

Hochschule für Angewandte Wissenschaften Hamburg

Fakultät Life Sciences

Softwareentwickulng zur Erfassung, Verarbeitung und datenbankbasierter

Archivierung von Daten eines Ultraschallanemometers

Software development for gathering, processing and data bank storage of

data taken from a sonic Anemometer

Bachelorarbeit

im Verfahrenstechnik

vorgelegt von

Teodoro Abdo Duran

Matrikelnummer: 2042042

Hamburg

am 30. September 2014

Gutachter: Prof. Dr. Constantin Canavas (HAW Hamburg)

Gutachter: Dipl.-Ing. Ilja Knippschild (HAW Hamburg)

Abstract

This thesis describes the advantages of replacing a three cup anemometer and

wind vane for a sonic anemometer and focuses on the software development

needed to use the new sonic anemometer with the existing installations. As

development progresses, more and more features are added to the program. The

end result is a fully functioning program capable of reading the information,

processing it and using it to calculate the wind speed and direction among six

other measurements and save them in a MYSQL database with reliability. This

thesis was written entirely in English but uses some sources written in German.

Erklärung

Ich versichere hiermit, dass ich die vorliegende Bachelorarbeit mit dem im

Ausgabenantrag formuleirten Thema ohne fremde Hilfe sebstständig verfasst und

nur die angegebenen Quellen und Hilfsmittel benutzt habe. Wörtlich oder dem

Sinn nach aus anderen Werken entnommene Stellensind unter Angabe der

Quellen kenntlich gemacht.

Hamburg, den 30.09.2014 -------------------------------------

 Teodoro Abdo Duran

Vorwort

Die vorliegende Arbeit wurde in der Zeit vom Juli 2014 bis zum September 2014

am Labor für Automatisierungstechnik der Hochschule für Angewandte

Wissenschaften in Hamburg durchgeführt.

An dieser Stelle möchte ich mich herzlich bedanken, die die vorliegende Arbeit

ermöglicht haben:

Bei Herr Prof. Dr. Constantin Canavas möchte ich mich für seine Zeit, Geduld und

freundliche Unterstützung bedanken.

Bei Herr Dipl.-Ing. Ilja Knippschild für die Betreuung und fachliche Unterstützung.

Ein ganz besonderer Dank bei Herr Dipl. Ing. Peter Krüß für die Unterstützung im

Labor, die Hilfsbereitschaft und die immer freundliche Diskussionen.

Index

1. Introduction ... 1

1.1 Context .. 1

1.2 Scope of work ... 2

1.3 Thesis Structure ... 3

2. Theory ... 4

2.1 Physical principles ... 4

2.1.1 Fluid Mechanics .. 4

2.1.2 Ultrasound ... 6

2.1.3 Anemometer .. 6

2.2 Software principles .. 8

2.2.1 Database .. 8

2.2.2 Serial Programming ... 9

3. Measurement devices and Setup .. 10

3.1 Measurement devices .. 10

3.2 Setup ... 12

4. Basic Development ... 15

4.1 Reading ... 16

4.2 Converting .. 18

4.3 Processing ... 24

4.4 Save to database ... 25

5. Advanced Development ... 26

5.1 Reading ... 26

5.2 Converting .. 28

5.3 Processing ... 29

5.3.1 Total Velocity ... 29

5.3.2 Horizontal Wind Direction .. 29

5.3.3 Vertical wind direction ... 31

5.3.4 Time ... 31

5.3.5 Minimal and Maximal values .. 32

5.3.6 Mean value .. 33

5.4 Save to database ... 35

6 Testing .. 36

6.1 Wind test ... 36

6.2 Disconection ... 37

6.3 Power failure .. 38

6.4 String testing .. 38

7. Fine tuning ... 39

7.1 Reading ... 39

7.2 Converting .. 41

7.3 String Testing ... 42

7.4 Mysql error Proofing ... 44

8 Additional Features (out of scope) .. 45

8.1 Command line arguments ... 45

8.2 Run as deamon ... 47

8.3 Error logging .. 50

8.4 Device Configuration ... 51

9. Conclusion and Recommendations .. 52

10. Sources ... 54

11. Attachments ... 57

Figures and tables Index

Figure 1 Laminar flow and turbulent flow [1] .. 4

Figure 2 Change in flow based on the Reynolds number [2] 5

Figure 4 sound frequency ranges [3] ... 6

Figure 5 Schema of a 3 cup anemometer and sonic anemometer [4] [5] 7

Figure 6 difference between Field and Record [6] ... 8

Figure 7 Wind vane [7] .. 10

Figure 8 Three cup anemometer [8] .. 10

Figure 9 the USA-1 and its schematics [9] .. 11

Figure 10 Anemometer setup .. 13

Figure 11 2D and 3D vectors [11] [12] ... 24

Figure 12 Differences between atan and atan2 [13] .. 30

Figure 13 Fan used to simulate wind ... 36

Table 1 Cut from ASCII table ... 18

file:///C:/Users/Teodoro/Documents/Bachelor%20Arbeit%20v2.docx%23_Toc399839320
file:///C:/Users/Teodoro/Documents/Bachelor%20Arbeit%20v2.docx%23_Toc399839324
file:///C:/Users/Teodoro/Documents/Bachelor%20Arbeit%20v2.docx%23_Toc399839325

1

1. Introduction

1.1 Context

Before starting with “Software development for gathering, processing and data bank

storage of data taken from a sonic Anemometer” we have to understand the context of this

Thesis.

A weather station is a combination of instruments and equipment for measuring

atmospheric conditions to provide information for weather forecasts and to study the

climate changes. In the Faculty of Life Sciences on the Bergedorf Campus of the HAW

Hamburg there is a weather station in use. Right now, the meteorological parameters

being measured there are Temperature, Air Pressure, Global Radiation, amount of rainfall,

Wind Speed and wind direction.

It has come to the attention of the Staff working with the weather station that the

measurement of the wind speed and direction could be improved. Right now a three cup

anemometer is being used for the wind Speed measurements and a wind vane for the

wind direction. The problems with these devices are the speed at which they adapt to new

conditions and the accuracy of their readings. Furthermore, while the three cup

anemometer is a great device to measure the wind speed, it can only measure it in the

horizontal plane, meaning the vertical component of the wind force is lost, causing a loss

of precision.

To improve these readings, a sonic anemometer has been acquired, which should adapt

faster and provide more accurate readings as well as measure the missing vertical

component of the wind force. The goal is not to simply replace these machines but to

make a statistical comparison with the data gathered and improve the overall accuracy of

the weather station.

2

The sonic Anemometer has already been assembled and calibrated but it cannot be added

to the weather station yet for several reasons:

-It came with software used to configure it and read the data values it outputs,

unfortunately this program runs on windows while the weather stations infrastructure runs

on Linux.

-The sonic anemometer provides its data through a Serial communications port and the

data it outputs are only the X, Y and Z components of the wind force as well as the

temperature. This raw data needs to be processed in order to be useful.

-There is no way to save the data directly into the weather stations data bank to make a

statistical comparison.

1.2 Scope of work

The main goal of my work is to develop software capable of reading the output from the

sonic anemometer, process the raw data into useful information and save this data into the

weather stations data bank.

While this task sounds simple enough, there are several parameters and conditions that

need to be taken into account:

 The software needs to be programmed in the “C” Programming language.

 It needs to be capable of opening and reading from the serial communications port.

 It needs to take into account possible errors.

 It needs to be able to accept data bank and configuration changes.

 It needs to be well documented and keep an error log.

After creating the software several tests will have to be made to ensure the working

conditions of the program.

3

1.3 Thesis Structure

I have written this thesis in a specific order so that is easy to follow and understand as it

progresses. First it begins with a little background knowledge that any reader would need

in order to fully understand the concepts that follow. Then I will present the equipment I will

be using during this project so that the work could be easily reproduced. I will quickly

describe how was it all set up and all the preparations needed to begin with the project.

I start the basic development by doing a “proof of concept”, this means I did everything I

could to get the most basic functions of the program to work just to see if the project was

at all possible. After successfully confirming its feasibility, I started to fully develop the main

functions of the program in the advanced development section.

With the program in working conditions I then proceeded to test it under real world

conditions to ensure its reliability. The tests showed areas where the program could be

improved, which I address later in the “Fine tuning” section. With the main functions fully

developed and improved reliability, I started the development of additional features, which

are not essential for the core functions of the program but are very useful to have.

Finally I describe the final product with the help of a flowchart and write my conclusion,

thoughts and future recommendations for the future development of the project.

4

2. Theory

To be able to understand and follow everything that will be discussed next, I will give a

quick overview of the things we need to know to have a basic understanding of the

problems ahead.

2.1 Physical principles

2.1.1 Fluid Mechanics

Fluid mechanics is the study of the physical behavior of fluids. It is also important in

theoretical engineering, it finds its foundations in continuum mechanics, that of classical

physics.

The turbulent flow is described as the movement of fluids in a chaotic fashion. This flow

pattern is mostly a three-dimensional flow field with a time and space seemingly randomly

varying component. In Fig.1 there is an illustration of what the turbulent flow looks like (b).

The opposite is the laminar flow (a).

Figure 1 Laminar flow and turbulent flow [1]

5

Turbulence leads to increased mixing. The Reynolds number is a parameter without

dimension. The turbulent behavior of geometrically similar bodies with the same Reynolds

number is identical. This property allows, for example, realistic model tests in a wind tunnel

or water channel. As shown in Fig.2 flows at Reynolds numbers larger than 4000 are

typically turbulent, while those at low Reynolds numbers usually remain laminar.

The Reynolds number is defined as:

The density of air at 20 °C at sea level is around 1,2041 kg/m³. Given that the viscosity of

air is extremely small and the characteristic linear dimension of the outside world would be

huge, it can be assumed that the flow of wind will be turbulent by almost any speed.

Density of the fluid (kg/m³)

Mean velocity of the fluid (m/s)

Characteristic linear dimension (m)

Dynamic viscosity of the fluid (kg/(m·s))

Figure 2 Change in flow based on the Reynolds number [2]

6

2.1.2 Ultrasound

Ultrasound refers to sound with frequencies above the audible frequency range of people.

The audible range of hearing varies from person to person but "the full range of human

hearing extends from 20 to 20,000 hertz."[14]. Ultrasound covers frequencies from about

20 kHz and up. In contrast frequencies below the audible frequency range of people is

called infrasound. This is better represented in Fig.4.

Figure 2 sound frequency ranges [3]

In gases and liquids ultrasound propagates predominantly as a longitudinal wave. The

higher the frequency of the waves, the higher the acoustic impedance of air.

2.1.3 Anemometer

The anemometer is an instrument for measuring the wind speed. Anemometers are used

not only in weather stations, but in mines, tunnels, and ventilation systems.

Of all anemometers, the three cup anemometer is the most widely used. It’s built with

three metal cups attached to the ends of horizontal shafts mounted on a vertical axle.

Wind inside the cups causes them to rotate. This rotation can be measured to calculate

the wind speed in meters per second. It is common for an anemometer to be connected to

an electrical generator to get more precise measurements, given that the amount of

current produced by the generator would vary depending on the wind speed.

7

Figure 3 Schema of a 3 cup anemometer and sonic anemometer [4] [5]

Sonic anemometers use Ultrasound waves to measure the wind speed. The ultrasound

waves are measured within a fixed distance so that the speed and time it takes the wave

to travel will be only dependent of the air in which they propagate. High frequencies are

used for short distances so that speed can be determined with more precision. Since the

speed of sound depends on the temperature and the humidity, measurements are always

determined after the wave travels both directions. From the difference the virtual

temperature can be calculated. In Fig.5 the difference in structure between the 3-cup

anemometer and the sonic anemometer.

A sonic anemometer usually has several measuring distances between ultrasonic

transmitters and receivers. Alternating the wave source, the speed of sound can be

measured in different spatial directions. Advantages of the sonic anemometer are the

higher accuracy, the lack of inertia in the system and the possibility of additional detection

of the vertical wind component.

8

2.2 Software principles

2.2.1 Database

A database is a system for electronic data management. The essential task of a database

is to provide large amounts of data efficiently, consistently and permanently store it in

different forms to suit the demands of users and application programs.

A database system consists of two parts, the management software and the actual

database with all the stored information.

The management software is called database management system (DBMS). The one

used here is MYSQL. It organizes internal storage of data and controls all read and write

accesses to the database. To query and manage data, MYSQL provides a database

language to interact with the database. A database can be thought of as an electronic filing

system.

Figure 4 difference between Field and Record [6]

Traditional databases use tables which are organized by fields and records. A field is a

column which has a single piece of information and a record is a row with one complete

set of fields as shown on Fig. 6

9

2.2.2 Serial Programming

In order to communicate with serial connections, many settings like baud rate, stop bits,

parity and data bits are required.

Baud rate

The speed in serial ports is measured in bauds or baud rate. It is often confused with

bitrate, which indicates the amount of data transferred per time unit in bits per second. The

baud rate is the number of “symbols” per time unit.

Common bit rates include 75, 110, 300, 1200, 2400, 4800, 9600, 19200, 38400, 57600

and 115200 bit/s. [15]

Data bits

The number of data bits can vary between 5,6,7,8 and 9 for each character, but 8 data bits

are almost always used as it corresponds to the size of a byte.

Parity

Parity is a way to prevent errors in the data transfer. It ensures the sum of the “1” bits

comes always either odd or even. If the sum is not as expected, it means the data was

corrupted.

Stop bits

Stop bits are sent at the end of every character to easily detect the end of a character.

Normally one stop bit is used.

10

3. Measurement devices and Setup

3.1 Measurement devices

Localy available sensors

In Fig.7 and Fig.8 are the sensors that are now in use by the weather station.

Windrichtung

Sensor: opto-electronic scanning, 6 bit Gray-

code, axis heating below 4 ° C

Manufacturer: Vaisala (Finnland)

Type: WAV 151

Resolution: 5,6°

Accuracy: 5,6°

Windgeschwindigkeit

Sensor: Three wings cup anemometer, digital

sampling (14 pulses / revolution)

Manufacturer: Vaisala (Finnland)

Range: 0...75 m/s; axis heating below 4 ° C

Figure 5 Wind vane [7]

Figure 6 Three cup anemometer [8]

11

New Sonic Anemometer

Sensor: Sonic anemometer, digital sampling 10Hz

Manufacturer: Metek (Meteorologische Messtechnik GmbH)

Range: -50…+50 m/s; -30 ° C…+50 ° C

For a more detailed view of all technical data regarding the Sonic anemometer, see

Atachments

Figure 7 the USA-1 and its schematics [9]

12

3.2 Setup

The Sonic anemometer was first mounted inside the laboratory to facilitate its

configuration. In Fig.9 can be seen, the Sensor (1) and the electronics box (2) were

mounted on a big metal rod that is strongly held by zip ties attached to the table and a bit

of wood at the bottom as not to damage the floor (4). The device takes only DC power, so

it was attached to a 24V DC power converter (3). The serial communications port is

connected to the computer where the development will take place (5).

13

Figure 8 Anemometer setup

14

To begin with the project a computer was provided to install a Linux version similar to the

one the weather station uses. The weather stations own environment can’t be used as it is

in Production, a test environment is always needed for development, assuring no damage

or downtime can affect the main Server during the development phase.

After the Linux installation an IDE was needed. The IDE eclipse was strongly

recommended to be used as it was the one used for the WS. A special version dedicated

to “C” development was downloaded and installed.

A MYSQL data bank server and client had to be installed on the same machine as well to

assure functionality and make testing easier and cleaner

OS: Ubuntu 14.04.1 LTS

IDE: Eclipse IDE for C/C++ Developers

Databank: MYSQL

15

4. Basic Development

No program can be made perfect on the first try, how a program looks at the beginning is

nothing like what it looks like at the end. For this reason it will not be attempted to program

perfection from the beginning but just a “Proof of concept”, just to try to make it work.

This is the hardest part as it involves a lot of reading and research as well as trying out

many different codes.

For the basic development four milestones were set:

- Being able to read from the Serial Communications Port.

- Transform the values from X and Y into numbers.

- Use X and Y to calculate the horizontal wind speed.

- Save the wind speed value into the MYSQL data bank.

At this point, Understanding how everything works is not as important as making it work.

16

4.1 Reading

Goal: Being able to read from the Serial Communications Port.

To be able to read from the Serial communications device the port has to be opened first.

This can be accomplished though the following command:

tty_fd=open("/dev/ttyS0", O_RDWR| O_NONBLOCK);

The main command here is the function open() in which is specified which file (or in this

case device) it wants to read the data from and the attributes we want it to have.

In this case “/dev/ttyS0” is the name of the Serial communications device, “O_RDWR|

O_NONBLOCK” are the attributes. What exactly this attributes do, can be found on the

“C++ von A bis Z” [17]

Now that the port is open, the program needs to read the information being sent. For that

the read() function will be used:

read(tty_fd,&c,1)

Where “&c” is the address of the variable “c” which will be used as buffer and is where the

characters read from the device will be saved, the “1” is the number of characters that will

be read from the device at a time and “tty_td” is again the variable for the device.

Finally this read function will be placed in an infinite loop, so the program can read not only

one character but all the information sent by the device.

To be able to see the information being read the printf() function is used.

17

Result:

00

Reading Failure!

The device sends information only once every 10 seconds while the program reads the

information many times per second. This means the printf() function will write the standard

value “0” many times before the device has the chance to send information. This is what

caused the first attempt to fail.

To address this issue the read command was modified:

if (read(tty_fd,&c,1)>0)

{

 printf("%c",c);

}

The “read()” function returns the number of bytes read. If there is nothing to read 0 is

returned, on error it returns -1.

Setting if (read()>0) ensures the function printf() will only run when information is

successfully read from the device

Result:

M:x = 11 y = -9 z = -7 t = 2412

M:x = 11 y = -9 z = -7 t = 2409

M:x = 11 y = -10 z = -6 t = 2407

Reading Success!

18

Now the format in which the information is delivered is known. Every line is sent every 10

seconds.

The reading milestone was reached.

4.2 Converting

Goal: Transform the values from X and Y into numbers.

Information the program gets from the reading program is a stream of characters, for

example:

M:x = 16 y = -9 z = -7 t = 2412

The program will now try to extract the value “16” that corresponds to the variable x.

The problem is that it doesn’t have the number 16 but the character “1” followed by the

character “6”.

Table 1 Cut from ASCII table [14]

19

As seen on tab.1 the character “1” would actually have a decimal value of 49. It also has

to take into consideration that the “empty space” is actually a character as well.

X-=----16

To extract only the character that needs to be transformed into numbers, the program

could look for the variable “x” in the stream, skip the next six characters and save the next

two characters into a variable or array of its choosing.

Which brings out the second problem, The length of the number is not known. From the

Sonic Anemometer's User Manual it can be learnt that the value range from x, y and z lies

between 5000 cm/s to -5000 cm/s

This means that the length of the relevant characters needed can vary between 1 and 5

including the “-” character of the negative numbers

First of all the program will start by finding the character x in our stream. This is easily

accomplished by the following command:

if (c=='x')

Where “c” is the variable where the reading program saves the characters.

As the length of the number is not known, the program needs to skip any characters that

aren't “0-9” or the character “-”.

while (c<45 || c>58)

{

 read(tty_fd,&c,1);

}

As seen on tab.1 the decimal values of “0-9” or the character “-” are all in between 45 and

58. This is why this loop was set to run while the values of “c” are either less than 45 or

20

bigger than 58. This loop will run until the read() function returns a value of between 45

and 58. The values 46 and 47 weren’t excluded as the characters “.” and “/” don't appear

anywhere on the stream.

Next it will find out if it’s a negative number with the following code:

minus= 1;

if (c == 45)

{

 minus=-1;

 read(tty_fd,&c,1);

}

First it will set the variable “minus” to have a value of “1”. If the decimal value of the first

character is 45, it means it’s a negative number, then it will make one more read to get the

next character.

Now it is going to start reading the numbers and we need to start converting them and

saving them into an array.

while (c>=48 && c<=58)

{

 i = c-48;

 Numbers[counter]=i;

 read(tty_fd,&c,1);

 counter++;

}

This function will only run as long as it gets decimal values between 48 and 58 which

corresponds only to the numbers “0-9”. After a lot of research was concluded that the

easiest way to convert the characters into numbers was to simply subtract 48 from their

decimal value.

21

Example:

character “0” decimal value 48 48 – 48 = 0

character “5” decimal value 53 53 – 48 = 5

character “9” decimal value 58 58 – 48 = 9

The new numeric value will be saved on the variable “i” and into the Numbers[] array. The

variable counter not only helps to save the values in different places of the array, it also

tells how long the number is.

It has now converted the characters into numbers but they are still separate numbers and

because the characters are read from left to right the formula to add them together varies

depending on the length of the original number.

switch(counter)

{

case 1:

 Final = minus*Numbers[0];

 break;

case 2:

 Final = minus*(Numbers[0]*10+Numbers[1]);

 break;

case 3:

 Final = minus*(Numbers[0]*100+Numbers[1]*10+Numbers[2]);

 break;

case 4:

 Final = minus*(Numbers[0]*1000+Numbers[1]*100+Numbers[2]*10+Numbers[3]);

 break;

default:

 break;

}

As stated before, the variable counter tells the length of the original number. In case the

length of the original number is “1”, the final number is the first number on the array

(Numbers[0]) times the “minus” variable which can only take the values “1” or “-1”. In case

22

the length is “2”, “3” or “4” the different formulas would have to be applied respectively.

It can’t be forgotten to reset the counter and the array at the end.

memset(Numbers, 0,4);

counter =0;

The function memset() is ideal to reset an array. The first parameter is the array to reset,

the second is the value to write into the array and the third one specifies how many are to

be written.

Now to see if the conversion worked with the printf() function.

printf("Converted X = %d, ",Final);

Result:

M:xConverted X = 13, y = -2, z = -2 t = 2462

M:xConverted X = 14, y = -1, z = -1 t = 2462

M:xConverted X = 13, y = -4, z = -7 t = 2458

It really is difficult to see any difference between the characters and the real numbers. The

only difference is that real numbers can be used for mathematical operations. So to test if

the conversion really worked the following lined were added:

x = Final + 23 ;

printf("Sum = %d, ",x);

23

Result:

M:xConverted X = 17, Sum = 40, y = -2, z = -2 t = 2462

M:xConverted X = 18, Sum = 41, y = -1, z = -1 t = 2462

M:xConverted X = 18, Sum = 41, y = -4, z = -7 t = 2458

A basic addition was added, just added 23 to the final number and it can be clearly seen

that it worked. Now the code has to be copied and applied to “y”.

Result:

M:xConverted X = 6, Sum = 29, yConverted Y = -13, Sum = 10, z = -8 t = 2425

M:xConverted X = 6, Sum = 29, yConverted Y = -12, Sum = 11, z = -10 t = 2427

M:xConverted X = 4, Sum = 27, yConverted Y = -13, Sum = 10, z = -12 t = 2432

Reading Success!

The converting milestone was reached. The test to see if it worked will be removed from

the code as the original values are needed to begin the next step.

24

4.3 Processing

Goal: Use X and Y to calculate the horizontal wind speed.

To be able to use mathematical functions, a new library has to be added to the repository.

#include <math.h>

Figure 9 2D and 3D vectors [11] [12]

To calculate the Horizontal velocity the values from X and Y are needed. As X and Y stand

in a right angle to one another, the Pythagorean Theorem needs to be applied.

hv = sqrt(x*x+y*y);

25

Result:

M:xConverted X = 11, yConverted Y = -13, hv = 17.029387

M:xConverted X = 12, yConverted Y = -12, hv = 16.970562

M:xConverted X = 15, yConverted Y = -11, hv = 18.601076

The processing milestone was reached.

4.4 Save to database

The database that will be used to store the information is a MYSQL database.

#include <mysql/mysql.h>

First initialized a MYSQL object.

MYSQL *con = mysql_init(NULL);

Using the Address, username, password and database name used to create the database,

a connection to the database was established.

mysql_real_connect(con, "localhost", "root", "Ultraschall1","Wind", 0, NULL, 0);

The function mysql_query() can only accept two arguments, the MYSQL object and a

string. As the string used had too many arguments to procces, sprint() was used to save

the arguments into the string “query”. In this case “WindTable” is the name that the table

where we store the data within the database was given.

sprintf(query,"INSERT INTO WindTable (X,Y,Hv) VALUES(%d,%d,%f)",x,y,hv);

mysql_query(con,query)

26

At the end the connection can be closed again using:

mysql_close(con);

The database milestone was reached.

With the four milestones reached the proof of concept was a success. Now the full

development of the program can begin.

5. Advanced Development

Now that the basic development proved the project to be possible, it is the time to improve

upon it and write a complete and reliable program. For this, every bit of code has to be

100% understood.

As the Program grows in size, it becomes more difficult to understand and edit. This is why

functions will be used whenever possible from now on.

5.1 Reading

On chapter 4.1 it was proved that the program can get information from the serial port by

using a non-blocking read() function that retrieves one character at a time and putting it in

an endless loop. That approach was fine for a proof of concept program, but putting non-

blocking function in an endless loop would saturate any processor no matter how fast it is.

Having a faster computer would only mean the loop would run more times per second but

the processor would still get saturated. This is why the way data was being read had to

edited and for this a “termios structure” found within the termios.h library was used.

#include <termios.h>

struct termios stdio;

27

Within the termios structure what is important to the program are mainly the “VMIN” and

“VTIME” attributes. As can be seen on the termios man page[19] giving VMIN and VTIME

a value would result in a blocking signal which would keep reading until the VMIN number

of characters is reached or until the VTIME number in tenths of seconds between

characters has passed.

stdio.c_cc[VMIN]=50;

stdio.c_cc[VTIME]=5;

From Capter 4 was learned that the string received always is 43 characters long. VMIN

was set to 50 so the deciding factor between reads would be the VTIME which was set to

0.5 seconds.

With these attributes set, the “O_NONBLOCK” option was removed. If it is not removed,

the VMIN and VTIME attributes will be ignored.

tty=open("/dev/ttyS0", O_RDWR); //| O_NONBLOCK

The Baud speed was set at 9600 baud to match the settings of the device.

cfsetospeed(&stdio,B9600);

cfsetispeed(&stdio,B9600);

The tcsetattr() function was used to update the communications with the “tty” device with

the settings written in the “stdio” termios structure.

 tcsetattr(tty,TCSANOW,&stdio);

Finally the read() function was used again, but this time “M” is a character array capable of

storing all 43 characters at once and the maximum characters allowed to return were

changed from 1 to 50.

Char N[50];

read(tty,N,50);

28

5.2 Converting

Given that the information the program gets from the read() function are no longer single

characters but a whole string with 43 characters, it is now much easier to convert the

numbers stored within.

The parts of the string where the values are were copied and stored into different strings

with the memcpy() function.

 memcpy(Xstring, &N[6], 5);

 memcpy(Ystring, &N[16], 5);

 memcpy(Zstring, &N[26], 5);

 memcpy(Tstring, &N[36], 5);

Where the first argument is the new string, the second argument is the place in the original

string where we will start to copy and the third argument is the number of characters that

will be copied.

The character “/0” was added at the end to indicate it is a string and not just an array of

characters.

 Xstring[5] = '\0';

 Ystring[5] = '\0';

 Zstring[5] = '\0';

 Tstring[5] = '\0';

Finally the atoi() function was used to transform the strings into integers.

 x = atoi(Xstring);

 y = atoi(Ystring);

 z = atoi(Zstring);

 t = atoi(Tstring);

29

5.3 Processing

Besides the horizontal velocity we calculated in Chapter 4, the program also need to

calculate the total velocity, the horizontal wind direction and vertical wind direction

5.3.1 Total Velocity

The total velocity can be calculated just like the horizontal velocity using Pythagoras

theorem. This is because the Z component is at a right angle with the horizontal velocity

tv = sqrt(x*x+y*y+z*z);

5.3.2 Horizontal Wind Direction

The horizontal wind direccion can be obtained using the inverse tangent function of the

components X and Y. I used the atan2() function instead of atan() because atan() can only

process one value, making it imposible to determine wich quadrant came the wind from.

Example:

X and -Y would yield the same result as -X and Y

X and Y would yield the same result as -X and –Y

Apart from being able to give both X and Y as attributes, atan2() also sets the X coordinate

as “0”. This is convenient given that our device marks the X coordinate as “North”

30

Figure 10 Differences between atan and atan2 [13]

The results yielded by atan2() are given in radians, which is why PI was defined and

converted it to degrees.

#define PI 3.14159265

hd = atan2(x,y)* 180 / PI;

As seen in Fig.12 atan2() doesn’t deliver angles from 0 to 360 but angles from 0 to 180

and from 0 to -180 degrees. This can be easily fixed as shown below.

if (hd < 0) hd= hd + 360;

If hd is a negative number, 360 is added to its value.

31

5.3.3 Vertical wind direction

To calculate the vertical wind direction the atan2() was used function again, but this time

using Z and the horizontal velocity. As the value of the horizontal velocity will never be

negative, the result will always be in the 0 to 180 range. For this reason a value of 90 was

substracted, so the new range will vary between -90 and 90 degrees with 0 being the

horizontal.

zd = ((atan2(hv,z)* 180 / PI)-90)*(-1);

5.3.4 Time

For a better statistical analysis I was asked to get the mean values of all the data I gather.

This also helps not to flood the database with useless information. The intervals in which

the data has to be gathered are every minute and every ten minutes. I was also asked to

get the Minimal and Maximal values for the horizontal velocity and the total velocity within

these intervals in time.

For this endeavor the program has now to be able to track time.

#include <time.h>

I created a function to help me get the actual time and set the timer for the one minute and

the ten minutes mark.

unsigned long GetTime()

{

 time_t rawtime;

 rawtime = time(NULL);

 if (OneMinTime == 0) OneMinTime = rawtime;

 if (TenMinTime == 0) TenMinTime = rawtime;

 return(rawtime);

}

32

The function creates a “time_t” object “rawtime”, gets the UNIX time[20] and stores it into

“rawtime”. This function returns “rawtime” as an unsigned long. If it is the first time this

function has been called it will store “rawtime” into the “OneMinTime” and “TenMinTime”

variables.

I store the return value of GetTime() into the variable “timer” and then set a condition that

will only run when the actual time “timer” minus the time that was stored when the function

ran for the first time “OneMinTime” is equal or more than 60 seconds.

Timer = GetTime();

if (timer - OneMinTime >= 60)

The same was done for the “TenMinTime” variable with 600 seconds.

5.3.5 Minimal and Maximal values

For the minimal and maximal values I created another function. This function will first

check if the value of “hV_minOne” equals -1. In this case, all the minimal and maximal

values of “hv” and “tv” will be replaced with the actual values of “hv” and “tv” respectively.

if (hv_minOne == -1)

{

 hv_minOne = hv;

 hv_maxOne = hv;

 tv_minOne = tv;

 tv_maxOne = tv;

}

It is imposible for the horizontal velocity to have a negative value on its own. I set it to -1 so

I can reset the minimal and maximal values after each minute.

33

After the function sees if the values have to be reset, it proceeds to check if the actual

values are bigger than the Maximal or smaller than the minimal and replace them

accordingly.

if (hv < hv_minOne) hv_minOne = hv;

if (hv > hv_maxOne) hv_maxOne = hv;

if (tv < tv_minOne) tv_minOne = tv;

if (tv > tv_maxOne) tv_maxOne = tv;

5.3.6 Mean value

For the mean value I decided it would be easier to get the mean values of the raw data

and then calculate the rest using those mean values. I decided to do things this way as it

would be very difficult to get the mean value of the wind direction.

Example:

0 and 360 represent the same direction and the mean value 180 represents the opposite.

Normaly the program would get the same number of data strings every minute, but if for

some reason it gets less or more than expected, the data would get corrupted. For this

reason I created an array to store the sum of the raw data and set a counter to measure

how many times the data was added.

SumdataOne [0] += xRaw;

SumdataOne [1] += yRaw;

SumdataOne [2] += zRaw;

SumdataOne [3] += tRaw;

CounterOne++;

34

Once the time is up, the mean is calculated by just dividing the sum of the gathered data

by the counter

xOne = SumdataOne [0] / CounterOne ;

yOne = SumdataOne [1] / CounterOne ;

zOne = SumdataOne [2] / CounterOne ;

tOne = SumdataOne [3] / CounterOne ;

Finally it is very important to reset the counter, “hv_minOne” value and the timer

CounterOne = 0;

hv_minOne = -1;

OneMinTime = timer;

35

5.4 Save to database

I was asked to create two different tables for the one minute data “1minTable” and for the

ten minutes data “10minTable”. The script used to create these tables can be found in

Atachment. This new tables now have to store twelve different figures, not only the three it

had in Chapter 4

To differentiate between the one minute and ten minutes data, I added a simple argument

“int a” to some of my functions. If “a” equals 1 the functions follow the parameters needed

for the one minute data. If it’s anything else it follows the parameters needed for the ten

minute data.

if (a==1)

{

sprintf(query,"INSERT INTO 1minTable

(X,Y,Z,Hv,Tv,Hd,Zd,Hv_min,Hv_max,Tv_min,Tv_max,Temp)"

"VALUES(%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f)"

,xOne,yOne,zOne,hv,tv,hd,zd,hv_minOne,hv_maxOne,tv_minOne,tv_maxOne,tOne);

}

else{…}

With this, the Main function the program is done.

36

6 Testing

Now that the main functions of the program have been completed, is now time to start

testing it. The program might work under ideal conditions but in the real world, conditions

are never ideal. Now is the time to think about everything that can go wrong and make it

happen, or at least try to simulate it.

6.1 Wind test

Now it’s time to test if the program really works as intended. For this I’m going to use a fan

to simulate outside wind conditions. Sadly the only fans available at first were small

computer fans, which were useless as the fan has to be big enough reach all three

sensors in the anemometer to accurately represent wind. Later I was allowed to bring in a

bigger fan to help with the testing.

Figure 11 Fan used to simulate wind

Test:

Set the fan at different angles to see if all values are represented accurately.

Result:

The raw values X, Y, Z, T were as expected as they weren’t modified by the program.

All other values worked just as it was intended.

37

Observations:

Even though everything worked as intended, it was pointed out to me that when talking

about wind “wind direction” refers to the direction the wind is coming from and not where it

is going. Because of this the following functions were changed:

From: hd = atan2(x,y)* 180 / PI; To: hd = atan2(-y,-x)* 180 / PI;

From: zd = ((atan2(hv,z)* 180 / PI)-90)*(-1); To: zd = ((atan2(hv,z)* 180 / PI)-90);

After these changes, the program showed the correct wind direction.

6.2 Disconection

In the real world the serial cable could get cut, damaged or simply disconnected.

Test:

Disconnect and Connect serial cable multiple times.

Result:

When the cable was disconnected, the program stopped until the cable was connected

again. It read the data correctly as if nothing had happened.

Observations:

While it’s true it appeared to work perfectly, the fact is the program stops completely until

the cable gets connected again. This means the program cannot log errors or warn

anyone that a problem has occurred.

38

6.3 Power failure

In the real world a power failure is always a possibility. While a complete power failure

would obviously turn off the computer and the program with it, it is possible in some cases

that only the anemometer would be the one who loses power.

Test:

Turn the device off and on multiple times.

Result:

Same as before, the program stopped until the device was turned on again. The program

failed converting the first string but then proceeded to process the rest correctly.

Observations:

When its turn on, the Anemometer sends a string with its name and other kind of

information.

6.4 String testing

As it was just observed, we might sometimes get strings of different length and content. To

simulate this I used the fgets() function to save whatever I write on the console into the

same array our devices uses and overwrite it before converting it.

fgets (N, 80, stdin);

Tests:

- Write a string shorter than 43 characters

- Write a string longer than 43 characters

- Write a string exactly 43 characters long but with different content

Result:

In all cases the program failed without clearly reporting what went wrong and sometimes

crashing completely.

39

Observations:

Testing the length and quality of the string before trying to use it would be useful.

7. Fine tuning

The testing showed there is definitely room for improvement. Some details need to be

polished to make the program more reliable and harder to crash. The “errno.h” library was

added to help identify different kinds of errors.

#include <errno.h>

7.1 Reading

Reading had to be revisited. It worked well but it would be a lot better if the program

wouldn’t stop completely until it gets the next signal. For this I revisited the options

available for VMIN and VTIME.

stdio.c_cc[VMIN]=0;

stdio.c_cc[VTIME]=50;

Setting VMIN to 0 changes the way VTIME behaves. It is no longer the time it waits

between characters, it is now a timer. If 5 seconds pass since the time it tried to read but

no information comes, the timer expires and ends the read() function with a return value of

0.

40

The only unexpected development is that the string is no longer read as a whole but as

five bursts of 8 characters and a final burst of 3 characters. A condition was added to keep

the loop going until the string reaches a length of 43.

if (strlen(N) >= 43)

If the read() function returns a value bigger than 0, it means something was read and

successfully saved into the “M” array. The return value of read() is now saved under the “s”

variable.

The function strcat () is used to take the 8 character string “M” and add it to the end on “N”

until “N” reaches a size of 43.

s = read(tty,M,100);

if (s>0) {

 strcat (N,M);

 if (flag3==1)

 {

 printf ("Connection regained at: %s\r\n", Timestr);

 }

 flag3=0;

} else if (s==0) {

 if (flag3==0) {

 printf("\r\nTimeout! Read exceeded 5 seconds!\r\ ");

 printf ("Connection lost at: %s\r\n", Timestr);

 }

 flag3=1;

}

If the timeout expires and read() returns 0, a message explaining the error and the time

the connection was lost are displayed. The variable “flag3” is simply used so the program

doesn’t spam the same error message every five seconds if the cable is disconnected. It

also helps to mark the time when the connection was regained.

If an error occurs in the read() function, the value returned will be -1. If this happens there

41

is no point trying to keep the program running, the program will just simply print out the

error with the help of “errno” and exit.

else

{

 printf("Error with read(): %s\r\n", strerror(errno));

 exit(0);

}

7.2 Converting

While there was no problem in the way the program was converting the string into

integers, but it was pointed out to me that it could be done a bit more elegantly using the

function sscanf(). With it, I was able to directly extract all four integer values from the

string at once.

sscanf(N, "M:x =%d y =%d z =%d t =%d ", &xRaw, &yRaw, &zRaw, &tRaw);

42

7.3 String Testing

To test the string I created two functions, one to test the string length and another to test

the string quality. Both functions would return an integer value of one if successful and a

value of 0 if the test failed.

The length function would take the “N” string and only return successful if the string had a

length of 43.

int LengthTest(char *N)

{

 if (strlen(N)==43)

 {

 printf("String length Correct");

 return(1);

 }

 else

 {

 printf("String is too long");

 return(0);

 }

}

The string can only be either correct or too long given that the read() function will continue

until the string “N” reaches a length of at least 43 characters.

43

For the quality test the program has to make sure that the string is not corrupted or

damaged in any way. It is known exactly how a correct string looks like, this is why the

program can simply look for characters in places where it knows they are going to be.

int QualityTest(char *N)

{

 if (N[0] == 'M' && N[2] == 'x' && N[12] == 'y' && N[22] == 'z' && N[32] == 't')

 {

 printf("Stringstatus: OK\r\n");

 return(1);

 }

 else

 {

 printf("Stringstatus: Damaged\r\n");

 return(0);

 }

}

In this test, the function looks for “M”, “x”, “y”, “z” and “t” at the correct places in the “N”

string and it only returns a value of 1 if all of them are correct.

Both test functions are called and their return value stored into q1 and q2.

q1=LengthTest(N);

q2=QualityTest(N);

44

In case the tests were successful and q1 and q2 are equal to 1, the rest of the code is

allowed to run.

if (q1 == 1 && q2 == 1)

{

 …

}

else

{

 sleep(1);

 s = read(tty,N,200);

}

Otherwise the program will wait for one second allowing any incomplete parts of the string

to arrive and then proceeds to read up to 200 characters form the serial communications

buffer and delete them allowing the program to resynchronize itself with the new incoming

strings.

7.4 Mysql error Proofing

There is a lot that can go wrong while trying to connect to the database. Thankfully

MYSQL has its own error reporting function mysql_error().

Any error with the database is considered a critical error as it makes no sense to continue

if the connection with the database cannot be stablished. I made a simple function that just

prints the error, closes the connection and exits the program.

void finish_with_error(MYSQL *con)

{

 printf("%s\n", mysql_error(con));

 mysql_close(con);

 exit(0);

}

45

8 Additional Features (out of scope)

While the main function of the program has been improved, tested and protected against

most errors, there are still many ways in which the program could still be improved. These

features were not part of the original assessment of the program but it is always the case

that new ideas and indispensable features are discovered during development.

8.1 Command line arguments

It would be very useful if the program was able to use command line arguments in case

another serial port or another database needs to be used, without the need no rewrite or

recompile the program.

First the main function needs to be able to read command line arguments.

int main(int argc,char** argv)

Then the program needs a new library to be able to process these arguments.

#include <getopt.h>

The function getopt() needs to be in a loop as it processes all the arguments one by one

and stores them into the variable “c”

while ((c = getopt (argc, argv, "Dd:n:h:u:p:L:")) != -1)

The function getopt() will search for the letters "Dd:n:h:u:p:L:" and return “-1” when there

are no more arguments left. In the case of “D” getopt() will just search for the letter, but if

the letter is followed by “:” it means that after the letter a string is expected and it will be

saved under the string “optarg”.

46

A switch case for “c” is needed to separate each of the possible arguments.

switch (c)

{

case 'D':

 Dflag = 1;

 break;

 case 'd':

 dvalue = optarg;

 m1 = 1;

 break;

 …

 …

In the case of “D” the program just sets a flag to mark if “D” was written or not but in the

case of “d:” the string gets saved into “dvalue”. I also set a flag “m1” on the fields I deemed

mandatory to start the program.

If getopt() retrieves an argument that wasn’t expected, the “?” case gets called.

case '?':

 if (optopt == 'd' || optopt == 'n' || optopt == 'h' || optopt == 'u'

 || optopt == 'p' || optopt == 'L')

 printf ("Option -%c requires an argument.\n", optopt);

 else if (isprint(optopt))

 printf ("Unknown option `-%c'.\n", optopt);

 else

 printf ("Unknown option character `\\x%x'.\n",optopt);

 break;

If optopt has one of the letters that were expected it means the correct letter was written

but without a string afterwards. If optopt is none of the expected letters, the program tests

if its one of the standard printable letters with isprint(). If it is, it just prints the letter out but

if it is one of the non-standard letters like the german letter “ä” for example, it prints out the

character code.

47

The program was set to show all argument options if no arguments or incomplete

arguments were given. The program would then check for all mandatory fields and if one

was missing, the program would just exit.

if (m1 != 1 || m2 != 1 || m3 != 1 || m4 != 1 || m5 != 1)

{

 printf ("****Please fill in all mandatory fields****\r\n");

 exit(0);

}

8.2 Run as deamon

It would be best if the program could just run in the background without the need of any

interaction whatsoever. This means running as a service or in linux is more commonly

known as “deamon”.

To make a program run as deamon is a little complicated, first the program has to use

fork(), which creates another process. This new process is known as a child process and

runs at the same time as the original process. The only difference between them is the

process ID. The child process has a process ID of 0.

First I created two “pid_t” objects. One for the process ID and another for the new session

ID.

pid_t pid //Our process and Session ID

pid_t sid;

48

The program runs fork() and stores its process ID on the “pid_t” object “pid”. At this point

in time there are two processes running the same code in the program at the same time.

pid = fork();

In case “sid” had a value of “-1”, it means the fork() failed and the program should just

end.

if (pid < 0)

 {

 exit(EXIT_FAILURE);

 }

If “pid” has a value bigger than 0, it means it’s the parent process and it should just end as

well.

 if (pid > 0)

 {

 exit(EXIT_SUCCESS);

 }

At this point only the child process should still be running. First the child process has to

change the file mode mask it inherited from its parent.

 umask(0);

Now a new session ID is given to the child process.

 sid = setsid();

49

Again, if the “sid” returns with a value of “-1”, it means setsid() failed and the program

needs to exit.

if (sid < 0)

 {

 exit(EXIT_FAILURE);

 }

As the program might be run in different Linux systems with different folder structures, it is

best to change the working directory to root “/”.

chdir("/")

Finally the program need to close the standard file descriptors, so it cant write or read any

information from “stdout”, “stdin” and “stderr”.

 close(STDIN_FILENO);

 close(STDOUT_FILENO);

 close(STDERR_FILENO);

50

8.3 Error logging

If the program is going to run in the background, in the case it fails, it would be impossible

to know what went wrong with it. For this an error log should be implemented. I created a

function to both print the information and write it to a file.

void WriteLog (char *message)

First I created a “FILE” object

 FILE *log;

Then I used the function fopen() with the name of the log file I want to create as

parameter. The second parameter is “a” which means it will create the file if it doesn’t exist

and if it exists, it will just write new data at the end of the file without overwriting anything.

 log = fopen("Wind.log", "a");

If it fails it will print out the error, close the file and exit.

 if (log == NULL)

 {

 printf("Write Log: %s\r\n",strerror(errno));

 fclose(log);

 exit (EXIT_FAILURE);

 }

If it succeeds it will write in the message and then close the file again.

 else

 {

 fputs(message, log);

 fputs("\n", log);

 fclose(log);

 }

51

8.4 Device Configuration

The Anemometer originally sent a string every ten seconds. I was told it would be best if it

was configured to send data every second. For this I wrote a little segment that had to be

removed from the final program as it uses a blocking user input.

 fgets (N, 80, stdin);

 while (N[0] == 'w') //revierte SY!

 {

 memset(F, 0, 10);

 printf("write to anemometer:");

 fgets (F, 10, stdin);

 write(tty_fd,F,4);

 if (read(tty_fd,M,80)>0)

 {

 printf("%s\r\n",M);

 }

 }

During the first user input “w” has to be pressed to enter the loop. It is an endless loop that

would prevent the rest of the program to run. It is very important that the write() function

has the exact number of characters we intend to write (in this case “4”) otherwise the

anemometer won’t recognize the command.

52

9. Conclusion and Recommendations

The weather station on campus Bergedorf will now be able to improve its measurements

thanks to the new Sonic Anemometer that has been configured and has a new software to

manage its output.

The Sonic Anemometer is a great improvement over the three cup anemometer and wind

vane originally installed on the weather station. The sonic anemometer has a higher

accuracy as it retrieves information 10 times every second and automatically sends out the

mean values. The lack of moving parts on the device makes it possible to adapt quickly to

changes and the fact that it can measure the vertical wind speed, gives the device an

overall better three dimensional wind speed measurement. The device was left running

over the entire duration of this project without ever giving any sign of errors. The only time

it was turned off was during the testing and then it renewed operation within seconds.

The project itself was a huge undertaking that required a lot of time spent on research.

There are many ways to develop a program with the same functions and no real guidelines

to do it. As the software development progresses, the code has to be improved, deleted

and overwritten over and over again. New ideas for improvement appear and new features

needed show up that were not part of the original scope but are of critical importance to

the project.

There is one thing I couldn’t really explain and it is that the data I gathered with my final

“read” function came in in bursts of eight characters at a time. At first I thought the cause

was a bad configuration of the serial communications, but after trying out many different

combinations of Baud rate, data bits, stop bits and parity and after double checking and

triple checking the sonic anemometers user manual, it is my opinion that the bursts of

eight characters might be a standard configuration of the device itself.

53

Overall I am satisfied with the results, the program reads from the serial communications

port, extracts the raw data, calculates the wind speed, direction and six other values and

stores the data every minute and every ten minutes in two different tables within a MYSQL

database reliably. It can also take command line arguments, run as a deamon and log its

errors on a text log file.

Due to a lack of time, the “run as deamon” and “log” features were added but not fully

tested. Some error detection was written but without further testing I wouldn’t feel safe

calling it reliable. It also might be a good idea for the future not only to read but also be

able to write to the serial communications port within the same program.

This might be obvious, but it can’t be forgotten that the name of the database as well as its

tables, username and password should be changed for security reasons.

If someone were planning to further advance this project or undertake a similar one in

software development, it is my recommendation to comment any changes within the code,

write the reasons behind the changes and if possible, keep a changelog. It was my

mistake not to keep to these good practices and I found myself many times wondering if a

piece of code was critical for the program or completely irrelevant.

The only thing left to do is to mount the anemometer on the celling and see how it fares in

the real world.

54

10. Sources

Image Sources

[1] Figure 1 Laminar flow and turbulent flow

Internet source: 28.09.2014. http://cnx.org/resources/0cee14e8cee

601e40e5a0ec12e83454d/graphics12.png

[2] Figure 2 Change in flow based on the Reynolds number

Internet source: 28.09.2014. http://www.flowcontrolnetwork.com/ext

/resources/files/assets/uploaded/fc-0307-fb%20figure%205.jpg

[3] Figure 3 sound frequency ranges

Internet source: 28.09.2014. http://upload.wikimedia.org/wikipedia

/commons/thumb/7/74/Ultrasound_range_diagram.svg/1280px-

Ultrasound_range_diagram.svg.png

[4] Figure 4 Schema of a 3 cup anemometer

Internet source: 28.09.2014. http://www.infoplease.com/images/cig

/weather/21fig04.png

[5] Figure 4 Sonic anemometer

Internet source: 28.09.2014. http://www.th-friedrichs.de/assets

/ProductPage/ProductImage/_resampled/SetRatioSize600400-P4302.jpg

[6] Figure 5 difference between Field and Record

Internet source: 28.09.2014. http://www.eww.com.hk/cfdocs

/Getting_Started_Building_ColdFusion_MX_Applications

/images/db_basicsa.gif

[7] Figure 6 Wind vane

Internet source: 28.09.2014. http://141.22.116.42/bilder

/wetterstation/windrichtung.jpg

55

[8] Figure 7 Three cup anemometer

Internet source: 28.09.2014. http://141.22.116.42/bilder

/wetterstation/anemometer.jpg

[9] Figure 8 the USA-1 and its schematics

USA-1, Ultraschalall anemometer, Benutzer handbuch, Page 42

[10] Figure 10 2D vectors

Internet source: 28.09.2014. http://cdn-2.cut-the-

knot.org/pythagoras/CalculusProof.gif

[11] Figure 10 3D vectors

Internet source: 28.09.2014. http://upload.wikimedia.org/wikipedia

/commons/f/f6/Cartesian_xyz.png

[12] Figure 11 Differences between atan and atan2

Internet source: 28.09.2014. http://i.stack.imgur.com/BZo2D.png

[13] Table 1 Cut from ASCII table

Internet source: 28.09.2014. http://benborowiec.com/wp-

content/uploads/2011/07/better_ascii_table.jpg

56

Literary Sources

[14] Caldarelli, David D. and Ruth S. Campanella. Ear. World Book Online

Americas Edition. 26 May 2003

[15] Windows DCB structure Page

Internet source: 28.09.2014. http://msdn.microsoft.com/en-

us/library/aa363214(VS.85).aspx

[16] Ultraschall anemometer settings and information

USA-1, Ultraschalall anemometer, Benutzer handbuch

[17] C Programming Reference

Free online Handbook: C++ von A bis Z, Judith Stevens-Lemoine

Lektorat Galileo Computing, Galileo Press · Rheinwerkallee 4 · 53227 Bonn

[18] MYSQL reference

Mark Maslakowski, MYSQL, Markt+ Technik verlag, München, Germany

2001

[19] Linux termios man page

Internet source: 28.09.2014. http://man7.org/linux/man-

pages/man3/termios.3.html

57

11. Attachments

Anemometer technical data

58

59

60

Complete ASCII Table

61

Source code

#include <string.h>

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <fcntl.h>

#include <termios.h>

#include <math.h>

#include <mysql/mysql.h>

#include <time.h>

#include <errno.h>

#include <getopt.h>

int xRaw0 = 0;

int yRaw0 = 0;

int zRaw0 = 0;

int tRaw0 = 0;

float xRaw = 0;

float yRaw = 0;

float zRaw = 0;

float tRaw = 0;

float xOne = 0;

float zOne = 0;

float tOne = 0;

float yOne = 0;

float xTen = 0;

float zTen = 0;

float tTen = 0;

float yTen = 0;

float hv_minOne = -1;

float hv_maxOne = -1;

float tv_minOne = -1;

float tv_maxOne = -1;

float hv_minTen = -1;

float hv_maxTen = -1;

float tv_minTen = -1;

float tv_maxTen = -1;

62

float hv = 0;

float tv = 0;

float hd = 0;

float zd = 0;

int CounterOne = 0;

int CounterTen = 0;

float SumdataOne [5];

float SumdataTen [5];

int flag1 = 0;

int flag2 = 0;

int flag3 = 0;

int flag4 = 0;

unsigned long OneMinTime = 0;

unsigned long TenMinTime = 0;

unsigned long timer = 0;

char Timestr[30];

char str[80];

#define PI 3.14159265

char *LOGFILE;

mode_t umask(mode_t mask);

void database_connect(char *localhost,char *user,char *password,char *DB, int a);

void ReadSerial(int tty,char *N,char *device);

unsigned long GetTime();

int LengthTest(char *N);

int QualityTest(char *N);

int GetValue(char *N);

void GetVelocity(float x,float y,float z);

void GetDirection(float x,float y,float z);

void MinMax(int a);

void OneMinSum(int a);

void OneMinMean(int a);

void Reset(int a);

void WriteLog (char *message);

int isprint(int c);

int main(int argc,char** argv)

{

63

//****************************Comand Line arguments

 int Dflag = 0;

 char *device = NULL;

 char *DB = NULL;

 char *localhost = NULL;

 char *user = NULL;

 char *password = NULL;

 LOGFILE = "Wind.log";

 int m1 = 0;

 int m2 = 0;

 int m3 = 0;

 int m4 = 0;

 int m5 = 0;

 int c;

 int help = 0;

 while ((c = getopt (argc, argv, "Dd:n:h:u:p:L:")) != -1)

 {

 switch (c)

 {

 case 'D':

 Dflag = 1;

 break;

 case 'd':

 device = optarg;

 m1 = 1;

 break;

 case 'n':

 DB = optarg;

 m2 = 1;

 break;

 case 'h':

 localhost = optarg;

 m3 = 1;

 break;

 case 'u':

 user = optarg;

 m4 = 1;

 break;

 case 'p':

 password = optarg;

64

 m5 = 1;

 break;

 case 'L':

 LOGFILE = optarg;

 break;

 case '?':

 if (optopt == 'd' || optopt == 'n' || optopt == 'h' || optopt == 'u'

 || optopt == 'p' || optopt == 'L')

 printf ("Option -%c requires an argument.\n", optopt);

 else if (isprint(optopt))

 printf ("Unknown option `-%c'.\n", optopt);

 else

 printf ("Unknown option character `\\x%x'.\n",optopt);

 break;

 default:

 break;

 }

 help = 1;

 }

 if(help == 0)

 printf ("-D Run as deamon (Optional)\r\n-d \"Device name\"\r\n-n \"Database

name\"\r\n"

 "-h \"Hostname\"\r\n-u \"Username\"\r\n-p \"Password\"\r\n"

 "-L \"Log file\" (Optional)\r\n");

 else

 printf ("Deamonize (Optional) %d\r\nDevice name: %s\r\nDatabase

name: %s\r\n"

 "Hostname: %s\r\nUsername: %s\r\nPassword: %s\r\n"

 "Log file: %s (Optional)\r\n",

 Dflag, device, DB, localhost, user, password, LOGFILE);

 if (m1 != 1 || m2 != 1 || m3 != 1 || m4 != 1 || m5 != 1)

 {

 printf ("****Please fill in all mandatory fields****\r\n");

 exit(0);

 }

 //-------Deamonize Process------------

 if (Dflag == 1)

 {

65

 pid_t pid, sid; //Our process and Session ID

 pid = fork();

 if (pid < 0) // terminate in case of failure

 {

 exit(EXIT_FAILURE);

 }

 if (pid > 0) // exit the parent process.

 {

 exit(EXIT_SUCCESS);

 }

 umask(0); // Change the file mode mask

 // Open any logs here

 sid = setsid(); // Create a new SID for the child process

 if (sid < 0)

 {

 // Log the failure

 exit(EXIT_FAILURE);

 }

 sprintf(str, "gdf %d",sid);

 WriteLog(str);

 if ((chdir("/")) < 0) // Change the current working directory

 {

 WriteLog("failure");

 exit(EXIT_FAILURE); // Log the failure

 }

 //Close out the standard file descriptors

 close(STDIN_FILENO);

 close(STDOUT_FILENO);

 close(STDERR_FILENO);

 if (sid == 0) // exit the parent process.

 {

 exit(EXIT_SUCCESS);

 }

 }

66

 struct termios stdio;

 int tty;

 int q1 = 0;

 int q2 = 0;

 char N[200];

 fcntl(STDIN_FILENO, F_SETFL, O_NONBLOCK); // make the reads non-

blocking

 memset(&stdio,0,sizeof(stdio));

 stdio.c_iflag=0;

 stdio.c_oflag=0;

 stdio.c_cflag=CS8|CREAD|CLOCAL; // 8n1, see termios.h for more

information

 stdio.c_lflag=0;

 stdio.c_cc[VMIN]=0; //maximum number of characters before returning

 stdio.c_cc[VTIME]=50; //time between each character in tenths of

a second

 tty=open(device, O_RDWR); //| O_NONBLOCK

 cfsetospeed(&stdio,B9600); // 9600 baud

 cfsetispeed(&stdio,B9600); // 9600 baud

 tcsetattr(tty,TCSANOW,&stdio);

 int s = 0;

 memset(N, 0, sizeof N);

 memset(SumdataOne, 0, sizeof SumdataOne);

 memset(SumdataTen, 0, sizeof SumdataTen);

 while (N[0]!='q')

 {

67

 timer = GetTime();

 ReadSerial(tty,N,device);

 if (strlen(N) >= 43)

 {

 printf ("Current Time: %s\r\n", Timestr);

 q1=LengthTest(N);

 q2=QualityTest(N);

 if (q1 == 1 && q2 == 1)

 {

 GetValue(N);

 GetVelocity(xRaw,yRaw,zRaw);

 MinMax(1);

 OneMinSum(1);

 printf("hv = %f tv = %f hd = %f zd = %f\r\n",hv,tv,hd,zd);

 printf("hv_min = %f hv_max = %f tv_min = %f tv_max

= %f\r\n\r\n",hv_minOne,hv_maxOne,tv_minOne,tv_maxOne);

 flag1=1;

 }

 else

 {

 usleep(500000);

 s = read(tty,N,200);

 }

 q1=0;

 q2=0;

 memset(N, 0, sizeof N);

 }

 if (timer - OneMinTime >= 60 && flag1==1)

 {

 printf(" /////////////// One Minute //////////////\r\n");

 OneMinMean(1);

 GetVelocity(xOne,yOne,zOne);

 GetDirection(xOne,yOne,zOne);

 MinMax(2);

 OneMinSum(2);

 database_connect(localhost,user,password,DB,1);

 printf("Sum1 = %f Sum2 = %f Sum3 = %f Sum4 = %f COne

= %d\r\n",SumdataOne [0],SumdataOne [1],SumdataOne [2],SumdataOne

[3],CounterOne);

 printf("x = %f y = %f z = %f t

68

= %f\r\n",xOne,yOne,zOne,tOne);

 printf("hv = %f tv = %f hd = %f zd = %f\r\n",hv,tv,hd,zd);

 printf("hv_min = %f hv_max = %f tv_min = %f tv_max

= %f\r\n\r\n",hv_minOne,hv_maxOne,tv_minOne,tv_maxOne);

 flag2=1;

 Reset(1);

 }

 if (timer - TenMinTime >= 600 && flag2==1)

 {

 printf(" /////////////// Ten Minutes //////////////\r\n");

 OneMinMean(2);

 GetVelocity(xTen,yTen,zTen);

 GetDirection(xTen,yTen,zTen);

 database_connect(localhost,user,password,DB,2);

 printf("Sum1 = %f Sum2 = %f Sum3 = %f Sum4 = %f COne

= %d\r\n",SumdataTen [0],SumdataTen [1],SumdataTen [2],SumdataTen [3],CounterTen);

 printf("x = %f y = %f z = %f t = %f

\r\n",xTen,yTen,zTen,tTen);

 printf("hv = %f tv = %f hd = %f zd = %f\r\n",hv,tv,hd,zd);

 printf("hv_min = %f hv_max = %f tv_min = %f tv_max

= %f\r\n\r\n",hv_minTen,hv_maxTen,tv_minTen,tv_maxTen);

 Reset(2);

 }

 fgets (N, 80, stdin);

 /*while (N[0] == 'w') //revierte SY!

 {

 memset(M, 0, 100); //to use this revert nonblocks, set F

 memset(F, 0, 10);

 printf("write to ann %s",N);

 fgets (F, 10, stdin);

 printf("you wrote %d %d %d %d %d %d",F[0],F[1],F[2],F[3],F[4],F[5]);

 printf("%s\r\n",F);

 write(tty_fd,F,4);

 if (read(tty_fd,M,80)>0)

 {

 printf("%s\r\n",M);

 }

 }*/

 }

 close(tty);

69

 return EXIT_SUCCESS;

}

void ReadSerial(int tty,char *N,char *device)

{

 int s = 0;

 char M[100];

 memset(M, 0, sizeof M);

 s = read(tty,M,100);

 if (s>0)

 {

 strcat (N,M); //data is sent in bursts of 8

characters

 printf("%d ",strlen(N));

 if (flag3==1)

 {

 sprintf (str, "Connection regained at: %s\r\n", Timestr);

 WriteLog(str);

 }

 flag3=0;

 }

 else if (s==0)

 {

 if (flag3==0)

 {

 WriteLog("Timeout! Read exceeded 5 seconds! Make sure cable is

connected!");

 sprintf (str,"Connection lost at: %s", Timestr);

 WriteLog(str);

 }

 flag3=1;

 }

 else

 {

 sprintf(str,"ERROR! %s might not be a valid port!", device);

 WriteLog(str);

 WriteLog(strerror(errno));

 exit(0);

 }

}

unsigned long GetTime()

70

{

 time_t rawtime;

 rawtime = time(NULL);

 struct tm * timeinfo;

 timeinfo = localtime (&rawtime);

 memset(Timestr, 0, sizeof Timestr);

 strcat (Timestr,asctime (timeinfo));

 if (OneMinTime == 0) OneMinTime = rawtime;

 if (TenMinTime == 0) TenMinTime = rawtime;

 return(rawtime);

}

int LengthTest(char *N)

{

 printf("Recieved String: %s",N);

 if (strlen(N)==43)

 {

 printf("String length Correct ");

 return(1);

 }

 else

 {

 WriteLog("String is too long\r\n");

 return(0);

 }

}

int QualityTest(char *N)

{

 if (N[0] == 'M' && N[2] == 'x' && N[12] == 'y' && N[22] == 'z' && N[32] == 't')

 {

 printf("Stringstatus: OK\r\n");

 return(1);

 }

 else

 {

 WriteLog("Stringstatus: Damaged\r\n");

 return(0);

 }

}

int GetValue(char *N)

{

 int n = sscanf(N, "M:x =%d y =%d z =%d t =%d ", &xRaw0, &yRaw0, &zRaw0,

71

&tRaw0);

 if (n==4)

 {

 xRaw = xRaw0;

 yRaw = yRaw0;

 zRaw = zRaw0;

 tRaw = tRaw0;

 xRaw = xRaw/100;

 yRaw = yRaw/100;

 zRaw = zRaw/100;

 tRaw = tRaw/100;

 printf("x = %d y = %d z = %d t = %d n=%d

\r\n",xRaw0,yRaw0,zRaw0,tRaw0,n);

 printf("x = %f y = %f z = %f t = %f n=%d

\r\n",xRaw,yRaw,zRaw,tRaw,n);

 return(1);

 }

 else

 {

 printf("ERROR Getting Values");

 return(0);

 }

}

void GetVelocity(float x,float y,float z)

{

 hv = sqrt(x*x+y*y);

 tv = sqrt(x*x+y*y+z*z);

}

void GetDirection(float x,float y,float z)

{

 hd = atan2(-y,-x)* 180 / PI;

 if (hd < 0) hd= hd + 360;

 zd = ((atan2(hv,z)* 180 / PI)-90);

}

void MinMax(int a)

{

 if (a==1)

 {

 if (hv_minOne == -1)

72

 {

 hv_minOne = hv;

 hv_maxOne = hv;

 tv_minOne = tv;

 tv_maxOne = tv;

 }

 if (hv < hv_minOne) hv_minOne = hv;

 if (hv > hv_maxOne) hv_maxOne = hv;

 if (tv < tv_minOne) tv_minOne = tv;

 if (tv > tv_maxOne) tv_maxOne = tv;

 }

 else

 {

 if (hv_minTen == -1)

 {

 hv_minTen = hv_minOne;

 hv_maxTen = hv_maxOne;

 tv_minTen = tv_minOne;

 tv_maxTen = tv_maxOne;

 }

 if (hv_minOne < hv_minTen) hv_minTen = hv_minOne;

 if (hv_maxOne > hv_maxTen) hv_maxTen = hv_maxOne;

 if (tv_minOne < tv_minTen) tv_minTen = tv_minOne;

 if (tv_maxOne > tv_maxTen) tv_maxTen = tv_maxOne;

 }

}

void OneMinSum(int a)

{

 if (a==1)

 {

 SumdataOne [0] += xRaw;

 SumdataOne [1] += yRaw;

 SumdataOne [2] += zRaw;

 SumdataOne [3] += tRaw;

 CounterOne++;

 }

 else

 {

 SumdataTen [0] += xOne;

 SumdataTen [1] += yOne;

 SumdataTen [2] += zOne;

 SumdataTen [3] += tOne;

73

 CounterTen++;

 }

}

void OneMinMean(int a)

{

 if (a==1)

 {

 xOne = SumdataOne [0] / CounterOne ;

 yOne = SumdataOne [1] / CounterOne ;

 zOne = SumdataOne [2] / CounterOne ;

 tOne = SumdataOne [3] / CounterOne ;

 CounterOne = 0;

 }

 else

 {

 xTen = SumdataTen [0] / CounterTen ;

 yTen = SumdataTen [1] / CounterTen ;

 zTen = SumdataTen [2] / CounterTen ;

 tTen = SumdataTen [3] / CounterTen ;

 CounterTen = 0;

 }

}

void Reset(int a)

{

 if (a==1)

 {

 hv_minOne = -1;

 hv_maxOne = -1;

 tv_minOne = -1;

 tv_maxOne = -1;

 hd = 0;

 zd = 0;

 flag1=0;

 memset(SumdataOne, 0, sizeof SumdataOne);

 OneMinTime = timer;

 }

 else

 {

 hv_minTen = -1;

 hv_maxTen = -1;

 tv_minTen = -1;

 tv_maxTen = -1;

74

 hd = 0;

 zd = 0;

 flag2=0;

 memset(SumdataTen, 0, sizeof SumdataTen);

 TenMinTime = timer;

 }

}

void finish_with_error(MYSQL *con)

{

 sprintf(str,"%s", mysql_error(con));

 WriteLog (str);

 mysql_close(con);

 exit(0);

}

void database_connect(char *localhost,char *user,char *password,char *DB, int a)

{

 MYSQL *con = mysql_init(NULL);

 char query[1024];

 if (con == NULL)

 {

 sprintf(str, "%s", mysql_error(con));

 WriteLog (str);

 exit(1);

 }

 if (mysql_real_connect(con, localhost, user, password, DB, 0, NULL, 0) == NULL)

 {

 finish_with_error(con);

 }

 if (a==1)

 {

 sprintf(query,"INSERT INTO 1minTable

(X,Y,Z,Hv,Tv,Hd,Zd,Hv_min,Hv_max,Tv_min,Tv_max,Temp)"

 "VALUES(%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f)"

 ,xOne,yOne,zOne,hv,tv,hd,zd,hv_minOne,hv_maxOne,tv_minOne,tv_maxOne,tOne

);

 }

 else

 {

 sprintf(query,"INSERT INTO 10minTable

(X,Y,Z,Hv,Tv,Hd,Zd,Hv_min,Hv_max,Tv_min,Tv_max,Temp)"

75

 "VALUES(%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f)"

 ,xTen,yTen,zTen,hv,tv,hd,zd,hv_minTen,hv_maxTen,tv_minTen,tv_maxTen,tTen);

 }

 if (mysql_query(con,query))

 {

 finish_with_error(con);

 }

 mysql_close(con);

}

void WriteLog (char *message)

{

 printf("%s\r\n",message);

 FILE *logg;

 logg = fopen(LOGFILE, "a");

 if (logg == NULL)

 {

 printf("Write Log: %s\r\n",strerror(errno));

 fclose(logg);

 exit (EXIT_FAILURE);

 }

 else

 {

 fputs(message, logg);

 fputs("\n", logg);

 fclose(logg);

 }

}

76

Create database code

CREATE TABLE `1minTable` (
ID int(11) NOT NULL auto_increment,
time timestamp NOT NULL,
 `X` float DEFAULT NULL,
 `Y` float DEFAULT NULL,
 `Z` float DEFAULT NULL,
 `Hv` float DEFAULT NULL,
 `Tv` float DEFAULT NULL,
 `Hd` float DEFAULT NULL,
 `Zd` float DEFAULT NULL,
 `Hv_min` float DEFAULT NULL,
 `Hv_max` float DEFAULT NULL,
 `Tv_min` float DEFAULT NULL,
 `Tv_max` float DEFAULT NULL,
 `Temp` float DEFAULT NULL,
Primary key(ID),
KEY timestamp (time)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE TABLE `10minTable` (
ID int(11) NOT NULL auto_increment,
time timestamp NOT NULL,
 `X` float DEFAULT NULL,
 `Y` float DEFAULT NULL,
 `Z` float DEFAULT NULL,
 `Hv` float DEFAULT NULL,
 `Tv` float DEFAULT NULL,
 `Hd` float DEFAULT NULL,
 `Zd` float DEFAULT NULL,
 `Hv_min` float DEFAULT NULL,
 `Hv_max` float DEFAULT NULL,
 `Tv_min` float DEFAULT NULL,
 `Tv_max` float DEFAULT NULL,
 `Temp` float DEFAULT NULL,
Primary key(ID),
KEY timestamp (time)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

