

Fakultät Technik und Informatik

Department Informations- und

Elektrotechnik

Faculty of Engineering and Computer Science

Department of Information and

Electrical Engineering

Claus Alexander Höfs

Short Wave Receivers Comparison

implemented on DSP and FPGA

Diplomarbeit

Diplomarbeit eingereicht im Rahmen der Diplomprüfung
im Studiengang Informations- und Elektrotechnik
Studienrichtung Informationstechnik
am Department Informations- und Elektrotechnik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer : Prof. Dr. Ulrich Sauvagerd
Zweitgutachter : Prof. Dr.-Ing. Karl-Ragmar Riemschneider

Abgegeben am 04. Juli 2007

Claus Alexander Höfs

Short Wave Receivers Comparison implemented on DSP

and FPGA

Claus Alexander Höfs

Thema der Diplomarbeit
Kurzwellenempfänger implementiert auf DSP und FPGA

Stichworte
Kurzwellenempfänger, DSP, FPGA, MicroBlaze, Signalunterabtastung

Kurzzusammenfassung
In dieser Arbeit wurde ein Kurzwellenempfänger mit Hilfe eines Produktdemodulators zuerst
auf einem DSP und anschließend auf einem FPGA implementiert.
Dazu wurde ein A/D-D/A-Umsetzer der Firma DSignT über eine Adapterkarte an den DSP
C6713 angeschlossen und ein C-Programm entworfen, welches den Umsetzer anspricht, ihn
initialisiert und in einer Interrupt-Service-Routine mit ihm kommuniziert. In der Interrupt-
Service-Routine findet auch die Demodulation des empfangenen Signals statt.
Anschließend wurden mit Hilfe eines Logik-Analysators alle Signale analysiert, die zu dem
Umsetzer gehen. Daraufhin wurde anhand der Ergebnisse, der Analyse des Logik-
Analysators, ein VHDL Programm erstellt, welches es ermöglicht auf einem FPGA das
Ergebnis des Logik-Analysators wiederzugeben. Anschließend wurde das gleiche C-
Programm wie auf dem DSP auf einem MicroBlaze implementiert, dieser ist ein
Softprozessorkern welcher im FPGA relativ leicht einzufügen ist. Es dient somit das gleiche
C-Programm auf beiden Systemen und es konnte dadurch ein guter Vergleich beider Systeme
erstellt werden.

Claus Alexander Höfs

Title of the paper
Short Wave Receivers Comparison implemented on DSP and FPGA

Keywords
short wave receiver, DSP, FPGA, MicroBlaze, signal down sampling

Abstract
In this work a shortwave receiver was implemented with the help of a product demodulators
first on a DSP, and afterwards on a FPGA.
In addition an adaptor to the DSP C6713 is connected to an A/D D/A converter of the
company DsignT. A c- program was written which interacts with the converter, initializes it
and communicates with the interrupt service routine. The demodulation of the received signal
also takes place in the interrupt service routine.
Afterwards all signals were analyzed with the help of a logic analyzer. As a result of the logic
analyzer a program in VHDL was developed. It enables the programm to reproduce the result
of the logic analyzer on a FPGA. Afterwards the same C program was implemented on a
MicroBlaze as well as on DSP. This is a soft processor core that should be easily
implemented on the FPGA. So the same c- program runs on both systems and a good
comparison should be done.

i

Contents

List of Figures iii

List of Tables v

Acknowledgement vi

1 Introduction 1

1.1 Motivation... 1

1.2 Specifications ... 1

1.2.1 AM Receiver Architecture ... 1

1.2.2 The Signals ... 2

2 Theory 3

2.1 Amplitude Modulation... 3

2.2 Algorithms for Signal Pretreatment... 3

2.2.1 Sub Sampling.. 4

2.2.2 Quadrature Sampling .. 7

2.3 Algorithm for Digital AM Demodulation... 10

3 Implementation 12

3.1 Preliminary work... 12

3.1.1 Main Program.. 12

3.1.2 Interrupt Service Routine (ISR) ... 12

3.2 ADDA16 ... 14

3.2.1 Description .. 14

3.2.2 Address Decoding... 14

3.2.3 Configuration Register (CFG).. 16

3.2.4 Sampling Frequency Register (FS) ... 16

3.2.5 Bus Interface... 17

3.3 DSP.. 17

3.3.1 Description .. 17

3.3.2 Software.. 18

3.3.3 External Memory Interface (EMIF) on C6713...................................... 18

3.3.4 Address Decoding... 19

3.4 Signal Analyze with Logic Analyzer.. 20

3.4.1 Generics to the Analyzer Pictures ... 20

 ii

3.4.2 Reset Cycle... 21

3.4.3 Initial Procedure .. 21

3.4.4 Release of the Interrupt Request Signal nINT0................................... 22

3.4.5 Complete Interrupt Function.. 22

3.4.6 First Part of Interrupt Function... 23

3.4.7 Middle Part of Interrupt Function ... 23

3.4.8 Last Part of Interrupt Function... 23

3.4.9 A Typical Read Procedure .. 25

3.4.10 A Typical Write Procedure .. 26

3.5 FPGA with Xilinx MicroBlaze.. 27

3.5.1 Description .. 28

3.5.2 Introduction ... 28

3.5.3 Instantiable Cores ... 29

3.5.4 Interrupt Controller .. 30

3.5.5 Block RAM .. 30

3.5.6 Own Core.. 31

3.5.7 Create or Import Peripheral Wizard... 31

3.5.8 Microprocessor Peripheral Definition (MPD) 36

3.5.9 Microprocessor Hardware Specification (MHS)................................... 37

3.5.10 User Constraint File (UCF).. 40

3.5.11 Access to Own Core ... 40

3.5.12 User Logic from Own Core.. 41

3.5.13 Interface from Own Core... 42

3.5.14 Address Decoding... 44

3.6 Complex Programmable Logic Device (CPLD) .. 44

3.6.1 Bus Driver with CPLD ... 44

3.6.2 Stand Alone CPLD .. 45

3.6.3 The Answer to This Problem... 46

4 Comparison of Both Implementations 47

5 Conclusions and Recommendations 48

A. Abbreviations 49

B. Bibliography 51

 iii

List of Figures

Figure 1.1: Block Diagram AM Receiver Architecture ... 1

Figure 1.2: Spectrum of the Message Signal .. 2

Figure 1.3: Spectrum of the AM Signal ... 2

Figure 2.1: Subdivisions of AM Demodulation Block... 3

Figure 2.2: Subdivisions of AM Demodulation Block, now Sub Sampling 4

Figure 2.3: Spectrum of Sub Sampling with Even λ .. 5

Figure 2.4: Spectrum of Sub Sampling with Odd λ ... 6

Figure 2.5: Subdivisions of AM Demodulation Block, now Quadrature Mixing 7

Figure 2.6: Realising the Mixer with a Real Signal .. 7

Figure 2.7: Down Quadrature Mixer without Hilbert Transformation 8

Figure 2.8: Delayed Sampling ... 8

Figure 2.9: Realization of the Delayed Sampling .. 9

Figure 2.10 Subdivisions of AM Demodulation Block, now Demodulation.......... 10

Figure 2.11: Product Demodulator... 11

Figure 2.12: Absolute Value Calculation.. 11

Figure 3.1: General Program Flow .. 12

Figure 3.2: Program Flow of ISR... 13

Figure 3.3: ADDA16 Overview .. 14

Figure 3.4: Block Diagram AM Receiver Architecture with DSP............................ 17

Figure 3.5: Complete Reset Cycle .. 21

Figure 3.6: Initial Procedure .. 21

Figure 3.7: Release of Interrupt... 22

Figure 3.8: Complete Interrupt Function.. 22

Figure 3.9: First Part of Interrupt Function... 23

Figure 3.10: Middle Part of Interrupt Function ... 23

Figure 3.11: Last Part of Interrupt Function ... 24

Figure 3.12: A Typical Read Procedure... 25

Figure 3.13: A Typical Write Procedure ... 26

Figure 3.14: XUP Virtex-II Pro Development System .. 27

Figure 3.15: Block Diagram AM Receiver Architecture with FPGA...................... 28

Figure 3.16: MicroBlaze Core Block Diagram.. 29

Figure 3.17: Interrupt Controller Block Diagram .. 30

 iv

Figure 3.18: IPIF Interconnection Between OPB and Own Core [X3].................. 31

Figure 3.19: Create Peripheral - Name and Version.. 32

Figure 3.20: Create Peripheral - IPIF Services .. 33

Figure 3.21: Create Peripheral – Interrupt Service .. 34

Figure 3.22: Create Peripheral – User S/W Register ... 35

Figure 3.23: IOBUF Implementation .. 37

Figure 3.24: System Assembly View ... 37

Figure 3.25: Modyfing Bus Connections .. 38

Figure 3.26: Changing Port Connections... 39

Figure 3.27: Generate Addresse ... 39

Figure 3.28: Block Diagram AM Receiver Architecture with FPGA and CPLD 45

Figure 3.29: System Block Diagram with Stand Alone CPLD.............................. 45

 v

List of Tables

Table 3.1: Address Decoding with JPA18 to JPA15 .. 15

Table 3.2: Address Decoding with JPA5 to JPA4 .. 15

Table 3.3: Register Map... 15

Table 3.4: Potential Settings in the Configuration Register 16

Table 3.5: Pin Connection.. 17

Table 3.6: EMIF Timing on C6713 ... 18

Table 3.7: TMS320C621x/C671x Addressable Memory Ranges......................... 19

Table 3.8: Address Space of CE3.. 19

Table 3.9: Address Mapping with the JPA’s... 19

Table 4.1: Comparison of optimization levels... 47

 vi

Acknowledgement
Without the support of many people, this diploma thesis would not have been

possible. At this point I would like to express our appreciation to all persons who

were involved.

Thanks to Prof. Dr. Ulrich Sauvagerd, University of Applied Sciences (HAW)

Hamburg, for his encouraging support during the whole time of this work. Prof. Dr.-

Ing. Karl-Ragmar Riemschneider, HAW Hamburg, for his help on reviewing the

report. Mr Klemenz, developer of company DSignT, for his friendly assistance during

several calls. Mr Pflüger and Mr Wolf, the assistants of the laboratory for digital

techniques, University of Applied Sciences (HAW) Hamburg, for their friendly

support. Mrs. Pflänzel and Mr. Fellbrich, also for reviewing of the report. I would like

to thank the students in the laboratory who supported me in any form.

Introduction - Motivation

 1

1 Introduction

1.1 Motivation

Amplitude modulation (AM) is an analog modulation, which is for example used in

radio frequency (RF) broadcasting.

Another field of application for AM are weather news services, which were digital

encoded or amateur radio users.

A digital counterpart will gradually replace those analog systems in the new

generation. For a smooth transition of the two systems, it is essential for the new

generation system to be able to communicate with the radio equipment of the old

generation. Because all the new radio equipment are based on Digital Signal

Processor (DSP) -Technology, it is obvious and of commercial interest to perform the

demodulation with the signal processor instead of adding additional analog hardware.

1.2 Specifications

1.2.1 AM Receiver Architecture

The amplitude-modulated signal (sAM) is frequency limited at an intermediate

frequency (IF) of 455 kHz. The antenna and tuner are given and do not fall in the

scope of this work. (see Figure 1.1).

Tuner System
SAM Sout

LS

Figure 1.1: Block Diagram AM Receiver Architecture

Legend for Figure 1.1:

sout out signal to Speaker

LS Loud Speaker

Introduction - Specifications

 2

1.2.2 The Signals

The message signal sAM is a speech and music signal from 0 Hz to 4000 Hz. [SIG1]

(see Figure 1.2)

Figure 1.2: Spectrum of the Message Signal

The message signal sAM has a bandwidth (b) of 8 kHz and a carrier frequency (fT) of

455 kHz. (see Figure 1.3)

Figure 1.3: Spectrum of the AM Signal

1k 2k 3k 4k f(Hz)

A

message signal

b = 4000Hz

455k f(Hz)

A

 AM signal

b = 8000Hz

Theory - Amplitude Modulation

 3

2 Theory

2.1 Amplitude Modulation

AM is also called a linear modulation, so it is simply the use of the frequency-shifting

theorem. A conventional amplitude modulated signal is defined by the following

equation, which is described in [HL04]

() () ()() ()()



 −+++= tmtmtsts MTMTTTAM ωωωωω cos

2
cos

2
cosˆ (2.1)

It’s the result of a multiplication of two signals: a carrier-frequency sT(t) and a

modulated signal sM(t).

2.2 Algorithms for Signal Pretreatment

All the digital AM demodulation algorithms need the AM signal in the baseband.

Therefore the AM demodulation unit from Figure 1.1 is further divided into three units:

sub sampling, quadrature mixing and baseband demodulator (see Figure 2.1).

System
SAM

Sout

Subsampling
SAM SAM’

Quadrature
mixing

Simag

Baseband AM
demodulation

Sreal Sout

Figure 2.1: Subdivisions of AM Demodulation Block

Theory - Algorithms for Signal Pretreatment

 4

2.2.1 Sub Sampling

System
SAM

Sout

Subsampling
SAM SAM’

Quadrature
mixing

Simag

Baseband AM
demodulation

Sreal Sout

Figure 2.2: Subdivisions of AM Demodulation Block, now Sub Sampling

The AM signal which has been generated by the tuner has a carrier frequency of 455

kHz and a bandwidth of 8 kHz. This results in a maximum frequency of over 455 kHz.

Hence, a sampling rate of over 910 kHz is required. This data rate is too fast for

today processors. However as the signal is frequency limited, a sub sampling is

possible and the sampling rate can be calculated as follows [KK02]:

In the special case that

bf ⋅= λ1][Ν∈λ (2.2)

() bf ⋅+= 12 λ (2.3)

the sample rate is

bfA ⋅= 2 (2.4)

for a non aliasing periodic sequel of the spectrum. Figure 2.3 shows the spectrum of

sub sampling for an even λ. Figure 2.4 shows the sub sampling for an odd λ.

Theory - Algorithms for Signal Pretreatment

 5

f1 f2

b

4b

f

2b=fA
f

f
fA

Figure 2.3: Spectrum of Sub Sampling with Even λ

If the sub sampling is interpreted in terms of the carrier frequency Tf

bbfT ⋅=− λ
2

 (2.5)

2
12 +

=
λbfT (2.6)

For a general carrier frequency Tf and b, the condition of an even λ is often not

fulfilled. Thus, the bandwidth has to increase.

qbb ⋅=' 1>q (2.7)

Theory - Algorithms for Signal Pretreatment

 6

f1 f2

b

3b

f

2b=fA
f

f
fA

Figure 2.4: Spectrum of Sub Sampling with Odd λ

The new bandwidth is

2
12' +

=
λbfT

 (2.8)

12
2'

+
=

λ
Tfb

 (2.9)

where λ is the largest possible integer number, but smaller than
b

bfT 2
− .

Therefore the sampling rate is

12
4'2

+
=⋅=

λ
T

A
fbf

 (2.10)

Theory - Algorithms for Signal Pretreatment

 7

2.2.2 Quadrature Sampling

System
SAM

Sout

Subsampling
SAM SAM’

Quadrature
mixing

Simag

Baseband AM
demodulation

Sreal Sout

Figure 2.5: Subdivisions of AM Demodulation Block, now Quadrature Mixing

The mixing to the base band in the past is carried out by the multiplication of the AM

signal and a sinusoid oscillator cosine(ωTt) and followed by a band pass filter [GK93]

(see Figure 2.6). The input signal is the modulated signal sAM.

Figure 2.6: Realising the Mixer with a Real Signal

Nowadays digital techniques are more and more in common, also quadrature

sampling is defeated by these improvements. Following [GK93] on page 172:

The origin of an analytic signal arises also from an analogy to the Hilbert

Transformation. It is worth:

 () (){ } () ()ttxttxH TT ωω sincos = for () 0=fX , Tωω ≥|| (2.11)

A real signal is multiplied by 2 about 90° mutually phases-postponed sine wave, the

products are to each other Hilbert transformed if the spectrum of the real signal

disappears above the frequency of the sine wave. Thus can be moved, in the end,

complicated diagram of the down mixer from Figure 2.6 to Figure 2.7 which owns

only real signal path.

input signal
mixer

e(jω0t)
band pass

spectral

postponed input

signal

Theory - Algorithms for Signal Pretreatment

 8

Figure 2.7: Down Quadrature Mixer without Hilbert Transformation

Further on [GK93] page 181:

The system diagram after Figure 2.7 contains multipliers for the down sampling in the

zero position and in the model representation of the sampler, hence it should be

possible to reach the down sampling in zero position by the sampler himself, and

90°- shifting of the both sine waves, how in Figure 2.8 shown, is taken into

consideration by a time offset within the scanning.

Figure 2.8: Delayed Sampling

After the various reshaping which follows [GK93] on page 181 and the following and

which were not a subject of this diploma thesis, the following is important:

() () ()∑∑
∞

=

∞

−∞=

+=−=
1

2cos21
k

a
n

AAper tkfnTtTt πδδ (2.12)

It ends with: At the exit of the low pass filter forming the signals of the cosine channel

() () ()ffUffUfU NFNF ∆++∆−=
2
1

2
1

cos (2.13)

sin(ω0t)

cos(ω0t)

sAM(t)

()∑
∞

−∞=

−−=
n

AAvper TntTt τδδ)(

uBP(t) ()∑
∞

−∞=

−=
n

AAper TntTt δδ)(

uBPcosa(t)

uBPsina(t)

Theory - Algorithms for Signal Pretreatment

 9

and of the sine channel

() () () () ()ffUeffUefU NF
fkj

NF
fkj AA ∆++∆−= +− τπτπ ** 22

sin 2
1

2
1

 (2.14)

The equation 2.12 and equation 2.13 are Hilbert- transformed to each other when the

following does apply:

mfk A ππτπ 2
2

2 * += Nm∈ (2.15)

This condition is fulfilled by a suitable choice of the time offset τ. One receives for the

necessary time offset

*
41

4 k
mTA +

=τ (2.16)

The sampling frequency fA must be greater than the bandwidth b; besides, fA must be

chosen in such a way that the relation of the center frequency fT is identical to a

whole number k* of the sampling frequency fA.

Concerning the realization of the delayed sampling there it is beside the operation

with two samplers also possible, how in Figure 2.9 shown, only one sampler for work.

Figure 2.9: Realization of the Delayed Sampling

Then this operation runs with the fourfold sampling frequency; then a subdivision

takes place in 2 branches and is delayed in a branch by one step and is decimated

after it in both branches by the factor 4. A time-delayed sampling of 4
AT=τ is

u
BP

(t)

ADU

z
-1 4

4

4
ATnt =

Theory - Algorithm for Digital AM Demodulation

 10

thereby realized. In this case the sampling frequency must be chosen in such a way

that

*41 km =+ (2.17)

is true.

2.3 Algorithm for Digital AM Demodulation

Because of understandable reasons, like time and amount of work in this diploma

thesis, I describe only one easy way for demodulation and not the lot of types for

demodulation.

System
SAM

Sout

Subsampling
SAM SAM’

Quadrature
mixing

Simag

Baseband AM
demodulation

Sreal Sout

Figure 2.10 Subdivisions of AM Demodulation Block, now Demodulation

The product demodulator is the simplest demodulator in the digitalized world. The

product demodulator needs the AM signal in the baseband. Figure 2.11 shows the

block diagram of the complex product demodulator. The input signal is the RF AM

signal UHF(n), says [GK93] on page 200.

Theory - Algorithm for Digital AM Demodulation

 11

Figure 2.11: Product Demodulator

Hence the first part of the diagram is nothing but a Hilbert transformation, in the

digital world it is made by a quadrature sampling (see section 2.2.2), the first part of

the diagram becomes superfluous and only the absolute value calculation is left (see

Figure 2.12).

)(2)(nunu MFNF = (2.18)

Figure 2.12: Absolute Value Calculation

After describing the theory, I go on with the implementation of the short wave

receiver.

uM(n)

absolute value

calculation

uMF(n) uNF(n)

low pass

uHF(n)

())(2 ' nnfme ψπ +

 uNF(n)

{}.

{}.

+ 2 {}. +

-1

uMFreal(n)

uMFimag(n)

Implementation - Preliminary work

 12

3 Implementation

3.1 Preliminary work

I decided to use only one program for both implementations. The advantage is an

easier use and a better understanding. The disadvantage is that the FPGA is

programmed in a way to understand a C- program. The C- program could be split

into two huge sections, the main program flow and the interrupt routine.

3.1.1 Main Program

Like in every C program the entry point is the main function. In this case the main

function is used to initialize the used hardware, the software libraries, and to set up

the interrupt. After the initialization, the application goes to an idle loop to be driven

by an interrupt (see Figure 3.1). The main function and the interrupt routine are

implemented in the DSP_main.c and the FPGA_system.c files. Each program is

described with its characteristics in a separate section.

main idle Interrupt
routine

Interrupt pending

Interrupt routine
finished

Figure 3.1: General Program Flow

3.1.2 Interrupt Service Routine (ISR)

The system is driven by only one hardware interrupt. It is activated by an external

signal and reacts on to the falling edge.

The interrupt routine reads from Analog-to-Digital converter 0 (ADC), updates the

quadrature buffer, to make an analytic signal from the real input signal and every

forth time it calculates an AM demodulation and sends the result to the Digital-to-

Analog converters (DAC) from the ADDA16 module (D.Module.ADDA16 from

DSignT) (see Figure 3.2).

Implementation - Preliminary work

 13

Read ADC0

Update the quadrature
buffers

Increment the global
counter by 1

Calculate the AM
demodulation

is it the 4th time
running the ISR

Write to DAC0 and
DAC1

End of ISR, go back to
main program

yes

no

Figure 3.2: Program Flow of ISR

Implementation - ADDA16

 14

3.2 ADDA16

Figure 3.3: ADDA16 Overview

3.2.1 Description

The ADDA16 module is a 16 bit, 500 kilo samples per second (KSPS), 2- channel

Analog-to-Digital (A/D) and Digital-to-Analog (D/A) converter board, suitable for the

D.Module family of DSP Computer Modules or with an adapter card to each DSP

Starter Kit (DSK) board. Two A/D channels are converted synchronously using

Successive Approximation Converters (SAR). This architecture provides a very short

delay from sampling to availability of the digital output word, and is best suited for

control loops, where any delay will result in increased dead time, complicating the

control algorithm. Synchronous sampling preserves the phase information of the

input channels. The D/A converters are followed by a second order smoothing filter

and provide a single-ended bipolar output. The DACs can be updated synchronously

with the ADC, operate in free running mode, or update simultaneously after the last

DAC channel has been written. [DST04]

3.2.2 Address Decoding

The ADDA16 module is connected to the DSP via a 16-bit parallel interface in IOSEL

memory space. Four registers provide access to the ADCs and DACs, the board

Implementation - ADDA16

 15

configuration and status. Base address and offset is jumper selectable and allow

operating multiple ADDA16 in parallel.

Table 3.1 and Table 3.2 shows all possible adjustments for the Jumpers JPA18 to

JPA16 and JPA5 to JPA4 in dependence on its special operation.

JPA18 JPA17 JPA16 Base Address w. other DSP Module

Open Open Open IOSEL+0x000000

Open Open Closed IOSEL+0x040000

Open Closed Open IOSEL+0x080000

Open Closed Closed IOSEL+0x0C0000

Closed Open Open IOSEL+0x100000

Closed Open Closed IOSEL+0x140000

Closed Closed Open IOSEL+0x180000

Closed Closed Closed IOSEL+0x1C0000

Table 3.1: Address Decoding with JPA18 to JPA15

JPA5 JPA4 Offset w. other DSP Module

Open Open 0x00000

Open Closed 0x10000

Closed Open 0x20000

Closed Closed 0x30000

Table 3.2: Address Decoding with JPA5 to JPA4

The ADDA16 device contains several registers. A register is selectable by the

address values of A0 to A3 in the following table (see Table 3.3).

Offset Register Width Description

0x0 ADDA0 16 bits read: ADC channel 0, write: DAC channel 0

0x1 ADDA1 16 bits read: ADC channel 1, write: DAC channel 1

0x4 FS 8 bits sampling frequency register (FS)

0x5 CFG 8 bits configuration register (CFG)

Table 3.3: Register Map

For the sake of completeness, if you want to know where the data is been written to,

you have simply to combine all the addresses with an OR and then you will find the

data at the specific address.

Implementation - ADDA16

 16

3.2.3 Configuration Register (CFG)

The CFG inherits the external clock out signal (EXTCLKOUT), the interrupt settings

and the mode of updating the DAC’s. I used the external clock out signal to control

the correct function of the ADDDA16 module, the Interrupt 0 on ADC ready for

finished A/D conversion and a simultaneous update of all DAC’s after DAC1 has

been written to. A value of 0X0089 would be send to ADDA16 module.
D7 D6 D5 D4 D3 D2 D1 D0

write: EXTCLKOUT

read: DACREADY

INT1CFG INT0CFG LDACCFG

EXTCLKOUT:

0 – output off

1 – output on

DACREADY:

0 – DAC not ready

1 – DAC ready for

 new data

00 - INT1 not used

01 - INT1 = ADC ready

10 - INT1 = DAC ready

11 - INT1 = sampfreq

00 - INT0 not used

01 - INT0 = ADC ready

10 - INT0 = DAC ready

11 - INT0 = sampfreq

000 - DACs updated after any

 write

001 - simultaneous update after

 write to DAC1

100 - simultaneous DAC update

 synchronous with ADC

Table 3.4: Potential Settings in the Configuration Register

3.2.4 Sampling Frequency Register (FS)

The FS allows the selection of the sampling frequency, either generated onboard via

a programmable divider with a value of 0x0F to 0xFF or an external clock fed to the

external clock input (EXT_CLKIN) with a value of 0x00. I used the EXT_CLKIN to

adjust sampling frequency with an external frequency generator. So a value of

0X0000 would be send to ADDA16 module.

Implementation - DSP

 17

3.2.5 Bus Interface

For a correct function of the ADDA16 following signals would be needed:
Signal Pin Type Description

A0 .. A5

A16 .. A18

U9 .. U14

V12 .. V14

I Address bus

D0 .. D15 U15 .. U30 I/O/Z Data bus (connects to DSP D16..D31)

nRD U2 I Active low read strobe signal

nWR U5 I Active low write strobe signal

nIOSEL U8 I Active low memory select signal

BUSCLK U6 I DSP bus clock

NINTO U3 O/Z Interrupt Line 0

nINT1 U4 O/Z Interrupt Line 1

Table 3.5: Pin Connection

Remark
Each signal must be connected, except the interrupt signals otherwise the ADDA16

module wouldn’t interpret any command correctly.

3.3 DSP

Tuner
SAM Sout

LSSystem

ADDA16

DSP

Figure 3.4: Block Diagram AM Receiver Architecture with DSP

3.3.1 Description

The ADDA16 is connected to the DSK via a daughtercard to the connectors J3 and

J4 from the C6713. The connectors J3 and J4 of the C6713 are configured as an

external memory interface (EMIF).

It simply consist of wires without logic or components on it. Some measuring points

are led out, like nINT0 or nIOSEL for example.

Implementation - DSP

 18

Attention should be paid on the daughtercard detect signal J3(75). It must be

grounded. Otherwise the DSK wouldn’t recognize the daughtercard an the bus-

drivers on the DSK will always be HIGH Z !

3.3.2 Software

The DSP C6713 will recognize the ADDA16 module as an external memory

interface, so most of the implementation is already done, cause EMIF is already

implemented on the Expansion Bus (see also [TI190d] and [TI401f]). Only the

necessary adjustments in the EMIF configuration register should be done.

I want to give a short description of the characteristics of the c-program I’ve written

#define IRQ_EXTPOL (*(volatile unsigned int *) 0x019C0008)

This define instruction maps a hardware register to a variable declaration. It is for a

better handling in the c-program. The IRQ_EXTPOL register defines on which edge

the interrupt would be recognized.

3.3.3 External Memory Interface (EMIF) on C6713

For the correct timing you have to adjust the EMIF settings on the C6713. During a

call with Mr.Klemenz of the company D.SignT, he told me the timing of the EMIF

settings.

Asynchronus timing:
write setup 1

Write strobe 2

Write hold 1

Read setup 1

Read strobe 2

Read hold 1

Turn around time 1

Table 3.6: EMIF Timing on C6713

With the settings of Table 3.6 and the EMIF-Calculator from D.SignT Hompage

[DST01] it is very easy to generate the correct value for the control register. The

result of the calculator is 0x10914221.

Implementation - DSP

 19

I decided to use the chip enable 3 control register (CE3_CTRL) register for this. It

wasn’t used before by any other projects, so other projects of the HAW wouldn’t be

involved. The memory space starts at address 0x90200000 and with the adjustments

of the ADDA16 module the first value is located at address 0x90300000. (see also.

3.2.2)

3.3.4 Address Decoding

Memory type Memory width Maximum

addressable bytes

per CE space

Address output

on EA [21:2]

Represents

ASRAM X16 2M A[20:1] half word address

Table 3.7: TMS320C621x/C671x Addressable Memory Ranges

Like in Table 3.7 is seen, a half word address is used, cause only 16 bit of the 32 bit

address space is used, so the EA-Address is shifted by one to the internal address.

A closer look at the explicit addresses would make a better view of it.

First we had a look at the original address of the CE3 Space. It begins at
1001 0000 0010 0000 0000 0000 0000 0000 Binary

9 0 2 0 0 0 0 0 Hex

Table 3.8: Address Space of CE3

Cause a half word addressable space is used the address output is shifted by 1.

This result in JPA18 goes to A 20 and JPA17 goes to A19 and JPA16 goes to A18

they were called the bank select bits.

JPA5 goes to A17 and JPA4 goes to A16 and were called the sub bank select bits.

A picture would make a better perception.

Remark: JPA = Jumper for Address decoding it has nothing to do with the

correct place of the address bit !)
1001 0000 0010 0000 0000 0000 0000 0000 Binary

9 0 2 0 0 0 0 0 Hex

 Xxx1 00xx JPA18 - JPA16

 xx00 JPA5 - JPA4

1001 0000 0011 0000 0000 0000 0000 0000 Binary

9 0 3 0 0 0 0 0 Hex

Table 3.9: Address Mapping with the JPA’s

Implementation - Signal Analyze with Logic Analyzer

 20

3.4 Signal Analyze with Logic Analyzer

First of all I had to find out how the signals of the ADDA16 module were driven. So I

connect a logic analyzer to the ADDA16 module and connect it to the DSK. After a

short while it was clear how it works and here are the results.

3.4.1 Generics to the Analyzer Pictures

The first picture (Figure 3.5) shows nearly all-available signals from the ADDA16

module except the BUSCLK signal. Here is a short description for each Signal:

Reset for a proper Operation it must be 1

nINT0 Interrupt line 0 to DSP, active on falling edge

nRD not READ signal (read strobe), active low

nWR not WRITE signal (write strobe), active low

nIOSEL not Input Output SELect signal, active low (DSP memory area select

signal)

A18-A16 part of address bus, 64 K Bank select signal, which is described in

section 3.2.2

A5-A4 part of address bus, 16 Word Sub Bank Select signal, which is

described in section 3.2.2

A3-A0 part of address bus, register select offset which is described in section

3.2.2

D15-D0 data bits

Implementation - Signal Analyze with Logic Analyzer

 21

Figure 3.5: Complete Reset Cycle

3.4.2 Reset Cycle

In Figure 3.5 the complete reset cycle is shown.

In the beginning nReset is one. Then it goes to null and after 10 ms back to one. This

is also the minimum time for a reset.

When the reset signal is low, every register in the ADDA16 module is set to his initial

value. The initial value of all registers is null.

Note: the green spikes in nRD and nWR were the auto refresh of the synchronic data

random access memory (SDRAM) and have nothing to do with the initialization of the

ADDA16

3.4.3 Initial Procedure

Figure 3.6: Initial Procedure

The second picture (Figure 3.6) shows the typical initial procedure. After the reset

has stopped, the first thing to do is to write the CFG and the FS Register.

Implementation - Signal Analyze with Logic Analyzer

 22

First a write to the CFG register is done. It is located at address 0x4 and the value

0x0000 has been send. Second the value 0x0089 is send to the FS register, which is

located at address 0x5.

3.4.4 Release of the Interrupt Request Signal nINT0

Figure 3.7: Release of Interrupt

In the picture above (Figure 3.7) the initial is complete. The first ad conversion starts.

If the ad conversion has finished the first interrupt occurs. A falling edge of nINT0 is

created by the ADDA16.

3.4.5 Complete Interrupt Function

Figure 3.8: Complete Interrupt Function

Figure 3.8 shows the complete Interrupt function. I split this picture into 3 parts

because the explicit values aren’t good to be seen.

Implementation - Signal Analyze with Logic Analyzer

 23

3.4.6 First Part of Interrupt Function

Now we had a closer look after the interrupt occurs.

Figure 3.9: First Part of Interrupt Function

In the ISR the first operation is a read from the two ADC’s.

First ADC0 is read and second ADC1 is read.

3.4.7 Middle Part of Interrupt Function

In the middle of ISR (see Figure 3.10) nothing happened to the output, because the

output value is to be computed.

Figure 3.10: Middle Part of Interrupt Function

3.4.8 Last Part of Interrupt Function

In the Figure 3.11 underneath, is the first thing a read to the CFG register cause a

write to DAC0 is to be made next. This had to be done because the DAC interface is

single-buffered and got only one buffer for all DAC’s.

Implementation - Signal Analyze with Logic Analyzer

 24

Figure 3.11: Last Part of Interrupt Function

Bit 7 of CFG-register is the DAC_READY signal. If it is 0, the DAC buffer is full and

new data cannot be accepted or in other word’s the shift to the explicit DAC haven’t

finished yet. So you have to wait until the shift had been done (in Figure 3.11 192ns

wait time was estimated) and ask again if it has emptied.

If a 1 is detected, the write to the DAC have finished and the DAC buffer is ready to

accept new data. Another write to an other DAC could be done.

In the Figure 3.11 above this is the first write to a DAC after a long while so bit 7 of

the CFG-register is 1. To be seen on D15 to D0, its value is 0xFF89 so D7 is 1.

After the DAC_READY signal is 1, a write to DAC0 is performed with the value

0xFFFF and immediately afterwards a read of the CFG register, where D7 is 0. So it

was done as I explained it above.

Thereafter DAC1 is written with its value and the ISR is complete.

Now the system is in idle progress until the next falling edge of nINT0 is recognized

and the ISR is called again.

Implementation - Signal Analyze with Logic Analyzer

 25

BUSCLK

nRD

nIOSEL

A3-0
0x0 0x4 0x0

1 3 2 5
state

4

6

7

3.4.9 A Typical Read Procedure

A typical read procedure (see Figure 3.12) looks like:

1. change to the correct address

2. after 1 clock nIOSEL low

3. after 1 clock nRD went also to low

4. wait for 2 clocks

5. turn nRD signal back to 1 and data is taken to the register

6. after another clock nIOSEL turns back to 1

7. wait for another clock (turn around time or idle)

Figure 3.12: A Typical Read Procedure

and then you could begin with another command.

Implementation - Signal Analyze with Logic Analyzer

 26

BUSCLK

nWR

nIOSEL

A3-0
0x0 0x4 0x0

1 3 2 5
state

4

6

7

3.4.10 A Typical Write Procedure

A typical write procedure looks like:

1. change to the correct address

2. after 1 clock nIOSEL low

3. after 1 clock nWR went also to low

4. wait for 2 clocks

5. turn nWR signal back to 1 and data is taken by the ADDA16 Module

6. after another clock nIOSEL turns back to 1

7. wait for another clock (turn around time or idle)

Figure 3.13: A Typical Write Procedure

and then you could begin with another command.

Implementation - FPGA with Xilinx MicroBlaze

 27

3.5 FPGA with Xilinx MicroBlaze

To use the same C-Program for both implementations I decided to use a MicroBlaze

from XILINX. It could be easily implemented cause XILINX delivers a program with

the XUP Virtex-II Pro Development System (see Figure 3.14); it’s named XILINX

Platform Studio (XPS). [XUP1]

Figure 3.14: XUP Virtex-II Pro Development System
Left Digilent Expansion connector (LDE)

Implementation - FPGA with Xilinx MicroBlaze

 28

3.5.1 Description

Tuner
SAM Sout

LSSystem

ADDA16

FPGA
with

MicroBlaze

Figure 3.15: Block Diagram AM Receiver Architecture with FPGA

The FPGA is connected in a similarly way to the ADDA16 module like the DSP.

It is connected from the LDE via a self-wired daughtercard to the ADDA16 module.

3.5.2 Introduction

MicroBlaze is a 32-bit soft processor core, which is developed by Xilinx. The

MicroBlaze processor could work with a maximum clock of 100 MHz. He is equipped

with a 32 bit wide instructions- and data bus and is qualified for designs of complex

systems for networking, telecommunication, embedded- and consumer applications.

The MicroBlaze-processor is provided with a Harvard similar architecture, which

separated instructions- and data busses could work with the whole clock. By these

data buses could access on the on-chip or the external memory. XILINX provide for

the MicroBlaze already some instantiable components and additional to that own

cores could be bound to the on chip peripheral bus (OPB), what for this work was

essential. Here are some key features:

• RISC processor

• 32 32-bit general purpose register

• 32-bit instructions- und data bus OPB

• 32-bit instructions- und data bus Local Memory Bus (LMB)

• different instantiable Components (UART, timer, memory controller, Ethernet

core etc.)

• additional own cores

In Figure 3.16 the block diagram is shown. More details were found in the MicroBlaze

Reference Guide [X1].

Implementation - FPGA with Xilinx MicroBlaze

 29

Figure 3.16: MicroBlaze Core Block Diagram

3.5.3 Instantiable Cores

A big advantage of the MicroBlaze soft processor is his parametrizable by which he

can be optimally adapted to a desired system. Also belongs to it that certain standard

components can be inserted as desired. In the XPS there are a row of such

components available under the menu item

Hardware Create or Import Peripheral…

On this occasion, it is advisable to work through the EDK MicroBlaze Tutorial [X2] to

appropriate the bases. In my system the following components exists:

• opb_intc

Interrupt controller for the whole system

• bram_block

lmb_bram_if_cntlr

The program instructions are loaded in the BlockRAM, accesses to it are

administered by the BRAM-controller.

• adda16

Controller Interface between the MicroBlaze and the ADDA16 Module

Instruction-

side bus

interface

ILMB

IOPB
In

st
ru

ct
io

n

de
co

de

R
eg

is
te

r

Fi
le

32
x3

2b

Data-side

bus

interface

ALU

Shift

In
st

ru
ct

io
n

B
uf

fe
r

P
ro

gr
am

C
ou

nt
er

S
pe

ci
al

P
ur

po
se

B
us

 IF

B
us

 IF

Implementation - FPGA with Xilinx MicroBlaze

 30

3.5.4 Interrupt Controller

The interrupt controller is a predefined core, which controls the interrupts from

different cores, gives them a priority and forwards it to the MicroBlaze in a prioritized

order. It is described in [X5] as shown:

Figure 3.17: Interrupt Controller Block Diagram

3.5.5 Block RAM

The BlockRAM has two ports, which is why also two BRAM- controllers must be

instantiated. Accordingly to the Tutorial [X2] the standard parameters were taken

over for the BlockRAM. The settings of both controllers in my system are in the same

address rooms, it begin with 0x00000000 and go to 0x00007FFF. The program fills

about three quarters of it, however, on the FPGA even more place did not remain for

a bigger memory. It must be also seen to the fact that at least 1 bit of the address

area differs the BlockRAM of all other components. To make the accesses to the

instructions as quick as possible, a query on this bit is done in the MicroBlaze inside

then.

Implementation - FPGA with Xilinx MicroBlaze

 31

3.5.6 Own Core

There are different possibilities to include an own Core to the MicroBlaze. Two are

mentioned. Initial position is with both the OPB. Either one corresponds to an own

address decoding logic which adds an own Core directly in the OPB, or one takes the

Intellectual Property Interface (IPIF) with which of the IPIF is used as an interface

between the OPB and the own core(Figure 3.18). Some good models are available

with the standard cores of the MicroBlaze for the more first variation. Nevertheless, I

have decided on the second solution because the IPIF module is to be implemented

efficiently and more or less simply. You could implement it easily with the Create or

Import Peripheral-Wizard. In Figure 3.18 is see an overview about the IPIF and its

many predefined options.

Figure 3.18: IPIF Interconnection Between OPB and Own Core [X3]

Here the most important points are summarised for the construction of own Cores as

it is announced in [X2].

3.5.7 Create or Import Peripheral Wizard

One of the key advantages of building an embedded system in an FGPA is the ability

to include customer cores and interface the intellectual property (IP) to the processor.

We will walk through the steps necessary to include a custom IP core.

Implementation - FPGA with Xilinx MicroBlaze

 32

• In XPS, select Hardware → Create or Import Peripheral… to open the Create

and Import Peripheral Wizard.

• Click Next. Select Create templates for a new peripheral.

By default the new peripheral will be stored in the project_directory/pcores

directory. This enables XPS to find the core for utilization during the

embedded system development.

• Click Next. In the Create Peripheral – Name and Version dialog, enter a name

of the peripheral, for example custom_ip. This is shown in Figure 3.19.

Figure 3.19: Create Peripheral - Name and Version

• Click Next. In the Create Peripheral – Bus Interface dialog, select On-Chip

Peripheral Bus (OPB), as this is the bus to which the new peripheral will be

connected.

Implementation - FPGA with Xilinx MicroBlaze

 33

• Click Next. The Create Peripheral – IPIF Services dialog enables the selection

of several services. For additional information regarding each of these

services, select More Info. Select the User logic S/W register support option.

(see Figure 3.20)

Figure 3.20: Create Peripheral - IPIF Services

Implementation - FPGA with Xilinx MicroBlaze

 34

• Click Next. In the Create Peripheral – Interrupt Service dialog (see Figure

3.21).

Figure 3.21: Create Peripheral – Interrupt Service

Implementation - FPGA with Xilinx MicroBlaze

 35

• Click Next. In the Create Peripheral – User S/W Register dialog, change the

Number of software accessible registers to 2 and choose disable posted write

behaviour. (see Figure 3.22)

Figure 3.22: Create Peripheral – User S/W Register

• Click Next. In the Create Peripheral – IP Interconnect (IPIC).

• Click Next. In the Create Peripheral – (OPTIONAL) Peripheral Simulation

Support dialog, a Bus Functional Model (BFM) simulation environment can be

generated. This tutorial will not cover BFM simulation. Leave the option

unchecked.

• Click Next. In the Create Peripheral – (OPTIONAL) Peripheral Implementation

Support dialog, uncheck the Generate ISE and XST project files to help you

implement the peripheral using XST flow.

• Click Next and then Finish.

Implementation - FPGA with Xilinx MicroBlaze

 36

Now that the template has been created, the user_logic.vhd file must be modified to

incorporate the custom IP functionality.

• Open the user_logic.vhd in windows explorer. Currently the code provides an

example of reading and writing to two 32-bit registers and a primitive interrupt.

3.5.8 Microprocessor Peripheral Definition (MPD)

Each system peripheral has a corresponding MPD file. The MPD file is the symbol of

the embedded system peripheral to the MHS schematic of the embedded system.

The MPD file contains all of the available ports and hardware parameters for a

peripheral. These ports are also performed in the XPS. First the name of own cores

is given again:

BEGIN my_core_name, IPTYPE = PERIPHERAL, EDIF= TRUE

Under this name an own core will appear in the XPS. Then the ports must be

defined. Here an example:

PORT name = "", DIR = IN, VEC[0:15]

DIR defines whether a port is an input or an output. If a port is fixed as DIR = INOUT,

this can lead while generating the net list to mistakes, if is not added, in addition,

ENABLE=MULTI. Then this looks thus:

PORT name = "", DIR = INOUT, VEC[0:15], ENABLE=MULTI

ENABLE=MULTI get XPS an IOBUF after Figure 3.23 to provide. With the very high

speed integrated circuit hardware description language (VHDL) files adaptations

must be likewise done, so that an input output buffer (IOBUF) is properly inserted.

From the port name there were three ports automatically added:

• name_I as an input for the own core

• name_O as an output for the own core

• name_T to activate the tri-state signal (active low)

Implementation - FPGA with Xilinx MicroBlaze

 37

Figure 3.23: IOBUF Implementation

3.5.9 Microprocessor Hardware Specification (MHS)

The MHS file is a readable text file that is an input to the Platform Generator (the

hardware system building tool). Conceptually, the MHS file is a textual schematic of

the embedded system. To instantiate a component in the MHS file, you must include

information specific to the component.

Once a design has been created with the Base System Builder (BSB), it can be also

modified from within the System Assembly view.

To add new IP:

• Bring the IP Catalog tab forward.

• Expand the Project Repository hierarchy

• Drag and drop the IP into the System Assembly View or double click on the IP

Figure 3.24: System Assembly View

With the Bus Interface filter still activated:

• Press the Connection Filter button and select All

• Expand the custom_ip_0 instance

own_core

name_I

name name_O

name_T

IOBUF

O

O

I

T

I

O

Implementation - FPGA with Xilinx MicroBlaze

 38

• Highlite the slave OPB connection (SOPB)

• Select the No Connection pull down menu and change it to mb_opb

Figure 3.25: Modyfing Bus Connections

Now select the Ports filter

• Press the Connection Filter button and select All

• Expand the custom_ip_0 instance

• Highlite the OPB_Clk port

• Select the Default Connection pull down menu and change the clock

connection to sys_clk_s

Implementation - FPGA with Xilinx MicroBlaze

 39

Figure 3.26: Changing Port Connections

Select the Addresses filter to define an address for the newly added custom_ip

peripheral. The address can be assigned by entering the Base Address or the tool

can assign an address. For an easy use, the tool will be used to assign an address.

• Change the size if the dlmb_cntlr and ilmb_cntlr to 8K.

• Click Generate Addresses.

Figure 3.27: Generate Addresse

Implementation - FPGA with Xilinx MicroBlaze

 40

A message in the console window will state that the address map has been

generated successfully. The design is now ready to be implemented.

3.5.10 User Constraint File (UCF)

In the UCF were the output pins laid on the internal signal names. This looks like:
Net adda16_0_nIOSEL LOC=R5 | IOSTANDARD=LVTTL;

“Net” is a keyword for a signal

“adda16_0_nIOSEL” is the name of the signal

“LOC” is a keyword to loc a pin on a signal name, here “R5”(it’s the pin of the FPGA)

IOSTANDARD means the level to drive the pin, here LVTTL (Low Voltage Transistor

Transistor Logic)

More detailed explanation can be found at [X6].

3.5.11 Access to Own Core

Now the question still positions itself how the MicroBlaze communicates with the

core. It should be briefly entered in the c- file of the MicroBlaze, as well as a short

VHDL code cutting of the own core is described. The process in the VHDL code that

is responsible for the communication with the MicroBlaze is described. First a write

from the MicroBlaze to the core and second the other direction:

slv_reg0(byte_index*8 to byte_index*8+7) <= Bus2IP_Data(byte_index*8 to

byte_index*8+7);

slv_ip2bus_data <= slv_reg1;

The MicroBlaze C-Code:
#include <xbasic_types.h>

#include "ADDA16.h"

Xuint16 s_inL = 0;

void adda16_int_handler(void * baseaddr_p)

{ Xuint32 i_baseaddr;

 i_baseaddr = (int) baseaddr_p;

 s_inL = (short)ADDA16_READ_ADC((void *)i_baseaddr,0);

 ADDA16_WRITE_DAC((void *)i_baseaddr,0, s_inL);

}

Implementation - FPGA with Xilinx MicroBlaze

 41

In the C- code the h-files are inserted first: xbasic_types.h contains the base types

definitions. Thus is, for example, Xuint32 nothing other than an unsigned long

variable, i.e. 32 bit-wide. For the access to the own core it is very important to include

adda16.c and adda16.h. There functions defined like ADDA16_WRITE_DAC with

XIo_Out32 and ADDA16_READ_ADC with XIo_In32. For ADDA16_WRITE_DAC

following data would be needed: the address pointer i_baseaddr, the port 0 and a 16

bit-wide data word. The data is send from the MicroBlaze over the OPB to the own

core. If the data arrives in the own core, Bus2IP_CS and Bus2IP_WrCE got one, and

Bus2IP_Data passes on the data in slv_reg0. Vice versa the data of IP2Bus_Data

comes with ADDA16_READ_ADC and is, in the end, in the variable s_inL.

3.5.12 User Logic from Own Core

For a correct function of the interconnection with the ADDA16 Module I had to write

the half of the user logic and the complete adda16.vhd files. As it is described in the

section before, the MicroBlaze could send and receive 32-bit wide data words

between the C- code and the own core. But there is some more originality that must

be described.

First I had the Problem that the correct data isn’t being received in the

user_logic.vhd. For this is the answer a little bit complicated to understand. In the

Crate and import Peripheral -Wizard is a page where one can control the

acknowledge behavior of the own core for the data word. I’ve chosen the write

acknowledge behavior, so the C-code could receive a data word from the ADDA16

module, after a request to the own core was send and wait for its answer. The correct

data is primal available after 5 clocks. The data between the MicroBlaze and the own

core is sending in 8-bit wide pieces. So I developed a counter, which counts up to

five and stops after it. Here is the code example for this problem:

Note: The slv_ack_detect signal is only for one clock high, after a write to the user-

logic had begun.
wait_5_clocks:process(Bus2IP_Clk)

 begin

 if Bus2IP_Clk='1' and Bus2IP_Clk'event then

 if (slv_ack_detect = '1') then

 count_5 <= "001";

 else

 case (count_5) is

 when "001" =>

Implementation - FPGA with Xilinx MicroBlaze

 42

 count_5 <= "010";

 when "010" =>

 count_5 <= "011";

 when "011" =>

 count_5 <= "100";

 when "100" =>

 count_5 <= "101";

 when "101" =>

 count_5 <= "110";

 when others => null;

 end case;

 end if;

 end if;

end process wait_5_clocks;

finish_write_from_UL <= '1' when count_5 = "101" else '0';

After that I had the problem how to interact with the own core and the MicroBlaze, so

it could be done with two Interrupts either, but this isn’t easy to implement, cause

only one interrupt comes from the own core and after the ISR is started you have to

ask in the IPIF of the own core, which interrupt occurred. So I decided to use only

one Interrupt and the system had to wait for the correct answer about 10 clocks.

Another advantage is a faster system then two interrupts occur.

But if you have to wait more then 7 clocks, you have to implement a timeout signal.

The timeout signal is generated in an own process:
Timeout_process: process (Bus2IP_Clk, Bus2IP_Reset, slv_ack_detect)

begin

if (Bus2IP_Reset = '1') or (slv_ack_detect = '1') then

timeout <= (others => '0');

elsif Bus2IP_Clk='1' and Bus2IP_Clk'event then

timeout <= timeout + 1;

end if;

end process Timeout_process;

IP2Bus_ToutSup <= not timeout(26);--'0';-- Timeout after 1,34sec

3.5.13 Interface from Own Core

The communication between the own core and the ADDA16 Module is described in

the interface_adda16.vhdl. Hence which is a component of the user_logic.vhd, so it is

instantiated in the same. The ports would cross by port mapping to the component.

The component is programmed in standard VHDL. I decided to program a MOORE

Implementation - FPGA with Xilinx MicroBlaze

 43

state machine, cause the output signals have nothing directly to do with the input

signals, so no MEALY state machine is needed. An advantage of a Moore state

machine is the easily changeability, like the signals and states or its regularity, a

disadvantage is its slowly ness and the place requirements in its implementation, but

it fits best of all.

A short explanation to the single segments of the program code is following:

For a better reading I named the states with a personal name, here an example:

type state_type is (st0_initial_state, st1_reset);

signal state, next_state : state_type;

As it was seen above I declared a new type, named the elements of the new type

and subsequently defined a signal, which is from the predefined new type. The

advantage is obvious clearly, the named types simplifies the reading of the source

code and therefore also understanding tremendously and the pre-compiler replace it

with a series of numbers, a disadvantage are the longer name definitions by which

this program becomes a little bit complex.

To force a reading of the BUSCLK signal the following code lines were implemented:

 Internal_CLK:

 CLKintern <= Bus2IP_Clk ;

 BUSCLK <= CLKintern ;

The “Internal_CLK:” is an identifier for the program and Bus2IP_Clk is the clock

signal from the FPGA, it runs at 100MHz and BUSCLK is the signal that goes to the

ADDA16 module, it runs also at 100MHz.

In the process “SYNC_PROC:“ are laid all internal signal on external ones, if it’s a rising

edge of the CLKintern signal; it is also defined what happens with the signals if the

reset signal (Bus2IP_Reset) is released.

The process “INPUT_DECODE:” synchronizes the slave registers from the user_logic to

the component. After a data word is received from the C- code of the MicroBlaze to

the core it is recognized here and the MOORE state machine knows what to do.

Implementation - Complex Programmable Logic Device (CPLD)

 44

In a MOORE state machine all outputs were based on the internal state only and this

happens in the “OUTPUT_DECODE:” process, like nRESET, nRD, nWR or other signals,

that goes to the ADDA16 module.

The last process is the “NEXT_STATE_DECODE:” process, where all state changes take

place.

3.5.14 Address Decoding

For updating the valid address as soon as possible, the address lines A3-A0 are

updated without the state machine, it looks like:

 Address_i <= slv_reg0_i(19 downto 16);

So that the address is updated immediately after a new valid data has been taken

from the user_logic to the interface.

By the Time JPA18 to JPA16, JPA5 and JPA4 weren’t connected, cause the signals

are pulled inside the ADDA16 module by the jumpers on a defined potential, on

account of that to the FPGA.

3.6 Complex Programmable Logic Device (CPLD)

After I implemented everything on the FPGA, the ADDA16 module didn’t understand

anything, so I decided to have a closer look at the output values that were driven by

the FPGA. They were nearly out of spec of the ADDA16 module (according to Mr

Klemenz from DsignT). So I implemented a bus driver via a CPLD.

3.6.1 Bus Driver with CPLD

The CPLD got a great advantage, cause it could be driven with two voltage- levels,

one for the input and another one for the output. A great disadvantage is the work

behind that all, the programming, the production of another daughtercard, the

implementation. But to act fast, it was the best implementation I could get in time.

Implementation - Complex Programmable Logic Device (CPLD)

 45

Tuner
SAM Sout

LSSystem

ADDA16

FPGA
with

MicroBlaze

CPLD

Figure 3.28: Block Diagram AM Receiver Architecture with FPGA and CPLD

So I’ve written a bus driver in VHDL. The signals are simply connected trough the

CPLD, like:

Address_ADDA <= Address_FPGA;

Data_FPGA <= Data_ADDA when RnW = '1' else "ZZZZZZZZZZZZZZZZ";

The Signal Address_FPGA, as the name implies, comes from the FPGA and goes to

Adresse_ADDA , which is located at the ADDA16.

The data signal is a little bit indifferent, cause it’s a bidirectional signal. The signal

RnW (Read Not Write) is driven by the FPGA. If the signal is one, the data signal is

been driven from ADDA16 module to the FPGA. Else it is driven in HIGH Z.

The complete program is found in the appendix C on the compact disc (CD)

After the implementation the ADDA16 module still won’t accept any command.

3.6.2 Stand Alone CPLD

So I went one level down and implemented the VHDL code from the FPGA into the

CPLD. It looks like Figure 3.29.

Sout

LSSystem

ADDA16

CPLD

Figure 3.29: System Block Diagram with Stand Alone CPLD

Implementation - Complex Programmable Logic Device (CPLD)

 46

I used the interface_adda.vhd as a skeletal structure and implemented it in a new file

named CPLD_stand_alone_initial_adda16.vhd. The implementation got an additional

advantage, now I’ve got an analogy look at the VHDL code without the MicroBlaze. I

could verify the correct programming of the interface_adda16.vhd now. The program

is also being found in the appendix D on the CD.

The changes are fractional. Now I’ve got only a data output in place of a bidirectional

signal, a variable i which counts up each time a value is send and the state machine

runs in a loop. So a ramp must be heard on the loudspeaker. After I made these

changes I implemented it on the CPLD.

3.6.3 The Answer to This Problem

Again nothing happened, so I’ve had another call to Mr. Klemenz. He announced me,

that the ADDA16 module wouldn’t interpret any command, if the internal address

didn’t match the external address. The internal address is set by the JPA’s and is

going to a multiplexer within the CPLD of the ADDA16 module. One has to

acknowledge the internal address. So the external pins of the ADDA16 module must

have the accordingly signal to the signal from the respective potential of the JPA.

So for a correct address decoding all address lines (here line 4 to 5 and 16 to 18)

must be connected to the same value as the internal signal corresponding to the JPA

were forced to.

I decided to use some resistors. It’s a faster implementation then integrating new

output ports to the FPGA. Additional to install new wires to the correct pin of the

ADDA16 module.

JPA18 for example is closed, so it is internal connected to +5V. The output pin for

JPA18 is on pin ADDA16(V1). So one had to connect a pull-up resistor to +5V on that

pin. All other address lines were open, so they were connected to 0V by the aid of a

pull-down resistor.

In the end everything runs as it was dedicated, the stand-alone CPLD runs and the

bus driver with the FPGA too.

Note: The system with the FPGA runs just as well without the bus driver.

Comparison of Both Implementations - Complex Programmable Logic Device (CPLD)

 47

4 Comparison of Both Implementations
The program of the DSP explained in section 3.3.2 is compiled with the different

optimization levels of the compiler. The DSP runs also with different clock cycles to

get a better comparison of both implementations, if they run with the same clock

cycle. After each optimization and speed level is performed the program is

downloaded to the DSK and measured with the logic analyzer. The FPGA runs

always at 100 MHz and runs with optimization level -7

frequency -o0 -o1 -02 -o3

225MHz 2.756µs 2.484µs 2.476µs 2.476µs

100MHz 4.952µs 4.376µs 4.324µs 4.324µs

Table 4.1: Comparison of optimization levels

As in Table 4.1 seen, the optimization level does speed up the ISR. The DSP has

enough potential for demodulation the AM signal.

On the other hand the FPGA needs about 72µs for a demodulation calculation. So

this results in a maximum sampling frequency of 13.88kHz. A sampling frequency of

140 kHz is being needed, so the FPGA isn’t qualified for the demodulation. The

pictures and possible solutions would be found in appendix E on the CD.

Conclusions and Recommendations - Complex Programmable Logic Device (CPLD)

 48

5 Conclusions and Recommendations
After the last months I could reply on two systems, which convert an analog value to

a digital value via the DAC of the ADDA16 module, store the values in a variable and

push them to the demodulator algorithm to calculate a valid output value. Afterwards

the calculated output value would be send to the DAC of the ADDA16 module and be

heard on a loudspeaker.

First the ADDA16 module was adapted to the DSP in this diploma thesis. Its signals

analyzed and implemented on an FPGA after that. So myself programmed a primitive

EMIF controller.

In a future work maybe the communication to the ADDA16 module could be further

optimized or a better algorithm for the demodulation could be developed and

implemented on the FPGA for example. The result of the FPGA could be more

efficient if a newer and so driven with a higher clock frequency. Maybe the

demodulation could be implemented complete in hardware but this is guesswork and

has to be evaluated for giving a qualified answer.

A printed daughtercard (i.e. with a layout program like EAGLE) for the FPGA or the

CPLD would increase the noise interferences.

49

A. Abbreviations
A/D Analog-to-Digital

ADC Analog-to-Digital converter

ADDA16 module D.Module.ADDA16 from DsignT

AM Amplitude Modulation

ASRAM asynchronous random access memory

BSB Base System Builder

BUSCLK bus clock

CD compact disc

CE3 chip enable 3 signal

CE3_CTRL chip enable 3 control register

CFG Configuration Register

CPLD Complex Programmable Logic Device

D/A Digital-to-Analog

DAC Digital-to-Analog converter

DSK DSP Starter Kit

DSP Digital Signal Processor

EA-Address internal identifier of TI

EMIF external memory interface

EXT_CLKIN external clock input

EXTCLKOUT external clock out signal

FS Sampling Frequency Register

fT carrier frequency

HAW University of applied sciences Hamburg

IF intermediate frequency

INTxCFG Configuration of interrupt x

IOBUF input output buffer

IOSEL Input Output SELect

IP intellectual property

IPIF Intellectual Property Interface

ISR Interrupt Service Routine

JPA Jumper for Address decoding

LDACCFG update configuration register for the DAC

50

LDE Left Digilent Expansion connector

LS Loud Speaker

LVTTL Low Voltage Transistor Transistor Logic

MHS Microprocessor Hardware Specification

MicroBlaze soft processor core

MPD Microprocessor Peripheral Definition

nIOSEL not IOSEL

nRD not Read

nWR not Write

OPB Local Memory Bus

OPB on chip peripheral bus

RF Radio Frequency

RISC reduced instruction set computing

RnW Read Not Write

sAM Amplitude modulated Signal

SAR Successive Approximation Converters

SDRAM synchronic data random access memory

sout out signal to Speaker

TI Texas Instruments

UCF User Constraint File

VHDL Very High Speed Integrated Circuit Hardware Description

Language

XPS XILINX Platform Studio

51

B. Bibliography
 [GK93] P.Gerdsen and P.Kröger, Digitale Signalverarbeitung in der

Nachrichtenübertragung, Springer-Verlag Berlin Heidelberg 1993

[KK02] K. D. Kammeyer and K. Kroschel, Digitale Signalverarbeitung,

B.G.Teubner, Stuttgart 11.2002, page 265

[HL04] E. Herther, W. Lörcher, Nachrichtentechnik, Hanser Verlag, München

Wien 2004, page 321 to 327

 [X1] Xilinx, MicroBlaze Processor Reference Guide for Embedded

Development Kit (EDK),

http://www.xilinx.com/ise/embedded/mb_ref_guide.pdf,

30.06.2007 16:32

[X2] EDK 8.2 MicroBlaze Tutorial in Spartan 3

ftp://www.xilinx.com/support/techsup/tutorials/EDK_82_MB_Tutorial.pdf

30.06.2007 16:37

[X3] opb_ipif page 3

http://www.xilinx.com/ipcenter/catalog/logicore/docs/opb_ipif.pdf

 01.07.2007 23:59

[X4] user_core_templates_ref_guide

http://japan.xilinx.com/ise/embedded/edk6_2docs/user_core_templates

_ref_guide.pdf

02.07.2007 14:31

[X5] OPB Interrupt Controller (v1.00c)

 http://www.xilinx.com/bvdocs/ipcenter/data_sheet/opb_intc.pdf

 02.07.2007 18:50

[X6] UCF File Specifications

 http://toolbox.xilinx.com/docsan/xilinx4/data/docs/cgd/entry7.html

 02.07.2007 20:20

 [XUP1] XUP Virtex-II Pro Development System,Hardware Reference Manual

 http://www.stanford.edu/class/ee108b/labs/ug069.pdf

 02.07.2007 19:15

[DST04] D.Module.ADDA16.pdf Version: Doc #1.0

[DST01] TMS320C6000 EMIF Calculator

 http://www.dsignt.de/support/tools/c6000emif.html

52

 01.07.2007 15:30

[SIG1] Classification of emissions and necessary bandwidths

 http://life.itu.int/radioclub/rr/ap01.htm

 03.07.2007 00:42

[TI190d] TMS320C6000 Peripherals Reference Guide

 SPRU190d.pdf, chapter 8 Expansion BUS and chapter 10 EMIF

[TI401f] TMS320C6000 Chip Support Library API User’s Guide

 SPRU401f.pdf, chapter 9 EMIF Modul

[TI67] TMS320C6713 FLOATING-POINT DIGITAL SIGNAL PROCESSOR

SPRS186B – DECEMBER 2001, page 1

53

Versicherung über die Selbstständigkeit

Hiermit versichere ich, dass ich die vorliegende Arbeit im Sinne der Prüfungsordnung

nach §25(4) ohne fremde Hilfe selbstständig verfasst habe und nur die angegebenen

Hilfsmittel benutzt habe.

Ort, Datum Unterschrift

