

BACHELORARBEIT ZUM THEMA

Untersuchung von Druckverlustberechnungen einer Zweiphasenströmung nach dem Modell von "Beggs & Brill".

AN DER

Fakultät Life Science

Studiengang Verfahrenstechnik

HOCHSCHULE FÜR ANGEWANDTE WISSENSCHAFTEN HAMBURG

ERSTELLT VON:

Dennis Pemsel (Matrikelnummer: 2003546)

 $28 \ \mathrm{Februar} \ 2014$

GUTACHTER: PROF. DR. MICHAEL MICKELEIT (HAW HAMBURG) GUTACHTER: M.SC, ELMAR KESSLER (IBH ENGINEERING GMBH)

AUFGABENSTELLUNG

Die IBH Engineering GmbH arbeitet seit einigen Jahren daran, ein Tool für die Berechnung von zweiphasigen durchströmten Sicherheitssystemen zu entwickeln und zu validieren. Hierzu wurden einige Berechnungsvorschriften zur Bestimmung des abführbaren Massenstroms durch ein zweiphasig durchströmtes Sicherheitsventil in eine thermodynamische Simulationsumgebung (ChemCad) implementiert. Um die Druckverluste in der Zuund Ausblaseleitung zu bestimmen und die damit einhergehenden Zustandsänderungen im Ein-und Auslass des SVs zu berechnen, kann die Programmierung des Sicherheitsventils mit Rohrleitungselementen verknüpft werden, sodass auch ganze Sicherheitssysteme effizient und unter Berücksichtigung der gegenseitigen Abhängigkeit zwischen maximalem Massenstrom und Druckverlust berechnet werden können.

In der Bachelor Thesis sollen durch eine intensive Literaturrecherche die Anwendungsgrenzen für das Modell von "Beggs & Briggs" benannt und Druckverlustberechnungen mit dem Modell (in ChemCad) mit Mess- und Simulationswerten aus Literaturquellen verglichen werden. Die bei der Recherche auftauchenden alternativen Zweiphasendruckverlustmodelle sind aufzulisten und deren aus der Literatur erhaltenen Anwendungsgrenzen und Abweichung gegenüber Mess-und Simulationsdaten zu dokumentieren. Die Untersuchung ist in erster Linie für gerade Rohrleitungen (vertikal, horizontal, diagonal) durchzuführen. Zu den auftauchenden Abweichungen ist Stellung zu nehmen.

INHALTSVERZEICHNIS

	Abbildungsverzeichnis				
	Tab	ellenver	zeichnis	vi	
	Sym	nbolverz	eichnis und Nomenklatur	vii	
	Dan	ksagun	g	xii	
	Eide	esstattli	che Erklärung	xiii	
1	Ku	rzfassu	ng	1	
2	Ein	leitung	g und Zielsetzung	2	
3	Sta	nd des	Wissens	3	
	3.1	Grund	llagen zur Zweiphasenströmung	3	
		3.1.1	Parameter der Zweiphasenströmung	4	
		3.1.2	Strömungsformen und Strömungskarte	5	
	3.2	Druck	verluste in 2-Phasenströmungen	10	
		3.2.1	Homogenes Fließmodell	11	
		3.2.2	Heterogenes Fließmodell / Schlupfmodell	12	
		3.2.3	Druckverluste	12	
4	Mo	dell na	ch Beggs & Brill	14	
	4.1	Grund	lgleichungen zum Modell	14	
5	Ver	gleich	und Ergebnisse	20	
	5.1	Vergle	ich mit Messwerten aus der Literatur	21	
		5.1.1	Druckverlustabweichung in Abhängikeit des Massegasgehaltes	23	
		5.1.2	Druckverlustabweichung in Abhängigkeit der Geschwindigkeit	25	
		5.1.3	Abweichung des berechneten Druckverlustes	27	
	5.2	Vergle	ich mit Druckverlustmodellen	29	

6	Fazi	it		31
7	Aus	blick		33
8	Lite	eratury	verzeichnis	34
Ι	Anł	nang		Ι
	Ι	Model	llansätze	Ι
		I.1	Lockhart-Martinelli-Modell	Ι
		I.2	Friedel Modell	III
		I.3	Chawla-Modell	IV
		I.4	Müller-Steinhagen und Heck Modell	VI
	II	Abbil	dungen	VII
	III	Tabell	len	IX

Abbildungsverzeichnis

3.1	Strömungsformen im waagerechtem Rohr [2] $\ldots \ldots \ldots \ldots \ldots \ldots$	6
3.2	Strömungsformen im senkrechten Rohr bei Aufwärtsströmung $[2]$	7
3.3	Strömungsformen in einer Luft/Wasser-Strömung im waagerechten Rohr	
	nach Mayinger $[20][16]$	9
3.4	Strömungsformen in einer Luft/Wasser-Strömung im vertikalem Rohr nach	
	$Mayinger[20][16] \dots \dots$	10
5.1	Reibungsdruckverlust nach Beggs und Brill zum Vergleich mit den Mess-	
	werten aus der Literatur $\left[10\right]$ in Abhängigkeit des Massegasgehaltes in ei-	
	nem Rohr mit $d_i = 0,96$ mm	22
5.2	Reibungsdruckverlust nach Beggs und Brill zum Vergleich mit den Mess-	
	werten aus der Literatur [10] in Abhängigkeit des Massegasgehaltes in ei-	
	nem Rohr mit $d_i = 2 \text{ mm} \dots \dots$	22
5.3	Abweichung zwischen Mess-[10] und Simulationswerten in einem Rohr mit	
	$d_i = 0,96$ mm in Abhängikeit des Massegasgehaltes	24
5.4	Abweichung zwischen Mess- [10] und Simulationswerten in einem Rohr mit	
	$d_i=2\mathrm{mm}$ in Abhängikeit des Massegasgehaltes $\hfill\hfi$	24
5.5	Abweichung der Simulationsergebnissen von den Messerten aus [10] in Ab-	
	hängigkeit der Geschwindigkeit in einem Rohr mit $d_i=0,96\mathrm{mm}$	26
5.6	Abweichung der Simulationsergebnissen von den Messerten aus [10] in Ab-	
	hängigkeit der Geschwindigkeit in einem Rohr mit $d_i = 2$ mm	26
5.7	Auftragung des mit Beggs und Brill berechneten Druckverlustes in Ver-	
	gleich zu den Messwerten aus [10] bei $d_i = 0,96$ mm $\ldots \ldots \ldots \ldots$	28
5.8	Auftragung des mit Beggs und Brill berechneten Druckverlustes in Ver-	
	gleich zu den Messwerten aus [10] bei $d_i = 2$ mm	28
5.9	Reibungsdruckverlust nach Beggs und Brill zum Vergleich mit Messwerten	
	von $vier$ unterschiedlichen Drckverlustberechnungsmodellen aus [32] \ldots	29
I. 1	Strömungsformkarte im waagerechten Rohr nach Taitel und Dukler in Ab-	
	hängigkeit der Kennzahlen T_D , F_D , K_D sowie des Lockhart-Martinelli-	
	Parameters x $[25][28]$	VII

I. 2	Strömungsformkarte im senkrechten Rohr nach Hewitt und Roberts in Ab-
	hängigkeit der Impulsstromdichte von der Gas- und Flüssigkeitsphase[14]
	[28]
I. 3	Darstellung der Übergangsgrenzen bei einem vertikalem Rohr von verschie-
	denen Autoren [24]

TABELLENVERZEICHNIS

4.1	Strömungsformen einer Zweiphasenströmung nach Beggs & Brill anhand	
	der berechneten dimensionslosen Kennzahlen L_1, L_2, L_3, L_4 [5]	15
4.2	Konstantenbestimmung anhand der Strömungsform einer Zweiphasenströ-	
	mung für die Berechnung des Flüssigkeitsanteil $[5]$	16
4.3	Konstanten für die Bestimmung des Korrekturfaktors C [5]	17
5.1	Messbedingungen und Geometrische Abmessung der Vergleichsstrecken. Mit dem Innendurchmesser d_i , der Rohrlänge L , der Rohrrauigkeit Ra , der Massenstromdichte G und der Temperatur T . [10]	21
I. 1	Wertigkeit der Konstante C in Abhängigkeit des Fließverhalten der Gas-	
	und Flüssigkeitsphase $[27]$	III

Symbolverzeichnis und Nomenklatur

Begriff	Bedeutung
Flash	Der Flash ist eine thermodynamiche Gleichgewichtsoperation. Aus thermodynamischen Eingangsgrößen, Bedingungen für die Zu- standsänderung und mindestens einer thermodynamischen Aus- gangsgröße, lassen sich mit Hilfe des Flashes alle weiteren ther- modynamischen Zustandsgrößen für den Ausgang berechnen.
calc	Die berechneten Messwerte werden durch das ChemCAD Pro- gramm mit Hilfe einer Flashberechnung bestimmt
exp	Experimentelle Messwerte, die aus der Literatur entnommen wer- den
Zweiphasen	Flüssig und gas-/ dampfförmig

Begriffe und Abkürzungen

Symbol	Einheit	Bedeutung
А	m^2	Fläche
А	_	Beggs & Brill Interpolationskonstante (Glg. 4.11)
В	_	Beggs & Brill Interpolationskonstante (Glg. 4.12)
С	_	Beggs & Brill Parameter (Glg. 4.14)
d_i	mm	Innendurchmesser Rohr
f	-	Reibungsbeiwert
F	-	Beggs & Brill Interpolationskonstante (Glg. 4.12)
F	-	Friedel Konstante (Glg. I.6)
\mathbf{Fr}	_	Froudezahl
g	$9,81m/s^{2}$	Erdbeschleunigung
G	$6,673 * 10^{-11} m^3 / kg \cdot s^2$	Gravitationskonstante
Ġ	$kg/m^2 \cdot s$	Massentromdichte
Н	_	Phasenanteil
Н	_	Friedel Konstante (Glg. I.15)
j	-	Beggs & Brill Konstante (Glg. 4.26)
L	mm	Rohrlänge
L_1	_	Beggs & Brill Kennzahl (Glg. 4.4)
L_2	-	Beggs & Brill Kennzahl (Glg. 4.5)
L_3	-	Beggs & Brill Kennzahl (Glg. 4.6)
L_4	-	Beggs & Brill Kennzahl (Glg. 4.7)
$L\nu$	m/s	Geschwindigkeitszahl nach Beggs & Brill (Glg. 4.15)

Lateinische Symbole - Teil 1

Symbol	Einheit	Bedeutung
m	kg	Masse
\dot{m}	$\rm kg/s$	Massestrom
Р	Pa	Druck
Ra	$\mu { m m}$	Rohrrauhigkeit
Re	-	Reynoldszahl
S	-	Beggs & Brill Konstante (Glg. 4.25)
t	-	Konstante für Flüssigkeitsanteil (Tab.4.2)
Т	Κ	Temperatur
u	-	Konstante für Flüssigkeitsanteil (Tab.4.2)
V	-	Konstante für Flüssigkeitsanteil (Tab.4.2)
V	m^3	Volumen
\dot{V}	m^3/s	Volumenstrom
W	-	Beggs & Brill Korrekturkonstante (Tab.4.3)
We	-	Weberzahl
х	-	Beggs & Brill Korrekturkonstante (Tab.4.3)
Х	-	Lockhart-Martinelli Parameter
У	-	Beggs & Brill Korrekturkonstante (Tab.4.3)
Z	-	Beggs & Brill Korrekturkonstante (Tab.4.3)
Ζ	mm	Höhe

Lateinische Symbole - Teil 2

Symbol	Einheit	Bedeutung
β	Grad	Neigungswinkel der Rohrleitung
χ	-	Gasmassenanteil
Δ	-	Differenz
λ	-	Schlupf
ϵ	-	volumetrischer Dampf-/Gasanteil
ϕ	-	Zweiphasenfaktor Friedel
μ	m^2/s	Viskosität
ν	m/s	Geschwindigkeit
π	3,14159	Kreiszahl PI
ρ	kg/m^3	Dichte
σ	kg/s^2	Oberflächenspannung
ψ	-	Korrekturfaktor für Rohrneigung

Griechische Symbole

Indize	Bedeutung
acc	Beschleunigungsanteil
el	hydrostatischer Anteil
fr	Friedel
frict	Reibungsanteil
g	Gas / Dampf
ges	Gesamt
hom	Homogen
i	Innen
in	Eintritt
l	Flüssigkeit
out	Austritt
tp	zweiphasen
tt	turbulent

Tiefgestellte Indizes

DANKSAGUNG

Ein großer Dank gilt Herrn Prof. Dr. Michael Mickeleit, der mich dabei unterstützte, die Bachelorarbeit im Fachgebiet Thermodynamik und Fluidtechnik erstellen zu können.

Außerdem möchte ich mich bei der IBH Engineering GmbH bedanken, die mir die Erstellung der Bachelorarbeit an ihrem Standort Ludwigshafen ermöglichte.

Zudem möchte ich die Abteilung Plant Design für ihre Unterstützung danken.

Der größte Dank gebührt meine fachlichen Betreuer Florian Reiter und Elmar Kessler. Durch ihren unermüdlichen Einsatz bei fachlichen und inhaltlichen Fragestellungen trugen Sie maßgeblich zum Gelingen dieser Arbeit bei.

Eidesstattliche Erklärung

Ich erkläre hiermit, dass ich diese Bachelorarbeit selbstständig und ohne Benutzung anderer als der angegebenen Quellen und Hilfsmittel verfasst habe. Alle den benutzten Quellen wörtlich oder sinngemäß entnommenen Stellen sind als solche kenntlich gemacht. Diese Arbeit ist bislang keiner anderen Prüfungsbehörde vorgelegt worden, noch wurde sie bisher anderweitig veröffentlicht. Das elektronisch beigefügte Exemplar stimmt mit den anderen Exemplaren überein.

Datum: _

Hamburg

Unterschrift: _____

Dennis Pemsel

Kapitel 1

Kurzfassung

Im Rahmen dieser Bachelorarbeit wird die Berechnung des Druckverlustes von Zweiphasenströmungen in einer horizontalen Rohrleitung nach dem Modell von Beggs & Brill untersucht.

Für die Untersuchung werden aus der Literatur[10][22][32][19] entnommene Messwerte durch das Modell von Beggs und Brill[5] in ChemCAD 6.5.3 [8] nachgerechnet und verglichen. Es wird die Abweichung des Druckverlustes in Abhängigkeit der Geschwindigkeit und des Massegasgehaltes bei unterschiedlichen Temperaturen, Massestromdichten und Innendurchmessern untersucht. Dadurch wird die Einflussnahme der Parameter auf den Druckverlust geklärt. Außerdem wird ein Vergleich mit aus der Literatur [10][32] entnommenen Modellen durchgeführt.

Bei der Darstellung des Reibungsdruckverlustes in Abhängigkeit des Massegasgehaltes zeigt sich ein mit steigendem Massegasgehalt ansteigender Druckverlust. Während die Messwerte einen zum Ende hin abfallenden Kurvenverlauf annehmen, steigt der mit Beggs und Brill berechnete Druckverlust linear an. Wie sich zeigt, hat die Strömungsgeschwindigkeit und die Massestromdichte einen Einfluss auf die Gesamtabweichung. Bei erhöhter Strömungsgeschwindigkeit und erhöhter Massestromdichte ist eine kleinere Gesamtabweichung zu beobachten. Aus dem Vergleich der Simulationsergebnisse ergibt sich insgesamt eine maximale Standardabweichung von 17,6%. Im Vergleich zu anderen Modellen,gibt dieser Wert ein sehr gutes Ergebniss über die Druckverlustberechnung wieder.

KAPITEL 2

EINLEITUNG UND ZIELSETZUNG

Die Berechnung des Druckverlustes von Zweiphasenströmungen ist in der chemischen Industrie von großer Relevanz. Eine genaue Vorhersage des Druckverlustes in Zweiphasenströmungen ist maßgeblich für die Auslegung von Sicherheitssystemen oder der Dimensionierung von Rohrleitungen[11][21].

Um Anlagen, vorallem in der chemischen Industrie, für Zweiphasenströmungen auslegen zu können, sind in der Literatur eine Vielzahl von Druckverlustmodellen zu finden. Eine Verifikation der Modelle mit Messdaten ist notwendig, da große Abweichungen bei der Vorhersage von Druckverlusten in Zweiphasenströmungen bestehen. Eine Ursache für diese Abweichungen ist durch die Komplexität der Zweiphasenströmung zu erklären. Das Beggs und Brill Modell wird als Berechnungsgrundlage verwendet, da dieses Modell die Flüssigkeits- und Gasphase einzeln betrachtet und die Eigenschaften der einzelnen Phasen berücksichtigt. Weiterhin bietet das Modell von Beggs und Brill die Möglichkeit neben den horizontalen Rohrleitungen auch vertikale und geneigte Rohrleitungen zu untersuchen und macht es dadurch zu einem sehr vielseitigem Berechnungsmodell.

Anhand dieser Grundlage ist das wesentliche Ziel dieser Bachelor Thesis, durch eine Literaturrecherche die Genauigkeit für das Berechnungsmodell von "Beggs & Briggs" zu untersuchen und mögliche Anwendungsgrenzen zu definieren. Dazu werden einige Druckverlustberechnungen mit dem Modell gegenübergestellt und die Mess-und Simulationswerten miteinander verglichen.

KAPITEL 3

STAND DES WISSENS

Im folgenden Abschnitt werden grundlegende Informationen über den Stand des Wissens der Zweiphasenströmung vermittelt. Behandelt werden Zweiphasenströmungen in waagerechten sowie in vertikalen Rohrleitungen. Ausführlich in der Literatur niedergeschriebene Herleitungen sind z.B in [31],[1],[15] vorzufinden[30].

3.1 Grundlagen zur Zweiphasenströmung

Zweiphasige Rohrströmungen sind Strömungen, in denen Fluide in zwei verschiedenen Aggregatzuständen vorhanden sind[17]. Das Fließverhalten für Zweiphasenströmungen ist schwieriger zu beschreiben als für Einphasenströmungen[6]. Wohingegen Einphasenströmungen anhand von turbulenter und laminarer Strömung, sowie ihren Stoffeigenschaften charakterisiert werden, müssen bei Zweiphasenströmungen die unterschiedliche Massenanteile der Phasen, das Fließmuster, die unterschiedlichen Viskositäten der Phasen, die Phasenübergänge, sowie die Dichten der Phasen zusätzlich berücksichtigt werden. Charakteristisch für die Zweiphasenströmung ist, dass die Phasen in unterschiedlichen Geschwindigkeiten strömen. Dies ist auf die unterschiedlichen Dichten und Viskositäten der Phasen zurück zuführen. Für die in dieser Arbeit behandelten Gas-Flüssigkeits-Gemische, welche als Reinstoff (z.B. siedenes Wasser) oder als Stoffgemisch (z.B. Luft + Wasser) vorkommen können, werden unterschiedliche Strömungsformen betrachtet. Für die betrachteten Strömungsformen gilt der Energieerhaltungssatz und der Massenerhaltungssatz. Nach dem Massenerhaltungssatz bleibt der Massestrom in einer durchströmten Rohrleitung konstant[4]. Der Massestrom wird in der Gleichung 3.1 als Produkt aus dem Volumenstrom \dot{V} und der Dichte ρ beschrieben.

$$\dot{m} = \rho \cdot \dot{V} = \rho \cdot \nu \cdot A \tag{3.1}$$

Der Term für den Volumenstrom \dot{V} besteht aus der Geschwindigkeit ν und der Querschnittsfläche der Rohrleitung A (Gleichung 3.2).

$$\dot{V} = \nu \cdot A \tag{3.2}$$

Der Energieerhaltungssatz wird Anhand der Wärme dq, Arbeit dw, kinematischen Energie $\nu d\nu$, potentiellen Energie gdz und der Volumenarbeit pdV beschrieben (Gleichung 3.3).

$$\overset{W"arme}{\partial q} + \overset{Arbeit}{\partial w} = \overset{kinetische Energie}{\nu d\nu} + \overset{Volumenarbeit}{p d\nu} + \overset{potentielle Energie}{g dz}$$
(3.3)

Es wird im Weiteren Verlauf angenommen, dass keine Wärme dem System zugeführt oder entnommen wird und das keine Arbeit in Form von mechanischer Energie dem System hinzugefügt oder abgeführt wird (Gleichung 3.4).

$$0 = gdz + pdv + \nu d\nu \tag{3.4}$$

3.1.1 Parameter der Zweiphasenströmung

Zunächst soll auf ein paar Grundgrößen eingegangen werden, die für die Zweiphasenströmungen relevant sind. Die Größe Massengashgehalt χ wird durch das Verhältnis der Gasmasse m_g zur Gesamtmasse m_{ges} für den stationären Fall in einem definierten Bilanzgebiet beschrieben (Gleichung 3.5)[20][24][2].

$$\chi = \frac{m_g}{m_{ges}} \tag{3.5}$$

Die Gesamtmasse m_{ges} (Gleichung 3.6) wird durch die Masse der Flüssigkeitsphase m_l und der Masse der Gasphase m_g ermittelt.

$$m_{ges} = m_g + m_l \tag{3.6}$$

Das Gesamtvolumen V_{ges} in dem stationär durchströmtem Bilanzraum ergibt sich aus dem Verhältnis der Gesamtmasse m_{ges} zur Zweiphasendichte ρ_{tp} (Gleichung 3.7).

$$V_{ges} = \frac{m_{ges}}{\rho_{tp}} \tag{3.7}$$

Der volumenbezogene Gasgehalt ϵ errechnet sich, wie in Gleichung 3.8 beschrieben, durch das Verhältnis des Gas-Volumens V_g zum Gesamtvolumen V_{ges} .

$$\epsilon = \frac{\frac{m_g}{\rho_g}}{\frac{m_g}{\rho_g} + \frac{m_l}{\rho_l}} = \frac{V_g}{V_{ges}} \tag{3.8}$$

Die Dichte ρ_{tp} der Zweiphasenströmung, für das Bilanzgebiet, berechnet sich nach der Gleichung 3.9.

$$\rho_{tp} = \epsilon \cdot \rho_g + (1 - \epsilon) \cdot \rho_l \tag{3.9}$$

Die Leerrohrgeschwindigkeit für die Gasphase ν_g , wird aus dem Verhältnis des Gas-Volumenstromes \dot{V}_g zur Querschnittsfläche A der durchströmten Rohrleitung berechnet (Gleichung 3.10). Die Leerrohrgeschwindigkeit der Flüssigkeitsphase ν_l , wird aus dem Verhältnis des Flüssigkeitsvolumenstromes \dot{V}_l zur Querschnittsfläche A berechnt (Gleichung 3.11)[16]. Der Volumenstrom bezieht sich aus der Gleichung 3.1.

$$\nu_g = \frac{\dot{V}_g}{A} \tag{3.10}$$

$$\nu_l = \frac{\dot{V}_l}{A} \tag{3.11}$$

In der durchströmten Rohrleitung werden Geschwindigkeitsdifferenzen zwischen den Phasen beobachtet, die durch den Dichteunterschied der beiden Phasen entstehen. Das vorliegende Geschwindigkeitsverhältnis zwischen der Geschwindigkeit der Gasphase ν_g zur Geschwindigkeit der Flüssigkeitsphase ν_l wird als Schlupf bezeichnet (Gleichung 3.12) [24][16].

$$\lambda = \frac{\nu_g}{\nu_l} \tag{3.12}$$

3.1.2 Strömungsformen und Strömungskarte

In Rohrleitungen können sich durch unterschiedliche Dampffraktionen sowie Gas- und Flüssigkeitsgeschwindigkeiten unterschiedliche Strömungsformen bilden. Dadurch werden die Phasengrenzen und die Volumenverteilungen der Phasen beeinflusst. Im folgenden Abschnitt wird zwischen vertikaler und horizontaler Strömungsführung unterschieden, die je nach Strömungseigenschaften unterschiedliche Strömungsformen ausbilden.

WAAGERECHTE STRÖMUNGSFÜHRUNG

In waagerechten Rohren ist die Anzahl an Strömungsformen größer als bei vertikalen Rohren [23]. Ist der Massegasgehalt sehr klein in einer Rohrleitung und liegt eine sehr geringe Strömungsgeschwindigkeit vor, so ist aufgrund des Verhälnisses von Schwerkraft zur Trägheitskraft eine Blasenströmung (Abbildung 3.1a) in der Rohrleitung zu beobachten. Erhöht sich der Massegasgehalt, so enstehen mehr Blasen, die sich zu größeren Blasen agglomerieren. Man spricht in diesem Fall von einer Kolbenströmung (Abbildung 3.1b).

(a) Blasenströmung, (b) Kolbenströmung, (c) Schichtenströmung, (d) Wellenströmung,(e) Schwallströmung, (f) Ringströmung, (g) Sprühströmung

Abbildung 3.1: Strömungsformen im waagerechtem Rohr [2]

Erhöht sich der Massegasgehalt weiterhin und bleibt die Geschwindigkeit unverändert, so kommt es zu einer nahezu vollständigen Trennung der beiden Phasen. Man spricht dann von einer Schichtenströmung (Abbildung 3.1c).

Durch die Erhöhung der Strömungsgeschwindigkeit und des Massegasgehaltes, wird die Flüssigkeitsphase in der Rohrleitung durch die strömende Gasphase mitgerissen und bildet Wellen an der Phasengrenze. Diese Strömungsform wird als Wellenströmung bezeichnet (Abbildung 3.1d). Durch weitere Steigerung des Massegasgehaltes enstehen Pfropfen. Pfropfen sind von Flüssigkeit eingehüllte Gaskammern, die den Rohrquerschnitt nahezu komplett einnehmen. Je nach Dampfgehalt sind diese Abschnitte kürzer oder länger [24] [29]. Man bezeichnet diese Strömungsform als Schwall- oder Pfropfenströmung (Abbildung 3.1e). Ist der Massegasgehalt und der volumenbezogene Gasgehalt hoch, so bewirkt die Strömungskraft, die in diesem Fall einen größeren Einfluss auf die Strömung hat als die Schwerkraft, dass die Flüssigkeit an die Wand gedrückt wird [24]. Man spricht von einer Ringströmung, die teilweise auch Tropfenströmung genannt wird (Abbildung 3.1f) [16][24].

Bei weiterer Zunahme des Massegasgehaltes entsteht die Sprühströmung, in der sich die Flüssigkeitsphase und die Gasphase in einem annähernd homogenen Gemisch befinden (Abbildung 3.1g).

Senkrechte Strömungsführung

In vertikalen Rohren kommen wie in waagerechten Rohren bestimmte Grundtypen der Rohrströhmung vor[2]. Die Blasenströmung (Abbildung 3.2 a) zeichnet sich durch eine Vielzahl von kleinen Blasen in der annähernd homogenen Flüssigkeitsphase aus. Sie ist bei sehr kleinem Massegasgehalt vorzufinden[28][24].

(a) Blasenströmung, (b) Kolbenströmung, (c) Schaumströmung,

(d) Strähnen-Ring-Strömung, (e) Ringströmung, (f) Sprühströmung

Ähnlich wie bei der waagerechten Strömungsführung, verändert sich die Rohrströmung anhand des zunehmenden Gasgehaltes. Durch das vom Gas eingenomme steigende Volumen berühren sich die Blasen öfters und bilden Pfropfenartige Hohlräume in der Rohrleitung. Diese Strömungsform wird als Kolben-,Schirm- oder auch Pfropfenströmung bezeichnet (Abbildung 3.2 b).

Erhöht sich der Massegasgehalt weiter, löst sich die Blasenstruktur immer weiter auf. Die Flüssigkeitsbereiche zwischen den einzelnen Hohlräumen nehmen immer weiter ab und es entsteht eine Schaumströmung (Abbildung 3.2 c). Die Schaumströmung entsteht zunehmend in Rohrleitungen, die einen großen Durchmesser besitzen und unter hohem Druck stehen [2].

Die Strähnen-Ring-Strömung (Abbildung 3.2 d) entsteht bei einer hohen Strömungsgeschwindigkeit, die dafür sorgt, dass sich an der Rohrleitungswand eine Flüssigkeitschicht bildet und der Innenraum der Rohrleitungs von einer Gasphase mit einzelnen Flüssigkeitstropfen durchströmen wird [24]. Mit weiter steigendem Massegasgehalt und steigender Strömungsgeschwindigkeit, trennen sich die Flussigkeitsphase und Gasphase nahezu vollständig voneinander. Die Flüssigkeitsphase wird an die Wand gedrückt und die Gasphase strömt im inneren der Rohrleitung (Abbildung 3.2 e).

Bei sehr hoher Strömungsgeschwindigkeit, wird die Flüssigkeit an der Wandung mitgerissen und es bildet sich eine Strömung, die vorwiegend aus Gas mit einzelnen Flüssigkeitstropfen besteht. Diese Rohrströmung wird als Sprühströhmung bezeichnet (Abbildung 3.2 f).

Strömungskarten

Zweiphasenströmungen können unterschiedliche Strömungsformen annehmen. Für die Bestimmung der Strömungsform wurden durch Untersuchungen die sogenannten Strömungsbilderkarten erstellt, in der anhand zweier charakteristischer Größen, die Strömungsform aus einem Diagramm abgelesen werden kann. Ein Beispiel für eine solche Strömungskarte ist in Abbildung 3.3 dargestellt [16]. Die hier verwendete Abbildung von Mayinger ist Logarithmisch skaliert und als Bezugsparameter wird die Leerrohrgeschwindigkeit des Gases sowie die der Flüssigkeit verwendet. Der Übergang zwischen den einzelnen Strömungsbereichen erfolgt nicht abrupt, weshalb die Trennlinien als Übergangsbereich angesehn werden sollten. Neben der Leerrohrgeschwindigkeiten nehmen auch die Dichten der

Abbildung 3.3: Strömungsformen in einer Luft/Wasser-Strömung im waagerechten Rohr nach Mayinger [20][16]

Phasen, die Viskositäten der Phasen, Grenzflächenspannung, der Rohrinnendurchmesser, sowie die Erdbeschleunigung Einfluss auf die Strömungsformen. Dies zeigt sich auch daran, dass in der Literatur eine Vielzahl von Strömungskarten zu finden sind. Nennenswerte Strömungskarten sind das Baker-Diagramm[3] [26], das Taitel and Dukler (Abbildung I. 1) [25] sowie von Hewitt (Abbildung I. 2). Grundsätzlich sollen die Diagramme zur Orientierung dienen und nicht als unumstößlich angesehen werden [2].

Abbildung 3.4: Strömungsformen in einer Luft/Wasser-Strömung im vertikalem Rohr nach Mayinger[20][16]

3.2 Druckverluste in 2-Phasenströmungen

Der Berechnungsweg des Druckabfalles einer Zweiphasenströmung unterscheidet sich im Vergleich zu der Berechnung einer Einphasenströmung darin, dass sich bei der Zweiphasenströmung die Phasen gegenseitig beeinflussen[28]. Wie in den "Grundlagen zur Zweiphasenströmung" im Kapitel 3.1 beschrieben, werden mittels des Massegasanteiles die Zusammenhänge zwischen den Phasen bezüglich der Erhaltungsgleichungen für Masse und Energie berücksichtigt. Der Druckverlust Δp (Gleichung 3.13) in geraden Rohrleitungen lässt sich mit Hilfe des Beschleunigungsanteils Δp_{acc} , des hydrostatischen Anteils

 Δp_{el} , sowie des Reibungsanteils Δp_{frict} berechnen[8].

$$\Delta p = \Delta p_{acc} + \Delta p_{el} + \Delta p_{frict} \tag{3.13}$$

Es wird zwischen zwei grundlegenden Herangehensweisen für die Berechnung des Druckverlustes unterschieden[28][27][16]. Das homogene und das heterogene Fließmodell.

3.2.1 Homogenes Fliessmodell

Das Homogene Fließmodel unterscheidet sich zu dem Heterogenem Fließmodell in der Annahme, dass der Schlupf $\lambda = 1$ ist [16]. Das bedeutet das die Geschwindigkeitsdifferenz der beiden Phasen 0 ist. Demnach lässt sich der homogene volumetrische Gasanteil ϵ_{hom} mit der Flüssigkeitsdichte ρ_l , der Gasdichte ρ_g , und dem Massegasgehalt χ (Gleichung 3.5) nach Gleichung 3.14 bestimmen.

$$\epsilon_{hom} = \frac{\rho_l \cdot \chi}{\rho_l \cdot \chi + \rho_g \cdot (1 - \chi)} \tag{3.14}$$

Nach mathematischer Sicht, wird das Zweiphasengemisch im homogenen Modell als eine einphasige Strömung mit der homogenen Dichte ρ_{hom} betrachtet. Die homogene Dichte ρ_{hom} und homogene Geschwindigkeit ν_{hom} werden nach den Gleichungen 3.15 und 3.16 berechnet[28].

$$\rho_{hom} = \left(\frac{\chi}{\rho_g} + \frac{1-\chi}{\rho_l}\right)^{-1} \tag{3.15}$$

$$\nu_{hom} = \frac{\dot{m}}{\rho_{hom} \cdot A} \tag{3.16}$$

Wobei die Größe A für die durchströmte Querschnittsfläche steht und \dot{m} für den Massenstrom.

3.2.2 Heterogenes Fliessmodell / Schlupfmodell

Eine bessere Betrachtung der Zweiphasenströmung bietet das heterogene Fließmodell, bei dem die Geschwindigkeiten der einzelnen Phasen unterschieden werden. Bei der Berechnung der Druckänderung wird der Schlupf zwischen der Gas- und Flüssigkeitsphase berücksichtigt[16]. Der Schlupf, welcher für die Charakteresierung der Strömung angewendet wird, kann analog zu der Gleichung 3.12 auch durch die Gleichung 3.17 beschrieben werden[27][28].

$$\lambda = \frac{\chi}{1 - \chi} \cdot \frac{1 - \epsilon}{\epsilon} \cdot \frac{\rho_l}{\rho_g} \tag{3.17}$$

Die Geschwindigkeiten werden im Gegensatz zu den allgemeinen Formeln aus Gleichung 3.10 und 3.11 mittels des Massestromes \dot{m} , des volumetrischen Gasgehaltes ϵ , des Massegasgehaltes χ , der zugehörigen Dichten ρ_l und ρ_g sowie der durchströmten Querschnittsfläche A berechnet (Gleichung 3.18 und 3.19).

$$\nu_g = \frac{\dot{m} \cdot \chi}{\rho_g \cdot A \cdot \epsilon} \tag{3.18}$$

$$\nu_l = \frac{\dot{m} \cdot (1 - \chi)}{\rho_l \cdot A \cdot (1 - \epsilon)} \tag{3.19}$$

3.2.3 Druckverluste

Ausgehend von der Grundformel (Gleichung 3.13) sind drei Druckverlustfaktoren zu berücksichtigen. Der hydrostatische Anteil Δp_{el} wird mit Hilfe der Zweiphasendichte ρ_{tp} (Gleichung 3.9), der Erdanziehungskraft g und der Höhe Z berechnet (Gleichung 3.20) [27].

$$\Delta p_{el} = \rho_{tp} \cdot g \cdot Z \tag{3.20}$$

Die Verwendung des Beschleiunigungsanteils zur Berechnung des Druckverlustes ist nur dann erforderlich, wenn es in einer Rohrleitung zu einer starken Geschwindigkeitsänderung der Flüssigkeits- oder Gasphase kommt. Eine mögliche Ursache hierfür ist zum Beispiel die Verdamfung einer Flüssigkeit, die Expansion eines Gases infolge der Druckänderung oder eine Querschnittsverengung [28]. Der Beschleunigungsanteil wird nach Gleichung 3.21 für einen Bilanzraum mit Eintritt *in* und Austritt *out* ermittelt[27].

$$\left(\frac{dp}{dl}\right)_{acc} = \dot{G}_{ges}^2 \cdot \left\{ \left[\frac{(1-\chi)^2}{\rho_l \cdot (1-\epsilon)} + \frac{\chi^2}{\rho_g \cdot \epsilon}\right]_{out} - \left[\frac{(1-\chi)^2}{\rho_l \cdot (1-\epsilon)} + \frac{\chi^2}{\rho_g \cdot \epsilon}\right]_{in} \right\}$$
(3.21)

Die benötigte Massestromdichte \dot{G} wird durch den Massestrom \dot{m} , der durch den Querschnitt A strömt, berechnet (Gleichung 3.22).

$$\dot{G} = \frac{\dot{m}}{A} = \rho \cdot \nu \tag{3.22}$$

Wie in dem Abschnitt "3.1.2 Strömungsformen und Strömungskarte" beschrieben, können sich in den Rohrleitungen unterschiedliche Strömungsformen bilden. Die unterschiedlichen Strömungsformen verursachen auch unterschliedliche Reibungsdruckverluste Δp_{frict} . Allgemein kann der Reibungsdruckverlust nach Gleichung 3.23 beschrieben werden [27].

$$\Delta p_{frict} = \frac{2f_{tp} * L * \dot{G}_{ges}^2}{d_i * \rho_{tp}} \tag{3.23}$$

In der Gleichung 3.23 ist f_{tp} der Reibungsbeiwert der Zweiphasenströmung, L die Länge, \dot{G}_{ges} die Gesamtmassenstromdichte , d_i der Rohrinnendurchmesser und ρ_{tp} die Gemischdichte aus Gleichung 3.9. Der Reibungsbeiwert f_{tp} wird für jedes Modell anders berechnet (vergleich auch Anhang I).

Die Reynoldszahl Re wird mittels der Gesamtmassestromdichte \dot{G}_{ges} , des Innenrohrdurchmessers d_i und der Viskosität der Zweiphasenströmung μ_{tp} durch Gleichung 3.24 berechnet.

$$Re = \frac{\dot{G}_{ges} \cdot d_i}{\mu_{tp}} \tag{3.24}$$

Die Zweiphasen-Viskosität μ_{tp} wird durch die Flüssigkeitsviskosität μ_l , der Gas-Viskosität μ_g sowie des Massegasgehaltes χ nach Gleichung 3.25 berechnet.

$$\mu_{tp} = \chi \cdot \mu_g + (1 - \chi) \cdot \mu_l \tag{3.25}$$

KAPITEL 4

Modell Nach Beggs & Brill

Das Modell von Beggs & Brill [5] wurde mittels einer Korrelation für Luft-Wasser-Gemische in runden Rohren mit einem Durchmesser von "DN 1" und "DN 1,5" erstellt. Die Methode berechnet den Druckverlust bei horizontalen, vertikalen und geneigten Rohrleitungen. Das Modell ist fähig Druckabfall und Geschwindigkeitsveränderungen in Rohrleitungen zu bestimmen[9]. Um Verdampfungseffekte mit zu berücksichtigen wird am Ende jedes Bilanzelementes eine isenthalpe "flash"-Berechnung für den neu ermittelten Druck durchgeführt.

4.1 Grundgleichungen zum Modell

Ausgehend von der durchströmten Fläche A aus der Gleichung 4.1 und des Volumenstromes \dot{V} aus Gleichung 3.2, werden nach Gleichung 3.10 und 3.11 die Einzelgeschwindigkeiten der Phasen berechnet.

$$A = \frac{\pi d_i^2}{4} \tag{4.1}$$

Die Gesamtgeschwindigkeit ν_{ges} wird in dem Beggs & Brill Modell durch die Summe der Flüssigkeitgeschwindigkeit ν_l und der der Gasgeschwindigkeit ν_g ermittelt [5](Gleichung 4.2).

$$\nu_{ges} = \nu_g + \nu_l \tag{4.2}$$

Beggs und Brill [5] beziehen sich im weiteren Verlauf auf die Flüssigkeitsphase. Mit dem Schlupf für die Flüssigkeitsphase λ_l , welcher sich in einer Rohleitung bei Zweiphasenströmung aus dem Verhältnis der Flüssigkeitsgeschwindigkeit ν_l zur Gesamtgeschwindigkeit ν_{ges} bildet (Gleichung 4.3) werden die dimensionslosen Kennzahlen L_1, L_2, L_3, L_4 berechnet (Gleichung 4.4 bis 4.7).

$$\lambda_l = \frac{\nu_l}{\nu_{ges}} \tag{4.3}$$

Diese Kennzahlen werden zur Bestimmung der Strömungsform der Zweiphasenströmung benötigt. In der Tabelle 4.1 werden vier Strömungsformen aufgeführt. Für die Berechnung der einzelnen Konstanten wird der berechnete Schlupf für die Flüssigkeitsphase λ_l verwendet (Gleichung 4.4 bis 4.7).

$$L_1 = 316\lambda_l^{0,302} \tag{4.4}$$

$$L_2 = 9,252 \times 10^{-4} \lambda_l^{-2,4684} \tag{4.5}$$

$$L_3 = 0, 10\lambda_l^{-1,4516} \tag{4.6}$$

$$L_4 = 0,5\lambda_l^{-6,738} \tag{4.7}$$

Tabelle 4.1: Strömungsformen einer Zweiphasenströmung nach Beggs & Brill anhand der berechneten dimensionslosen Kennzahlen L_1, L_2, L_3, L_4 [5]

Strömungsform	Parameter		
Schichtströmung	$\lambda_l < 0.01$ and $Fr < L_1$ or $\lambda_l \ge 0.01$ and $Fr < L_2$		
Übergang	$\lambda_l \ge 0.01$ and $L_2 \le Fr \le L_3$		
Schwallströmung	$0.01 \leq \lambda_l < 0.4$ and $L_3 < Fr \leq L_1$ or $\lambda_l \geq 0.4$ and $L_3 < Fr \leq L_4$		
Blasenströmung	$\lambda_l < 0.4$ and $Fr \ge L_1$ or $\lambda_l \ge 0.4$ and $Fr > L_4$		

Durch die Strömungsform, welche sich aus den jeweiligen Parameterbereichen der Tabelle 4.1 ablesen lässt, werden die Konstanten t,u,v bestimmt. Die Konstanten sind in Tabelle 4.2 für die jeweiligen Strömungsformen dargestellt. Sie werden für die Berechnung des Flüssigkeitsanteils H_l (Gleichung 4.8) in einer Rohrleitung verwendet.

$$H_l = \frac{t\lambda_l^u}{Fr^v} \tag{4.8}$$

Die Froudezahl Fr wird anhand der Gleichung 4.9 ermittelt und der Schlupf der Flüssigkeitsphase λ_l durch die Gleichung 4.3.

$$Fr = \frac{\nu_{ges}^2}{g \cdot d_i} \tag{4.9}$$

Für die Berechnung der Froudezahl werden die Gesamtgeschwindigkeit ν_{ges} , die Erdanziehungskraft g und der Innenrohrdurchmesser d_i verwendet. Die Konstanten t,u,v werden aus der Tabelle 4.2 entnommen. Fällt die Strömungsform in den Übergangsbereich der

 Tabelle 4.2: Konstantenbestimmung anhand der Strömungsform einer Zweiphasenströmung

 für die Berechnung des Flüssigkeitsanteil [5]

Strömungsform	t	u	v
Schichtströmung	0,98	0,4846	0,0868
Schwallströmung	0,845	0,5351	0,0173
Blasenströmung	1,065	0,5824	0,0609

Tabelle 4.1, so ist der Flüssigkeitsanteil des Übergangsbereich aus dem Flüssigkeitsanteil der Schichtströmung und dem Flüssigkeitsanteil der Schwallströmung über Gleichung 4.10 durch Interpolation zu ermitteln.

$$H_L(\ddot{U}bergang) = A \cdot H_L(Schichtströmung) + B \cdot H_L(Schwallströmung)$$
(4.10)

Die Konstanten A und B für die Interpolation werden durch die Gleichungen 4.11 und 4.12 berechnet:

$$A = \frac{L_3 - Fr}{L_3 - L_2} \tag{4.11}$$

Die Froudezahl Fr wird durch Gleichung 4.9 bestimmt und die Konstanten C_2 und C_3 aus den Gleichungen 4.5 und 4.6. Die Konstante B wird dann mittels der berechneten Konstante A aus der Gleichung 4.11 berechnet.

$$B = 1 - A \tag{4.12}$$

Für die Berücksichtigung der Neigung einer Rohrleitung wird der Korrekturfaktor ψ nach Gleichung 4.13 verwendet.

$$\psi = 1 + C \left[sin(1,8\beta) - 0,333 sin^3(1,8\beta) \right]$$
(4.13)

Fließverhalten	W	x	У	Z
Schichtströmung	0,98	0,4846	0,0868	-1,614
Schwallströmung	0,845	0,5351	0,0173	0,0978
Blasenströmung	Keine Korrektur			
Alle Strömungen	4,70	-0,3692	0,1244	-0,5056
berg ab				

Tabelle 4.3: Konstanten für die Bestimmung des Korrekturfaktors C [5]

Der Winkel für die Rohrleitung wird mit β , ausgehend von einer horizontalen Rohrleitung, angegeben [8]. Die Konstante C wird mit den Werten aus der Tabelle 4.3 durch Gleichung 4.14 beschrieben.

$$C = (1 - \lambda_L) \ln \left(w \cdot \lambda_L^x \cdot L v^y \cdot F r^z \right)$$
(4.14)

Die Geschwindigkeitszahl für die Flüssigkeit Lv berechnet sich durch die Geschwindigkeit der Flüssigkeit ν_l , der Dichte der Flüssigkeit ρ_l , der Erdbeschleunigung g und der Oberflächenspannung σ nach Gleichung 4.15.

$$Lv = \nu_l \left(\frac{\rho_l}{g \cdot \sigma}\right)^{0.25} \tag{4.15}$$

Die Froudezahl Fr wird nach Gleichung 4.9 und der Schlupf λ_l nach Gleichung 4.3 berechnet. Zur Berechnung des Flüssigkeitsanteils in einer geneigten Rohrleitung $H_{l(\beta)}$ (Gleichung 4.16), wird der Flüssigkeitsanteil einer waagerechten Rohrleitung H_l (Gleichung 4.8) verwendet und mit dem Korrekturfaktor ψ aus der Gleichung 4.13 multipliziert.

$$H_{l(\beta)} = H_l \cdot \psi \tag{4.16}$$

Um die Dichte des Zweiphasengemisches in einem geneigten Rohrsystem ρ_{β} zu bestimmen, wird jeweils der Flüssigkeitsanteil $H_{l(\beta)}$ sowie der Gasanteil H_g mit den Dichten ρ_l und ρ_g multipliziert (Gleichung 4.17).

$$\rho_{\beta} = \rho_l \cdot H_{l(\beta)} + \rho_g \cdot H_g \tag{4.17}$$

Der Gasanteil H_g wird mit der Gleichung 4.8 bestimmt, wobei λ_l durch λ_g ersetzt wird. Der hydrostatische Druckverlust $\left(\frac{dP}{dL}\right)_{el}$ wird im Modell von Beggs & Brill durch die Dichte des geneigten Rohrsystems ρ_β (Gleichung 4.17), der Gravitationskonstante G und der Erdbeschleunigung g in Gleichung 4.18 ermittelt.

$$\left(\frac{dP}{dL}\right)_{el} = \frac{\rho_{\beta} * g}{G} \tag{4.18}$$

Der Reibungsdruckverlust $\left(\frac{dP}{dL}\right)_{frict}$ wird nach Gleichung 4.19 ermittelt.

$$\left(\frac{dP}{dL}\right)_{frict} = \frac{f_{tp} * \rho_{tp} * \nu_{ges}^2}{2G * d}$$
(4.19)

In dieser Gleichung ist der Zweiphasenreibungsbeiwert f_{tp} enthalten. Der Zweiphasenreibungsbeiwert f_{tp} ergibt sich aus dem Produkt des Reibungsbeiwertes f mit der Exponentialfunktion von der Funktion s (Gleichung 4.20).

$$f_{tp} = f \cdot e^s \tag{4.20}$$

Der Reibungsbeiwert f in Gleichung 4.20, wird durch die Reynoldszahl Re mit der Gleichung 4.21 berechnet.

$$f = \left[2\log\left(\frac{Re}{(4,5223\log Re - 3,8215)}\right)\right]^{-2}$$
(4.21)

$$s = \frac{lnj}{(-0,0523+3,182lnj-0,8725[ln(j)]^2+0,01853[ln(j)]^4)}$$
(4.22)

Die in der Gleichung 4.22 dargestellte Funktion s wird mittels des Wertes j aus der Gleichung 4.23 berechnet. Ist der Wert j aus der Gleichung 4.23 innerhalb des Intervalles 1 < j < 1, 2, so wird der Wert über Gleichung 4.24 berechnet.

$$j = \frac{\lambda_l}{[H_{l(\phi)}]^2} \tag{4.23}$$

$$S = ln(2, 2j - 1, 2) \tag{4.24}$$

Die Reynoldszahl wird in der Gleichung 4.25 aus der Gemischdichte ρ_{tp} , der Gesamtgeschwindigkeit ν_{ges} aus Gleichung 4.2, dem Rohrinnendurchmesser d_i und der Gemischviskosität μ_{tp} berechnet [5][8].

$$Re = \frac{\rho_{tp} \cdot \nu_{ges} \cdot d_i}{\mu_{tp}} \tag{4.25}$$

Im Gegensatz zu den anderen Modellen, bezieht sich Beggs und Brill bei der Berechnung der Zweiphasendichte ρ_{tp} und der Zweiphasenviskosiät μ_{tp} nicht auf den Massegasgehalt χ , sondern berechnet diese über den Schlupf λ . Die Zweiphasenviskosität wird in Gleichung 4.26 mittels dem Schlupf der Gasphase λ_g , dem Schlupf der Flüssigkeit λ_l , sowie mit der Viskosität der Gasphase μ_g und der Viskosität der Flüssigkeit μ_l berechnet. Der Schlupf der Gasphase wird analog zu der Gleichung 4.3 mit der Geschwindigkeit des Gases ν_g und der Gesamtgeschwindigkeit ν_{ges} ermittelt.

$$\mu_{tp} = \mu_l \cdot \lambda_l + \mu_g \cdot \lambda_g \tag{4.26}$$

Die Gemischdichte ρ_{tp} (Gleichung 4.23) wird Anhand der Dichten der Phasen ρ_l und ρ_g , sowie mit dem Schlupf der Phasen berechnet.

$$\rho_{tp} = \rho_l \cdot \lambda_l + \rho_g \cdot \lambda_g \tag{4.27}$$

Den Beschleunigungsdruckverlust $\left(\frac{dP}{dL}\right)_{acc}$, berechnet sich durch die Zweiphasendichte einer geneigten Rohrleitung ρ_{β} aus Gleichung 4.17, der Gesamtgeschwindigkeit ν_{ges} aus Gleichung 4.2 und der Erdbeschleunigung g.

$$\left(\frac{dP}{dL}\right)_{acc} = \frac{\rho_{\beta} \cdot \nu_{ges} \cdot dv}{g \cdot dL} \tag{4.28}$$

Kapitel 5

Vergleich und Ergebnisse

Im folgenden Kapitel werden aus der Literatur [10][22][32][19] entnommene Messwerte mit den Werten aus Anhang III, die durch das Modell von Beggs und Brill [5] in Chem-CAD 6.5.3 [8] berechnet wurden, verglichen. Aus den genannten Literaturquellen werden Messwerte aus Diagrammen entnommen. In den entnommenen Diagrammen ist der Reibungsdruckverlust in Abhängikeit von dem Massegasgehalt aufgetragen. Mit ChemCAD werden adiabat berechnete Vergleichswerte ermittelt. Dafür werden die zu den Diagrammen gegebenen Informationen über die Rohrleitungsgeometrie sowie den Stoffdaten und Eingangsgrößen verwendet. Die Anzahl der Simulationsergebnisse pro Messreihe gibt sich durch die Schrittweite des Massegasgehaltes von 0,05. Die Simulationen werden für unterschiedliche Temperaturen und unterschiedliche Massestromdichten durchgeführt. Da nicht für jeden Simulationswert ein Literaturwert aus den Diagrammen abzulesen ist, wird für fehlende Bereiche interpoliert.

5.1 Vergleich mit Messwerten aus der Literatur

In der ersten Vergleichsreihe werden zwei Vergleichsstrecken, deren Abmessung in Tabelle 5.1 aufgeführt sind, mit der Flüssigkeit $R134a^1$ durchströmt.

Tabelle 5.1: Messbedingungen und Geometrische Abmessung der Vergleichsstrecken. Mit dem Innendurchmesser d_i, der Rohrlänge L, der Rohrrauigkeit Ra, der Massenstromdichte G und der Temperatur T. [10]

Vergleichsstrecke	$d_i \ [mm]$	$L \ [m]$	$Ra~[\mu m]$	$G~[kg~m^{-2}s^{-1}]$	$T \ [^{\circ}C]$
VS1	0.96	0.22	1.3	200-800	30-50
VS2	2	0.44	1.7	200-500	40/50

In Abbildung 5.1 ist der Druckverlust in Abhängigkeit des Massegasgehaltes für die "Vergleichsstrecke 1" aufgetragen. Die einzelnen Messpunkte sind aus [10] entnommen und die durchgezogenen Linien sind die Simulationsergebnisse, die durch das Beggs und Brill Modell in ChemCAD berechnet wurden. Es ist der Reibungsdruckverlust für verschiedene Massestromdichten G in einem Massegasanteil-Intervall zwischen null und eins aufgetragen. Die Massestromdichten G werden von $200 \frac{kg}{m^2 s^1}$ bis $800 \frac{kg}{m^2 s^1}$ bei einer Sättigungstemperatur T von 40°C dargestellt. Um die Auswirkung der Temperatur zu beschreiben, sind zusätzliche Vergleichswerte bei T=30°C und T=50°C bei einer Massenstromdichte von $400 \frac{kg}{m^2 s^1}$ aufgetragen. Die Beschriftung der Messwerte in der Abbildung 5.1 erfolgt nach dem Prinzip G für Massenstromdichte und T für Temperatur. Die Abbildung 5.2 zeigt die selbe Darstellung für die "Vergleichsreihe 2".

In den Abbildungen 5.1 und 5.2 ist ein ähnlicher Verlauf der Druckverluste und der Massestromdichten zu sehen. Bei den mit dem Modell von Beggs und Brill berechnten Werten ist bei gleichbleibender Massestromdichte ein nahezu linear mit dem Dampfgehalt steigender Reibungsdruckverlust zu erkennen, wohingegen die Messwerte einen kurvenförmigen Verlauf aufweisen. Außerdem ist zu sehen, dass der Reibungsdruckverlust bei steigendem Massegasgehalt und steigender Massestromdichte ansteigt und bei steigender Temperatur absinkt. Die steigende Temperatur bewirkt einen Anstieg des Sättigungsdampfdruckes.

¹R134a(1,1,1,2-Tetrafluorethan), ist ein Kältemittel welches durch seine günstigen Eigenschaften in Kühlschränken und Autoklimaanlagen vorkommt.

Abbildung 5.1: Reibungsdruckverlust nach Beggs und Brill zum Vergleich mit den Messwerten aus der Literatur [10] in Abhängigkeit des Massegasgehaltes in einem Rohr mit $d_i = 0,96$ mm

Abbildung 5.2: Reibungsdruckverlust nach Beggs und Brill zum Vergleich mit den Messwerten aus der Literatur [10] in Abhängigkeit des Massegasgehaltes in einem Rohr mit $d_i = 2 \text{ mm}$
Der Druck in der Rohrleitung erhöht sich und hat zur Folge, dass sich die Dichte der Zweiphasenströmung erhöht. Da die Querschnittsfläche nicht verändert wird, sinkt nach Gleichung 3.1 die Geschwindigkeit der Zweiphasenströmung. Nach Gleichung 4.19 geht die Geschwindigkeit in der Reibungsdruckverlustgleichung von Beggs und Brill zum Quadrat ein und hat eine größere Auswirkung auf den Druckverlust als die Dichte. Vergleicht man die beiden Abbildungen miteinander, so ist zu vermuten, dass sich die Simulationswerte bei kleinerem Durchmesser näher an den Messwerten befinden. Bei größerem Durchmesser scheint es so, dass der Kurvenverlauf ausgeprägter ist und die Messwerte von den Simulationswerten weiter abweichen. Um dies zu überprüfen, wird die Abweichungen der Simulationswerte gegenüber den Messwerten aus [10] im nachfolgenden Kapitel 5.1.1 untersucht.

5.1.1 Druckverlustabweichung in Abhängikeit des Massegasgehaltes

In den Abbildungen 5.3 und 5.4 werden die Reibungsdruckverlustabweichungen in % zwischen den Literaturwerten und den berechneten Werten durch das Modell von Beggs und Brill in Abhängigkeit des Massegasgehaltes dargestellt. Die Reibungsdruckverluste werden für die Literaturwerte aus den Abbildungen 5.1 und 5.2 interpoliert. Die Abweichung x_{Abw} wird durch einen Vergleich der berechneten Reibungsdruckverluste p_{calc} mit den Reibungsdruckverlusten der Literaturquellen p_{exp} nach Gleichung 5.1 ermittelt.

$$x_{Abw} = \left(\frac{p_{calc}}{p_{exp}} - 1\right) \cdot 100\%$$
(5.1)

Die Beschriftung der Datenreihen erfolgt analog zu Abbildung 5.1 oder 5.2 über die Massestromdichte und die Temperatur. Auffallend bei der Abbildung 5.3 im gegensatz zu der Abbildung 5.4 ist die Streuung der Abweichungen bis zu einem Massegasgehalt von 0,55. Erst ab einem Massegasgehalt von 0,6 nehmen die Abweichungen eine "strukturierterne" Form an. In der Abbildung 5.4 hingegen ist ein gleichmäßiger Verlauf schon ab der Aufzeichnung der Simulationswerte zu erkennen. Eine Ursache hierfür könnte der größere Massestrom und der damit verbundene kleinere Einfluss der Messungenauigkeiten sein. Wie aus Abbildung 5.1 entnehmen werden kann, sind auch Ungenauigkeiten beim Ablesen oder interpolieren als Ursache denkbar. Bei beiden Abbildungen ist zu erkennen, dass die jeweils geringste Druckverlustabweichung bei einem Massegasgehalt um 0,8 liegt. Der

Abbildung 5.3: Abweichung zwischen Mess-[10] und Simulationswerten in einem Rohr mit $d_i = 0,96$ mm in Abhängikeit des Massegasgehaltes

Abbildung 5.4: Abweichung zwischen Mess- [10] und Simulationswerten in einem Rohr mit $d_i = 2$ mm in Abhängikeit des Massegasgehaltes

Kurvenverlauf der Messwerte flacht bei größer werdendem Massegasgehalt ab und führt zu einem Schnittpunkt mit den Simulationswerten, die weiterhin linear ansteigen. Der Schnittpunkt befindet sich bei einem Massegasgehalt von ca. 0,8. Durch den immer kleiner werdenden Flüssigkeitsanteil in der Rohrleitung, nimmt die Reibung zwischen den Phasen und der Rohrwandung ab und führt zu einer Abschwächung des Druckverlustanstieges. Dies wird durch die Berechnung von Beggs und Brill nicht ausreichend beschrieben. Vor dem Schnittpunkt wird der Druckverlust zu klein berechnet und nach dem Schnittpunkt zu groß. Die Folge ist eine mit steigendem Gasgehalt von negativen zu positiven Werten verlaufende Abweichung. Auffällig ist, dass die Abweichung bei steigender Massestromdichte abnimmt. Dies ist besonders gut in Abbildung 5.3 zu erkennen.

5.1.2 Druckverlustabweichung in Abhängigkeit der Geschwindigkeit

In den Abbildungen 5.5 und 5.6 werden jeweils die Druckverlustabweichungen in Abhängigkeit der Geschwindigkeit aufgetragen. Die Beschriftung der Simulationswerte erfolgt nach dem gleichen Schema wie in den Abbildungen zuvor.

Auffallend ist, dass bei dem kleineren Durchmesser (Abbildung 5.5) die Simmulationswerte von links beginnend im positiven Abweichungsbereich starten, in den negativen Bereich absinken und dann wieder in den positiven Bereich wechseln. Bei der Abbildung 5.6 ist der gleiche Verlauf zu beobachten, mit dem Unterschied, dass die Simulationswerte links in der Abbildung, im negativen Bereich beginnen. Es scheint als würde sich bei geringerem Durchmesser und steigender Geschwindigkeit die Negativabweichung immer weiter verringern und die positive Abweichung vergrößern. Bei größerem Durchmesser stellt sich ein gegengesetzter Verlauf ein. Mit größer werdender Geschwindigkeit vergrößert sich die Unterschätzung des Druckverlustes. Die Fläche, die zwischen den Simulationswerten und der "0%-Abweichungslinie" eingeschlossen wird, wird mit steigender Massestromdichte immer größer.

Abbildung 5.5: Abweichung der Simulationsergebnissen von den Messerten aus [10] in Abhängigkeit der Geschwindigkeit in einem Rohr mit $d_i = 0,96$ mm

Abbildung 5.6: Abweichung der Simulationsergebnissen von den Messerten aus [10] in Abhängigkeit der Geschwindigkeit in einem Rohr mit $d_i = 2mm$

5.1.3 Abweichung des Berechneten Druckverlustes

In den Abbildungen 5.7 und 5.8 werden in doppelt logarithmischen skalierten Diagrammen der Vergleiche zwischen der Simulationswerten und der Messpunkte dargestellt. Die Beschriftung der Simulationspunkte wird wie in den vorigen Kapiteln beibehalten.

Die in der Mitte liegende Trendlinie, die die null prozent Abweichung beschreibt, teilt das Diagramm in zwei Bereiche. Die Simulationswerte, die nach dem Modell von Beggs und Brill ermittelt wurden und oberhalb der Trendlinie liegen, weisen einen geringeren berechneten Druckverlust als die Literaturwerte auf. Für die Simulationswerte, die unterhalb der Trendlinie liegen ist der berechnete Druckverlust größer. Die berechneten Simulationswerte befinden sich größtenteils in dem Abweichungsbereich von $\pm 25\%$. Dieser Wert liegt im Vergleich mit anderen Druckverlustberechnungen [10][19] in einem gutem bis sehr gutem Bereich. Einige Messdaten sind im Diagramm 5.7 außerhalb der $\pm 25\%$ Grenze zu sehen. Da diese Werte nur bei sehr geringem Druckverlust und bei dem kleinerem Durchmesser auftreten, sind sie vermutlich auf Messfehler oder Ablesefehler zurückzuführen. Bei Betrachtung des Druckverlustes ist zu erkennen, dass sich mit ansteigender Massestromdichte die Simulationswerte immer weiter in den negativen Abweichungsbereich verschieben. In Abbildung 5.7 ist der Effekt anhand des "skizzierten Abweichungsverlaufes" verdeutlicht. Mit Ausnahme weniger Vergleichswerte beträgt die maximale Abweichung $\pm 25\%$. Die mittlere Abweichung wird nach Gleichung 5.2 und die Standardabweichung nach Gleichung 5.3 bestimmt. Dabei ist X_{Abw} der Zahlenwert der prozentualen Abweichung und n die Anzahl der Vergleichswerte.

$$\overline{x} = \frac{1}{n} \sum x_{Abw} \tag{5.2}$$

$$s = \sqrt{\frac{\sum (x_{Abw} - \overline{x})^2}{(n-1)}} \tag{5.3}$$

Für den kleineren Durchmesser wird eine mittlere Abweichung der Simulationswerte von 11,5% und eine Standardabweichung von 17,8% ermittelt. Für den größeren Durchmesser beträgt die mittlere Abweichung 11,3% und die Standardabweichung 14,1%. Für alle aufgenommenen Simulationswerte wird insgesamt eine mittlere Abweichung von 12,6% und eine Standardabweichung von 17,6% ermittelt. Es ist zu sehen, dass sich eine Verbesserung der Abweichung durch den größeren Durchmesser ergibt.

Abbildung 5.7: Auftragung des mit Beggs und Brill berechneten Druckverlustes in Vergleich zu den Messwerten aus [10] bei $d_i = 0,96$ mm

Abbildung 5.8: Auftragung des mit Beggs und Brill berechneten Druckverlustes in Vergleich zu den Messwerten aus [10] bei $d_i = 2$ mm

5.2 Vergleich mit Druckverlustmodellen

In der Abbildung 5.9 wird das Modell von Beggs und Brill mit vier bestehenden Druckverlustberechnungsmodellen verglichen. Der Druckverlust wird in dieser Abbildung bei einer Sättigungstemperatur von 52,3°C, einem Innenrohrdurchmesser von 0,762mm, eine Massenstromdichte von $750kg/m^2s$ des Reinstoffes R134a in Abbhängigkeit des Massegasgehaltes dargestellt.

Abbildung 5.9: Reibungsdruckverlust nach Beggs und Brill zum Vergleich mit Messwerten von vier unterschiedlichen Drckverlustberechnungsmodellen aus [32]

Durch das Auftragen der Simulationswerte, die durch das Modell von Beggs und Brill mit Hilfe von ChemCAD berechnet wurden, erhält man eine Gegenüberstellung zu den anderen Berechnungsmodellen. Wie zu sehen ist, sind die Ergebnisse von Beggs und Brill nahe den Werten, die durch das Friedel-Modell bestimmt werden. Der Verlauf der mit Beggs und Brill berechneten Werte zeigt einen linear mit dem Massegasgehalt ansteigenden Druckverlauf gegenüber dem Kurvenverlauf der Messwerte. Die anderen Berechnungsmodelle weißen diesen Abeichungsverlauf nicht so ausgeprägt da. Eine Ursache liegt an der unterschiedlichen Betrachtung und Berücksichtigung der verschiedenen Eigenschaften der Zweiphasenströmung. Insgesamt zeigt die Berechnung von Beggs und Brill eine überdurchschnittlich gute Nährung der Versuchsergebnisse im Vergleich zu den anderen Modellen.

Kapitel 6

FAZIT

Im Rahmen dieser Bachelorarbeit wird die Berechnung des Druckverlustes von Zweiphasenströmungen in horizontalen Rohrleitungen nach dem Modell von Beggs & Brill untersucht. Dabei werden mit ChemCAD erstellte Simulationswerte mit Messwerten aus der Literatur sowie einigen anderen Modellrechnungen verglichen.

Die berechneten Ergebnisse geben Aufschluss über die Abhängigkeit des Druckverlustes von einzelnen Parametern der Zweiphasenströmung. Die Gegenüberstellung der Simulationsergebnisse mit Messwerten aus der Literatur zeigen eine Druckverlustabweichung von $\pm 25\%$. Bei größer werdendem Durchmesser und steigender Geschwindigkeit, ist eine Verbesserung der Ergebnisse zu beobachten. Bei einem Durchmesser von 0,96mm wird eine Standardabweichung von 17,8% und bei einem Durchmesser von 2mm eine Standardabweichung von 14,1% berechnet. Die Abweichung sinkt außerdem mit steigender Massestromdichte. Diese Abweichungen besitzen eine gute Übereinstimmung mit Werten aus der Literatur und sind teilweise besser als diese.

Auch der Vergleich zwischen der Druckverlustberechnung nach Beggs & Brill und anderen Druckverlustmodellen zeigt, dass das Modell von Beggs und Brill im Vergleich sehr gute Ergebnisse erzielt. Ein Manko der Druckverlustberechnung von Beggs und Brill ist, dass die Simulationsergebnisse einen fast linearen Verlauf der Druckverluste in Abhängigkeit des Massegasgehaltes aufweisen, wohingegen die Literaturwerten einen "kurvenartigen" Verlauf zeigen. Durch die Berücksichtigung der Strömungsform einer Zweiphasenströmung, die das Modell mit sich bringt, ist es eine sehr gute alternative zu den Druckverlustmodellen die in der Literatur zu finden sind. Abschließend ist zu sagen, dass das Modell nach Beggs und Brill ein sehr gutes und vielseitiges Modell für die Berechnung von Druckverlusten in Rohrleitungen ist. Der Vorteil, dass die Möglichkeit besteht auch vertikale und geneigte Rohren auf den Druckverlust zu untersuchen, spricht für die Anwendung des Modelles. Durch die Bachelorarbeit konnte auch eine gute Nährung an die Messwerte aus der Literatur nachgewiesen werden.

KAPITEL 7

AUSBLICK

Um die in dieser Arbeit berechneten Ergebnisse zu bestätigen, sind weitere Vergleichsuntersuchungen notwendig. Eine Betrachtung von Rohrinnendurchmessern mit größerer technischer Relevanz sollten die angefangenen Untersuchungen ergänzen. Da das Modell von Beggs und Brill neben horizontalen Rohrleitungen auch den Druckverlust für vertikale und geneigte Rohrleitungen berechnen kann, sollten weitere Untersuchungen für vertikale und geneigte Rohrleitungen die Anwendbarkeit des Modelles bestätigen. Vorallem in geneigten Rohren könnte das Modell für die Druckverlustberechnung sehr vom nutzen sein, da nur wenige Modelle auf diesen Bereich eingehen. Da das Modell von Beggs und Brill anhand der Froudzahl und des Schlupfes die Strömungsformen unterscheidet, ist dadurch eine Aussage über den Druckverlust wieder zugeben. Eine Verbesserungen des Modelles wäre z.B. durch eine genauere Abbildungen von Strömungsformen möglich. Gerade die ausschließlich vom Massegasgehalt festgemachten Grenzen für die bestehenden Strömungsformen sollten durch dynamische Strömungskarten erweitert werden, die sich mehr auf die Kräfteverhältnisse zwischen den Phasen beziehen. Durch diese Verbesserung könnte sich der lineare Druckverlust dem Kurvenverlauf nähern.

KAPITEL 8

LITERATURVERZEICHNIS

- ARIS, R. Vectors, Tensors and the Basic Equations of Fluid Mechanics. Dover Publications Inc., Mineola, USA, 1989.
- [2] BAEHR, H., AND STEPHAN, K. Wärme- und Stoffübertragung. Springer Verlag, Heidelberg, 2010.
- [3] BAKER, O. Simultaneous flow of oil and gas, 1954. Oil Gas J.53.
- [4] BOHL, W., AND ELMENDORF, W. Technische Strömungslehre, 13., überarb. und erw. aufl. ed. Vogel, Würzburg, 2005.
- BRILL, J., AND BEGGS, H. A study of two phase flow in inclined pipes, 1973. Trans. Pet. Soc. AIME 25.
- [6] CARROLL, J. A. Multivariate Production Systems Optimization. Stanford, 1990.
 Master Dissertation.
- [7] CHAWLA, J. M. Wärmeübergang und Druckabfall in waagerechten Rohren bei der Strömung von verdampfenden Kältemitteln. Düsseldorf, 1967.
- [8] CHEMSTATIONS. Pipe Simulator. Houston, Texas, 2007.
- [9] DE SOUZA, J., DE MEDEIROS, J., COSTA, A., AND NUNES, G. Modeling, simulation and optimization of continuous gas lift systems for deepwater offshore petroleum production. Elsevier B.V., 2010. Journal of Petroleum Science and Engineering.

- [10] DEL COL, D., BISETTO, A., AND BORTOLATO, M. Experiments and updated model for two phase frictional pressure drop inside minichannels. Padova, Italy and Dättwil, Switzerland, 2013. International Journal of Heat and Mass Transfer.
- [11] EMENDÖRFER, D UND HÖCKER, K.-H. Theorie der Kernreaktoren, vol. 2, der instationäre reaktor ed. BI-Wissenschaftsverlag, 1993.
- [12] FRIEDEL, L. Druckabfall bei der Strömung von Gas/Dampf-Flüssigkeitsgemischen in Rohren, 1978. Chem Ing Tech 50.
- [13] FRIEDEL, L. Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow. Ispra, Italy, 1979. Paper E 2.
- [14] HEWITT, G., AND ROBERTS, D. Studies of two phase flow patterns by simultaneous X-ray and flash photography, 1969. AERE-M 2159.
- [15] KOLEV, N. I. Transiente Zweiphasenströmungen. Springer, 1986.
- [16] KRAUME, M. Transportvorgänge in der Verfahrenstechnik Grundlagen und apparative Umsetzung. Springer Verlag, Heidelberg, 2012.
- [17] LEX, T. Fluiddynamik von Gas-Flüssigkeits-Gemischen in Kugelhähnen. München,
 2004. Doktor Dissertation : Technische Universität München.
- [18] LOCKHART, R., AND MARTINELLI, R. zit. in ASHRAE Handbook of Fundamentals. New York, 1968. American Society of Heating, Refrigerating and Air-Conditioning Engineers.
- [19] MAQBOOL, M., PALM, B., AND KHODABANDEH, R. Flow boiling of ammonia in vertical small diameter tubes: Two phase frictional pressure drop results and assessment of prediction methods. Stockholm, Sweden, 2012. Elsevier Ltd and IIR.
- [20] MAYINGER, F. Strömung und Wärmeübergang in Gas-Flüssigkeits-Gemischen. Springer, Wien [u.a.], 1982.
- [21] PAHL, T. Thermohydraulische Aspekte von K
 ühlmittelverlustst
 örungen mit kleinen Lecks in Druckwasserreaktoranlagen. Dresden, 1990. Doktor Dissertation : Technische Universit
 ät Dresden.

- [22] PAMITRAN, A. S., CHOI, K.-I., OH, J.-T., AND HRNJAK, P. Characteristics of two-phase flow pattern transitions and pressure drop of five refrigerants in horizontal circular small tubes, 2009. Elsevier Ltd and IIR.
- [23] SCHICHT, H. Strömungsbilderkarte bei adiabater Zweiphasenströmung Wasser/Luft in einem horizontalen Rohr. Z. Verfahrenstechnik 3, nr. 4 ed., 1969.
- [24] SIHANA, S. Bestimmung der Strömungsform von Zweiphasenströmungen mittels Absorption und Streuung von Röntgenstrahlen und Benutzung von neutronalen Netzen.
 Berlin, 2002. Doktor Dissertation : Technische Universität Berlin.
- [25] TAITEL, Y., AND DUKLER, A. E. A model for predicting flow regime transitions in horizontal and near horizontal gas liquid flow, 1976. AIChE J1.
- [26] THOME, J. Engineering data book iii chapter 12, 2006.
- [27] THOME, J. Engineering data book iii chapter 13, 2006.
- [28] VEREIN DEUTSCHER INGENIEURE, VDI-Wärmeatlas: Berechnungsunterlagen für Druckverlust, Wärme- und Stoffübertragung, 10., bearb. und erw. aufl. ed. Springer, Berlin, 2006.
- [29] VON BÖCKH, P., AND SAUMWEBER, C. Fluidmechanik, 3., bearbeitete und ergänzte auflage ed. Springer Verlag, Berlin, 2013.
- [30] WEIN, M. Numerische Simulation von kritischen und nahkritischen Zweiphasenströmungen mit thermischen und fluiddynamischen Nichtgleichgewichtseffekten. Dresden, 2001. Doktor Dissertation : Technische Universität Dresden.
- [31] WIEGHARDT, K. Theoretische Strömungslehre. B.G. Teubner Verlag, Stuttgart, 1965.
- [32] XU, Y., AND FANG, X. A new correlation of two-phase frictional pressure drop of condensing flow in pipes. Nanjing, China, 2013. Elsevier Ltd and IIR.

KAPITEL I

Anhang

I Modellansätze

In der Literatur[5][12][18][27][7] lassen sich viele Modelle für die Berechnung von Druckverlusten in zweiphasig durchströmten Rohrleitungen finden. Neben dem im Kapitel 4 ausführlich beschriebenen Modell von Beggs & Brill, werden hier weitere relevante Modelle kurz beschrieben. Alle Modelle beziehen sich auf die Grundgleichung 3.13 zur Berechnung des Gesamtdruckverlustes Δp . Der Beschleunigungsdruckverlust Δp_{acc} wird in den folgenden Modellen über ein Schlupfmodell berechnet, da dieses allgemein als realistischtes Fließmodel angesehn wird[16]. Der hydrostatische Druckverlust Δp_{el} wird in den Modellen mittels der Gleichung 3.20 berechnet. In der Berechnung des Reibungsdruckverlustes unterscheiden sich die Modelle in der Berechnung des sogenannten Zweiphasen-Faktors ϕ .

I.1 LOCKHART-MARTINELLI-MODELL

Das Lockhart-Martinelli-Modell[18] wurden bereits 1949 entwickelt und gilt als Richtungsweisend für die Drckverlustberechnung in Zweiphasen-Strömungen. Lockhart und Martinelli benutzen hierfür einen Korrekturfaktor für die Flüssigphase ϕ_{ltt}^2 (Gleichung I.5), sowie für die Gasphase ϕ_{gtt}^2 (Gleichung I.6). Der Reibungsdruckverlust Δp_{frict} wird nach Abhängigkeit der Reynoldszahl für die Gasphase oder für die Flüssigphase laut der Gleichung I.1 oder I.2 berechnet.

$$\Delta p_{frict} = \phi_{ltt}^2 \cdot \Delta p_l \tag{I.1}$$

$$\Delta p_{frict} = \phi_{gtt}^2 \cdot \Delta p_g \tag{I.2}$$

Der Druckverlust für die Flüssigkeitsphase Δp_l wird nach der Gleichung I.4 berechnet, mit $(1 - \chi)^2$ zu der Massenstromdichte \dot{G} . Der Druckverlust der Gasphase Δp_g berechnet sich hingegen mit dem Massegasgehalt χ zum quadrat.(Gleichung I.3)

$$\Delta p_g = 4 f_g \frac{L}{d_i} \dot{G}_{ges}^2 \chi^2 \left(\frac{1}{2\rho_g}\right) \tag{I.3}$$

$$\Delta p_{l} = 4f_{l} \frac{L}{d_{i}} \dot{G}_{ges}^{2} (1-\chi)^{2} \left(\frac{1}{2\rho_{l}}\right)$$
(I.4)

Der Zweiphasen-Korrekturfaktor ϕ^2 wird nach Abhängigkeit der Reynoldszahl für die Flüssigphase Re_l mit zwei Grundformeln berechnet. Hierfür wird der Lockhart-Martinelli-Parameter X verwendet. Für den Zweiphasen-Korrekturfaktor der Flüssigphase ϕ_{ltt}^2 und dem Zweiphasen-Korrekturfaktor der Gasphase ϕ_{gtt}^2 gelten folgende Gleichungen für geltende Reynoldsbereiche.(Gleichung I.5 und I.6)

$$\phi_{ltt}^2 = 1 + \frac{C}{X_{tt}} + \frac{1}{X_{tt}^2}, f \ddot{\mathbf{u}} r R e_l > 4000 \tag{I.5}$$

$$\phi_{gtt}^2 = 1 + CX_{tt} + X_{tt}^2, f \ddot{u} r R e_l < 4000 \tag{I.6}$$

Die Reynoldszahl der Flüssigphase Re_l wird nach Gleichung 3.24 berechnet und der Reibungsbeiwert nach der Gleichung I.7.

$$f = \frac{0,079}{Re^{0,25}} \tag{I.7}$$

Die Konstante C, die für die Gleichungen I.5 und I.6 verwendet wird, wird wie in Tabele I. 1 zu sehen, anhand des Fließverhalten der einzelnen Phasen ermittelt. Der Lockhart-Martinelli-Parameter X wird für beide Phasen verwendet und wird mittels des Massegasgehaltes χ , der Flüssigkeitsdichte ρ_l , der Gasdichte ρ_g , der dynamischen viskosität des Gases μ_g und der dynamischen Viskosität der Flüssigkeit μ_l berechnet. (Gleichung I.8)

$$X_{tt} = \left(\frac{1-\chi}{\chi}\right)^{0,9} \left(\frac{\rho_g}{\rho_l}\right)^{0,5} \left(\frac{\mu_l}{\mu_g}\right)^{0,1} \tag{I.8}$$

Flüssigkeit	Gas	С
Turbulent	Turbulent	20
Laminar	Turbulent	12
Turbulent	Laminar	10
Laminar	Laminar	5

Tabelle I. 1: Wertigkeit der Konstante C in Abhängigkeit des Fließverhalten der Gas- und Flüssigkeitsphase[27]

I.2 FRIEDEL MODELL

Das Modell nach Friedel[13] besteht seit 1979 und baut auf das von Lockhart und Martinelli erstellte Modell[18] von 1949 auf.[27].Friedel bezieht sich zur Berechnung des Reibungsdruckverlustes Δp_{frict} auf den Druckverluste der Flüssigkeitsphase und multipliziert diese mit dem Zweiphasen-Faktor ϕ .(Gleichung *I*.9).

$$\Delta p_{frict} = \Delta p_l \cdot \phi_{fr}^2 \tag{I.9}$$

Der Druckverlust Δp_l wird in der folgenden Gleichung I.10 auf die Flüssigphase bezogen berechnet.

$$\Delta p_l = 4f_l \left(\frac{L}{d_i}\right) \dot{G}_{ges}^2 \left(\frac{1}{2\rho_l}\right) \tag{I.10}$$

Der Druckverlust Δp_l wird mittels L für die Länge, d_i für den Rohrinnendurchmesser, der Massestromdichte \dot{G} und ρ_l für die Flüssigkeitsdichte berechnet. Der Reibungsbeiwert der Flüssigkeit f_l wird laut Gleichung I.7 berechnet. Die benötigte Reynoldszahl wird mit Hilfe der Gleichung 3.24 berechnet. Da man sich bei der Reynoldszahl auf die Flüssigkeit bezieht, wird zur Berechnung die dynamische Viskosität der Flüssigkeit sowie der Massenstrom der Flüssigkeit verwendet. Der Zweiphasen-Faktor wird bei diesem Modell nach Gleichung I.11 mittels den dimensionslosen Kennzahlen Fr, E, F, H, We_L berechnet.

$$\phi_{fr}^2 = E + \frac{3.24 \cdot F \cdot H}{Fr^{0.045} \cdot We_l^{0.035}} \tag{I.11}$$

$$Fr = \frac{\dot{G}_{ges}^2}{g \cdot d_i \cdot \rho_{hom}^2} \tag{I.12}$$

Die Froudezahl Fr (Gleichung 1.12) wird durch den Gesamtmassenstromdichte \dot{G}_{ges} , der Erdbeschleunigungskraft g, des Rohrinnendurchmessers d_i , sowie mit der homegenen Dichte ρ_{hom} laut Gleichung 3.15 berechnet.

$$E = (1 - \chi)^2 + \chi^2 \cdot \frac{\rho_l \cdot f_g}{\rho_g \cdot f_l}$$
(I.13)

Für die Berechnung der Konstante E (Gleichung I.13) wird der Massegasgehalt χ , die Flüssigkeitsdichte ρ_l , die Gasdichte ρ_g , der Reibungsbeiwert der Flüssigkeitsphase f_l , sowie der Reibungsbeiwert der Gasphase f_g verwendet. Mathematisch wird der Reibungsbeiwert für die Gas- und Flüssigkeitsphase nach der Gleichung I.7 berechnet.

Für die Konstante F aus der Gleichung I.14, wird der Massegasgehalt χ verwendet.

$$F = \chi^{0.78} \cdot (1 - \chi)^{0.224} \tag{I.14}$$

In Gleichung I.15 wird durch die dynamische Viskosität des Gases μ_g , der dynamischen Viskosität der Flüssigkeit μ_l , der Flüssigkeitsdichte ρ_l und der Gasdichte ρ_g die Konstante H berechnet.

$$H = \left(\frac{\rho_l}{\rho_g}\right)^{0.91} \cdot \left(\frac{\mu_g}{\mu_l}\right)^{0.19} \cdot \left(1 - \frac{\mu_g}{\mu_l}\right)^{0.7} \tag{I.15}$$

$$We_l = \frac{\dot{G}_{ges}^2 \cdot d_i}{\sigma \cdot \rho_{hom}} \tag{I.16}$$

Die homogene Dichte, die für die Weberzahl We (Gleichung I.16) benötigt wird, wird nach Gleichung 3.15 berechnet.

I.3 CHAWLA-MODELL

Das Chawla Modell [7] wird basierend auf den Druckverlust der Gasphase $\left(\frac{dp}{dz}\right)_g$ und dem Chawla Korrekturfaktor ϕ_{Chawla} wie Gleichung *I*.17 zeigt berechnet[27].

$$\left(\frac{dp}{dz}\right)_{frict} = \left(\frac{dp}{dz}\right)_g \phi_{Chawla} \tag{I.17}$$

Der Druckverlust der Gasphase $\left(\frac{dp}{dz}\right)_q$ nach Gleichung I.18 berechnet.

$$\left(\frac{dp}{dz}\right)_g = f_g \frac{2\dot{G}_{ges}^2}{d_i \rho_g} \tag{I.18}$$

Die Druckverluste werden mittels der Gesamtmassestromdichte \dot{G}_{ges} , des Rohrinnendurchmesser d_i , sowie mit der Dichte der gewählten Phase ρ_l oder ρ_g berechnet. Der Reibungsbeiwert für die Flüssigkeitsphase f_l wird in diesem Modell anders als die von Lockhart-Martinelli und Friedel benutzte Formel berechnet. (Gleichung I.19)

$$f_l = \frac{16}{Re} \tag{I.19}$$

Die Reynoldszahl Re wird nach Gleichung 3.24 berechnet und bezieht sich auf die Flüssigphase. Der Korrekturfaktor von Chawla ϕ_{Chawla} wird durch den Massegasgehalt χ , der Dichte der Flüssigkeit ρ_l , der Dichte des Gases ρ_g und des Schlupfes λ laut der Gleichung I.20 berechnet.

$$\phi_{Chawla} = \chi^{1,75} \left[1 + \lambda \left(\frac{1 - \chi}{\chi} \frac{\rho_g}{\rho_l} \right) \right]^{2,375} \tag{I.20}$$

Der Schlupf λ wird durch das Verhälnis der Gasgeschwindigkeit ν_g zur Flüssigkeitsgeschwindigkeit ν_l berechnet. (Gleichung *I*.21)

$$\lambda = \frac{\nu_g}{\nu_l} = \frac{1}{9, 1 \left[\frac{1-\chi}{\chi} \left(Re_g Fr\right)^{-0.167} \left(\frac{\rho_l}{\rho_g}\right)^{-0.9} \left(\frac{\mu_l}{\mu_g}\right)^{-0.5}\right]}$$
(I.21)

Im weiteren Zusammenhang, lässt sich der Schlupf λ durch den Massengasgehalt χ , der Reynoldszahl des Gases Re_g , der Froudezahl aus Gleichung I.12, der Dichten der Einzelphasen ρ_g / ρ_l und der dynamischen Viskosität der Phasen μ_g / μ_l beschreiben.

I.4 Müller-Steinhagen und Heck Modell

Das Müller-Steinhagen und Heck Modell[27] bezieht sich auf eine empirische Interpolation zwischen Flüssigkeitsströmen und Gasströmen.[27] (Gleichung I.22)

$$\left(\frac{dp}{dz}\right)_{frict} = G\left(1-\chi\right)^{1/3} + B\chi^3 \tag{I.22}$$

$$G = A + 2(B - A)\chi\tag{I.23}$$

Der Faktor G wird mit Hilfe der Konstanten A und B, sowie des Massengasgehaltes χ berechnet. Der Faktor B wird nach der Druckverlustgleichung *I*.18 berechnet. Der Faktor A wird nach der gleichen Rechnungsgrundlage für die Flüssigkeitsphase bestimmt .

II ABBILDUNGEN

Abbildung I. 1: Strömungsformkarte im waagerechten Rohr nach Taitel und Dukler in Abhängigkeit der Kennzahlen T_D , F_D , K_D sowie des Lockhart-Martinelli-Parameters $x \ [25][28]$

Abbildung I. 2: Strömungsformkarte im senkrechten Rohr nach Hewitt und Roberts in Abhängigkeit der Impulsstromdichte von der Gas- und Flüssigkeitsphase[14] [28]

Abbildung I. 3: Darstellung der Übergangsgrenzen bei einem vertikalem Rohr von verschiedenen Autoren [24]

III TABELLEN

CHEMCAD	6.5.3		Page	1	
Simulation name:	Stoffwerte		Date:	29.01.2014	
			Time:	10:05:23	
Sensitivity Analysis Repo stoffwerte	rt				
Parameter	vfrac		0,2		
Run	temp		liq density	gas density	total density
#	С		kg/m3	kg/m3	kg/m3
(D	10	1264,44	19,7002	92,7224
:	1	20	1229,96	26,9662	123,96
:	2	30	1193,06	36,3146	161,866
:	3	40	1153,14	48,2988	206,84
	4	50	1109,33	63,6972	259
Run	temp		liq viscosity	gas viscosity	Re gas
#	С		mPa-sec	mPa-sec	
(D	10	0,23986	0,0116012	0
	1	20	0,212514	0,0121228	0
:	2	30	0,189303	0,0126804	0
:	3	40	0,169466	0,0132885	0
	4	50	0,152402	0,0139696	0
Run	temp		Re liq	mix velocity	pressure
#	С			m/sec	bar
(D	10	0	4,31142	4,12761
:	1	20	0	3,22495	5,69088
:	2	30	0	2,46974	7,6679
:	3	40	0	1,93272	10,126
	4	50	0	1,5435	13,1385
Parameter	vfrac		0,5		
Run	temp		liq density	gas density	total density
#	С		kg/m3	kg/m3	kg/m3
(0	10	1264,44	19,7002	38,7959
:	1	20	1229,96	26,9662	52,7754
:	2	30	1193,06	36,3146	70,4839
	3	40	1153,14	48,2988	92,7144
	4	50	1109,33	63,6972	120,477
Run	temp		liq viscosity	gas viscosity	Re gas
#	С		mPa-sec	mPa-sec	
	0	10	0,23986	0,0116012	0
:	1	20	0,212514	0,0121228	0
:	2	30	0,189303	0,0126804	0
	3	40	0,169466	0,0132885	0
	4	50	0,152402	0,0139696	0
Run	temp		Re liq	mix velocity	pressure

#	С			m/sec	bar
	0	10	0	10,3043	4,12761
	1	20	0	7,57485	5,69088
	2	30	0	5,67173	7,6679
	3	40	0	4,3118	10,126
	4	50	0	3,3182	13,1385
Parameter	vfrac		0,8		
Run	temp	liq	density	gas density	total density
#	С	kg/	m3	kg/m3	kg/m3
	0	10	1264,44	19,7002	24,5297
	1	20	1229,96	26,9662	33,524
	2	30	1193,06	36,3146	45,0505
	3	40	1153,14	48,2988	59,7479
	4	50	1109,33	63,6972	78,4947
Run	temp	liq	viscosity	gas viscosity	Re gas
#	С	mP	a-sec	mPa-sec	
	0	10	0,23986	0,0116012	0
	1	20	0,212514	0,0121228	0
	2	30	0,189303	0,0126804	0
	3	40	0,169466	0,0132885	0
	4	50	0,152402	0,0139696	0
Run	temp	Re	liq	mix velocity	pressure
#	С			m/sec	bar
	0	10	0	16,2972	4,12761
	1	20	0	11,9248	5,69088
	2	30	0	8,87373	7,6679
	3	40	0	6,69087	10,126
	4	50	0	5,0929	13,1385

6.5.3	Page	1		
Simulation_4_30	Date:	30.01.2014		Flow Regime
	Time:	13:44:27		0 single phase
alysis Report				1 segregated
				2 transition
				3 intermittent
massestrom	0,5211	kg/h		4 distributed
mole vap frac	dp	dp_fric	dp_acc	
	bar	bar	bar	
0	0,00240429	0,00240429	8,11E-11	
0,05	0,0066897	0,00668909	6,06E-07	
0,1	0,00957353	0,00957141	2,12E-06	
0,15	0,0122902	0,0122856	4,63E-06	
0,2	0,0152728	0,0152651	7,73E-06	
0,25	0,0180575	0,0180456	1,19E-05	
0,3	0,0208357	0,0208186	1,71E-05	
0,35	0,0236191	0,0235959	2,32E-05	
0,4	0,0264166	0,0263865	3,01E-05	
0,45	0,0292356	0,0291978	3,79E-05	
0,5	0,0320834	0,032037	4,64E-05	
0,55	0,0349674	0,0349119	5,56E-05	
0,6	0,0378966	0,0378313	6,53E-05	
0,65	0,0408819	0,0408066	7,53E-05	
0,7	0,0439391	0,0438536	8,55E-05	
0,75	0,0470915	0,046996	9,56E-05	
0,8	0,0503776	0,0502726	0,00010504	8
0,85	0,0538697	0,0537564	0,00011337	6
0,9	0,0577318	0,0576122	0,0001195	Э
0,95	0,0625051	0,0623833	0,00012179	2
1	0,0384685	0,0384685	0	
	6.5.3 a Simulation_4_30 alysis Report massestrom mole vap frac 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,5 0,5 0,6 0,65 0,7 0,75 0,8 0,85 0,9 0,95 1	6.5.3 Page Simulation_4_30 Date: Time: alsimulation_4_30 0,5211 dp bar massestrom 0,5211 dp mole vap frac dp bar 0 0,00240429 0,05 0,0066897 0,1 0,00957353 0,15 0,0122902 0,2 0,0152728 0,25 0,0180575 0,3 0,0208357 0,35 0,0236191 0,4 0,0264166 0,45 0,0320834 0,55 0,0349674 0,6 0,0378966 0,65 0,0408819 0,7 0,0439391 0,75 0,0470915 0,8 0,0503776 0,85 0,0538697 0,9 0,0577318	6.5.3 Page 1 n Simulation_4_30 Date: Time: 30.01.2014 13:44:27 alysis Report 0,5211 kg/h dp_fric bar massestrom 0,5211 kg/h dp_fric bar 0 0,00240429 0,00240429 0,05 0,0066897 0,00668909 0,1 0,00957353 0,00957141 0,15 0,0122902 0,0122856 0,2 0,0152728 0,0152651 0,25 0,0180575 0,0180456 0,35 0,0236191 0,0235959 0,4 0,0264166 0,0263865 0,45 0,0292356 0,0291978 0,55 0,0349674 0,0349119 0,65 0,0408819 0,0408066 0,75 0,0470915 0,046996 0,85 0,053776 0,0502726 0,85 0,0538697 0,0537564 0,9 0,0577318 0,0576122 0,95 0,0625051 0,0623833 1 0,0384685 0,0384685	6.5.3 Page 1 nSimulation_4_30 Date: Time: 30.01.2014 13:44:27 nsimulation_4_30 Date: Time: 30.01.2014 13:44:27 nsimulation_4_30 Date: Time: 13:44:27 massestrom 0,5211 kg/h massestrom 0,5211 kg/h mole vap frac dp dp_fric dp_acc bar bar bar bar 0 0,00240429 0,00240429 8,11E-11 0,05 0,0066897 0,00668909 6,06E-07 0,1 0,00957353 0,00957141 2,12E-06 0,15 0,0122902 0,0122856 4,63E-06 0,22 0,0152728 0,0152651 7,73E-06 0,25 0,0180575 0,0180456 1,19E-05 0,33 0,0208357 0,0208186 1,71E-05 0,35 0,0236191 0,0235959 2,32E-05 0,4 0,0264166 0,023865 3,01E-05 0,45 0,032037 4,64E-05 0,55 0,55 0,0349674 0,0349119 5,56E-05

Run	mole vap frac	avg vel	flow regime	inl_pressure
#		m/sec		bar
0	0	0,167646	0	7,6679
1	0,05	0,43508	3	7,6679
2	0,1	0,702345	3	7,6679
3	0,15	0,969669	3	7,6679
4	0,2	1,23711	4	7,6679
5	0,25	1,5046	4	7,6679
6	0,3	1,77217	4	7,6679
7	0,35	2,03983	4	7,6679
8	0,4	2,30756	4	7,6679
9	0,45	2,57537	4	7,6679
10	0,5	2,84328	4	7,6679
11	0,55	3,11127	4	7,6679
12	0,6	3,37936	4	7,6679
13	0,65	3,64754	4	7,6679
14	0,7	3,91583	4	7,6679
15	0,75	4,18424	4	7,6679
16	0,8	4,45278	4	7,6679
17	0,85	4,72149	4	7,6679
18	0,9	4,99042	4	7,6679
19	0,95	5,25981	4	7,6679
20	1	5,5184	0	7,6679
Run	mole vap frac	inl Temp	avg density	gas viscosity
Run #	mole vap frac	inl Temp C	avg density kg/m3	gas viscosity mPa-sec
Run # 0	mole vap frac 0	inl Temp C 30	avg density kg/m3 1192,18	gas viscosity mPa-sec 0,01268
Run # 0 1	mole vap frac 0 0,05	inl Temp C 30 30	avg density kg/m3 1192,18 459,373	gas viscosity mPa-sec 0,01268 0,0126796
Run # 0 1 2	mole vap frac 0 0,05 0,1	inl Temp C 30 30 30	avg density kg/m3 1192,18 459,373 284,566	gas viscosity mPa-sec 0,01268 0,0126796 0,0126792
Run # 0 1 2 3	mole vap frac 0 0,05 0,1 0,15	inl Temp C 30 30 30 30 30	avg density kg/m3 1192,18 459,373 284,566 206,116	gas viscosity mPa-sec 0,01268 0,0126796 0,0126792 0,0126789
Run # 0 1 2 3 4	mole vap frac 0 0,05 0,1 0,15 0,2	inl Temp C 30 30 30 30 30 30	avg density kg/m3 1192,18 459,373 284,566 206,116 161,557	gas viscosity mPa-sec 0,01268 0,0126796 0,0126792 0,0126789 0,0126785
Run # 0 1 2 3 4 5	mole vap frac 0 0,05 0,1 0,15 0,2 0,25	inl Temp C 30 30 30 30 30 30 30	avg density kg/m3 1192,18 459,373 284,566 206,116 161,557 132,835	gas viscosity mPa-sec 0,01268 0,0126796 0,0126792 0,0126789 0,0126785 0,0126781
Run # 0 1 2 3 4 5 6	mole vap frac 0 0,05 0,1 0,15 0,2 0,25 0,3	inl Temp C 30 30 30 30 30 30 30 30 30	avg density kg/m3 1192,18 459,373 284,566 206,116 161,557 132,835 112,779	gas viscosity mPa-sec 0,01268 0,0126796 0,0126792 0,0126789 0,0126785 0,0126781 0,0126778
Run # 0 1 2 3 4 5 6 7	mole vap frac 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35	inl Temp C 30 30 30 30 30 30 30 30 30 30	avg density kg/m3 1192,18 459,373 284,566 206,116 161,557 132,835 112,779 97,981	gas viscosity mPa-sec 0,0126796 0,0126792 0,0126789 0,0126785 0,0126781 0,0126778 0,0126778
Run # 0 1 2 3 4 5 6 7 8	mole vap frac 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4	inl Temp C 30 30 30 30 30 30 30 30 30 30 30 30	avg density kg/m3 1192,18 459,373 284,566 206,116 161,557 132,835 112,779 97,981 86,6129	gas viscosity mPa-sec 0,0126796 0,0126792 0,0126789 0,0126785 0,0126781 0,0126778 0,0126774 0,0126771
Run # 0 1 2 3 4 5 6 7 8 9	mole vap frac 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45	inl Temp C 30 30 30 30 30 30 30 30 30 30 30 30 30	avg density kg/m3 1192,18 459,373 284,566 206,116 161,557 132,835 112,779 97,981 86,6129 77,6059	gas viscosity mPa-sec 0,0126796 0,0126792 0,0126789 0,0126785 0,0126781 0,0126778 0,0126774 0,0126771 0,0126767
Run # 0 1 2 3 4 5 6 7 8 9 10	mole vap frac 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5	inl Temp C 30 30 30 30 30 30 30 30 30 30 30 30 30	avg density kg/m3 1192,18 459,373 284,566 206,116 161,557 132,835 112,779 97,981 86,6129 77,6059 70,2936	gas viscosity mPa-sec 0,0126796 0,0126792 0,0126789 0,0126785 0,0126781 0,0126778 0,0126774 0,0126771 0,0126767 0,0126764
Run # 0 1 2 3 4 5 6 7 8 9 10 11	mole vap frac 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55	inl Temp C 30 30 30 30 30 30 30 30 30 30 30 30 30	avg density kg/m3 1192,18 459,373 284,566 206,116 161,557 132,835 112,779 97,981 86,6129 77,6059 70,2936 64,2389	gas viscosity mPa-sec 0,0126796 0,0126792 0,0126792 0,0126789 0,0126785 0,0126781 0,0126778 0,0126774 0,0126767 0,0126764 0,0126764
Run # 0 1 2 3 4 5 6 7 8 9 10 11 12	mole vap frac 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6	inl Temp C 30 30 30 30 30 30 30 30 30 30 30 30 30	avg density kg/m3 1192,18 459,373 284,566 206,116 161,557 132,835 112,779 97,981 86,6129 77,6059 70,2936 64,2389 59,1427	gas viscosity mPa-sec 0,0126796 0,0126792 0,0126789 0,0126785 0,0126781 0,0126778 0,0126774 0,0126771 0,0126767 0,0126764 0,0126757
Run # 0 1 2 3 4 5 6 7 8 9 10 11 12 13	mole vap frac 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,5 0,55 0,6 0,65	inl Temp C 30 30 30 30 30 30 30 30 30 30 30 30 30	avg density kg/m3 1192,18 459,373 284,566 206,116 161,557 132,835 112,779 97,981 86,6129 77,6059 70,2936 64,2389 59,1427 54,7943	gas viscosity mPa-sec 0,0126796 0,0126792 0,0126792 0,0126789 0,0126785 0,0126778 0,0126778 0,0126774 0,0126771 0,0126767 0,0126757 0,0126753
Run # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	mole vap frac 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,55 0,55 0,6 0,65 0,7	inl Temp C 30 30 30 30 30 30 30 30 30 30 30 30 30	avg density kg/m3 1192,18 459,373 284,566 206,116 161,557 132,835 112,779 97,981 86,6129 77,6059 70,2936 64,2389 59,1427 54,7943 51,0401	gas viscosity mPa-sec 0,0126796 0,0126792 0,0126789 0,0126785 0,0126785 0,0126778 0,0126778 0,0126774 0,0126771 0,0126767 0,0126764 0,0126757 0,0126753 0,0126749
Run # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	mole vap frac 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,55 0,6 0,65 0,7 0,75	inl Temp C 30 30 30 30 30 30 30 30 30 30 30 30 30	avg density kg/m3 1192,18 459,373 284,566 206,116 161,557 132,835 112,779 97,981 86,6129 77,6059 70,2936 64,2389 59,1427 54,7943 51,0401 47,766	gas viscosity mPa-sec 0,0126796 0,0126792 0,0126792 0,0126789 0,0126785 0,0126781 0,0126778 0,0126774 0,0126771 0,0126767 0,0126764 0,0126757 0,0126753 0,0126749 0,0126745
Run # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,5 0,55 0,6 0,65 0,7 0,75 0,8	inl Temp C 30 30 30 30 30 30 30 30 30 30 30 30 30	avg density kg/m3 1192,18 459,373 284,566 206,116 161,557 132,835 112,779 97,981 86,6129 77,6059 70,2936 64,2389 59,1427 54,7943 51,0401 47,766 44,8853	gas viscosity mPa-sec 0,0126796 0,0126792 0,0126792 0,0126789 0,0126785 0,0126781 0,0126778 0,0126774 0,0126771 0,0126767 0,0126767 0,0126753 0,0126749 0,0126745 0,0126741
Run # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	mole vap frac 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85	inl Temp C 30 30 30 30 30 30 30 30 30 30 30 30 30	avg density kg/m3 1192,18 459,373 284,566 206,116 161,557 132,835 112,779 97,981 86,6129 77,6059 70,2936 64,2389 59,1427 54,7943 51,0401 47,766 44,8853 42,3309	gas viscosity mPa-sec 0,0126796 0,0126792 0,0126792 0,0126789 0,0126785 0,0126781 0,0126778 0,0126774 0,0126771 0,0126767 0,0126764 0,0126757 0,0126753 0,0126749 0,0126741 0,0126737
Run # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85 0,9	inl Temp C 30 30 30 30 30 30 30 30 30 30 30 30 30	avg density kg/m3 1192,18 459,373 284,566 206,116 161,557 132,835 112,779 97,981 86,6129 77,6059 70,2936 64,2389 59,1427 54,7943 51,0401 47,766 44,8853 42,3309 40,0497	gas viscosity mPa-sec 0,0126796 0,0126792 0,0126792 0,0126789 0,0126785 0,0126781 0,0126778 0,0126774 0,0126771 0,0126767 0,0126767 0,0126753 0,0126749 0,0126745 0,0126741 0,0126737 0,0126732
Run # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 0,6 0,65 0,7 0,75 0,8 0,85 0,9 0,95	inl Temp C 30 30 30 30 30 30 30 30 30 30 30 30 30	avg density kg/m3 1192,18 459,373 284,566 206,116 161,557 132,835 112,779 97,981 86,6129 77,6059 70,2936 64,2389 59,1427 54,7943 51,0401 47,766 44,8853 42,3309 40,0497 37,9986	gas viscosity mPa-sec 0,0126796 0,0126792 0,0126789 0,0126785 0,0126781 0,0126778 0,0126778 0,0126774 0,0126771 0,0126767 0,0126767 0,0126753 0,0126749 0,0126745 0,0126737 0,0126732 0,0126726

Run	mole vap frac	liq viscosity	liq density	liq mass rate
#		mPa-sec	kg/m3	kg/h
0	0	0,189314	1193,08	0,5211
1	0,05	0,189334	1193,12	0,495045
2	0,1	0,189347	1193,14	0,46899
3	0,15	0,18936	1193,16	0,442935
4	0,2	0,189374	1193,19	0,41688
5	0,25	0,189387	1193,21	0,390825
6	0,3	0,189399	1193,23	0,36477
7	0,35	0,189412	1193,26	0,338715
8	0,4	0,189425	1193,28	0,31266
9	0,45	0,189438	1193,3	0,286605
10	0,5	0,189451	1193,33	0,26055
11	0,55	0,189465	1193,35	0,234495
12	0,6	0,189478	1193,37	0,20844
13	0,65	0,189492	1193,4	0,182385
14	0,7	0,189506	1193,42	0,15633
15	0,75	0,189521	1193,45	0,130275
16	0,8	0,189536	1193,48	0,10422
17	0,85	0,189552	1193,51	0,078165
18	0,9	0,18957	1193,54	0,05211
19	0,95	0,189592	1193,58	0,026055
20	1	0	0	0
Parameter	massestrom	0,78165	kg/h	
Run	mole vap frac	dp	dp_fric	dp_acc
#		bar	bar	bar
0	0	0,0042562	0,0042562	7,02E-10
1	0,05	0,0133749	0,0133722	2,70E-06
2	0,1	0,0192636	0,0192541	9,49E-06
3	0,15	0,0254235	0,0254039	1,96E-05
4	0,2	0,0312719	0,0312377	3,42E-05
5	0,25	0,037086	0,0370329	5,31E-05
6	0,3	0,0429003	0,0428239	7,63E-05
7	0,35	0,0487383	0,0486345	0,000103814
8	0,4	0,0546178	0,0544824	0,000135414
9	0,45	0,0605544	0,0603834	0,000170935
10	0,5	0,0665627	0,0663526	0,000210072
11	0,55	0,0726588	0,0724064	0,00025241
12	0,6	0,0788614	0,0785641	0,000297397
13	0,65	0,0851952	0,0848509	0,000344309
14	0,7	0,0916939	0,0913017	0,00039219
15	0,75	0,0984088	0,097969	0,000439757
16	0,8	0,105425	0,10494	0,000485229
17	0,85	0,112903	0,112377	0,000525989
18	0,9	0,121208	0,12065	0,000557783
19	0,95	0,131556	0,130984	0,000572339
20	1	0,080677	0,080677	0
		-	-	

Run	mole vap frac	avg vel	flow regime	inl_pressure
#		m/sec		bar
0	0	0,251647	0	7,6679
1	0,05	0,653748	3	7,6679
2	0,1	1,05536	3	7,6679
3	0,15	1,45728	4	7,6679
4	0,2	1,85938	4	7,6679
5	0,25	2,26173	4	7,6679
6	0,3	2,66433	4	7,6679
7	0,35	3,06718	4	7,6679
8	0,4	3,47029	4	7,6679
9	0,45	3,87368	4	7,6679
10	0,5	4,27734	4	7,6679
11	0,55	4,6813	4	7,6679
12	0,6	5,08556	4	7,6679
13	0,65	5,49014	4	7,6679
14	0,7	5,89507	4	7,6679
15	0,75	6,30038	4	7,6679
16	0,8	6,70612	4	7,6679
17	0,85	7,11241	4	7,6679
18	0,9	7,51946	4	7,6679
19	0,95	7,928	4	7,6679
20	1	8,30197	0	7,6679
Dura		in L.T. en en		
Run "	mole vap frac	ini Temp	avg density	gas viscosity
#	0	C	Kg/m3	mPa-sec
0	0	30	1191,34	0,0126799
1	0,05	30	458,582	0,0126787
2	0,1	30	284,072	0,012678
3	0,15	30	205,724	0,0126772
4	0,2	30	161,235	0,0126765
5	0,25	30	132,552	0,0126758
6	0,3	30	112,523	0,012675
/	0,35	30	97,7438	0,0126743
8	0,4	30	86,3899	0,0126736
9	0,45	30	//,393/	0,0126/28
10	0,5	30	70,09	0,0126/21
11	0,55	30	64,0419	0,0126713
12	0,6	30	58,9512	0,0126705
13	0,65	30	54,607	0,0126698
14	0,7	30	50,8562	0,0126689
15	0,75	30	47,5847	0,0126681
16	0,8	30	44,7057	0,0126672
17	0,85	30	42,1521	0,0126663
18	0,9	30	39,8704	0,0126653
19	0,95	30	37,816	0,012664
20	1	30	36 1118	0 0126742

Run	mole vap frac	liq viscosity	liq density	liq mass rate
#		mPa-sec	kg/m3	kg/h
0	0	0,189323	1193,1	0,78165
1	0,05	0,189365	1193,17	0,742567
2	0,1	0,189392	1193,22	0,703485
3	0,15	0,189421	1193,27	0,664403
4	0,2	0,189448	1193,32	0,62532
5	0,25	0,189474	1193,37	0,586238
6	0,3	0,189501	1193,42	0,547155
7	0,35	0,189528	1193,46	0,508072
8	0,4	0,189555	1193,51	0,46899
9	0,45	0,189583	1193,56	0,429908
10	0,5	0,189611	1193,61	0,390825
11	0,55	0,189639	1193,66	0,351743
12	0,6	0,189668	1193,71	0,31266
13	0,65	0,189697	1193,76	0,273578
14	0,7	0,189727	1193,82	0,234495
15	0,75	0,189758	1193,87	0,195413
16	0,8	0,189791	1193,93	0,15633
17	0,85	0,189825	1193,99	0,117247
18	0,9	0,189864	1194,06	0,078165
19	0,95	0,189912	1194,15	0,0390825
20	1	0	0	0
Parameter	massestrom	1,0422	kg/h	
Run	mole vap frac	dp	dp_fric	dp_acc
#		bar	bar	bar
0	0	0,00630601	0,006306	2,62E-09
1	0,05	0,0219622	0,0219544	7,85E-06
2	0,1	0,0323432	0,0323169	2,63E-05
3	0,15	0,042366	0,0423094	5,66E-05
4	0,2	0,0522595	0,0521603	9,92E-05
5	0,25	0,0621187	0,0619643	0,000154458
6	0,3	0,0720007	0,071778	0,000222639
7	0,35	0,0819438	0,0816402	0,000303648
8	0,4	0,0919775	0,0915803	0,000397207
9	0,45	0,102128	0,101625	0,000502791
10	0,5	0,11242	0,111801	0,000619599
11	0,55	0,122882	0,122135	0,000746498
12	0,6	0,133545	0,132663	0,000881952
13	0,65	0,144453	0,143429	0,00102391
14	0,7	0,155665	0,154495	0,00116964
15	0,75	0,167271	0,165955	0,00131544
16	0,8	0,179422	0,177965	0,00145614
17	0.85	0,192402	0,190818	0,0015841
18	0 9	0.206865	0,205178	0,00168695
10	0,5	-,		
19	0,95	0,225009	0,223269	0,00174089
20	0,95 1	0,225009 0,137831	0,223269 0,137831	0,00174089 0

Run	mole vap frac	avg vel	flow regime	inl_pressure
#		m/sec		bar
0	0	0,335669	0	7,6679
1	0,05	0,873589	3	7,6679
2	0,1	1,41045	4	7,6679
3	0,15	1,9478	4	7,6679
4	0,2	2,48569	4	7,6679
5	0,25	3,02412	4	7,6679
6	0,3	3,56313	4	7,6679
7	0,35	4,10274	4	7,6679
8	0,4	4,64294	4	7,6679
9	0,45	5,18378	4	7,6679
10	0,5	5,72527	4	7,6679
11	0,55	6,26744	4	7,6679
12	0,6	6,81032	4	7,6679
13	0,65	7,35396	4	7,6679
14	0,7	7,89841	4	7,6679
15	0,75	8,44376	4	7,6679
16	0,8	8,99016	4	7,6679
17	0,85	9,53783	4	7,6679
18	0,9	10,0873	4	7,6679
19	0,95	10,6404	4	7,6679
20	1	11,1135	0	7,6679
Run	mole vap frac	inl Temp	avg density	gas viscosity
#		C	kg/m3	mPa-sec
0	0	30	1190.85	0.0126796
1	0.05	30	457.575	0.0126776
2	0.1	30	283.408	0.0126764
3	0,15	30	205,222	0,0126751
4	0.2	30	160.814	0.0126739
5	0.25	30	132.182	0.0126726
6	0.3	30	112.187	0.0126714
7	0.35	30	97.4318	0.0126702
8	0.4	30	86.0958	0.0126689
9	0.45	20	77 1125	0.0126677
10		30	//.1135	0.01200//
11	0.5	30	69.8204	0.0126664
+ +	0,5 0.55	30 30 30	69,8204 63.7808	0,0126664 0.0126651
12	0,5 0,55 0.6	30 30 30 30	69,8204 63,7808 58,6968	0,0126664 0,0126651 0.0126637
12 13	0,5 0,55 0,6 0.65	30 30 30 30 30	69,8204 63,7808 58,6968 54,3579	0,0126664 0,0126651 0,0126637 0.0126624
12 13 14	0,5 0,55 0,6 0,65 0,7	30 30 30 30 30 30	69,8204 63,7808 58,6968 54,3579 50,6112	0,0126677 0,0126664 0,0126651 0,0126637 0,0126624 0.012661
12 13 14 15	0,5 0,55 0,6 0,65 0,7 0,75	30 30 30 30 30 30 30 30	69,8204 63,7808 58,6968 54,3579 50,6112 47,3427	0,0126664 0,0126651 0,0126637 0,0126624 0,012661 0,0126595
12 13 14 15 16	0,5 0,55 0,6 0,65 0,7 0,75 0,8	30 30 30 30 30 30 30 30 30	69,8204 63,7808 58,6968 54,3579 50,6112 47,3427 44,4656	0,0126677 0,0126664 0,0126651 0,0126637 0,0126624 0,0126595 0,012658
12 13 14 15 16 17	0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85	30 30 30 30 30 30 30 30 30 30	69,8204 63,7808 58,6968 54,3579 50,6112 47,3427 44,4656 41,9127	0,0126677 0,0126664 0,0126651 0,0126637 0,0126624 0,012661 0,0126595 0,012658 0,0126564
12 13 14 15 16 17 18	0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85 0,9	30 30 30 30 30 30 30 30 30 30 30	77,1135 69,8204 63,7808 58,6968 54,3579 50,6112 47,3427 44,4656 41,9127 39,6299	0,0126677 0,0126664 0,0126651 0,0126637 0,0126624 0,0126595 0,0126595 0,0126564 0,0126546
12 13 14 15 16 17 18 19	0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85 0,9 0.95	30 30 30 30 30 30 30 30 30 30 30 30 30	69,8204 63,7808 58,6968 54,3579 50,6112 47,3427 44,4656 41,9127 39,6299 37,5705	0,0126677 0,0126664 0,0126651 0,0126637 0,0126624 0,0126595 0,0126595 0,0126554 0,0126546 0,0126524

Run	mole vap frac	liq viscosity	liq density	liq mass rate
#		mPa-sec	kg/m3	kg/h
0	0	0,189332	1193,11	1,0422
1	0,05	0,189404	1193,24	0,99009
2	0,1	0,189452	1193,33	0,93798
3	0,15	0,189499	1193,41	0,88587
4	0,2	0,189544	1193,49	0,83376
5	0,25	0,18959	1193,57	0,78165
6	0,3	0,189636	1193,66	0,72954
7	0,35	0,189682	1193,74	0,67743
8	0,4	0,189728	1193,82	0,62532
9	0,45	0,189775	1193,9	0,57321
10	0,5	0,189823	1193,99	0,5211
11	0,55	0,189872	1194,07	0,46899
12	0,6	0,189921	1194,16	0,41688
13	0,65	0,189972	1194,25	0,36477
14	0,7	0,190024	1194,34	0,31266
15	0,75	0,190078	1194,44	0,26055
16	0,8	0,190134	1194,54	0,20844
17	0,85	0,190195	1194,65	0,15633
18	0,9	0,190262	1194,77	0,10422
19	0,95	0,190346	1194,91	0,05211
20	1	0	0	0
Parameter	massestrom	1,30275	kg/h	
Run	mole vap frac	dp	dp_fric	dp_acc
#		bar	bar	bar
0	0	0,0113711	0,0113711	9,72E-09
1	0,05	0,0323552	0,0323371	1,81E-05
2	0,1	0,0480746	0,0480146	6,00E-05
3	0,15	0,0631632	0,0630338	0,000129432
4	0,2	0,0780977	0,0778701	0,000227609
5	0,25	0,0930172	0,0926616	0,000355642
6	0,3	0,108005	0,107491	0,000514127
7	0,35	0,123119	0,122416	0,000703162
8	0,4	0,138403	0,137481	0,000922318
9	0,45	0,153897	0,152726	0,00117061
10	0,5	0,169638	0,168191	0,00144639
11	0,55	0,185669	0,183922	0,00174725
12	0,6	0,20204	0,19997	0,0020698
13	0,65	0,218818	0,216408	0,00240948
14	0,7	0,236094	0,233334	0,00276006
15	0,75	0,25401	0,250897	0,00311306
16	0,8	0,272802	0,269345	0,00345651
17	0,85	0,292918	0,289146	0,00377269
18	0,9	0,315399	0,311366	0,00403284
19	0,95	0,343789	0,339606	0,00418225
20	1	0,210371	0,210371	0

Run mole vap	o frac avg vel	flow regime	e inl_pressure
#	m/sec		bar
0 0	0,420059	0	7,6679
1 0,05	1,09491	3	7,6679
2 0,1	1,76804	4	7,6679
3 0,15	2,44209	4	7,6679
4 0,2	3,11716	4	7,6679
5 0,25	3,79328	4	7,6679
6 0,3	4,47051	4	7,6679
7 0,35	5,1489	4	7,6679
8 0,4	5,82846	4	7,6679
9 0,45	6,50925	4	7,6679
10 0,5	7,19131	4	7,6679
11 0,55	7,87471	4	7,6679
12 0,6	8,55952	4	7,6679
13 0,65	9,24582	4	7,6679
14 0,7	9,93372	4	7,6679
15 0,75	10,6234	4	7,6679
16 0,8	11,3152	4	7,6679
17 0,85	12,0095	4	7,6679
18 0,9	12,7074	4	7,6679
19 0,95	13,4125	4	7,6679
20 1	12 0626	0	7 6679
20 1	15,9020	0	7,0075
zu I Run mole var	15,5020	avg density	
ZU I Run mole vap	o frac inl Temp	avg density	gas viscosity
ZU I Run mole vap #	o frac inl Temp C 30	avg density kg/m3 1189 52	gas viscosity mPa-sec
20 1 Run mole vap # 0 0 1 0.05	o frac inl Temp C 30 30	avg density kg/m3 1189,52 456 361	 gas viscosity mPa-sec 0,0126791 0,0126764
20 1 Run mole vap # 0 0 1 0,05 2 0.1	o frac inl Temp C 30 30 30	avg density kg/m3 1189,52 456,361 282,613	 gas viscosity mPa-sec 0,0126791 0,0126764 0.0126744
20 1 Run mole vap # 0 0 0 1 0,05 2 0,1 3 0.15	o frac inl Temp C 30 30 30 30 30	avg density kg/m3 1189,52 456,361 282,613 204 61	 gas viscosity mPa-sec 0,0126791 0,0126764 0,0126744 0,0126725
20 1 Run mole vap # 0 0 0 1 0,05 2 0,1 3 0,15 4 0.2	o frac inl Temp C 30 30 30 30 30 30 30	avg density kg/m3 1189,52 456,361 282,613 204,61 160 299	 gas viscosity mPa-sec 0,0126791 0,0126764 0,0126744 0,0126725 0,0126707
20 1 Run mole vap # 0 0 0 1 0,05 2 0,1 3 0,15 4 0,2 5 0,25	o frac inl Temp C 30 30 30 30 30 30 30 30 30	avg density kg/m3 1189,52 456,361 282,613 204,61 160,299 131 728	 gas viscosity mPa-sec 0,0126791 0,0126764 0,0126744 0,0126725 0,0126707 0,0126688
20 1 Run mole vap # 0 0 0 1 0,05 2 0,1 3 0,15 4 0,2 5 0,25 6 0.3	o frac inl Temp C 30 30 30 30 30 30 30 30 30 30	avg density kg/m3 1189,52 456,361 282,613 204,61 160,299 131,728 111 773	 gas viscosity mPa-sec 0,0126791 0,0126764 0,0126744 0,0126725 0,0126707 0,0126688 0,0126669
20 1 Run mole vap # 0 0 0 1 0,05 2 0,1 3 0,15 4 0,2 5 0,25 6 0,3 7 0,35	o frac inl Temp C 30 30 30 30 30 30 30 30 30 30 30 30 30	avg density kg/m3 1189,52 456,361 282,613 204,61 160,299 131,728 111,773 97 047	 gas viscosity mPa-sec 0,0126791 0,0126764 0,0126744 0,0126725 0,0126707 0,0126688 0,0126669 0,0126651
20 1 Run mole vap # 0 0 1 0,05 2 2 0,1 3 3 0,15 4 4 0,2 5 6 0,3 7 7 0,35 8	o frac inl Temp C 30 30 30 30 30 30 30 30 30 30 30 30 30	avg density kg/m3 1189,52 456,361 282,613 204,61 160,299 131,728 111,773 97,047 85 7326	 gas viscosity mPa-sec 0,0126791 0,0126764 0,0126744 0,0126725 0,0126707 0,0126688 0,0126669 0,0126651 0,0126632
20 1 Run mole vap # 0 0 0 1 0,05 2 0,1 3 0,15 4 0,2 5 0,25 6 0,3 7 0,35 8 0,4 9 0.45	o frac inl Temp C 30 30 30 30 30 30 30 30 30 30 30 30 30	avg density kg/m3 1189,52 456,361 282,613 204,61 160,299 131,728 111,773 97,047 85,7326 76 7666	 gas viscosity mPa-sec 0,0126791 0,0126764 0,0126744 0,0126725 0,0126707 0,0126688 0,0126669 0,0126651 0,0126612
20 1 Run mole vap # 0 0 1 0,05 2 2 0,1 3 3 0,15 4 4 0,2 5 5 0,25 6 6 0,3 7 7 0,35 8 9 0,45 10	o frac inl Temp C 30 30 30 30 30 30 30 30 30 30 30 30 30	avg density kg/m3 1189,52 456,361 282,613 204,61 160,299 131,728 111,773 97,047 85,7326 76,7666 69,4863	 gas viscosity mPa-sec 0,0126791 0,0126764 0,0126744 0,0126725 0,0126707 0,0126688 0,0126669 0,0126651 0,0126612 0,0126593
20 1 Run mole vap # 0 0 1 0,05 2 2 0,1 3 3 0,15 4 4 0,2 5 6 0,3 7 7 0,35 8 8 0,4 9 9 0,45 10 10 0,5 11	o frac inl Temp C 30 30 30 30 30 30 30 30 30 30 30 30 30	avg density kg/m3 1189,52 456,361 282,613 204,61 160,299 131,728 111,773 97,047 85,7326 76,7666 69,4863 63 4566	 gas viscosity mPa-sec 0,0126791 0,0126764 0,0126744 0,0126725 0,0126707 0,0126688 0,0126669 0,0126651 0,0126612 0,0126593 0,0126573
20 1 Run mole vap # 0 0 1 0,05 2 2 0,1 3 3 0,15 4 4 0,2 5 6 0,3 7 7 0,35 8 9 0,45 10 10 0,5 11 0,55 12 0,6 6 10	o frac inl Temp C 30 30 30 30 30 30 30 30 30 30 30 30 30	avg density kg/m3 1189,52 456,361 282,613 204,61 160,299 131,728 111,773 97,047 85,7326 76,7666 69,4863 63,4566 58 3803	 gas viscosity mPa-sec 0,0126791 0,0126764 0,0126744 0,0126725 0,0126707 0,0126688 0,0126669 0,0126651 0,0126612 0,0126593 0,0126573 0,0126552
20 1 Run mole vap # 0 0 1 0,05 2 2 0,1 3 0,15 4 0,2 5 0,25 6 0,3 7 0,35 8 0,4 9 0,45 10 0,5 11 0,55 12 0,6 13 0,65	o frac inl Temp C 30 30 30 30 30 30 30 30 30 30 30 30 30	avg density kg/m3 1189,52 456,361 282,613 204,61 160,299 131,728 111,773 97,047 85,7326 76,7666 69,4863 63,4566 58,3803 54,0475	 gas viscosity mPa-sec 0,0126791 0,0126764 0,0126744 0,0126725 0,0126707 0,0126688 0,0126651 0,0126651 0,0126512 0,0126593 0,0126573 0,0126552 0,0126531
20 1 Run mole vap # 0 0 1 0,05 2 2 0,1 3 3 0,15 4 4 0,2 5 5 0,25 6 6 0,3 7 7 0,35 8 9 0,45 10 10 0,5 11 0,55 12 0,6 13 0,65 14 0,7 0,7	o frac inl Temp C 30 30 30 30 30 30 30 30 30 30 30 30 30	avg density kg/m3 1189,52 456,361 282,613 204,61 160,299 131,728 111,773 97,047 85,7326 76,7666 69,4863 63,4566 58,3803 54,0475 50 3053	<pre> /,0073 / gas viscosity mPa-sec 0,0126791 0,0126764 0,0126744 0,0126725 0,01266707 0,0126688 0,0126669 0,0126651 0,0126651 0,0126512 0,0126573 0,0126573 0,0126552 0,0126531 0,012651 </pre>
20 1 Run mole vap # 0 0 1 0,05 2 0,1 3 0,15 4 0,2 5 0,25 6 0,3 7 0,35 8 0,4 9 0,45 10 0,5 11 0,55 12 0,6 13 0,65 14 0,7	o frac inl Temp C 30 30 30 30 30 30 30 30 30 30 30 30 30	avg density kg/m3 1189,52 456,361 282,613 204,61 160,299 131,728 111,773 97,047 85,7326 76,7666 69,4863 63,4566 58,3803 54,0475 50,3053 47,0401	y,0073 gas viscosity mPa-sec 0,0126791 0,0126764 0,0126744 0,0126725 0,0126707 0,0126688 0,0126669 0,0126651 0,0126651 0,0126573 0,0126573 0,0126573 0,0126511 0,012651 0,012651 0,012651 0,012651
20 1 Run mole vap # 0 0 1 0,05 2 2 0,1 3 3 0,15 4 4 0,2 5 6 0,3 7 7 0,35 8 9 0,45 10 10 0,5 11 12 0,6 13 0,65 14 0,7 15 0,75 16 0.8 0.8	o frac inl Temp C 30 30 30 30 30 30 30 30 30 30 30 30 30	avg density kg/m3 1189,52 456,361 282,613 204,61 160,299 131,728 111,773 97,047 85,7326 76,7666 69,4863 63,4566 58,3803 54,0475 50,3053 47,0401 44 165	y,0073 gas viscosity mPa-sec 0,0126791 0,0126764 0,0126764 0,0126725 0,0126707 0,0126688 0,0126669 0,0126651 0,0126651 0,0126593 0,0126573 0,0126573 0,0126552 0,012651 0,0126488 0,0126488
20 1 Run mole vap # 0 0 1 0,05 2 0,1 3 0,15 4 0,2 5 0,25 6 0,3 7 0,35 8 0,4 9 0,455 10 0,55 10 0,55 11 0,555 12 0,6 13 0,655 14 0,7 15 0,755 16 0,8 17 0,855	13,9020 o frac inl Temp C 30 30 30	avg density kg/m3 1189,52 456,361 282,613 204,61 160,299 131,728 111,773 97,047 85,7326 76,7666 69,4863 63,4566 58,3803 54,0475 50,3053 47,0401 44,165 41,6125	y,0073 gas viscosity mPa-sec 0,0126791 0,0126764 0,0126744 0,0126725 0,0126707 0,0126688 0,0126669 0,0126651 0,0126652 0,0126573 0,0126573 0,0126573 0,0126511 0,0126511 0,0126511 0,0126511 0,0126511 0,01265488 0,01265488 0,01265488 0,0126488 0,0126488 0,0126488 0,0126488 0,0126488
20 1 Run mole vap # 0 0 1 0,05 2 2 0,1 3 3 0,15 4 4 0,2 5 5 0,25 6 6 0,3 7 7 0,35 8 0,4 9 0,455 10 0,5 10 0,5 11 0,55 12 0,6 13 0,65 14 0,7 15 0,75 16 0,8 17 0,85 18 0.9 0.4	13,9020 o frac inl Temp C 30 30 30	avg density kg/m3 1189,52 456,361 282,613 204,61 160,299 131,728 111,773 97,047 85,7326 76,7666 69,4863 63,4566 58,3803 54,0475 50,3053 47,0401 44,165 41,6125 39,3279	 gas viscosity mPa-sec 0,0126791 0,0126764 0,0126744 0,0126725 0,0126707 0,0126688 0,0126669 0,0126651 0,0126512 0,0126573 0,0126573 0,0126511 0,0126511 0,0126511 0,0126488 0,0126444 0,0126439 0,0126411
20 1 Run mole vap # 0 0 1 0,05 2 2 0,1 3 3 0,15 4 4 0,2 5 5 0,25 6 6 0,3 7 7 0,35 8 0,4 9 0,455 10 0,55 10 0,55 11 0,555 12 0,6 13 0,655 14 0,7 15 0,755 16 0,8 17 0,855 18 0,9 0,95	13,9020 o frac inl Temp C 30 30 30	avg density kg/m3 1189,52 456,361 282,613 204,61 160,299 131,728 111,773 97,047 85,7326 76,7666 69,4863 63,4566 58,3803 54,0475 50,3053 47,0401 44,165 41,6125 39,3279 37,2615	y,0073 gas viscosity mPa-sec 0,0126791 0,0126764 0,0126764 0,0126725 0,0126707 0,0126688 0,0126669 0,0126651 0,0126651 0,0126593 0,0126573 0,0126573 0,0126552 0,012651 0,0126488 0,0126488 0,0126439 0,0126411 0,0126376

Run	mole vap frac	liq viscosity	liq density	liq mass rate
#		mPa-sec	kg/m3	kg/h
0	0	0,189355	1193,16	1,30275
1	0,05	0,189452	1193,33	1,23761
2	0,1	0,189525	1193,46	1,17248
3	0,15	0,189595	1193,58	1,10734
4	0,2	0,189664	1193,71	1,0422
5	0,25	0,189733	1193,83	0,977062
6	0,3	0,189802	1193,95	0,911925
7	0,35	0,189872	1194,08	0,846788
8	0,4	0,189943	1194,2	0,78165
9	0,45	0,190015	1194,33	0,716513
10	0,5	0,190088	1194,46	0,651375
11	0,55	0,190163	1194,59	0,586237
12	0,6	0,19024	1194,72	0,5211
13	0,65	0,190318	1194,86	0,455962
14	0,7	0,190398	1195,01	0,390825
15	0,75	0,190482	1195,15	0,325688
16	0,8	0,19057	1195,31	0,26055
17	0,85	0,190664	1195,47	0,195412
18	0,9	0,190769	1195,66	0,130275
19	0,95	0,190902	1195,89	0,0651375
20	1	0	0	0
Parameter	massestrom	1,5633	kg/h	
Run	mole vap frac	dp	dp_fric	dp_acc
#		bar	bar	bar
0	0	0,0155062	0,0155061	3,54E-08
1	0,05	0,0444946	0,0444588	3,58E-05
2	0,1	0,0666174	0,0664993	0,000118146
3	0,15	0,0877579	0,0875022	0,000255701
4	0,2	0,108737	0,108286	0,000451075
5	0,25	0,129752	0,129045	0,000706936
6	0,3	0,150915	0,14989	0,00102491
7	0,35	0,172306	0,1709	0,00140569
8	0,4	0,193988	0,192139	0,00184891
9	0,45	0,216017	0,213664	0,0023531
10	0,5	0,238449	0,235533	0,00291545
11	0,55	0,261343	0,257811	0,00353161
12	0,6	0,284773	0,280577	0,00419524
13	0,65	0,308833	0,303936	0,00489756
14	0,7	0,333658	0,328031	0,0056264
15	0,75	0,359451	0,353086	0,00636491
16	0,8	0,386558	0,379469	0,00708912
17	0,85	0,415637	0,407874	0,00776328
18	0,9	0,448226	0,439897	0,00832922
19	0,95	0,48967	0,480993	0,00867761
20	1	0,298956	0,298956	0

Run	mole vap frac	avg vel	flow regime	inl_pressure
#		m/sec		bar
0	0	0,505346	4	7,6679
1	0,05	1,31798	3	7,6679
2	0,1	2,12871	4	7,6679
3	0,15	2,94098	4	7,6679
4	0,2	3,7549	4	7,6679
5	0,25	4,57073	4	7,6679
6	0,3	5,38845	4	7,6679
7	0,35	6,20817	4	7,6679
8	0,4	7,02995	4	7,6679
9	0,45	7,85387	4	7,6679
10	0,5	8,68004	4	7,6679
11	0,55	9,50856	4	7,6679
12	0,6	10,3396	4	7,6679
13	0,65	11,1732	4	7,6679
14	0,7	12,0097	4	7,6679
15	0,75	12,8494	4	7,6679
16	0,8	13,6927	4	7,6679
17	0,85	14,5406	4	7,6679
18	0,9	15,395	4	7,6679
19	0,95	16,2623	4	7,6679
20	1	16,8598	0	7,6679
Run	mole van frac	inl Temn	ava density	
#		C C	kg/m3	mPa-sec
" 0	0	30	1186 5/	0.0126784
1	0.05	30	454 954	0.0126749
2	0,05	30	281 683	0.0126721
2	0,1	30	201,005	0,0126721
<u>л</u>	0,15	30	150 603	0,0120055
+ 5	0,2	30	121 101	0,0126642
5	0,25	30	111 283	0,0120042
7	0,5	30	96 5000	0,0126580
y Q	0,35	30	90,5909 85 201	0,0120589
0	0,4	30	76 2526	0,0120502
9 10	0,45	20	60 0975	0,0120333
10	0,5	30	62,0673	0,0120307
11	0,55	30	03,0089 F8 0013	0,0126479
12	0,6	30	58,0012	0,012645
13	0,65	30	53,6749	0,012642
14	0,7	30	49,9377	0,0126389
15	0,75	30	46,6758	0,0126357
16	0,8	30	43,8024	0,0126323
1/	0,85	30	41,2497	0,0126287
18	0,9	30	38,9622	0,0126247
19	0,95	30	36,8866	0,0126196
20	1	30	35 5692	0.0126575

Run	mole vap frac	liq viscosity	liq density	liq mass rate
#		mPa-sec	kg/m3	kg/h
0	0	0,189374	1193,19	1,5633
1	0,05	0,189508	1193,43	1,48513
2	0,1	0,18961	1193,61	1,40697
3	0,15	0,189708	1193,78	1,3288
4	0,2	0,189805	1193,96	1,25064
5	0,25	0,189903	1194,13	1,17248
6	0,3	0,190001	1194,3	1,09431
7	0,35	0,190101	1194,48	1,01614
8	0,4	0,190201	1194,66	0,93798
9	0,45	0,190304	1194,84	0,859815
10	0,5	0,190409	1195,02	0,78165
11	0,55	0,190516	1195,21	0,703485
12	0,6	0,190625	1195,4	0,62532
13	0,65	0,190738	1195,6	0,547155
14	0,7	0,190855	1195,8	0,46899
15	0,75	0,190976	1196,02	0,390825
16	0,8	0,191103	1196,24	0,31266
17	0,85	0,19124	1196,48	0,234495
18	0,9	0,191393	1196,74	0,15633
19	0,95	0,191587	1197,08	0,078165
20	1	0	0	0
Parameter	massestrom	1,82385	kg/h	
Run	mole vap frac	dp	dp_fric	dp_acc
#		bar	bar	bar
0	0	0,0205192	0,0205191	7,08E-08
1	0,05	0,059125	0,0590634	6,16E-05
2	0,1	0,0879484	0,087738	0,000210317
3	0,15	0,116136	0,115679	0,000456673
4	0,2	0,144192	0,143384	0,000808134
5	0,25	0,172372	0,171102	0,00127037
6	0,3	0,200828	0,19898	0,00184724
7	0,35	0,229666	0,227125	0,00254097
8	0,4	0,258974	0,255622	0,00335196
9	0,45	0,288828	0,28455	0,0042786
10	0,5	0,319305	0,313988	0,00531685
11	0,55	0,350488	0,344028	0,00645985
12	0,6	0,382478	0,374781	0,00769712
13	0,65	0,415407	0,406394	0,00901353
14	0,7	0,449461	0,439073	0,0103877
15	0,75	0,484921	0,473132	0,0117894
16	0,8	0,522266	0,509091	0,0131751
17	0,85	0,562414	0,547936	0,0144789
18	0,9	0,607549	0,591955	0,0155943
19	0,95	0,665406	0,649084	0,0163219
20	1	0,404656	0,404656	0
Run	mole vap frac	avg vel	flow regime	inl_pressure
----------	---------------	-----------	---------------	--------------
#		m/sec		bar
0	0	0,589885	4	7,6679
1	0,05	1,54341	4	7,6679
2	0,1	2,49304	4	7,6679
3	0,15	3,44523	4	7,6679
4	0,2	4,40013	4	7,6679
5	0,25	5,35806	4	7,6679
6	0,3	6,31905	4	7,6679
7	0,35	7,28323	4	7,6679
8	0,4	8,25075	4	7,6679
9	0,45	9,22178	4	7,6679
10	0,5	10,1965	4	7,6679
11	0,55	11,175	4	7,6679
12	0,6	12,1576	4	7,6679
13	0,65	13,1446	4	7,6679
14	0,7	14,1363	4	7,6679
15	0,75	15,1333	4	7,6679
16	0,8	16,1364	4	7,6679
17	0,85	17,1469	4	7,6679
18	0,9	18,1685	4	7,6679
19	0,95	19,2118	4	7,6679
20	1	19,8171	0	7,6679
Duna		inl Tomon	ovo donoitu i	
кин #	mole vap mac		avg density	
# 0	0	20	119E 07	0.012676
1		20	1103,37	0,012070
1 2	0,03	30	435,27	0,012073
2	0,1	30 20	200,010	0,0120094
<u>э</u>	0,15	30	205,002	0,0126634
4 F	0,2	30	158,997	0,0126624
5	0,25	30	130,573	0,0126589
0	0,3	30	110,718	0,0120554
/	0,35	30	96,0634	0,0120518
8	0,4	30	84,8008	0,0126482
9	0,45	30	/5,8/38	0,0126445
10	0,5	30	68,6233	0,0126407
11	0,55	30	62,6166	0,0126368
12	0,6	30	57,5581	0,0126329
13	0,65	30	53,2386	0,0126288
14	0,7	30	49,5062	0,0126246
15	0,75	30	46,2472	0,0126202
16	0,8	30	43,3751	0,0126156
17	0,85	30	40,8217	0,0126106
18	0,9	30	38,5298	0,0126051
19	0,95	30	36,442	0,012598
	4	20	25 2007	0.0126405

# mPa-sec 0 kg/m3 0 kg/h 193,23 kg/h 1,82385 1 0,05 0,189398 1193,23 1,82385 1 0,05 0,189575 1193,55 1,73266 2 0,1 0,189709 1193,79 1,64147 3 0,15 0,189839 1194,02 1,55027 4 0,2 0,189969 1194,25 1,45908 5 0,25 0,1901 1194,48 1,36789 6 0,3 0,190233 1194,71 1,2767 7 0,35 0,190367 1194,95 1,1855 8 0,4 0,190504 1195,19 1,09431 9 0,45 0,190786 1195,69 0,911925 10 0,5 0,190786 1195,69 0,820732 11 0,55 0,19033 1196,75 0,547155 13 0,65 0,191238 1196,75 0,547155 15 0,75 0,191393 1197,67 0,27577	Run	mole vap frac	liq viscosity	liq density	liq mass rate
0 0 0,189398 1193,23 1,82385 1 0,05 0,189575 1193,55 1,73266 2 0,1 0,189709 1193,79 1,64147 3 0,15 0,189839 1194,02 1,45908 5 0,25 0,1901 1194,48 1,36789 6 0,3 0,190233 1194,71 1,2767 7 0,35 0,190367 1194,95 1,1855 8 0,4 0,190786 1195,69 0,911925 10 0,5 0,190786 1195,69 0,911925 11 0,55 0,190786 1195,69 0,911925 11 0,55 0,190786 1195,69 0,820732 12 0,6 0,191238 1196,47 0,638347 14 0,7 0,191393 1196,75 0,547155 15 0,75 0,19142 1197,35 0,36477 17 0,85 0,191241 1197,35 0,36477 <	#		mPa-sec	kg/m3	kg/h
1 $0,05$ $0,189575$ $1193,55$ $1,73266$ 2 $0,1$ $0,189709$ $1193,79$ $1,64147$ 3 $0,15$ $0,189839$ $1194,02$ $1,55027$ 4 $0,2$ $0,189969$ $1194,25$ $1,45908$ 5 $0,25$ $0,1901$ $1194,48$ $1,36789$ 6 $0,3$ $0,190233$ $1194,71$ $1,2767$ 7 $0,35$ $0,190367$ $1194,95$ $1,1855$ 8 $0,4$ $0,190504$ $1195,19$ $1,09431$ 9 $0,45$ $0,190643$ $1195,44$ $1,00312$ 10 $0,5$ $0,190786$ $1195,69$ $0,911925$ 11 $0,55$ $0,19032$ $1195,44$ $0,638347$ 14 $0,7$ $0,191083$ $1196,2$ $0,72954$ 13 $0,65$ $0,191238$ $1196,47$ $0,638347$ 14 $0,7$ $0,191398$ $1196,75$ $0,547155$ 15 $0,75$ $0,191566$ $1197,04$ $0,455962$ 16 $0,8$ $0,191742$ $1197,35$ $0,36477$ 17 $0,85$ $0,192146$ $1198,04$ $0,182385$ 19 $0,95$ $0,122146$ $1198,04$ $0,182385$ 19 $0,95$ $0,025659$ $1,228-07$ 1 1 $0,05$ $0,0751103$ $0,0750088$ $0,000101523$ 20100022 $0,1$ $0,122659$ $0,228559$ $1,228-07$ 1 $0,05$ $0,128121$ $0,183176$ $0,0039464$ 3	0	0	0,189398	1193,23	1,82385
20,10,1897091193,791,6414730,150,1898391194,021,5502740,20,1898391194,251,4590850,250,19011194,481,3678960,30,1902331194,711,276770,350,1903671194,951,185580,40,1905041195,191,0943190,450,1906431195,441,00312100,50,1907861195,690,911925110,550,190321195,940,820732120,60,1910831196,270,72954130,650,1912381196,470,638347140,70,913981196,750,547155150,750,1915661197,040,455962160,80,1917421197,350,36477170,850,1912331197,670,273577180,90,1921461198,040,182385190,950,1924191198,510,091192520100020,1000Parametermassestrom2,0844kg/hRunmole vap fracdpdp_fricdp_acc#barbarbarbar0000020,10,1120620,1117140,0034786330,150,1483190,1475610,00757794	1	0,05	0,189575	1193,55	1,73266
30,150,1898391194,021,5502740,20,1899691194,251,4590850,250,19011194,481,3678960,30,1902331194,711,276770,350,1903671194,951,185580,40,1905041195,441,00312100,50,1907861195,690,911925110,550,1907861195,690,272954130,650,1912381196,470,638347140,70,1913881196,750,547155150,750,1912381197,350,36477170,850,1912311197,670,273577180,90,1921461198,040,182385190,950,1924191198,510,0911925201000Parametermassestrom2,0844kg/hRunmole vap fracdpdp_fricdp_acc#barbarbarbar000,02565910,0256591,23E-0710,050,07511030,07500880,00010152320,10,1120620,1117140,0034786330,150,1483190,1475610,00075779440,20,1845210,1313760,0021215360,30,2579290,2548340,0030946470,350,2954740,2912040,00723694 <td>2</td> <td>0,1</td> <td>0,189709</td> <td>1193,79</td> <td>1,64147</td>	2	0,1	0,189709	1193,79	1,64147
4 $0,2$ $0,189969$ $1194,25$ $1,45908$ 5 $0,25$ $0,1901$ $1194,48$ $1,36789$ 6 $0,3$ $0,190233$ $1194,71$ $1,2767$ 7 $0,35$ $0,190367$ $1194,95$ $1,1855$ 8 $0,4$ $0,190504$ $1195,19$ $1,09431$ 9 $0,45$ $0,190643$ $1195,44$ $1,00312$ 10 $0,5$ $0,190786$ $1195,69$ $0,911925$ 11 $0,55$ $0,19032$ $1195,94$ $0,820732$ 12 $0,6$ $0,191083$ $1196,2$ $0,72954$ 13 $0,65$ $0,191238$ $1196,75$ $0,547155$ 15 $0,75$ $0,191398$ $1197,67$ $0,273577$ 18 $0,9$ $0,192146$ $1198,04$ $0,182385$ 19 $0,955$ $0,192419$ $1198,51$ $0,0911925$ 201000Parametermassestrom $2,0844$ kg/hRunmole vap fracdpdp_fricdp_acc#barbarbarbar00 $0,0256591$ $0,025659$ $1,23E-07$ 1 $0,05$ $0,0751103$ $0,0750088$ $0,000101523$ 2 $0,11$ $0,112062$ $0,111714$ $0,00347863$ 3 $0,15$ $0,148319$ $0,147561$ $0,000757794$ 4 $0,2$ $0,184521$ $0,18376$ $0,00212153$ 6 $0,3$ $0,257929$ $0,254834$ $0,0039464$ 7 $0,35$ <	3	0,15	0,189839	1194,02	1,55027
5 0,25 0,1901 1194,48 1,36789 6 0,3 0,190233 1194,71 1,2767 7 0,35 0,190367 1194,95 1,1855 8 0,4 0,190504 1195,19 1,09431 9 0,45 0,190786 1195,69 0,911925 10 0,5 0,190786 1195,94 0,820732 12 0,6 0,191083 1196,27 0,72954 13 0,655 0,191238 1196,47 0,638347 14 0,7 0,191398 1196,75 0,547155 15 0,755 0,19133 1197,67 0,273577 18 0,9 0,192419 1198,04 0,182385 19 0,955 0,192419 1198,04 0,182385 19 0,95 0,192419 1198,04 0,182385 19 0,95 0,192419 1198,04 0,025659 1,23E-07 1 0,05 0,0751103 0,0750088	4	0,2	0,189969	1194,25	1,45908
6 0,3 0,190233 1194,71 1,2767 7 0,35 0,190367 1194,95 1,1855 8 0,4 0,190504 1195,19 1,09431 9 0,45 0,190786 1195,69 0,911925 10 0,5 0,190786 1195,69 0,911925 11 0,55 0,19032 1195,94 0,820732 12 0,6 0,191083 1196,2 0,72954 13 0,65 0,191238 1196,47 0,638347 14 0,7 0,191398 1196,75 0,547155 15 0,755 0,19133 1197,67 0,273577 18 0,9 0,192146 1198,04 0,182385 19 0,955 0,192419 1198,51 0,0911925 20 1 0 0 0 0 Run mole vap frac dp dp_fric dp_acc # 0 0 0,0256591 0,0236591 <t< td=""><td>5</td><td>0,25</td><td>0,1901</td><td>1194,48</td><td>1,36789</td></t<>	5	0,25	0,1901	1194,48	1,36789
7 $0,35$ $0,190367$ $1194,95$ $1,1855$ 8 $0,4$ $0,190504$ $1195,19$ $1,09431$ 9 $0,45$ $0,190786$ $1195,69$ $0,911925$ 10 $0,5$ $0,190786$ $1195,69$ $0,911925$ 11 $0,55$ $0,190932$ $1195,94$ $0,820732$ 12 $0,6$ $0,191083$ $1196,2$ $0,72954$ 13 $0,65$ $0,191238$ $1196,47$ $0,638347$ 14 $0,7$ $0,191398$ $1196,75$ $0,547155$ 15 $0,75$ $0,191566$ $1197,04$ $0,455962$ 16 $0,8$ $0,191742$ $1197,35$ $0,36477$ 17 $0,85$ $0,191933$ $1197,67$ $0,273577$ 18 $0,9$ $0,192146$ $1198,04$ $0,182385$ 19 $0,95$ $0,192419$ $1198,51$ $0,0911925$ 201000Parametermassestrom $2,0844$ kg/hKunmole vap fracdpdp_fricdp_acc#barbarbarbar00 $0,0256591$ $0,025659$ $1,23E-07$ 1 $0,05$ $0,0751103$ $0,0750088$ $0,000101523$ 2 $0,1$ $0,112062$ $0,111714$ $0,00347863$ 3 $0,15$ $0,148319$ $0,147561$ $0,000757794$ 4 $0,2$ $0,184521$ $0,183176$ $0,00134534$ 5 $0,25$ $0,22091$ $0,21887$ $0,00212153$ <td< td=""><td>6</td><td>0,3</td><td>0,190233</td><td>1194,71</td><td>1,2767</td></td<>	6	0,3	0,190233	1194,71	1,2767
80,40,1905041195,191,0943190,450,1906431195,441,00312100,50,1907861195,690,911925110,550,1909321195,940,820732120,60,1910831196,20,72954130,650,1912381196,470,638347140,70,1913981196,750,547155150,750,1915661197,040,455962160,80,1917421197,350,36477170,850,1919331197,670,273577180,90,1921461198,040,182385190,950,1924191198,510,0911925201000Parametermassestrom2,0844kg/hRunmole vap fracdpdp_fricdp_acc#barbarbarbar000,02565910,0256591,23E-0710,050,07511030,07500880,00010152320,10,1120620,1117140,00034786330,150,1483190,1475610,00075779440,20,1845210,1831760,0013453450,250,2209910,218870,003046470,350,254740,2912040,0042703180,40,3337450,3280940,0056512890,450,3728450,3656080,0072	7	0,35	0,190367	1194,95	1,1855
9 0,45 0,190643 1195,44 1,00312 10 0,5 0,190786 1195,69 0,911925 11 0,55 0,190932 1195,94 0,820732 12 0,6 0,191083 1196,2 0,72954 13 0,65 0,191238 1196,47 0,638347 14 0,7 0,191398 1196,75 0,547155 15 0,75 0,191566 1197,04 0,455962 16 0,8 0,191742 1197,35 0,36477 17 0,85 0,191933 1197,67 0,273577 18 0,9 0,192146 1198,04 0,182385 19 0,95 0,192419 1198,51 0,0911925 20 1 0 0 0 0 Parameter massestrom 2,0844 kg/h Run mole vap frac dp dp_fric dp_acc # bar bar bar 0,000101523	8	0,4	0,190504	1195,19	1,09431
100,50,1907861195,690,911925110,550,1909321195,940,820732120,60,1910831196,20,72954130,650,1912381196,470,638347140,70,1913981196,750,547155150,750,1915661197,040,455962160,80,1917421197,350,36477170,850,1919331197,670,273577180,90,1921461198,040,182385190,950,1924191198,510,0911925201000Parametermassestrom2,0844kg/h#barbarbar000,02565910,0256591,23E-0710,050,07511030,07500880,000152320,10,1120620,1117140,0034786330,150,1483190,1475610,00075779440,20,1845210,1831760,0013453450,2550,2209910,218870,0021215360,30,2579290,2548340,0030946470,3550,2954740,2912040,0042703180,40,3337450,3280940,0056512890,450,3728450,3656080,00723694100,50,4128780,4038550,00902275110,550,453960,4429610,0109993	9	0,45	0,190643	1195,44	1,00312
11 0,55 0,190932 1195,94 0,820732 12 0,6 0,191083 1196,2 0,72954 13 0,65 0,191238 1196,47 0,638347 14 0,7 0,191398 1196,75 0,547155 15 0,75 0,191566 1197,04 0,455962 16 0,8 0,191742 1197,35 0,36477 17 0,85 0,191933 1197,67 0,273577 18 0,9 0,192146 1198,04 0,182385 19 0,95 0,192419 1198,51 0,0911925 20 1 0 0 0 Parameter massestrom 2,0844 kg/h # bar bar bar bar 0 0 0,0256591 0,025659 1,23E-07 1 0,05 0,0751103 0,0750088 0,000101523 2 0,1 0,112062 0,111714 0,000347863	10	0,5	0,190786	1195,69	0,911925
12 $0,6$ $0,191083$ $1196,2$ $0,72954$ 13 $0,65$ $0,191238$ $1196,47$ $0,638347$ 14 $0,7$ $0,191398$ $1196,75$ $0,547155$ 15 $0,75$ $0,191566$ $1197,04$ $0,455962$ 16 $0,8$ $0,191742$ $1197,35$ $0,36477$ 17 $0,85$ $0,191933$ $1197,67$ $0,273577$ 18 $0,9$ $0,192146$ $1198,04$ $0,182385$ 19 $0,95$ $0,192419$ $1198,51$ $0,0911925$ 201000Parameter massestrom mole vap frac $\#$ bar bar bar 00 $0,0256591$ $0,025659$ $1,23E-07$ 1 $0,05$ $0,0751103$ $0,0750088$ $0,000101523$ 2 $0,1$ $0,112062$ $0,111714$ $0,000347863$ 3 $0,15$ $0,148319$ $0,147561$ $0,000757794$ 4 $0,2$ $0,184521$ $0,183176$ $0,00134534$ 5 $0,25$ $0,22091$ $0,21887$ $0,00212153$ 6 $0,3$ $0,257929$ $0,254834$ $0,00309464$ 7 $0,35$ $0,295474$ $0,291204$ $0,00427031$ 8 $0,4$ $0,333745$ $0,328094$ $0,00565128$ 9 $0,45$ $0,372845$ $0,365608$ $0,00723694$ 10 $0,5$ $0,412878$ $0,403855$ $0,0092275$ 11 $0,55$ $0,45396$ $0,442961$ $0,0109993$ 12<	11	0,55	0,190932	1195,94	0,820732
13 0,65 0,191238 1196,47 0,638347 14 0,7 0,191398 1196,75 0,547155 15 0,75 0,191566 1197,04 0,455962 16 0,8 0,191742 1197,35 0,36477 17 0,85 0,191933 1197,67 0,273577 18 0,9 0,192146 1198,04 0,182385 19 0,95 0,192419 1198,51 0,0911925 20 1 0 0 0 Parameter massestrom 2,0844 kg/h Run mole vap frac dp dp_fric dp_acc # bar bar bar 0 0 0,0256591 0,025659 1,23E-07 1 0,05 0,0751103 0,0750088 0,000101523 2 0,1 0,112062 0,111714 0,000347863 3 0,15 0,148319 0,147561 0,00134534	12	0,6	0,191083	1196,2	0,72954
14 $0,7$ $0,191398$ $1196,75$ $0,547155$ 15 $0,75$ $0,191566$ $1197,04$ $0,455962$ 16 $0,8$ $0,191742$ $1197,35$ $0,36477$ 17 $0,855$ $0,191933$ $1197,67$ $0,273577$ 18 $0,9$ $0,192146$ $1198,04$ $0,182385$ 19 $0,955$ $0,192419$ $1198,51$ $0,0911925$ 201000Parametermassestrom $2,0844$ kg/hRunmole vap fracdpdp_fricdp_acc#barbarbarbar00 $0,0256591$ $0,025659$ $1,23E-07$ 1 $0,055$ $0,0751103$ $0,0750088$ $0,000101523$ 2 $0,11$ $0,112062$ $0,111714$ $0,000347863$ 3 $0,155$ $0,148319$ $0,147561$ $0,000757794$ 4 $0,22$ $0,184521$ $0,183176$ $0,000134534$ 5 $0,255$ $0,220991$ $0,21887$ $0,00212153$ 6 $0,33$ $0,257929$ $0,254834$ $0,00309464$ 7 $0,355$ $0,295474$ $0,291204$ $0,00427031$ 8 $0,44$ $0,333745$ $0,328094$ $0,00565128$ 9 $0,455$ $0,372845$ $0,365608$ $0,00723694$ 10 $0,55$ $0,45396$ $0,442961$ $0,0109993$ 12 $0,66$ $0,496228$ $0,483077$ $0,013151$ 13 $0,655$ $0,539858$ $0,524404$ <	13	0,65	0,191238	1196,47	0,638347
15 0,75 0,191566 1197,04 0,455962 16 0,8 0,191742 1197,35 0,36477 17 0,85 0,191933 1197,67 0,273577 18 0,9 0,192146 1198,04 0,182385 19 0,95 0,192419 1198,51 0,0911925 20 1 0 0 0 Parameter massestrom 2,0844 kg/h Run mole vap frac dp dp_fric dp_acc # 0 0,0256591 0,025659 1,23E-07 1 0,05 0,0751103 0,0750088 0,000101523 2 0,1 0,112062 0,111714 0,00347863 3 0,15 0,148319 0,147561 0,000757794 4 0,2 0,184521 0,183176 0,00134534 5 0,25 0,220991 0,21887 0,00212153 6 0,3 0,257929 0,254834 0,00309464 <	14	0,7	0,191398	1196,75	0,547155
16 0,8 0,191742 1197,35 0,36477 17 0,85 0,191933 1197,67 0,273577 18 0,9 0,192146 1198,04 0,182385 19 0,95 0,192419 1198,51 0,0911925 20 1 0 0 0 Parameter massestrom 2,0844 kg/h Kg/h Run mole vap frac dp dp_fric dp_acc # bar bar bar bar 0 0 0,0256591 0,025659 1,23E-07 1 0,05 0,0751103 0,0750088 0,000101523 2 0,1 0,112062 0,111714 0,00347863 3 0,15 0,148319 0,147561 0,000757794 4 0,2 0,184521 0,183176 0,00134534 5 0,25 0,220991 0,21887 0,00212153 6 0,3 0,257929 0,254834 0,00309464	15	0,75	0,191566	1197,04	0,455962
17 0,85 0,191933 1197,67 0,273577 18 0,9 0,192146 1198,04 0,182385 19 0,95 0,192419 1198,51 0,0911925 20 1 0 0 0 Parameter massestrom 2,0844 kg/h Run mole vap frac dp dp_fric dp_acc # bar bar bar bar 0 0 0,0256591 0,025659 1,23E-07 1 0,05 0,0751103 0,0750088 0,000101523 2 0,1 0,112062 0,111714 0,00347863 3 0,15 0,148319 0,147561 0,000757794 4 0,2 0,184521 0,183176 0,00134534 5 0,25 0,220991 0,21887 0,00212153 6 0,3 0,257929 0,254834 0,00309464 7 0,35 0,295474 0,291204 0,00427031	16	0,8	0,191742	1197,35	0,36477
18 0,9 0,192146 1198,04 0,182385 19 0,95 0,192419 1198,51 0,0911925 20 1 0 0 0 Parameter massestrom 2,0844 kg/h Run mole vap frac dp dp_fric dp_acc # bar bar bar 0 0 0 0,0256591 0,025659 1,23E-07 1 0,05 0,0751103 0,0750088 0,000101523 2 0,1 0,112062 0,111714 0,000347863 3 0,15 0,148319 0,147561 0,000757794 4 0,2 0,184521 0,183176 0,00134534 5 0,25 0,220991 0,21887 0,00212153 6 0,3 0,257929 0,254834 0,00309464 7 0,35 0,295474 0,291204 0,00427031 8 0,4 0,333745 0,328094 0,00565128	17	0,85	0,191933	1197,67	0,273577
19 0,95 0,192419 1198,51 0,0911925 20 1 0 0 0 Parameter massestrom 2,0844 kg/h Run mole vap frac dp dp_fric dp_acc # bar bar bar bar 0 0 0,0256591 0,025659 1,23E-07 1 0,05 0,0751103 0,0750088 0,000101523 2 0,1 0,112062 0,111714 0,000347863 3 0,15 0,148319 0,147561 0,000757794 4 0,2 0,184521 0,183176 0,00134534 5 0,25 0,220991 0,21887 0,00212153 6 0,3 0,257929 0,254834 0,00309464 7 0,35 0,295474 0,291204 0,00427031 8 0,4 0,333745 0,328094 0,00565128 9 0,45 0,372845 0,365608 0,00723694	18	0,9	0,192146	1198,04	0,182385
20 1 0 0 0 Parameter massestrom 2,0844 kg/h kg/h Run mole vap frac dp dp_fric dp_acc # bar bar bar 0 0 0,0256591 0,025659 1,23E-07 1 0,05 0,0751103 0,0750088 0,000101523 2 0,1 0,112062 0,111714 0,000347863 3 0,15 0,148319 0,147561 0,000134534 5 0,25 0,220991 0,21887 0,00212153 6 0,3 0,257929 0,254834 0,00309464 7 0,35 0,295474 0,291204 0,00427031 8 0,4 0,333745 0,328094 0,00565128 9 0,45 0,372845 0,365608 0,00723694 10 0,5 0,412878 0,403855 0,00902275 11 0,55 0,45396 0,442961 0,010993	19	0,95	0,192419	1198,51	0,0911925
Parameter Run mole vap frac2,0844 dpkg/hRun mole vap fracdpdp_fric bardp_acc bar#00,02565910,0256591,23E-0710,050,07511030,07500880,00010152320,10,1120620,1117140,00034786330,150,1483190,1475610,00075779440,20,1845210,1831760,0013453450,2550,2209910,218870,0021215360,30,2579290,2548340,0030946470,350,2954740,2912040,0042703180,40,3337450,3280940,0056512890,450,3728450,3656080,00723694100,50,4128780,4038550,00902275110,550,453960,4429610,0109993120,60,4962280,4830770,013151130,650,5398580,5244040,0154542140,70,5851010,5672270,0178745150,750,6323380,6119760,0203615160,80,6822070,6593660,0228413	20	1	0	0	0
Parametermassestrom2,0844kg/hRunmole vap fracdpdp_fricdp_acc#barbarbarbar000,02565910,0256591,23E-0710,050,07511030,07500880,00010152320,10,1120620,1117140,00034786330,150,1483190,1475610,0075779440,20,1845210,1831760,0013453450,250,2209910,218870,0021215360,30,2579290,2548340,0030946470,350,2954740,2912040,0042703180,40,3337450,3280940,0056512890,450,3728450,3656080,00723694100,50,4128780,4038550,00902275110,550,453960,4429610,0109993120,60,4962280,4830770,013151130,650,5398580,5244040,0154542140,70,5851010,5672270,0178745150,750,6323380,6119760,0203615160,80,6822070,6593660,0228413					
Runmole vap fracdpdp_fricdp_acc#barbarbar000,02565910,0256591,23E-0710,050,07511030,07500880,00010152320,10,1120620,1117140,00034786330,150,1483190,1475610,00075779440,20,1845210,1831760,0013453450,250,2209910,218870,0021215360,30,2579290,2548340,0030946470,350,2954740,2912040,0042703180,40,3337450,3280940,0056512890,450,3728450,3656080,00723694100,50,4128780,4038550,00902275110,550,453960,4429610,0109993120,60,4962280,4830770,013151130,650,5398580,5244040,0154542140,70,5851010,5672270,0178745150,750,6323380,6119760,0203615160,80,6822070,6593660,0228413	Parameter	massestrom	2,0844	kg/h	
# bar bar bar 0 0 0,0256591 0,025659 1,23E-07 1 0,05 0,0751103 0,0750088 0,000101523 2 0,1 0,112062 0,111714 0,000347863 3 0,15 0,148319 0,147561 0,000757794 4 0,2 0,184521 0,183176 0,00134534 5 0,25 0,220991 0,21887 0,00212153 6 0,3 0,257929 0,254834 0,00309464 7 0,35 0,295474 0,291204 0,00427031 8 0,4 0,333745 0,328094 0,00565128 9 0,45 0,372845 0,365608 0,00723694 10 0,5 0,412878 0,403855 0,00902275 11 0,55 0,45396 0,442961 0,0109993 12 0,6 0,496228 0,483077 0,013151 13 0,65 0,539858 0,524404 0,0154542	Run	mole vap frac	dp	dp_fric	dp_acc
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	#		bar	bar	bar
1 $0,05$ $0,0751103$ $0,0750088$ $0,000101523$ 2 $0,1$ $0,112062$ $0,111714$ $0,000347863$ 3 $0,15$ $0,148319$ $0,147561$ $0,000757794$ 4 $0,2$ $0,184521$ $0,183176$ $0,00134534$ 5 $0,25$ $0,220991$ $0,21887$ $0,00212153$ 6 $0,3$ $0,257929$ $0,254834$ $0,00309464$ 7 $0,35$ $0,295474$ $0,291204$ $0,00427031$ 8 $0,4$ $0,333745$ $0,328094$ $0,00565128$ 9 $0,45$ $0,372845$ $0,365608$ $0,00723694$ 10 $0,5$ $0,412878$ $0,403855$ $0,00902275$ 11 $0,55$ $0,45396$ $0,442961$ $0,0109993$ 12 $0,6$ $0,496228$ $0,483077$ $0,013151$ 13 $0,65$ $0,539858$ $0,524404$ $0,0154542$ 14 $0,7$ $0,585101$ $0,567227$ $0,0178745$ 15 $0,75$ $0,632338$ $0,611976$ $0,0203615$ 16 $0,8$ $0,682207$ $0,659366$ $0,0228413$	0	0	0,0256591	0,025659	1,23E-07
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	0,05	0,0751103	0,0750088	0,000101523
3 0,15 0,148319 0,147561 0,000757794 4 0,2 0,184521 0,183176 0,00134534 5 0,25 0,220991 0,21887 0,00212153 6 0,3 0,257929 0,254834 0,00309464 7 0,35 0,295474 0,291204 0,00427031 8 0,4 0,333745 0,328094 0,00565128 9 0,45 0,372845 0,365608 0,00723694 10 0,5 0,412878 0,403855 0,00902275 11 0,55 0,45396 0,442961 0,0109993 12 0,6 0,496228 0,483077 0,013151 13 0,65 0,539858 0,524404 0,0154542 14 0,7 0,585101 0,567227 0,0178745 15 0,75 0,632338 0,611976 0,0203615 16 0,8 0,682207 0,659366 0,0228413	2	0,1	0,112062	0,111714	0,000347863
40,20,1845210,1831760,0013453450,250,2209910,218870,0021215360,30,2579290,2548340,0030946470,350,2954740,2912040,0042703180,40,3337450,3280940,0056512890,450,3728450,3656080,00723694100,50,4128780,4038550,00902275110,550,453960,4429610,0109993120,60,4962280,4830770,013151130,650,5398580,5244040,0154542140,70,5851010,5672270,0178745150,750,6323380,6119760,0203615160,80,6822070,6593660,0228413	3	0,15	0,148319	0,147561	0,000757794
50,250,2209910,218870,0021215360,30,2579290,2548340,0030946470,350,2954740,2912040,0042703180,40,3337450,3280940,0056512890,450,3728450,3656080,00723694100,50,4128780,4038550,00902275110,550,453960,4429610,0109993120,60,4962280,4830770,013151130,650,5398580,5244040,0154542140,70,5851010,5672270,0178745150,750,6323380,6119760,0203615160,80,6822070,6593660,0228413	4	0,2	0,184521	0,183176	0,00134534
60,30,2579290,2548340,0030946470,350,2954740,2912040,0042703180,40,3337450,3280940,0056512890,450,3728450,3656080,00723694100,50,4128780,4038550,00902275110,550,453960,4429610,0109993120,60,4962280,4830770,013151130,650,5398580,5244040,0154542140,70,5851010,5672270,0178745150,750,6323380,6119760,0203615160,80,6822070,6593660,0228413	5	0,25	0,220991	0,21887	0,00212153
70,350,2954740,2912040,0042703180,40,3337450,3280940,0056512890,450,3728450,3656080,00723694100,50,4128780,4038550,00902275110,550,453960,4429610,0109993120,60,4962280,4830770,013151130,650,5398580,5244040,0154542140,70,5851010,5672270,0178745150,750,6323380,6119760,0203615160,80,6822070,6593660,0228413	6	0,3	0,257929	0,254834	0,00309464
8 0,4 0,333745 0,328094 0,00565128 9 0,45 0,372845 0,365608 0,00723694 10 0,5 0,412878 0,403855 0,00902275 11 0,55 0,45396 0,442961 0,0109993 12 0,6 0,496228 0,483077 0,013151 13 0,65 0,539858 0,524404 0,0154542 14 0,7 0,585101 0,567227 0,0178745 15 0,75 0,632338 0,611976 0,0203615 16 0,8 0,682207 0,659366 0,0228413	7	0,35	0,295474	0,291204	0,00427031
9 0,45 0,372845 0,365608 0,00723694 10 0,5 0,412878 0,403855 0,00902275 11 0,55 0,45396 0,442961 0,0109993 12 0,6 0,496228 0,483077 0,013151 13 0,65 0,539858 0,524404 0,0154542 14 0,7 0,585101 0,567227 0,0178745 15 0,75 0,632338 0,611976 0,0203615 16 0,8 0,682207 0,659366 0,0228413	8	0,4	0,333745	0,328094	0,00565128
10 0,5 0,412878 0,403855 0,00902275 11 0,55 0,45396 0,442961 0,0109993 12 0,6 0,496228 0,483077 0,013151 13 0,65 0,539858 0,524404 0,0154542 14 0,7 0,585101 0,567227 0,0178745 15 0,75 0,632338 0,611976 0,0203615 16 0,8 0,682207 0,659366 0,0228413	9	0,45	0,372845	0,365608	0,00723694
110,550,453960,4429610,0109993120,60,4962280,4830770,013151130,650,5398580,5244040,0154542140,70,5851010,5672270,0178745150,750,6323380,6119760,0203615160,80,6822070,6593660,0228413	10	0,5	0,412878	0,403855	0,00902275
12 0,6 0,496228 0,483077 0,013151 13 0,65 0,539858 0,524404 0,0154542 14 0,7 0,585101 0,567227 0,0178745 15 0,75 0,632338 0,611976 0,0203615 16 0,8 0,682207 0,659366 0,0228413	11	0,55	0,45396	0,442961	0,0109993
13 0,65 0,539858 0,524404 0,0154542 14 0,7 0,585101 0,567227 0,0178745 15 0,75 0,632338 0,611976 0,0203615 16 0,8 0,682207 0,659366 0,0228413	12	0,6	0,496228	0,483077	0,013151
14 0,7 0,585101 0,567227 0,0178745 15 0,75 0,632338 0,611976 0,0203615 16 0,8 0,682207 0,659366 0,0228413 17 0.05 0.75 0.7500 0.7500	13	0,65	0,539858	0,524404	0,0154542
15 0,75 0,632338 0,611976 0,0203615 16 0,8 0,682207 0,659366 0,0228413	14	0,7	0,585101	0,567227	0,0178745
16 0,8 0,682207 0,659366 0,0228413	15	0,75	0,632338	0,611976	0,0203615
	16	0,8	0,682207	0,659366	0,0228413
1/ 0,85 0,73596 0,710759 0,0252017	17	0,85	0,73596	0,710759	0,0252017
18 0,9 0,796587 0,76933 0,0272581	18	0,9	0,796587	0,76933	0,0272581
	19				
19 0,95 0,875052 0,84638 0,028672	10	0,95	0,875052	0,84638	0,028672
	19			001620	0 0 0 0 6 7 7
19 0,95 0,875052 0,84638 0,028672 20 1 0.528833 0.528833 0	20	0,95 1	0,875052 0 528833	0,84638 0 528833	0,028672 0

Run	mole vap frac	avg vel	flow regime	inl_pressure
#		m/sec		bar
0	0	0,674349	4	7,6679
1	0,05	1,77107	4	7,6679
2	0,1	2,86139	4	7,6679
3	0,15	3,95561	4	7,6679
4	0,2	5,05403	4	7,6679
5	0,25	6,15693	4	7,6679
6	0,3	7,2645	4	7,6679
7	0,35	8,37694	4	7,6679
8	0,4	9,49453	4	7,6679
9	0,45	10,6175	4	7,6679
10	0,5	11,7462	4	7,6679
11	0,55	12,8808	4	7,6679
12	0,6	14,0219	4	7,6679
13	0,65	15,1699	4	7,6679
14	0,7	16,3253	4	7,6679
15	0,75	17,4891	4	7,6679
16	0,8	18,6625	4	7,6679
17	0,85	19,848	4	7,6679
18	0,9	21,0508	4	7,6679
19	0,95	22,2887	4	7,6679
20	1	22,8485	0	7,6679
Run	mole van frac	inl Temn	avg density	gas viscosity
#	more tup nue	C	kg/m3	mPa-sec
0	0	30	1185 64	0.012677
1	0.05	30	451,458	0.0126711
2	0 1	30	279 436	0.0126665
2	0.15	30	202 141	0.0126619
<u>л</u>	0.2	30	158 213	0.0126574
	0,2	30	129 876	0.0126529
5	0,25	30	110 079	0.0126/83
7	0,5	30	95 /6/3	0,0126437
2 2	0,55	30	8/ 2312	0,0126389
0 0	0,4	30	75 3263	0,0120305
10	0,45	30	68 0922	0,0120341
10	0,5	30	62 0070	0,0120201
12	0,55	30	57 0485	0,012024
12	0,0	30	57,0485	0,0120188
13	0,05	20	40 0076	0,0120133
14	0,7	30	49,0070	0,0120079
15 16	0,75	20	45,1509	
17	υ,δ	30	42,8791	0,0125959
10	0,85	30	40,3233	0,0125893
10	0,9	30	38,0256	0,0125819
19	0,95	30	35,922	0,0125/25
70		.30	35.0078	0.0176403

Run	mole vap frac	liq viscosity	liq density	liq mass rate
#		mPa-sec	kg/m3	kg/h
0	0	0,189421	1193,27	2,0844
1	0,05	0,189649	1193,68	1,98018
2	0,1	0,18982	1193,98	1,87596
3	0,15	0,189988	1194,28	1,77174
4	0,2	0,190156	1194,58	1,66752
5	0,25	0,190326	1194,88	1,5633
6	0,3	0,190498	1195,18	1,45908
7	0,35	0,190673	1195,49	1,35486
8	0,4	0,190853	1195,8	1,25064
9	0,45	0,191036	1196,12	1,14642
10	0,5	0,191225	1196,45	1,0422
11	0,55	0,191418	1196,78	0,93798
12	0,6	0,191618	1197,13	0,83376
13	0,65	0,191824	1197,49	0,72954
14	0,7	0,192039	1197,86	0,62532
15	0,75	0,192263	1198,24	0,5211
16	0,8	0,192501	1198,64	0,41688
17	0,85	0,192757	1199,08	0,31266
18	0,9	0,193046	1199,57	0,20844
19	0,95	0,193417	1200,2	0,10422
20	1	0	0	0

CHEMCAD	6.5.3	Page	1		
Name:	Simulation_4_40	Date:	30.01.2014		Flow Regime
		Time:	13:46:15		0 single phase
Sensitivity Anal	lysis Report				1 segregated
multi_1					2 transition
					3 intermittent
Parameter	massestrom	0,5211	kg/h		4 distributed
Run	mole vap frac	dp	dp_fric	dp_acc	
#		bar	bar	bar	
0	0	0,00228536	0,00228536	3,15E-11	
1	0,05	0,00582136	0,00582108	2,77E-07	
2	0,1	0,00798559	0,00798468	9,09E-07	
3	0,15	0,0100253	0,0100234	1,93E-06	
4	0,2	0,0119901	0,0119868	3,36E-06	
5	0,25	0,0139053	0,0139001	5,20E-06	
6	0,3	0,0162528	0,0162458	6,99E-06	
7	0,35	0,0182873	0,0182779	9,41E-06	
8	0,4	0,0203249	0,0203127	1,22E-05	
9	0,45	0,0223714	0,0223561	1,52E-05	
10	0,5	0,0244323	0,0244136	1,86E-05	
11	0,55	0,0265133	0,026491	2,22E-05	
12	0,6	0,0286209	0,0285948	2,61E-05	
13	0,65	0,0307632	0,0307331	3,01E-05	
14	0,7	0,0329512	0,0329171	3,41E-05	
15	0,75	0,0352013	0,0351632	3,81E-05	
16	0,8	0,0375402	0,0374983	4,19E-05	
17	0,85	0,040018	0,0399726	4,54E-05	
18	0,9	0,0427474	0,0426994	4,80E-05	
19	0,95	0,0461003	0,046051	4,93E-05	
20	1	0,0291483	0,0291483	0	

Run	mole vap frac	avg vel	flow regime	inl_pressure
#		m/sec		bar
0	0	0,173383	0	10,126
1	0,05	0,371986	3	10,126
2	0,1	0,570444	3	10,126
3	0,15	0,768925	3	10,126
4	0,2	0,967432	3	10,126
5	0,25	1,16597	3	10,126
6	0,3	1,36458	4	10,126
7	0,35	1,56319	4	10,126
8	0,4	1,76183	4	10,126
9	0,45	1,96051	4	10,126
10	0,5	2,15922	4	10,126
11	0,55	2,35796	4	10,126
12	0,6	2,55675	4	10,126
13	0,65	2,75557	4	10,126
14	0,7	2,95444	4	10,126
15	0,75	3,15335	4	10,126
16	0,8	3,35231	4	10,126
17	0,85	3,55134	4	10,126
18	0,9	3,75046	4	10,126
19	0,95	3,94975	4	10,126
20	1	4,1446	0	10,126
Run	mole vap frac	inl Temp	avg density	gas viscosity
#		С	kg/m3	mPa-sec
0	0	40	1152,73	0,0132881
1	0,05	40	537,289	0,0132878
2	0,1	40	350,365	0,0132876
3	0,15	40	259,926	0,0132873
4	0,2	40	206,592	0,0132871
5	0,25	40	171,415	0,0132869
6	0,3	40	146,466	0,0132866
7	0,35	40	127,857	0,0132864
8	0,4	40	113,441	0,0132862
9	0,45	40	101,945	0,013286
10	0,5	40	92,5631	0,0132857
11	0,55	40	84,7612	0,0132855
12	0,6	40	78,1711	0,0132853
13	0,65	40	72,5309	0,013285
14	0,7	40	67,6488	0,0132848
15	0,75	40	63,3816	0,0132845
16	0,8	40	59,6198	0,0132843
17	0,85	40	56,2785	0,013284
18	0,9	40	53,2906	0,0132837
10				
19	0,95	40	50,6017	0,0132833

Run	mole vap frac	liq viscosity	liq density	liq mass rate
#		mPa-sec	kg/m3	kg/h
0	0	0,169473	1153,16	0,5211
1	0,05	0,169484	1153,18	0,495045
2	0,1	0,169491	1153,2	0,46899
3	0,15	0,169498	1153,21	0,442935
4	0,2	0,169504	1153,23	0,41688
5	0,25	0,16951	1153,24	0,390825
6	0,3	0,169518	1153,26	0,36477
7	0,35	0,169524	1153,27	0,338715
8	0,4	0,169531	1153,29	0,31266
9	0,45	0,169537	1153,3	0,286605
10	0,5	0,169544	1153,32	0,26055
11	0,55	0,169551	1153,33	0,234495
12	0,6	0,169557	1153,35	0,20844
13	0,65	0,169564	1153,36	0,182385
14	0,7	0,169571	1153,38	0,15633
15	0,75	0,169578	1153,4	0,130275
16	0,8	0,169586	1153,41	0,10422
17	0,85	0,169594	1153,43	0,078165
18	0,9	0,169603	1153,45	0,05211
19	0,95	0,169613	1153,48	0,026055
20	1	0	0	0
Parameter	massestrom	0,78165	kg/h	
Run	mole vap frac	dp	dp_fric	dp_acc
#		bar	bar	bar
0	0	0,00413562	0,00413562	3,43E-10
1	0,05	0,0116208	0,0116196	1,23E-06
2	0,1	0,0160346	0,0160305	4,06E-06
3	0,15	0,0202066	0,0201979	8,66E-06
4	0,2	0,0248192	0,024805	1,43E-05
5	0,25	0,0290895	0,0290676	2,18E-05
6	0,3	0,0333412	0,03331	3,11E-05
7	0,35	0,0375923	0,0375503	4,20E-05
8	0,4	0,041857	0,0418026	5,45E-05
9	0,45	0,0461473	0,0460789	6,85E-05
10	0,5	0,0504746	0,0503908	8,38E-05
11	0,55	0,0548508	0,0547504	0,000100442
12	0,6	0,0592899	0,0591718	0,000118096
13	0,65	0,0638093	0,0636728	0,000136526
14	0,7	0,068433	0,0682777	0,000155385
15	0,75	0,073197	0,0730228	0,00017421
16	0,8	0,0781601	0,0779677	0,00019236
17	0,85	0,0834325	0,0832236	0,000208891
18	0,9	0,0892644	0,0890421	0,000222279
19	0,95	0,0964827	0,0962532	0,000229585
20	1	0,0609267	0,0609267	0

Run	mole vap frac	avg vel	flow regime	inl_pressure
#		m/sec		bar
0	0	0,260213	0	10,126
1	0,05	0,558619	3	10,126
2	0,1	0,856649	3	10,126
3	0,15	1,15477	3	10,126
4	0,2	1,45302	4	10,126
5	0,25	1,75134	4	10,126
6	0,3	2,04976	4	10,126
7	0,35	2,34828	4	10,126
8	0,4	2,6469	4	10,126
9	0,45	2,94564	4	10,126
10	0,5	3,24448	4	10,126
11	0,55	3,54343	4	10,126
12	0,6	3,8425	4	10,126
13	0,65	4,1417	4	10,126
14	0,7	4,44104	4	10,126
15	0,75	4,74053	4	10,126
16	0,8	5,04018	4	10,126
17	0,85	5,34005	4	10,126
18	0,9	5,64022	4	10,126
19	0,95	5,94097	4	10,126
20	1	6,22763	0	10,126
Run	mole vap frac	inl Temp	avg density	gas viscosity
#		С	kg/m3	mPa-sec
0	0	40	1152,12	0,013288
1	0,05	40	536,674	0,0132872
2	0,1	40	349,964	0,0132867
3	0,15	40	259,616	0,0132862
4	0,2	40	206,327	0,0132857
5	0,25	40	171,181	0,0132852
6	0,3	40	146,259	0,0132847
7	0,35	40	127,666	0,0132843
8	0,4	40	113,263	0,0132838
9	0,45	40	101,777	0,0132833
10	0,5	40	92,4022	0,0132828
11	0,55	40	84,6064	0,0132823
12	0,6	40	78,0213	0,0132818
13	0,65	40	72,385	0,0132813
14	0,7	40	67,5061	0,0132808
15	0,75	40	63,2414	0,0132803
16	0,8	40	59,4816	0,0132797
17	0,85	40	56,1414	0,0132792
18	0,9	40	53,1537	0,0132785
19	0,95	40	50,4629	0,0132777
20	1	40	48,1398	0,0132836

Run	mole vap frac	liq viscosity	liq density	liq mass rate
#		mPa-sec	kg/m3	kg/h
0	0	0,169479	1153,17	0,78165
1	0,05	0,169503	1153,22	0,742567
2	0,1	0,169517	1153,26	0,703485
3	0,15	0,16953	1153,29	0,664403
4	0,2	0,169545	1153,32	0,62532
5	0,25	0,169559	1153,35	0,586238
6	0,3	0,169572	1153,38	0,547155
7	0,35	0,169586	1153,41	0,508072
8	0,4	0,1696	1153,44	0,46899
9	0,45	0,169613	1153,48	0,429908
10	0,5	0,169628	1153,51	0,390825
11	0,55	0,169641	1153,54	0,351743
12	0,6	0,169656	1153,57	0,31266
13	0,65	0,16967	1153,6	0,273578
14	0,7	0,169685	1153,64	0,234495
15	0,75	0,1697	1153,67	0,195413
16	0,8	0,169716	1153,71	0,15633
17	0,85	0,169733	1153,75	0,117247
18	0,9	0,169752	1153,79	0,078165
19	0,95	0,169775	1153,84	0,0390825
20	1	0	0	0
Parameter	massestrom	1,0422	kg/h	
Run	mole vap frac	dp	dp_fric	dp_acc
#		bar	bar	bar
0	0	0,00677422	0,00677422	1,38E-09
1	0,05	0,019056	0,0190525	3,57E-06
2	0,1	0,0263988	0,026387	1,18E-05
3	0,15	0,0340754	0,0340514	2,39E-05
4	0,2	0,0413532	0,0413121	4,11E-05
5	0,25	0,0485696	0,0485063	6,32E-05
6	0,3	0,0557668	0,0556765	9,03E-05
7	0,35	0,0629749	0,0628527	0,000122166
8	0,4	0,0702166	0,0700578	0,000158848
9	0,45	0,0775124	0,0773123	0,000200095
10	0,5	0,0848813	0,0846357	0,000245603
11	0,55	0,0923437	0,0920488	0,000294955
12	0,6	0,0999236	0,099576	0,00034759
13	0,65	0,107651	0,107249	0,000402771
14	0,7	0,115569	0,11511	0,000459516
15	0,75	0,123739	0,123223	0,000516502
16	0,8	0,132266	0,131694	0,000571893
17	0,85	0,141344	0,140721	0,000622985
18	0,9	0,151416	0,15075	0,000665421
19	0,95	0,163957	0,163266	0,000690916
20	1	0,103681	0,103681	0

Run	mole vap frac	avg vel	flow regime	inl_pressure
#		m/sec		bar
0	0	0,347069	0	10,126
1	0,05	0,745913	3	10,126
2	0,1	1,14388	3	10,126
3	0,15	1,54214	4	10,126
4	0,2	1,94057	4	10,126
5	0,25	2,33922	4	10,126
6	0,3	2,73808	4	10,126
7	0,35	3,13719	4	10,126
8	0,4	3,53652	4	10,126
9	0,45	3,93611	4	10,126
10	0,5	4,33594	4	10,126
11	0,55	4,73604	4	10,126
12	0,6	5,13642	4	10,126
13	0,65	5,53709	4	10,126
14	0,7	5,93807	4	10,126
15	0,75	6,3394	4	10,126
16	0,8	6,74113	4	10,126
17	0,85	7,14335	4	10,126
18	0,9	7,54629	4	10,126
19	0,95	7,95062	4	10,126
20	1	8,3228	0	10,126
Run	mole vap frac	inl Temp	avg density	gas viscosity
#		С	kg/m3	mPa-sec
0	0	40	1151,73	0,0132875
1	0,05	40	535,893	0,0132863
2	0,1	40	349,45	0,0132855
3	0,15	40	259,204	0,0132847
4	0,2	40	205,986	0,0132838
5	0,25	40	170,882	0,013283
6	0,3	40	145,989	0,0132822
7	0,35	40	127,417	0,0132814
8	0,4	40	113,029	0,0132806
9	0,45	40	101,555	0,0132798
10	0,5	40	92,1903	0,013279
11	0,55	40	84,4022	0,0132782
12	0,6	40	77,8234	0,0132773
13	0,65	40	72,1921	0,0132765
14	0,7	40	67,3172	0,0132756
15	0,75	40	63,0557	0,0132747
16	0,8	40	59,2981	0,0132737
17	0,85	40	55,9592	0,0132727
18	0,9	40	52,9714	0,0132716
19	0,95	40	50,2778	0,0132702
20	1	40	48,0286	0,0132801

Run	mole vap frac	liq viscosity	liq density	liq mass rate
#		mPa-sec	kg/m3	kg/h
0	0	0,169487	1153,19	1,0422
1	0,05	0,169527	1153,28	0,99009
2	0,1	0,16955	1153,33	0,93798
3	0,15	0,169575	1153,39	0,88587
4	0,2	0,169598	1153,44	0,83376
5	0,25	0,169621	1153,49	0,78165
6	0,3	0,169644	1153,55	0,72954
7	0,35	0,169667	1153,6	0,67743
8	0,4	0,169691	1153,65	0,62532
9	0,45	0,169714	1153,7	0,57321
10	0,5	0,169738	1153,76	0,5211
11	0,55	0,169762	1153,81	0,46899
12	0,6	0,169786	1153,87	0,41688
13	0,65	0,169811	1153,92	0,36477
14	0,7	0,169837	1153,98	0,31266
15	0,75	0,169863	1154,04	0,26055
16	0,8	0,16989	1154,1	0,20844
17	0,85	0,16992	1154,17	0,15633
18	0,9	0,169952	1154,24	0,10422
19	0,95	0,169993	1154,33	0,05211
20	1	0	0	0
Parameter	massestrom	1,30275	kg/h	
Run	mole vap frac	dp	dp_fric	dp_acc
#		bar	bar	bar
0	0	0,011354	0,011354	6,67E-09
1	0,05	0,0280363	0,0280281	8,19E-06
2	0,1	0,0395484	0,0395223	2,61E-05
3	0,15	0,0506712	0,0506167	5,45E-05
4	0,2	0,0616207	0,0615268	9,40E-05
5	0,25	0,0724968	0,072352	0,000144818
6	0,3	0,0833625	0,0831553	0,000207215
7	0,35	0,0942605	0,0939794	0,00028111
8	0,4	0,105226	0,10486	0,000366302
9	0,45	0,116289	0,115827	0,000462373
10	0,5	0,127478	0,126909	0,000568692
11	0,55	0,138824	0,13814	0,000684353
12	0,6	0,150364	0,149556	0,000808128
13	0,65	0,162145	0,161207	0,000938369
14	0,7	0,174231	0,173159	0,00107286
15	0,75	0,186721	0,185512	0,00120863
16	0,8	0,199775	0,198434	0,00134147
17	0,85	0,2137	0,212234	0,00146524
18	0,9	0,229189	0,227619	0,00157002
19	0,95	0,248578	0,246941	0,00163721
20	1	0,157541	0,157541	0

Run	mole vap frac	avg vel	flow regime	inl_pressure
#		m/sec		bar
0	0	0,434431	4	10,126
1	0,05	0,934042	3	10,126
2	0,1	1,43253	4	10,126
3	0,15	1,93139	4	10,126
4	0,2	2,43065	4	10,126
5	0,25	2,93031	4	10,126
6	0,3	3,43043	4	10,126
7	0,35	3,93096	4	10,126
8	0,4	4,43197	4	10,126
9	0,45	4,93345	4	10,126
10	0,5	5,43542	4	10,126
11	0,55	5,93789	4	10,126
12	0,6	6,4409	4	10,126
13	0,65	6,94448	4	10,126
14	0,7	7,44866	4	10,126
15	0,75	7,95352	4	10,126
16	0,8	8,45915	4	10,126
17	0,85	8,96577	4	10,126
18	0,9	9,47377	4	10,126
19	0,95	9,98451	4	10,126
20	1	10,434	0	10,126
Run	mole vap frac	inl Temp	avg density	gas viscosity
#		С	kg/m3	mPa-sec
0	0	40	1150,16	0,0132869
1	0,05	40	534,949	0,0132853
2	0,1	40	348,8	0,013284
3	0,15	40	258,708	0,0132828
4	0,2	40	205,569	0,0132816
5	0,25	40	170,517	0,0132804
6	0,3	40	145,658	0,0132792
7	0,35	40	127,111	0,0132779
8	0,4	40	112,742	0,0132767
9	0,45	40	101,282	0,0132755
10	0,5	40	91,929	0,0132742
11	0,55	40	84,1502	0,013273
12	0,6	40	77,5786	0,0132717
13	0,65	40	71,9532	0,0132704
14	0,7	40	67,0831	0,0132691
15	0,75	40	62,8251	0,0132677
16	0,8	40	59,0701	0,0132662
17	0,85	40	55,7326	0,0132647
18	0,9	40	52,7445	0,0132629
19	0,95	40	50,0469	0,0132608
20	1	40	47,8888	0,0132758

Run	mole vap frac	liq viscosity	liq density	liq mass rate
#		mPa-sec	kg/m3	kg/h
0	0	0,169502	1153,22	1,30275
1	0,05	0,169555	1153,34	1,23761
2	0,1	0,169592	1153,43	1,17248
3	0,15	0,169628	1153,51	1,10734
4	0,2	0,169663	1153,59	1,0422
5	0,25	0,169698	1153,67	0,977062
6	0,3	0,169733	1153,75	0,911925
7	0,35	0,169768	1153,83	0,846788
8	0,4	0,169803	1153,9	0,78165
9	0,45	0,169839	1153,99	0,716513
10	0,5	0,169875	1154,07	0,651375
11	0,55	0,169912	1154,15	0,586237
12	0,6	0,169949	1154,23	0,5211
13	0,65	0,169987	1154,32	0,455962
14	0,7	0,170026	1154,41	0,390825
15	0,75	0,170066	1154,5	0,325688
16	0,8	0,170108	1154,59	0,26055
17	0,85	0,170153	1154,69	0,195412
18	0,9	0,170203	1154,8	0,130275
19	0,95	0,170266	1154,94	0,0651375
20	1	0	0	0
Parameter	massestrom	1,5633	kg/h	
Run	mole vap frac	dp	dp_fric	dp_acc
#		bar	bar	bar
0	0	0,0153975	0,0153975	1,92E-08
1	0,05	0,0386733	0,0386574	1,60E-05
2	0,1	0,0546801	0,0546291	5,11E-05
3	0,15	0,0702167	0,0701096	0,000107112
4	0,2	0,0855411	0,0853559	0,000185216
5	0,25	0,100789	0,100503	0,000286148
6	0,3	0,116048	0,115638	0,000410322
7	0,35	0,131376	0,130818	0,000557801
8	0,4	0,146823	0,146094	0,0007283
9	0,45	0,162428	0,161507	0,000921117
10	0,5	0,178234	0,177099	0,00113512
11	0,55	0,194285	0,192916	0,00136864
12	0,6	0,210632	0,209013	0,00161933
13	0,65	0,227343	0,225459	0,00188403
14	0,7	0,24451	0,242351	0,00215846
15	0,75	0,262274	0,259837	0,00243676
16	0,8	0,280868	0,278158	0,00271069
17	0,85	0,300734	0,297765	0,0029681
18	0,9	0,322889	0,319699	0,00318948
19	0,95	0,35076	0,347421	0,00333862
20	1	0,222705	0,222705	0

Run	mole vap frac	avg vel	flow regime	inl_pressure
#		m/sec		bar
0	0	0,52194	4	10,126
1	0,05	1,12319	4	10,126
2	0,1	1,72273	4	10,126
3	0,15	2,32291	4	10,126
4	0,2	2,92377	4	10,126
5	0,25	3,52534	4	10,126
6	0,3	4,12764	4	10,126
7	0,35	4,7307	4	10,126
8	0,4	5,33456	4	10,126
9	0,45	5,93922	4	10,126
10	0,5	6,54473	4	10,126
11	0,55	7,15111	4	10,126
12	0,6	7,75842	4	10,126
13	0,65	8,36672	4	10,126
14	0,7	8,97607	4	10,126
15	0,75	9,5866	4	10,126
16	0,8	10,1985	4	10,126
17	0,85	10,812	4	10,126
18	0,9	11,4281	4	10,126
19	0,95	12,0489	4	10,126
20	1	12,5654	0	10,126
Run	mole vap frac	inl Temp	avg density	gas viscosity
#		С	kg/m3	mPa-sec
0	0	40	1148,79	0,0132867
1	0,05	40	533,84	0,0132841
2	0,1	40	348,055	0,0132824
3	0,15	40	258,127	0,0132806
4	0,2	40	205,08	0,0132789
5	0,25	40	170,086	0,0132772
6	0,3	40	145,267	0,0132755
7	0,35	40	126,75	0,0132738
8	0,4	40	112,402	0,0132721
9	0,45	40	100,959	0,0132704
10	0,5	40	91,6192	0,0132686
11	0,55	40	83,8507	0,0132668
12	0,6	40	77,2876	0,013265
13	0,65	40	71,669	0,0132632
14	0,7	40	66,8041	0,0132612
15	0,75	40	62,5502	0,0132593
16	0,8	40	58,7979	0,0132572
17	0,85	40	55,4619	0,013255
18	0,9	40	52,4728	0,0132525
19	0,95	40	49,77	0,0132495
20	1	40	47,7204	0,0132707

Run	mole vap frac	liq viscosity	liq density	liq mass rate
#		mPa-sec	kg/m3	kg/h
0	0	0,169515	1153,25	1,5633
1	0,05	0,169589	1153,42	1,48513
2	0,1	0,169641	1153,54	1,40697
3	0,15	0,169691	1153,65	1,3288
4	0,2	0,16974	1153,76	1,25064
5	0,25	0,169789	1153,87	1,17248
6	0,3	0,169838	1153,98	1,09431
7	0,35	0,169887	1154,09	1,01614
8	0,4	0,169937	1154,21	0,93798
9	0,45	0,169987	1154,32	0,859815
10	0,5	0,170038	1154,43	0,78165
11	0,55	0,17009	1154,55	0,703485
12	0,6	0,170143	1154,67	0,62532
13	0,65	0,170197	1154,79	0,547155
14	0,7	0,170253	1154,91	0,46899
15	0,75	0,17031	1155,04	0,390825
16	0,8	0,17037	1155,18	0,31266
17	0,85	0,170435	1155,32	0,234495
18	0,9	0,170507	1155,48	0,15633
19	0,95	0,170597	1155,68	0,078165
20	1	0	0	0
Parameter	massestrom	1,82385	kg/h	
Run	mole vap frac	dp	dp_fric	dp_acc
#		bar	bar	bar
0	0	0,0202907	0,0202906	3,21E-08
1	0,05	0,0507961	0,0507679	2,82E-05
2	0,1	0,0720229	0,0719324	9,05E-05
3	0,15	0,0926709	0,0924807	0,000190316
4	0,2	0,113074	0,112744	0,000329839
5	0,25	0,133414	0,132903	0,000510695
6	0,3	0,153801	0,153068	0,000733824
7	0,35	0,174316	0,173317	0,00099959
8	0,4	0,195021	0,193714	0,00130768
9	0,45	0,215973	0,214315	0,00165711
10	0,5	0,237225	0,235179	0,00204606
11	0,55	0,258838	0,256366	0,00247175
12	0,6	0,280883	0,277953	0,00293023
13	0,65	0,303449	0,300033	0,00341598
14	0,7	0,326665	0,322744	0,00392151
15	0,75	0,350722	0,346286	0,00443646
16	0,8	0,375941	0,370995	0,00494614
17	0,85	0,402926	0,397498	0,0054288
18	0,9	0,433092	0,427242	0,00584964
19	0,95	0,471236	0,465091	0,00614476
20	1	0,29957	0,29957	0

Run	mole vap frac	avg vel	flow regime	inl_pressure
#		m/sec		bar
0	0	0,608759	4	10,126
1	0,05	1,31351	4	10,126
2	0,1	2,01482	4	10,126
3	0,15	2,71715	4	10,126
4	0,2	3,42047	4	10,126
5	0,25	4,12497	4	10,126
6	0,3	4,83062	4	10,126
7	0,35	5,5375	4	10,126
8	0,4	6,24562	4	10,126
9	0,45	6,95503	4	10,126
10	0,5	7,6658	4	10,126
11	0,55	8,37797	4	10,126
12	0,6	9,09164	4	10,126
13	0,65	9,80686	4	10,126
14	0,7	10,5238	4	10,126
15	0,75	11,2426	4	10,126
16	0,8	11,9637	4	10,126
17	0,85	12,6874	4	10,126
18	0,9	13,4152	4	10,126
19	0,95	14,1507	4	10,126
20	1	14,7213	0	10,126
Run	mole vap frac	inl Temp	avg density	gas viscosity
#		С	kg/m3	mPa-sec
0	0	40	1149,13	0,0132858
1	0,05	40	532,579	0,0132828
2	0,1	40	347,202	0,0132804
3	0,15	40	257,458	0,0132781
4	0,2	40	204,52	0,0132759
5	0,25	40	169,591	0,0132736
6	0,3	40	144,819	0,0132713
7	0,35	40	126,333	0,0132691
8	0,4	40	112,011	0,0132667
9	0,45	40	100,586	0,0132644
10	0,5	40	91,261	0,0132621
11	0,55	40	83,5042	0,0132597
12	0,6	40	76,9503	0,0132572
13	0,65	40	71,3392	0,0132547
14	0,7	40	66,48	0,0132521
15	0,75	40	62,2303	0,0132495
16	0,8	40	58,4808	0,0132467
17	0,85	40	55,146	0,0132437
18	0,9	40	52,1556	0,0132404
19	0,95	40	49,4461	0,0132362
20	1	40	47,5226	0,0132646

Run	mole vap frac	liq viscosity	liq density	liq mass rate
#		mPa-sec	kg/m3	kg/h
0	0	0,16953	1153,29	1,82385
1	0,05	0,169628	1153,51	1,73266
2	0,1	0,169696	1153,66	1,64147
3	0,15	0,169763	1153,81	1,55027
4	0,2	0,169828	1153,96	1,45908
5	0,25	0,169894	1154,11	1,36789
6	0,3	0,169959	1154,26	1,2767
7	0,35	0,170025	1154,41	1,1855
8	0,4	0,170092	1154,56	1,09431
9	0,45	0,17016	1154,71	1,00312
10	0,5	0,170229	1154,86	0,911925
11	0,55	0,170299	1155,02	0,820732
12	0,6	0,17037	1155,18	0,72954
13	0,65	0,170443	1155,34	0,638347
14	0,7	0,170519	1155,51	0,547155
15	0,75	0,170597	1155,68	0,455962
16	0,8	0,170679	1155,86	0,36477
17	0,85	0,170767	1156,06	0,273577
18	0,9	0,170865	1156,28	0,182385
19	0,95	0,170988	1156,55	0,0911925
20	1	0	0	0
Parameter	massestrom	2,0844	kg/h	
Run	mole vap frac	dp	dp_fric	dp_acc
#		bar	bar	bar
0	0	0,0255562	0,0255561	4,85E-08
1	0,05	0,0644105	0,0643642	4,63E-05
2	0,1	0,0915516	0,0914026	0,000148992
3	0,15	0,11801	0,117696	0,000313974
4	0,2	0,144209	0,143664	0,00054539
5	0,25	0,170374	0,169527	0,000846218
6	0,3	0,196647	0,195428	0,00121846
7	0,35	0,223129	0,221466	0,00166307
8	0,4	0,249903	0,247723	0,00218001
9	0,45	0,27704	0,274272	0,002768
10	0,5	0,304613	0,301188	0,00342448
11	0,55	0,332699	0,328554	0,00414522
12	0,6	0,361391	0,356467	0,00492403
13	0,65	0,390809	0,385057	0,00575212
14	0,7	0,421118	0,4145	0,00661724
15	0,75	0,452574	0,445072	0,00750244
16	0,8	0,485599	0,477215	0,00838336
17	0,85	0,520998	0,511774	0,0092238
18	0,9	0,560653	0,550688	0,00996567
19	0,95	0,611079	0,600575	0,0105043
20	1	0,388622	0,388622	0

Run	mole vap frac	avg vel	flow regime	inl_pressure
#		m/sec		bar
0	0	0,6955	0	10,126
1	0,05	1,50515	4	10,126
2	0,1	2,30899	4	10,126
3	0,15	3,11434	4	10,126
4	0,2	3,9213	4	10,126
5	0,25	4,72992	4	10,126
6	0,3	5,54031	4	10,126
7	0,35	6,35249	4	10,126
8	0,4	7,16656	4	10,126
9	0,45	7,98258	4	10,126
10	0,5	8,80063	4	10,126
11	0,55	9,62084	4	10,126
12	0,6	10,4433	4	10,126
13	0,65	11,2682	4	10,126
14	0,7	12,0956	4	10,126
15	0,75	12,926	4	10,126
16	0,8	13,7598	4	10,126
17	0,85	14,5977	4	10,126
18	0,9	15,4417	4	10,126
19	0,95	16,2978	4	10,126
20	1	16,9065	0	10,126
Run	mole vap frac	inl Temp	avg density	gas viscosity
#		С	kg/m3	mPa-sec
0	0	40	1149,5	0,0132857
1	0,05	40	531,178	0,0132813
2	0,1	40	346,258	0,0132783
3	0,15	40	256,719	0,0132753
4	0,2	40	203,89	0,0132724
5	0,25	40	169,035	0,0132695
6	0,3	40	144,312	0,0132666
7	0,35	40	125,863	0,0132636
8	0,4	40	111,567	0,0132607
9	0,45	40	100,164	0,0132576
10	0,5	40	90,8547	0,0132546
11	0,55	40	83,1106	0,0132515
12	0,6	40	76,5667	0,0132483
13	0,65	40	70,9633	0,013245
14	0,7	40	66,1103	0,0132417
15	0,75	40	61,8648	0,0132382
16	0,8	40	58,118	0,0132346
17	0,85	40	54,7837	0,0132307
18	0,9	40	51,7916	0,0132263
19	0,95	40	49,0738	0,0132208
20	1	40	47,2947	0,0132576

Run	mole vap frac	liq viscosity	liq density	liq mass rate
#		mPa-sec	kg/m3	kg/h
0	0	0,169547	1153,33	2,0844
1	0,05	0,169672	1153,61	1,98018
2	0,1	0,169759	1153,8	1,87596
3	0,15	0,169844	1154	1,77174
4	0,2	0,169928	1154,19	1,66752
5	0,25	0,170012	1154,38	1,5633
6	0,3	0,170097	1154,57	1,45908
7	0,35	0,170183	1154,76	1,35486
8	0,4	0,170269	1154,95	1,25064
9	0,45	0,170357	1155,15	1,14642
10	0,5	0,170447	1155,35	1,0422
11	0,55	0,170538	1155,55	0,93798
12	0,6	0,170631	1155,76	0,83376
13	0,65	0,170727	1155,97	0,72954
14	0,7	0,170825	1156,19	0,62532
15	0,75	0,170928	1156,42	0,5211
16	0,8	0,171036	1156,66	0,41688
17	0,85	0,171151	1156,91	0,31266
18	0,9	0,171281	1157,19	0,20844
19	0,95	0,171445	1157,55	0,10422
20	1	0	0	0

CHEMCAD	6.5.3	Page	1	
				Flow Regime
Simulation na	a Simulation_4_50	Date:	30.01.2014	0 single phase
		Time:	13:49:14	1 segregated
Sensitivity Ar	nalysis Report			2 transition
multi_1				3 intermittent
				4 distributed
Parameter	massestrom	0,5211	kg/h	

arameter	massestrom	0)0211	1.9/11	
Run	mole vap frac	dp	dp_fric	dp_acc
#		bar	bar	bar
0	0	0,00216535	0,00216535	1,22E-11
1	0,05	0,00519958	0,00519944	1,35E-07
2	0,1	0,00682447	0,00682405	4,15E-07
3	0,15	0,00835943	0,00835857	8,51E-07
4	0,2	0,00983645	0,009835	1,45E-06
5	0,25	0,011273	0,0112708	2,21E-06
6	0,3	0,01268	0,0126769	3,14E-06
7	0,35	0,0144219	0,0144179	4,01E-06
8	0,4	0,0159165	0,0159113	5,15E-06
9	0,45	0,0174127	0,0174063	6,43E-06
10	0,5	0,0189148	0,018907	7,82E-06
11	0,55	0,0204272	0,0204179	9,31E-06
12	0,6	0,0219545	0,0219436	1,09E-05
13	0,65	0,0235028	0,0234902	1,25E-05
14	0,7	0,0250798	0,0250656	1,42E-05
15	0,75	0,0266973	0,0266814	1,59E-05
16	0,8	0,0283739	0,0283564	1,75E-05
17	0,85	0,0301446	0,0301257	1,90E-05
18	0,9	0,0320883	0,0320681	2,01E-05
19	0,95	0,0344635	0,0344427	2,08E-05
20	1	0,0223446	0,0223446	0

Run	mole vap frac	avg vel	flow regime	inl_pressure
#		m/sec		bar
0	0	0,180195	4	13,1385
1	0,05	0,328303	3	13,1385
2	0,1	0,476291	3	13,1385
3	0,15	0,624289	3	13,1385
4	0,2	0,772298	3	13,1385
5	0,25	0,920316	3	13,1385
6	0,3	1,06835	3	13,1385
7	0,35	1,21641	4	13,1385
8	0,4	1,36448	4	13,1385
9	0,45	1,51255	4	13,1385
10	0,5	1,66064	4	13,1385
11	0,55	1,80875	4	13,1385
12	0,6	1,95687	4	13,1385
13	0,65	2,10501	4	13,1385
14	0,7	2,25316	4	13,1385
15	0,75	2,40133	4	13,1385
16	0,8	2,54952	4	13,1385
17	0,85	2,69774	4	13,1385
18	0,9	2,846	4	13,1385
19	0,95	2,99433	4	13,1385
20	1	3,14075	0	13,1385
Run	mole vap frac	inl Temp	avg density	gas viscosity
#		С	kg/m3	mPa-sec
0	0	50	1109,15	0,0139693
1	0,05	50	608,779	0,0139691
2	0,1	50	419,626	0,0139689
3	0,15	50	320,146	0,0139687
4	0,2	50	258,791	0,0139686
5	0,25	50	217,169	0,0139685
6	0,3	50	187,078	0,0139683
7	0,35	50	164,306	0,0139681
8	0,4	50	146,476	0,013968
9	0,45	50	132,137	0,0139678
10	0,5	50	120,353	0,0139677
11	0,55	50	110,498	0,0139675
12	0,6	50	102,134	0,0139673
13	0,65	50	94,9469	0,0139672
14	0,7	50	88,7038	0,013967
15	0,75	50	83,2304	0,0139668
16	0,8	50	78,3926	0,0139667
17	0,85	50	74,0856	0,0139665
18	0,9	50	70,2262	0,0139663
19	0,95	50	66,7474	0,013966
20	1	50	63,6357	0,0139677

Run	mole vap frac	liq viscosity	liq density	liq mass rate
#		mPa-sec	kg/m3	kg/h
0	0	0,152407	1109,35	0,5211
1	0,05	0,152414	1109,37	0,495045
2	0,1	0,152417	1109,38	0,46899
3	0,15	0,152421	1109,39	0,442935
4	0,2	0,152424	1109,4	0,41688
5	0,25	0,152427	1109,41	0,390825
6	0,3	0,152431	1109,42	0,36477
7	0,35	0,152435	1109,43	0,338715
8	0,4	0,152438	1109,44	0,31266
9	0,45	0,152441	1109,45	0,286605
10	0,5	0,152445	1109,46	0,26055
11	0,55	0,152448	1109,47	0,234495
12	0,6	0,152452	1109,48	0,20844
13	0,65	0,152455	1109,49	0,182385
14	0,7	0,152459	1109,5	0,15633
15	0,75	0,152462	1109,51	0,130275
16	0,8	0,152466	1109,52	0,10422
17	0,85	0,15247	1109,53	0,078165
18	0,9	0,152475	1109,54	0,05211
19	0,95	0,15248	1109,56	0,026055
20	1	0	0	0
Parameter	massestrom	0,78165	kg/h	
Run	mole vap frac	dp	dp_fric	dp_acc
#		bar	bar	bar
0	0	0,00329951	0,00329951	1,51E-11
1	0,05	0,0103688	0,0103682	6,00E-07
2	0,1	0,0136802	0,0136784	1,85E-06
3	0,15	0,0168169	0,0168131	3,81E-06
4	0,2	0,0198401	0,0198336	6,51E-06
5	0,25	0,0232996	0,0232901	9,46E-06
6	0,3	0,0264328	0,0264195	1,33E-05
7	0,35	0,0295543	0,0295364	1,78E-05
8	0,4	0,0326746	0,0326516	2,30E-05
9	0,45	0,0358029	0,0357742	2,88E-05
10	0,5	0,0389481	0,038913	3,51E-05
11	0,55	0,0421189	0,042077	4,19E-05
12	0,6	0,0453258	0,0452767	4,92E-05
13	0,65	0,0485814	0,0485246	5,67E-05
14	0,7	0,0519027	0,0518382	6,45E-05
15	0,75	0,0553152	0,0552429	7,23E-05
16	0,8	0,0588602	0,0587803	7,99E-05
17	0,85	0,0626144	0,0625275	8,69E-05
18	0,9	0,0667517	0,066659	9,28E-05
19	0,95	0,0718446	0,0717482	9,64E-05
20	1	0,0465062	0,0465062	0

Run	mole vap frac	avg vel	flow regime	inl_pressure
#		m/sec		bar
0	0	0,270257	0	13,1385
1	0,05	0,492845	3	13,1385
2	0,1	0,714996	3	13,1385
3	0,15	0,937207	3	13,1385
4	0,2	1,1594	3	13,1385
5	0,25	1,3817	4	13,1385
6	0,3	1,60401	4	13,1385
7	0,35	1,82636	4	13,1385
8	0,4	2,04876	4	13,1385
9	0,45	2,27119	4	13,1385
10	0,5	2,49368	4	13,1385
11	0,55	2,71621	4	13,1385
12	0,6	2,93878	4	13,1385
13	0,65	3,16141	4	13,1385
14	0,7	3,38409	4	13,1385
15	0,75	3,60683	4	13,1385
16	0,8	3,82964	4	13,1385
17	0,85	4,05254	4	13,1385
18	0,9	4,27556	4	13,1385
19	0,95	4,49883	4	13,1385
20	1	4,71604	0	13,1385
Dura	mala waa faa a	:		
Run #	mole vap frac		avg density	
#	0	С ГО	Kg/m3	mpa-sec
1		50	1109,3	0,0139694
1 2	0,05	50	410 207	0,0139085
2	0,1	50	419,297	0,0139082
<u>э</u>	0,15	50	319,002	0,0139079
4 F	0,2	50	256,579	0,0139070
с С	0,25	50	210,970	0,0139672
0	0,3	50	160,904	0,0139669
/	0,35	50	104,149	0,0139665
8	0,4	50	146,331	0,0139662
9	0,45	50	131,999	0,0139659
10	0,5	50	120,222	0,0139656
11	0,55	50	110,373	0,0139652
12	0,6	50	102,014	0,0139649
13	0,65	50	94,8299	0,0139646
14	0,7	50	88,5899	0,0139642
15	0,75	50	83,119	0,0139639
16	0,8	50	/8,2831	0,0139635
1/	0,85	50	/3,9/74	0,0139631
18	0,9	50	/0,1186	0,0139627
19	0,95	50	66,6389	0,0139621
20				0 0 0 0 0 0

Run	mole vap frac	liq viscosity	liq density	liq mass rate
#		mPa-sec kg/m3		kg/h
0	0	0,15241	1109,35	0,78165
1	0,05	0,152425	1109,4	0,742567
2	0,1	0,152433	0,152433 1109,42	
3	0,15	0,15244	0,15244 1109,44	
4	0,2	0,152447	1109,46	0,62532
5	0,25	0,152455	1109,49	0,586238
6	0,3	0,152462	1109,51	0,547155
7	0,35	0,152469	1109,53	0,508072
8	0,4	0,152476	1109,55	0,46899
9	0,45	0,152483	1109,57	0,429908
10	0,5	0,15249	1109,59	0,390825
11	0,55	0,152498	1109,61	0,351743
12	0,6	0,152505	1109,63	0,31266
13	0,65	0,152512	1109,65	0,273578
14	0,7	0,15252	1109,68	0,234495
15	0,75	0,152528	1109,7	0,195413
16	0,8	0,152536	1109,72	0,15633
17	0,85	0,152544	1109,75	0,117247
18	0.9	0.152554	1109.77	0.078165
19	0.95	0.152565	1109.81	0.0390825
20	1	0	0	0
Parameter	massestrom	1,0422	kg/h	
Run	mole vap frac	dp	dp_fric	dp_acc
#		bar	bar	bar
0	0	0,00776114	0,00776114	1,28E-09
1	0,05	0,0168854	0,0168836	1,78E-06
2	0,1	0,0224923	0,0224869	5,38E-06
3	0,15	0,0277157	0,0277046	1,11E-05
4	0,2	0,0334805	0,0334625	1,80E-05
5	0,25	0,0388071	0,0387798	2,73E-05
6	0,3	0,0440986	0,04406	3,86E-05
7	0,35	0,0493771	0,0493254	5,18E-05
8	0,4	0,0546604	0,0545935	6,69E-05
9	0,45	0,0599636	0,0598798	8,38E-05
10	0,5	0,0653014	0,065199	0,000102396
11	0,55	0,0706891	0,0705665	0,000122566
12	0,6	0,0761442	0,0760002	0,000144071
13	0,65	0,0816888	0,0815221	0,000166633
14	0,7	0,0873526	0,0871627	0,000189889
15	0,75	0,09318	0,0929667	0,000213345
16	0,8	0,0992435	0,0990071	0,000236319
17	0,85	0,105678	0,10542	0,000257813
18	0,9	0,11279	0,112514	0,000276217
19				
	0,95	0,121594	0,121305	0,000288519
20	0,95 1	0,121594 0,0789464	0,121305 0,0789464	0,000288519 0

Run	mole vap frac	avg vel	flow regime	inl_pressure
#		m/sec		bar
0	0	0,360834	4	13,1385
1	0,05	0,65777	4	13,1385
2	0,1	0,954283	3	13,1385
3	0,15	1,25085	3	13,1385
4	0,2	1,54759	4	13,1385
5	0,25	1,84437	4	13,1385
6	0,3	2,14123	4	13,1385
7	0,35	2,43819	4	13,1385
8	0,4	2,73525	4	13,1385
9	0,45	3,03241	4	13,1385
10	0,5	3,32966	4	13,1385
11	0,55	3,62703	4	13,1385
12	0,6	3,9245	4	13,1385
13	0,65	4,22209	4	13,1385
14	0,7	4,5198	4	13,1385
15	0,75	4,81766	4	13,1385
16	0,8	5,11568	4	13,1385
17	0,85	5,41389	4	13,1385
18	0,9	5,7124	4	13,1385
19	0,95	6,01147	4	13,1385
20	1	6,29689	0	13,1385
Run	mole vap frac	inl Temp	avg density	gas viscosity
#		C	kg/m3	mPa-sec
0	0	50	1107.79	0.0139687
1	0,05	50	607,702	0,0139679
2	0.1	50	418.878	0.0139673
3	0.15	50	319.564	0.0139667
4	0,2	50	250,204	0.0120661
5	,	50	258,291	0,0139001
	0,25	50	258,291 216,729	0,0139661
6	0,25 0,3	50 50 50	258,291 216,729 186,682	0,0139651 0,0139656 0,013965
6 7	0,25 0,3 0,35	50 50 50 50	258,291 216,729 186,682 163,944	0,0139661 0,0139656 0,013965 0,0139645
6 7 8	0,25 0,3 0,35 0,4	50 50 50 50 50	258,291 216,729 186,682 163,944 146,14	0,0139681 0,0139656 0,013965 0,0139645 0,0139639
6 7 8 9	0,25 0,3 0,35 0,4 0,45	50 50 50 50 50 50	258,291 216,729 186,682 163,944 146,14 131,819	0,0139681 0,0139656 0,013965 0,0139645 0,0139639 0,0139634
6 7 8 9 10	0,25 0,3 0,35 0,4 0,45 0,5	50 50 50 50 50 50 50	258,291 216,729 186,682 163,944 146,14 131,819 120,051	0,0139681 0,0139656 0,013965 0,0139645 0,0139639 0,0139634 0,0139628
6 7 8 9 10 11	0,25 0,3 0,35 0,4 0,45 0,5 0,55	50 50 50 50 50 50 50 50	258,291 216,729 186,682 163,944 146,14 131,819 120,051 110,209	0,0139661 0,0139656 0,013965 0,0139645 0,0139639 0,0139634 0,0139628 0,0139623
6 7 8 9 10 11 12	0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6	50 50 50 50 50 50 50 50 50 50	258,291 216,729 186,682 163,944 146,14 131,819 120,051 110,209 101,855	0,0139661 0,0139656 0,013965 0,0139645 0,0139639 0,0139634 0,0139628 0,0139623 0,0139617
6 7 8 9 10 11 12 13	0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65	50 50 50 50 50 50 50 50 50 50 50	258,291 216,729 186,682 163,944 146,14 131,819 120,051 110,209 101,855 94,6758	0,0139661 0,0139656 0,013965 0,0139645 0,0139639 0,0139634 0,0139623 0,0139623 0,0139617 0,0139611
6 7 8 9 10 11 12 13 14	0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 0,7	50 50 50 50 50 50 50 50 50 50 50 50 50	258,291 216,729 186,682 163,944 146,14 131,819 120,051 110,209 101,855 94,6758 88,4397	0,0139681 0,0139656 0,013965 0,0139645 0,0139639 0,0139634 0,0139628 0,0139623 0,0139617 0,0139611 0,0139605
6 7 8 9 10 11 12 13 14 15	0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 0,7 0,75	50 50 50 50 50 50 50 50 50 50 50 50 50	258,291 216,729 186,682 163,944 146,14 131,819 120,051 110,209 101,855 94,6758 88,4397 82,9718	0,0139661 0,0139656 0,013965 0,0139645 0,0139639 0,0139634 0,0139623 0,0139617 0,0139611 0,0139605 0,0139599
6 7 8 9 10 11 12 13 14 15 16	0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 0,7 0,75 0,8	50 50 50 50 50 50 50 50 50 50 50 50 50 5	258,291 216,729 186,682 163,944 146,14 131,819 120,051 110,209 101,855 94,6758 88,4397 82,9718 78,1383	0,0139661 0,0139656 0,0139655 0,0139645 0,0139639 0,0139634 0,0139628 0,0139623 0,0139617 0,0139611 0,0139605 0,0139599 0,0139593
6 7 8 9 10 11 12 13 14 15 16 17	0,25 0,3 0,35 0,4 0,45 0,5 0,5 0,5 0,6 0,65 0,7 0,75 0,8 0,85	50 50 50 50 50 50 50 50 50 50 50 50 50 5	258,291 216,729 186,682 163,944 146,14 131,819 120,051 110,209 101,855 94,6758 88,4397 82,9718 78,1383 73,8342	0,0139661 0,0139656 0,0139655 0,0139645 0,0139639 0,0139634 0,0139623 0,0139617 0,0139611 0,0139605 0,0139599 0,0139593 0,0139586
6 7 8 9 10 11 12 13 14 15 16 17 18	0,25 0,3 0,35 0,4 0,45 0,5 0,5 0,6 0,65 0,7 0,75 0,8 0,85 0,9	50 50 50 50 50 50 50 50 50 50 50 50 50 5	258,291 216,729 186,682 163,944 146,14 131,819 120,051 110,209 101,855 94,6758 88,4397 82,9718 78,1383 73,8342 69,9761	0,0139661 0,0139656 0,0139655 0,0139645 0,0139639 0,0139634 0,0139623 0,0139617 0,0139617 0,0139605 0,0139599 0,0139593 0,0139586 0,0139579
6 7 8 9 10 11 12 13 14 15 16 17 18 19	0,25 0,3 0,35 0,4 0,45 0,5 0,5 0,5 0,6 0,65 0,7 0,75 0,8 0,85 0,9 0,95	50 50 50 50 50 50 50 50 50 50 50 50 50 5	258,291 216,729 186,682 163,944 146,14 131,819 120,051 110,209 101,855 94,6758 88,4397 82,9718 78,1383 73,8342 69,9761 66,4948	0,0139661 0,0139656 0,013965 0,0139645 0,0139639 0,0139634 0,0139628 0,0139623 0,0139617 0,0139611 0,0139605 0,0139599 0,0139593 0,0139579 0,013957

Run	mole vap frac	liq viscosity	liq density	liq mass rate
#		mPa-sec kg/m3		kg/h
0	0	0,15242	1109,38	1,0422
1	0,05	0,15244	1109,44	0,99009
2	0,1	0,152453	1109,48	0,93798
3	0,15	0,152465	1109,52	0,88587
4	0,2	0,152478	1109,55	0,83376
5	0,25	0,15249	1109,59	0,78165
6	0,3	0,152502	1109,62	0,72954
7	0,35	0,152514	1109,66	0,67743
8	0,4	0,152526	1109,69	0,62532
9	0,45	0,152538	1109,73	0,57321
10	0,5	0,15255	1109,76	0,5211
11	0.55	0.152562	1109.8	0.46899
12	0.6	0.152575	1109.84	0.41688
13	0.65	0.152588	1109.87	0.36477
14	0.7	0.1526	1109.91	0.31266
15	0.75	0.152614	1109.95	0.26055
16	0.8	0.152627	1109,99	0.20844
17	0.85	0 152642	1110.03	0 15633
18	0.9	0 152658	1110,08	0 10422
19	0.95	0 152678	1110,00	0.05211
20	0,55	0,132070	0	0,05211
20	-	0	0	0
Parameter	massestrom	1,30275	kg/h	
Run	mole vap frac	dp	dp_fric	dp_acc
#		bar	bar	bar
0	0	0,0114528	0,0114528	3,18E-09
1	0,05	0,0249052	0,0249012	4,02E-06
2	0,1	0,0331514	0,0331391	1,23E-05
3	0,15	0,0416875	0,0416632	2,43E-05
4	0,2	0,0497846	0,0497435	4,11E-05
5	0,25	0,0577939	0,0577316	6,23E-05
6	0,3	0,0657607	0,0656725	8,82E-05
7	0,35	0,0737177	0,073599	0,000118649
8	0,4	0,0816908	0,0815372	0,000153555
9	0,45	0,0897027	0,0895099	0,000192766
10	0,5	0,0977755	0,0975395	0,000236037
11	0,55	0,105932	0,105649	0,000283025
12	0,6	0,1142	0,113867	0,000333266
13	0,65	0,122612	0,122226	0,000386147
14	0,7	0,131215	0,130774	0,00044085
15	0,75	0,140076	0,13958	0,000496271
16	0,8	0,14931	0,148759	0,000550874
17	0,85	0,159125	0,158523	0,000602406
18	0,9	0,170001	0,169354	0,000647255
19	0,95	0,183525	0,182846	0,000678756
20	1	0,11962	0,11962	0
			, -	

Run	mole vap frac	avg vel	flow regime	inl_pressure
#		m/sec		bar
0	0	0,451087	4	13,1385
1	0,05	0,823212	4	13,1385
2	0,1	1,1943	3	13,1385
3	0,15	1,56563	4	13,1385
4	0,2	1,93707	4	13,1385
5	0,25	2,30868	4	13,1385
6	0,3	2,68046	4	13,1385
7	0,35	3,05242	4	13,1385
8	0,4	3,42457	4	13,1385
9	0,45	3,7969	4	13,1385
10	0,5	4,16943	4	13,1385
11	0,55	4,54216	4	13,1385
12	0,6	4,9151	4	13,1385
13	0,65	5,28826	4	13,1385
14	0,7	5,66167	4	13,1385
15	0,75	6,03535	4	13,1385
16	0,8	6,40933	4	13,1385
17	0,85	6,78371	4	13,1385
18	0,9	7,15865	4	13,1385
19	0,95	7,5347	4	13,1385
20	1	7,88498	0	13,1385
Run	mole vap frac	inl Temp	avg densitv	gas viscositv
#		C	kg/m3	mPa-sec
0	0	50	1107,68	0,013968
1	0,05	50	606,966	0,013967
2	0,1	50	418,371	0,0139662
3	0,15	50	319,145	0,0139653
4	0,2	50	257,948	0,0139644
5	0,25	50	216,428	0,0139636
6	0,3	50	186,409	0,0139628
7	0,35	50	163,694	0,0139619
8	0,4	50	145,906	0,0139611
9	0,45	50	131,598	0,0139603
10				
11	0,5	50	119,84	0,0139594
**	0,5 0,55	50 50	119,84 110,006	0,0139594 0,0139586
12	0,5 0,55 0,6	50 50 50	119,84 110,006 101,659	0,0139594 0,0139586 0,0139577
12 13	0,5 0,55 0,6 0,65	50 50 50 50	119,84 110,006 101,659 94,4858	0,0139594 0,0139586 0,0139577 0,0139569
12 13 14	0,5 0,55 0,6 0,65 0,7	50 50 50 50 50 50	119,84 110,006 101,659 94,4858 88,2542	0,0139594 0,0139586 0,0139577 0,0139569 0,013956
12 13 14 15	0,5 0,55 0,6 0,65 0,7 0,75	50 50 50 50 50 50	119,84 110,006 101,659 94,4858 88,2542 82,7901	0,0139594 0,0139586 0,0139577 0,0139569 0,013956 0,013955
12 13 14 15 16	0,5 0,55 0,6 0,65 0,7 0,75 0,8	50 50 50 50 50 50 50 50	119,84 110,006 101,659 94,4858 88,2542 82,7901 77,9594	0,0139594 0,0139586 0,0139577 0,0139569 0,013955 0,013955 0,0139541
12 13 14 15 16 17	0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85	50 50 50 50 50 50 50 50 50	119,84 110,006 101,659 94,4858 88,2542 82,7901 77,9594 73,6571	0,0139594 0,0139586 0,0139577 0,0139569 0,013955 0,013955 0,0139541 0,0139531
12 13 14 15 16 17 18	0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85 0,9	50 50 50 50 50 50 50 50 50 50	119,84 110,006 101,659 94,4858 88,2542 82,7901 77,9594 73,6571 69,7994	0,0139594 0,0139586 0,0139577 0,0139569 0,013956 0,013955 0,0139541 0,0139531 0,0139519
12 13 14 15 16 17 18 19	0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85 0,9 0,95	50 50 50 50 50 50 50 50 50 50 50	119,84 110,006 101,659 94,4858 88,2542 82,7901 77,9594 73,6571 69,7994 66,316	0,0139594 0,0139586 0,0139577 0,0139569 0,013955 0,013955 0,0139541 0,0139531 0,0139519 0,0139505

Run	mole vap frac	liq viscosity	liq density	liq mass rate
#		mPa-sec	kg/m3	kg/h
0	0	0,152428	1109,41	1,30275
1	0,05	0,152458	1109,5	1,23761
2	0,1	0,152477	1109,55	1,17248
3	0,15	0,152497	1109,61	1,10734
4	0,2	0,152515	1109,66	1,0422
5	0,25	0,152533	1109,71	0,977062
6	0,3	0,152551	1109,77	0,911925
7	0,35	0,152569	1109,82	0,846788
8	0,4	0,152588	1109,87	0,78165
9	0,45	0,152606	1109,92	0,716513
10	0,5	0,152624	1109,98	0,651375
11	0,55	0,152643	1110,03	0,586237
12	0,6	0,152662	1110,09	0,5211
13	0,65	0,152681	1110,14	0,455962
14	0,7	0,1527	1110,2	0,390825
15	0,75	0,15272	1110,26	0,325688
16	0,8	0,152742	1110,32	0,26055
17	0,85	0,152764	1110,38	0,195412
18	0,9	0,152789	1110,45	0,130275
19	0,95	0,152819	1110,54	0,0651375
20	1	0	0	0
Parameter	massestrom	1,5633	kg/h	
Run	mole vap frac	dp	dp_fric	dp_acc
#		bar	bar	bar
0	0	0,0155565	0,0155565	8,20E-09
1	0,05	0,0342789	0,0342711	7,83E-06
2	0,1	0,0455849	0,0455605	2,44E-05
3	0,15	0,057662	0,0576143	4,77E-05
4	0,2	0,0689692	0,0688886	8,07E-05
5	0,25	0,080169	0,0800462	0,000122753
6	0,3	0,0913228	0,0911488	0,000174017
7	0,35	0,102475	0,102241	0,000234457
8	0,4	0,113663	0,113359	0,000303932
9	0,45	0,124917	0,124535	0,000382153
10	0,5	0,136268	0,1358	0,000468673
11	0,55	0,14775	0,147187	0,000562851
12	0,6	0,159398	0,158735	0,000663808
13	0,65	0,171263	0,170493	0,000770368
14	0,7	0,183409	0,182528	0,000880956
15	0,75	0,195935	0,194941	0,000993423
16	0,8	0,209002	0,207897	0,00110479
17	0,85	0,222912	0,221701	0,00121063
18	0,9	0,238362	0,237058	0,00130399
19	0,95	0,25765	0,256278	0,00137206
20	1	0,16858	0,16858	0

Run	mole vap frac	avg vel	flow regime	inl_pressure
#		m/sec		bar
0	0	0,541554	4	13,1385
1	0,05	0,989261	4	13,1385
2	0,1	1,43519	3	13,1385
3	0,15	1,88157	4	13,1385
4	0,2	2,32813	4	13,1385
5	0,25	2,77498	4	13,1385
6	0,3	3,22212	4	13,1385
7	0,35	3,66955	4	13,1385
8	0,4	4,11731	4	13,1385
9	0,45	4,56538	4	13,1385
10	0,5	5,01378	4	13,1385
11	0,55	5,46254	4	13,1385
12	0,6	5,91165	4	13,1385
13	0,65	6,36115	4	13,1385
14	0,7	6,81108	4	13,1385
15	0,75	7,26145	4	13,1385
16	0,8	7,71237	4	13,1385
17	0,85	8,1639	4	13,1385
18	0,9	8,61652	4	13,1385
19	0,95	9,07101	4	13,1385
20	1	9,48208	0	13,1385
Rup	mole van frac	inl Tomp	ava doncity	and viccosity
#	mole vap hac	C III Temp	kg/m2	mPa-sec
# 0	0	50	1107 19	0.012068
1	0.05	50	606 106	0,013908
2	0,05	50	<i>4</i> 17 781	0,01396/19
2	0,1	50	318 668	0,0139636
J ∕I	0,15	50	257 545	0,0139624
4 5	0,2	50	237,543	0,0139613
5	0,25	50	186 089	0,0139601
7	0,5	50	163 300	0,0139501
, 8	0,55	50	145 629	0,0139578
0 0	0,4	50	131 337	0,0139566
10	0,45	50	110 501	0,0139550
11	0,5	50	109 767	0,0139504
12	0,55	50	101/28	0,0139542
12	0,0	50	94 2607	0,0139535
17	0,05	50	24,2007 88 03/12	0,0139518
15	0,7	50	82 5744	0,0139303
15 16	0,75	50	77 7467	0,0139452
17		50	72 //7	0,0130473
10 1	0.03	50	60 5201	0,0133404
10 10	0,9	50	66 1028	0,0139440
20	1	50	62 2252	0,0130420
<u> </u>	T	50	0,200	0,0100002

Run	mole vap frac	liq viscosity	liq density	liq mass rate
#		mPa-sec	kg/m3	kg/h
0	0	0,152437	1109,44	1,5633
1	0,05	0,15248	1109,56	1,48513
2	0,1	0,152505	1109,63	1,40697
3	0,15	0,152533	0,152533 1109,71	
4	0,2	0,152559	1109,79	1,25064
5	0,25	0,152584	1109,86	1,17248
6	0,3	0,152609	1109,94	1,09431
7	0,35	0,152635	1110,01	1,01614
8	0,4	0,15266	1110,08	0,93798
9	0,45	0,152686	1110,16	0,859815
10	0,5	0,152712	1110,23	0,78165
11	0,55	0,152738	1110,31	0,703485
12	0,6	0,152764	1110,38	0,62532
13	0,65	0,152792	1110,46	0,547155
14	0,7	0,152819	1110,54	0,46899
15	0.75	0.152848	1110.63	0.390825
16	0,8	0,152878	1110,71	0,31266
17	0.85	0.15291	1110.8	0.234495
18	0.9	0.152945	1110.9	0.15633
19	0.95	0.152989	1111.03	0.078165
20	1	0	0	0
	_	-	-	-
Parameter	massestrom	1,82385	kg/h	
Run	mole vap frac	dp	dp_fric	dp_acc
#		bar	bar	bar
0	0	0,020328	0,020328	1,03E-08
1	0,05	0,0449709	0,044957	1,38E-05
2	0,1	0,0606978	0,0606562	4,16E-05
3	0,15	0,075963	0,0758786	8,45E-05
4	0,2	0,0909804	0,0908372	0,000143184
5	0,25	0,105876	0,105658	0,000218236
6	0,3	0,120728	0,120418	0,000309884
7	0,35	0,135596	0,135178	0,000418172
8	0,4	0,150526	0,149983	0,00054291
9	0,45	0,165561	0,164878	0,000683653
10	0,5	0,180742	0,179903	0,000839667
11	0,55	0,196112	0,195103	0,00100987
12	0,6	0,211723	0,21053	0,00119277
13	0,65	0,227639	0,226252	0,00138633
14	0,7	0,243949	0,242361	0,00158778
15	0,75	0,260787	0,258993	0,00179339
16	0,8	0,278373	0,276375	0,00199787
17	0,85	0,29712	0,294927	0,00219346
18	0,9	0,31798	0,315612	0,00236787
19	0,95	0,344129	0,34163	0,00249897
20	1	0,225934	0,225934	0

Run	mole vap frac	avg vel	flow regime	inl_pressure
#		m/sec		bar
0	0	0,631415	0	13,1385
1	0,05	1,156	4	13,1385
2	0,1	1,67731	4	13,1385
3	0,15	2,19899	4	13,1385
4	0,2	2,72104	4	13,1385
5	0,25	3,2436	4	13,1385
6	0,3	3,76661	4	13,1385
7	0,35	4,29009	4	13,1385
8	0,4	4,81407	4	13,1385
9	0,45	5,33856	4	13,1385
10	0,5	5,86357	4	13,1385
11	0,55	6,38913	4	13,1385
12	0,6	6,91527	4	13,1385
13	0,65	7,44202	4	13,1385
14	0,7	7,96943	4	13,1385
15	0,75	8,49758	4	13,1385
16	0,8	9,02658	4	13,1385
17	0,85	9,55661	4	13,1385
18	0,9	10,0882	4	13,1385
19	0,95	10,623	4	13,1385
20	1	11,09	0	13,1385
Run	mole vap frac	inl Temp	avg density	gas viscosity
#		С	kg/m3	mPa-sec
0	0	50	1107,87	0,0139682
1	0,05	50	605,132	0,0139649
2	0,1	50	417,057	0,0139633
3	0,15	50	318,117	0,0139617
4	0,2	50	257,085	0,0139602
5	0,25	50	215,667	0,0139586
6	0,3	50	185,722	0,0139571
7	0,35	50	163,06	0,0139555
8			,	
	0,4	50	145,312	0,013954
9	0,4 0,45	50 50	145,312 131,036	0,013954 0,0139524
9 10	0,4 0,45 0,5	50 50 50	145,312 131,036 119,304	0,013954 0,0139524 0,0139508
9 10 11	0,4 0,45 0,5 0,55	50 50 50 50	145,312 131,036 119,304 109,491	0,013954 0,0139524 0,0139508 0,0139492
9 10 11 12	0,4 0,45 0,5 0,55 0,6	50 50 50 50 50	145,312 131,036 119,304 109,491 101,161	0,013954 0,0139524 0,0139508 0,0139492 0,0139476
9 10 11 12 13	0,4 0,45 0,5 0,55 0,6 0,65	50 50 50 50 50 50	145,312 131,036 119,304 109,491 101,161 94,0008	0,013954 0,0139524 0,0139508 0,0139492 0,0139476 0,013946
9 10 11 12 13 14	0,4 0,45 0,5 0,55 0,6 0,65 0,7	50 50 50 50 50 50 50 50	145,312 131,036 119,304 109,491 101,161 94,0008 87,7802	0,013954 0,0139524 0,0139508 0,0139492 0,0139476 0,013946 0,0139443
9 10 11 12 13 14 15	0,4 0,45 0,5 0,55 0,6 0,65 0,7 0,75	50 50 50 50 50 50 50 50 50	145,312 131,036 119,304 109,491 101,161 94,0008 87,7802 82,3248	0,013954 0,0139524 0,0139508 0,0139492 0,0139476 0,013946 0,0139443 0,0139425
9 10 11 12 13 14 15 16	0,4 0,45 0,5 0,55 0,6 0,65 0,7 0,75 0,8	50 50 50 50 50 50 50 50 50 50	145,312 131,036 119,304 109,491 101,161 94,0008 87,7802 82,3248 77,5006	0,013954 0,0139524 0,0139508 0,0139492 0,0139476 0,013946 0,0139443 0,0139425 0,0139407
9 10 11 12 13 14 15 16 17	0,4 0,45 0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85	50 50 50 50 50 50 50 50 50 50 50	145,312 131,036 119,304 109,491 101,161 94,0008 87,7802 82,3248 77,5006 73,2027	0,013954 0,0139524 0,0139508 0,0139492 0,0139476 0,013946 0,0139443 0,0139443 0,0139407 0,0139388
9 10 11 12 13 14 15 16 17 18	0,4 0,45 0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85 0,9	50 50 50 50 50 50 50 50 50 50 50 50 50	145,312 131,036 119,304 109,491 101,161 94,0008 87,7802 82,3248 77,5006 73,2027 69,3456	0,013954 0,0139524 0,0139508 0,0139492 0,0139476 0,013946 0,0139443 0,0139425 0,0139407 0,0139388 0,0139366
9 10 11 12 13 14 15 16 17 18 19	0,4 0,45 0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85 0,9 0,95	50 50 50 50 50 50 50 50 50 50 50 50 50 5	145,312 131,036 119,304 109,491 101,161 94,0008 87,7802 82,3248 77,5006 73,2027 69,3456 65,8555	0,013954 0,0139524 0,0139508 0,0139492 0,0139476 0,013946 0,0139443 0,0139425 0,0139407 0,0139388 0,0139366 0,0139339

Run	mole vap frac	liq viscosity	liq density	liq mass rate	
#		mPa-sec	kg/m3	kg/h	
0	0	0,152448	1109,47	1,82385	
1	0,05	0,152504	1109,63	1,73266	
2	0,1	0,15254	1109,73	1,64147	
3	0,15	0,152574	1109,83	1,55027	
4	0,2	0,152608	1109,93	1,45908	
5	0,25	0,152642	1110,03	1,36789	
6	0,3	0,152676	1110,13	1,2767	
7	0,35	0,15271	1110,23	1,1855	
8	0,4	0,152744	1110,33	1,09431	
9	0,45	0,152778	1110,42	1,00312	
10	0,5	0,152813	1110,52	0,911925	
11	0,55	0,152848	1110,63	0,820732	
12	0,6	0,152884	1110,73	0,72954	
13	0,65	0,15292	1110,83	0,638347	
14	0,7	0,152957	1110,94	0,547155	
15	0,75	0,152996	1111,05	0,455962	
16	0,8	0,153036	1111,17	0,36477	
17	0,85	0,153079	1111,29	0,273577	
18	0,9	0,153127	1111,43	0,182385	
19	0,95	0,153187	1111,6	0,0911925	
20	1	0	0	0	
Parameter	massestrom	2,0844	kg/h		
Run	mole vap frac	dp	dp_fric	dp_acc	
#		bar	bar	bar	
0	0	0,0258583	0,0258582	1,61E-08	
1	0,05	0,0569557	0,0569331	2,26E-05	
2	0,1	0,0770341	0,0769659	6,83E-05	
3	0,15	0,0965541	0,0964152	0,000138895	
4	0,2	0,115786	0,11555	0,000235852	
5	0,25	0,134884	0,134524	0,000360061	
6	0,3	0,153949	0,153437	0,00051206	
7	0,35	0,173057	0,172365	0,000692032	
8	0,4	0,192267	0,191367	0,000899769	
9	0,45	0,211633	0,210498	0,00113465	
10	0,5	0,231207	0,229811	0,00139556	
11	0,55	0,251046	0,249365	0,00168084	
12	0,6	0,271217	0,269229	0,00198811	
13	0,65	0,291803	0,289489	0,00231409	
14	0,7	0,312921	0,310267	0,00265434	
15	0,75	0,334746	0,331744	0,00300274	
16	0,8	0,357567	0,354217	0,00335064	
17	0,85	0,38193	0,378245	0,00368538	
18	0,9	0,409085	0,405098	0,00398674	
19	0,95	0,443257	0,439038	0,00421912	
20	1	0,291958	0,291958	0	

	mole vap frac	avg vel	flow regime	inl_pressure
#		m/sec		bar
0	0	0,72154	0	13,1385
1	0,05	1,32353	4	13,1385
2	0,1	1,92043	4	13,1385
3	0,15	2,51793	4	13,1385
4	0,2	3,11606	4	13,1385
5	0,25	3,71487	4	13,1385
6	0,3	4,31435	4	13,1385
7	0,35	4,91455	4	13,1385
8	0,4	5,51548	4	13,1385
9	0,45	6,11717	4	13,1385
10	0,5	6,71963	4	13,1385
11	0,55	7,32292	4	13,1385
12	0,6	7,92708	4	13,1385
13	0,65	8,53215	4	13,1385
14	0,7	9,13822	4	13,1385
15	0,75	9,7454	4	13,1385
16	0,8	10,3538	4	13,1385
17	0,85	10,964	4	13,1385
18	0,9	11,5764	4	13,1385
19	0,95	12,1935	4	13,1385
20	1	12,7107	0	13,1385
Run	mole van frac	inl Temn	avg density	gas viscosity
Run #	mole vap frac	inl Temp C	avg density kg/m3	gas viscosity mPa-sec
Run #	mole vap frac 0	inl Temp C 50	avg density kg/m3 1107 99	gas viscosity mPa-sec 0.0139669
Run # 0 1	mole vap frac 0 0.05	inl Temp C 50 50	avg density kg/m3 1107,99 604.049	gas viscosity mPa-sec 0,0139669 0.0139637
Run # 0 1 2	mole vap frac 0 0,05 0.1	inl Temp C 50 50 50	avg density kg/m3 1107,99 604,049 416 3	gas viscosity mPa-sec 0,0139669 0,0139637 0,0139616
Run # 0 1 2 3	mole vap frac 0 0,05 0,1 0 15	inl Temp C 50 50 50 50	avg density kg/m3 1107,99 604,049 416,3 317 514	gas viscosity mPa-sec 0,0139669 0,0139637 0,0139616 0,0139596
Run # 0 1 2 3 4	mole vap frac 0 0,05 0,1 0,15 0,2	inl Temp C 50 50 50 50 50 50	avg density kg/m3 1107,99 604,049 416,3 317,514 256,568	gas viscosity mPa-sec 0,0139669 0,0139637 0,0139616 0,0139596 0.0139576
Run # 0 1 2 3 4 5	mole vap frac 0 0,05 0,1 0,15 0,2 0,25	inl Temp C 50 50 50 50 50 50 50	avg density kg/m3 1107,99 604,049 416,3 317,514 256,568 215,212	gas viscosity mPa-sec 0,0139669 0,0139637 0,0139616 0,0139596 0,0139576 0,0139556
Run # 0 1 2 3 4 5 6	mole vap frac 0 0,05 0,1 0,15 0,2 0,25 0,3	inl Temp C 50 50 50 50 50 50 50 50	avg density kg/m3 1107,99 604,049 416,3 317,514 256,568 215,212 185,308	gas viscosity mPa-sec 0,0139669 0,0139637 0,0139616 0,0139596 0,0139576 0,0139556 0,0139536
Run # 0 1 2 3 4 5 6 7	mole vap frac 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35	inl Temp C 50 50 50 50 50 50 50 50 50	avg density kg/m3 1107,99 604,049 416,3 317,514 256,568 215,212 185,308 162,678	gas viscosity mPa-sec 0,0139669 0,0139637 0,0139616 0,0139596 0,0139556 0,0139556 0,0139536 0,0139516
Run # 0 1 2 3 4 5 6 7 8	mole vap frac 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4	inl Temp C 50 50 50 50 50 50 50 50 50 50 50	avg density kg/m3 1107,99 604,049 416,3 317,514 256,568 215,212 185,308 162,678 144,954	gas viscosity mPa-sec 0,0139669 0,0139637 0,0139516 0,0139576 0,0139556 0,0139536 0,0139516 0,0139516
Run # 0 1 2 3 4 5 6 7 8 9	mole vap frac 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45	inl Temp C 50 50 50 50 50 50 50 50 50 50 50 50	avg density kg/m3 1107,99 604,049 416,3 317,514 256,568 215,212 185,308 162,678 144,954 130 697	gas viscosity mPa-sec 0,0139669 0,0139637 0,0139616 0,0139596 0,0139576 0,0139556 0,0139536 0,0139516 0,0139496 0,0139476
Run # 0 1 2 3 4 5 6 7 8 9 10	mole vap frac 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5	inl Temp C 50 50 50 50 50 50 50 50 50 50 50 50 50	avg density kg/m3 1107,99 604,049 416,3 317,514 256,568 215,212 185,308 162,678 144,954 130,697 118,98	gas viscosity mPa-sec 0,0139669 0,0139637 0,0139596 0,0139576 0,0139556 0,0139556 0,0139516 0,0139496 0,0139476 0,0139456
Run # 0 1 2 3 4 5 6 7 8 9 10 11	mole vap frac 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,5	inl Temp C 50 50 50 50 50 50 50 50 50 50 50 50 50	avg density kg/m3 1107,99 604,049 416,3 317,514 256,568 215,212 185,308 162,678 144,954 130,697 118,98 109,178	gas viscosity mPa-sec 0,0139669 0,0139637 0,0139616 0,0139596 0,0139576 0,0139556 0,0139536 0,0139516 0,0139496 0,0139476 0,0139456 0,0139435
Run # 0 1 2 3 4 5 6 7 8 9 10 11	mole vap frac 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,5 0,55 0,6	inl Temp C 50 50 50 50 50 50 50 50 50 50 50 50 50	avg density kg/m3 1107,99 604,049 416,3 317,514 256,568 215,212 185,308 162,678 144,954 130,697 118,98 109,178 100 858	gas viscosity mPa-sec 0,0139669 0,0139637 0,0139516 0,0139576 0,0139556 0,0139556 0,0139556 0,0139516 0,0139496 0,0139476 0,0139456 0,0139435 0,0139414
Run # 0 1 2 3 4 5 6 7 8 9 10 11 12 13	mole vap frac 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,5 0,5 0,6 0,6 0,6 0,6	inl Temp C 50 50 50 50 50 50 50 50 50 50 50 50 50	avg density kg/m3 1107,99 604,049 416,3 317,514 256,568 215,212 185,308 162,678 144,954 130,697 118,98 109,178 100,858 93,7063	gas viscosity mPa-sec 0,0139669 0,0139637 0,0139596 0,0139596 0,0139576 0,0139556 0,0139536 0,0139516 0,0139496 0,0139476 0,0139435 0,0139414 0,0139393
Run # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	mole vap frac 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,5 0,5 0,6 0,65 0,7	inl Temp C 50 50 50 50 50 50 50 50 50 50 50 50 50	avg density kg/m3 1107,99 604,049 416,3 317,514 256,568 215,212 185,308 162,678 144,954 130,697 118,98 109,178 100,858 93,7063 87 4921	gas viscosity mPa-sec 0,0139669 0,0139637 0,0139616 0,0139596 0,0139576 0,0139556 0,0139556 0,0139516 0,0139496 0,0139476 0,0139475 0,0139435 0,0139414 0,0139393 0,0139371
Run # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	mole vap frac 0 0,05 0,1 0,15 0,2 0,25 0,3 0,4 0,45 0,5 0,5 0,5 0,6 0,65 0,7 0,75	inl Temp C 50 50 50 50 50 50 50 50 50 50 50 50 50	avg density kg/m3 1107,99 604,049 416,3 317,514 256,568 215,212 185,308 162,678 144,954 130,697 118,98 109,178 100,858 93,7063 87,4921 82,0416	gas viscosity mPa-sec 0,0139669 0,0139637 0,0139616 0,0139596 0,0139576 0,0139556 0,0139556 0,0139516 0,0139496 0,0139476 0,0139475 0,0139435 0,0139414 0,0139393 0,0139371 0,0139349
Run # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	mole vap frac 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,55 0,6 0,65 0,7 0,75 0,8	inl Temp C 50 50 50 50 50 50 50 50 50 50 50 50 50	avg density kg/m3 1107,99 604,049 416,3 317,514 256,568 215,212 185,308 162,678 144,954 130,697 118,98 109,178 100,858 93,7063 87,4921 82,0416 77,2211	gas viscosity mPa-sec 0,0139669 0,0139637 0,0139616 0,0139596 0,0139576 0,0139556 0,0139556 0,0139516 0,0139496 0,0139476 0,0139476 0,0139455 0,0139414 0,0139393 0,0139371 0,0139349 0,0139325
Run # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	mole vap frac 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,5 0,5 0,6 0,65 0,7 0,75 0,8 0,85	inl Temp C 50 50 50 50 50 50 50 50 50 50 50 50 50	avg density kg/m3 1107,99 604,049 416,3 317,514 256,568 215,212 185,308 162,678 144,954 130,697 118,98 109,178 100,858 93,7063 87,4921 82,0416 77,2211 72,9247	gas viscosity mPa-sec 0,0139669 0,0139637 0,0139516 0,0139576 0,0139576 0,0139556 0,0139556 0,0139556 0,0139456 0,0139476 0,0139476 0,0139455 0,0139414 0,0139393 0,0139371 0,0139349 0,0139325 0,01393
Run # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	mole vap frac 0 0,05 0,1 0,15 0,2 0,25 0,3 0,4 0,45 0,5 0,5 0,5 0,6 0,65 0,7 0,75 0,8 0,85 0,9	inl Temp C 50 50 50 50 50 50 50 50 50 50 50 50 50	avg density kg/m3 1107,99 604,049 416,3 317,514 256,568 215,212 185,308 162,678 144,954 130,697 118,98 109,178 100,858 93,7063 87,4921 82,0416 77,2211 72,9247 69,0677	gas viscosity mPa-sec 0,0139669 0,0139637 0,0139596 0,0139596 0,0139576 0,0139556 0,0139556 0,0139516 0,0139496 0,0139476 0,0139476 0,0139475 0,0139414 0,0139393 0,0139371 0,0139325 0,01393
Run # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	mole vap frac 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,5 0,6 0,65 0,7 0,75 0,8 0,85 0,9 0,9 0,9 0,95	inl Temp C 50 50 50 50 50 50 50 50 50 50 50 50 50	avg density kg/m3 1107,99 604,049 416,3 317,514 256,568 215,212 185,308 162,678 144,954 130,697 118,98 109,178 100,858 93,7063 87,4921 82,0416 77,2211 72,9247 69,0677 65,5732	gas viscosity mPa-sec 0,0139669 0,0139637 0,0139516 0,0139576 0,0139576 0,0139556 0,0139556 0,0139556 0,0139456 0,0139476 0,0139476 0,0139475 0,0139435 0,0139414 0,0139393 0,0139371 0,0139371 0,0139325 0,01393

Run	mole vap frac	liq viscosity	liq density	liq mass rate
#		mPa-sec	kg/m3	kg/h
0	0	0,152461	1109,5	2,0844
1	0,05	0,152531	1109,71	1,98018
2	0,1	0,152577	1109,84	1,87596
3	0,15	0,152621	1109,97	1,77174
4	0,2	0,152665	1110,1	1,66752
5	0,25	0,152708	1110,22	1,5633
6	0,3	0,152752	1110,35	1,45908
7	0,35	0,152795	1110,47	1,35486
8	0,4	0,152839	1110,6	1,25064
9	0,45	0,152883	1110,73	1,14642
10	0,5	0,152928	1110,86	1,0422
11	0,55	0,152974	1110,99	0,93798
12	0,6	0,15302	1111,12	0,83376
13	0,65	0,153067	1111,26	0,72954
14	0,7	0,153115	1111,39	0,62532
15	0,75	0,153165	1111,54	0,5211
16	0,8	0,153218	1111,69	0,41688
17	0,85	0,153274	1111,85	0,31266
18	0,9	0,153336	1112,02	0,20844
19	0,95	0,153414	1112,25	0,10422
20	1	0	0	0

CHEMCAD	6.5.3	Page	1		
name:	Simulation_5_40	Date:	30.01.2014		Flow Regime
		Time:	13:52:59		0 single phase
Sensitivity An	alysis Report				1 segregated
multi_1					2 transition
					3 intermittent
Parameter	massestrom	2,2619	kg/h	4	distributed
Run	mole vap frac	dp	dp_fric	dp_acc	
#		bar	bar	bar	
0	0	0,00171144	0,00171144	2,65E-11	
1	0,05	0,00447975	0,00447954	2,16E-07	
2	0,1	0,00620325	0,00620254	7,14E-07	
3	0,15	0,00783405	0,00783253	1,52E-06	
4	0,2	0,00940893	0,00940627	2,66E-06	
5	0,25	0,0109466	0,0109425	4,14E-06	
6	0,3	0,0124583	0,0124524	5,94E-06	
7	0,35	0,0139513	0,0139432	8,08E-06	
8	0,4	0,0159382	0,0159283	9,87E-06	
9	0,45	0,0175604	0,017548	1,24E-05	
10	0,5	0,0191935	0,0191784	1,51E-05	
11	0,55	0,0208418	0,0208238	1,80E-05	
12	0,6	0,0225101	0,0224889	2,11E-05	
13	0,65	0,0242044	0,0241801	2,43E-05	
14	0,7	0,025933	0,0259055	2,76E-05	
15	0,75	0,0277082	0,0276775	3,08E-05	
16	0,8	0,0295499	0,0295162	3,38E-05	
17	0,85	0,0314955	0,031459	3,64E-05	
18	0,9	0,0336294	0,033591	3,85E-05	
19	0,95	0,0362297	0,0361905	3,92E-05	
20	1	0,0234482	0,0234482	0	

Run	mole vap frac	avg vel	flow regime	inl_pressure
#		m/sec		bar
0	0	0,173404	0	10,126
1	0,05	0,371908	3	10,126
2	0,1	0,570349	3	10,126
3	0,15	0,768793	3	10,126
4	0,2	0,96726	3	10,126
5	0,25	1,16575	3	10,126
6	0,3	1,36426	3	10,126
7	0,35	1,56279	3	10,126
8	0,4	1,76141	4	10,126
9	0,45	1,96001	4	10,126
10	0,5	2,15864	4	10,126
11	0,55	2,35729	4	10,126
12	0,6	2,55597	4	10,126
13	0,65	2,75469	4	10,126
14	0,7	2,95344	4	10,126
15	0,75	3,15222	4	10,126
16	0,8	3,35104	4	10,126
17	0,85	3,54991	4	10,126
18	0,9	3,74885	4	10,126
19	0,95	3,94794	4	10,126
20	1	4,14366	0	10,126
Run	mole vap frac	inl Temp	avg density	gas viscosity
#		С	kg/m3	mPa-sec
0	0	40	1152,68	0,0132882
1	0,05	40	537,444	0,013288
2	0,1	40	350,452	0,0132878
3	0,15	40	259,992	0,0132876
4	0,2	40	206,645	0,0132874
5	0,25	40	171,461	0,0132872
6	0,3	40	146,512	0,0132871
7	0,35	40	127,899	0,0132869
8	0,4	40	113,477	0,0132867
9	0,45	40	101,979	0,0132865
10	0,5	40	92,5955	0,0132863
11	0,55	40	84,7922	0,0132861
12	0,6	40	78,201	0,0132859
13	0,65	40	72,5599	0,0132857
14	0,7	40	67,677	0,0132856
15	0,75	40	63,4092	0,0132854
16	0,8	40	59,6471	0,0132852
17	0,85	40	56,3056	0,0132849
18	0,9	40	53,3176	0,0132847
19	0,95	40	50,6289	0,0132844
20	1	40	48,2375	0,0132866
Run	mole vap frac	liq viscosity	liq density	liq mass rate
-----------	---------------	------------------------	------------------------	------------------
#		mPa-sec	kg/m3	kg/h
0	0	0,169471	1153,15	2,2619
1	0,05	0,16948	1153,17	2,14881
2	0,1	0,169485	1153,19	2,03571
3	0,15	0,169491	1153,2	1,92261
4	0,2	0,169496	1153,21	1,80952
5	0,25	0,169501	1153,22	1,69642
6	0,3	0,169506	1153,23	1,58333
7	0,35	0,16951	1153,24	1,47023
8	0,4	0,169517	1153,26	1,35714
9	0,45	0,169522	1153,27	1,24405
10	0.5	0.169527	1153.28	1.13095
11	0.55	0.169532	1153.29	1.01785
12	0.6	0.169538	1153.3	0.90476
13	0.65	0.169543	1153.32	0.791665
14	0.7	0.169549	1153.33	0.67857
15	0.75	0.169554	1153.34	0.565475
16	0.8	0.16956	1153.36	0.45238
17	0.85	0.169566	1153.37	0.339285
18	0.9	0 169573	1153 39	0 22619
19	0.95	0 169582	1153 4	0 113095
20	1	0	0	0,119099
20	-	0	0	U
Parameter	massestrom	3,39285	kg/h	
Run	mole vap frac	dp	dp_fric	dp_acc
#		bar	bar	bar
0	0	0,00365831	0,00365831	6,55E-11
1	0,05	0,00903101	0,00903004	9,68E-07
2	0,1	0,0125701	0,0125669	3,22E-06
3	0,15	0,0159281	0,0159212	6,90E-06
4	0,2	0,0191767	0,0191646	1,21E-05
5	0,25	0,0223533	0,0223345	1,88E-05
6	0,3	0,0262604	0,026235	2,54E-05
7	0,35	0,0296489	0,0296146	3,43E-05
8	0,4	0,0330479	0,0330035	4,44E-05
9	0,45	0,0364664	0,0364105	5,58E-05
10	0,5	0,0399129	0,0398445	6,84E-05
11	0,55	0,0433964	0,0433145	8,18E-05
12	0,6	0,0469272	0,0468311	9,61E-05
13	0,65	0,0505187	0,0504077	0,000111022
14	0,7	0,0541887	0,0540625	0,000126186
15	0,75	0,0579641	0,0578229	0,000141238
16	0,8	0,0618894	0,0617338	0,000155631
17	0,85	0,0660472	0,0658786	0,00016856
18	, N Q	0.0706255	0.0704468	0 000178719
4.0	0,5	0,0700255	0,0701100	0,0001/0/10
19	0,95	0,0762457	0,0760622	0,000183553
19 20	0,95 1	0,0762457 0,0495319	0,0760622 0,0495319	0,000183553 0

Run	mole vap frac	avg vel	flow regime	inl_pressure
#	-	m/sec		bar
0	0	0,260056	0	10,126
1	0,05	0,558393	3	10,126
2	0,1	0,856302	3	10,126
3	0,15	1,15428	3	10,126
4	0,2	1,45231	3	10,126
5	0,25	1,75042	3	10,126
6	0,3	2,04872	4	10,126
7	0,35	2,34703	4	10,126
8	0,4	2,64541	4	10,126
9	0,45	2,94388	4	10,126
10	0,5	3,24244	4	10,126
11	0,55	3,54109	4	10,126
12	0,6	3,83983	4	10,126
13	0,65	4,13868	4	10,126
14	0,7	4,43763	4	10,126
15	0,75	4,73669	4	10,126
16	0,8	5,03588	4	10,126
17	0,85	5,33524	4	10,126
18	0,9	5,63482	4	10,126
19	0,95	5,93487	4	10,126
20	1	6,22428	0	10,126
Run	mole vap frac	inl Temp	avg density	gas viscosity
#		С	kg/m3	mPa-sec
0	0	40	1152,9	0,0132882
1	0,05	40	536,933	0,0132875
2	0,1	40	350,133	0,013287
3	0,15	40	259,746	0,0132867
4	0,2	40	206,443	0,0132863
5	0,25	40	171,285	0,013286
6	0,3	40	146,345	0,0132855
7	0,35	40	127,745	0,0132851
8	0,4	40	113,336	0,0132848
9	0,45	40	101,845	0,0132844
10	0,5	40	92,4674	0,013284
11	0,55	40	84,6689	0,0132836
12	0,6	40	78,0817	0,0132832
13	0,65	40	72,4436	0,0132828
14	0,7	40	67,5633	0,0132824
15	0,75	40	63,2976	0,013282
16	0,8	40	59 <i>,</i> 5369	0,0132816
17	0,85	40	56,1964	0,0132811
18	0,9	40	53,2087	0,0132806
19	0,95	40	50,5186	0,01328
20	1	40	48,1695	0,0132845

Run	mole vap frac	liq viscosity	liq density	liq mass rate
#		mPa-sec	kg/m3	kg/h
0	0	0,169477	1153,17	3,39285
1	0,05	0,169494	1153,21	3,22321
2	0,1	0,169506	1153,23	3,05356
3	0,15	0,169517	1153,26	2,88392
4	0,2	0,169527	1153,28	2,71428
5	0,25	0,169537	1153,3	2,54464
6	0,3	0,16955	1153,33	2,375
7	0,35	0,169561	1153,36	2,20535
8	0,4	0,169572	1153,38	2,03571
9	0,45	0,169583	1153,41	1,86607
10	0,5	0,169593	1153,43	1,69642
11	0,55	0,169605	1153,46	1,52678
12	0,6	0,169616	1153,48	1,35714
13	0,65	0,169628	1153,51	1,1875
14	0,7	0,169639	1153,53	1,01785
15	0,75	0,169651	1153,56	0,848213
16	0,8	0,169664	1153,59	0,67857
17	0,85	0,169677	1153,62	0,508927
18	0,9	0,169692	1153,65	0,339285
19	0,95	0,16971	1153,69	0,169642
20	1	0	0	0
Parameter	massestrom	4,5238	kg/h	
Run	mole vap frac	dp	dp_fric	dp_acc
#		bar	bar	bar
0	0	0,00595191	0,00595191	8,82E-10
1	0,05	0,0149044	0,0149015	2,82E-06
2	0,1	0,0208192	0,0208097	9,42E-06
3	0,15	0,0264424	0,0264222	2,02E-05
4	0,2	0,0325997	0,0325661	3,36E-05
5	0,25	0,0383689	0,0383172	5,17E-05
6	0,3	0,0441245	0,0440506	7,39E-05
7	0,35	0,0498888	0,0497888	0,000100026
8	0,4	0,055679	0,0555489	0,000130036
9	0,45	0,06151	0,0613463	0,000163729
10	0,5	0,0673965	0,0671956	0,000200837
11	0,55	0,0733536	0,0731126	0,000240989
12	0,6	0,0793994	0,0791156	0,000283697
13	0,65	0,0855567	0,0852283	0,000328319
14	0,7	0,091857	0,0914829	0,000374008
15	0,75	0,0983475	0,0979279	0,000419628
16	0,8	0,105106	0,104643	0,000463605
17	0,85	0,11228	0,111776	0,000503618
18	0,9	0,120202	0,119667	0,000535916
19	0,95	0,129981	0,129428	0,000553236
20	1	0,0848411	0,0848411	0

Run	mole vap frac	avg vel	flow regime	inl_pressure
#		m/sec		bar
0	0	0,347023	4	10,126
1	0,05	0,745358	3	10,126
2	0,1	1,14307	3	10,126
3	0,15	1,54091	3	10,126
4	0,2	1,93902	4	10,126
5	0,25	2,33726	4	10,126
6	0,3	2,73567	4	10,126
7	0,35	3,13427	4	10,126
8	0,4	3,53305	4	10,126
9	0,45	3,93203	4	10,126
10	0,5	4,33122	4	10,126
11	0,55	4,73061	4	10,126
12	0,6	5,13022	4	10,126
13	0,65	5,53006	4	10,126
14	0,7	5,93015	4	10,126
15	0,75	6,3305	4	10,126
16	0,8	6,73117	4	10,126
17	0,85	7,13221	4	10,126
18	0,9	7,53381	4	10,126
19	0,95	7,93646	4	10,126
20	1	8,31495	0	10,126
Run	mole vap frac	inl Temp	avg density	gas viscosity
#		С	kg/m3	mPa-sec
0	0	40	1151,97	0,0132877
1	0,05	40	536,334	0,0132868
2	0,1	40	349,726	0,0132861
3	0,15	40	259,431	0,0132855
4	0,2	40	206,166	0,0132848
5	0,25	40	171,038	0,0132842
6	0,3	40	146,129	0,0132835
7	0,35	40	127,545	0,0132829
8	0,4	40	113,149	0,0132822
9	0,45	40	101,668	0,0132816
10	0,5	40	92,298	0,0132809
11	0,55	40	84,5056	0,0132803
12	0,6	40	77,9232	0,0132796
13	0,65	40	72,2892	0,0132789
14	0,7	40	67,4121	0,0132782
15	0,75	40	63,1489	0,0132775
16	0,8	40	59,3901	0,0132767
17	0,85	40	56,0507	0,0132759
18	0,9	40	53,0629	0,0132751
19	0,95	40	50,3709	0,013274
20	1	40	48,0776	0,0132816

Run	mole vap frac	liq viscosity	liq density	liq mass rate	
#		mPa-sec	kg/m3	kg/h	
0	0	0,169485	1153,18	4,5238	
1	0,05	0,169513	1153,25	4,29761	
2	0,1	0,169532	1153,29	4,07142	
3	0,15	0,16955	1153,33	3,84523	
4	0,2	0,16957	1153,38	3,61904	
5	0,25	0,169589	1153,42	3,39285	
6	0,3	0,169607	1153,46	3,16666	
7	0,35	0,169626	1153,5	2,94047	
8	0,4	0,169644	1153,55	2,71428	
9	0,45	0,169663	1153,59	2,48809	
10	0,5	0,169682	1153,63	2,2619	
11	0,55	0,169701	1153,67	2,03571	
12	0,6	0,16972	1153,72	1,80952	
13	0,65	0,16974	1153,76	1,58333	
14	0,7	0,16976	1153,81	1,35714	
15	0,75	0,169781	1153,86	1,13095	
16	0,8	0,169803	1153,9	0,90476	
17	0,85	0,169826	1153,96	0,67857	
18	0,9	0,169852	1154,01	0,45238	
19	0,95	0,169883	1154,08	0,22619	
20	1	0	0	0	
Parameter	massestrom	5,65475	kg/h		
Run	mole vap frac	dp	dp_fric	dp_acc	
#		bar	bar	bar	
0	0	0,00875159	0,00875159	6,42E-10	
1	0,05	0,0220308	0,0220243	6,49E-06	
2	0,1	0,0308572	0,0308354	2,17E-05	
3	0,15	0,0393352	0,0392887	4,65E-05	
4	0,2	0,0487456	0,0486686	7,70E-05	
5	0.25				
6	0,25	0,0574617	0,0573429	0,000118777	
	0,25	0,0574617 0,0661704	0,0573429 0,0660004	0,000118777 0,000170001	
7	0,25 0,3 0,35	0,0574617 0,0661704 0,0749047	0,0573429 0,0660004 0,074674	0,000118777 0,000170001 0,000230609	
7 8	0,25 0,3 0,35 0,4	0,0574617 0,0661704 0,0749047 0,0836897	0,0573429 0,0660004 0,074674 0,0833893	0,000118777 0,000170001 0,000230609 0,000300383	
7 8 9	0,25 0,3 0,35 0,4 0,45	0,0574617 0,0661704 0,0749047 0,0836897 0,0925484	0,0573429 0,0660004 0,074674 0,0833893 0,0921694	0,000118777 0,000170001 0,000230609 0,000300383 0,000378938	
7 8 9 10	0,25 0,3 0,35 0,4 0,45 0,5	0,0574617 0,0661704 0,0749047 0,0836897 0,0925484 0,101502	0,0573429 0,0660004 0,074674 0,0833893 0,0921694 0,101037	0,000118777 0,000170001 0,000230609 0,000300383 0,000378938 0,000465693	
7 8 9 10 11	0,25 0,3 0,35 0,4 0,45 0,5 0,55	0,0574617 0,0661704 0,0749047 0,0836897 0,0925484 0,101502 0,110575	0,0573429 0,0660004 0,074674 0,0833893 0,0921694 0,101037 0,110015	0,000118777 0,000170001 0,000230609 0,000300383 0,000378938 0,000465693 0,000559841	
7 8 9 10 11 12	0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6	0,0574617 0,0661704 0,0749047 0,0836897 0,0925484 0,101502 0,110575 0,119794	0,0573429 0,0660004 0,074674 0,0833893 0,0921694 0,101037 0,110015 0,119134	0,000118777 0,000170001 0,000230609 0,000300383 0,000378938 0,000465693 0,000559841 0,000660296	
7 8 9 10 11 12 13	0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65	0,0574617 0,0661704 0,0749047 0,0836897 0,0925484 0,101502 0,110575 0,119794 0,129194	0,0573429 0,0660004 0,074674 0,0833893 0,0921694 0,101037 0,110015 0,119134 0,128428	0,000118777 0,000170001 0,000230609 0,000300383 0,000378938 0,000465693 0,000559841 0,000660296 0,000765618	
7 8 9 10 11 12 13 14	0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 0,7	0,0574617 0,0661704 0,0749047 0,0836897 0,0925484 0,101502 0,110575 0,119794 0,129194 0,138824	0,0573429 0,0660004 0,074674 0,0833893 0,0921694 0,101037 0,110015 0,119134 0,128428 0,13795	0,000118777 0,000170001 0,000230609 0,000300383 0,000378938 0,000465693 0,000465693 0,000559841 0,000660296 0,000765618 0,000873894	
7 8 9 10 11 12 13 14 15	0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 0,7 0,75	0,0574617 0,0661704 0,0749047 0,0836897 0,0925484 0,101502 0,110575 0,119794 0,129194 0,138824 0,148757	0,0573429 0,0660004 0,074674 0,0833893 0,0921694 0,101037 0,110015 0,119134 0,128428 0,13795 0,147775	0,000118777 0,000170001 0,000230609 0,000300383 0,000378938 0,000465693 0,000559841 0,000559841 0,000660296 0,000765618 0,000873894 0,000982536	
7 8 9 10 11 12 13 14 15 16	0,23 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 0,7 0,75 0,8	0,0574617 0,0661704 0,0749047 0,0836897 0,0925484 0,101502 0,110575 0,119794 0,129194 0,138824 0,148757 0,159116	0,0573429 0,0660004 0,074674 0,0833893 0,0921694 0,101037 0,110015 0,119134 0,128428 0,13795 0,147775 0,158028	0,000118777 0,000170001 0,000230609 0,000300383 0,000378938 0,000465693 0,000559841 0,000559841 0,000660296 0,000765618 0,000873894 0,000982536 0,00108795	
7 8 9 10 11 12 13 14 15 16 17	0,23 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85	0,0574617 0,0661704 0,0749047 0,0836897 0,0925484 0,101502 0,110575 0,119794 0,129194 0,129194 0,138824 0,148757 0,159116 0,170128	0,0573429 0,0660004 0,074674 0,0833893 0,0921694 0,101037 0,110015 0,119134 0,128428 0,13795 0,147775 0,158028 0,168943	0,000118777 0,000170001 0,000230609 0,000300383 0,000378938 0,000465693 0,000559841 0,000559841 0,000660296 0,000765618 0,000765618 0,000873894 0,000982536 0,00108795 0,00118483	
7 8 9 10 11 12 13 14 15 16 17 18	0,23 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85 0,9	0,0574617 0,0661704 0,0749047 0,0836897 0,0925484 0,101502 0,110575 0,119794 0,129194 0,138824 0,138824 0,148757 0,159116 0,170128 0,182318	0,0573429 0,0660004 0,074674 0,0833893 0,0921694 0,101037 0,110015 0,119134 0,128428 0,13795 0,147775 0,158028 0,168943 0,181053	0,000118777 0,000170001 0,000230609 0,000300383 0,000378938 0,000465693 0,000559841 0,000559841 0,000660296 0,000765618 0,000765618 0,000873894 0,000982536 0,00108795 0,00118483 0,00126461	
7 8 9 10 11 12 13 14 15 16 17 18 19	0,23 0,3 0,35 0,4 0,45 0,55 0,6 0,65 0,7 0,75 0,8 0,85 0,9 0,95	0,0574617 0,0661704 0,0749047 0,0836897 0,0925484 0,101502 0,110575 0,119794 0,129194 0,129194 0,138824 0,148757 0,159116 0,170128 0,182318 0,197436	0,0573429 0,0660004 0,074674 0,0833893 0,0921694 0,101037 0,110015 0,119134 0,128428 0,13795 0,147775 0,158028 0,168943 0,181053 0,196125	0,000118777 0,000170001 0,000230609 0,000300383 0,000378938 0,000465693 0,000559841 0,000660296 0,000765618 0,000873894 0,000982536 0,00108795 0,00118483 0,00126461 0,00131087	
7 8 9 10 11 12 13 14 15 16 17 18 19 20	0,23 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85 0,9 0,95 1	0,0574617 0,0661704 0,0749047 0,0836897 0,0925484 0,101502 0,110575 0,119794 0,129194 0,138824 0,148757 0,159116 0,170128 0,182318 0,197436 0,129463	0,0573429 0,0660004 0,074674 0,0833893 0,0921694 0,101037 0,110015 0,119134 0,128428 0,13795 0,147775 0,158028 0,168943 0,181053 0,196125 0,129463	0,000118777 0,000170001 0,000230609 0,000300383 0,000378938 0,000465693 0,000559841 0,000660296 0,000765618 0,000765618 0,000873894 0,000982536 0,00108795 0,00118483 0,00126461 0,00131087 0	

Run	mole vap frac	avg vel	flow regime	inl_pressure
#		m/sec		bar
0	0	0,43346	0	10,126
1	0,05	0,933016	3	10,126
2	0,1	1,4309	3	10,126
3	0,15	1,92901	4	10,126
4	0,2	2,4277	4	10,126
5	0,25	2,92659	4	10,126
6	0,3	3,42582	4	10,126
7	0,35	3,92542	4	10,126
8	0,4	4,42536	4	10,126
9	0,45	4,92568	4	10,126
10	0,5	5,4264	4	10,126
11	0,55	5,92751	4	10,126
12	0,6	6,42905	4	10,126
13	0,65	6,93104	4	10,126
14	0,7	7,4335	4	10,126
15	0,75	7,93649	4	10,126
16	0,8	8,44009	4	10,126
17	0,85	8,94442	4	10,126
18	0,9	9,44983	4	10,126
19	0,95	9,95732	4	10,126
20	1	10,4189	0	10,126
Run	mole vap frac	inl Temp	avg density	gas viscosity
#		С	kg/m3	mPa-sec
0	0	40	1152,82	0,0132881
1	0,05	40	535,578	0,013286
2	0,1	40	349,223	0,013285
3	0,15	40	259,047	0,0132841
4	0,2	40	205,834	0,013283
5	0,25	40	170,746	0,0132821
6	0,3	40	145,864	0,0132811
7	0,35	40	127,3	0,0132801
8	0,4	40	112,919	0,0132791
9	0,45	40	101,449	0,0132781
10	0,5	40	92,0883	0,0132771
11	0,55	40	84,3032	0,0132761
12	0,6	40	77,7268	0,0132751
13	0,65	40	72,0976	0,0132741
14	0,7	40	67,2243	0,013273
15	0,75	40	62,9641	0,0132719
16	0,8	40	59,2073	0,0132707
17	0,85	40	55,869	0,0132695
18	0,9	40	52,8812	0,0132681
19	0,95	40	50,1863	0,0132665
20	1	40	47,9617	0,0132781

Run	mole vap frac	liq viscosity	liq density	liq mass rate	
#		mPa-sec	kg/m3	kg/h	
0	0	0,169493	1153,2	5,65475	
1	0,05	0,169536	1153,3	5,37201	
2	0,1	0,169564	1153,36	5,08927	
3	0,15	0,169591	1153,43	4,80654	
4	0,2	0,169622	1153,49	4,5238	
5	0,25	0,16965	1153,56	4,24106	
6	0,3	0,169678	1153,62	3,95833	
7	0,35	0,169706	1153,68	3,67559	
8	0,4	0,169734	1153,75	3,39285	
9	0,45	0,169763	1153,81	3,11011	
10	0,5	0,169791	1153,88	2,82737	
11	0,55	0,169821	1153,94	2,54464	
12	0,6	0,16985	1154,01	2,2619	
13	0,65	0,16988	1154,08	1,97916	
14	0,7	0,169912	1154,15	1,69642	
15	0,75	0,169943	1154,22	1,41369	
16	0,8	0,169977	1154,3	1,13095	
17	0,85	0,170012	1154,38	0,848212	
18	0,9	0,170052	1154,46	0,565475	
19	0,95	0,1701	1154,57	0,282737	
20	1	0	0	0	

CHEMCAD	6.5.3	Page	1		
name:	Simulation_5_50	Date:	30.01.2014		Flow Regime
		Time:	13:54:33		0 single phase
Sensitivity Ana	lysis Report				1 segregated
multi_1					2 transition
					3 intermittent
Parameter	massestrom	2,2619	kg/h	4	distributed
Run	mole vap frac	dp	dp_fric	dp_acc	
#		bar	bar	bar	
0	0	0,00183137	0,00183137	2,35E-11	
1	0,05	0,00399748	0,00399737	1,05E-07	
2	0,1	0,005291	0,00529067	3,25E-07	
3	0,15	0,00651778	0,00651711	6,70E-07	
4	0,2	0,00770132	0,00770017	1,15E-06	
5	0,25	0,00885466	0,0088529	1,76E-06	
6	0,3	0,00998582	0,00998332	2,50E-06	
7	0,35	0,0111003	0,0110969	3,37E-06	
8	0,4	0,0122021	0,0121977	4,36E-06	
9	0,45	0,0132942	0,0132887	5,47E-06	
10	0,5	0,0148479	0,0148415	6,33E-06	
11	0,55	0,0160477	0,0160402	7,54E-06	
12	0,6	0,0172589	0,0172501	8,81E-06	
13	0,65	0,0184858	0,0184757	1,01E-05	
14	0,7	0,0197344	0,0197229	1,15E-05	
15	0,75	0,0210132	0,0210004	1,28E-05	
16	0,8	0,0223364	0,0223223	1,41E-05	
17	0,85	0,02373	0,0237148	1,52E-05	
18	0,9	0,0252531	0,025237	1,61E-05	
19	0,95	0,0270992	0,0270826	1,65E-05	
20	1	0,0179533	0,0179533	0	

Run	mole vap frac	avg vel	flow regime	inl_pressure
#		m/sec		bar
0	0	0,180258	0	13,1385
1	0,05	0,328277	3	13,1385
2	0,1	0,476251	3	13,1385
3	0,15	0,624236	3	13,1385
4	0,2	0,772225	3	13,1385
5	0,25	0,920227	3	13,1385
6	0,3	1,06824	3	13,1385
7	0,35	1,21626	3	13,1385
8	0,4	1,36429	3	13,1385
9	0,45	1,51232	3	13,1385
10	0,5	1,66041	4	13,1385
11	0,55	1,80848	4	13,1385
12	0,6	1,95656	4	13,1385
13	0,65	2,10465	4	13,1385
14	0,7	2,25276	4	13,1385
15	0,75	2,40088	4	13,1385
16	0,8	2,54902	4	13,1385
17	0,85	2,69718	4	13,1385
18	0,9	2,84536	4	13,1385
19	0,95	2,99361	4	13,1385
20	1	3,1404	0	13,1385
Run	mole vap frac	inl Temp	avg density	gas viscosity
#		С	kg/m3	mPa-sec
0	0	50	1108,85	0,0139694
1	0,05	50	608,876	0,0139692
2	0,1	50	419,694	0,0139691
3	0,15	50	320,199	0,0139689
4	0,2	50	258,836	0,0139688
5	0,25	50	217,207	0,0139687
6	0,3	50	187,112	0,0139686
7	0,35	50	164,34	0,0139685
8	0,4	50	146,509	0,0139684
9	0,45	50	132,167	0,0139682
10	0,5	50	120,38	0,0139681
11	0,55	50	110,524	0,0139679
12	0,6	50	102,159	0,0139678
13	0,65	50	94,9703	0,0139677
14	0,7	50	88,7266	0,0139676
15	0,75	50	83,2526	0,0139674
16	0,8	50	78,4143	0,0139673
17	0,85	50	74,1071	0,0139671
18	0,9	50	70,2476	0,013967
19	0,95	50	66,7688	0,0139668
20	1	50	63,6478	0,0139681

Run	mole vap frac	lia viscositv	lia density	lig mass rate
#		mPa-sec	kg/m3	kg/h
0	0	0,152406	1109,34	2,2619
1	0.05	0.152411	1109.36	2.14881
2	0.1	0.152414	1109.37	2.03571
3	0.15	0.152417	1109.38	1.92261
4	0.2	0.152419	1109.38	1.80952
5	0.25	0.152422	1109.39	1.69642
6	0.3	0.152424	1109.4	1.58333
7	0.35	0.152427	1109.41	1.47023
8	0.4	0.15243	1109.41	1.35714
9	0.45	0.152432	1109.42	1.24405
10	0.5	0.152436	1109.43	1.13095
11	0.55	0.152438	1109.44	1.01785
12	0.6	0.152441	1109.45	0.90476
13	0.65	0.152444	1109.45	0.791665
14	0.7	0.152447	1109.46	0.67857
15	0.75	0 15245	1109.47	0 565475
16	0.8	0 152/153	1109,47	0/5238
10	0,85	0,152455	1109,48	0,45258
10	0,85	0,152450	1109,49	0,339285
10	0,9	0,152459	1109,5	0,22019
19	0,95	0,152405	1109,51	0,113095
20	1	0	0	0
Parameter	massestrom	3,39285	kg/h	
Run	mole vap frac	db	dp fric	dp acc
#		bar	bar	bar
0	0	0.00362048	0.00362048	1.88E-10
1	0.05	0.00805086	0.00805038	4.71E-07
2	0.1	0.0107058	0.0107043	1.46F-06
3	0.15	0.0132294	0.0132264	3.03E-06
4	0.2	0.0156683	0.0156631	5,002,00
5	0.25	0.018048	0.01804	7 97F-06
6	0.3	0.0203845	0.0203732	1 14F-05
7	0.35	0,0203043	0.0232732	1,14E 05
8	0.4	0.0257779	0.0257592	1,45E 05
9	0,4	0,0237773	0,0237552	2 34E-05
10	0,45	0,0202744	0,0202505	2,54E-05
10	0,5	0,0307830	0,0307331	2,800-05
12	0,33	0,0353124	0,0352765	3,41E-03
12	0,6	0,0356065	0,0556265	4,00E-05
13	0,65	0,0384613	0,0384152	4,61E-05
14	0,7	0,0411038	0,0410515	5,24E-05
15	0,75	0,043815	0,0437564	5,86E-05
16	0,8	0,046626	0,0465614	6,46E-05
17	0,85	0,0495946	0,0495244	7,01E-05
18	0,9	0,0528516	0,052777	7,46E-05
19	0,95	0,0568275	0,0567503	7,72E-05
20	1	0,037772	0,037772	0

Run	mole vap frac	avg vel	flow regime	inl_pressure
#		m/sec		bar
0	0	0,270481	4	13,1385
1	0,05	0,492706	3	13,1385
2	0,1	0,714821	3	13,1385
3	0,15	0,936943	3	13,1385
4	0,2	1,15909	3	13,1385
5	0,25	1,38127	3	13,1385
6	0,3	1,60348	3	13,1385
7	0,35	1,82579	4	13,1385
8	0,4	2,04808	4	13,1385
9	0,45	2,27041	4	13,1385
10	0,5	2,49277	4	13,1385
11	0,55	2,71517	4	13,1385
12	0,6	2,93761	4	13,1385
13	0,65	3,16009	4	13,1385
14	0,7	3,38261	4	13,1385
15	0,75	3,60517	4	13,1385
16	0,8	3,8278	4	13,1385
17	0,85	4,05048	4	13,1385
18	0,9	4,27327	4	13,1385
19	0,95	4,49624	4	13,1385
20	1	4,71464	0	13,1385
Run	mole vap frac	inl Temp	avg density	gas viscosity
#		С	kg/m3	mPa-sec
0	0	50	1108,47	0,0139692
1	0,05	50	608,516	0,0139688
2	0,1	50	419,433	0,0139685
3	0,15	50	319,998	0,0139682
4	0,2	50	258,667	0,013968
5	0,25	50	217,06	0,0139677
6	0,3	50	186,98	0,0139675
7	0,35	50	164,214	0,0139672
8	0,4	50	146,391	0,0139669
9	0,45	50	132,055	0,0139667
10	0,5	50	120,276	0,0139664
11	0,55	50	110,424	0,0139661
12	0,6	50	102,063	0,0139659
13	0,65	50	94,8771	0,0139656
14	0,7	50	88,6358	0,0139653
15	0,75	50	83,1638	0,0139651
16	0,8	50	78,327	0,0139648
17	0,85	50	74,0209	0,0139644
18	0,9	50	70,1618	0,0139641
19	0,95	50	66,6825	0,0139637
20	1	50	63,5934	0,0139664

Run	mole vap frac	lig viscosity	lig density	lig mass rate
#	·	mPa-sec	, kg/m3	kg/h
0	0	0,15241	1109,36	3,39285
1	0,05	0,15242	1109,39	3,22321
2	0,1	0,152426	1109,4	3,05356
3	0,15	0,152432	1109,42	2,88392
4	0,2	0,152437	1109,44	2,71428
5	0,25	0,152443	1109,45	2,54464
6	0,3	0,152448	1109,47	2,375
7	0,35	0,152455	1109,49	2,20535
8	0,4	0,15246	1109,5	2,03571
9	0,45	0,152466	1109,52	1,86607
10	0,5	0,152472	1109,54	1,69642
11	0,55	0,152478	1109,55	1,52678
12	0,6	0,152483	1109,57	1,35714
13	0,65	0,152489	1109,59	1,1875
14	0,7	0,152495	1109,6	1,01785
15	0,75	0,152501	1109,62	0,848213
16	0,8	0,152508	1109,64	0,67857
17	0,85	0,152515	1109,66	0,508927
18	0,9	0,152522	1109,68	0,339285
19	0,95	0,152531	1109,71	0,169642
20	1	0	0	0
Parameter	massestrom	4,5238	kg/h	
Run	mole vap frac	dp	dp_fric	dp_acc
#		bar	bar	bar
0	0	0,00594674	0,00594674	4,63E-10
1	0,05	0,0132771	0,0132757	1,37E-06
2	0,1	0,0177103	0,017706	4,28E-06
3	0,15	0,0219321	0,0219233	8,87E-06
4	0,2	0,0260175	0,0260023	1,52E-05
5	0,25	0,0300079	0,0299845	2,34E-05
6	0,3	0,0348633	0,0348317	3,15E-05
7	0,35	0,03909	0,0390477	4,23E-05
8	0,4	0,0433208	0,0432661	5,47E-05
9	0,45	0,0475669	0,0474984	6,85E-05
10	0,5	0,0518395	0,0517558	8,37E-05
11	0,55	0,0561499	0,0560498	0,000100109
12	0,6	0,0605114	0,0603939	0,000117571
13	0,65	0,0649406	0,0648048	0,000135838
14	0,7	0,06946	0,0693054	0,000154592
15	0,75	0,074103	0,0739295	0,000173409
16	0,8	0,0789243	0,0787326	0,000191702
17	0,85	0,0840258	0,0838172	0,000208607
18	0,9	0,0896387	0,0894159	0,000222732
19	0,95	0,0965277	0,0962963	0,00023141
20	1	0,0645426	0,0645426	0

Run	mole vap frac	avg vel	flow regime	inl_pressure
#		m/sec		bar
0	0	0,360592	0	13,1385
1	0,05	0,657476	3	13,1385
2	0,1	0,953843	3	13,1385
3	0,15	1,25028	3	13,1385
4	0,2	1,54677	3	13,1385
5	0,25	1,84332	3	13,1385
6	0,3	2,14007	4	13,1385
7	0,35	2,43681	4	13,1385
8	0,4	2,73363	4	13,1385
9	0,45	3,03052	4	13,1385
10	0,5	3,3275	4	13,1385
11	0,55	3,62456	4	13,1385
12	0,6	3,92171	4	13,1385
13	0,65	4,21895	4	13,1385
14	0,7	4,51629	4	13,1385
15	0,75	4,81373	4	13,1385
16	0,8	5,11131	4	13,1385
17	0,85	5,40903	4	13,1385
18	0,9	5,70697	4	13,1385
19	0,95	6,00537	4	13,1385
20	1	6,29347	0	13,1385
Run	mole vap frac	inl Temp	avg density	gas viscosity
#		С	kg/m3	mPa-sec
0	0	50	1108,62	0,0139692
1	0,05	50	608,022	0,0139682
2	0,1	50	419,104	0,0139678
3	0,15	50	319,737	0,0139673
4	0,2	50	258,449	0,0139669
5	0,25	50	216,87	0,0139665
6	0,3	50	186,798	0,013966
7	0,35	50	164,051	0,0139655
8	0,4	50	146,238	0,0139651
9	0,45	50	131,911	0,0139647
10	0,5	50	120,138	0,0139642
11	0,55	50	110,292	0,0139638
12	0,6	50	101,935	0,0139633
13	0,65	50	94,7537	0,0139628
14	0,7	50	88,5154	0,0139624
15	0,75	50	83,046	0,0139619
16	0,8	50	78,2111	0,0139614
17	0,85	50	73,9063	0,0139609
18	0,9	50	70,0481	0,0139603
19	0,95	50	66,5674	0,0139596
20	1	50	63,5199	0,0139641

Run	mole vap frac	liq viscosity	liq density	liq mass rate
#		mPa-sec	kg/m3	kg/h
0	0	0,152415	1109,37	4,5238
1	0,05	0,152432	1109,42	4,29761
2	0,1	0,152442	1109,45	4,07142
3	0,15	0,152452	1109,48	3,84523
4	0,2	0,152461	1109,5	3,61904
5	0,25	0,15247	1109,53	3,39285
6	0,3	0,152481	1109,56	3,16666
7	0,35	0,152491	1109,59	2,94047
8	0,4	0,1525	1109,62	2,71428
9	0,45	0,15251	1109,65	2,48809
10	0,5	0,15252	1109,67	2,2619
11	0,55	0,152529	1109,7	2,03571
12	0,6	0,152539	1109,73	1,80952
13	0,65	0,152549	1109,76	1,58333
14	0,7	0,15256	1109,79	1,35714
15	0,75	0,15257	1109,82	1,13095
16	0,8	0,152581	1109,85	0,90476
17	0,85	0,152593	1109,89	0,67857
18	0,9	0,152606	1109,92	0,45238
19	0,95	0,152621	1109,97	0,22619
20	1	0	0	0
Parameter	massestrom	5,65475	kg/h	
Run	mole vap frac	dp	dp_fric	dp_acc
#		bar	bar	bar
0	0	0,00881608	0,00881608	1,48E-09
1	0,05	0,0196108	0,0196076	3,15E-06
2	0,1	0,0262208	0,026211	9,85E-06
3	0,15	0,0325247	0,0325042	2,05E-05
4	0,2	0,0392063	0,0391724	3,39E-05
5	0,25	0,0457739	0,0457228	5,11E-05
6	0,3	0,0521677	0,0520953	7,23E-05
7	0,35	0,0585547	0,0584574	9,73E-05
8	0,4	0,0649543	0,0648284	0,000125892
9	0,45	0,0713837	0,0712257	0,000157979
10	0,5	0,0778594	0,0776661	0,000193329
11	0,55	0,0843989	0,0841673	0,000231634
12	0,6	0,0910223	0,0907499	0,000272488
13	0,65	0,0977552	0,0974398	0,000315352
14	0,7	0,104632	0,104273	0,000359515
15	0,75	0,111705	0,111301	0,00040402
16	0.0	0 119059	0,118612	0,000447538
	0,8	0,119099		
17	0,8 0,85	0,126853	0,126365	0,000488116
17 18	0,8 0,85 0,9	0,126853 0,135448	0,126365 0,134926	0,000488116 0,000522606
17 18 19	0,8 0,85 0,9 0,95	0,126853 0,135448 0,146043	0,126365 0,134926 0,145498	0,000488116 0,000522606 0,00054506

Run	mole vap frac	avg vel	flow regime	inl_pressure
#		m/sec		bar
0	0	0,450851	0	13,1385
1	0,05	0,822637	3	13,1385
2	0,1	1,19347	3	13,1385
3	0,15	1,56441	3	13,1385
4	0,2	1,93553	4	13,1385
5	0,25	2,30682	4	13,1385
6	0,3	2,67821	4	13,1385
7	0,35	3,04975	4	13,1385
8	0,4	3,42143	4	13,1385
9	0,45	3,79326	4	13,1385
10	0,5	4,16525	4	13,1385
11	0,55	4,5374	4	13,1385
12	0,6	4,90972	4	13,1385
13	0,65	5,28221	4	13,1385
14	0,7	5,6549	4	13,1385
15	0,75	6,02779	4	13,1385
16	0,8	6,40093	4	13,1385
17	0,85	6,77437	4	13,1385
18	0,9	7,14824	4	13,1385
19	0,95	7,52297	4	13,1385
20	1	7,87832	0	13,1385
Run	mole vap frac	inl Temp	avg density	gas viscosity
#		С	kg/m3	mPa-sec
0	0	50	1108,35	0,0139687
1	0,05	50	607,438	0,0139676
2	0,1	50	418,696	0,0139669
3	0,15	50	319,417	0,0139662
4	0,2	50	258,173	0,0139655
5	0,25	50	216,619	0,0139649
6	0,3	50	186,58	0,0139642
7	0,35	50	163,85	0,0139635
8	0,4	50	146,051	0,0139628
9	0,45	50	131,734	0,0139622
10	0,5	50	119,969	0,0139615
11	0,55	50	110,13	0,0139608
12	0,6	50	101,778	0,0139601
13	0,65	50	94,6012	0,0139594
14	0,7	50	88,3665	0,0139587
15	0,75	50	82,9	0,013958
16	0,8	50	78,0675	0,0139572
17	0,85	50	73,7641	0,0139564
18	0,9	50	69,9062	0,0139555
19	0,95	50	66,4242	0,0139544
20	1	50	63,4275	0,0139612

Run	mole vap frac	liq viscosity	liq density	liq mass rate
#		mPa-sec	kg/m3	kg/h
0	0	0,152422	1109,39	5,65475
1	0,05	0,152446	1109,46	5,37201
2	0,1	0,152461	1109,51	5,08927
3	0,15	0,152476	1109,55	4,80654
4	0,2	0,152491	1109,59	4,5238
5	0,25	0,152506	1109,63	4,24106
6	0,3	0,15252	1109,68	3,95833
7	0,35	0,152535	1109,72	3,67559
8	0,4	0,152549	1109,76	3,39285
9	0,45	0,152564	1109,8	3,11011
10	0,5	0,152579	1109,85	2,82737
11	0,55	0,152594	1109,89	2,54464
12	0,6	0,152609	1109,93	2,2619
13	0,65	0,152624	1109,98	1,97916
14	0,7	0,15264	1110,02	1,69642
15	0,75	0,152656	1110,07	1,41369
16	0,8	0,152673	1110,12	1,13095
17	0,85	0,15269	1110,17	0,848212
18	0,9	0,15271	1110,23	0,565475
19	0,95	0,152734	1110,3	0,282737
20	1	0	0	0

CHEMCAD	6.5.3	Page	1		
					Flow Regime
Simulation name	e: Simulation_10	Date:	30.01.2014		0 single phase
		Time:	14:10:21		1 segregated
Sensitivity Analys	sis Report				2 transition
multi_1					3 intermittent
					4 distributed
Parameter	massestrom	1,2313	kg/h		
Run	mole vap frac	dp	dp_fric	dp_acc	
#		bar	bar	bar	
0	0	0,151036	0,151034	2,07E-06	
1	0,05	0,312526	0,312421	0,000105632	2
2	0,1	0,41739	0,417082	0,000307536	5
3	0,15	0,519728	0,51911	0,000618677	7
4	0,2	0,620991	0,619944	0,00104714	
5	0,25	0,721981	0,720382	0,00159943	
6	0,3	0,823269	0,820989	0,00228088	
7	0,35	0,925307	0,922211	0,00309574	
8	0,4	1,02844	1,0244	0,00404662	
9	0,45	1,13304	1,1279	0,00513486	
10	0,5	1,23943	1,23307	0,00635974	
11	0,55	1,348	1,34028	0,00771827	
12	0,6	1,45921	1,45001	0,00920457	
13	0,65	1,57366	1,56285	0,0108089	
14	0,7	1,69213	1,67961	0,0125158	
15	0,75	1,81586	1,80156	0,0143026	
16	0,8	1,94688	1,93075	0,0161352	
17	0,85	2,0891	2,07114	0,0179608	
18	0,9	2,25188	2,23219	0,0196958	
19	0,95	2,47153	2,4503	0,0212228	
20	1	1,61816	1,61816	0	

Run	mole vap frac	avg vel	flow regime	inl_pressure
#		m/sec		bar
0	0	0,704598	4	13,9181
1	0,05	1,25452	4	13,9181
2	0,1	1,79749	4	13,9181
3	0,15	2,34319	4	13,9181
4	0,2	2,89204	4	13,9181
5	0,25	3,44405	4	13,9181
6	0,3	3,99937	4	13,9181
7	0,35	4,55825	4	13,9181
8	0,4	5,12078	4	13,9181
9	0,45	5,68722	4	13,9181
10	0,5	6,25778	4	13,9181
11	0,55	6,8327	4	13,9181
12	0,6	7,41234	4	13,9181
13	0,65	7,99711	4	13,9181
14	0,7	8,58749	4	13,9181
15	0,75	9,1843	4	13,9181
16	0,8	9,78877	4	13,9181
17	0,85	10,4031	4	13,9181
18	0,9	11,0322	4	13,9181
19	0,95	11,6934	4	13,9181
20	1	11,8251	0	13,9181
Run	mole vap frac	inl Temp	avg density	gas viscosity
#		С	kg/m3	mPa-sec
0	0	52,3	1064,33	0,0141229
1	0,05	52,3	597,91	0,0141082
2	0,1	52,3	417,312	0,0140975
3	0,15	52,3	320,143	0,014087
4	0,2	52,3	259,406	0,0140767
5	0,25	52,3	217,848	0,0140665
6	0,3	52,3	187,618	0,0140563
7	0,35	52,3	164,633	0,014046
8	0,4	52,3	146,567	0,0140356
9	0,45	52,3	131,987	0,0140251
10	0,5	52,3	119,971	0,0140144
11	0,55	52,3	109,895	0,0140036
12	0,6	52,3	101,321	0,0139925
13	0,65	52,3	93,9311	0,0139811
14	0,7	52,3	87,4935	0,0139694
15	0,75	52,3	81,8291	0,0139572
16		523	76.7986	0,0139444
47	0,8	52,5		,
17	0,8 0,85	52,3	72,2886	0,0139305
17 18	0,8 0,85 0,9	52,3 52,3 52,3	72,2886 68,1963	0,0139305 0,0139149
17 18 19	0,8 0,85 0,9 0,95	52,3 52,3 52,3 52,3	72,2886 68,1963 64,3828	0,0139305 0,0139149 0,0138944

Run	mole vap frac	liq viscosity	liq density	liq mass rate
#		mPa-sec	kg/m3	kg/h
0	0	0,149126	1099,53	1,2313
1	0,05	0,149472	1100,59	1,16973
2	0,1	0,149694	1101,26	1,10817
3	0,15	0,149911	1101,92	1,0466
4	0,2	0,150127	1102,57	0,98504
5	0,25	0,150343	1103,21	0,923475
6	0,3	0,150561	1103,86	0,86191
7	0,35	0,150781	1104,51	0,800345
8	0,4	0,151004	1105,17	0,73878
9	0,45	0,151231	1105,83	0,677215
10	0,5	0,151462	1106,51	0,61565
11	0,55	0,151699	1107,19	0,554085
12	0,6	0,151943	1107,9	0,49252
13	0,65	0,152195	1108,62	0,430955
14	0,7	0,152456	1109,36	0,36939
15	0,75	0,15273	1110,14	0,307825
16	0,8	0,15302	1110,95	0,24626
17	0,85	0,153336	1111,84	0,184695
18	0,9	0,153697	1112,84	0,12313
19	0,95	0,154173	1114,14	0,061565
20	1	0	0	0