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Kurzzusammenfassung 
In dieser Arbeit wurde ein Kurzwellenempfänger mit Hilfe eines Produktdemodulators zuerst 
auf einem DSP und anschließend auf einem FPGA implementiert. 
Dazu wurde ein A/D-D/A-Umsetzer der Firma DSignT über eine Adapterkarte an den DSP 
C6713 angeschlossen und ein C-Programm entworfen, welches den Umsetzer anspricht, ihn 
initialisiert und in einer Interrupt-Service-Routine mit ihm kommuniziert. In der Interrupt-
Service-Routine findet auch die Demodulation des empfangenen Signals statt. 
Anschließend wurden mit Hilfe eines Logik-Analysators alle Signale analysiert, die zu dem 
Umsetzer gehen. Daraufhin wurde anhand der Ergebnisse, der Analyse des Logik- 
Analysators, ein VHDL Programm erstellt, welches es ermöglicht auf einem FPGA das 
Ergebnis des Logik-Analysators wiederzugeben. Anschließend wurde das gleiche C-
Programm wie auf dem DSP auf einem MicroBlaze implementiert, dieser ist ein 
Softprozessorkern welcher im FPGA relativ leicht einzufügen ist. Es dient somit das gleiche 
C-Programm auf beiden Systemen und es konnte dadurch ein guter Vergleich beider Systeme 
erstellt werden. 
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Abstract 
In this work a shortwave receiver was implemented with the help of a product demodulators 
first on a DSP, and afterwards on a FPGA. 
In addition an adaptor to the DSP C6713 is connected to an A/D D/A converter of the 
company DsignT. A c- program was written which interacts with the converter, initializes it 
and communicates with the interrupt service routine. The demodulation of the received signal 
also takes place in the interrupt service routine. 
Afterwards all signals were analyzed with the help of a logic analyzer. As a result of the logic 
analyzer a program in VHDL was developed. It enables the programm to reproduce the result 
of the logic analyzer on a FPGA. Afterwards the same C program was implemented on a 
MicroBlaze as well as on DSP. This is a soft processor core that should be easily 
implemented on the FPGA. So the same c- program runs on both systems and a good 
comparison should be done. 
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1 Introduction 

1.1 Motivation 

Amplitude modulation (AM) is an analog modulation, which is for example used in 

radio frequency (RF) broadcasting.  

Another field of application for AM are weather news services, which were digital 

encoded or amateur radio users. 

A digital counterpart will gradually replace those analog systems in the new 

generation. For a smooth transition of the two systems, it is essential for the new 

generation system to be able to communicate with the radio equipment of the old 

generation. Because all the new radio equipment are based on Digital Signal 

Processor (DSP) -Technology, it is obvious and of commercial interest to perform the 

demodulation with the signal processor instead of adding additional analog hardware. 

1.2 Specifications 

1.2.1 AM Receiver Architecture 

The amplitude-modulated signal (sAM) is frequency limited at an intermediate 

frequency (IF) of 455 kHz. The antenna and tuner are given and do not fall in the 

scope of this work. (see Figure 1.1). 

Tuner System
SAM Sout

LS
 

Figure 1.1: Block Diagram AM Receiver Architecture 

Legend for Figure 1.1: 

sout out signal to Speaker 

LS Loud Speaker 
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1.2.2 The Signals 

The message signal sAM is a speech and music signal from 0 Hz to 4000 Hz. [SIG1] 

(see Figure 1.2)  

 

 

 

 

 

 

 

 

Figure 1.2: Spectrum of the Message Signal 

The message signal sAM has a bandwidth (b) of 8 kHz and a carrier frequency (fT) of 

455 kHz. (see Figure 1.3) 

 

 

 

 

 

 

 

Figure 1.3: Spectrum of the AM Signal 
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2 Theory 

2.1 Amplitude Modulation 

AM is also called a linear modulation, so it is simply the use of the frequency-shifting 

theorem. A conventional amplitude modulated signal is defined by the following 

equation, which is described in [HL04] 

( ) ( ) ( )( ) ( )( )



 −+++= tmtmtsts MTMTTTAM ωωωωω cos

2
cos

2
cosˆ  ( 2.1) 

It’s the result of a multiplication of two signals: a carrier-frequency sT(t) and a 

modulated signal sM(t). 

2.2 Algorithms for Signal Pretreatment 

All the digital AM demodulation algorithms need the AM signal in the baseband. 

Therefore the AM demodulation unit from Figure 1.1 is further divided into three units: 

sub sampling, quadrature mixing and baseband demodulator (see Figure 2.1). 
 

System
SAM

Sout

Subsampling
SAM SAM’

Quadrature
mixing

Simag

Baseband AM
demodulation

Sreal Sout

 

Figure 2.1: Subdivisions of AM Demodulation Block 
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2.2.1 Sub Sampling 

System
SAM

Sout

Subsampling
SAM SAM’

Quadrature
mixing

Simag

Baseband AM
demodulation

Sreal Sout

 

Figure 2.2: Subdivisions of AM Demodulation Block, now Sub Sampling 

The AM signal which has been generated by the tuner has a carrier frequency of 455 

kHz and a bandwidth of 8 kHz. This results in a maximum frequency of over 455 kHz. 

Hence, a sampling rate of over 910 kHz is required. This data rate is too fast for 

today processors. However as the signal is frequency limited, a sub sampling is 

possible and the sampling rate can be calculated as follows [KK02]: 

In the special case that 

 

bf ⋅= λ1  ][Ν∈λ   ( 2.2) 

 

( ) bf ⋅+= 12 λ  ( 2.3) 

 

the sample rate is  

 

bfA ⋅= 2  ( 2.4) 

 

for a non aliasing periodic sequel of the spectrum. Figure 2.3 shows the spectrum of 

sub sampling for an even λ. Figure 2.4 shows the sub sampling for an odd λ. 
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f1 f2

b

4b

f

2b=fA
f

f
fA  

Figure 2.3: Spectrum of Sub Sampling with Even λ 

If the sub sampling is interpreted in terms of the carrier frequency Tf  

 

bbfT ⋅=− λ
2

  ( 2.5) 

 

2
12 +

=
λbfT   ( 2.6) 

 

For a general carrier frequency Tf  and b, the condition of an even λ is often not 

fulfilled. Thus, the bandwidth has to increase. 

 

qbb ⋅='  1>q  ( 2.7) 
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f1 f2

b

3b

f

2b=fA
f

f
fA  

Figure 2.4: Spectrum of Sub Sampling with Odd λ 

The new bandwidth is 

 

2
12' +

=
λbfT

  ( 2.8) 

 

12
2'

+
=

λ
Tfb

  ( 2.9) 

 

where λ is the largest possible integer number, but smaller than 
b

bfT 2
− .  

Therefore the sampling rate is 

 

12
4'2

+
=⋅=

λ
T

A
fbf

  ( 2.10) 
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2.2.2 Quadrature Sampling 

System
SAM

Sout

Subsampling
SAM SAM’

Quadrature
mixing

Simag

Baseband AM
demodulation

Sreal Sout

 

Figure 2.5: Subdivisions of AM Demodulation Block, now Quadrature Mixing 

The mixing to the base band in the past is carried out by the multiplication of the AM 

signal and a sinusoid oscillator cosine(ωTt) and followed by a band pass filter [GK93] 

(see Figure 2.6). The input signal is the modulated signal sAM. 

 

 

 

 

 

Figure 2.6: Realising the Mixer with a Real Signal 

Nowadays digital techniques are more and more in common, also quadrature 

sampling is defeated by these improvements. Following [GK93] on page 172: 

The origin of an analytic signal arises also from an analogy to the Hilbert 

Transformation. It is worth: 

 

 ( ) ( ){ } ( ) ( )ttxttxH TT ωω sincos =  for ( ) 0=fX , Tωω ≥||   ( 2.11) 

 

A real signal is multiplied by 2 about 90° mutually phases-postponed sine wave, the 

products are to each other Hilbert transformed if the spectrum of the real signal 

disappears above the frequency of the sine wave. Thus can be moved, in the end, 

complicated diagram of the down mixer from Figure 2.6 to Figure 2.7 which owns 

only real signal path. 

input signal 
mixer 

e(jω0t) 
band pass

spectral 

postponed input 

signal 
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Figure 2.7: Down Quadrature Mixer without Hilbert Transformation  

Further on [GK93] page 181: 

The system diagram after Figure 2.7 contains multipliers for the down sampling in the 

zero position and in the model representation of the sampler, hence it should be 

possible to reach the down sampling in zero position by the sampler himself, and 

90°- shifting of the both sine waves, how in Figure 2.8 shown, is taken into 

consideration by a time offset within the scanning. 

 

 

 

 

 

 

 

 

Figure 2.8: Delayed Sampling 

After the various reshaping which follows [GK93] on page 181 and the following and 

which were not a subject of this diploma thesis, the following is important:  

 

( ) ( ) ( )∑∑
∞

=

∞

−∞=

+=−=
1

2cos21
k

a
n

AAper tkfnTtTt πδδ  ( 2.12) 

 

It ends with: At the exit of the low pass filter forming the signals of the cosine channel 

( ) ( ) ( )ffUffUfU NFNF ∆++∆−=
2
1

2
1

cos   ( 2.13) 

 

sin(ω0t) 

cos(ω0t) 

sAM(t) 

( )∑
∞

−∞=

−−=
n

AAvper TntTt τδδ )(

uBP(t) ( )∑
∞

−∞=

−=
n

AAper TntTt δδ )(

uBPcosa(t)

uBPsina(t)
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and of the sine channel 

 

( ) ( ) ( ) ( ) ( )ffUeffUefU NF
fkj

NF
fkj AA ∆++∆−= +− τπτπ ** 22

sin 2
1

2
1

 ( 2.14) 

 

The equation 2.12 and equation 2.13 are Hilbert- transformed to each other when the 

following does apply: 

mfk A ππτπ 2
2

2 * +=  Nm∈  ( 2.15) 

 

This condition is fulfilled by a suitable choice of the time offset τ. One receives for the 

necessary time offset 

 

*
41

4 k
mTA +

=τ   ( 2.16) 

 

The sampling frequency fA must be greater than the bandwidth b; besides, fA must be 

chosen in such a way that the relation of the center frequency fT is identical to a 

whole number k* of the sampling frequency fA. 

Concerning the realization of the delayed sampling there it is beside the operation 

with two samplers also possible, how in Figure 2.9 shown, only one sampler for work. 

 

 

 

 

 

 

 

Figure 2.9: Realization of the Delayed Sampling  

Then this operation runs with the fourfold sampling frequency; then a subdivision 

takes place in 2 branches and is delayed in a branch by one step and is decimated 

after it in both branches by the factor 4. A time-delayed sampling of 4
AT=τ  is 

u
BP

(t)
 

ADU 

z
-1 4 

4 

4
ATnt =
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thereby realized. In this case the sampling frequency must be chosen in such a way 

that 

 

*41 km =+       ( 2.17) 

 

is true. 

2.3 Algorithm for Digital AM Demodulation  

Because of understandable reasons, like time and amount of work in this diploma 

thesis, I describe only one easy way for demodulation and not the lot of types for 

demodulation.

System
SAM

Sout

Subsampling
SAM SAM’

Quadrature
mixing

Simag

Baseband AM
demodulation

Sreal Sout

 

Figure 2.10 Subdivisions of AM Demodulation Block, now Demodulation 

The product demodulator is the simplest demodulator in the digitalized world. The 

product demodulator needs the AM signal in the baseband. Figure 2.11 shows the 

block diagram of the complex product demodulator. The input signal is the RF AM 

signal UHF(n), says [GK93] on page 200. 
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Figure 2.11: Product Demodulator 

Hence the first part of the diagram is nothing but a Hilbert transformation, in the 

digital world it is made by a quadrature sampling (see section 2.2.2), the first part of 

the diagram becomes superfluous and only the absolute value calculation is left (see 

Figure 2.12). 

 

)(2)( nunu MFNF =   ( 2.18) 

 

 

 

 

 

 

 

 

Figure 2.12: Absolute Value Calculation 

After describing the theory, I go on with the implementation of the short wave 

receiver. 

 

uM(n)

absolute value 

calculation 

uMF(n) uNF(n) 

low pass 

uHF(n) 

( ))(2 ' nnfme ψπ +

 uNF(n) 

{}.  

{}.  

+ 2 {}. +

-1

uMFreal(n) 

uMFimag(n) 
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3 Implementation 

3.1 Preliminary work 

I decided to use only one program for both implementations. The advantage is an 

easier use and a better understanding. The disadvantage is that the FPGA is 

programmed in a way to understand a C- program. The C- program could be split 

into two huge sections, the main program flow and the interrupt routine. 

3.1.1 Main Program  

Like in every C program the entry point is the main function. In this case the main 

function is used to initialize the used hardware, the software libraries, and to set up 

the interrupt. After the initialization, the application goes to an idle loop to be driven 

by an interrupt (see Figure 3.1). The main function and the interrupt routine are 

implemented in the DSP_main.c and the FPGA_system.c files. Each program is 

described with its characteristics in a separate section. 

 

main idle Interrupt
routine

Interrupt pending

Interrupt routine
finished  

Figure 3.1: General Program Flow 

3.1.2 Interrupt Service Routine (ISR) 

The system is driven by only one hardware interrupt. It is activated by an external 

signal and reacts on to the falling edge. 

The interrupt routine reads from Analog-to-Digital converter 0 (ADC), updates the 

quadrature buffer, to make an analytic signal from the real input signal and every 

forth time it calculates an AM demodulation and sends the result to the Digital-to-

Analog converters (DAC) from the ADDA16 module (D.Module.ADDA16 from 

DSignT) (see Figure 3.2).  
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Read ADC0

Update the quadrature
buffers

Increment the global
counter by 1

Calculate the AM
demodulation

is it the 4th time
running the ISR

Write to DAC0 and
DAC1

End of ISR, go back to
main program

yes

no

 

Figure 3.2: Program Flow of ISR 
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3.2 ADDA16 

 

Figure 3.3: ADDA16 Overview 

3.2.1 Description 

The ADDA16 module is a 16 bit, 500 kilo samples per second (KSPS), 2- channel 

Analog-to-Digital (A/D) and Digital-to-Analog (D/A) converter board, suitable for the 

D.Module family of DSP Computer Modules or with an adapter card to each DSP 

Starter Kit (DSK) board. Two A/D channels are converted synchronously using 

Successive Approximation Converters (SAR). This architecture provides a very short 

delay from sampling to availability of the digital output word, and is best suited for 

control loops, where any delay will result in increased dead time, complicating the 

control algorithm. Synchronous sampling preserves the phase information of the 

input channels. The D/A converters are followed by a second order smoothing filter 

and provide a single-ended bipolar output. The DACs can be updated synchronously 

with the ADC, operate in free running mode, or update simultaneously after the last 

DAC channel has been written. [DST04] 

3.2.2 Address Decoding 

The ADDA16 module is connected to the DSP via a 16-bit parallel interface in IOSEL 

memory space. Four registers provide access to the ADCs and DACs, the board 
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configuration and status. Base address and offset is jumper selectable and allow 

operating multiple ADDA16 in parallel. 

Table 3.1 and Table 3.2 shows all possible adjustments for the Jumpers JPA18 to 

JPA16 and JPA5 to JPA4 in dependence on its special operation. 

 
JPA18 JPA17 JPA16 Base Address w. other DSP Module 

Open Open Open IOSEL+0x000000 

Open Open Closed IOSEL+0x040000 

Open Closed Open IOSEL+0x080000 

Open Closed Closed IOSEL+0x0C0000 

Closed Open Open IOSEL+0x100000 

Closed Open Closed IOSEL+0x140000 

Closed Closed Open IOSEL+0x180000 

Closed Closed Closed IOSEL+0x1C0000 

Table 3.1: Address Decoding with JPA18 to JPA15 

 
JPA5 JPA4 Offset w. other DSP Module 

Open Open 0x00000 

Open Closed 0x10000 

Closed Open 0x20000 

Closed Closed 0x30000 

Table 3.2: Address Decoding with JPA5 to JPA4 

 

The ADDA16 device contains several registers. A register is selectable by the 

address values of A0 to A3 in the following table (see Table 3.3). 

 
Offset Register Width Description 

0x0 ADDA0 16 bits read: ADC channel 0, write: DAC channel 0 

0x1 ADDA1 16 bits read: ADC channel 1, write: DAC channel 1 

0x4 FS 8 bits sampling frequency register (FS)  

0x5 CFG 8 bits configuration register (CFG) 

Table 3.3: Register Map 

For the sake of completeness, if you want to know where the data is been written to, 

you have simply to combine all the addresses with an OR and then you will find the 

data at the specific address. 
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3.2.3 Configuration Register (CFG) 

The CFG inherits the external clock out signal (EXTCLKOUT), the interrupt settings 

and the mode of updating the DAC’s. I used the external clock out signal to control 

the correct function of the ADDDA16 module, the Interrupt 0 on ADC ready for 

finished A/D conversion and a simultaneous update of all DAC’s after DAC1 has 

been written to. A value of 0X0089 would be send to ADDA16 module. 
D7 D6 D5 D4 D3 D2 D1 D0 

write: EXTCLKOUT 

read: DACREADY 

INT1CFG INT0CFG LDACCFG 

EXTCLKOUT: 

0 – output off 

1 – output on 

 

DACREADY: 

0 – DAC not ready 

1 – DAC ready for 

      new data 

00 - INT1 not used 

01 - INT1 = ADC ready 

10 - INT1 = DAC ready 

11 - INT1 = sampfreq 

00 - INT0 not used 

01 - INT0 = ADC ready 

10 - INT0 = DAC ready 

11 - INT0 = sampfreq 

 

000 - DACs updated after any 

         write 

001 - simultaneous update after 

         write to DAC1 

100 - simultaneous DAC update 

         synchronous with ADC 

 

Table 3.4: Potential Settings in the Configuration Register 

3.2.4 Sampling Frequency Register (FS)  

The FS allows the selection of the sampling frequency, either generated onboard via 

a programmable divider with a value of 0x0F to 0xFF or an external clock fed to the 

external clock input (EXT_CLKIN) with a value of 0x00. I used the EXT_CLKIN to 

adjust sampling frequency with an external frequency generator. So a value of 

0X0000 would be send to ADDA16 module. 
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3.2.5 Bus Interface 

For a correct function of the ADDA16 following signals would be needed: 
Signal Pin Type Description 

A0 .. A5 

A16 .. A18 

U9 .. U14 

V12 .. V14 

I Address bus 

D0 .. D15 U15 .. U30 I/O/Z Data bus (connects to DSP D16..D31) 

nRD U2 I Active low read strobe signal 

nWR U5 I Active low write strobe signal 

nIOSEL U8 I Active low memory select signal 

BUSCLK U6 I DSP bus clock 

NINTO U3 O/Z Interrupt Line 0 

nINT1 U4 O/Z Interrupt Line 1 

Table 3.5: Pin Connection 

Remark 
Each signal must be connected, except the interrupt signals otherwise the ADDA16 

module wouldn’t interpret any command correctly. 

3.3 DSP 

Tuner
SAM Sout

LSSystem

ADDA16

DSP

 

Figure 3.4: Block Diagram AM Receiver Architecture with DSP 

3.3.1 Description 

The ADDA16 is connected to the DSK via a daughtercard to the connectors J3 and 

J4 from the C6713. The connectors J3 and J4 of the C6713 are configured as an 

external memory interface (EMIF). 

 

It simply consist of wires without logic or components on it. Some measuring points 

are led out, like nINT0 or nIOSEL for example. 
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Attention should be paid on the daughtercard detect signal J3(75). It must be 

grounded. Otherwise the DSK wouldn’t recognize the daughtercard an the bus- 

drivers on the DSK will always be HIGH Z ! 

3.3.2 Software 

The DSP C6713 will recognize the ADDA16 module as an external memory 

interface, so most of the implementation is already done, cause EMIF is already 

implemented on the Expansion Bus (see also [TI190d] and [TI401f]). Only the 

necessary adjustments in the EMIF configuration register should be done. 

I want to give a short description of the characteristics of the c-program I’ve written 

 
#define IRQ_EXTPOL (*(volatile unsigned int *) 0x019C0008) 

 

This define instruction maps a hardware register to a variable declaration. It is for a 

better handling in the c-program. The IRQ_EXTPOL register defines on which edge 

the interrupt would be recognized. 

3.3.3 External Memory Interface (EMIF) on C6713 

For the correct timing you have to adjust the EMIF settings on the C6713. During a 

call with Mr.Klemenz of the company D.SignT, he told me the timing of the EMIF 

settings. 

Asynchronus timing: 
write setup 1 

Write strobe 2 

Write hold 1 

Read setup 1 

Read strobe 2 

Read hold 1 

Turn around time 1 

Table 3.6: EMIF Timing on C6713 

With the settings of Table 3.6 and the EMIF-Calculator from D.SignT Hompage 

[DST01] it is very easy to generate the correct value for the control register. The 

result of the calculator is 0x10914221. 
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I decided to use the chip enable 3 control register (CE3_CTRL) register for this. It 

wasn’t used before by any other projects, so other projects of the HAW wouldn’t be 

involved. The memory space starts at address 0x90200000 and with the adjustments 

of the ADDA16 module the first value is located at address 0x90300000. (see also. 

3.2.2) 

3.3.4 Address Decoding 

Memory type Memory width Maximum 

addressable bytes 

per CE space 

Address output 

on EA [21:2] 

Represents 

ASRAM X16 2M A[20:1] half word address 

Table 3.7: TMS320C621x/C671x Addressable Memory Ranges 

Like in Table 3.7 is seen, a half word address is used, cause only 16 bit of the 32 bit 

address space is used, so the EA-Address is shifted by one to the internal address. 

A closer look at the explicit addresses would make a better view of it. 

First we had a look at the original address of the CE3 Space. It begins at 
1001 0000 0010 0000 0000 0000 0000 0000 Binary 

9 0 2 0 0 0 0 0 Hex 

Table 3.8: Address Space of CE3 

Cause a half word addressable space is used the address output is shifted by 1. 

This result in JPA18 goes to A 20 and JPA17 goes to A19 and JPA16 goes to A18 

they were called the bank select bits. 

JPA5 goes to A17 and JPA4 goes to A16 and were called the sub bank select bits. 

A picture would make a better perception. 

Remark: JPA = Jumper for Address decoding it has nothing to do with the 

correct place of the address bit !) 
1001 0000 0010 0000 0000 0000 0000 0000 Binary 

9 0 2 0 0 0 0 0 Hex 

  Xxx1 00xx     JPA18 - JPA16 

   xx00     JPA5   - JPA4 

1001 0000 0011 0000 0000 0000 0000 0000 Binary 

9 0 3 0 0 0 0 0 Hex 

Table 3.9: Address Mapping with the JPA’s 
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3.4 Signal Analyze with Logic Analyzer 

First of all I had to find out how the signals of the ADDA16 module were driven. So I 

connect a logic analyzer to the ADDA16 module and connect it to the DSK. After a 

short while it was clear how it works and here are the results. 

3.4.1 Generics to the Analyzer Pictures 

The first picture (Figure 3.5) shows nearly all-available signals from the ADDA16 

module except the BUSCLK signal. Here is a short description for each Signal: 

 

Reset  for a proper Operation it must be 1 

nINT0 Interrupt line 0 to DSP, active on falling edge 

nRD  not READ signal (read strobe), active low 

nWR  not WRITE signal (write strobe), active low 

nIOSEL not Input Output SELect signal, active low (DSP memory area select 

signal) 

A18-A16 part of address bus, 64 K Bank select signal, which is described in 

section 3.2.2  

A5-A4 part of address bus, 16 Word Sub Bank Select signal, which is 

described in section 3.2.2 

A3-A0 part of address bus, register select offset which is described in section 

3.2.2  

D15-D0 data bits  
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Figure 3.5: Complete Reset Cycle 

3.4.2 Reset Cycle 

In Figure 3.5 the complete reset cycle is shown.  

In the beginning nReset is one. Then it goes to null and after 10 ms back to one. This 

is also the minimum time for a reset.  

When the reset signal is low, every register in the ADDA16 module is set to his initial 

value. The initial value of all registers is null. 

Note: the green spikes in nRD and nWR were the auto refresh of the synchronic data 

random access memory (SDRAM) and have nothing to do with the initialization of the 

ADDA16 

3.4.3 Initial Procedure 

 

Figure 3.6: Initial Procedure 

The second picture (Figure 3.6) shows the typical initial procedure. After the reset 

has stopped, the first thing to do is to write the CFG and the FS Register. 
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First a write to the CFG register is done. It is located at address 0x4 and the value 

0x0000 has been send. Second the value 0x0089 is send to the FS register, which is 

located at address 0x5. 

3.4.4 Release of the Interrupt Request Signal nINT0 

 

Figure 3.7: Release of Interrupt 

In the picture above (Figure 3.7) the initial is complete. The first ad conversion starts. 

If the ad conversion has finished the first interrupt occurs. A falling edge of nINT0 is 

created by the ADDA16. 

3.4.5 Complete Interrupt Function 

 

Figure 3.8: Complete Interrupt Function 

Figure 3.8 shows the complete Interrupt function. I split this picture into 3 parts 

because the explicit values aren’t good to be seen.  
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3.4.6 First Part of Interrupt Function 

Now we had a closer look after the interrupt occurs. 

 

Figure 3.9: First Part of Interrupt Function 

In the ISR the first operation is a read from the two ADC’s. 

First ADC0 is read and second ADC1 is read.  

3.4.7 Middle Part of Interrupt Function 

In the middle of ISR (see Figure 3.10) nothing happened to the output, because the 

output value is to be computed. 

 

Figure 3.10: Middle Part of Interrupt Function 

3.4.8 Last Part of Interrupt Function 

In the Figure 3.11 underneath, is the first thing a read to the CFG register cause a 

write to DAC0 is to be made next. This had to be done because the DAC interface is 

single-buffered and got only one buffer for all DAC’s. 
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Figure 3.11: Last Part of Interrupt Function 

Bit 7 of CFG-register is the DAC_READY signal. If it is 0, the DAC buffer is full and 

new data cannot be accepted or in other word’s the shift to the explicit DAC haven’t 

finished yet. So you have to wait until the shift had been done (in Figure 3.11 192ns 

wait time was estimated) and ask again if it has emptied. 

If a 1 is detected, the write to the DAC have finished and the DAC buffer is ready to 

accept new data. Another write to an other DAC could be done. 

 

In the Figure 3.11 above this is the first write to a DAC after a long while so bit 7 of 

the CFG-register is 1. To be seen on D15 to D0, its value is 0xFF89 so D7 is 1. 

After the DAC_READY signal is 1, a write to DAC0 is performed with the value 

0xFFFF and immediately afterwards a read of the CFG register, where D7 is 0. So it 

was done as I explained it above. 

Thereafter DAC1 is written with its value and the ISR is complete. 

 

Now the system is in idle progress until the next falling edge of nINT0 is recognized 

and the ISR is called again. 
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3.4.9 A Typical Read Procedure 

A typical read procedure (see Figure 3.12) looks like: 

1. change to the correct address  

2. after 1 clock nIOSEL low 

3. after 1 clock nRD went also to low 

4. wait for 2 clocks 

5. turn nRD signal back to 1 and data is taken to the register 

6. after another clock nIOSEL turns back to 1 

7. wait for another clock (turn around time or idle) 

Figure 3.12: A Typical Read Procedure 

and then you could begin with another command. 
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BUSCLK 
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3.4.10 A Typical Write Procedure 

A typical write procedure looks like: 

1. change to the correct address  

2. after 1 clock nIOSEL low 

3. after 1 clock nWR went also to low 

4. wait for 2 clocks 

5. turn nWR signal back to 1 and data is taken by the ADDA16 Module 

6. after another clock nIOSEL turns back to 1 

7. wait for another clock (turn around time or idle) 

Figure 3.13: A Typical Write Procedure 

and then you could begin with another command. 



Implementation - FPGA with Xilinx MicroBlaze 

 27

3.5 FPGA with Xilinx MicroBlaze 

To use the same C-Program for both implementations I decided to use a MicroBlaze  

from XILINX. It could be easily implemented cause XILINX delivers a program with 

the XUP Virtex-II Pro Development System (see Figure 3.14); it’s named XILINX 

Platform Studio (XPS). [XUP1] 

 

Figure 3.14: XUP Virtex-II Pro Development System 
Left Digilent Expansion connector (LDE)
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3.5.1 Description 

Tuner
SAM Sout

LSSystem

ADDA16

FPGA
with

MicroBlaze

 

Figure 3.15: Block Diagram AM Receiver Architecture with FPGA 

The FPGA is connected in a similarly way to the ADDA16 module like the DSP. 

It is connected from the LDE via a self-wired daughtercard to the ADDA16 module. 

3.5.2 Introduction 

MicroBlaze is a 32-bit soft processor core, which is developed by Xilinx. The 

MicroBlaze processor could work with a maximum clock of 100 MHz. He is equipped 

with a 32 bit wide instructions- and data bus and is qualified for designs of complex 

systems for networking, telecommunication, embedded- and consumer applications. 

The MicroBlaze-processor is provided with a Harvard similar architecture, which 

separated instructions- and data busses could work with the whole clock. By these 

data buses could access on the on-chip or the external memory. XILINX provide for 

the MicroBlaze already some instantiable components and additional to that own 

cores could be bound to the on chip peripheral bus (OPB), what for this work was 

essential. Here are some key features: 

• RISC processor 

• 32 32-bit general purpose register 

• 32-bit instructions- und data bus OPB  

• 32-bit instructions- und data bus Local Memory Bus (LMB) 

• different instantiable Components (UART, timer, memory controller, Ethernet 

core etc.) 

• additional own cores 

In Figure 3.16 the block diagram is shown. More details were found in the MicroBlaze 

Reference Guide [X1].  
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Figure 3.16: MicroBlaze Core Block Diagram 

3.5.3 Instantiable Cores 

A big advantage of the MicroBlaze soft processor is his parametrizable by which he 

can be optimally adapted to a desired system. Also belongs to it that certain standard 

components can be inserted as desired. In the XPS there are a row of such 

components available under the menu item  

Hardware  Create or Import Peripheral…  

On this occasion, it is advisable to work through the EDK MicroBlaze Tutorial [X2] to 

appropriate the bases. In my system the following components exists:  

• opb_intc 

Interrupt controller for the whole system 

• bram_block 

lmb_bram_if_cntlr 

The program instructions are loaded in the BlockRAM, accesses to it are 

administered by the BRAM-controller. 

• adda16 

Controller Interface between the MicroBlaze and the ADDA16 Module 
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3.5.4 Interrupt Controller 

The interrupt controller is a predefined core, which controls the interrupts from 

different cores, gives them a priority and forwards it to the MicroBlaze in a prioritized 

order. It is described in [X5] as shown: 

 

Figure 3.17: Interrupt Controller Block Diagram 

3.5.5 Block RAM 

The BlockRAM has two ports, which is why also two BRAM- controllers must be 

instantiated. Accordingly to the Tutorial [X2] the standard parameters were taken 

over for the BlockRAM. The settings of both controllers in my system are in the same 

address rooms, it begin with 0x00000000 and go to 0x00007FFF. The program fills 

about three quarters of it, however, on the FPGA even more place did not remain for 

a bigger memory. It must be also seen to the fact that at least 1 bit of the address 

area differs the BlockRAM of all other components. To make the accesses to the 

instructions as quick as possible, a query on this bit is done in the MicroBlaze inside 

then. 
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3.5.6 Own Core 

There are different possibilities to include an own Core to the MicroBlaze. Two are 

mentioned. Initial position is with both the OPB. Either one corresponds to an own 

address decoding logic which adds an own Core directly in the OPB, or one takes the 

Intellectual Property Interface (IPIF) with which of the IPIF is used as an interface 

between the OPB and the own core(Figure 3.18). Some good models are available 

with the standard cores of the MicroBlaze for the more first variation. Nevertheless, I 

have decided on the second solution because the IPIF module is to be implemented 

efficiently and more or less simply. You could implement it easily with the Create or 

Import Peripheral-Wizard. In Figure 3.18 is see an overview about the IPIF and its 

many predefined options.  

 

Figure 3.18: IPIF Interconnection Between OPB and Own Core [X3]  

Here the most important points are summarised for the construction of own Cores as 

it is announced in [X2]. 

3.5.7 Create or Import Peripheral Wizard 

One of the key advantages of building an embedded system in an FGPA is the ability 

to include customer cores and interface the intellectual property (IP) to the processor. 

We will walk through the steps necessary to include a custom IP core. 
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• In XPS, select Hardware → Create or Import Peripheral… to open the Create 

and Import Peripheral Wizard. 

• Click Next. Select Create templates for a new peripheral. 

By default the new peripheral will be stored in the project_directory/pcores 

directory. This enables XPS to find the core for utilization during the 

embedded system development. 

• Click Next. In the Create Peripheral – Name and Version dialog, enter a name 

of the peripheral, for example custom_ip. This is shown in Figure 3.19. 

 

Figure 3.19: Create Peripheral - Name and Version 

• Click Next. In the Create Peripheral – Bus Interface dialog, select On-Chip 

Peripheral Bus (OPB), as this is the bus to which the new peripheral will be 

connected. 
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• Click Next. The Create Peripheral – IPIF Services dialog enables the selection 

of several services. For additional information regarding each of these 

services, select More Info. Select the User logic S/W register support option. 

(see Figure 3.20) 

 

 

Figure 3.20: Create Peripheral - IPIF Services 
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• Click Next. In the Create Peripheral – Interrupt Service dialog (see Figure 

3.21). 

 

 

Figure 3.21: Create Peripheral – Interrupt Service 
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• Click Next. In the Create Peripheral – User S/W Register dialog, change the 

Number of software accessible registers to 2 and choose disable posted write 

behaviour. (see Figure 3.22) 

 

 

Figure 3.22: Create Peripheral – User S/W Register 

 

• Click Next. In the Create Peripheral – IP Interconnect (IPIC). 

• Click Next. In the Create Peripheral – (OPTIONAL) Peripheral Simulation 

Support dialog, a Bus Functional Model (BFM) simulation environment can be 

generated. This tutorial will not cover BFM simulation. Leave the option 

unchecked. 

• Click Next. In the Create Peripheral – (OPTIONAL) Peripheral Implementation 

Support dialog, uncheck the Generate ISE and XST project files to help you 

implement the peripheral using XST flow. 

• Click Next and then Finish. 
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Now that the template has been created, the user_logic.vhd file must be modified to 

incorporate the custom IP functionality. 

• Open the user_logic.vhd in windows explorer. Currently the code provides an 

example of reading and writing to two 32-bit registers and a primitive interrupt.  

3.5.8 Microprocessor Peripheral Definition (MPD) 

Each system peripheral has a corresponding MPD file. The MPD file is the symbol of 

the embedded system peripheral to the MHS schematic of the embedded system. 

The MPD file contains all of the available ports and hardware parameters for a 

peripheral. These ports are also performed in the XPS. First the name of own cores 

is given again: 

 
BEGIN my_core_name, IPTYPE = PERIPHERAL, EDIF= TRUE 

 

Under this name an own core will appear in the XPS. Then the ports must be 

defined. Here an example: 
 

PORT name = "", DIR = IN, VEC[0:15] 

 

DIR defines whether a port is an input or an output. If a port is fixed as DIR = INOUT, 

this can lead while generating the net list to mistakes, if is not added, in addition, 

ENABLE=MULTI. Then this looks thus: 
 

PORT name = "", DIR = INOUT, VEC[0:15], ENABLE=MULTI 

 

ENABLE=MULTI get XPS an IOBUF after Figure 3.23 to provide. With the very high 

speed integrated circuit hardware description language (VHDL) files adaptations 

must be likewise done, so that an input output buffer (IOBUF) is properly inserted. 

From the port name there were three ports automatically added: 

• name_I as an input for the own core 

• name_O as an output for the own core 

• name_T to activate the tri-state signal (active low) 
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Figure 3.23: IOBUF Implementation 

3.5.9 Microprocessor Hardware Specification (MHS) 

The MHS file is a readable text file that is an input to the Platform Generator (the 

hardware system building tool). Conceptually, the MHS file is a textual schematic of 

the embedded system. To instantiate a component in the MHS file, you must include 

information specific to the component. 

Once a design has been created with the Base System Builder (BSB), it can be also 

modified from within the System Assembly view. 

To add new IP: 

• Bring the IP Catalog tab forward. 

• Expand the Project Repository hierarchy 

• Drag and drop the IP into the System Assembly View or double click on the IP 

 

Figure 3.24: System Assembly View 

With the Bus Interface filter still activated: 

• Press the Connection Filter button and select All 

• Expand the custom_ip_0 instance 
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• Highlite the slave OPB connection (SOPB) 

• Select the No Connection pull down menu and change it to mb_opb 

 

Figure 3.25: Modyfing Bus Connections 

Now select the Ports filter 

• Press the Connection Filter button and select All 

• Expand the custom_ip_0 instance 

• Highlite the OPB_Clk port 

• Select the Default Connection pull down menu and change the clock 

connection to sys_clk_s 
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Figure 3.26: Changing Port Connections 

Select the Addresses filter to define an address for the newly added custom_ip 

peripheral. The address can be assigned by entering the Base Address or the tool 

can assign an address. For an easy use, the tool will be used to assign an address. 

• Change the size if the dlmb_cntlr and ilmb_cntlr to 8K. 

• Click Generate Addresses. 

 

Figure 3.27: Generate Addresse 
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A message in the console window will state that the address map has been 

generated successfully. The design is now ready to be implemented. 

 

3.5.10 User Constraint File (UCF) 

In the UCF were the output pins laid on the internal signal names. This looks like: 
Net adda16_0_nIOSEL   LOC=R5    | IOSTANDARD=LVTTL; 

“Net” is a keyword for a signal 

“adda16_0_nIOSEL” is the name of the signal 

“LOC” is a keyword to loc a pin on a signal name, here “R5”(it’s the pin of the FPGA) 

IOSTANDARD means the level to drive the pin, here LVTTL (Low Voltage Transistor 

Transistor Logic) 

More detailed explanation can be found at [X6]. 

3.5.11 Access to Own Core 

Now the question still positions itself how the MicroBlaze communicates with the 

core. It should be briefly entered in the c- file of the MicroBlaze, as well as a short 

VHDL code cutting of the own core is described. The process in the VHDL code that 

is responsible for the communication with the MicroBlaze is described. First a write 

from the MicroBlaze to the core and second the other direction: 
 

slv_reg0(byte_index*8 to byte_index*8+7) <= Bus2IP_Data(byte_index*8 to 

byte_index*8+7); 

 
slv_ip2bus_data <= slv_reg1; 

 

The MicroBlaze C-Code: 
#include <xbasic_types.h> 

#include "ADDA16.h" 

Xuint16 s_inL = 0; 

 

void adda16_int_handler(void * baseaddr_p) 

{ Xuint32 i_baseaddr; 

 i_baseaddr = (int) baseaddr_p; 

 

 s_inL = (short)ADDA16_READ_ADC((void *)i_baseaddr,0); 

 ADDA16_WRITE_DAC((void *)i_baseaddr,0, s_inL); 

} 
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In the C- code the h-files are inserted first: xbasic_types.h contains the base types 

definitions. Thus is, for example, Xuint32 nothing other than an unsigned long 

variable, i.e. 32 bit-wide. For the access to the own core it is very important to include 

adda16.c and adda16.h. There functions defined like ADDA16_WRITE_DAC with 

XIo_Out32 and ADDA16_READ_ADC with XIo_In32. For ADDA16_WRITE_DAC 

following data would be needed: the address pointer i_baseaddr, the port 0 and a 16 

bit-wide data word. The data is send from the MicroBlaze over the OPB to the own 

core. If the data arrives in the own core, Bus2IP_CS and Bus2IP_WrCE got one, and 

Bus2IP_Data passes on the data in slv_reg0. Vice versa the data of IP2Bus_Data 

comes with ADDA16_READ_ADC and is, in the end, in the variable s_inL. 

3.5.12 User Logic from Own Core 

For a correct function of the interconnection with the ADDA16 Module I had to write 

the half of the user logic and the complete adda16.vhd files. As it is described in the 

section before, the MicroBlaze could send and receive 32-bit wide data words 

between the C- code and the own core. But there is some more originality that must 

be described. 

First I had the Problem that the correct data isn’t being received in the 

user_logic.vhd. For this is the answer a little bit complicated to understand. In the 

Crate and import Peripheral -Wizard is a page where one can control the 

acknowledge behavior of the own core for the data word. I’ve chosen the write 

acknowledge behavior, so the C-code could receive a data word from the ADDA16 

module, after a request to the own core was send and wait for its answer. The correct 

data is primal available after 5 clocks. The data between the MicroBlaze and the own 

core is sending in 8-bit wide pieces. So I developed a counter, which counts up to 

five and stops after it. Here is the code example for this problem: 

Note: The slv_ack_detect signal is only for one clock high, after a write to the user-

logic had begun. 
wait_5_clocks:process(Bus2IP_Clk) 

   begin 

 if Bus2IP_Clk='1' and Bus2IP_Clk'event then 

  if (slv_ack_detect = '1') then 

   count_5 <= "001"; 

  else 

   case (count_5) is  

    when "001" => 
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     count_5 <= "010"; 

    when "010" => 

     count_5 <= "011"; 

    when "011" => 

     count_5 <= "100"; 

    when "100" => 

     count_5 <= "101"; 

    when "101" => 

     count_5 <= "110"; 

    when others => null; 

   end case; 

  end if;  

 end if; 

end process wait_5_clocks; 

finish_write_from_UL <= '1' when count_5 = "101" else '0'; 

 

After that I had the problem how to interact with the own core and the MicroBlaze, so 

it could be done with two Interrupts either, but this isn’t easy to implement, cause 

only one interrupt comes from the own core and after the ISR is started you have to 

ask in the IPIF of the own core, which interrupt occurred. So I decided to use only 

one Interrupt and the system had to wait for the correct answer about 10 clocks. 

Another advantage is a faster system then two interrupts occur. 

But if you have to wait more then 7 clocks, you have to implement a timeout signal. 

The timeout signal is generated in an own process: 
Timeout_process: process (Bus2IP_Clk, Bus2IP_Reset, slv_ack_detect) 

begin 

if (Bus2IP_Reset = '1') or (slv_ack_detect = '1') then 

timeout <= (others => '0'); 

elsif Bus2IP_Clk='1' and Bus2IP_Clk'event then 

timeout <= timeout + 1; 

end if; 

end process Timeout_process; 

IP2Bus_ToutSup     <= not timeout(26);--'0';-- Timeout after 1,34sec  

3.5.13 Interface from Own Core 

The communication between the own core and the ADDA16 Module is described in 

the interface_adda16.vhdl. Hence which is a component of the user_logic.vhd, so it is 

instantiated in the same. The ports would cross by port mapping to the component. 

The component is programmed in standard VHDL. I decided to program a MOORE 
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state machine, cause the output signals have nothing directly to do with the input 

signals, so no MEALY state machine is needed. An advantage of a Moore state 

machine is the easily changeability, like the signals and states or its regularity, a 

disadvantage is its slowly ness and the place requirements in its implementation, but 

it fits best of all.  

A short explanation to the single segments of the program code is following: 

For a better reading I named the states with a personal name, here an example: 
 

type state_type is (st0_initial_state, st1_reset); 

signal state, next_state : state_type; 

 

As it was seen above I declared a new type, named the elements of the new type 

and subsequently defined a signal, which is from the predefined new type. The 

advantage is obvious clearly, the named types simplifies the reading of the source 

code and therefore also understanding tremendously and the pre-compiler replace it 

with a series of numbers, a disadvantage are the longer name definitions by which 

this program becomes a little bit complex. 

 

To force a reading of the BUSCLK signal the following code lines were implemented: 
 

 Internal_CLK: 

 CLKintern <= Bus2IP_Clk ; 

 BUSCLK <= CLKintern ; 

  

The “Internal_CLK:” is an identifier for the program and Bus2IP_Clk is the clock 

signal from the FPGA, it runs at 100MHz and BUSCLK is the signal that goes to the 

ADDA16 module, it runs also at 100MHz. 

 

In the process “SYNC_PROC:“ are laid all internal signal on external ones, if it’s a rising 

edge of the CLKintern signal; it is also defined what happens with the signals if the 

reset signal (Bus2IP_Reset) is released. 

 

The process “INPUT_DECODE:” synchronizes the slave registers from the user_logic to 

the component. After a data word is received from the C- code of the MicroBlaze to 

the core it is recognized here and the MOORE state machine knows what to do. 
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In a MOORE state machine all outputs were based on the internal state only and this 

happens in the “OUTPUT_DECODE:” process, like nRESET, nRD, nWR or other signals, 

that goes to the ADDA16 module. 

 

The last process is the “NEXT_STATE_DECODE:” process, where all state changes take 

place. 

3.5.14 Address Decoding  

For updating the valid address as soon as possible, the address lines A3-A0 are 

updated without the state machine, it looks like: 

 
 Address_i <= slv_reg0_i(19 downto 16); 

 

So that the address is updated immediately after a new valid data has been taken 

from the user_logic to the interface. 

By the Time JPA18 to JPA16, JPA5 and JPA4 weren’t connected, cause the signals 

are pulled inside the ADDA16 module by the jumpers on a defined potential, on 

account of that to the FPGA. 

3.6 Complex Programmable Logic Device (CPLD) 

After I implemented everything on the FPGA, the ADDA16 module didn’t understand 

anything, so I decided to have a closer look at the output values that were driven by 

the FPGA. They were nearly out of spec of the ADDA16 module (according to Mr 

Klemenz from DsignT). So I implemented a bus driver via a CPLD. 

3.6.1 Bus Driver with CPLD 

The CPLD got a great advantage, cause it could be driven with two voltage- levels, 

one for the input and another one for the output. A great disadvantage is the work 

behind that all, the programming, the production of another daughtercard, the 

implementation. But to act fast, it was the best implementation I could get in time. 
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Figure 3.28: Block Diagram AM Receiver Architecture with FPGA and CPLD 

So I’ve written a bus driver in VHDL. The signals are simply connected trough the 

CPLD, like: 

 
Address_ADDA <= Address_FPGA; 

Data_FPGA   <= Data_ADDA when RnW = '1' else "ZZZZZZZZZZZZZZZZ"; 

 

The Signal Address_FPGA, as the name implies, comes from the FPGA and goes to 

Adresse_ADDA , which is located at the ADDA16. 

The data signal is a little bit indifferent, cause it’s a bidirectional signal. The signal 

RnW (Read Not Write) is driven by the FPGA. If the signal is one, the data signal is 

been driven from ADDA16 module to the FPGA. Else it is driven in HIGH Z. 

The complete program is found in the appendix C on the compact disc (CD) 

After the implementation the ADDA16 module still won’t accept any command. 

3.6.2 Stand Alone CPLD 

So I went one level down and implemented the VHDL code from the FPGA into the 

CPLD. It looks like Figure 3.29. 

Sout

LSSystem

ADDA16

CPLD

 

Figure 3.29: System Block Diagram with Stand Alone CPLD 
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I used the interface_adda.vhd as a skeletal structure and implemented it in a new file 

named CPLD_stand_alone_initial_adda16.vhd. The implementation got an additional 

advantage, now I’ve got an analogy look at the VHDL code without the MicroBlaze. I 

could verify the correct programming of the interface_adda16.vhd now. The program 

is also being found in the appendix D on the CD. 

The changes are fractional. Now I’ve got only a data output in place of a bidirectional 

signal, a variable i which counts up each time a value is send and the state machine 

runs in a loop. So a ramp must be heard on the loudspeaker. After I made these 

changes I implemented it on the CPLD. 

3.6.3 The Answer to This Problem 

Again nothing happened, so I’ve had another call to Mr. Klemenz. He announced me, 

that the ADDA16 module wouldn’t interpret any command, if the internal address 

didn’t match the external address. The internal address is set by the JPA’s and is 

going to a multiplexer within the CPLD of the ADDA16 module. One has to 

acknowledge the internal address. So the external pins of the ADDA16 module must 

have the accordingly signal to the signal from the respective potential of the JPA.  

So for a correct address decoding all address lines (here line 4 to 5 and 16 to 18) 

must be connected to the same value as the internal signal corresponding to the JPA 

were forced to. 

I decided to use some resistors. It’s a faster implementation then integrating new 

output ports to the FPGA. Additional to install new wires to the correct pin of the 

ADDA16 module. 

JPA18 for example is closed, so it is internal connected to +5V. The output pin for 

JPA18 is on pin ADDA16(V1). So one had to connect a pull-up resistor to +5V on that 

pin. All other address lines were open, so they were connected to 0V by the aid of a 

pull-down resistor. 

In the end everything runs as it was dedicated, the stand-alone CPLD runs and the 

bus driver with the FPGA too. 

Note: The system with the FPGA runs just as well without the bus driver. 
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4 Comparison of Both Implementations 
The program of the DSP explained in section 3.3.2 is compiled with the different 

optimization levels of the compiler. The DSP runs also with different clock cycles to 

get a better comparison of both implementations, if they run with the same clock 

cycle. After each optimization and speed level is performed the program is 

downloaded to the DSK and measured with the logic analyzer. The FPGA runs 

always at 100 MHz and runs with optimization level -7 

 
frequency -o0 -o1 -02 -o3 

225MHz 2.756µs 2.484µs 2.476µs 2.476µs 

100MHz 4.952µs 4.376µs 4.324µs 4.324µs 

Table 4.1: Comparison of optimization levels 

As in Table 4.1 seen, the optimization level does speed up the ISR. The DSP has 

enough potential for demodulation the AM signal. 

On the other hand the FPGA needs about 72µs for a demodulation calculation. So 

this results in a maximum sampling frequency of 13.88kHz. A sampling frequency of 

140 kHz is being needed, so the FPGA isn’t qualified for the demodulation. The 

pictures and possible solutions would be found in appendix E on the CD. 
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5 Conclusions and Recommendations 
After the last months I could reply on two systems, which convert an analog value to 

a digital value via the DAC of the ADDA16 module, store the values in a variable and 

push them to the demodulator algorithm to calculate a valid output value. Afterwards 

the calculated output value would be send to the DAC of the ADDA16 module and be 

heard on a loudspeaker. 

First the ADDA16 module was adapted to the DSP in this diploma thesis. Its signals 

analyzed and implemented on an FPGA after that. So myself programmed a primitive 

EMIF controller. 

 

In a future work maybe the communication to the ADDA16 module could be further 

optimized or a better algorithm for the demodulation could be developed and 

implemented on the FPGA for example. The result of the FPGA could be more 

efficient if a newer and so driven with a higher clock frequency. Maybe the 

demodulation could be implemented complete in hardware but this is guesswork and 

has to be evaluated for giving a qualified answer. 

A printed daughtercard (i.e. with a layout program like EAGLE) for the FPGA or the 

CPLD would increase the noise interferences. 
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A. Abbreviations 
A/D   Analog-to-Digital 

ADC   Analog-to-Digital converter 

ADDA16 module D.Module.ADDA16 from DsignT 

AM   Amplitude Modulation 

ASRAM  asynchronous random access memory  

BSB   Base System Builder 

BUSCLK  bus clock 

CD   compact disc 

CE3   chip enable 3 signal 

CE3_CTRL  chip enable 3 control register 

CFG   Configuration Register 

CPLD   Complex Programmable Logic Device 

D/A   Digital-to-Analog 

DAC   Digital-to-Analog converter 

DSK   DSP Starter Kit 

DSP   Digital Signal Processor 

EA-Address  internal identifier of TI 

EMIF   external memory interface 

EXT_CLKIN  external clock input 

EXTCLKOUT external clock out signal 

FS   Sampling Frequency Register 

fT   carrier frequency 

HAW   University of applied sciences Hamburg 

IF   intermediate frequency 

INTxCFG  Configuration of interrupt x 

IOBUF  input output buffer 

IOSEL   Input Output SELect 

IP   intellectual property 

IPIF   Intellectual Property Interface 

ISR   Interrupt Service Routine 

JPA   Jumper for Address decoding 

LDACCFG  update configuration register for the DAC 
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LDE   Left Digilent Expansion connector 

LS   Loud Speaker 

LVTTL  Low Voltage Transistor Transistor Logic 

MHS   Microprocessor Hardware Specification 

MicroBlaze  soft processor core 

MPD   Microprocessor Peripheral Definition 

nIOSEL  not IOSEL 

nRD   not Read 

nWR   not Write 

OPB   Local Memory Bus 

OPB   on chip peripheral bus 

RF   Radio Frequency 

RISC   reduced instruction set computing 

RnW   Read Not Write 

sAM   Amplitude modulated Signal 

SAR   Successive Approximation Converters 

SDRAM  synchronic data random access memory 

sout   out signal to Speaker 

TI   Texas Instruments 

UCF   User Constraint File 

VHDL Very High Speed Integrated Circuit Hardware Description 

Language 

XPS   XILINX Platform Studio 
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