containing the points of a principal line, this can be written as

P ′ = PE − P0 (3.5)

or in general with the current line length i as

P ′i+1 = Pi − Pi−1. (3.6)

The point P ′ is only a candidate location for a new point. From this location, a nearest
neighbor search in the list of ellipses is performed. It must be checked, if the returned
ellipse coordinates are close enough to the candidate point that was calculated. If such a
point is found, this centroid is added to the end of the line list as element Pi+1. In the same
step, the correct metric values on the target model are added to this centroid. Before the next
iteration, the line length i is of course incremented to account for the new element. If there
is no centroid in the centroid list near the candidate location P ′, the calculated coordinates
of P ′ are added to the line list with a flag marking this as an invalid point. This way the line
can be extended further, even if there are points missing. Stopping criteria for the addition
of points are either when the calculated location P ′ is located outside of the image, or when
there have been a certain number of consecutive points which were invalid.

Figure 3.16: Algorithm to extend principal line lists at the ends

After applying this to the start and end of both line lists, the two principal axes are fully pop-
ulated. The two lines form a cross, intersecting orthogonally at the origin of the target model
grid. This cross partitions the points from the total focus image into four quadrants. Figure
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3.17 shows the pixel coordinates of the points of the principal axes overlaid on the total
focus image. The next step is to assign model points to the points in the four quadrants.

Figure 3.17: Pixel coordinates of the points of the principal axes

To populate the four quadrants, the points from the two principal axes are copied into a 2D
array. It is useful to either use an array that is larger than the extent of the axes, or one
that can be resized dynamically. A 2D array is suitable because the points of the target
model also form a 2D array. This data structure makes searching for neighbors in the tar-
get model coordinate system very easy, because the known neighbors can be addressed by
incrementing or decrementing the array indices.

To find points in the four quadrants, a similar approach to the one detailed above is used.
To make the algorithm more robust, the coordinates of two neighboring points are used. To
illustrate this, the fill algorithm for the upper-right quadrant is described. All points known
up to now have 2D coordinates by which they can be addressed. The origin for example
is P0,0, the point just above it on the Y axis is P0,1 and the point right of the origin on the
X axis is P1,0. All points on the principal axes (P0,y and Px,0) are already known. Now
the candidate location for point P1,1 can be calculated. To do that, the vectors between the
known points are calculated:

vX = P1,0 − P0,0, (3.7)

vY = P0,1 − P0,0. (3.8)
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Then the two vectors are added to the base point P0,0:

P ′ = P0,0 + vX + vY . (3.9)

This gives a candidate location P ′, which depends on the position of two points relative
to the origin. This makes the algorithm more robust, since the local grid can be distorted
differently in X and Y directions. When the candidate location is known, once again a
nearest neighbor search is performed, and the result is checked against a threshold, exactly
the same way as above for expanding the principal lines. Figure 3.18 illustrates, that the
algorithm takes both the differences in X and in Y direction into account to calculate the
new candidate location.

Figure 3.18: Calculation of candidate locations in upper-right quadrant

In the same fashion, the whole line of points Px,1 can be found. To calculate the next candi-
date location for point P2,1, the base point is now P1,0, and the differences are calculated to
points P2,0 and the newly calculated P1,1. Also, the same algorithm applies to any row par-
allel to the principal axes. They are filled with points one row after a time, until the whole
quadrant has model points assigned to the points in the total focus image. This algorithm
can be used on the other quadrants as well, when adapting the calculation of the difference
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vectors vX and vY . When all four quadrants have been searched in this fashion, the result
looks like in figure 3.9 with the corresponding model points shown in figure 3.10.

Ideally, the result of this algorithm is, that each point visible in the image has a virtual model
point with metric coordinates assigned to it. This concludes the description of the algorithm
illustrated in figure 3.15. Since all points now have a pixel coordinate in the image, a virtual
depth value and an associated metric coordinate on the target model, the optimization step
can begin.

3.6 Projection model

The goal of the optimization is to minimize the reprojection error. To be able to calculate this
error, the points found in the total focus image have to be projected into metric depth behind
the MLA, as described in section 2.3.2. From there, the points are undistorted according
to the models introduced in section 2.2. After that, the undistorted points are projected
through the main lens according to the model detailed in section 2.1.2. Now the points are
located in 3D metric space in front of the camera. Finally, the extrinsic pose (section 2.4.1)
is applied to the points, and they ideally lie very close to the points of the target model. Then
the distances in 3D space between the points projected from the total focus image and the
points of the target model can be calculated.

Figure 3.19 gives an overview of the projection from virtual depth values behind the MLA
to metric depth values in front of the camera. Shown in the illustration is also the naming
convention for spaces involved in the projection. Points in space I are given in lateral pixel
positions and virtual depth units. Space II contains points projected from Space I into metric
coordinates. Points in space III have been undistorted and are given in metric coordinates
relative to the principal plane of the main lens. This is equivalent to the image space as
mentioned in chapter 2. Finally, space IV is located on the other side of the main lens and
contains points in the object space. The coordinates of these points are metric, relative to
the sensor center.

The first step is the projection from virtual depth values zI to metric depth values zII (com-
pare equation 2.12 in chapter 2.3.2). To calculate this distance, the definition of the virtual
depth is used (see equation 2.12):

v :=
a

bi
. (3.10)

The equation is solved for the metric distance a and the variables are replaced:

zII = zI · bi. (3.11)

To do the conversion, from virtual depth to metric depth, a value for the distance bi between
sensor and MLA depending on the lens type is needed. This is set to a user supplied value
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Figure 3.19: Projection from virtual depth to metric depth - undistortion - projection through
main lens

initially, which is the same for all lens types. The initial value for bi is derived from light
field camera design theory and is known for each type of Raytrix camera.

After that, the pixel positions of the points in the total focus image xI, yI must be converted to
metric values xII, yII. These values are measured from the center of the sensor in millimeters.
The conversion can be done with help of the constant intrinsic camera parameters for pixel
size spixel and resolution Rx and Ry:

xII = −(xI −
Rx

2
) · 2 · spixel, (3.12)

yII = −(yI −
Ry

2
) · 2 · spixel. (3.13)

Now each point detected in the total focus image has a position in 3D space, which can be
put into relation with the main lens. But first, the undistortion models must be applied:

xIII = xII · (1 + k1r
2 + k2r

4), (3.14)

yIII = yII · (1 + k1r
2 + k2r

4). (3.15)

These two equations shift the lateral position of the points to counter radial distortion (see
equation 2.6 in chapter 2.2.1). Following this, the radial depth undistortion is applied (com-
pare equation 2.11 in chapter 2.2.2):

z′III = zII + (1 + ddzd) · (d1r2 + d2r
4). (3.16)



3 Implementation 70

For all these calculations, the radius r is the euclidean distance relative to the distortion
center xo, yo. The polynomials used for lateral and depth undistortion only use coefficients
for second and fourth degree. This gives sufficiently exact results without the effects of
overfitting the data. The degree of the polynomials could be increased at any time in the
future, if a higher precision is needed.

For the current implementation of the calibration algorithm, the explicit model for lens skew
is not realized. Tests during development showed, that the model will cause instability in
the optimization process. The cause of this is probably, that the lens pose parameters are
interdependent with projection and the two undistortion steps mentioned before.

Now the points have been undistorted in lateral and depth directions. The metric depth
values are measured from the MLA. To project the points through the main lens, the image
distance of each point must be calculated. To do this, the image distance BL of the main
lens must be calculated with the current values of the focal length fL and the focus distance
TL:

BL =
TL
2

(
1−

√
1− 4

fL
TL

)
. (3.17)

The image distance is measured from the principal plane of the main lens to the TCP of the
light field camera (see section 2.3.2). Therefore, the distance from the TCP to the MLA
must be subtracted before adding the metric depth of the points to the image distance:

zIII = (z′III − 2 · bi) +BL. (3.18)

Light field camera design theory states that the distance from the TCP to the sensor is equal
to the distance from the sensor to the MLA bi for the types of light field cameras considered
here. This means the distance from the MLA to the TCP is 2 · bi. Subtracting that gives the
distance from each point zIII to the principal plane of the main lens.

Now the projection through the main lens can be applied. The distance z′IV to which a point
is projected in front of the principal plane of the main lens is calculated with the thin lens
model (compare equation 2.2 in chapter 2.1.2):

z′IV =
zIII · fL
zIII − fL

. (3.19)

The total metric distance zIV from the point z′IV to the TCP is then:

zIV = z′IV +BL. (3.20)

To get the lateral position of the point in front of the main lens, the pinhole model is used
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(refer to equation 2.1 in chapter 2.1.1):

xIV =
xIII · zIII

GP

, (3.21)

yIV =
yIII · zIII

GP

. (3.22)

Now that the points have been projected to space IV, all projections involving the intrinsic
camera parameters are finished. As a last step before calculating the distance error values,
the extrinsic pose of the points has to be applied. Figure 3.20 shows how the points in space
IV are rotated and translated to coincide with the points of the target model. The model
points were created with metric coordinates for X and Y , and an implicit Z value of 0.
Since coordinates in space IV are measured relative to the sensor center, this means the
model points are in the same plane as the sensor.

Figure 3.20: Applying the extrinsic pose

The rotation and translation are governed by the extrinsic pose. The effect of translation and
rotation which define the extrinsic pose are illustrated in figure 3.20. For the translation,
three extrinsic parameters Tx, Ty, Tz are needed. The rotation is expressed through quater-
nions1, therefore four parameters q1, q2, q3, q4 are required. These extrinsic parameters are
unique to each image of the target. As this calibration is designed to use multiple images
of the target at different distances and angles, the extrinsic parameters must be provided for
each image separately. In contrast to that, the intrinsic parameters apply to all projections
in the same way. Table 3.3 gives an overview of all parameters of the camera calibration
model.

1http://www.j3d.org/matrix_faq/matrfaq_latest.html



3 Implementation 72

Table 3.3: Parameters of camera calibration model
Parameter Symbol Type Used for Parameter

count
Pixel size spixel Intrinsic,

constant
Projection from Space
I to II

1

Resolution of
sensor

Rx, Ry Intrinsic,
constant

Projection from Space
I to II

2

Focal length fL Intrinsic Thin lens model 1
Focus distance TL Intrinsic Thin lens model 1
MLA-Sensor
distance

bi Intrinsic Projection from Space
I to II

1...4

Distortion cen-
ter offset

xo, yo Intrinsic Radial undistortion,
depth undistortion

2

Radial distor-
tion coefficients

k1, k2 Intrinsic Radial undistortion 2

Radial depth
distortion
coefficients

d1, d2 Intrinsic Depth undistortion 2

Depth depen-
dent radial
distortion
coefficient

dd Intrinsic Depth undistortion 1

Translation Tx, Ty, Tz Extrinsic Target pose 3 per image
Rotation q1, q2, q3, q4 Extrinsic Target pose 4 per image
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Figure 3.20 shows the points extracted from the total focus image perfectly coinciding with
the model points. This means that the intrinsic and the extrinsic parameters for the projection
model already have the optimum value. This of course can only be achieved by optimizing
the intrinsic and extrinsic parameters until the distance error is minimized as far as possible.
To do that, the calculations described in this section are performed many times, with the
parameters varied by the optimization algorithm. The calculations above are therefore called
the error function, because they allow calculating the error between our model and the real
camera system. This error function can now be used in the optimization algorithm described
in the next section.

3.7 Optimization algorithm

The algorithm used to minimize the error function is the Levenberg-Marquardt nonlinear
least square solver. The implementation used for this work is available in the open source
cminpack library1. The use of this algorithm is straightforward. A list of parameters that
shall be optimized is passed to the algorithm. The algorithm then calls the error function
supplied by the user whenever the effects of a change to the parameters must be evaluated.
This process runs until an exit condition is reached. The desired exit condition is that the
sum of squared error values is below a user-supplied threshold. This means that the param-
eters fit the data very well and the camera calibration was successful. Other exit conditions
are that the maximum number of iterations has been exceeded or that changing the parame-
ters has no influence on the value of the error function. In these cases, the optimization has
either diverged or has been set up incorrectly. The user can influence the behavior of the
algorithm by setting the parameters highlighted in table 3.4

The error function returns not the sum of all squared distance errors, but the error in X, Y
and Z individually for each point. This way, the optimization algorithm can better sense the
influence of the parameters. For example, the radial distortion coefficients mainly influence
theX and Y errors, while the translation Tz only affects the error component in Z direction.
Due to this, a high number of residual error values is returned by the error function.

The implementation of the algorithm was chosen as a C++ library, because this calibration
algorithm has been implemented in C++. The next section gives some more details about
the software environment.

1http://mirror.umd.edu/roswiki/cminpack.html
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Table 3.4: Parameters of Levenberg-Marquardt algorithm
Parameter Function Value range
Number of parameters Number of intrinsic and ex-

trinsic parameters, changes
with number of images used
for calibration

Minimum 20 for one image of
the target, add seven for each
further image

Number of residuals Values returned by the error
function, three per detected
point

100...10000

Maximum iterations Exit optimization after this
number of iterations

50...1000

Tolerance Precision used for internal
calculations

10−4...10−6

3.8 Software environment

The algorithms developed for this work are implemented in C++. Software developed in-
house at Raytrix is generally developed either in C++ or C#. This software uses many
functions from the extensive Raytrix Lightfield SDK (Software development kit), which has
APIs (Application programming interfaces) for C++ and C. The Lightfield SDK provides
all functions relating to depth estimation and image generation used in this work. Therefore
the SDK is deeply integrated into this camera calibration algorithm, and the algorithm can
not run without it. In fact, this algorithm was developed to be integrated into the Raytrix
Lightfield SDK itself. A license for the SDK is priced at several thousand euros and can
therefore can not be distributed with this work. To showcase the functionality of Raytrix
light field cameras, a demo version of RxLive is included on the DVD supplied with this
work. Figure 3.21 shows a screenshot of the RxLive user interface. RxLive can be used to
open light field images, calculate depth and total focus images and visualize many of the
topics mentioned in this work. There are a number of light field images provided on the
DVD, ranging from images of calibration targets to real world application images.

RxLive will eventually incorporate a way to metrically calibrate light field cameras. Yet
for the development of this algorithm, a separate test program was written. A screenshot of
this development tool is shown in figure 3.22. Unfortunately, this test software can not run
without the Raytrix light field SDK, so it can not be supplied on the DVD attached to this
work. The data analyzed in the next chapter was created using this development tool.
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Figure 3.21: Screenshot of the Raytrix RxLive user interface

Figure 3.22: Screenshot of the metric calibration development tool



4 Results

The goal of this calibration algorithm is to provide a robust automated way for a customer
to metrically calibrate a Raytrix light field camera. To evaluate the quality of the imple-
mentation, it is useful to start with the automatic detection of points in the image and the
assignment of model points. This first step not only tests the image processing algorithms,
but also makes a statement about the choice of the calibration target type. The focus of the
analysis is on precision of the detection and on the robustness of the process.

After that, the data gained from the automatic detection should be used to test the optimiza-
tion step. This again makes both a statement about the implementation of the algorithms,
but also about the projection models that were chosen. Indeed, this is a test of the com-
plete calibration algorithm, as the detection and assignment from before also influence the
results. Quality can be measured by comparing the intrinsic parameters found through op-
timization with known ground truth values. Also, the effectivity of the undistortion models
should be checked. Finally, the reprojection into metric space gives results which can also
be compared with ground truth values.

4.1 Spot detection and spot assignment

In this section, the spot detection algorithm and the assignment of model points are eval-
uated. To do this, real world images taken with a variety of Raytrix light field cameras
are used as input. The output of the algorithms is visualized by overlaying the calculated
coordinates on the total focus images.

First, an ideal case is shown to explain the methodology. Figure 4.1 shows a total focus
image, which was processed by the algorithm. In figure 4.2, the results of the spot detection
and filtering are shown. Note that circles are drawn instead of the ellipses which were
actually fitted. These centroid locations are then fed into the algorithm, which assigns the
model points and builds the model target coordinate system. Figure 4.3 shows all locations,
for which a model point could be correctly assigned. The larger marker in the middle shows
where the center of the target was found. Finally in figure 4.4, the model points are plotted
on a square grid to verify the assignment.
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Figure 4.1: Total focus image of target Figure 4.2: Spot detection result

This series of images shows the typical result of the spot detection and model point assign-
ment algorithms. While the first step of detecting spots still produces some false positives,
the second step of aligning the points on a grid leaves only correct points. It should be
noted, that the spot detection performs very well, although there is a lot of structure in the
background of the image, which could lead to false positive detections. Model points are
assigned to every possible spot location, without producing a single false positive. A false
positive which is included in the following optimization process could influence the results
in a very negative way.

Although the bottom area of the target is obscured in some places, the combination of cal-
culating candidate locations and then doing a nearest neighbor search is very robust. The
algorithm does not lose count of the correct metric coordinates and the model points are
assigned without flaws. The target was printed with a standard office printer at paper size
A4. With the user-supplied distance of 8mm between spots, it can be seen that the extent of
the model point coordinates corresponds to an A4 paper size of roughly 200mm by 300mm.
This result is absolutely fit to be used in the following optimization step.

A great advantage of this detection and assignment algorithm, is that it works even if only
parts of the target are seen. It is not necessary to for the user to specify the amount of points
in the image as in some other state of the art camera calibration algorithms.

Figure 4.5 shows the spot detection result on a target that was placed very close to the
camera, so that only a part of the printed points could be seen. Again it should be noted,
that not the actually fitted ellipses are overlaid, but circles with the radius equal to the major
axis of each ellipse. The result of model point assignment for this image is seen in figure
4.6.
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Figure 4.3: Spot assignment result Figure 4.4: Model points

Once again, the results are very good, despite the fact that the lens used was of poor quality
regarding sharpness and radial distortion, the lighting was very uneven and the spots are
much larger than those in the image series before. Spot detection and assignments for the
first target image (figure 4.1) and the second target image (figure 4.5) were performed with
the same parameters (see table 3.2).

This means that the algorithms are very robust and work well even under adverse condi-
tions. Figures 4.7 to 4.13 show some more results of the algorithm with a great range of
different input images, also taken under adverse conditions. Sometimes not all points in
the image are assigned a model point, for example if the spot detection found no centroid
for some locations or the calculated candidate location for a point was too far off the real
coordinates. Given the number of valid points that are usually found, these missing points
have only small influence on the result of the calibration. As mentioned before, it is more
important that no false positive matches are introduced, because these could severely disrupt
the optimization.

Figure 4.13 shows an image that is on edge of being unusable. Many points on the target
have not been detected due to the very uneven lighting. It is not recommended to use
an image like this for calibration, though once again there were no false positive point
assignments. The first results of customers taking images of targets for metric calibration
show, that image quality in the field will probably be superior to the examples shown here.
Therefore, the algorithm is robust enough to be used by the customer.
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Figure 4.5: Spot detection result, only
part of target visible

Figure 4.6: Spot assignment result, only
part of target visible

Figure 4.7: Target off center, busy image background
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Figure 4.8: Target rotated

Figure 4.9: Defective refocus image
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Figure 4.10: Large spots

Figure 4.11: Small spots, underexposure
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Figure 4.12: Perspective distortion

Figure 4.13: Underexposure, uneven lighting
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4.2 Comparison of ground truth main lens parameters and
optimization results

For most lenses, ground truth values for some intrinsic parameters are known. The focal
length fL and the current focus distance TL are usually printed on the lenses themselves.
The distance b from MLA to sensor is also known for all Raytrix light field cameras, but can
not be published here.

Comparing these values with the output of the optimization algorithm is a first way to check
the results for plausibility. To do this, a full calibration cycle for a certain camera-lens
combination is performed. Table 4.1 compares the values for a Raytrix R29 camera with
a Zeiss 100mm f/2 macro lens. This comparison of parameters is not meant to provide a

Table 4.1: Parameter comparison for Raytrix R29 with 100mm Zeiss f/2 macro lens at
700mm focus distance
Parameter Ground truth value Output of optimization
Focal length fL 100mm 119.728mm
Focus distance TL 700mm 796.185mm
MLA-Sensor distance b 100% 103.43%

measurable statement about the quality of the optimization. It is, as mentioned above, only
a check for plausibility. Also, if the values were exactly equal to the known ground truth
values, the camera calibration would not be necessary.

The deviations from the ground truth values are generally below 20%. Some macro lenses
tend to increase their effective focal length, the closer they are focused. This behavior
makes the lens design easier, since macro lenses are usually designed to give 1 : 1 or
1 : 2 magnification factors. The magnification of a lens depends on both the focus distance
and the focal length. So if the focal length increases while focusing closer, it is easier
to achieve a high magnification. This explains the deviation of roughly 20% for the focal
length. The difference in focus distance can stem from the fact, that only the thin lens model
is used for projection. As mentioned before, most real lenses and especially macro lenses at
close focus distances should be approximated by the thick lens model. Most results of the
calibration algorithm will show a focus distance value higher than the ground truth. It should
be investigated, how the thick lens model can be applied to improve the results. Finally the
distance from MLA to sensor is accurate to about 5%. This shows, that it is possible to
estimate this distance using a camera calibration technique. Prior to this, the distance could
only be measured during the assembly of the light field camera in a clean room.

The following tables 4.2 to 4.5 show some more results for different camera-lens combina-
tions. The results are generally plausible for all combinations.
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Table 4.2: Parameter comparison for Raytrix R29 with 100mm Zeiss f/2 macro lens at
440mm focus distance
Parameter Ground truth value Output of optimization
Focal length fL 100mm 152.071mm
Focus distance TL 440mm 480.340mm
MLA-Sensor distance b 100% 92.75%

Table 4.3: Parameter comparison for Raytrix R29 with 50mm Nikkor f/1.8 lens at 500mm
focus distance
Parameter Ground truth value Output of optimization
Focal length fL 50mm 57.188mm
Focus distance TL 500mm 592.706mm
MLA-Sensor distance b 100% 99.94%

Table 4.4: Parameter comparison for Raytrix R5 with 75mm Kowa f/2.4 lens at 900mm
focus distance
Parameter Ground truth value Output of optimization
Focal length fL 75mm 75.613mm
Focus distance TL 900mm 1045.10mm
MLA-Sensor distance b 100% 78.21%

Table 4.5: Parameter comparison for Raytrix R5 with 25mm Kowa f/2.4 lens at 500mm
focus distance
Parameter Ground truth value Output of optimization
Focal length fL 25mm 23.465mm
Focus distance TL 500mm 543.717mm
MLA-Sensor distance b 100% 117.73%
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To analyze the robustness of the calibration algorithm, some calibrations were performed
with initial parameters deliberately set to a wrong value. Tables 4.6 and 4.7 show the pa-
rameter comparisons with the value of the initial parameters.

Table 4.6: Parameter comparison for Raytrix R5 with 25mm Kowa f/2.4 lens at 500mm
focus distance and wrong initial values

Parameter Ground truth value Initial value Output of optimization
Focal length f_L 25mm 50mm 23.464mm
Focus distance T_L 500mm 500mm 543.708mm
MLA-Sensor distance b 100% 200% 82.27%

Table 4.7: Parameter comparison for Raytrix R29 with 100mm Zeiss f/2 macro lens at
700mm focus distance and wrong initial values

Parameter Ground truth value Initial value Output of optimization
Focal length f_L 100mm 50mm 119.745mm
Focus distance T_L 700mm 700mm 796.266mm
MLA-Sensor distance b 100% 50% 96.58%

The results presented in this section show, that the calibrations is very robust, even when the
initial parameters are far from the ground truth. To get a more detailed look at the calibration
process, the next section shows the results of the projection from the total focus image to
metric space.
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4.3 Analysis of reprojection into metric space

The examination of the projection into metric space begins by visualizing the results of
the calibration model projection. The visualization uses data from an image taken with a
Raytrix R5 camera and a Kowa 50mm f/2.4 lens focused at 500mm. A metric calibration
was run for this camera with a set of eleven images. After completion, the points extracted
from one total focus image were projected with the calibration model and the optimized
parameters. Figure 4.14 shows the result of this projection (compare figure 3.19 and 3.20
in chapter 3.6). The points plotted in black are the model points in the Z = 0 plane. The
colored points are the points extracted from the total focus image. Ideally every colored
point would lie exactly on top of it’s associated black model point. Instead of this ideal
result, this illustration of a real projection shows some small deviations. It should be noted
that the Z axis has a different scale than the X and Y axes.

Figure 4.14: Points after projection into metric space with their associated model points

To better see the actual residual errors, figure 4.15 shows a heat map of the 3D distance
error between each point from the target and it’s associated model point. The heat map
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shows that the error in most locations is below 1mm. The area with the highest errors is
found, where the valid depth estimations transition from the blue lens type to the green and
red lens types. The average error for all points is 1.1997mm. It is important to note, that
there is no systematic error apparent in the heat map. If for example the undistortion models
were not appropriate for the lens that was used, a radially symmetric structure could be seen
in the heat map. The fact that the heat map for this example appears quite random means,
that the projection and distortion models were well chosen.

Figure 4.15: Heat map of 3D distance error between points from target and model points

This visual check of the projection error was often used during development. On the DVD
attached to this work are a number of metric calibrations for different cameras and lenses,
where the data used to plot these point clouds is available. MATLAB scripts to visualize the
data are supplied as well.

More important for the actual application of this algorithm however, is the accuracy of the
reprojection into metric depth. The metric calibration is supposed to allow measurement in
metric 3D space.

To analyze the accuracy, a metric calibration for a camera/lens combination is performed.
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Then a plane target is put parallel to the sensor at different metric depths. These distances
are the ground truth. Images of the plane target are taken with the same camera/lens com-
bination and the standard depth estimation is performed. Next, the calibration model is
applied with the optimized intrinsic parameters. This means that all depth estimations are
projected from virtual depth values behind the sensor to metric depth values in front of the
camera. The positions in object space should now be as close as possible to the real target
distance known for each image.

Figure 4.16 shows this projection for a Raytrix R5 camera with a Kowa 25mm f/2.4 lens
focused at 300mm. The projection parameters used were the initial values as written on
the lens or measured by the user. This means that no metric calibration was performed for
this. The graph shows, that by just using the initial values without the optimization step, no
metric measurement is possible.

Figure 4.16: Error analysis of metric reprojection with initial parameters

The upper graph shows the distance from sensor plotted over the image number. For this
analysis, 100 images of the plane target were taken. The target was moved from 150mm
distance away from the camera to 350mm distance. The green line shows the ground truth
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distance value of the target for each image. The goal of metric calibration is, that the output
of the metric projection matches the ground truth data as good as possible. The output after
metric reprojection is plotted in blue. As can be seen, there is a large distance between the
two graphs. For example, the reprojected depth values of the last images differ from the
ground truth by more than 100mm.

The graph at the bottom gives the distance error between the blue and the green line from
above. This line should ideally be as close to zero as possible. Any remaining error should
appear random and unsystematic. But in this case, the graph shows that a large error re-
mains. The error distance never falls below 30mm and increases to more than 100mm as
the target is moved further away from the camera. More important than the absolute distance
error is, that the error is systematic. The two lines have different slopes, which means that
one of the projection parameters like the focal length, the focus distance or the MLA-sensor
distance is not correct.

In contrast to this, figure 4.17 shows the same raw data, which is now projected with pa-
rameters obtained through this metric calibration algorithm. It can be seen that the two lines
now show only a very small difference. The distance error graph shows that the value of the
metric projection differs no more than 5mm from the ground truth over almost the whole
depth range. The error is distributed randomly across most of the range, though for the
highest distances an increasing depth error can be seen. This result shows that it is possible
to measure absolute metric depth from the sensor, when the camera has been calibrated with
the algorithm presented in this work.

For the next example, a Raytrix R29 camera with a Nikkor 50mm f/1.8 lens focused at
440mm was used. This time, the target was moved away from the camera from 210mm
to a maximum distance of 500mm in steps of 5mm. Figure 4.18 shows the results of the
projection with optimized parameters. The upper plot shows, that the ground truth values
and the reprojected values differ by a constant offset. The two lines are parallel to each
other over the whole range of depth values. This can also be seen in the lower plot. The
error value never drops below 50mm, but is almost constant over a large part of the depth
range. For the first 30 images, the distance between ground truth and metric reprojection is
between 58mm and 59mm. This means, if a constant offset of 58mm is added to the metric
reprojection, the error is actually only 1mm over a large part of the depth range.

This constant offset is caused by the use of the thin lens model. As mentioned in chapter
2.1.3, only the thick lens model can account for these constant offsets. It appears, that in
contrast to the Kowa 25mm lens used for the first example, the 50mm Nikkor lens can not
be approximated as a thin lens. In practice, the constant offset is not problematic. The
calibration only has to be performed one time. After that, the user can set any arbitrary
constant offset. Even if the camera could measure the correct distance from sensor to object,
it might still be useful to set an additional offset after that. If for example the height of boxes
should be measured, it is useful to set an offset, so that the floor level is the reference point
at a Z-value of 0m.
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Figure 4.17: Error analysis of metric reprojection with optimized parameters - R5 camera

The metric calibrations for these examples were performed with sets of about ten images
of the target. To see how the number of images affects the reprojection error, a series of
metric calibrations with an R29 camera and a Zeiss 50mm f/1.4 lens focused at 500mm was
carried out. At first, only a single image of the target was used for calibration. Then the
reprojection error was calculated as described above and the error was calculated by taking
the mean of the absolute distance error for all reprojections. This process was repeated with
more and more images of the calibration target, until a set of ten images was used. Figure
4.19 plots the average reprojection errors over the number of calibration target images which
were used.

It can be seen that the metric calibration did not work when only one image was used. The
average distance from the reprojection to the ground truth was over 300mm. For this reason,
a multi image calibration technique is used in this work. Starting at two images, the average
error drops considerably. For this test, the input images were chosen so that the points were
spread evenly over all virtual depth values. With images 1 and 2, a range from virtual depth
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Figure 4.18: Error analysis of metric reprojection with optimized parameters - R29 camera

2.3 to virtual depth 6.5 was covered with a total of 5080 valid points extracted from the
target images.

Once four images with carefully chosen point distributions are used, the average error can
hardly be improved by using more images. With four images, a total of 10923 points from
virtual depth 2.1 to virtual depth 7.3 were used. As mentioned before, the calibrations
usually use a greater number of images, generally above ten different images. This is to
ensure that the distribution of points is as even as possible. When a user takes images of the
calibration target in different poses, it can not be expected that such a uniform distribution
is given in the first two or four images. As the previous results show, ten or more images are
usually sufficient to cover the range of depth values needed for a valid metric calibration.

Another analysis can be done regarding the efficiency of the depth undistortion model. For
this test, a R5 camera with a Kowa 25mm f/2.4 focused at 300mm was used. Ten images
of the calibration target were taken to perform a metric calibration. The calibration was run
twice, once with the depth undistortion model enabled and once without it.

Images of a noise target at different distances from the camera were taken and reprojected
into metric space as described above. These points should come to lie in a plane parallel to
the sensor. To visualize any deviation from this plane, a paraboloid was fitted to the point
cloud. Figure 4.20 shows two contour plots side by side. On the left, the depth undistortion
model was turned off, while on the right the undistortion was turned on. The target was at
a distance of 154mm from the sensor. It can be seen, that the reprojection without depth
undistortion results in a deviation of up to 25mm from the theoretical plane. On the left, the
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Figure 4.19: Average reprojection error over number of images

Table 4.8: Metric depth values of reprojected plane target with and without correction for
MLA aberration

Lens type Correction off
absolute depth

Correction off
relative error

Correction on
absolute depth

Correction on
relative error

Far 616.3255 0% 592.3340 0%
Middle 612.5430 −0.62% 590.4700 −0.32%
Near 609.4920 −1.12% 590.3000 −0.34%

activated undistortion model has produced a point cloud with only minor deviation from the
expected plane.

In figure 4.21, the same comparison is shown for an image of a noise target taken at 326mm
distance. It should be noted, that the image on the left without the undistortion model active
shows only up to 20mm of deviation from the plane. This variation of the Petzval field
curvature depending on the distance from the camera was discussed in section 2.2.2. The
contour plot on the right shows that the undistortion also works at a greater distance from
the camera. This means that the novel undistortion model is well fitted to the data and can
be used for this metric calibration.

Finally, the effectivitiy of the newly introduced offsets bi for the MLA-Sensor distance
should be tested. To do this, calibrations were performed for an R5 camera with a Kowa
50mm f/2.4 lens focused at 500mm. In the first calibration, only one MLA-Sensor distance
b was estimated. For the second calibration, three values bi were used in the calibration
process. After that, a plane target was placed at a distance from the sensor where all three
lens types produce valid depth estimations. The depth values for this target were reprojected
to metric space in front of the camera. The desired result is, that the points in metric space
form a plane. Yet table 4.8 shows, that without correction, the projection results in three
planes at different distances from the sensor. The distance values were obtained by fitting a
plane to the point cloud and evaluating the value in the center.
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Figure 4.20: Contour plot of depth error values for plane target at 154mm distance from
sensor

Figure 4.21: Contour plot of depth error values for plane target at 326mm distance from
sensor
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The percentual errors are calculated relative to the plane projected from the data of the far
lens type. When looking at the relative error with the new correction method active, it
can be seen that the distance between the planes has be reduced compared to before. For
example, points with depth estimations from the middle and near lens type would now just
lie 0.17mm apart, while this error without correction would be over 3mm. If a systematic
error of 3mm exists for depth estimations of the same point of the object with different
lens types, reducing this error should greatly reduce the noise of the resulting depth map of
the object. Unfortunately, it can not yet be analyzed if this corrections has an influence on
the noise of the depth values when calculating a full depth map, because the camera model
developed for this metric calibration algorithm has not yet been fully incorporated into the
projection algorithms of the Raytrix RxLive software.

But as the results above show, this implementation allows modelling a light field camera
with a main lens accurately, so that a metric calibration can be performed. It has been shown
that the calibration process is very robust. Calibrations were performed for many different
cameras, lenses and lens settings. No special care was taken with regard to the images
of the calibration targets. The lighting, pose and scale of the targets varied greatly from
shot to shot, yet all calibration processes have converged to a plausible set of parameters.
The detection algorithms performed good, while not introducing any false positive points.
Finally, the newly introduced correction for MLA aberration and the depth undistortion have
produced the expected results. This means that this implementation is fit to be incorporated
into the Raytrix RxLive software package. The next chapter will give an outlook to further
possiblities and sums up this work.
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As the results in the previous chapter show, the camera calibration algorithm implemented
for this work performs very well. The desired robustness of the spot detection and spot
assignment has been achieved. The calibration target designed for this work allows a rela-
tively simple set of algorithms to perform the automatic feature location extraction. Also,
the calibration target is low-cost, since it can be printed with sufficient accuracy using an
office printer.

With a finished valid calibration, metric 3D values can be calculated from virtual depth
values. In some cases, even a reconstruction of the absolute distance from sensor to the
object is possible. With the undistortion models applied during reprojection, measurements
in 3D space give accurate results. For the first time, it is possible to rectify the radial depth
distortion caused by Petzval field curvature. This allows the use of low-cost lenses, which
are not corrected for these types of distortion. The camera model has proven to be accurate
and it will be incorporated in the Raytrix RxLive software package.

For the first time, this algorithm enables metric calibration by the user in the field. Formerly,
a metric calibration was only possible by using a large and expensive motorized linear stage.
Now the images needed for a metric calibration can be taken in minutes. The actual metric
calibration algorithm can be performed with these images at any time. This means that
when images of a scene or object have been taken without a metric calibration, it is possible
to project the depth values of these images into metric space afterwards, when a metric
calibration has been performed.

Future work could be done on the spot detection algorithms to further increase the quality
and robustness of the algorithm. In other state of the art camera calibration methods, more
advanced algorithms are used to find the feature locations. This algorithm was designed
to be modular, so a new spot detection algorithm can easily be inserted into the existing
framework. Simultaneously, it should be checked if commercially available high precision
calibration targets increase the quality of the calibration.

This algorithm could also be adapted to support multiple calibration targets in the image. If
for example, three targets orthogonal to each other are imaged, a better distribution of points
could be achieved, while minimizing the effort for the user.
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More analysis could also be done on including the full pose of the main lens in the intrinsic
parameters. It is possible that a different set of parameters to describe the pose could im-
prove the stability of the optimization. It could also be beneficial to include new error terms
based on the lens pose parameters in the optimization to prevent it from diverging.

Another possibility for improving the projection model is to analyze how the thick lens
model can be used. Finding the initial values for such a model will be especially difficult,
since the lens thickness is generally not known. An iterative approach to the real lens thick-
ness might also be difficult, because the optimization may diverge instead of reaching a
valid minimum. None the less, using the thick lens model would allow the calibration of
microscope optics, which can not be approximated as a thin lens. Since microscopy is a
very interesting field of application for light field cameras, this should be further pursued.

Finally, the biggest step to increase the quality of the calibration would be to extend the
calibration to the raw image. In this work, only the total focus image and the corresponding
depth map have been used. These are computed from the raw image, which still shows the
structure of the microlens array. When using this raw image for calibration, the intrinsic
parameters of each microlens could be found. This would provide a much better way to
rectify aberrations of the microlens array, and also aberrations of individual microlenses.
This step would unfortunately require many changes to the algorithms implemented here
and is therefore left for future work.
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Glossary
Aberration Error in the projection of a lens

API Application programming interface, specifies how software components interact
with each other

Centroid The center of a region. Can be calculated in 2D or 3D as the barycenter of a
distribution of points

Depth map A 2D image where the values represent distance from the camera

Disparity The difference in image location of an object seen by two cameras or two
microlenses

Extrinsic parameters Parameters of the camera model that describe the pose of the
camera relative to a global coordinate system

False positive A false positive is a wrong detection of a feature, when actually no feature
is present

Feature In image processing a feature is anything that can be detected in an image

Image space The space from the principal plane of the main lens in direction of the sensor

Intensity image A 2D grayscale or color image showing the brightness of the scene

Intrinsic parameters Parameters of the camera model that describe the camera itself

Minimization Also known as optimization, tuning of parameters of a model until the value
of an error fuction becomes minimal

MLA Microlens array, placed in front of the sensor of a light field camera

Noise target Plane target with a random high contrast pattern designed to give optimal
depth estimations when imaged with a light field camera

Object space The space from the principal plane of the main lens in direction of the object

Optical axis Virtual axis through the center of a lens, coaxial with rotationally symmetric
lens elements

Optimization Also known as minimization, tuning of parameters of a model until the
value of an error fuction becomes minimal

Petzval field curvature Causes the main lens to project a plane object to a curved surface
in image space

Principal plane Virtual plane at the center of a lens, normal to optical axis

Profilometer (Mechanical) device to measure surface roughness



Quaternions Quaternions can represent a rotation in 3D space using four parameters

Reprojection Virtual projection through the main lens from image space to object space

SDK Software development kit

TCP Total covering plane at virtual depth 2.0 on which the main lens must be focused

Virtual depth Native unit for depth estimations with Raytrix light field cameras
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