
Fakultät Technik und Informatik

Department Informatik

Faculty of Engineering and Computer Science

Department of Computer Science

Hasbi Adenan

A development environment for interactive

installations combining gesture recognition and

human character animation

Bachelorarbeit

Hasbi Adenan

A development environment for interactive

installations combining gesture recognition and

human character animation

Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung

im Studiengang Bachelor of Science Angewandte Informatik

am Department Informatik

der Fakultät Technik und Informatik

der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer : Prof. Dr. Birgit Wendholt

Zweitgutachter : Prof. Dr. Philipp Jenke

Hasbi Adenan

Thema der Arbeit

Eine Entwicklungsumgebung für interaktive Installationen kombiniert mit Gestenerkennung

und menschlicher Charakter-Animation

Stichworte

Computer Animation, Computergrafiken, interaktive Installation, Skelet Animation, Skinning

Kurzzusammenfassung

Der Zweck für diese Arbeit ist eine Umgebung für interaktive Applikationen zu entwickeln.

Bei Benutzung der entwickelten Umgebung kann man einen menschlichen Charakter aus

Bildern modellieren und mit ihm eine Interaktive Applikation zu entwickeln. Die entwickelte

Applikation hat zwei Funktionalitäten: Imitation von Menschen und Interaktion durch

Gesten-Erkennung und Charakter Animation. Mit dieser Entwicklungsumgebung braucht der
Entwickler keine Programmiererfahrung.

Hasbi Adenan

Title of the paper

A development environment for interactive installations combining gesture recognition and

human character animation

Keywords

Computer Animation, Computer Graphic, Interactive Installation, Skeletal Animation,

Skinning

Abstract

The aim of this thesis is to develop a new environment for creating interactive installation

using character animation. The developer of the environment should be able to create virtual

characters from image input that could imitate participant movement and interact with

participants. The interactive application with those functionalities could be developed

without having any prior programming knowledge.

Contents

1 INTRODUCTION .. 6

1.1 GOALS ... 7
1.2 OVERVIEW .. 8

2 RELATED WORK .. 9

2.1 IMITATION .. 9
2.1.1 Talk to the Virtual Hands .. 9
2.1.2 Puppet Parade ... 10

2.2 INTERACTION ... 12
2.2.1 Virtual Superheroes ... 12
2.2.2 IMoSA .. 13

2.3 CONCLUSION ... 14

3 THEORETICAL BACKGROUND ... 15

3.1 COMPUTER ANIMATION .. 15
3.1.1 Key-frame System and Interpolation Technique ... 16

Interpolation ... 18
3.2 MODELING AND ANIMATING HUMAN CHARACTERS .. 20

3.2.1 Motion Control over Body ... 20
Hierarchical Modeling ... 20
Skeleton Definition .. 26

3.2.2 Kinematic Methods for Skeleton Animation ... 27
Forward Kinematic .. 28
Inverse Kinematics .. 28

3.2.3 Creation of Human Shapes .. 31
Polygonal Representation ... 33
Texturing ... 34
Skinning ... 35

3.3 MOTION CAPTURE.. 37
3.4 CONCLUSION ... 40

4 METHODOLOGY ... 42

4.1 FUNCTIONAL REQUIREMENTS ... 42
Character Modeling ... 42
Imitation .. 42

Interaction ... 43
4.2 NON-FUNCTIONAL REQUIREMENTS .. 43

Performance .. 43
Usability ... 43

4.3 SYSTEM DESIGN AND SOLUTIONS .. 43
Skeleton Component ... 43
Shape Component ... 44
Motion Capture Component ... 44
Gesture Component .. 44
Animation Component .. 45
Conclusion ... 45

4.4 TOOL AND LIBRARIES ... 47
4.4.1 Unity .. 47

Workflow and Primary Objects in Unity (GameObject, Component, and Assets) 48
GameObject and Component .. 49
Assets .. 49
Parenting system ... 50
Scripting in Unity ... 50
Creating Mesh in Unity .. 55
Animation System ... 57
Conclusion ... 59

4.4.2 Libraries ... 60
4.4.3 Conclusion ... 61

4.5 DESIGN .. 62
4.5.1 Component Overview .. 62
4.5.2 System Implementation .. 65

CharacterController ... 65
PolygonController.. 69
Gesture .. 73

4.5.3 Implementation Environment ... 81
4.6 CONCLUSION ... 82

5 CONCLUSION .. 83

6 APPENDIX .. 85

6.1 CONFIGURING UNITY .. 85
6.2 CHARACTER MODELING ... 86

6.2.1 Creating Skeleton .. 86
6.2.2 Creating Shape .. 87

6.3 IMITATION .. 91
6.4 INTERACTIVE .. 92

6.4.1 Creating template gesture .. 92
6.4.2 Creating animation ... 96
6.4.3 Attach gesture to animation ... 98
6.4.4 Gesture recognition ... 99

BIBLIOGRAPHY ... 100

TABLE OF FIGURES .. 105

1 Introduction

Interactive art installation has become one of the most interesting new forms of art

nowadays. This art form emphasizes the involvement of the audience to achieve its purpose.

Communications between human and machine are not limited only to keyboard input or

mouse click, but also include natural human gestures and voices. These natural ways to

interact with technologies make it easier for people to acquaint themselves with the

interface, and operate machines and devices. This kind of interface is also known as Natural

User Interface (NUI) where natural human movements (such as gestures) are used for input.

Camera and computer vision techniques are used to recognize and read gestures of people
[Nobl09], and by using the combination of movements of body parts, they enable the user to

experience a greater degree of freedom in terms of user experience and object manipulation.

For example, these include using two hands to stretch an object or make it bigger in the

virtual world. Such movements are easier and more natural than when using a mouse or a

keyboard, hence easy to learn and enhance user experience.

Even though a system can perceive human behavior through NUI, it should be able to react

intelligently and give feedback to the audience accordingly. No matter how much a system

can "read," it would be nothing if the output is not satisfying or sufficient. The output media

in interactive installation should give intelligent reactions to the audience so that he/she

knows what kinds of action provoke a response [Krue77]. One medium output that can be
used for creating interesting reaction based on participant is by using a virtual character.

Using a virtual character, an interactive installation can imitates the movement of participant

or create an interactive scenario between participant and character.

Interaction with virtual characters with natural user interface has gained increasing attention

over the past few years. With rapid developments in hardware and software technology,

such interactive art is on high demand for commercial and research purposes.

Unfortunately, developing an interactive application from scratch usually requires

understanding of specific and complex systems. Hence, there is a need for a general tool for

developing this kind of interactive art that lightens the burden of developing installation for

artists and developers without giving up the freedom of creativity.

Introduction 7

1.1 Goals

This thesis seeks to introduce a new environment for developing interactive installations
using character animation, bringing together the NUI aspect and interactive animation. The

developed environment should have the following requirements:

1. Character modeling based on images

2. Imitation of participants' movements with virtual characters

3. Interactive application with gesture recognition and animation of virtual characters

Character modeling requires systems to be able to model and create virtual characters for

interactive application. This functionality requires a developer to create virtual characters

based on character textures from the developer. The character created from this system will

move into the 2D world.

Imitation of participant’s movement requires a system’s capabilities to read and recognize

relevant anatomical features of a participant and to transform it into movement of virtual

character. The animated character is in human shape and should move according to

participant’s movement. However the detail aspects of human shape like finger or face

expression are not considered in this thesis.

Interactive virtual character involves recognizing input gestures from participants and

creating animation sequences in response. When developing an application with this

environment, the developer could define "template" gestures for recognizing input, create

character animation sequences as output response, and finally connect between “template”

gestures and animation sequences. Later in the finished application, this information will be
used for creating interactive scenarios between the participant and the virtual character,

where the gesture from the participant will be “recognized” and triggers the animation

output.

The solution provided within this thesis will utilize existing, suitable tools and algorithms in

order to implement the requirements.

Introduction 8

1.2 Overview

This thesis will be divided into five chapters. After the introduction, the second chapter will
briefly discuss the projects that have similar functionality to the developed system. This

chapter will be further divided into two sections—imitation and interaction.

In the third chapter, this thesis will examine the theoretical background for the developed

environment. This chapter will focus on three aspects—the foundation of computer

animation, character modeling and motion capture systems.

The fourth chapter of this thesis concentrates on the implementation of the developed

environment. In this chapter the functional and non-functional requirements will be
described and the system solutions to the requirements will be proposed. This chapter will

then go on to examine the tools and external libraries for creating the solutions. Combining

external libraries and selected tools, the desired environment will be created.

Finally, in the chapter Conclusion, the evaluation of the overall system will be presented. This

chapter will also discuss the possibilities of extending the functionality of the developed

system.

Related Work 9

2 Related Work

This chapter describes previous works related to aspects and requirements mentioned in the
introduction. The following projects in the first subchapter are installations that use imitation

functionality. Using information from motion capture data, projects such as Talk to the

Virtual Hands and Puppet Parade create character imitation of human body parts.

 The second subchapter mainly focuses on projects with interaction. Projects Virtual

Superheroes and IMoSa present examples of interaction with the system with the help of

motion capture. This chapter will be concluded with a discussion of the advantages and

disadvantages of each system and how some aspects of the related studies will be used in

this thesis.

2.1 Imitation

2.1.1 Talk to the Virtual Hands

The focus of the experiment from Dodds et al. [DoMB11] is to study non-verbal

communication using virtual reality (VR) as a medium. In this experiment, participants wore

a head-mounted display and were given a self-animated avatar that follows their

movements. The participants would see the virtual world and their avatar from a first/third-
person perspective through the head-mounted display.

In one of the experiments, the participants play a describer-guesser game1. This task is

divided into two sessions. The first session is where the participants can play the game with

self-animated avatars (avatars follows the participants movement) and verbal

communication. The other session is to play the game where the avatars are static and the

1 One have to describes a word without saying the word itself and the other have to guess the word

Related Work 10

participants can only communicate verbally. The experiment compares the participant’s

performances in both sessions.

Figure 2.1 virtual world avatar follows gesture from participants (left) is how the participant saw each other in

VR world

Technical environment:

Body movements of each participant would be tracked by an optical tracking system and

mapped onto the avatar. For tracking the movements, participants wore six markers that

would be used for tracking their hands, feet, body, and head (Figure 2.1). The joint positions

that are not tracked (such as elbow) are calculated through inverse-kinematics algorithm. A

software package called Virtools 4.1 was used for creating a VR world, while 16 Vicon MX13

cameras were used to track the markers on the participants' bodies.

The result from this experiment is that participants perform better when the avatar is self-

animated (imitate). In the VR world, the participants could communicate better with body

gestures available.

2.1.2 Puppet Parade

Puppet parade [Desi11] is an interactive installation from Watson et al of Design I/O. This

installation imitates the hand and arm movements for creating bird puppets on a screen. This

installation premiered at the 2011 Cinekid festival in Amsterdam.

This installation projects large bird puppets on a wall that imitates the hand and arm

movement of participant (puppeteers) (figure 2.2 left). The puppeteers can control the birds’

Related Work 11

neck and mouth movement using arm and finger movement and interact with the audience

(children).

Figure 2.2 (left) Puppet Parade in runtime. (Right) skeleton point from thumb and the forefinger will be created

for controlling bird-avatar’s beak.

Technical environment:

In this installation, a Kinect camera will be used for getting the silhouette of the hand while

the system will track the skeleton point from the depth image of Kinect. The system will

calculate the arm skeleton points from this information (including thumb and forefinger for

the puppets mouth movement). These skeleton points movement will be mapped onto the

bird model for imitating the hand movements. The system also tracks the movement in 3D

so the puppet can look towards /away the audience when the arm rotates towards/away

from the Kinect.

The system is supported by the Kinect library and driver, but the imitation functionality is

limited to the arm and finger imitation. The system uses the Xbox Kinect sensor and is
developed in openFrameworks with ofxKinect (as its Kinect wrapper) and libfreenect (as

Kinect driver).

Related Work 12

2.2 Interaction

2.2.1 Virtual Superheroes

Virtual Superheroes is a project by Rosenberg et al. [RoBB13] of Stanford University. The aim

of this project is to study participants' behavior after a flying experience in the VR world. Each

participant interacts with their movements in the virtual world by moving their hands.

Technical environment:

In this experiment, participants will wear a head-mounted display, and three optical markers

on the head and both hands. For detecting the markers, eight optical infrared cameras are
used. The system will detect the position based on those three markers and respond to the

movement in the virtual world. When the participants raise their hands higher than their

heads, they will fly higher in the virtual city.

Figure 2.3 (left) virtual world which participant see through head mounted display. (Right) participant raises

their arm for flying simulation

Related Work 13

2.2.2 IMoSA

IMoSa (Imitation Mechanisms and Motor Cognition for Social Embodied Agents) [SaKo11] is

a project by the Social Cognitive Systems Group of Bielefeld University. This project focuses

on developing a motor cognition mechanism and to apply it to the behavior of a robot avatar

called VINCE.

Technical environment:

The system works as follows: participants' hand movements will be tracked using a time-of-

flight camera and a tracking software. After tracking the participants' hand movements, the

system starts recognizing the gesture and the robot avatar reacts in response to the

recognized movements. If the robot avatar recognizes a gesture, it will tell the participant

the name of the gesture and then recreates the participant’s movement.

Figure 2.4 (left) participant tries to draw a circle hand-movement in IMoSa (right) the process of recognizing the

hand movement

The process of recognizing gestures in this system occurs within a fixed time. Within this time,

the participant will move their hand(s) in a loop and the system will try to match the
participant’s hand-movement with template gestures. Based on the frequency of recognized

template gestures in a fixed time, the system will decide which gesture does the participant’s

movement belongs. If the gesture is not recognizable, the system provides possibilities to

save it as a new template gesture.

Related Work 14

2.3 Conclusion

There are many projects and interactive installations involving character imitation and
interactive functionality. This chapter shown that for creating such interactive installation, a

motion capture system is needed. The first part of this chapter shows an example of imitation

functionality with marker-based [DoMB11] and marker-less motion capture [Desi11]. While

marker-based system requires participant to wear multiple markers on their bodies, the

marker-less motion capture doesn’t require any markers. Both of the systems show basic

requirements for creating imitation functionality: the system should be able to track the joint

position from a participant and to map it onto the avatar for creating imitation in real time.

The avatar will follows the participant movement based on the avatar skeleton.

The experience from Puppet Parade shows that interactive installations using marker-less
motion capture is more flexible and suitable for interactive installation. Therefore, this thesis

will use a marker-less motion capture system.

Section 2.2 focusses on projects with interaction functionality. The first project [RoBB13]

shows an example of physical interaction in a virtual environment (interaction without

interpreting gestures). As opposed to this, the project IMoSa [SaKo11] proposes a solution to

interactions using gesture-recognizer algorithm. A gesture-based interaction is more suitable

for this thesis since it gives the freedom of interpreting human behavior and reacting with

appropriate response of an avatar

Creating character animation with imitation and interaction functionality will not only

require motion capture system but also an animation system and a character modelling
functionalities. The next chapter serves as the theoretical background for these

functionalities.

Theoretical Background 15

3 Theoretical Background

This section will discuss the background theory that will be used in this thesis. The first two
sections focus on character animation and character modelling: Section 3.1 explains how

computer animation works and which functionality computer animation does have in

relation to traditional animation. Section 3.2 describes the kinematic model of human

characters followed by the basic of human character representation in computer animation.

Section 3.3 describes techniques of motion capture that will be used for imitation and

interaction requirement. The conclusion will show how the theory presented in this thesis

should be applied in implementation.

3.1 Computer Animation

Animation is rapid display of sequential images that create an illusion of movement. A single
image that is being used in animation is called frame. A traditional animation frame was

created from hand-drawn images in the past. There are two ways to animate following

traditional animation: straight ahead and pose-to-pose.

The term straight ahead means drawing frame by frame from the beginning to end of a

sequence while in the pose-to-pose method, the animator decides the most important

drawings in one movement sequence and draws them first then gives these main drawings

(also known as key frame) to an assistant who will create intermediate drawings between

these images (for example, see Figure 3.1). The process of filling in frames between the key

frames is called inbetweening.

Theoretical Background 16

Figure 3.1: (a) In the pose-to-pose method the important drawings are first to be drawn (in red line) and

intermediate drawings in inbetweening (in gray lines); (b) in the straight-ahead method the frames are drawn

one by one from the start to end of a sequence.

3.1.1 Key-frame System and Interpolation Technique

The idea of creating movement between poses, as in the pose-to-pose method of hand-
drawn animation, is also used in computer animation [Lass87]. Unlike traditional animation,

computer animation does not use drawings or shapes to determine a key frame but uses

values known as key values. Inbetweening happens when these values are interpolated

between two key frames (also known as interpolation2).

Before key values and how interpolation works in computer animation is discussed, it is

necessary to understand the basic representation of animation. Moving objects seen in

computer animation are basically objects that are transformed from their original defining

space (object space) into other intermediate spaces until they are mapped onto the monitor.

Spaces are the environments of objects, and they are represented in a coordinate system.

Object data is the representation of an object that is being animated and usually is defined
by data points. In computer graphics these data points are referred to as vertices and used

to define an object of animation.

2 The terms interpolation in computer animation is basically inbetweening in traditional animation.

Theoretical Background 17

Object space is a coordinate system that is unique for each object. The data of an object is

usually centered on the origin, which is also called origin point (0, 0, 0). The object that is

defined by its vertices is transformed from object space through translations, rotations, and

scales into world space. World space is the space in which objects are assembled in order to

create an environment to be viewed by the observer (Figure 3.2) [Pare08].

Figure 3.2: Transforming objects between spaces [Pare08] p. 45.

Eye space has a coordinate system like that of the world space, except it considers the

observer’s position as the origin. Objects in world space will be transformed so that their
positions become relative to the observer. The next transformation is from eye space to

Theoretical Background 18

image space. This transformation can create either perspective projection or orthographic

projection. Orthographic projection keeps the object at its original size, but perspective

projection creates a 3D perspective for the object and could create deformation. Figure 3.2

shows an example of transformation into the perspective projection within eye space. Finally,

the object will be clipped and mapped on the screen in screen space [Pare08].

Interpolation

An animation following the previous process of bringing the object from object space to

screen space is created by altering object transformations in one space over time. It can be

created by modifying the objects’ position or orientation in world space over time, or by

modifying the object scale and its display attributes (such as color or transparency) over time.

An animation can also be made by changing the observer’s orientation and position over
time—both of which create object movement3. These (transformation) attributes are values

used in the interpolation function as parameters to create animation, and they are also

modified over time.

In key-frame systems, the animator4 usually has to determine the position, orientation, and

scale transformation of an object in the so-called key values while the computer interpolates

the intermediate frames. The interpolation technique is used to create new values in these

intermediate frames.

As an example, we have two points that serve as key frames: A and B. The key frame A is

located in position (0, 0) by frame 0, while the key frame B is located in position (10, 0) by

frame 5 (shown in Figure 3.2).

3 In reality, the object can have no animation. However, it creates illusion of movement by changing

the viewer’s movement.

4 In traditional animation, animators are those people who draw frames. But in computer animation,

animators are those artists who use programs to create animation.

Theoretical Background 19

Figure 3.3: Example of two key frames with its value (position).

Interpolation technique will be used in this example to create intermediate values for frame

1 to 4. If the desired animation is a movement from key value (0, 0) to key value (10, 0) along
a straight line, then the proper interpolation technique is conducted with the help of a linear

interpolation function. When there are two coordinates, as described in (x0, y0) and (x1, y1),

then linear interpolant is the straight line between the two given point. Figure 3.3 shows the

result from interpolation (drawn in black point).

Figure 3.4: Key frames with their interpolated values.

The previous example shows an interpolation by using one parameter (x-coordinate) of the

object being interpolated, as the y-coordinate is constant. A linear interpolation function is

chosen because of its simplicity; but what if the point has to move along a curved line, or the

point has to be accelerated to arrive in frame 5 with the desired designated speed? More

parameters would then be involved in the interpolation function since the complexity is
higher.

Theoretical Background 20

A tool, which will be introduced later, supports the animation of the key frame system where

the user can freely change the function and control the animated object’s movement.

3.2 Modeling and Animating Human Characters

This section explains how animation and data representation of a human character is created

in computer animation. This starts from how to control the motion of a body with hierarchical
modeling to abstraction of skeleton by using such structures. Afterward, the kinematic

method for animating such a model will be discussed. This section also addresses how the

human shape representing the body of a character can be created.

3.2.1 Motion Control over Body

Hierarchical Modeling

While describing object motion, sometimes it is easier to describe an object in relation to

another object. For example, it is easier to describe the movement of the moon relative to

the earth that rotates around the sun than describing the moon’s movement relative to the

sun. This model of objects are the types of hierarchical modeling.

Hierarchical Modeling defines a tree-like structure that gives location constraints for every
child relative to its parent [Pare08]. The data structure of hierarchical modeling consists of

nodes and arcs (Figure 3.5). Objects of animation will be arranged in tree nodes, and

transformations from node and arcs will be applied to them.

Theoretical Background 21

Figure 3.5: Arc and Node, ����� is leading node of ��	� [Pare08].

A node of tree structure contains information necessary to define object data. Other than

the object data, a node also contains transformations (of the object) that are applied within
the local coordinate system (object space). The node transformation �
 is applied so that its

point of rotation is at the origin, i.e., (0, 0) or (0, 0, 0) [Pare08]. For example, in Figure 3.6, a

rectangle is specified with its bottom left corner at the origin in the local coordinate space. If

it has to rotate around the rectangle’s center, then a node transformation (��) would be

needed to move its center to the origin.

Figure 3.6: Node transformation within object space, making the rotation point in the middle of the rectangle.

Arcs hold two types of transformations. One constant transformation �
 defines rotation and

translation of the child node relative to its parent node in a tree: this transformation

determines the child’s origin position relative to its parents. For example, if one node in a

tree contains information about a human forearm, this transformation will be responsible

Theoretical Background 22

for placing the forearm object from the origin5 to the default position at the elbow. Another

transformation is variable transformation

 that is applied in order to create the movement

of an object. Variable transformation changes over time to create movement, while constant

transformation keeps the objects in constrained position. In human character models the

typical variable transformation is joint rotation.

In a tree structure there are three types of transformations: node transformation and arc
transformations (constant and variable). Node transformation will be applied to transform

the object’s coordinate space, while arc transformation (both constant and variable) is

applied to transform between the parent’s coordinate space and child’s coordinate space.

A model that is defined through the tree structure of a hierarchical model is shown in Figure

3.7. In this figure there are three objects arranged in a tree structure:

�����, ����� and �����. ����� is a root object with constant transformation ��(translation).

An object ����� is defined as a child of ����� with its constant transformation ��(translation)

and variable transformation
�(rotation), while object ����� is defined as a child of �����

with its constant transformation ��(translation). In this example, the objects are physically

connected from end to end. In robotic field, the object represented as the physical segment
itself is referred to as a link. The object sequence that physically connects them is referred to

as linked appendages, or in short, linkages and the connection between the objects through

linkages is called joint. [Pare08] [Crai89].

Figure 3.7: Example of the objects’ tree structure in its original definition and their arrangement in tree

structure.

5 In the tree of a human body, the origin of the forearm is defined by the local coordinate of its parent,

namely the upper arm.

Theoretical Background 23

Figure 3.7 shows objects (links) in their original definition. This information is contained in

nodes in a tree structure. There is no node transformation in this example because the

rotation point is defined (rotation point for ����� is the middle-bottom of rectangle, and for

����� and ����� the rotational point is defined in the middle-left side in the object space).

All objects have already been defined in their natural default orientation relative to their
parent objects and thus there is no need to add a rotational constant transformation.

Transforming a hierarchical model to world space is similar to performing a depth-first

traversal of the tree. Figure 3.8 shows how the objects ����� and ����� get transformed into

world space.

Theoretical Background 24

Figure 3.8: Transformation from the object space of the hierachical model into world space. (a) and (b) show

normal transformation of root object ����0 from object space to world space. (c)–(f) show the transformation

from object ����1to world space.

The transformation for object ����� is only ��. On the other hand, ����� needs three

transformations in order to get into world space (
�, ��, ��), as shown in Figure 3.8 (c)–(f).

Theoretical Background 25

Starting from the defining space in (c), the variable transformation R1 is applied6. After the

variable transformation, the constant transformation �� is applied. Since �� is the

transformation relative to Link0, �� brings ����� to the local coordinate system of �����.

Finally, ����� is relocated to world space by applying the �� transformation. If the object data

of ����� refers to vertices �� , then the location of vertices �� ′ in world space can be attained

from:

��′ = ����
���

Object ����� is transformed similarly by applying all the transformation from the hierarchy

to the root (�� is the vertex of �����):

��′ = ����
�����

So the order of applying transformation for every object in ����
 is: node transformation

�
, variable transformation

, and then constant transformation �
 of ��	
 [Pare08]. The

end product after applying all transformations to all objects can be seen in Figure 3.9.

Figure 3.9: hierarchical objects in world space after transformation.

6 If there is a node transformation on �����, then node transformation will be applied before variable

transformation [Pare08].

Theoretical Background 26

From the above example we can conclude that hierarchical models can be useful to simplify

the description of object movement. When making animation of a linkage system, as in figure

3.9, we can take the rotational parameter (variable transformation) of ����� as the

interpolation parameter without having to worry whether object ����� will always be

attached to the joint. The constant transformation that is applied from arcs and nodes makes

sure that the child movement is restricted to its parent in a tree structure.

Skeleton Definition

As in the previous example of linkage systems (Figure 3.9), hierarchical structures are a

common type to construct multi-joint models. Because of the constraints and the

connectivity of the model, the animator does not need to make sure that the links of the

model stay attached to one another. Such a hierarchical structure is useful for modeling an
articulated figure (see Figure 3.10). An articulated figure is a model that has objects

connected from end to end while forming a multi-segment jointed chain. In articulated

figures the configurations of the joints are modified to create the movement of links, and the

process is known as articulation.

Animated characters in computer animation are mostly developed as articulated bodies

being represented as skeletons. A skeleton is a connected set of links and joints [BaSm79]. A

joint is the intersection between two links, which is a skeleton point that describes where the

limbs (in human figure) can move. The angle between two links is called joint angle [Pare08].

In a tree structure of a hierarchical model, the links (or limbs of human) are represented as

nodes and the joints are represented as arcs (Figure 3.10).

Theoretical Background 27

Figure 3.10: Tree structure representing the hierarchical structure of an articulated figure[Pare08] p. 192.

Since in an articulated figure the links should stay attached to one another, which happens

to be the only variable transformation that can be used to articulate the figure is rotation of

joint angle. Animation or movement can be made by changing the rotation, with the other

transformations enforcing constraints. In a tree structure of a human character, node

transformations make sure that the rotational point of every limb is exactly at the end of a

limb, while constant transformations make sure that the tip of the limb is always at the joint.

3.2.2 Kinematic Methods for Skeleton Animation

In the field of robotics there are mainly two ways to describe the kinematic motion of

articulated bodies such as human figures: forward kinematics and inverse kinematics. These

two methods are the way to position an articulated body from one pose to another. For

example, in case of positioning an arm of a virtual human, forward kinematics requires the

animator to specify rotational joint parameters (shoulder, elbow, and wrist) in order to get

the position of objects in world space, while the inverse kinematics method takes the desired

hand position in world space and as a result gives the rotational joint.

Theoretical Background 28

Forward Kinematic

Forward Kinematics involves finding the end position of the model by rotating the joints.
Figure 3.11 uses the linkage system from the previous example (Figure 3.9). The links are

connected end to end, and the animator specifies
� and
� as the joint angle of ����� and

�����. In a tree structure of hierarchical modeling, these two transformations can be applied

directly as a variable transformation of the arcs leading to node ����� and node �����.

Figure 3.11: Example of forward kinematics specification of joint rotation.

Forward kinematics uses a straightforward method: the position of an object in world space

(global coordinate system) is achieved by providing joint angles as input. One of the

drawbacks of forward kinematics is that the process of specifying joint angles of articulated

bodies can be tedious for animators and involves trial-and-error method to get the exact

desired position. Another approach to positioning the articulated bodies is inverse kinematics

Inverse Kinematics

Inverse Kinematics permits direct specification of the desired end-effector positions and

rotations (end point in Figure 3.13). In robotics [Crai89], the end-effector is the device at the

robotic arm designed to interact with the environment, but in this discussion it is referred to

as the position of the free end of a linkage chain. In inverse kinematics, the values of joint

angles are calculated to attain the given desired position of the end-effector in world space.

Theoretical Background 29

Figure 3.12: Example of linkages system with end-effector.

In Figure 3.12 (a), the desired position of the end-effector is defined by the red dot. In a

simple linkage system, as shown in Figure 3.12, the joint configuration (orientation of each

joint) could be attained by inspecting the model geometry and then using simple

trigonometry. In order to move the linkages to the desired position, the system must first

make sure that the desired location can be reached by the linkages. If the desired position

has position (x, y) in world space, and objects ����� and ����� have length �� and ��, the

following precondition must be met to reach the desired position:

�� − �� ≤ ��� + �� ≤ �� + ��

After knowing that the goal can be reached, trigonometry could be used to determine the

joint angles by using the cosine rule:

�� = � + 	� − 2 	 cos �

As a result, in Figures 3.14 (a) and (b),
�,
�,
%, and
& could be calculated from the links’

length and the desired position (��, ��, �, �).

If there are many possible joint configurations for the desired end-effector’s position, as in

Figures 3.13 (a) and (b), then the situation is referred to as underconstrained. When there

are no possible joint configurations for the desired position of the end-effector, the system
is called overconstrained [Pare08].

Theoretical Background 30

Figure 3.13: Sample sequence of positioning the end-effector of the linkage system by using inverse kinematics.

Notice that there are two options, (b) and (c), as possible answers.

In case of a simple linkage system, as in the previous example (Figure 3.12), joint angles can

be calculated analytically. However, the inverse kinematics solution to particular positions of

complex linkages can become numerous and complicated. Another approach is needed when

the number of linkages increases.7 Once the joint angles are calculated, the figure can be
animated by interpolating from the initial state to the final state (where the end-effector is

in the desired position) and also by using the calculated joint value as variable transformation

of the hierarchical structure (Figure 3.14).

7 The Jacobian method, for example, uses the incremental approach that computes the joint angles

toward the desired position.

Theoretical Background 31

Figure 3.14: Representation of the inverse kinematics and forward kinematics of articulated bodies based on

[KuZa06].

3.2.3 Creation of Human Shapes

After discussing the abstraction of a human skeleton model and how to animate it, we will
discuss how the shape of human character will be represented. One possibility is to create a

set of 2D objects that represent body parts and to attach them to the skeleton of the

hierarchical model as links—for example, by using texture for head, foot, arms, among

others, that is mapped into each 2D object. The drawbacks of this method: the shape is rigid

and fixed; and there is no stretching or deformation of texture to represent flexibility of the

human skin and muscle when moving (figure 3.15, first row). Deformation of texture can be

achieved when texture is part of a deformable object.

If a texture defines the visual and color of a character (like the texture of human skin should

have at least the color of human skin), then a deformable object is used to create a flexible

body animation and define the shape of the body. Normally, the texture of the whole body
will be mapped to a deformable object that follows the movement of a skeleton—for

example, in the second row of figure 3.15, the texture of an arm is mapped onto one

deformable object. When the skeleton objects are moved, the defining points of the

deformable objects will also be moved; hence, the stretching of the objects creates flexibility

for the figure (figure 3.15 uses the vertex as the defining point).

Theoretical Background 32

Figure 3.15: Example of using a texture for creating the shape of an arm. The two methods differ on how the

texture is mapped onto the object. The first row divides the texture in their corresponding objects and uses it in

the hierarchical structure as part of the object, while the second row maps texture into one deformable object

and deforms it on the basis of the movement of links and joints.

The deforming of the object depends on the manner in which the deformable object is

defined. There are mainly two ways to create a deformable object, and they are also the main

modeling techniques used for creating a 3D model: polygons and patches [Pare08].8 The

difference between polygons and patches are basically in the defining method to create the

object: polygons use points (vertices), straight lines and surfaces, while patches use curves

8 There are several other methods for representing the virtual human figure, but they are not used

much because of either lack of modeling tools or the method’s complexity [Pare08].

Theoretical Background 33

defined from mathematical functions. Patches are better than polygons when smooth curves

are required, while polygons are more flexible and quick to render than patches [Pare08].

For more detail on how patches work, please refer to [Salo06].

Polygonal Representation

Polygonal representation is one way of representing the human figure. A polygonal model

(often called polygonal mesh) is a collection of vertices, edges, and faces [ToMa06]. A vertex

defined as a single point in space and defined as the smallest sub-object of polygonal mesh.

A vertex can contain information about color, opacity, lighting, normal vector, and texture

coordinate. An edge is a straight line between two vertices. A face is the smallest part that

can be rendered in polygon mesh comprising a closed set of edges (see Figure 3.16). Faces

are mostly defined as triangle faces (with three vertices and three edges) to simplify
rendering, but they may also be composed of other faces (such as quad face with four edges).

A face in polygon mesh also has a normal to be able to tell the engine on which side to render

the face. A face is normally drawn on the side defined by the normal (Figure 3.17).

Figure 3.16: Vertex, edge, face, polygon, and surface in polygon mesh [Wiki00a].

In some other 3D applications the normal of the face can also be defined by vertex normal.

Vertex normal is stored in the vertex and a face could obtain its face normal by calculating

Theoretical Background 34

the corresponding vertex’s normal. Another use of vertex normal is to determine the light

received at that vertex by rendering (Figure 3.18 [c] and [d]).9

Figure 3.17: Polygonal mesh with normals (shown in red arrow) in (a) a face draws the texture based on its

normal (b) shows the triangle from below (notice there is no texture in it). (c) And (d) show the vertex normal

and how it influences the light it receives (the triangle is directly under the light).

Virtual character created from the environment developed in this thesis is based on an

images and will be moved in 2D. The polygonal representation for the character is a simplified

form of polygonal mesh (vertices has the same z coordinates).

Texturing

After defining the polygonal meshes the next step would be to map the texture onto the
object. Whenever a polygonal mesh object uses texture as part of its surface, it needs

mapping coordinates to tell the renderer how to apply the texture into the object.

9 Since the tools to be used later in this thesis use no lighting, face normal, and are determined by

faces (not by vertex), vertex normal will not be discussed further.

Theoretical Background 35

Figure 3.18: UV mapping from texture into the polygonal sphere object.[Wiki00b]

The process of rendering 2D representation into the 3D object surface is referred to as UV

mapping. In UV mapping “u” represents one side of a texture and “v” represents the other

(the coordinate of 3D is x, y, z; while 2D uses u, v in figure 3.18). Normally, the vertices of

polygonal mesh hold the information regarding the position they have in the UV map, and

the renderer will draw the faces based on the coordinate texture in the vertex.

Virtual character created from the environment developed in this thesis is based on an

images and will be moved in 2D. Unlike the example of figure 3.18, the polygonal

representation for the character is a simplified form of polygonal mesh (vertices has the same

z coordinates).

Skinning

The vertex that holds the texture coordinate information makes sure that the renderer

always correctly draws the texture. It also means that by modifying or transforming the

vertex into another position, it will also stretch or deform the texture. In animation, this idea

can also be used to show skin and muscle flexibility of the human character.

In order to create such an effect, the vertex of polygonal mesh needs to be attached to the

position of joints [Owen99]. In skeletal animation this process of creating associations

between visual representations with each skeletal points (or joints) of character is called
Skinning [JaTw05]. In creating skeletal animation with skinning, every vertex in a single

polygon has information about the skeleton point to which it is attached [Sori00]. In order to

connect every vertex in polygonal mesh to a single skeleton point in a tree structure, the

mesh vertices will go through two transformations: transformation from the mesh-defining

Theoretical Background 36

object space into world space; and then from world space into the local space of the

corresponding skeleton point. Once a vertex of a mesh is in the skeleton point’s local

coordinate, the skeleton point’s current transformation (be it translating or rotating) will also

applied to the mesh’s vertex [AkHH08].

Another information for vertex is that every vertex have an influence value, which is referred

to as bone weight (or simply weight). It defines how much the transformation of skeleton
point influences the transformation of a vertex. It differs in 3D applications, but mostly the

weight value ranges from 0.0 to 1.0 (1.0 means the joint’s transformation influences the

whole vertex, while 0.0 means that the joint is not influencing the vertex). A vertex can have

bone weight from multiple skeleton points.

Figure 3.19: Deformable object before and after transformation: A is the rotation of a skeleton point, while B is

the rotation of vertex v1 and C is the rotation of vertex v2. Vertices v1 and v2 are attached to the elbow rotation

and thus follows its orientation.

For example, in figure 3.19, we have vertices V1 and V2 that associate with the elbow joint

with weight value: 0.8 and 1.0 (shown in red dot). When rotation A is applied to the elbow,

then rotation applied to vertex V1 is B = A * 0.8 and rotation applied to the vertex V2 is C = A

* 1.0. These calculations also applied to other transformations such as translations and

scales. Using bone weight on each vertex creates an illusion of stretching skin and muscles.

Although polygonal representation is easy to use and easy to manipulate, there are certain

drawbacks. One of the drawbacks of polygonal representation becomes apparent when the
polygonal model is used to create a smooth, curved surface (for example, a sphere): it can

take hundreds or thousands of polygons to achieve this because an edge in polygonal mesh

Theoretical Background 37

is a straight line. In patch representation the same curved smooth surface could be attained

easily.

3.3 Motion Capture

Motion capture (or mocap) is the process of tracking and recording the movement of people.

It is used in many applications including animation for virtual character. Output data from
motion capture can also be useful to analyze human movement in general. For example,

motion capture data of an athlete’s movement is useful to track their performance [MoGr01].

Motion capture methods mostly use a camera to track the movement of people. There are

many areas of human parts that can be tracked by using the motion capture system, but the

method is mainly used to record large body part movements, such as feet, limbs, arms etc. 10

Motion capture uses several technologies, and it can be divided into two categories: marker-

based and marker-less. The marker-based system requires the subject to wear an instrument

(marker) for movement tracking, while the marker-less system uses no instrument on the

subject.

The project by Rosenberg et al. [RoBB13] uses marker-based system for interacting in the
virtual world. With marker attached to each hand, hand movements will determine the

movement in the virtual world. The use of motion capture as an interactive tool is also found

in [SaKo11]. Using a time-of-flight camera, this system can track hand movements without

the aid of markers. The system will recognize gestures based on motion capture template

data and attempt to learn the unrecognized gestures.

Creating imitation and interaction through virtual characters requires a motion capture

system. Other than mapping the skeleton point position from the participant to the virtual

character, this component is also required as an input when interacting with virtual

characters (e.g. using gesture recognition). The next section will discuss the theoretical

background needed for developing the desired environment.

10 Motion capture is also used in small and more detailed human body parts, such as facial expression

and hand gesture.

Theoretical Background 38

Figure 3.20 Motion capture by using LED infrared marker for animating a virtual character [Wiki00c]

In marker-based motion capture there are many variations of markers that can be used for
recording human movement. One example of marker-based motion capture is the use of

active markers, which are placed on objects (joints and limbs) and visible to the camera

(figure 3.20). The markers illuminates infrared lights, which will be captured by the camera.

This method needs usually more than three cameras for a full body motion capture

[MoGr01]. After recording the movement, the system calculates the position of every marker

from cameras and constructs 3D positions by using triangulation algorithm [HaZi05]. Having

the 3D position, the movement can be mapped into the skeletal animation of a virtual

character. The advantage of using this marker-based method is that a position can be

recorded and displayed in real time. The drawbacks are: the marker-based method needs

many (special) cameras and also restricts movements when using the instrument [Owen99].

The second method of motion capture technique is marker-less motion capture. Unlike the

marker-based method, the marker-less system does not need special preparation (wearing a

marker) for the subject in order to track the movement. As there is no marker involved, the

marker-less system uses a tracking algorithm to identify the subject (in this case people). The

algorithm usually uses a distinct feature of the subject to identify movement [YiJS06]. For

example, identification of a human shape can start from identifying the shape of a human

head or the color of human skin (color).

Theoretical Background 39

One example of the marker-less motion capture system is a camera with a depth sensor, such

as Microsoft Kinect (figure 3.21 [a]), which is widely used because of low cost and portability.

This kind of optical system does not require the object to wear optical markers.

Figure 3.21: (a) Kinect camera and its sensor/projector; (b) the IR depth projectors emit light patterns detetcted

by the infrared depth sensor; (c) the light dot pattern from infrared projectors.[Zhao14]

Kinect is a motion capture device from Microsoft and it was developed as Project Natal in

2010. This has an infrared projector and an infrared sensor for getting depth images (figure

3.21 [a]). The Infrared projector emits an invisible infrared structured light pattern, which is

detected by the Infrared sensor (figure 3.21 [b]). The infrared sensor will pick up the distorted

pattern of the infrared, and the camera calculates the depth image [Macc00] [ZhCS02].

Afterward, Kinect uses the data from depth image to create 3D skeletons. With the input of

depth images they have a three-dimensional surface model of the human body. This is

divided into distinct body parts with the help of an object recognition algorithm (color

indicates part label), and the 3D location of each joint within body parts is generated (Figure
3.22) [SFCS13].

Theoretical Background 40

Figure 3.22: How Kinects get skeletal positions [SFCS13].

In general, the marker-less motion capture method is better than the marker-based system

because no instrument is required for tracking the movement; however, the former method

is slower because the model requires more time calculating a 3D skeleton. Because of the

portability and low cost, this thesis use the Kinect camera as its motion capture system.

Motion capture is a powerful and useful method for record realistic movement. Though it

will not entirely replace animation, it can be used to ease the workflow of the animator.
Other than duplicating the movement of the object, motion capture can also be useful in

other ways. In many interactive installations, for example, the motion capture technique can

be used to create an fictional environment, as in VIDEOPLACE [Krue77] [Owen99].

3.4 Conclusion

This section has so far discussed how animation can be generated by computers. The key-

frame system is a tool, derived from tradition animation, which can sufficiently describe

motion by using interpolation between key frames. As in traditional animation, the animator

will create key frames, and the computer will interpolate the values between the key values

in key frames. An interpolation function between the key frames will be configured by the
animator so as to have control over motion.

Having the means to describe motion with the help of a computer, one can now start to

create a virtual human by starting from an abstraction of skeleton and bones. The use of a

hierarchical structure that helps to create relative motion to describe the skeleton has been

discussed. The skeleton of human character will be defined by a tree-structure that enforces

transformation constraint from parent’s bone into the children’s bone. To create motion over

Theoretical Background 41

hierarchical models, two methods are available: forward kinematics and inverse kinematics.

While forward kinematics gives total control over the end pose, forward kinematic could be

tiresome for the animator in configuring specific locations at the end of the hierarchical

linkage just by using variables from the rotational parameter of joint. On the other hand,

inverse kinematics requires the animator to give an end-point position of the hierarchical

linkage and then to calculate the best configuration of the rotational value of joints. The
drawback of inverse kinematics: it could produce unwanted end pose in case of numerous

configurations. Both methods will be used in this thesis. Simple inverse kinematics will be

used in character modeling, while forward kinematics will be used to animate the character.

After defining the skeleton and its bones, the next step would be create a human shape. In

order to avoid a rigid structure by just attaching texture onto bones, deformable object

represented as polygonal mesh with texture mapped onto it will be used. Every vertex in

polygonal mesh will be attached to a skeleton point through the skinning method and

following the skeleton movements that stays intact. Changing or rotating the skeleton point

will deform the polygonal mesh and create flexibility representing the human skin (or

clothes).

Since the purpose of this thesis is not just animation of human character but also an

interactive application, motion capture is required to track the participant’s movements as

well as to detect/recognize gestures. There are two methods: marker-less and marker-based.

While marker-based motion capture is faster in terms of computing the position, marker-less

motion capture is more suitable because it does not need the participant for preparation.

Marker-less motion capture cameras, such as Kinect, which use the structured light method

to create depth images is considered in this thesis also because of their portability and low

cost.

Methodology 42

4 Methodology

This section discusses how the theory presented in Section 3 (theoretical background) will be
applied to build an environment for creating interactive applications. Sections 4.1 and 4.2

discuss functional and non-functional requirements for the environment. Section 4.3

presents discussions on how the system design will be built later. Section 4.4 describes the

tool and libraries that will be used in this thesis, while Section 4.5 discusses the system

architecture and component in detail.

In this section there are two main subjects: developer and participant. Developers are those

who will use the developed environment of this thesis in order to create interactive

applications. Participants are the ones who will use the applications made by developers.

4.1 Functional Requirements

The functional requirements for developing an environment can be divided into three major

groups:

Character Modeling

From the developed environment the developer should be able to create characters that will

be used for imitation and interaction of the developed application. The developer can import

a graphic format to the system, and the system will process it in order to create a character
model based on the graphic. Characters developed by the system would be two dimensional.

Imitation

Imitation means that applications produced by the environment developed in this thesis

should have possibilities to create an interactive application that will imitate the movement

of the participant. The character created by the developer through character modeling will
imitate the movement of the participant. However, imitation of any detail body part of the

participant, such as fingers and facial expression, has not been considered here.

Methodology 43

Interaction

The developer should be able to create applications that interact with participants. In this
application virtual characters created through character modeling will interact with the

participant on the basis of the participant’s gesture. The participants’ gestures will be

recognized from the system, and they will trigger an animation sequences of virtual

character. To implement this requirement the developer need three functionalities: first, the

developer should be able to record and save the gesture sequence as an input; second, the

developer should be able to create and save the animation sequence of a virtual character;

and third, the developer should be able to detect which gesture is a trigger for which

animation sequence.

4.2 Non-functional requirements

Performance

Since our system is an environment to build interactive applications, the processing from

recognizing an input to providing the output should be done as quickly as possible. The

output should be calculated fast so that the participants do not recognize delays and feel as

if they are interacting with animated character.

Usability

The developed system should be easy to use and applicable—not only for programmers.

Creating an interactive application with the developed system should be possible without the

need to write code or having programming knowledge.

4.3 System Design and Solutions

In this section, the required components will be proposed in order to have functionalities

described above.

Skeleton Component

For creating a virtual character that also moves, the skeleton of the character and its shape

(skin) are needed. The skeleton will be used to control the movement of the character, while

the shape will be the visual representation of a character.

Methodology 44

In order to create the skeleton, there should be a component in the system that is responsible

for modeling a human in a hierarchical structure (s 3.2.1). Other than creating the hierarchical

structure, this component is also responsible for movement/animating over the skeleton by

moving its rotational joint. Such a structure provides two advantages in modeling and

animating character: it makes sure that bones (and its skin and muscle) are always intact and

it simplifies the movement system by just rotating the joint of the skeleton (s 3.2.2). So in
order to gain such a structure, the data model of the developed system should support the

tree structure, where every object has its own local coordinate system and transformation

of a parent in the tree structure influences transformation of its children. After having a way

to create the skeleton, we need a component that responsible for creating the shape of the

character.

Shape Component

As one of the functional requirements, the developer should be able to create character

shapes from a graphic format. So in order to gain this functionality, a component for creating

the shape is needed. In order to easily trace the shape of a character in graphic format, the

graphic should have transparent background. The component will calculate the necessary

information and create a polygonal mesh (s. 3.2.3), which will be attached to the skeleton

from the skeleton-component.

Motion Capture Component

At this point, we already have components for creating and modeling virtual character. The

requirement of character modeling is fulfilled, but not for imitation and interaction. For

imitation and interaction requirements to be implemented, information from the motion

capture component is needed (s. 3.3). In addition, interaction also requires an animation

system.

In case of creating imitation, we will use a skeleton-component that already has the

functionality to move the skeleton along the hierarchical structure. This component will take

the required information from motion capture component and transforms it into the motion
of the character. The 3D position of the participant will be transformed into a 2D position of

the character.

Gesture Component

Gesture component is the component for managing most interaction requirement. This

component has three main functionalities: recording Gesture, recognizing saved gesture, and
connecting between gesture and animation. In order to record and recognize a gesture, the

Methodology 45

position of the skeleton joint from the motion capture component is required. Using the

motion capture component, the gesture component will take a 3D position of the developer

in every frame and saves it as template gesture. Later, this template gesture will be used to

identify a similar gesture of the participant using external library. Another functionality of

this component is to connect the gesture with matching animation. If a gesture from the

participant is recognized as the similar template gesture, it should trigger the matching
animation sequence from the animation component.

Animation Component

Virtual character response will be represented in animation sequences. Creating animation

sequences for a character requires a key-frame system. The developer that uses the

animation system from this component will be able to create animation sequences based on
the skeleton from the skeleton component (s. 3.2.1 and s. 3.1.1).

Conclusion

Figure 4.1 show how components work together: shape component will provide the visual

representation by creating skin based on images, while skeleton-component responsible for

moving the character skin.

For imitation functionality later in the application in the runtime, the motion capture will be
used for getting participant’s skeleton position and those information will be delivered to the

skeleton component for imitating the movement.

For interaction functionality, more preparation is needed: when developing an interactive

application using this environment, developer should create a template gesture using the

gesture component functionality. Creating a template gesture require access to the motion

capture component. Additionally, a developer also needs to create character animation

sequences as response using the animation component. After mapping each gesture to each

animation sequence, the application can be built.

Later in the application, the gesture component will recognize input from the motion capture

component based on template gestures and trigger animation from the animation
component. The animation component will execute the animation sequences for the

skeleton component.

Methodology 46

Figure 4.1 Component overview

The solution to designing those functionalities will be divided into two parts: one part is

where the existing functionality from the external libraries and tool will be used in order to

create the developed system; and another part is how this thesis brings the pieces of the

libraries and tool together while extending its functionalities in order to create the desired

environment.

Some functionalities, which have just been described, such as the animation system and the
hierarchical structure are already available as integrated functionality of Unity (tool used in

this thesis). This thesis will also use external libraries for functionalities that Unity does not

Methodology 47

provide. The motion capture component is covered within the Kinect plugins for Unity, while

gesture recognition functionalities and creation of the character shape will use external

libraries. The next section serves as the introduction to the tool (Unity) and libraries that will

later be built under this thesis.

4.4 Tool and Libraries

This section will discuss the tool and libraries that will be used in this thesis. First, the tool

Unity will be introduced and the general workflow idea developing an application through

the system explained in Section 4.4.1. At the end of this section we will discuss the Unity

functionality that does not cover the desired functionality and how it will be extended.

Section 4.4.2 will describe libraries that will be integrated into the system. The reason for

these libraries being chosen and the process of their implementation into the developed

system will also be discussed. The end of this section overviews the whole functionalities

from Unity and external libraries in relation to the system design and solutions from Section

4.3.

4.4.1 Unity

Unity is a cross-platform game engine for creating games in iPhone, Ps3, PC, and many more.
An application in Unity could be developed in C#, Boo, and JavaScript [Unit00a]. Unity has

been chosen as the base engine because of its built-in functionalities and supports: first, its

data structure in world space supports a hierarchical model called parenting so that

implementation of the skeleton of virtual character (s. 3.2.2) could be applied without

making big changes; second, Unity is expandable. It means that functionalities not provided

by Unity could be extended by using scripting. Through scripting the user could also built an

extended editor or external libraries. Unity also supports the creation and definition of

polygonal mesh representation. Lastly, Unity has its own animation system called Mecanim

that supports the key frame system [Unit00b].

In order to understand better how to develop a system in Unity, the following section will
discuss the basic component and workflow of Unity. Afterward, the next section will

describes and discuss Unity’s parenting system, scripting for extending functionalities, the

creation polygonal mesh and lastly the animation system in Unity.

Methodology 48

Workflow and Primary Objects in Unity (GameObject, Component, and Assets)

In this section, workflow and primary objects in Unity will be discussed. In Unity, an
application’s development occurs in two phases: testing phase, where an application is

executed in runtime; and edit phase, where an application is edited and developed in Unity.

In the following sections we will describe the testing phase as Play-mode and the edit phase

as Edit-mode

Basically, the data model in Unity consists of three basic parts: GameObject, component and

assets. The workflow in Unity include: preparing the asset (from external applications) or

creating assets in Unity, creating GameObject, adding components based on their

functionalities to GameObject, attaching the asset to the component as property. The

developer could test the application in Play-mode, if needed, and iterate the process before
building the application (Figure 4.2)

Figure 4.2: Workflow in Unity

Methodology 49

GameObject and Component

Every object in the world space of Unity is defined as a GameObject. GameObject by itself
does not have any functionality other than defining its position in world space. GameObject

acts as a container for Component [Unit00c]. Components determine which functionality a

GameObject has, and every component has unique property, which user can modify through

an inspector view. For example, if a GameObject has light component, it emits light and can

be used in world space as a light object, and light component has properties such as color

and intensity (Figure 4.3).

Figure 4.3: A GameObject with light component. The right window is the inspector view that shows the

components of selecting a GameObject. The left window is the scene view, the world space of Unity.

A component of a selected GameObject can be viewed through the inspector view (Figure

4.3 right). The user can add new components of a GameObject through this view in order to
add functionality of a GameObject. Another way to add or access a component is through

code.

Assets

Other than GameObject and its Components, it is also important to mention the assets in

Unity. Every data that could be useful for the components of a GameObject are referred to

Methodology 50

as an asset. Asset could also be assigned or modified through code. The kinds of asset that

will be used in this thesis are scripts, polygonal meshes, material (texture), animations clip,

and animator (animation transition controller). Any code from external libraries/plugins will

be recognized as scripts in Unity.

Parenting system

Unity use the concept called parenting [Unit00d]. By making a game object a child of other

game object, the child will inherit the movement and rotation of its parent. Doing so also

makes the child having its own local coordinate system relative to its parent (parent position

is child’s origin coordinate system) and does not work within global coordinate system.

Parenting in Unity could be managed within one view editor called hierarchy view (Figure

4.4). In this window a user can manages, access, creates or groups game objects. The user
can select one object and drag it onto another to group it together within one game object.

The parenting system of Unity represents the hierarchical structure from Section 3.2.

Figure 4.4: Hierarchy view creating hierarchical structure in arms

In this thesis, every joint of skeleton will be represented as an empty GameObject. Although

GameObject itself does not have functionality, we could controls the movement of child

GameObjects with the parenting system. For example, if we arrange GameObjects as in

Figure 4.4, then the changing rotation of “Elbow”-GameObject will result in the changing

position of “Forearm”, “Wrist”, and “Hand”-Gameobject.

Scripting in Unity

Unity also provides the user with a way to create customized functionality through a

component called script component. Scripts can be used to create graphical effect, extending

editor, artificial intelligence, or to control animation. It is also through scripting that the

functionality of other external libraries in this thesis will be integrated and extended.

Methodology 51

Extending Unity functionalities using scripting will use classes derived from MonoBehaviour,

Editor, or EditorWindow. MonoBehaviour is a class of UnityEngine-namespace. Editor and

EditorWindow are classes of UnityEditor-namespace (Figure 4.5). Classes derived from

MonoBehaviour will be used for creating dynamic functionalities during Play-mode. Classes

derived from Editor are used for building custom inspector views and custom editors on-

scene view for a MonoBehaviour class. Classes derived from EditorWindow are used for
creating custom windows. Both classes from UnityEditor-namespace will be used only for

functionality during Edit-mode.

Figure 4.5 Inheritance class from Unity Engine and Unity Editor

MonoBehaviour

MonoBehaviour is a class from the UnityEngine-namespace, which is a base class for every

script component in Unity. Most functionalities coming from the classes derived from

MonoBehaviour will be used in runtime. It has many event-based functions such as Update

and Start11. The Update function will be called for every frame in runtime, while Start will be

called one time before Update function. Both functions will be used mainly for getting

positions of participant in every frame (Update) and initializing library instance before using

it (Start).

Another event-based function that will be used in this thesis is the OnGUI function. This

function will be used for rendering and handling of GUI events. OnGUI of MonoBehaviour will

11 They also had other event-based functions like OnTriggerEnter or OnMouseEnter, but most of them

will not be used in this thesis.

Methodology 52

be used for example to create a menu for gesture recording while in Play-mode (s.4.5.3

Gesture).

Other than controlling the game object from where it attached to (through event-based

functions), a MonoBehaviour script can access other GameObject and their components.

Unity provides a number of different ways to retrieve other GameObject. One possibility is

by creating public variables. A public variable in script is visible in the editor inspector view

(Figure 4.6, right), and through this window a public variable could be assigned while in Edit-

mode.

Figure 4.6, shows example of a C# class CustomScript, which has been derived from

MonoBehaviour. The right part of Figure 4.6 shows the inspector view from the script after it

has been attached to GameObject and selected. The default inspector view for scripts shows

the name of the script and its public variables.

Figure 4.6 CustomScript C# script (left) and default inspector view of this script (right) after it is attached into a

GameObject

Editor

Editor is a class of UnityEditor-namespace. Classes inheriting from Editor will be used to

create the custom inspector view for a MonoBehaviour script. With a custom Editor-class we

can customize the inspector view appearance. Another use of Editor-class in this thesis is to

create a custom editor for editing component properties directly on the scene view (and not
on the inspector view).

Methodology 53

Figure 4.7 Example of EditorForCustomScript C# script (left) and its custom inspector view (right) for

CustomScript. Notice there is different with default view of script in figure 4.6

Figure 4.7 shows EditorForCustomScript as the Editor-class for CustomScript. To be an Editor

for a specific class it needs to add the CustomEditor attribute. Once it has this attribute, if a

GameObject with CustomScript component is selected in Edit-mode, Unity will call the

OnInspectorGUI function from EditorForCustomScript (Figure 4.7 left side). The

OnInspectorGUI function will override the default inspector view of this component with the

customized one. We can add view component layouts inside this function, such as a button
or an input box.

Another functionality of Editor-classes, which will be used in this thesis, is to create

customized editors for scene views. To achieve this, OnSceneGUI function will be used. In the

OnSceneGUI function, we can add controls for modifying Object properties, such as its

position or rotation. By default, a GameObject scene-GUI control, when selected, is colored

arrow-headed and square controls (Figure 4.8 right side). This control can be dragged within

the scene view, in order to modify the position of GameObject.

Unity provides the Handles class for creating the custom GUI control on scene view. This class

will be used for creating a custom handle within the OnSceneGUI function. Figure 4.8 shows

an example of creating a free-moving handle from the Handles class. The function
Handles.FreeMoveHandle will create a white dot handle on the left side of the current

GameObject. The handles can be dragged to the scene view, and it will give its new position.

In this example, the new position is assigned to the variable newstandpoint (Figure 4.8 left).

Methodology 54

Figure 4.8 : Example of the OnSceneGUI function that creates the handle. First, the current CustomScript

instance will be aquired through Editor.target. After assinging GUIstyle font color, a label will be written to the

scene through the Handle.Label function.

The only use of creating custom handle in this thesis is only for creating handle for modifying bone rotation in

skeleton in Edit-mode. Position of current handle will changes rotation of its parent bone rotation.

Although classes derived from Editor provides custom functionalities in its inspector view and

scene view, Editor-classes is dependent on MonoBehaviour classes. From our example, the

EditorForCustomScript class is an Editor-class for the CustomScript Class. The functions

OnInspectorView and OnSceneGUI will only be called when CustomScript is attached to
GameObject and selected during Edit-mode.

EditorWindow

Sometimes a GUI is needed to provide functionalities that are not dependent on currently

active and selected GameObject, nor should it be attached to GameObject. This GUI could be

created through classes derive from EditorWindow. EditorWindow will be used for creating a

custom editor GUI window in Unity while in Edit-mode. Editor windows are normally opened
through menu. Classes derived from EditorWindow usually have two parts: static function

for initialization and a drawing function for its contents.

As an example in Figure 4.9 we create a CustomWindow class, derived from the

EditorWindow class. It has the static function Init for initializing a window in Edit-mode. To

call it from Menu, it needs to have the attribute MenuItem, and this function will be called

once the menu item is selected. Once the window is initialized, the OnGUI function will be

Methodology 55

called. In Figure 4.9, the OnGUI function is used to show two labels (string). As in the

OnInspectorGUI of Editor-classes, the Unity developer can add further view components such

as buttons or text boxes.

Figure 4.9 Example of EditorWindow class: CustomWindow script (left), creation of window through the static

function Init (right above), GUI of window based on the OnGUI function (right below).

Creating Mesh in Unity

A mesh will be used for defining the shape of a character, and Unity supports defining and

creating a polygonal mesh (s. 3.2.3). A mesh in Unity usually comes from external applications

such as Maya or 3DsMax. Unfortunately, Unity does not provide direct GUI for creating a 3D

model and the developer can only create mesh primitives, such as a simple cube or sphere.

The only way to create a custom polygonal mesh from scratch in Unity is through scripting.

Polygonal mesh in Unity is represented as mesh assets. Mesh assets could be created through

scripting by using the mesh class from Unity. In order to create mesh, an instance of Mesh
class need at least two information: vertices and triangles [Unit00e]. The vertices of a mesh

Methodology 56

is an array from the class Vector312 that defines the vertices’ position in a 3D world. Vertices

will be stored in Mesh.vertices variable. Each triangle of a mesh is represented in an array of

integers (Mesh.triangles), while every member of this array represents an index of the

vertices array. So if a mesh has three vertices, then triangles should have a minimum of three

integers.

Having only a mesh without texture in Unity will result in blank shapes on the screen.
Calculating texture to be added in polygonal mesh require extended calculations and s special

asset called material. After attaching texture to a material asset, it could later be used within

component as a property for defining texture. Mesh objects need an access to material asset

and to calculate its texture’s UV map (s. 3.2.3 Texturing). In calculating the UV map, every

vertex in mesh will have information in which position in a texture does a vertex has

[Unit00e]. In a mesh instance, UV map information is contained within the array of Vector2

(Mesh.uv), which represents the UV map for every vertex in array Mesh.vertices with the

same index.

After creating a mesh, we add it to the GameObject through the SkinnedMeshRenderer

component (Figure 4.10). This component is a core component for attaching the skeleton to
its mesh (Skinning in s. 3.2.3). Other than having information about mesh and material

(texture), this component also needs an array of bones in skeleton (in this case an array of

the transform class. This array of bones will be stored in variable Mesh.bones.

The mesh attached to this component also needs additional information such as vertex’s

boneWeights (which represented as an array of the BoneWeight class) and bindposes (which

is represented as an array of Matrix4x4 class) [Unit00f].

As mentioned in S.3.2.3 Skinning, for binding a vertex to follow the transformation of bone,

they need two transformation which is transformation from the vertex local coordinate into

the world space coordinate, and then, from the world space coordinate into the bone local
coordinate. In Unity, those transformations is represented in Mesh.bindposes array, which is

represented as the Matrix4x4 class. The bindposes of each index in this array refers to the

bone of the same index in SkinnedMeshRenderer.bones.

12 Vector3 is a Unity class that represents the position of x, y and z. In case of the vertices of a mesh,

this represents the position in object space.

Methodology 57

A vertex weight in Unity is represented as BoneWeight Class. A vertex can attached up to 4

skeleton point (GameObjects) and all weights should sum up to 1.0 [Unit00g]. For example if

a vertex attached into 2 Game Objects (A and B) and GameObject A and have weight

vertex.weight0 = 0.6 then B should have weight vertex.weight1 = 0.4. A Mesh in

SkinnedMeshRenderer should have BoneWeight information for every vertex in it.

Figure 4.10: Skinned mesh renderer component, it takes material (texture), mesh, and root bones (Game

Object’s transformation).

Animation System

Unity provides an integrated animation system called Mecanim. Mecanim consists of many

animation tools, such as key frame animation editor and state machine for transition
between animation clips and other functionalities. The typical Mecanim workflow in Unity

consists of setting and creating animations clips, setup of transitions between clips, and lastly

controlling the animation from code [Unit00h].

An Animation in Unity is defined in Animation Clips. They represent a piece of looping motion

such as running, walking, or simple movement of an object such as a point moving from left

to right [Unit00i]. An Animation Clip contains the information about key frames and also

interpolation curve that can be edited and created through animation window (Figure 4.11

above and middle). Animation clip is being saved as an asset in Unity.

Methodology 58

Figure 4.11: Animation window in Unity: Dope Sheet window (above) for managing key-frame, Curves window

(middle) for managing interpolation function and animator window (below) for managing transitions.

It is not enough to just having animation and attaching it to GameObject. There is also a need

for Attaching multiple animation altogether for creating complex behavior (s. 4.1). If a

GameObject is supposed to have variation of animation sequences, or it needs to “behave’”

based on conditions, then GameObject can use Animator and Animator controller [Unit00j].

Animator is a component and Animator Controller is an asset. With an Animator Controller,

developer could keep many animation clips and switch between them with a predefined

condition from developer. Another use of Animator and Animator Controller is blending
between animation clips. The developer could define how the transition between two

animations occurs.

Methodology 59

Transition between animation clips could be edited within Animator window (Figure 4.11

below). This window shows Animation clips as a state machine and their transition. Through

this window we can add new transition between states and determine the parameter as

conditions for switching animations clips. In this thesis we use only parameter type

‘Trigger’13.

After finishing the setting up the transition between animations, the animator will be
attached into the root skeleton (GameObject) and could be accessed within script with

GetComponent<Animator> function. From this, developer could access the Animator

Controller parameters and trigger the animation.

Conclusion

Functionalities covered within Unity are the following: hierarchical modelling system,
animation system and mesh representation.

1. GameObjects in Unity provide a data model that has been described in section 4.3.

A GameObject has its own local coordinate system and could be built into a

hierarchical structure through a parenting system. Later in the Implementation,

GameObjects will act as skeleton joints and those skeleton joints will be arranged in

a hierarchical structure.

2. Unity provides animation system for animating GameObjects called Mecanim.

Through this animation system, developer could create animation complex

sequences and controls it through scripting

3. Mesh are basic representation for 3D model in Unity and Unity supports rendering

mesh representation. However, mesh creation is not built in Unity and this

functionality can only be attained through scripting.

In this thesis, scripting is necessary for creating and extending functionalities. Other than

creating mesh, scripting will be used for integrating external libraries in order to cover the

functionality of character modelling from images.

13 There are also other parameter type such as boolean and float

Methodology 60

Unity also doesn’t covers gesture recognition and motion capture functionalities. In order for

having those functionalities, external libraries and plugins will be used. These libraries will be

described in the next section.

4.4.2 Libraries

Libraries in this thesis are mainly used for these three functionalities: helping for creating

polygon mesh, gesture recognition functionalities and also motion capture component

functionality.

Creating mesh from graphic will use special libraries from Physics2DDotNet[Port00],

Poly2Tri[Cont00] and Farseer Physics[Qvis00]. In order to trace the shape of a character from

the graphic format, Physics2DDotNet is used because it contains functionality to create

vertex from texture by using the transparent property of a texture (alpha channel). Library

Physics2DDotNet provides the function CreateFromBitmap, which gives a list of outer shape

vertices that surround a bitmap14. Poly2Tri library take care of the Triangulation after vertices

being made. It uses Delaunay algorithm[ILSS06] and produce triangles that useable in Unity.

If a vertices generated is too complex or too detail it could be simplified using the Douglas-

Peucker algorithm [HeSn94] from Farseer Physics library. Once mesh is created with its

vertices and triangles, it could be used as skeleton shapes through SkinnedMeshRenderer of
unity

The library from Project [Rymi00] for gesture functionality. This project uses Dynamic-Time-

Warping Algorithm[Gent00] for recognizing the input gesture from participant. The algorithm

takes the two sequences for calculating similarity. Every element in sequences will be

compared to each other and overall distance will be calculated. If the calculated overall

distance is qualified (less than threshold), then the algorithm will tell that those sequences

are match.

The library within the project [Rymi00] have functionality for saving gesture as template

during runtime and recognizing input gesture based on saved gesture. So template gestures
should be added first before it could recognize any gesture. This project is written in c# and

14 Bitmap in this case is a two-dimensional array of Boolean that represent transparency of an image

(0 = transparent, 1 = not transparent).

Methodology 61

could be integrated within Unity. They covers the functionalities to recognize and saving

gesture.

Another important component is the Kinect plugin for Unity. In order to have skeleton

position of participants, a Kinect library for Unity will be used [Univ00]. This plugin provides

a configured GameObject that developer could add into world scene and provide skeleton

information during runtime. If a script have access to the SkeletonWrapper instance from this
GameObject then it can access bonePos[index] of this instance for getting bone position of

the desired bone-index. Bones from Kinect plugin covers 20 bones from a participant which

is: hips, spine, shoulder-center, shoulder-left, elbow-left, wrist-left, hand-left, shoulder-right,

elbow-right, wrist-right, hand-right, hips-left, knee-left, ankle-left, foot-left, hips- right, knee-

right, ankle-right and foot-right

4.4.3 Conclusion

Section 4.4.1 shows the functionalities that Unity provides: hierarchical structure through

parenting system, basic object GameObjects for creating character bones, animation system

Mecanim. Unity also provide scripting for extending its functionalities.

Section 4.4.2 describes libraries that cover functionalities that Unity doesn’t have: libraries

for creation of polygonal mesh from images, Kinect plugin library for motion capture
functionalities and gesture-recognizer library for interaction functionality.

The implementation of the environment for this thesis will integrate libraries with Unity and

develop additional functionalities such as providing GUIs through scripting. Integration and

extension is achieved through scripting.

Given the functionalities from libraries and Unity, functionalities that still need to be

implemented for character modelling requirement are: mesh creation based on images,

skeleton mapping and Skinning (adding skin to skeleton).

Functionalities for imitation and interaction that still needs to be implemented are: creation

of character hierarchical model through Unity parenting system, mapping the skeleton
system onto Kinect skeleton points. Lastly, additional functionalities for interaction are:

integration of DTW libraries and functionalities to unity, mapping between gesture and

animation.

Methodology 62

4.5 Design

This subchapter discusses about the design of the environment based on the requirements
in s 4.1 and 4.2. Section 4.5.1 explains each component of the developed system and how it

will use external libraries. This section will also explains the general workflow from each

between each component for creating functionalities from sections 4.1 and 4.2. Section 4.5.2

will give overview on the system implementation component-wise. Lastly, section 4.5.3

describes the implementation environment for developing this system.

4.5.1 Component Overview

The system design of this thesis is explained in Figure 4.12. Components in blue are external

libraries, while green components are the developed system. Most of the components in this

design are built as a bridge between external libraries and Unity, while some other

component are also provide GUIs for developer’s input and configurations. These component

also covers functionalities that still need to be implemented from Section 4.4.3.

Figure 4.12: System architecture of the developed environment. Components in blue are external libraries,

while the green components are internal components.

CharacterController represents the skeleton component from Section 4.3. Its main

functionality is to take data provided by the Kinect and to transforms it into movement of

skeleton GameObjects. So the main input for this component are from Kinect library (Figure

4.12) and the output is the calculated rotations for every GameObjects in hierarchical

Methodology 63

structure. CharacterController also extends the Unity editor functionalities, which helps the

developer when editing and generating the skeleton.

PolygonCreator represents the shape component from Section 4.3. This component has two

main functionalities: first, it creates mesh and material assets from an image with help from

external library. They take an image as an input and calculate new mesh that have vertices,

triangles, and UV map based on the image. They also take texture asset and creates a
material asset from it. Second functionality is preparing and attaching mesh into skeleton.

This functionality include creating SkinnedMeshRenderer instance and attaching it to the

skeleton GameObject, calculating boneWeights and bindposes of a mesh, attaching the mesh

and material asset into SkinnedMeshRenderer of the skeleton and lastly calculating bone

array for SkinnedMeshRenderer (ref. Creating Mesh in Unity Section 4.4.1).

SkinnedMeshRenderer will be attached to skeleton so that’s why it also takes skeleton

instance from CharacterController

The last component to be implemented is the Gesture component. It has the following

functionalities: it provides functionalities and a GUI for recording template gestures using

library from DTWGestureRecognition. This component also provides functionality and GUI for
connecting gesture to an animation. Developers could start connecting gestures with

animations when template gestures are loaded and skeleton already has an Animator

component configured15. The result of this action is a GestureController Script that maps

between animation and gesture. GestureController script will make sure that the configured

connection is happening during runtime.

Developing an environment for creating an interactive application in Unity requires solution

in Play-mode and in Edit-mode. After discussing the functionalities component-wise, this

section overviews how the components work together based on functional requirements

from section 4.1.

Character modeling functionalities are used only in Edit-mode. Figure 4.13 shows how the

PolygonController operates. In this example, skeleton GameObject is already created

complete with SkeletonController attached and its child bone GameObjects with

BoneController attached. PolygonController will create Mesh, Material using external

libraries. PolygonController will then attach SkinnedMeshRenderer to the skeleton

15 Mean animation, transition, and parameter condition is configured within animator

Methodology 64

GameObject. Result of this process is skin (mesh) that follows movement of bones in skeleton

GameObject.

Figure 4.13 Character modelling process

Once the process of attaching skin is finished, the character can be tested for imitation

functionality. This functionality occurs only in Play-mode. Through Kinect plugin, the

CharacterController (SkeletonController instance) will access Kinect’s 3D skeletal position and

calculate the bone rotation (through BoneController). The calculated bone rotation will be

applied to the character’s bone GameObjects. (Figure 4.14)

Figure 4.14 Imitation functionality during Play-mode

Another functionality from this environment is interactive functionality. This functionality

use both Edit-mode and Play-mode. Gesture component provide recording functionality and

requires Kinect-plugin functionality during Play-mode for getting skeletal position. Once the

gesture template is created, developer can connects gesture with animator parameter in
Edit-mode (Figure 4.15). The result of this process is GestureController instance attached to

the Skeleton GameObject as Component.

Methodology 65

Figure 4.15 Recording a gesture template and connecting gesture with animator parameter

Once developer finished with process of attaching GestureController instance, the character

now has interaction functionality. When the application is built later, the GestureController

of Character’s skeleton GameObject will accessing the Kinect for 3D position and try to

recognized gesture during Play-mode. Once a gesture is recognized, it will access Animator

component and trigger the animation clips.

Figure 4.16 accessing Kinect, recognizing gesture and triggering animation

4.5.2 System Implementation

In section 4.5.1, functionalities of every component and their dependency has been

discussed. This section will is about how a single component will be implemented using Unity

programming model (s. 4.4.1 scripting). Afterwards, the main functionalities of each class for

every component will be explained.

CharacterController

As mentioned in Section 4.4.3, the requirement for having a hierarchical structure for the

skeleton point is almost covered within Unity. For imitation purpose, the CharacterController

Methodology 66

component needs access to the Kinect-plugin. The CharacterController is responsible for

mapping the skeleton joint yielded by Kinect to the GameObject skeleton.

For this purpose, the MonoBehaviour classes SkeletonController and BoneController will be

created to manage the character skeleton and access the Kinect plugin (Figure 4.18). Later

when developing the skin of character, editing the position of the bone-skeleton in scene-

view is also needed (This will be explained later in Section 4.5.3, PolygonController). For this
reason, the Editor-classes BoneControllerEditor and SkeletonControllerEditor will be

implemented.

Kinect skeleton joints are connected to the bone GameObjects of the character inside two

classes: SkeletonController and BoneController. Basically, SkeletonController is a container

for BoneController GameObjects (reflected in the association between both classes in figure

4.18). SkeletonController has access to the Kinect-plugin, and it calculates the vector direction

of every bone during runtime and gives the result to the bone’s BoneController.

BoneController will be attached to every bone GameObjects for modifying the rotation of a

specific bone. Using the vector direction from SkeletonController, BoneController will update

its GameObject rotation.

The class SkeletonController has a public parameter called skeletonWrapper that refers to an

instance of SkeletonWrapper of the Kinect-plugin. During runtime, when the Update function

of SkeletonController is called, the skeletonWrapper checks for a position-update through

the plugin function pollskeleton. If the position is updated, then the RotateJoint function will

be called for every bone. RotateJoint calculates the direction vector from the parent bone to

the child bone of Kinect. For example, if the actual bone is shoulder, then RotateJoint will

calculate the direction vector from shoulder to elbow. After getting a new direction vector,

the rotation will be calculated for a specific bone GameObject through the function

UpdateRotationBoneOnDir of BoneController. UpdateRotationBoneOnDir will calculate the
new rotation, based on the new vector direction, and applies it to the bone where the scripts

(BoneController) have been attached. This function calculates only two-dimensional rotation

because the representation of virtual character is also two-dimensional.

Both SkeletonControllerEditor and BoneControllerEditor provide functionalities for directly

manipulating GameObjects in the scene view during Edit-mode. The OnSceneGUI function in

both Editor-classes will create a new handle at every position of the skeleton joint (handles

for skeletons are depicted as white boxes in Figure 4.17). The position of bones can be

changed by moving these handles. In OnSceneGUI function, both Editor-classes will check

whether the handle has changed and will calculate the new position for bone by calling the

function UpdateStandPointOnBones within the BoneController. In this function, the position

Methodology 67

of the actual bone will be changed, and the rotation of its parent bone will also be modified

through UpdateRotationBoneOnDir.

Figure 4.17 The skeleton 'template' created from SkeletonControllerEditor. The number of skeleton points

refers to the number of bones from the Kinect-plugin. Handles will be built at every skeleton point for direct

rotation editing.

The OnSceneGUI function from the BoneControllerEditor and the SkeletonControllerEditor

differs in the number of bones: OnSceneGUI process all bones in skeleton, while the

BoneControllerEditor processes only the bones in its children. The SkeletonControllerEditor

class has a static function CreateSkeleton that automatically creates a “template” skeleton

like in figure 4.17 right. This “template” consists of a skeleton GameObject with a

SkeletonController attached and bone GameObjects with a BoneController attached16 (figure

4.17 left). This function will also automatically arrange GameObjects in a tree structure. This

16 So that a developer doesn’t have to create GameObjects, attaching scripts to them and arrange the

tree structure manually

Methodology 68

function can be called through the Unity menu when initial setup of the interactive

application.

Figure 4.18 Class-diagram of the CharacterController component.

Methodology 69

PolygonController

The main functionality of PolygonController is to create a mesh that will be attached to the
bone GameObject from SkeletonController. Attaching a mesh to the skeleton will require the

SkinnedMeshRenderer component (refer to Section 4.4.1, Creating Mesh in Unity). At the end

of this process the character skeleton (GameObject with SkeletonController attached to it)

will have the SkinnedMeshRenderer component attached to it, which acts as a connector

between bones and mesh. The PolygonController does not have any class that is derived from

MonoBehaviour. This means that these classes of this component will only be used during

Edit-mode.

Figure 4.19 Class-Diagram of Component PolygonController

Methodology 70

The PolygonController functionality is divided into two main classes: MeshManager and

SkinManager (Figure 4.19). MeshManager’s main functionality is to create mesh and

material based on a graphic input. Allowed graphic input is graphic format with an alpha

channel (for example *.PNG) and configured as type ‘Sprite’ in Unity (ref Appendix 6.2.2).

SkinManager is there to prepare a mesh for SkinnedMeshRenderr and attaches it to the

skeleton. An editor class connecting these functionalities is the PolygonCreator class, which
is derived from the EditorWindow class. This window will provide a GUI for creating mesh,

creating material and attaching a SkinnedMeshRenderer to a skeleton GameObject.

Figure 4.20 shows the GUI of PolygonCreatorWindow. This window will provides 4 input

boxes: skeleton reference (“Skeleton”), texture from asset (“Texture (sprite)”), vertex

distance (“Vertex distance”) and mesh name (“Mesh Name”). Texture, mesh name and

vertex distance information will be used to create mesh in MeshManager. Input Skeleton

information will be used later together with the calculated mesh in SkinManager. This custom

window also provide 4 buttons that implement functionalities from SkinManager and

MeshManager.

Figure 4.20 PolygonCreatorWindow takes 4 Input: Texture (Sprite), Mesh Name, Vertex Distance and

SkeletonController. “Create Mesh” and “Create Material” button use functionality from MeshManager class.

“Create Skin” and “(Re)Calculate Weight and Add Skin” uses functionality from SkinManager.

MeshManager

Mesh creation consist of 4 stages:

1. Calculate vertices

Methodology 71

Calculation of vertices will use functionality from the Physics2DDotNet library

[Port00].In order to create vertex from a texture, this library will check texture’s

alpha channel (transparency) and create a character’s outline-vertices based on the

transparency. Then the generated vertices will be simplified the using Douglas-

Peucker algorithm [HeSn94] from the Farseer Physics library. This functionality is

included within the CreateVertexFromSprite and the CreateVertexFromTexture

function.

2. Calculate triangles

Creating triangles from vertices will use the functionality from the library

Poly2Tri[Cont00]. The output from this function is a Mesh-class instance.

CreateMeshWithTriangles of class MeshManager will be called for creating triangles

using Delaunay algorithm on the vertices from previous operations.

3. Calculate UV Map

The UV map will be calculated on the basis of texture. First, the mesh width and

height will be calculated by obtaining the leftmost, rightmost, topmost, and

bottommost vertices. Second, the texture width and height will be accessed. Finally,
with information about the size of the texture (in texture-define space) and the mesh

(in vertex-define space), we can calculate the UV map for each vertex by comparing

every vertex position in vertex-defined space to the position in the texture-defined

space.

The result of this process is an array of Vector2. The index of this array refers to the

index of each vertex. This tells each vertex which point in the texture they belong.

Calculating the UV map occurs in the function CalculateUV from MeshManager

4. Optimizing mesh

Lastly, the position of the mesh will be optimized by re-scaling the calculated mesh.
Because of the calculation of vertices using texture pixels, the generated vertices

represent the pixel coordinate of texture. For example, if the graphic input format is

1080x780 wide, then the generated vertices will have the same width.

If those vertices are applied to the world space coordinate system in Unity, the mesh

will become too big for the world space (scene). Therefore, re-scaling the texture size

in world space is needed. After rescaling, the mesh will be repositioned in the center

Methodology 72

of its local coordinate system so that it is easier to align skeleton bones to the mesh

later. These functionalities are included in the RecalculateMeshVertices function.

Another function of MeshManager is the creation of a Material asset that contained within

function CreateMaterial. This function instantiate a new Material instance and attaches

texture to it.

PolygonCreatorWindow provides two buttons for MeshManager functionalities: “Create
Mesh,” which uses the CreateMesh function; and “Create Material,” which calls the

CreateMaterial function.

SkinManager

After saving mesh and material, the developer should be able to add mesh to the skeleton.

This functionality is included in the class SkinManager. First, the component

SkinnedMeshRenderer will be added to the skeleton GameObject. Afterwards, bind poses and
vertex weight of the mesh will be calculated. Lastly, the mesh along with the material from

MeshManager will be added to SkinnedMeshRenderer. These functionalities will be included

in the CreateSkin function.

As mentioned in Section 4.4.1 (Creating Mesh in Unity), SkinnedMeshRenderer also requires

more calculation: calculating vertex weight, binding pose, and array of bones:

1. Calculation of vertex weight needs information from mesh vertices and bones from

SkeletonController. For every vertex in the mesh the nearest bone will be searched

and assigned with full influence value (1.0). Calculating vertex weight is included in

the function CalculateBoneWeight of the class Skinmanager.

2. Calculation of the binding pose in Unity is basically creating the Matrix4x4

transformation array for every bone (Section 4.4.1). This functionality is contained

within the function CalculateBindPoses.

3. Another calculation for SkinnedMeshRenderer is the calculation of an array of bones

(section 4.4.1). This will be included in the AddTransformsArrayBones function. In

this function, an array of the Transform component from the bone GameObject will

be created and added into the bones variable of SkinnedMeshRenderer

CreateSkin, CalculateBoneWeight, CalculateBindPoses, and AddTransformsArrayBones

functions will be called within the OnGUI function of PolygonCreatorWindow. Calling those
functions in one process will result in a mesh following the skeleton movement.

Methodology 73

Skelton to mesh mapping cannot be completely automated: the “template” skeleton will not

always have the same pose as the generated mesh. Figure 4.21, on the left side, is an example

where the generated mesh does not match the “template” skeleton. This is where the

handles from CharacterController are used. The developer should manually arrange the

bones of the character shape by dragging the handles. This will be done within the scene

view.

After finished manually aligning the skeleton bone to its position in the shape, the full process

of adding skin can be called and the shape will follow the skeleton movement.

Figure 4.21 The developer needs to align the skeleton positions manually to the right position of the character

shape (“Add Skin”- button)

Gesture

The Gesture component, together with the Kinect-plugin and DtwGestureRecognizer library,

provides the interaction functionality. Interaction functionalities include recording a gesture,

creating animation clips, connecting between animation and gesture, and recognizing
gestures for triggering animation. As already mentioned in section 4.4.3, recording and

recognizing gesture functionalities have already been implemented by help of the library

DtwGestureRecognizer. Creating animation is done within the Unity animation system

Mecanim. The system still needs to create a connector between the libraries

(DtwGestureRecognizer and Kinect) and Unity. Moreover, the functionality for connecting

animation to the gesture needs to be implemented.

Methodology 74

The Gesture component functionalities are divided into three main classes: GestureRecorder

for recording functionalities, GestureControllerEditorWindow for connecting gestures to

animations, and lastly GestureController that makes sure that animation is triggered when a

gesture is recognized. GestureRecorder creates a gesture template, and this template will be

connected to the animation clip parameter through the editor window from

GestureControllerEditorWindow. After mapping each gesture to the animation, the window
will add the GestureController instance, along with the mapping information to the skeleton

GameObject. The GestureController instance will make sure that an animation is triggered

when the gesture template is recognized while in Play-mode.

GestureController and GestureRecorder classes derive from the MonoBehaviour class (Figure

4.22 and 4.23). Both classes use functionality from the Kinect-plugin in order to get the Kinect

skeleton position while in Play-mode. The GestureControllerEditorWindow class is derived

from EditorWindow (Figure 4.23).

Methodology 75

Figure 4.22 Gesture Component class diagram 1

Methodology 76

Figure 4.23 gesture component class diagram 2

Methodology 77

GestureRecorder for recording functionality

GestureRecorder’s main functionality is located in the Start and Update methods: in the Start
function, the DtwGestureRecognizer instance will be initialized together with other helper

variables. In the Update function, an ArrayList _video is always updated for every frame. This

list holds a sequence of skeleton point positions from Kinect (Figure 4.22). For every new

Kinect’s upper-body skeleton position, they will be added into variable _video for every

frame. If the _video contains frames more than BufferSize, then the first frame in _video will

be removed so that in every frame _video always has the last skeleton position for the last

BufferSize frame.

Recording Gesture

The first time a DtwGestureRecognizer instance initializes, it does not hold any template

gesture. In order to create a template gesture, the function AddOrUpdate from

DtwGestureRecognizer will be used. This function uses inputs from variable _video. The

position sequence from _video will be transformed into the template gesture of the

DtwGestureRecognizer instance in the AddOrUpdate function. The use of AddOrUpdate also

requires an input gesture label (name). The template gesture, along with its unique name,

will be saved in the DtwGestureRecognizer instance during runtime. AddOrUpdate will be

called through the SaveRecording function of GestureRecorder.

Recognizing Gesture

Recognizing a gesture happens through DtwGestureRecognizer’s function Recognize.

Recognize will always be called in the Update function for every frame so that it always

compares the last Kinect’s position sequences with the saved template gestures. The output

from this function is string label of the detected gesture based on the algorithm.

This function takes the current _video ArrayList and compares it with saved gestures with the

help of the dynamic-time-warping algorithm. If Kinect’s position sequences matches to any
of the template gesture it will give the gesture label (string) as output.

Exporting Gesture-list

Saving gesture through AddOrUpdate function of DtwGestureRecognizer is only during

runtime. That means if Unity exits Play-mode, the saved template gesture will be gone. There

is a need for having functionality to exporting saved gestures from the DtwGestureRecognizer

instance. This functionality is obtained through ExportRecording function. This function will

Methodology 78

call the DtwGestureRecognizer’s function RetrieveText RetrieveText that collects the saved

gesture of the instance and exports it as *.txt format.

Loading a Gesture-list

Having a way to export gesture data, GestureRecorder also needs a functionality to load the

exported data. This functionality is implemented through the static function

LoadGestureFromAsset of the class GestureUtillities. In order to load a template gesture data,

this function needs a DtwGestureRecognizer instance. The function LoadGestureFromAsset

will be called after initializing the DtwGestureRecognizer instance in the Start function of

GestureRecorder. Inside this function, the template gesture data will be transformed into

gesture templates of the DtwGestureRecognizer instance by using the AddOrUpdate

function.

Recording GUI

Recording functionalities, such as SaveRecording and ExportRecording, will be available in the

Update function, but it will not be called actively on every frame (like Recognize function). To

call those functions, the GestureRecorder instance provides a GUI Menu. This GUI menu will

be created through the OnGUI function of GestureRecorder, and will provide menus and

other interface for recording a gesture.

Figure 4.24 shows the GestureRecorder instance in Play-mode. The OnGUI function provides

buttons for recording functionalities. The “(Update) Record” button will be used for calling
the SaveRecording function

“Export Gesture” button will call the ExportRecording function. Once a gesture is recorded,

it will be shown as a list at the Interface (Figure 4.24 left below).

In addition, the OnGUI of the class will be used to create GUI Text during runtime. The GUI

Text gives real-time information about the current output from DtwGestureRecognizer

instance’s Recognize function. Figure 4.24 shows Unity in Play-mode and provides

information that it is currently recognizing the “@handwave”-gesture. The GUI Text also

shows how much frames the _video variable currently possesses. For more insight into how

the GUI works, please refer to the Appendix section.

Methodology 79

Figure 4.24 GUI from GestureController for recording gesture

Custom Inspector view

GestureRecorderEditor is a class, which is derived from the Editor class. This class is used for

creating the custom inspector for the GestureRecorder Instance (through OnInspectorGUI).

The custom inspector view will show recording properties (Figure 4.25). Additionally, this

Editor class also has the static function CreateRecorder. This function will automatically

create a new empty GameObject and attach GestureRecorder to it.

Figure 4.25 Inspector view from GestureRecorder

Methodology 80

GestureControllerEditorWindow for connecting Animation to Gesture

GestureControllerEditorWindow creates a window for connecting gestures with animation
parameters. This window needs template gesture data and the skeleton GameObject from

CharacterController as its input (Figure 4.26 left). Template gesture data is the result of

GestureRecorder. Gesture labels will be extracted from this data through the static function

LoadGestureLabelFromAsset of GestureUtillities

The second input is the skeleton from CharacterController. The skeleton is used within the

window to access its Animator component. The animator parameters will be loaded within

the OnGUI function of the window. For this thesis we will only use a certain animator

parameter type “Trigger.”

Figure 4.26 The GestureControllerEditorWindow window (left) before the gesture list and animator are loaded;

(right) after loading the gesture list and animation parameter, the developer can attach them together

After loading the gesture list and animation parameters, gesture labels will be shown as a list

in the window and animator parameters as a drop down menu for every gesture label (Figure

4.26 right side). The connection between the animation parameter and the gesture label will

be stored in an array of Struct-type GestureAnimationMap. Every GestureAnimationMap

object in this array has always one gesture name and one animation parameter name. At the

end of the OnGUI function from the window, there will be the button “Add Gesture Controller

to Skeleton”. This button is used to create a GestureController instance, add the

GestureAnimationMap-array and template gesture data to its member variables and to
attach it to the skeleton GameObject.

Methodology 81

GestureController for triggering animation

GestureController is a MonoBehaviour class that is attached to the skeleton GameObject
and operates within Play-mode. Its main functionality is to trigger character animation

during the Play-mode runtime. It has similar functionalities like GestureRecorder: in the

Start function, the DtwGestureRecognizer instance will be initialized and the template

gesture data will be loaded. In the Update function, an ArrayList _video is updated for every

frame and the Recognize function of DtwGestureRecognizer instance will be called. The

difference from GestureRecorder is that every time the instance recognizes a gesture, it will

look up the information in the GestureAnimationMap-array and trigger the matching

Animator parameter.

Figure 4.27 GestureController’s inspector views

Custom Inspector view

The last class from this component is called GestureControllerEditor. This class is

responsible for creating the custom inspector view for GestureController (figure 4.23). The

inspector view from GestureController shows gesture-animation parameter connections

(Figure 4.27).

4.5.3 Implementation Environment

For implementation in this thesis we will use C# as a programming language. The

development environment of the system uses window 8.1 with Unity version 4.5.4.f1. As IDE

is MonoDevelop 2.0 from Unity used with the target framework .Net Framework 3.5. Kinect

hardware used in this thesis is Kinect for Windows with its driver Kinect for Windows SDK
v1.8. Table 4.1 shows the specification of the computer used for developing the system

Methodology 82

Table 4.1 : Specification detail of the computer used to develop and test the system.

4.6 Conclusion

In this chapter, the solution for this thesis has been shown. In chapter 4.1 and 4.2 the general

requirement have been described. Section 4.3 outlines the main components required for

creating system solutions. Section 4.4 of this chapter introduced the libraries and the tool
that support the solution. This section identifies the functionalities from Unity and at the

same time also overviews necessary development and external libraries to fulfill the solution

requirement.

Section 4.5 showed the implementation of requirements in section 4.1 and 4.2. Based on the

components from section 4.3, this section describes complete implementation of the system

environment in details.

Conclusion 83

5 Conclusion

This Thesis aims to develop an environment for creating an interactive application that
combines that combines gesture recognition and human character animation. The

functionality of this thesis includes: character modeling, imitation, and Interaction with a

virtual character. The target user of the proposed system is not limited to developers, but

also designer and other users who do not have any programming knowledge. In order to

achieve this, the solution in this thesis provides tools so it lightens the burden of developing

interactive application. Instead of creating the environment from a scratch, this thesis has

decide to utilize game-engine Unity. Unity already provides many functionalities for creating

the interactive application and covers most functional requirements. Other than using the

tool Unity, this thesis also integrates the developed system with other libraries and extends

Unity functionalities in such a manner that they fulfill the functional requirements described
in the chapter Introduction.

Chapter 2 examines related work and their relation to their developed system. This chapter

shows which aspect of these project can be adapted in the developed system.

Chapter 3 the theoretical background used in this thesis has been discussed. This chapter is

divided into three main parts: first, introduction to the key-frame animation. Second, the

basic of character modelling and animation. This part also addresses the issues of creating

character shapes that use of Skinning. Third part discussed the motion capture system. Since

the developed environment requires imitation and gesture recognition, a motion capture

component is also required in the system. This chapter is concluded with decision on the

character modelling/animation methods and motion capture technique.

Chapter 4 concentrates on the design and implementation of the environment. First, the

functional requirements and non-functional requirements are described in detail. Afterwards

this chapter identified the key components to the section and discussed the functionalities

provided by Unity and also additional functionalities which have to be develop by mean of

scripting and integrating external libraries. This section also introduced the programming

model of Unity. This chapter concludes with detailed description of the design and overall

solution.

Conclusion 84

To summarized, the main aim of this thesis is to develop an environment for creating an

interactive application has been reached. The main functionalities for character modeling,

imitation, and interaction have been covered within the system. All those functionalities—

from creating character to creating imitating movement and interactive character—can be

achieved without having to write a code.

Modification and extending functionalities of the system are still possible. First, the creation
of a shape can be done automatically: in the current solution, the developer has to manually

align skeleton points to the right position of the shape. This process could be automated in

which the system analyzes the body parts of the calculated shapes and positions of the

skeleton points accordingly. Second, the movement of the character while interacting or

imitating could be more realistic. The current solution uses maximal influence for every

vertex on bones when calculating vertex weight (1.0). This could be improve by applying

skinning algorithm compatible with environment’s data model. Physic simulation, such as

gravity and force, can also be applied to the skin for creating realistic character animation.

Third, modeling and animating characters in this thesis are limited to a 2D mesh model

because the visual of a character is obtained from a texture. If there is a need to create a 3D
character model, which also interacts / imitates in the 3D world (like in [ShGh14]), then

implementation of bone rotation should be extended into the 3D rotation. Finally, since the

developed system uses Kinect and also has imitation requirements, it is also possible to

create animation clips in Unity within the CharacterController component. Recording

movements during the imitation mode will require extended implementation on the

SkeletonController class. If this functionality is implemented, then creating animation clips

will be easier, and Mecanim in Unity will be used only for creating transition between

animation clips.

Appendix 85

6 Appendix

This section describes the process of creating an interactive application using the developed
environment. This section will also be divided into four sub-sections: configuring Unity,

character modelling, imitation and interaction

6.1 Configuring Unity

In order for a developer to use the developed system, some configurations of Unity is

needed. First, developer should make sure that Unity is in 2D-Mode. This can be achieved

from Unity-editor (figure 5.1 left). Afterwards, the developer can start importing extended

Unity package and start developing an application (figure 5.1. right).

Figure 6.1 configuration before using the Unity

Appendix 86

6.2 Character modeling

6.2.1 Creating Skeleton

Modelling a character starts with creating a skeleton “template” from the menu. If the

package is imported correctly, developer should see the menu “Skeleton” in Unity menu

items (figure 6.2 a). Other than create skeleton GameObject (and its bone GameObject),

selecting this menu item will also add Kinect GameObject to the scene and assign it to the
skeletonWrapper variable of the SkeletonController component (figure 6.2 b and 6.2 d).

Figure 6.2 (a) Creating skeleton menu. (b) Hierachy view after adding skeleton. (c) Skeleton “template” in scene

view. (d) Skeleton inspector view

Appendix 87

In the scene view, the skeleton GameObject will draw the handles at each skeleton.

Developer can drag the handles and modify bone rotation (Figure 6.3).

Figure 6.3 changing skeleton rotation with handles.

6.2.2 Creating Shape

When finish creating skeleton, the developer can starts creating a shape for the skeleton. A

mesh will be created through an input texture. That’s why developer need to import the

texture first. The imported texture should configured as type ‘Sprite’ (figure 6.4). This could

be change from the texture’s inspector view (figure 6.4).

Appendix 88

Figure 6.4 Texture type should be "Sprite"

After finish importing the texture, the developer can start calculating mesh and adding the

calculated mesh to the skeleton using customized window. This windows will be created

through menu “Create Mesh from Texture”. Figure 6.5 shows menu item and window GUI

for creating shape.

Figure 6.5 Menu for creating shape and its window GUI

Creating mesh and material in this window will result in mesh and material being saved in

Unity asset folder (figure 6.6)

Appendix 89

Figure 6.6 Creating Mesh and Creating Material

The process of adding mesh to the skeleton will need skeleton to be assigned to the input

box first. After assigning the skeleton, the developer can create skin (figure 6.7-1). Figure 6.7-

2 to figure 6.7-3 shows the process where developer manually align the skeleton joint

position into the right mesh position in the scene view. When finished, the developer can

adds skin to skeleton by pressing the second button “(Re) calculate Weight and Add Skin”

(Figure 6.7-4).

Appendix 90

Figure 6.7 Adding skin to skeleton

Appendix 91

After the process of adding skin into skeleton, the mesh will follow the skeleton movement.

This could be tested by dragging the skeleton handles in Edit-mode (figure 5.8)

Figure 6.8 Testing the mesh deformation

6.3 Imitation

The skeleton GameObject created in section 6.2.1 already have functionality for imitation:

the SkeletonController script will take input from Kinect plugin and transforms the movement

from the Kinect skeleton position into bone rotation of the character. Once the skin is added,

the application is ready for imitating participant movement in Play-mode

Before testing the application for imitation functionality, the developer needs to make sure

that the variable skeletonWrapper is assigned to the Kinect GameObject and imitation Mode

variable is checked (figure 6.9).

Appendix 92

Figure 6.9 variable SkeletonWrapper needs to be assinged to the Kinect GameObject and Imitation Mode should

be chekced

6.4 Interactive

Unlike imitation, this functionality needs extended configuration in order for application to

have an interactive character: recording/creating template gesture, creating animation,

connecting animation with gesture, testing interactivity.

6.4.1 Creating template gesture

Creating a template gesture is achieved by creating a recorder GameObject, which will be

created automatically from the menu “Create Gesture Recorder”. This menu will add Kinect

GameObject automatically to the Component, so developer doesn’t need to assign it

manually. (figure 6.10)

Appendix 93

Figure 6.10 from left to right: menu for creating gesture recorder; Gesture recorder GameObject in hierachy

view; Inspector view of Gesture-recorder GameObject (Kinect GameObject is assigned automatically)

After creating recorder GameObject, developer can start recording template gesture by bring

Unity in Play-mode. The GestureRecorder instance in recorder GameObject will create GUI

for recording functionality.

Figure 6.11 shows a gesture recorder GUI in Play-mode. At left upper side is main button for

recording: “(Update) Record!”-button for start recording a new gesture. Saving gesture

require inputs of the gesture name (Input box for gesture name). If a same name is already

saved, then recorder will updated it instead of adding it. “Delete Recording”-button deletes

any gesture that have same name like in gesture name input box. “Export recording” will

export the saved template gestures. Like gesture recording, using this button also require
input on a text-box beside the button for the name of the exported gesture data.

The details of the recording GUI is as follows: At the left below side is a list of a saved gesture,

that shown as a button list. Developer can choose any gesture in this list and the name will

be appear on the gesture input name. At the upper right and below right side will be space

for GUI text for information. Information that being shown are: name of the recognized

gesture, Buffer in _video variable and other information such as error message or timer.

Appendix 94

Figure 6.11 GUI of gesture recorder

Recording a gesture occurs after developer inputs the gesture name and clicks “(Update)

Record!”-button. Developer will be given 3 second for preparing before the actual recording

occurs. Afterwards the buffer will be reset to zero and start saving gesture for a fixed number

of buffer (default is 32 frames). At this times, the developer should create move in a looping
movement (figure 6.12).

Appendix 95

Figure 6.12 record a gesture

When finished, the gesture will be saved automatically in the list of saved gesture (figure
6.13-2). Recognizing gesture is always active so the developer can test the newly created

gesture by repeating the movement.

Figure 6.13 after finish recording a gesture

When finish creating / editing gestures, the gesture list must be exported (figure 6.14).

Exported gesture data will be saved in defaults folder: Assets/Recordings/<name of data>.txt.

Appendix 96

Figure 6.14 exporting a gesture data

6.4.2 Creating animation

After having gesture data exported, developer could start creating animation sequences as

response. Using Mecanim (Animation system from Unity) and the skeleton GameObject of

the character, the developer could start create animation right away.

Creating animation occurs in animation window. Using Mecanim, the developer can easily

create an animation clip based on key frame system (figure 6.15) and create complex

animation sequences within animator window (figure 6.16). For more information how
Mecanim work please refer to [Unit00h]

Figure 6.15 shows an example of creating an animation clip. The developer should make sure

that animation clip is created when skeleton GameObject is selected and open the animation

window of Unity. (a) After creating an animation clip, developer can start recording an

animation by bring animation window in record-state (b). (c) Afterwards, the property being

animated can be chosen through “Add curve”. In this case rotation. (d) Developer creates key

frame at t=0.00s. e) Developer creates other key frame at t=0.30s and iterates the process

for creating other animation sequences.

Appendix 97

Figure 6.15 creating animation clips in Unity

After creating animation clips, developer could start creating transition between animation

clips through animator window. This part is necessary because animator window is also

needed for creating parameter for triggering an animation when gesture recognized later.

Figure 6.16 shows an example of configuring transition between animation clips: (a) animator

window views animation-clips as state machine. The default-animation state is shown in

color orange (that means this animation will be played first when in Play-mode). The other
animation states will have grey color. A green state “Any State” is a built-in animator states

that is useful for escaping any condition in state-machine. (b) shows creation of transition

between animation clips. (c) Animator window after connecting between animation clips. (d)

Creating parameter for transition conditions. This environment will only use Trigger-type

parameters. (e) The inspector view when transition between states in selected. Here the

developer can set the condition with parameter created from (d)

Appendix 98

Figure 6.16 creating animation transitions in the Animator window

6.4.3 Attach gesture to animation

After creating gesture templates and configuring animator, the developer can start

connecting gestures with animator parameters through gesture-animator window (figure

6.17). Mapping a gesture to an animator parameter occurs once gesture export data and

animator (of skeleton GameObject) is loaded. Once they’re loaded, developer can chose the

animator parameter for every gesture template.

Figure 6.17 creating gesture-animation editor

Afterwards developer can click the last button on this window “Add gesture Controller to

Skeleton” for adding GestureController instance to the skeleton GameObject.

Appendix 99

6.4.4 Gesture recognition

When GestureController is added, the skeleton GameObject now has interactive

functionality. Developer should uncheck the imitation mode variable from

SkeletonController component before testing it. This way, SkeletonController won’t changing

skeleton position by imitating participant’s movement.

Figure 6.18 Imitation mode should be unchecked when using interactive functionality

Bibliography 100

Bibliography

[AkHH08] AKENINE-MÖLLER, TOMAS ; HAINES, ERIC ; HOFFMAN, NATY: Real-Time Rendering. vol.
85, 2008 — ISBN 1568814240

[BaSm79] BADLER, NORMAN I. ; SMOLIAR, STEPHEN W.: Digital Representations of Human

Movement. In: ACM Computing Surveys vol. 11 (1979)

[Cont00] CONTRIBUTOR, POLY2TRI: Poly2Tri. URL https://github.com/JakeCataford/unity-
tinkerbox/tree/master/Lib/Poly2Tri

[Crai89] CRAIG, JOHN: Introduction to Robotics: Mechanics and Control (3rd Edition),

1989

[Desi11] DESIGN I/O: PUPPET PARADE. URL http://design-

io.com/projects/PuppetParadeCinekid/. - abgerufen am 2014-12-19

[DoMB11] DODDS, TREVOR J. ; MOHLER, BETTY J. ; BÜLTHOFF, HEINRICH H.: Talk to the virtual

hands: Self-animated avatars improve communication in head-mounted

display virtual environments. In: PLoS ONE vol. 6 (2011) — ISBN 1932-6203

(Electronic)r1932-6203 (Linking)

[Gent00] GENTXWARPER: GenTXWarper - Mining gene expression time series. URL

http://www.psb.ugent.be/cbd/papers/gentxwarper/DTWalgorithm.htm. -

abgerufen am 2014-11-14

[HaZi05] HARTLEY, RICHARD ; ZISSERMAN, ANDREW: Multiple View Geometry in Computer

vision. vol. 23. UK : CUP, Cambridge, UK, 2005 — ISBN 0521540518

[HeSn94] HERSHBERGER, JOHN ; SNOEYINK, JACK: An O(nlogn) implementation of the Douglas-

Peucker algorithm for line simplification. In: Proceedings of the tenth annual

symposium on Computational geometry, 1994 — ISBN 0-89791-648-4,

pp. 383–384

Bibliography 101

[ILSS06] ISENBURG, MARTIN ; LIU, YUANXIN ; SHEWCHUK, JONATHAN ; SNOEYINK, JACK: Streaming

computation of Delaunay triangulations. In: ACM Transactions on Graphics vol.

25 (2006) — ISBN 1595933646

[JaTw05] JAMES, DOUG L. ; TWIGG, CHRISTOPHER D.: Skinning mesh animations. In: ACM

Transactions on Graphics vol. 24 (2005)

[Krue77] KRUEGER, MYRON W.: Responsive environments. In: Proceedings of the June 13-

16, 1977, national computer conference on - AFIPS ’77 (1977), p. 423

— ISBN 0750605669

[KuZa06] KUCUK, SERDAR ; ZAFER, BINGUL: Robot Kinematics: Forward and Inverse

Kinematics. In: Industrial Robotics: Theory, Modelling and Control, 2006

— ISBN 3-86611-285-8

[Lass87] LASSETER, JOHN: Principles of traditional animation applied to 3D computer
animation. In: ACM SIGGRAPH Computer Graphics vol. 21 (1987)

— ISBN 0897912276

[Macc00] MACCORMICK, JOHN: How does the Kinect work?. URL

http://users.dickinson.edu/~jmac/selected-talks/kinect.pdf. - abgerufen am

2014-10-30

[MoGr01] MOESLUND, THOMAS B. ; GRANUM, ERIK: A Survey of Computer Vision-Based

Human Motion Capture. In: Computer Vision and Image Understanding vol. 81

(2001), pp. 231–268 — ISBN 10773142 (ISSN)

[Nobl09] NOBLE, JOSHUA: Programming Interactivity. vol. 54, 2009 — ISBN 144931144X

[Owen99] OWEN, SCOTT: Motion Capture: Acclaim’s Optical system. URL

http://www.siggraph.org/education/materials/HyperGraph/animation/charact

er_animation/motion_capture/motion_optical.htm. - abgerufen am 2014-10-

20

[Pare08] PARENT, RICK: Computer Animation: Algorithm and Techniques, 2008

— ISBN 978-0-12-532000-9

Bibliography 102

[Port00] PORTER, JONATHAN MARK: physics2d. URL

https://sites.google.com/site/physics2d/. - abgerufen am 2014-11-14

[Qvis00] QVIST, IAN: Farseer Physics Engine - Home. URL
http://farseerphysics.codeplex.com/. - abgerufen am 2014-11-14

[RoBB13] ROSENBERG, ROBIN S. ; BAUGHMAN, SHAWNEE L. ; BAILENSON, JEREMY N.: Virtual

Superheroes: Using Superpowers in Virtual Reality to Encourage Prosocial

Behavior. In: PLoS ONE vol. 8 (2013)

[Rymi00] RYMIX, RHEMYST AND: Kinect SDK Dynamic Time Warping (DTW) Gesture

Recognition - Home. URL http://kinectdtw.codeplex.com/. - abgerufen am

2014-11-14

[SaKo11] SADEGHIPOUR, AMIR ; KOPP, STEFAN: Imitation Mechanisms of Social Resonance for

Embodied Agents (IMoSA). URL http://www.techfak.uni-
bielefeld.de/ags/soa/research/gesture-imitation/. - abgerufen am 2014-12-21

[Salo06] SALOMON, DAVID: Curves and surfaces for computer graphics, 2006

— ISBN 0387241965

[SFCS13] SHOTTON, JAMIE ; FITZGIBBON, ANDREW ; COOK, MAT ; SHARP, TOBY ; FINOCCHIO, MARK ;
MOORE, RICHARD ; KIPMAN, ALEX ; BLAKE, ANDREW: Real-time human pose

recognition in parts from single depth images. In: Studies in Computational

Intelligence vol. 411 (2013), pp. 119–135 — ISBN 9783642286605

[ShGh14] SHINGADE, ASHISH ; GHOTKAR, ARCHANA: Animation of 3D Human Model Using

Markerless Motion Capture Applied To Sports. In: International Journal of

Computer Graphics & Animation vol. 4 (2014), Nr. 1, pp. 27–39

[Sori00] SORIANO, MARC: Skeletal Animation. URL

http://alumni.cs.ucr.edu/~sorianom/cs134_09win/lab5.htm. - abgerufen am

2014-10-20

[ToMa06] TOBLER, ROBERT ; MAIERHOFER, STEFAN: A Mesh Data Structure for Rendering and

Subdivision, 2006

Bibliography 103

[Unit00a] UNITY: Unity - Game engine, tools and multiplatform. URL

http://unity3d.com/unity. - abgerufen am 2014-10-21

[Unit00b] UNITY: Unity - Mecanim - Simple and powerful animation technology. URL
http://unity3d.com/unity/animation. - abgerufen am 2014-08-20

[Unit00c] UNITY: Unity - Manual: GameObject. URL

http://docs.unity3d.com/Manual/class-GameObject.html. - abgerufen am

2014-08-20

[Unit00d] UNITY: Unity - Manual: Hierarchy. URL

http://docs.unity3d.com/Manual/Hierarchy.html. - abgerufen am 2014-08-20

[Unit00e] UNITY: Unity - Manual: Anatomy of a Mesh. URL

http://docs.unity3d.com/Manual/AnatomyofaMesh.html. - abgerufen am

2014-11-26

[Unit00f] UNITY: Unity - Manual: Skinned Mesh Renderer. URL

http://docs.unity3d.com/Manual/class-SkinnedMeshRenderer.html. -

abgerufen am 2014-11-26

[Unit00g] UNITY: Unity - Scripting API: Skinned Mesh Renderer Example. URL
http://docs.unity3d.com/ScriptReference/Mesh-bindposes.html. - abgerufen

am 2014-11-26

[Unit00h] UNITY: Unity - Manual: Mecanim Animation System. URL

http://docs.unity3d.com/Manual/MecanimAnimationSystem.html. - abgerufen

am 2014-10-30

[Unit00i] UNITY: Unity - Manual: Animation Clip. URL

http://docs.unity3d.com/Manual/class-AnimationClip.html. - abgerufen am

2014-10-01

[Unit00j] UNITY: Unity - Manual: Animator and Animator Controller. URL
http://docs.unity3d.com/Manual/Animator.html. - abgerufen am 2014-11-29

Bibliography 104

[Univ00] UNIVERSITY, CARNEGIE MELLON: Microsoft Kinect - Microsoft SDK - Unity3D. URL

http://wiki.etc.cmu.edu/unity3d/index.php/Microsoft_Kinect_-

_Microsoft_SDK. - abgerufen am 2014-11-14

[Wiki00a] WIKIPEDIA: Polygon mesh - Wikipedia, the free encyclopedia. URL

http://en.wikipedia.org/wiki/Polygon_mesh. - abgerufen am 2014-08-17

[Wiki00b] WIKIPEDIA: UV mapping - Wikipedia, the free encyclopedia. URL

http://en.wikipedia.org/wiki/UV_mapping#UV_mapping. - abgerufen am 2015-

01-08

[Wiki00c] WIKIPEDIA: Motion capture. URL http://en.wikipedia.org/wiki/Motion_capture. -

abgerufen am 2015-01-04

[YiJS06] YILMAZ, ALPER ; JAVED, OMAR ; SHAH, MUBARAK: Object tracking: A survey. In: ACM

Computing Surveys vol. 38 (2006), p. 13 — ISBN 0360-0300

[Zhao14] ZHAO, CHENGLONG: Working prinicple of Kinect: Structured light for applications

in motion control - Welcome to Chenglong Zhao’s Research Website. URL

http://chenglongresearch.weebly.com/information-center/working-prinicple-

of-xbox-360-structured-light-for-applicationsin-motion-control. - abgerufen am

2015-01-08

[ZhCS02] ZHANG, LI ZHANG LI ; CURLESS, B. ; SEITZ, S.M.: Rapid shape acquisition using color

structured light and multi-pass dynamic programming. In: Proceedings. First

International Symposium on 3D Data Processing Visualization and Transmission

(2002) — ISBN 0-7695-1521-4

Table of Figures 105

Table of Figures

FIGURE 2.1 VIRTUAL WORLD AVATAR FOLLOWS GESTURE FROM PARTICIPANTS (LEFT) IS HOW THE PARTICIPANT SAW EACH

OTHER IN VR WORLD ... 10

FIGURE 2.2 (LEFT) PUPPET PARADE IN RUNTIME. (RIGHT) SKELETON POINT FROM THUMB AND THE FOREFINGER WILL BE

CREATED FOR CONTROLLING BIRD-AVATAR’S BEAK. .. 11

FIGURE 2.3 (LEFT) VIRTUAL WORLD WHICH PARTICIPANT SEE THROUGH HEAD MOUNTED DISPLAY. (RIGHT) PARTICIPANT

RAISES THEIR ARM FOR FLYING SIMULATION .. 12

FIGURE 2.4 (LEFT) PARTICIPANT TRIES TO DRAW A CIRCLE HAND-MOVEMENT IN IMOSA (RIGHT) THE PROCESS OF

RECOGNIZING THE HAND MOVEMENT .. 13

FIGURE 3.1: (A) IN THE POSE-TO-POSE METHOD THE IMPORTANT DRAWINGS ARE FIRST TO BE DRAWN (IN RED LINE) AND

INTERMEDIATE DRAWINGS IN INBETWEENING (IN GRAY LINES); (B) IN THE STRAIGHT-AHEAD METHOD THE FRAMES

ARE DRAWN ONE BY ONE FROM THE START TO END OF A SEQUENCE. .. 16

FIGURE 3.2: TRANSFORMING OBJECTS BETWEEN SPACES [PARE08] P. 45. .. 17

FIGURE 3.3: EXAMPLE OF TWO KEY FRAMES WITH ITS VALUE (POSITION). ... 19

FIGURE 3.4: KEY FRAMES WITH THEIR INTERPOLATED VALUES. .. 19

FIGURE 3.5: ARC AND NODE, ����� IS LEADING NODE OF ��	� [PARE08]. .. 21

FIGURE 3.6: NODE TRANSFORMATION WITHIN OBJECT SPACE, MAKING THE ROTATION POINT IN THE MIDDLE OF THE

RECTANGLE. ... 21

FIGURE 3.7: EXAMPLE OF THE OBJECTS’ TREE STRUCTURE IN ITS ORIGINAL DEFINITION AND THEIR ARRANGEMENT IN TREE

STRUCTURE. ... 22

FIGURE 3.8: TRANSFORMATION FROM THE OBJECT SPACE OF THE HIERACHICAL MODEL INTO WORLD SPACE. (A) AND (B)

SHOW NORMAL TRANSFORMATION OF ROOT OBJECT ����0 FROM OBJECT SPACE TO WORLD SPACE. (C)–(F) SHOW

THE TRANSFORMATION FROM OBJECT ����1TO WORLD SPACE. ... 24

FIGURE 3.9: HIERARCHICAL OBJECTS IN WORLD SPACE AFTER TRANSFORMATION. ... 25

Table of Figures 106

FIGURE 3.10: TREE STRUCTURE REPRESENTING THE HIERARCHICAL STRUCTURE OF AN ARTICULATED FIGURE[PARE08] P.

192. .. 27

FIGURE 3.11: EXAMPLE OF FORWARD KINEMATICS SPECIFICATION OF JOINT ROTATION. .. 28

FIGURE 3.12: EXAMPLE OF LINKAGES SYSTEM WITH END-EFFECTOR. .. 29

FIGURE 3.13: SAMPLE SEQUENCE OF POSITIONING THE END-EFFECTOR OF THE LINKAGE SYSTEM BY USING INVERSE

KINEMATICS. NOTICE THAT THERE ARE TWO OPTIONS, (B) AND (C), AS POSSIBLE ANSWERS. 30

FIGURE 3.14: REPRESENTATION OF THE INVERSE KINEMATICS AND FORWARD KINEMATICS OF ARTICULATED BODIES BASED

ON [KUZA06]. ... 31

FIGURE 3.15: EXAMPLE OF USING A TEXTURE FOR CREATING THE SHAPE OF AN ARM. THE TWO METHODS DIFFER ON HOW

THE TEXTURE IS MAPPED ONTO THE OBJECT. THE FIRST ROW DIVIDES THE TEXTURE IN THEIR CORRESPONDING

OBJECTS AND USES IT IN THE HIERARCHICAL STRUCTURE AS PART OF THE OBJECT, WHILE THE SECOND ROW MAPS

TEXTURE INTO ONE DEFORMABLE OBJECT AND DEFORMS IT ON THE BASIS OF THE MOVEMENT OF LINKS AND JOINTS.

 ... 32

FIGURE 3.16: VERTEX, EDGE, FACE, POLYGON, AND SURFACE IN POLYGON MESH [WIKI00A]. 33

FIGURE 3.17: POLYGONAL MESH WITH NORMALS (SHOWN IN RED ARROW) IN (A) A FACE DRAWS THE TEXTURE BASED ON

ITS NORMAL (B) SHOWS THE TRIANGLE FROM BELOW (NOTICE THERE IS NO TEXTURE IN IT). (C) AND (D) SHOW THE

VERTEX NORMAL AND HOW IT INFLUENCES THE LIGHT IT RECEIVES (THE TRIANGLE IS DIRECTLY UNDER THE LIGHT). 34

FIGURE 3.18: UV MAPPING FROM TEXTURE INTO THE POLYGONAL SPHERE OBJECT.[WIKI00B] 35

FIGURE 3.19: DEFORMABLE OBJECT BEFORE AND AFTER TRANSFORMATION: A IS THE ROTATION OF A SKELETON POINT,

WHILE B IS THE ROTATION OF VERTEX V1 AND C IS THE ROTATION OF VERTEX V2. VERTICES V1 AND V2 ARE

ATTACHED TO THE ELBOW ROTATION AND THUS FOLLOWS ITS ORIENTATION. ... 36

FIGURE 3.20 MOTION CAPTURE BY USING LED INFRARED MARKER FOR ANIMATING A VIRTUAL CHARACTER [WIKI00C] . 38

FIGURE 3.21: (A) KINECT CAMERA AND ITS SENSOR/PROJECTOR; (B) THE IR DEPTH PROJECTORS EMIT LIGHT PATTERNS

DETETCTED BY THE INFRARED DEPTH SENSOR; (C) THE LIGHT DOT PATTERN FROM INFRARED PROJECTORS.[ZHAO14]

 ... 39

FIGURE 3.22: HOW KINECTS GET SKELETAL POSITIONS [SFCS13]. .. 40

FIGURE 4.1 COMPONENT OVERVIEW ... 46

FIGURE 4.2: WORKFLOW IN UNITY ... 48

Table of Figures 107

FIGURE 4.3: A GAMEOBJECT WITH LIGHT COMPONENT. THE RIGHT WINDOW IS THE INSPECTOR VIEW THAT SHOWS THE

COMPONENTS OF SELECTING A GAMEOBJECT. THE LEFT WINDOW IS THE SCENE VIEW, THE WORLD SPACE OF UNITY.

 ... 49

FIGURE 4.4: HIERARCHY VIEW CREATING HIERARCHICAL STRUCTURE IN ARMS .. 50

FIGURE 4.5 INHERITANCE CLASS FROM UNITY ENGINE AND UNITY EDITOR .. 51

FIGURE 4.6 CUSTOMSCRIPT C# SCRIPT (LEFT) AND DEFAULT INSPECTOR VIEW OF THIS SCRIPT (RIGHT) AFTER IT IS

ATTACHED INTO A GAMEOBJECT .. 52

FIGURE 4.7 EXAMPLE OF EDITORFORCUSTOMSCRIPT C# SCRIPT (LEFT) AND ITS CUSTOM INSPECTOR VIEW (RIGHT) FOR

CUSTOMSCRIPT. NOTICE THERE IS DIFFERENT WITH DEFAULT VIEW OF SCRIPT IN FIGURE 4.6 53

FIGURE 4.8 : EXAMPLE OF THE ONSCENEGUI FUNCTION THAT CREATES THE HANDLE. FIRST, THE CURRENT

CUSTOMSCRIPT INSTANCE WILL BE AQUIRED THROUGH EDITOR.TARGET. AFTER ASSINGING GUISTYLE FONT COLOR,

A LABEL WILL BE WRITTEN TO THE SCENE THROUGH THE HANDLE.LABEL FUNCTION. .. 54

FIGURE 4.9 EXAMPLE OF EDITORWINDOW CLASS: CUSTOMWINDOW SCRIPT (LEFT), CREATION OF WINDOW THROUGH

THE STATIC FUNCTION INIT (RIGHT ABOVE), GUI OF WINDOW BASED ON THE ONGUI FUNCTION (RIGHT BELOW). 55

FIGURE 4.10: SKINNED MESH RENDERER COMPONENT, IT TAKES MATERIAL (TEXTURE), MESH, AND ROOT BONES (GAME

OBJECT’S TRANSFORMATION). ... 57

FIGURE 4.11: ANIMATION WINDOW IN UNITY: DOPE SHEET WINDOW (ABOVE) FOR MANAGING KEY-FRAME, CURVES

WINDOW (MIDDLE) FOR MANAGING INTERPOLATION FUNCTION AND ANIMATOR WINDOW (BELOW) FOR MANAGING

TRANSITIONS. ... 58

FIGURE 4.12: SYSTEM ARCHITECTURE OF THE DEVELOPED ENVIRONMENT. COMPONENTS IN BLUE ARE EXTERNAL

LIBRARIES, WHILE THE GREEN COMPONENTS ARE INTERNAL COMPONENTS. ... 62

FIGURE 4.13 CHARACTER MODELLING PROCESS ... 64

FIGURE 4.14 IMITATION FUNCTIONALITY DURING PLAY-MODE.. 64

FIGURE 4.15 RECORDING A GESTURE TEMPLATE AND CONNECTING GESTURE WITH ANIMATOR PARAMETER 65

FIGURE 4.16 ACCESSING KINECT, RECOGNIZING GESTURE AND TRIGGERING ANIMATION .. 65

FIGURE 4.17 THE SKELETON 'TEMPLATE' CREATED FROM SKELETONCONTROLLEREDITOR. THE NUMBER OF SKELETON

POINTS REFERS TO THE NUMBER OF BONES FROM THE KINECT-PLUGIN. HANDLES WILL BE BUILT AT EVERY SKELETON

POINT FOR DIRECT ROTATION EDITING. .. 67

Table of Figures 108

FIGURE 4.18 CLASS-DIAGRAM OF THE CHARACTERCONTROLLER COMPONENT. .. 68

FIGURE 4.19 CLASS-DIAGRAM OF COMPONENT POLYGONCONTROLLER ... 69

FIGURE 4.20 POLYGONCREATORWINDOW TAKES 4 INPUT: TEXTURE (SPRITE), MESH NAME, VERTEX DISTANCE AND

SKELETONCONTROLLER. “CREATE MESH” AND “CREATE MATERIAL” BUTTON USE FUNCTIONALITY FROM

MESHMANAGER CLASS. “CREATE SKIN” AND “(RE)CALCULATE WEIGHT AND ADD SKIN” USES FUNCTIONALITY

FROM SKINMANAGER. ... 70

FIGURE 4.21 THE DEVELOPER NEEDS TO ALIGN THE SKELETON POSITIONS MANUALLY TO THE RIGHT POSITION OF THE

CHARACTER SHAPE (“ADD SKIN”- BUTTON) .. 73

FIGURE 4.22 GESTURE COMPONENT CLASS DIAGRAM 1 .. 75

FIGURE 4.23 GESTURE COMPONENT CLASS DIAGRAM 2 ... 76

FIGURE 4.24 GUI FROM GESTURECONTROLLER FOR RECORDING GESTURE ... 79

FIGURE 4.25 INSPECTOR VIEW FROM GESTURERECORDER ... 79

FIGURE 4.26 THE GESTURECONTROLLEREDITORWINDOW WINDOW (LEFT) BEFORE THE GESTURE LIST AND ANIMATOR ARE

LOADED; (RIGHT) AFTER LOADING THE GESTURE LIST AND ANIMATION PARAMETER, THE DEVELOPER CAN ATTACH

THEM TOGETHER ... 80

FIGURE 4.27 GESTURECONTROLLER’S INSPECTOR VIEWS ... 81

FIGURE 6.1 CONFIGURATION BEFORE USING THE UNITY ... 85

FIGURE 6.2 (A) CREATING SKELETON MENU. (B) HIERACHY VIEW AFTER ADDING SKELETON. (C) SKELETON “TEMPLATE” IN

SCENE VIEW. (D) SKELETON INSPECTOR VIEW .. 86

FIGURE 6.3 CHANGING SKELETON ROTATION WITH HANDLES. ... 87

FIGURE 6.4 TEXTURE TYPE SHOULD BE "SPRITE" .. 88

FIGURE 6.5 MENU FOR CREATING SHAPE AND ITS WINDOW GUI .. 88

FIGURE 6.6 CREATING MESH AND CREATING MATERIAL ... 89

FIGURE 6.7 ADDING SKIN TO SKELETON .. 90

FIGURE 6.8 TESTING THE MESH DEFORMATION .. 91

Table of Figures 109

FIGURE 6.9 VARIABLE SKELETONWRAPPER NEEDS TO BE ASSINGED TO THE KINECT GAMEOBJECT AND IMITATION MODE

SHOULD BE CHEKCED .. 92

FIGURE 6.10 FROM LEFT TO RIGHT: MENU FOR CREATING GESTURE RECORDER; GESTURE RECORDER GAMEOBJECT IN

HIERACHY VIEW; INSPECTOR VIEW OF GESTURE-RECORDER GAMEOBJECT (KINECT GAMEOBJECT IS ASSIGNED

AUTOMATICALLY) .. 93

FIGURE 6.11 GUI OF GESTURE RECORDER .. 94

FIGURE 6.12 RECORD A GESTURE .. 95

FIGURE 6.13 AFTER FINISH RECORDING A GESTURE ... 95

FIGURE 6.14 EXPORTING A GESTURE DATA .. 96

FIGURE 6.15 CREATING ANIMATION CLIPS IN UNITY .. 97

FIGURE 6.16 CREATING ANIMATION TRANSITION IN ANIMATOR WINDOW ... 98

FIGURE 6.17 CREATING GESTURE-ANIMATION EDITOR ... 98

FIGURE 6.18 IMITATION MODE SHOULD BE UNCHECKED WHEN USING INTERACTIVE FUNCTIONALITY........................... 99

Table of Figures 110

Versicherung über Selbstständigkeit

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbstständig

verfasst und nur die angegebenen Hilfsmittel benutzt habe.

Hamburg, den _______________ __________________________

