
Bachelor Thesis
Luciano Maiwald

Design and Implementation of a Library for Recurring ETL
Imports of Reference Data in Ruby

Fakultät Technik und Informatik
Studiendepartment Informatik

Faculty of Engineering and Computer Science
Department of Computer Science

Luciano Maiwald

Design and Implementation of a Library for Recurring ETL
Imports of Reference Data in Ruby

Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung

im Studiengang Bachelor of Science Angewandte Informatik
am Department Informatik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Stefan Sarstedt
Zweitgutachter: Prof. Dr. Olaf Zukunft

Eingereicht am: 30. April 2015

Luciano Maiwald

Thema der Arbeit
Design und Implementation einer Softwarebibliothek zum wiederkehrenden Import von Refe-
renzdaten in Ruby

Stichworte
Synchronisation, Import, ETL, Extract, Transform, Load, Stammdaten, Datenmanagement

Kurzzusammenfassung
Viele der heutigen Informationssysteme benötigen Stammdaten von Drittanbietern für den
reibungslosen Betrieb. In vielen Fällen müssen diese Daten beim Importieren an das Daten-
bankschema des Informationssystems angepasst werden. Wenn dieser Import zusätzlich auch
regelmäßig (z.B. jede Nacht) erfolgt, ist es nötig die neuen Daten mit den bereits importierten
zusammenzuführen, um die Konsistenz des Datenbestandes nicht zu verletzen. BeetleETL,
die Softwarebibliothek, die in dieser Thesis erarbeitet und implementiert wird, ermöglicht es
Nutzern diese Schematransformationen in SQL zu verfassen und übernimmt die Aufgabe des
Zusammenführen der Daten.

Luciano Maiwald

Title of the paper
Design and Implementation of a Library for Recurring ETL Imports of Reference Data in Ruby

Keywords
synchronisation, Import, ETL, Extract, Transform, Load, Reference Data, Data Management

Abstract
Many of today’s information systems require third party generated reference or master data
in order to operate properly. Oftentimes this data needs to be transformed into a di�erent
database schema when imported into the system and in case this import happens regularly
(e.g. every night), it is necessary to properly merge existing data with the newly imported
dataset in order to ensure consistency. BeetleETL, the library designed and implemented in
this thesis, relieves users of the complex task of merging data and enables them to express the
import of third party entities if the form of SQL transformation queries.

Contents

1. Introduction 1
1.1. Project Background . 1
1.2. Motivation . 2
1.3. Extract, Transform, Load - ETL . 2
1.4. Structure . 3
1.5. Disclaimer . 3

1.5.1. PostgreSQL . 3
1.5.2. Importing vs. synchronising Data . 3
1.5.3. Third Party Data & Information System 3

2. Developing the Algorithm 4
2.1. Separation of Primary Key Namespaces . 4
2.2. An Introductory Example . 5
2.3. Separating Business- & Import Logic . 8

2.3.1. Transforming Data . 9
2.3.2. Calculating Changes . 11
2.3.3. Applying Changes . 14
2.3.4. Abstraction . 16

2.4. Deleting and Reinstating Data . 18
2.5. Importing Data with Foreign Key References 19

2.5.1. Mapping Relations . 20
2.6. Completing the Import Process . 23

3. Design of the Library 24
3.1. Extracting functionality . 24

3.1.1. API Design . 24
3.2. Functional Requirements . 25

3.2.1. Synchronising Data . 25
3.2.2. Enable Test-Driven Development . 26

4. Implementation 27
4.1. Disclaimer . 27
4.2. Background . 27

4.2.1. Test Driven Development . 27
4.2.2. Schema Conventions . 28

iv

Contents

4.3. Implementing the Algorithm . 28
4.3.1. Executing Steps . 29

4.4. Domain Speci�c Language - DSL . 30
4.4.1. Evaluating the DSL . 32

4.5. Parallelism . 36
4.5.1. Calculating Dependencies . 36
4.5.2. Parallel Execution . 38

4.6. Generating Stage Tables . 40
4.6.1. Generating Table Names . 42
4.6.2. Dropping Stage Tables . 43

4.7. Preventing Data Corruption . 43
4.8. Running Imports . 45
4.9. Testing . 45

5. Conclusion 47
5.1. Areas of Improvement . 48

5.1.1. Analytics . 48
5.1.2. Validation Loop . 48
5.1.3. SQL parser . 48

Appendices 50

A. Performance Comparison 51
A.1. Test Setup . 51
A.2. Results . 51

Bibliography 53

v

1. Introduction

Many of today’s information systems require third party generated reference or master data1

in order to operate properly. Oftentimes this data needs to be transformed into a di�erent
database schema when imported into the system and in case this import happens regularly
(e.g. every night), it is necessary to properly merge existing data with the newly imported
dataset in order to ensure consistency.

Instead of using a local database dump or a remote database connection and referencing
third party data directly from within the system, devising a dedicated piece of software to
transform and merge the data into the system’s schema guarantees a clear separation between
the system’s internal data and the data delivered by the third party.

An “importer” functions as an adapter: Changes by the third party to either the schema or
the data have to be dealt with in the importer and do not a�ect the system directly. This enables
the system to function even if the third party’s data should become faulty or unavailable.

The goal of this thesis is to design and implement a software library (called BeetleETL) that
helps users separate the business data transformation logic from the way the data is actually
merged and imported into the system by generalising and abstracting common mandatory
steps and making use of conventions.

1.1. Project Background

The underlying ideas for the library described in this thesis were taken from two projects
developed at mindmatters GmbH & Ko KG which rely heavily on third party data, named
Epic-Relations and Mercury. In both these projects the third party data was of such low quality
that instead of maintaining the third party’s entity-relationship model within the respective
projects, it was decided to implement an importer to transform the data into a simpli�ed
schema with a more maintainable and consistent entity-relationship model, better suiting the
applications’ domains.

1Reference data usually only comprises of permissible values to be used by other data �elds, while master data
represents business objects, agreed on and shared by the enterprise [wik15]. Since the distinction between the
two terms does not matter for concepts in this thesis, they will be used interchangeably.

1

1. Introduction

1.2. Motivation

Understanding the concept of one-way synchronisation is simple: After synchronisation, a
given target is identical to the source it has been synchronised with. Understanding the
process of one-way synchronisation, however, requires understanding of multiple intricate
operations and state transitions of the source’s data.

Abstracting and encapsulating the complexities of any given process while exposing a simple
interface helps software developers reason about their programs. Instead of being hidden by
implementation detail, the intent of a program becomes clear.

The library developed in this thesis attempts to simplify the application of one-way syn-
chronisation between tables of a relational database, enabling its users to synchronise database
tables without having to know the details of the process. It is expected to be integrated into
the Mercury project.

1.3. Extract, Transform, Load - ETL

The underlying process in BeetleETL for importing data is extract, transform, load (ETL)
[wik14b]. For the purpose of this thesis these three phases are interpreted in the following
way:

Extract encapsulates all steps necessary to retrieve third party data and ensure it is available
to the following phases. This may include fetching the data over a network and dumping
it into the source tables.

Transform contains all steps necessary to modify the source data in a way that it �ts
the target schema. These modi�cations may range from merely renaming column
names to the complete restructuring of entities and their relations. In addition, trans-
formations can also �lter and remove invalid records completely. Other tasks in-
clude encoding values (mapping "M" to "male"), deriving newly calculated values
(total_price = quantity * unit_price) or aggregating values2.

Load applies the changes calculated during the transformation to the target database. Records
are either created, updated, or, deleted accordingly.

2The extract and transform phases may not always be as clearly separable as stated here. There are scenarios where
tasks that actually transform data may better be executed during the extract phase because of performance
concerns.

2

1. Introduction

1.4. Structure

Chapter 2 describes the problem domain of importing data from a third party source and
showcases an algorithm to synchronise an information system’s data with it.

Chapter 3 discusses considerations for designing a library that aids in the process of syn-
chronising third party data, as well as its requirements.

Chapter 4 showcases the implementation of BeetleETL, highlighting its DSL and parallel
execution model.

Chapter 5 closes with a summary of the thesis and explores three possible areas of improve-
ment.

1.5. Disclaimer

1.5.1. PostgreSQL

The queries throughout this thesis have been devised and tested using the PostgreSQL, an open
source object-relational database management system (DBMS). While the concepts themselves
are universal and can be applied to any other DBMS, the queries depicted may use PostgreSQL
speci�c notations and features. Di�erences to other DBMS’ will be pointed out when necessary.

1.5.2. Importing vs. synchronising Data

Throughout the course of this thesis, there will be references to importing data and synchro-

nising data. The process of importing data in and of itself can be understood as merely moving
data from one location to another without regard to duplication and deletions.

In this thesis, however, it will be used synonymously with one-way synchronisation where
data is expected to change in one location only and those changes will be applied to the other.
Hence, for this thesis the result of importing data from a source to a target results in the
target exactly mirroring the state of the source after applying business logic transformations.

1.5.3. Third Party Data & Information System

Importing data always implies moving data from a source to a target. For the purpose of illus-
tration, the term source is used synonymously with third party data. The terms information

system, system and, application always refer to the target, the environment being imported
into.

3

2. Developing the Algorithm

This chapter introduces the concepts, data structures and algorithms used to import reference
data from a third party source into an information system.

Given two distinct relational databases or sets of tables where one is the source (third party
schema) and one is the target (information system schema), the task is to synchronise the
target with the source while applying a set of de�ned transitions.

2.1. Separation of Primary Key Namespaces

One of the primary concerns when importing third party reference data is the separation of
primary key namespaces.

Consider importing entities from a third party data source. While these entities may have
uniquely identifying primary keys, using these primary keys to reference these entities in
foreign key relationships on tables wholly owned by the information system introduces tight
coupling to the third party data into the system. If the third party chose to restructure their
data (e.g. rename tables or columns), this could have consistency breaking consequences for
the information system. It may also introduce performance penalties when primary keys are
poorly chosen by the third party.

This coupling may be an acceptable tradeo� when importing only one source of third party
data. When more than one sources are being imported into a single table, however, their
primary key namespaces may overlap, creating primary key collisions. These collisions could
potentially break the system or at least prohibit the import of the colliding data. Fixing the
consequences of such primary key collisions can become a very complex and time-consuming
task and should therefore be avoided.

There are ways to counteract this coupling to third party data. The introduction of a separate
mapping table is one of them: This table stores the primary keys of the third party data (referred
to as external_id in this thesis) along with the primary key generated and assigned by the
information system.

4

2. Developing the Algorithm

Another way is to add an external_id column directly to entity tables, automatically storing
the third party namespace ID when the record is created by the import process.

In both cases however, the external_id can be used in subsequent applications of the import
process to identify the record and calculate changes that have to be made to synchronise its
data with the third party.

In the simplest case the external_id for a given entity is the primary key of its source
table. When separating multiple target entities stored in a single source table, though, the
external_id can become arbitrarily complex, using multiple columns in its calculation in order
to uniquely identify all entities source table’s record produces.

When importing data from multiple third party sources, an external_id column alone is
not enough to uniquely identify records in subsequent applications of the import process. This
scenario requires another column (either located in the aforementioned mapping table or entity
table itself) that identi�es the source of the entity, referred to as external_source.

2.2. An Introductory Example

The way BeetleETL synchronises data is best explained using examples and actual SQL state-
ments. Listings 2.1 and 2.2 show SQL statements for two tables: employees and managers.
Consider the employees table to be the source (e.g. third party data provider or legacy system)
and the managers table to be the target (i.e. the information system being developed).

1 CREATE TABLE employees (
2 id SERIAL PRIMARY KEY,
3 first_name CHARACTER VARYING(255),
4 last_name CHARACTER VARYING(255),
5 manager BOOLEAN
6);

Listing 2.1: employees table in the source

5

2. Developing the Algorithm

1 CREATE TABLE managers (
2 id SERIAL PRIMARY KEY,
3 name CHARACTER VARYING(255)
4);

Listing 2.2: managers table in the target

Imagine a business requirement for the transformation of third party data was extracting
managers from the employees table and merging �rst- and last name of every manager into
a single �eld. Devising a query that imports only the speci�ed records from the source into
the information system is a trivial task. It would insert a new record with a newly generated,
unique primary key into the managers table for every record in the employees table and would
most likely look close to the SQL query depicted in listing 2.3.

1 INSERT INTO managers (name)
2 SELECT e.first_name || ’ ’ || e.last_name
3 FROM employees e
4 WHERE e.manager IS TRUE;

Listing 2.3: Trivial query for importing managers

However, if the source data was subject to change and it was necessary for the target to stay
in sync with it, the aforementioned query would not be su�cient. Especially if system data
relied on it with foreign key references. This query would produce duplicates of all records
that had already been imported in a previous run.

This duplication could be accounted for by adding a new �eld to the managers table that
stores the employees’ primary key, as shown in listing 2.4, as well as separating the job of
importing the data into multiple queries: One query to import records that were added to the
source in the time between the last import and this one and therefore are not referenced in
the managers table (listing 2.5), and another one to update existing records in case they were
altered (listing 2.6).

6

2. Developing the Algorithm

1 CREATE TABLE managers (
2 id SERIAL PRIMARY KEY,
3 name CHARACTER VARYING(255),
4 external_id INTEGER
5);

Listing 2.4: Extended managers table in the target

1 INSERT INTO managers (name, external_id)
2 SELECT
3 e.first_name || ’ ’ || e.last_name,
4 e.id
5 FROM employees e
6 WHERE e.manager IS TRUE
7 AND NOT EXISTS (
8 SELECT 1
9 FROM managers m

10 WHERE m.external_id = e.id
11);

Listing 2.5: Import non-existing managers into the target

1 UPDATE managers m
2 SET
3 name = e.first_name || ’ ’ || e.last_name
4 FROM employees e
5 WHERE m.external_id = e.id;

Listing 2.6: Update existing managers

This solution has two major problems: One being that if these two queries were to be run
manually whenever necessary, the order in which they are run has implications on execution
time. If the import of new records (listing 2.5) is run before the update of existing ones (listing
2.6), records that were just imported would be updated as well, resulting in obsolete and
potentially time-consuming work. While this may sound like an easy enough problem to �x
(e.g. using a function or script), the queries themselves do not convey their order-dependence,
leaving it to developers to explicitly explain and record this implicit circumstance.

7

2. Developing the Algorithm

Another, and arguably more severe, problem with this solution is the duplication of busi-
ness logic. Consider the way, managers’ names are calculated from the employee data
(name = e.first_name || ’ ’ || e.last_name) and imagine instead more complex calcu-
lations. The logic for this calculation would have to be duplicated in the inserting as well as
the updating query, violating the DRY principle1 and thus increasing maintenance work if
things had to change.

It becomes clear that this approach will only serve the most basic synchronisation needs,
but will not solve the problem of fully synchronising data from the source to the target: It
duplicates business logic and introduces implicit order dependencies between its sub-tasks.

Further, it does not yet address the situation where data has been removed from the source
by the third party and should also be removed in the information system. While this could
easily be added, it underlines another downside to this approach: Importing a larger amount
of tables results in an even larger number of di�erent queries speci�c to the data at hand that
have to be maintained.

2.3. Separating Business- & Import Logic

As the previous chapter shows, in order to synchronise system data with third party data,
a new approach is necessary. One that properly separates business- and import logic. This
section introduces the concept of a staging area where third party data is �rst gathered and
then applied to the system’s database in two separate phases.

In contrast to the method presented in the previous chapter, this method complies with the
separation of phases described by the ETL process (see 1.3): Business logic describes measures
necessary to convert data into the desired structure and hence is part of the transform phase
in ETL. The logic to actually apply the changes to the system’s data is part of the load phase.

Again, an example using actual SQL statements and data is best suited to explain synchro-
nising data using stage tables. Given the employees source table (listing 2.7) and managers

target (listing 2.8) table from the previous example:

1Don’t repeat yourself (DRY) is a principle of software development, aimed at reducing repetition of information of
all kinds. It is stated as “Every piece of knowledge must have a single, unambiguous, authoritative representation
within a system.” [wik14a]

8

2. Developing the Algorithm

1 CREATE TABLE employees (
2 id SERIAL PRIMARY KEY,
3 first_name CHARACTER VARYING(255),
4 last_name CHARACTER VARYING(255),
5 manager BOOLEAN
6);

Listing 2.7: employees table in the source

1 CREATE TABLE managers (
2 id SERIAL PRIMARY KEY,
3 external_id INTEGER,
4 name CHARACTER VARYING(255)
5);

Listing 2.8: managers table in the target

In addition to the previous two tables a stage table is added to the database (listing 2.9). This
table is de�ned by a schema that looks quite similar to the corresponding target table in that
it contains the same identity columns (i.e. id, external_id) and payload columns (i.e. name).

1 CREATE TABLE stage_managers (
2 id INTEGER,
3 external_id INTEGER,
4 name CHARACTER VARYING(255),
5 transition CHARACTER VARYING(255)
6);

Listing 2.9: stage_managers table in the stage

It also has two notable di�erences: Even though the stage table has an id column, it is neither
automatically generated, nor used as the primary key. It also has an additional transition

column, the use of which will become clear as the example progresses.

2.3.1. Transforming Data

With the necessary tables in place, the next step is to �ll the stage table with transformed data,
applying all the de�ned business logic. Table 2.1 shows the example data in the employees

9

2. Developing the Algorithm

source table.

id �rst_name last_name manager
1 Rose Salazar TRUE

2 Paul Lade FALSE

3 Harold Davis TRUE

4 Gladys Hill TRUE

5 Ashley Brown FALSE

6 Amy Castillo FALSE

Table 2.1.: Source data in the employees table

Listing 2.10 shows the SQL query necessary to �ll the stage_managers stage table. Apart
from the external_id, it quite closely resembles the query devised in the introductory exam-
ple (listing 2.3) and merely contains the business relevant transformations of only fetching
managers and merging their �rst- and last name into a single �eld.

1 INSERT INTO stage_managers (name, external_id)
2 SELECT
3 e.first_name || ’ ’ || e.last_name,
4 e.id
5 FROM employees e
6 WHERE e.manager IS TRUE;

Listing 2.10: Moving and transforming data into stage_managers

The result of executing this query is shown in table 2.2.

id external_id name transition
1 Rose Salazar
3 Harold Davis
4 Gladys Hill

Table 2.2.: Data in the stage_managers table

10

2. Developing the Algorithm

2.3.2. Calculating Changes

This section explains the necessity of the stage_managers table’s transition column. Instead
of applying changes directly to production data as in the introductory example, every record in
the stage table is assigned one of the following transitions: CREATE, UPDATE, DELETE, REINSTATE.
This transition then dictates how the record is applied to production data.

The following sections explain how the value of the transition �eld is calculated for CREATE,
UPDATE and, DELETE. Though it is evident what its purpose is, REINSTATE is a special case that
is not relevant to this example and will be explained at a later point.

In order to calculate the value for the transition �eld, the stage table’s contents are
compared to the target tables’s contents. Table 2.3 shows the contents of the target’s managers

table assumed for this example. This represents the information system’s production data
before the import process is started.

id external_id name
1 1 Rose Nelson
2 3 Harold Davis
3 6 Amy Castillo

Table 2.3.: Data in the target’s managers table

Creating Records

The value CREATE is assigned to the transition �eld of all records in the stage table that have
no corresponding records in the target table based on their external_id. Listing 2.11 shows
the query necessary to accomplish this.

1 UPDATE stage_managers AS stage
2 SET transition = ’CREATE’
3 WHERE NOT EXISTS (
4 SELECT 1
5 FROM managers AS target
6 WHERE target.external_id = stage.external_id
7);

Listing 2.11: Assigning CREATE to the stage_managers table

11

2. Developing the Algorithm

As with the transformation query in listing 2.10 resembling the initial import query from
the introductory example, this query closely resembles that in listing 2.5. The WHERE condition
for �nding the relevant records is identical. However, it does not contain any of the business
logic needed to transform the data.

Since the target table in this example does not contain a record for Gladys Hill, the record
in stage_managers has to be updated to re�ect that a new record has to be created in managers.
Listing 2.4 shows the state of the stage_managers table after running this query.

id external_id name transition
1 Rose Salazar
3 Harold Davis
4 Gladys Hill CREATE

Table 2.4.: Data in the stage_managers table after assigning CREATE

Updating Records

To update existing records in the target table, the corresponding stage table records are
assigned the UPDATE transition. This transition is assigned to all records in the stage_managers

table that contain values that are di�erent from the corresponding target table managers.
In this example the name �eld is the only attribute used to discern whether target table

records have to be updated. A more complex scenario would of course respect multiple �elds
in the comparison.

1 UPDATE stage_managers AS stage
2 SET transition = ’UPDATE’
3 WHERE EXISTS (
4 SELECT 1
5 FROM managers AS target
6 WHERE target.external_id = stage.external_id
7 AND target.name IS DISTINCT FROM stage.name
8);

Listing 2.12: Assigning UPDATE to the stage_managers table

Comparing the stage and target tables from this example, it can be seen that Rose Nelson
(managers) has changed her name to Rose Salazar (stage_managers). Listing 2.12 shows the

12

2. Developing the Algorithm

SQL query to assign the UPDATE transition value, table 2.5 shows the contents of the stage table
after executing it.

id external_id name transition
1 Rose Salazar UPDATE
3 Harold Davis
4 Gladys Hill CREATE

Table 2.5.: Data in the stage_managers table after assigning UPDATE

Deleting Records

In contrast to the previous steps, deleting records is not as straightforward. Because the
contents of the stage tables can be understood as an execution plan for applying changes to
the target, instead of updating existing records in stage_managers, deletion records or “death
certi�cates”2 are inserted.

Again, comparing the stage and target tables from this example reveals that there is no
record of Amy Castillo in stage_managers. This means that the record of her has either been
removed from the third party data or no longer conforms to the �lters de�ned by business
logic. Therefore it has to be removed from the information system’s managers table, as well.

The query to add these deletion records to the stage table is shown in listing 2.13, the result
of it in table 2.6.

1 INSERT INTO stage_managers (external_id, transition)
2 SELECT
3 target.external_id,
4 ’DELETE’
5 FROM managers AS target
6 LEFT OUTER JOIN stage_managers AS stage
7 ON (stage.external_id = target.external_id)
8 WHERE stage.external_id IS NULL;

Listing 2.13: Assigning DELETE to the stage_managers table

2The term was taken from Andrew S. Tanenbaum’s explanation of propagation of deletions in epidemic algorithms
for multicast communication in distributed systems [TvS06].

13

2. Developing the Algorithm

id external_id name transition
1 Rose Salazar UPDATE
3 Harold Davis
4 Gladys Hill CREATE
6 DELETE

Table 2.6.: Data in the stage_managers table after assigning DELETE

Note that for deletion records the actual data is not relevant and can be omitted. Only the
external_id and the transition is required in order for the managers records to be deleted in
the next phase.

2.3.3. Applying Changes

With all transitions �elds calculated, the changes can be applied to production data. In order to
do this, the stage table records �rst need to be mapped to their corresponding target records
in managers. After that, another set of queries actually imports the data into the system.

Assigning System IDs

For stage table records that represent newly created records (i.e. have been assigned the CREATE

transition), a primary key has to be procured from the target table’s ID sequence3. This is
the same sequence used to assign primary keys during a regular SQL INSERT so subsequent
INSERTs do not produce primary key collisions.

For all other stage table records that have a corresponding record in their target table (i.e.
with transitions UPDATE, DELETE and, REINSTATE), assigning system namespace IDs is as trivial
as joining the two tables via their external_id columns.

Combining these two cases of assigning system namespace IDs results in the query depicted
in listing 2.14).

3In PostgreSQL, this sequence is automatically generated during the creation of a table for every column of type
SERIAL. This compares to the AUTO_INCREMENT option in MySQL databases and de�ning a trigger using a
sequence in Oracle databases.

14

2. Developing the Algorithm

1 UPDATE stage_managers AS updatable
2 SET id = COALESCE(target.id, nextval(’managers_id_seq’))
3 FROM stage_managers AS stage
4 LEFT OUTER JOIN managers AS target
5 ON (stage.external_id = target.external_id)
6 WHERE updatable.external_id = stage.external_id;

Listing 2.14: Assigning IDs to stage table records

Listing 2.7 shows the result of assigning target table IDs to stage_managers.

id external_id name transition
1 1 Rose Salazar UPDATE
2 3 Harold Davis
4 4 Gladys Hill CREATE
3 6 DELETE

Table 2.7.: Data in the stage_managers table after assigning IDs

Loading Data

Actually loading the data into the target table is trivial after the transitions and target IDs are
in place. Depending on the assigned transition, one of the following queries is used to load
new records (listing 2.15), update existing records (listing 2.16) and, delete removed records
(listing 2.17).

1 INSERT INTO managers (id, external_id, name)
2 SELECT id, external_id, name
3 FROM stage_managers
4 WHERE transition = ’CREATE’;

Listing 2.15: Loading CREATE records

15

2. Developing the Algorithm

1 UPDATE managers AS target
2 SET name = stage.name
3 FROM stage_managers AS stage
4 WHERE stage.id = target.id
5 AND stage.transition = ’UPDATE’;

Listing 2.16: Loading UPDATE records

1 DELETE FROM managers As target
2 JOIN stage_managers AS stage
3 ON (stage.id = public.id)
4 WHERE stage.transition = ’DELETE’;

Listing 2.17: Loading DELETE records

Table 2.8 shows the contents of the target’s managers table after running these last queries.
It has now been synchronised with the state dictated by the third party source data after
transforming it using the given business logic, concluding this example.

id external_id name
1 1 Rose Nelson
2 3 Harold Davis
4 4 Gladys Hill

Table 2.8.: Data in the target’s managers table

2.3.4. Abstraction

This example shows that the information system’s data can be synchronised with a third party
data source while separating the concerns of applying business logic and synchronisation
itself.

Business logic is encapsulated in a single query for all data transitions. Potential changes to
business logic would only have to be made in the transformation query �lling the stage table.

As for the import logic, take for instance the query to assign the UPDATE transition: The only
characteristics tying it to the speci�c stage and target tables of this example are the names of
the tables and the list of attributes to compare.

16

2. Developing the Algorithm

Listing 2.18 shows the original query from the example, listing 2.19 the same query for
another table and with a di�erent set of attributes.

1 UPDATE stage_managers As stage
2 SET transition = ’UPDATE’
3 WHERE EXISTS (
4 SELECT 1
5 FROM managers AS target
6 WHERE target.external_id = stage.external_id
7 AND target.name IS DISTINCT FROM stage.name
8);

Listing 2.18: Original query for assigning UPDATE

1 UPDATE stage_departments AS stage
2 SET transition = ’UPDATE’
3 WHERE EXISTS (
4 SELECT 1
5 FROM departments AS target
6 WHERE target.external_id = stage.external_id
7 AND
8 (target.name, target.address, target.organisation)
9 IS DISTINCT FROM

10 (stage.name, stage.address, stage.organisation)
11);

Listing 2.19: Query for assigning UPDATE to a di�erent entity

This demonstrates that with the exception of business logic transformations, every step of
the process can be generalised to work with any entity of third party data and is not speci�c
to the tables and data in this example. Once the import data has been moved into the stage, all
the following operations on the data are very similar.

In addition, the process outlined in this example is idempotent. Any further iterations
of applying the process with the same third party data would produce the same state of
synchronisation between system data with the given third party data.

This can be observed in the previous example in the fact that the record of Harold Davis is
not changed during the course of it. The record already existed in the target table and was
not changed in the process of importing, because it was not changed in the third party data.

17

2. Developing the Algorithm

Summary of the Process

In summary, the complete process of importing an entity from the source to the target
comprises of the four following steps:

1. Transform the data using rules de�ned by business logic and move the �ltered data into
the corresponding stage table (transform).

2. Calculate the transitions necessary for every record in the stage table by comparing the
di�erences of payload columns of the stage and target tables (table-diff).

3. Assign the corresponding system-namespace primary key to each record in the stage
table (assign-ids).

4. Apply the calculated changes to the target table (load).

transform table-diff assign-ids load

Figure 2.1.: Import process for a single entity

2.4. Deleting and Reinstating Data

In the previous example data that has been assigned the transition DELETE in the stage table is
actually deleted from the target database. While this may be desirable in some circumstances,
it introduces the risk of breaking consistency when data owned by the information system
still references deleted records via foreign key relations.

Also, if records were removed from the third party source or the application of business
logic transformations were to �lter out previously existing records (as it was the case with the
record of Amy Castillo in the previous example) and then reinstated in a subsequent execution
of the import process, a new target table record would be created for it.

Staying with the example, if a set of entities in the information system still referenced Amy

Castillo’s record after its deletion and changes to the third party data reinstated her into the
managers table, all existing references to her previous records would not be updated and still
contain a foreign key reference to the deleted record.

As a solution, instead of actually deleting records from the target tables when their cor-
responding stage table entries have been assigned the DELETE transition, they can be merely

18

2. Developing the Algorithm

marked as deleted using a �ag. This practice is called logical or soft deletion. Consequently,
the handling of deleted records is moved from the DBMS to the surrounding software stack of
the information system. Business logic in the application layer would then determine whether
a given record should for instance be presented to a user or included in calculations.

This change in behaviour, however, requires all queries dealing with the assignment of
transitions to stage table records to incorporate a check for this �ag (see listing 2.20 as an
example). It also explains the purpose of the REINSTATE transition: Instead of creating a new
record, the soft-deletion �ag is removed from target table records when their corresponding
stage table records have been assigned the REINSTATE transition. Listing 2.21 shows the query
necessary to assign REINSTATE to stage_managers from the previous example.

1 UPDATE stage_departments AS stage
2 SET transition = ’UPDATE’
3 WHERE EXISTS (
4 SELECT 1
5 FROM departments AS target
6 WHERE target.external_id = stage.external_id
7 AND target.deleted_at IS NULL
8 AND target.name IS DISTINCT FROM stage.name
9);

Listing 2.20: Updated query for assigning UPDATE with soft-delete

1 UPDATE stage_managers AS stage
2 SET transition = ’REINSTATE’
3 WHERE EXISTS (
4 SELECT 1
5 FROM managers AS target
6 WHERE target.external_id = stage.external_id
7 AND target.deleted_at IS NOT NULL
8);

Listing 2.21: Assigning REINSTATE to the stage_managers table

2.5. Importing Data with Foreign Key References

The examples depicted so far act on the assumption that third party data only contains a single
entity. However, third party data might also consist of complex hierarchies, where for one

19

2. Developing the Algorithm

imported entity a number of other entities have to be imported that refer to the former, by
means of foreign key references.

All references from one entity to another in the third party data use primary keys from
the third party’s primary key namespace. Since these primary keys are translated into the
information system’s primary key namespace during the import, the referencing entities’
foreign keys have to be translated as well.

Consider the following example: organisations and departments are to be imported into
the information system and departments belong to organisations. Tables 2.9 and 2.10 show
the data in the source tables for this example. In order to focus on the handling of foreign key
references, no additional business logic transformations will be applied in this example.

id name
1 Apple
2 Google

Table 2.9.: Contents of organisations

in the source

id organisation_id name
1 1 iPhone
2 1 MacBook
3 2 Search
4 2 Gmail

Table 2.10.: Contents of departments

in the source

2.5.1. Mapping Relations

Translating foreign key relations from one primary key namespace into another requires
modi�cations to the stage table of the referencing entity on the one hand and modi�cations to
the process of importing on the other.

As was necessary for the primary key, it is now necessary to resolve the third party’s foreign
key to the corresponding one in the information system’s namespace. Similar to the pair of id

and external_id, i.e. the entities’ primary key in the information system’s namespace and in
the third party’s namespace, respectively, a set of columns for foreign keys has to be added:
One of the foreign key in the information system’s namespace (organisation_id) and one for
the third party’s namespace (external_organisation_id).

This requires that the transform step for importing departments also imports the
external_organisation_id, in addition to all previously de�ned columns. Listing 2.22 shows
the transformation necessary to �ll the stage table and table 2.11 shows the result of this query
as well as the modi�ed structure of stage_departments.

20

2. Developing the Algorithm

1 INSERT INTO stage_departments
2 (name, external_id, external_organisation_id)
3 SELECT
4 source.name,
5 source.id,
6 source.organisation_id
7 FROM departments AS source;

Listing 2.22: Moving data into stage_departments

id external_id organisation_id external_organisation_id name transition
1 1 iPhone
2 1 MacBook
3 2 Search
4 2 Gmail

Table 2.11.: Data in stage_departments after transformation

Considering the data shown in table 2.12 is present in the stage_organisations table at
the point in time where foreign key relations are mapped for departments. The foreign keys
in stage_departments can then be assigned by using the query in listing 2.23. The result of
executing this query is depicted in table 2.13.

id external_id name transition
12 1 Apple
34 2 Google

Table 2.12.: Contents of stage_organisations

21

2. Developing the Algorithm

1 UPDATE stage_departments AS current
2 SET organisation_id = foreign.id
3 FROM organisations AS foreign
4 WHERE current.external_organisation_id = foreign.external_id;

Listing 2.23: Mapping relations for stage_departments

id external_id organisation_id external_organisation_id name transition
1 12 1 iPhone
2 12 1 MacBook
3 34 2 Search
4 34 2 Gmail

Table 2.13.: Data in stage_departments after mapping relations

With the organisation_id column properly �lled with the target namespace’s foreign keys,
the process can continue as it did in the previous example, by comparing the stage with its
corresponding target table and the assignment of transitions (table-diff).

During this comparison the organisation_id column is treated as a regular payload column.
The external_organisation_id column, however, is disregarded since it has no equivalent on
the target table.

In general, for all dependencies that a given entity has to other entities, it requires a column
for the dependency’s foreign key in the target namespace (dependency_id) and a column for
the dependency’s foreign key in the source namespace (external_dependency_id) in its stage
table to be present.

Further, in order to complete the import process for an entity with dependencies, it is
required that the dependencies’ import process has already completed the assign-ids step
so that their target namespace primary key are known. This then enables the execution of
the query shown in listing 2.23, adapted to every given dependency. After that the process of
importing the entity can continue with the table-diff step.

22

2. Developing the Algorithm

2.6. Completing the Import Process

With the process resulting from the example in section 2.3 and the mapping of foreign keys in
place, the complete process for importing third party entities is established and depicted in
�gure 2.2.

For entities without foreign key references, the map-relations step e�ectively results in
a no-op, making the process applicable for entities with and without foreign key references,
alike.

transform table-diff assign-ids loadmap-relations

Figure 2.2.: Complete process of importing a single entity

The introduction of relationships between entities has also introduced order dependence into
the process of importing multiple related entities. An entities dependencies must be imported
before the entity itself can be imported.

23

3. Design of the Library

This chapter describes design considerations and requirements for BeetleETL, the library
developed in this thesis.

3.1. Extracting functionality

Extracting specialised functionality from the ETL process requires decisions about what parts
of the process can be generalised and abstracted and what parts are speci�c to the surrounding
project. Further, it is important to consider what bene�ts are to be gained from extracting
functionality at all. A small subtask of the process, for example converting Microsoft Access
database �les into CSV �les, might not warrant the extraction into a library.

If the scope of the library’s functionality is chosen too narrow, this might impede the
usefulness of it. If it is too broad, it might be harder for potential users to understand what
problems the library solves and what value it brings.

While all three phases of the ETL process are necessary to fully import data, the focus of
this thesis is only on transform and load. Source-data is assumed to be available in the form
of relational database tables. The task of procuring data and potentially converting various
data storage formats like CSV, Excel or Microsoft Access is beyond the scope of this thesis.1

The transform phase, however, o�ers a lot potential for automation and optimisation
because, as chapter 2 shows, apart from the user-de�ned business data transformations, most
of the steps necessary to synchronise system data with third party data is identical regardless
of the imported entities.

3.1.1. API Design

Finding a simple abstraction and a clear framing of the problem that the library is supposed to
help solve, is an important part of designing its interface.

1It is also questionable, whether abstracting a large number of �le format transformations is feasible at all and
not best left to the users of the library.

24

3. Design of the Library

The fact that BeetleETL is expected to synchronise only relational database tables within
the same database, already simpli�es the API design. BeetleETL is not designed to abstract
all possible interpretations of the ETL process, but optimises one very speci�c case. This
speci�city allows the API to incorporate more assumptions on the environment in that the
library will be used.

As section 2.6 shows, the process of importing entities is identical for every entity that is
imported. This makes it suitable for automation, requiring users of the library only to specify
what entities are to be imported.

As a result, the API can be designed in a way that emphasises this. Users only need to
specify the transformations they wish to apply to the imported entities. The actual task of
synchronisation is abstracted and hidden inside the library’s implementation details.

This makes the API more declarative: Instead of implementing the algorithm manually for
every imported entity, explicitly de�ning what tasks have to be executed in what order, users of
the library de�ne transformations that express the desired state of the data in the information
system and the library handles the calculation and application of changes necessary to realise
it.

3.2. Functional Requirements

Since BeetleETL is designed to be a specialised library, expected to only ful�l the single purpose
of transforming and importing data into relational databases, the list of functional requirements
contains only two items.

3.2.1. Synchronising Data

The main functional requirement for BeetleETL is synchronising data from one location to
another while transforming said data using user-de�ned business logic transformations.

Success Scenario

Source data is present in a set of tables. Target tables contain either previously imported or no
data from the source about to be imported. A set of transformation queries is de�ned for each
entity that is expected to be imported. Invoking BeetleETL results in the target database tables
re�ecting the state of the source data after applying the de�ned transformations.

25

3. Design of the Library

Failure Scenarios

BeetleETL is expected never to corrupt system data or break its consistency. The following list
states a number of failures that are expected to result in the termination of the import process
without altering system data at all. Even if any of these scenarios occurred for only one entity
of an import process with multiple entities, none of the other entities’ target tables should be
altered.

1. A transformation query does not match its source table’s schema.

2. A transformed set of data does not match the its target table’s schema.

3. Applying the changes to the target tables violates any number of database constraints.

3.2.2. Enable Test-Driven Development

Another functional requirement is to enable users of the library to develop their transforma-
tion queries using test-driven development (TDD). Since TDD is the most used process for
developing software at mindmatters, if the library is to replace parts of the Epic-Relations or
Mercury projects, it must support this style of development.

For the development of transformation queries, it must be possible for users to de�ne and
assert expectations on the contents of the stage table in order to verify their correctness.

26

4. Implementation

This section showcases the implementation of BeetleETL. It is an implementation of the algo-
rithm described in chapter 2.

4.1. Disclaimer

Because BeetleETL is a library intended to be used by developers, whenever users are mentioned
this does not refer to users of the application that requires one-way synchronisation, but to
users of the library (i.e. developers of the application).

The code listings in this chapter are shortened to contain only the parts that are relevant to
explain the given functionality. These listings are annotated with the source code �le in which
the given part can be found.

4.2. Background

4.2.1. Test Driven Development

BeetleETL was developed following the practice of test driven development (TDD). This is a
software development practice that conforms to the following process: The developer writes a
test case that de�nes the desired functionality of a program. This test case functions as a crite-
rion for the correctness of the code. The functionality is then implemented as straightforward
as possible, continuously running the test, asserting whether the proposed solution is correct.
When the test passes, the code produced is refactored to meet code quality standards agreed
upon by the development team.

This cycle of red, green, refactor1 is then repeated for every new piece of functionality or as
more edge cases of a unit of code become apparent, continually improving the code quality of
the program as more tests inform its structure and design.

1The colours red and green stem from the output of common test runners where failing tests are depicted red and
passing tests green.

27

4. Implementation

In addition to guiding implementation, the resulting test suite also aids in regression testing
when introducing new functionality or refactoring larger parts of an application.

There are di�erent kinds of tests at di�erent levels of abstraction of the software being
developed. High level acceptance tests assert the correctness of a larger part of the program.
These tests, sometimes de�ned as user stories, can be transcribed directly from non-functional
requirements. Lower level unit tests help drive the development of smaller components or
single classes.

4.2.2. Schema Conventions

BeetleETL requires certain criteria for target tables to be met. These criteria are inspired by
the conventions introduced by Ruby on Rails2 and extended for BeetleETL.

Users of the library are expected to conform to the following rules for target table schemata:

• All primary keys columns are named id and of type INTEGER.

• All tables contain columns named created_at, updated_at and, deleted_at of type
TIMESTAMP.

• All tables contain columns external_id and external_source columns. For the pur-
pose of allowing custom external_ids, both these columns are expected to be of type
CHARACTER VARYING.

4.3. Implementing the Algorithm

Because the algorithm described in chapter 2 is already explained in terms of SQL queries,
BeetleETL can be viewed as a thin wrapper around a set of database queries, orchestrating the
order in which they are executed.

As described in section 2.6, the import process of transform, map-relations, table-diff,
assign-ids and, load is the same for every entity that is to be imported.

In BeetleETL these steps are therefore implemented using separate step classes. The classes
themselves contain the blueprints for the queries necessary to execute the steps while concrete
instances of them represent their respective functionality for a speci�c entity.

2Ruby on Rails is an open source full-stack web application framework written in Ruby that emphasises software
engineering patterns like convention over con�guration (CoC), don’t repeat yourself (DRY), the active record
pattern, and model–view–controller (MVC) [rub15]. It is used in both Epic-Relations and Mercury.

28

4. Implementation

Listing 4.1 shows the AssignIds step class as an example. The run method contains a
generalised version of the query introduced in section 2.3.3, augmented by methods that
provide data for a speci�c entity.

1 class AssignIds < Step
2

3 def run
4 database.execute <<-SQL
5 UPDATE #{stage_table_name_sql} stage_update
6 SET id = COALESCE(target.id, nextval(’#{table_name}_id_seq’))
7 FROM #{stage_table_name_sql} stage
8 LEFT OUTER JOIN #{target_table_name_sql} target
9 on (

10 stage.external_id = target.external_id
11 AND target.external_source = ’#{external_source}’
12)
13 WHERE stage_update.external_id = stage.external_id
14 SQL
15 end
16

17 end

Listing 4.1: CreateStage class for generating a stage tables.
./lib/beetle_etl/steps/create_stage.rb

The target_table_name_sql, stage_table_name_sql, table_name and, external_source

methods are provided by the Step superclass. In order to change the values of these methods
depending on the entity that is imported, this superclass also provides a constructor that takes
the name of the imported entity’s table as an argument.

For example, calling AssignIds.new(:publishers) would instantiate the AssignIds class
for a publishers table and the run method of that instance would execute the query for the
publishers’ stage table.

4.3.1. Executing Steps

The most basic approach to executing the steps of the import process is running them in
sequence. The order in which they can run is dictated on the one hand by the algorithm and
on the other hand by the relationships between entities.

As discussed in section 2.5.1, an entity with dependencies can only complete its import
process once all of its dependencies have at least completed the assign-ids step in order to be

29

4. Implementation

able to translate source namespace foreign keys into target namespace foreign keys. Before
that, the entity’s map-relations step cannot be executed.

Considering again the example of importing organisations and departments where depart-
ments belong to an organisation. The order in which the steps for importing these two entities
could be executed is depicted in listing 4.2.

1 def run_complete_import
2 [:organisations, :departments].each do |entity|
3 [
4 Transform.new(entity),
5 MapRelations.new(entity),
6 TableDiff.new(entity),
7 AssignIds.new(entity),
8 Load.new(entity)
9].each { |step| step.run }

10 end
11 end

Listing 4.2: Example for executing steps in a prede�ned sequence

In this example, all steps for importing organisations are executed �rst and then all steps for
importing departments. Adding new entities to the list only requires them to be added to the
array of entities.

This solution, however, has a severe downside to it: The code in listing 4.2 only states that
the entities have to be imported in that order. There is no information on the relationships
between them.

In addition to organisations and departments, consider a third employees table were being im-
ported. and their order was encoded in the array [:organisations, :departments, :employees],
it would not be possible to discern from the context of that �le alone whether employees de-
pended on organisations, departments or, both.

4.4. Domain Specific Language - DSL

Preventing miscon�guration and making dependencies explicit are the reasons why BeetleETL

provides a DSL for de�ning entities’ transformation queries and con�guring their relationships
(listing 4.3). This DSL helps gather all the necessary pieces of information for importing
entities:

30

4. Implementation

1. The name of the table that the entity is supposed to be imported into.

2. The payload columns that are supposed to be imported.

This is necessary since it is possible to have columns on target tables that are not
synchronised by BeetleETL, but are added by the application layer by way of users of
the application. These additional columns are not to be included in the comparison of
the table-diff step, so BeetleETL will only compare the columns speci�ed.

3. The entity’s foreign key references to other imported entities.

4. The SQL transformation query necessary to �ll the stage tables3.

1 import :departments do
2 columns :name
3

4 references :organisations, on: :organisation_id
5

6 query <<-SQL
7 INSERT INTO #{stage_table} (
8 name,
9 external_id,

10 external_publisher_id,
11 external_channel_id,
12 ...
13)
14 SELECT ...
15 SQL
16 end

Listing 4.3: Example con�guration �le for importing media in
BeetleETL

Apart from con�guring and actually starting the import process, creating a �le that de�nes
the imported entities using this DSL is the only thing users have to do in order to import them.

Stating the foreign key relations of tables also clari�es the relationships between entities.
This information is arguably more important when working on transformation queries than the
order they are executed in. Instead of explicitly stating the order of execution and relationships

3The queries themselves are not abstracted in any way. There are ETL tools that abstract simple transformations,
but the queries used in Epic-Relations and Mercury projects tend to be more complex, requiring multiple joins,
nested SELECTs and Common Table Expressions. In these cases SQL is arguably the most practical language to
write these queries in, especially if the development team is pro�cient in the use of SQL.

31

4. Implementation

between entities being implicit, BeetleETL’s DSL allows relationships to be de�ned explicitly,
making the order of execution implicit.

With the information provided, the necessary steps and, more importantly, their order can
be calculated by BeetleETL itself.

The DSL also provides a number of helper methods that can be used to augment the trans-
formation query. As an example, one such helper method (stage_table) is shown in listing
4.6. Its necessity will be explained in section 4.6.

4.4.1. Evaluating the DSL

Parsing of the DSL is implemented by evaluating the contents of the transformation �le (listing
4.3) in a context in which the import method is de�ned. This is done by the TransformationLoader

class’ load method.
The import method takes two arguments: one for the name of the target table and a block

containing the con�guration for the imported table. For every invocation of the import method
in the con�guration �le, its two arguments are appended to a list of transformations (listing
4.4).

32

4. Implementation

1 class TransformationLoader
2

3 def initialize
4 @transformations = []
5 end
6

7 def load
8 File.open(BeetleETL.config.transformation_file, ’r’) do |file|
9 instance_eval file.read

10 end
11

12 @transformations.map do |(table_name, setup)|
13 Transformation.new(table_name, setup)
14 end
15 end
16

17 private
18

19 def import(table_name, &setup)
20 @transformations << [table_name, setup]
21 end
22

23 end

Listing 4.4: BeetleETL’s transformation loader
./lib/beetle_etl/dsl/transformation_loader.rb

The TransformationLoader’s load method then instantiates an instance of the
Transformation class for each item in the list of transformations. This Transformation in-
stance (listing 4.5), in turn, evaluates the table’s con�guration block in the context of a DSL

instance (listing 4.6) that de�nes the columns, references and query methods used in the
example con�guration �le, depicted in listing 4.3.

33

4. Implementation

1 class Transformation
2

3 attr_reader :table_name
4

5 def initialize(table_name, setup)
6 @table_name = table_name
7 dsl = DSL.new(table_name)
8 @evaluated = dsl.instance_exec(&setup)
9 end

10

11 def column_names
12 @evaluated.column_names
13 end
14

15 def relations
16 @evaluated.relations
17 end
18

19 def dependencies
20 relations.values.to_set
21 end
22

23 def query
24 @evaluated.query_string
25 end
26

27 end

Listing 4.5: BeetleETL’s Transformation class
./lib/beetle_etl/dsl/transformation.rb

34

4. Implementation

1 class DSL
2

3 attr_reader :column_names, :relations, :query_strings
4

5 def initialize(table_name)
6 @table_name = table_name
7 @column_names = []
8 @relations = {}
9 @query_string = nil

10 end
11

12 def columns(*column_names)
13 @column_names = column_names.map(&:to_sym)
14 end
15

16 def references(foreign_table, on: foreign_key)
17 @relations[on] = foreign_table
18 end
19

20 def query(query)
21 @query_string = query
22 end
23

24 # query helper methods
25

26 def stage_table
27 Naming.stage_table_name_sql(@table_name)
28 end
29

30 ...
31

32 end

Listing 4.6: BeetleETL’s DSL class
./lib/beetle_etl/dsl/dsl.rb

The result of evaluating the con�guration �le is a list of Transformation instances for every
imported entity. Every instance contains all the necessary pieces of information for importing
its entity: The business logic transformation query, the columns that are to be imported and,
the relations to other entities.

35

4. Implementation

4.5. Parallelism

As already explained in section 2.6, the order in which the steps of the import process are
executed is is the same for every entity that is imported. The order of steps only becomes
more intricate when multiple entities are imported during the same application of the import
process that depend on one another.

There are, however, scenarios in which multiple entities are imported that have no depen-
dencies on one another. If this is the case, certain steps can be executed in parallel, possibly
increasing the execution time of the whole import process.

4.5.1. Calculating Dependencies

With the addition of declaring relationships between entities explicitly by the use of BeetleETLs
DSL, instead of applying the steps in a user-de�ned order, the order in which they have to run
can be calculated.

As mentioned in 4.3, all of BeetleETL’s step classes inherit from a generic Step class that
provides common functionality. These step classes are expected to override the dependencies

and run methods. The dependencies method returns a set of names of other steps that a
particular step requires to execute before it can be executed itself. The run method implements
the execution of the actual queries for that step.

transform table-diff assign-ids loadmap-relations

Figure 4.1.: Complete process of importing a single entity

Returning to the complete import process depicted in �gure 4.1, de�ning the dependencies
for some steps is trivial. The assign-ids step, for instance, can only run if the table-diff

step for the same entity has been completed. Listing 4.7 shows the way this is implemented in
BeetleETL.

To enable this, the Step class provides the step_name class method and the name instance
method that return a unique name of the step for a speci�c entity imported. For example, calling
TableDiff.step_name(:publishers) returns the string "publishers: TableDiff", uniquely
identifying the table-diff step for the publishers table.

36

4. Implementation

1 class AssignIds < Step
2

3 def dependencies
4 [TableDiff.step_name(table_name)].to_set
5 end
6

7 def run
8 database.execute <<-SQL
9 UPDATE #{stage_table_name_sql} stage_update

10 SET id = COALESCE(target.id, nextval(’#{table_name}_id_seq’))
11 FROM ...
12 SQL
13 end
14

15 end

Listing 4.7: BeetleETL’s AssignIds class
./lib/beetle_etl/steps/assign_ids.rb

For the map-relations step the calculating list of dependencies is more complex. Apart from
the transform step, preceding map-relations for the same entity, it also includes assign-ids

steps for other imported entities, as discussed in section 2.5.1. Listing 4.9 shows the implemen-
tation for calculating dependencies for the MapRelations step.

37

4. Implementation

1 class MapRelations < Step
2

3 def initialize(table_name, relations)
4 super(table_name)
5 @relations = relations
6 end
7

8 def dependencies
9 result = Set.new([Transform.step_name(table_name)])

10 result.merge @relations.values.map { |d| AssignIds.step_name(d) }
11 end
12

13 def run
14 @relations.map do |foreign_key_column, foreign_table_name|
15 database.execute <<-SQL
16 UPDATE #{stage_table_name_sql} current_table
17 SET #{foreign_key_column} = foreign_table.id
18 FROM ...
19 SQL
20 end
21 end
22

23 end

Listing 4.8: BeetleETL’s MapRelations class
./lib/beetle_etl/steps/map_relations.rb

For all other steps dependencies were dictated by the import algorithm and de�ned by
BeetleETL itself. Relationships between entities, however, are de�ned by the user and therefore
have to be validated.

When de�ning relationships between entities manually, there is a risk of users introducing
cyclic dependencies. Therefore BeetleETL will check whether the all steps’ dependencies can
be met before execution starts and throw an UnsatisfiableDependenciesError if not.

4.5.2. Parallel Execution

BeetleETL implements parallelism by asynchronously scheduling database queries. Parallel
execution of those queries itself is handled by the DBMS. Every query is handed o� to the
DBMS in its own thread and synchronisation between these threads is handled by a queue.

With all steps’ dependencies in place, BeetleETL starts executing a list of steps using an
instance of the AsyncStepRunner class. This instance implements the following algorithm:

38

4. Implementation

1. Find all steps without dependencies or whose dependent steps are already completed.

2. Execute each of these steps in a separate thread.

3. When a step completes, push its name onto the queue.

4. Pop the step’s name o� of the queue and mark it as complete.

5. If there are still steps left to run, start again with item 1.

39

4. Implementation

1 class AsyncStepRunner
2

3 def initialize(steps)
4 @dependency_resolver = DependencyResolver.new(steps)
5 @steps = steps
6

7 @queue = Queue.new
8 @completed = Set.new
9 @running = Set.new

10 end
11

12 def run
13 until all_steps_complete?
14 runnables.each do |step|
15 run_step_async(step)
16 mark_step_running(step.name)
17 end
18

19 step_name = @queue.pop
20 mark_step_completed(step_name)
21 end
22 end
23

24 private
25

26 attr_reader :running, :completed
27

28 def run_step_async(step)
29 Thread.new do
30 step.run
31 @queue.push step.name
32 end
33 end
34

35 ...
36

37 end

Listing 4.9: Implementation of BeetleETL’s AsyncStepRunner

./lib/beetle_etl/step_runner/async_step_runner.rb

4.6. Generating Stage Tables

Chapter 2 established that the algorithm used in BeetleETL for synchronising data requires the
use stage tables.

40

4. Implementation

While providing the source and target tables, are within the user’s responsibility, the
concept of stage tables is an implementation detail of BeetleETL, an therefore must not be
exposed to the user.

Because BeetleETL’s DSL requires users to state the table name, the names of the columns
that are to be imported and, the foreign key relations for any entity, stage tables can be
generated automatically, completely relieving the user of this responsibility.

By introspecting the target table, it is possible to procure the data type of every column
speci�ed, resulting in the following rules for stage tables:

1. It must contain an id column of type INTEGER.

2. It must contain an external_id column of type CHARACTER VARYING.

3. It must contain a transition column of type CHARACTER VARYING.

4. It must contain the speci�ed payload columns of the same type as their corresponding
target table columns.

5. For every foreign key relation it must contain a pair of foreign_id and external_foreign_id

of types INTEGER and CHARACTER VARYING, respectively.

Listing 4.10 shows parts of BeetleETL’s CreateStage class for generating stage tables and
demonstrates the application of the aforementioned set of rules.

For performance reasons it was chosen to de�ne the stage tables as UNLOGGED. Since the
data inside the stage tables is not crucial to the user’s application, it does not have to be logged
by the DBMS for recovery. In case of a database crash the import process cannot be continued
and has to be started anew.

41

4. Implementation

1 class CreateStage < Step
2

3 def initialize(table_name, relations, column_names)
4 super(table_name)
5 @relations = relations
6 @column_names = column_names
7 end
8

9 def run
10 database.execute <<-SQL
11 CREATE UNLOGGED TABLE IF NOT EXISTS #{stage_table_name_sql} (
12 id integer,
13 external_id character varying(255),
14 transition character varying(255),
15

16 #{column_definitions}
17)
18 SQL
19 end
20

21 private
22

23 def column_definitions
24 [
25 payload_column_definitions,
26 relation_column_definitions
27].compact.join(", ")
28 end
29

30 ...
31

32 end

Listing 4.10: CreateStage class for generating a stage tables.
./lib/beetle_etl/steps/create_stage.rb

4.6.1. Generating Table Names

The generation of stage tables, however, introduces a new problem. Names for the stage tables
have to be generated as well and that introduces the risk of name collisions. In order to remedy
this risk the naming scheme depicted in listing 4.11 is applied. It generates a name unique to
the external_source being imported for a given target table name. While collisions are still
possible, with the inclusion of the source’s name and the digest they areis i very unlikely.

42

4. Implementation

1 module Naming
2 def stage_table_name(table_name)
3 digest = Digest::MD5.hexdigest(table_name)
4 "#{external_source}-#{table_name}-#{digest}"[0, 63]
5 end
6 end

Listing 4.11: Method for generating names for stage tables.
./lib/beetle_etl/naming.rb

The method shown in listing 4.11 is also used in the implementation of the stage_table

helper method referred to in listing 4.3 of section 4.4. As listing 4.6 shows, it is available for
users of the library to use in their transformation queries. This allows users to insert data into
the stage table without knowing the name it has been assigned. The name is evaluated at
runtime and substituted with the name of the actual stage table.

4.6.2. Dropping Stage Tables

BeetleETL will drop the generated stage tables after the import run. It even ensures that they
are dropped if the process throws an exception.

4.7. Preventing Data Corruption

BeetleETL is designed to never corrupt user data, even if the application of the import process
fails for any reason.

While all steps, including CreateStage and DropStage, inherit from the same Step class and
de�ne the run and dependencies methods, they are not all executed in the same instance of the
AsyncTaskRunner class. In fact, only the steps necessary to transform the data and calculate
the the necessary changes are run asynchronously within the same instance.

The CreateStage and DropStage, however, are executed separately and in sequence. Since
creating and dropping database tables are very fast operations on a database, there is not much
performance improvement to be gained by running these steps in parallel.

In case of DropStage there is a downside to running them along with the other steps: In case
of an exception, they must be ensured to run in order not to pollute the user’s database4.

4The �rst approach to solving the problem of polluting users’ databases with stage tables was the use of
temporary tables. Unfortunately, however, this is not supported by the library that BeetleETL uses to dispatch
SQL queries to the database. The temporary tables would not be visible to subsequent queries.

43

4. Implementation

The Load steps executed separately, as well. Because actually applying changes to the target
tables might fail, they are run inside a database transaction: Either all Load steps will be
executed or none at all.

1 class Import
2

3 def run
4 transformations.each do |t|
5 CreateStage.new(t.table_name, t.relations, t.column_names).run
6 end
7

8 AsyncStepRunner.new(data_steps).run
9 BeetleETL.database.transaction do

10 AsyncStepRunner.new(load_steps).run
11 end
12 ensure
13 transformations.each do |t|
14 DropStage.new(t.table_name).run
15 end
16 end
17

18 private
19

20 def data_steps
21 transformations.flat_map do |t|
22 [
23 Transform.new(t.table_name, t.dependencies, t.query),
24 MapRelations.new(t.table_name, t.relations),
25 TableDiff.new(t.table_name),
26 AssignIds.new(t.table_name),
27]
28 end
29 end
30

31 ...
32

33 def transformations
34 @transformations ||= TransformationLoader.new.load
35 end
36

37 end

Listing 4.12: BeetleETL’s Import class
./lib/beetle_etl/import.rb

44

4. Implementation

4.8. Running Imports

In order to actually run BeetleETL, it has to be con�gured and executed. Listing 4.13 shows an
example con�guration.

1 BeetleETL.configure do |config|
2 config.transformation_file = ’../example_transform.rb’
3 config.database_config = database_config
4 config.external_source = ’my_example_source’
5 config.logger = Logger.new(STDOUT)
6 end
7

8 BeetleETL.import

Listing 4.13: Con�guring and running BeetleETL

4.9. Testing

BeetleETL is expected to be usable in a development environment that values automated testing5.
Therefore it must be possible for users to test their transformation queries.

Generating stage tables, however, introduces a number of complications: Stage tables only
exist during the execution of the import process and cannot be accessed outside of it. Their
names are unknown to the user, making it even more complicated to assert expectations on
them. Also, the transformation query itself is de�ned using BeetleETL’s DSL and is not directly
accessible to the user.

In order to enable automated testing, BeetleETL exposes a Testing module to its users. This
module contains three helper methods that aid users in running tests for their transformation
queries. Listing 4.14 shows an example for testing the transformation query for a channels

entity.

5This is not limited to TDD, but can be applied in any kind of software development process that features
automated testing.

45

4. Implementation

1 describe "importing channels" do
2

3 include BeetleETL::Testing
4

5 it "inserts a channel with a new id" do
6 with_stage_tables_for :channels do
7 insert_into("source.gattungen").values(
8 [:id , :name , :kuerzel] ,
9 [1 , "Gattung 1" , "G1"] ,

10)
11

12 run_transformation :channels
13

14 expect(stage_table_name(:channels)).to have_values(
15 [:id , :name , :abbreviation , :external_id] ,
16 [1 , "Gattung 1" , "G1" , "1"] ,
17)
18 end
19 end
20 end

Listing 4.14: Example for testing a transformation query using the
rspec testing library andBeetleETL’s Testing module

The with_stage_tables_for method takes a list of entity names as arguments as well as a
block and ensures the existence of these entities’ stage tables during the execution of the block.
After the block completes they are removed, restoring the initial state of the test environment.

Inside the block, the run_transformations and stage_table_name can then be used to run
the transformation for a given table and returning the name of the given stage table, respec-
tively.

46

5. Conclusion

BeetleETL provides a solution to the problem of one-way synchronisation. Given two sets
relational database tables, it can duplicate the state of one to the other while applying business
transformations.

The choice of BeetleETL’s particular interpretation of the ETL process narrows the scope
of the library, allowing it to hide most of the intricacies of the synchronisation algorithm.
Since the algorithm that BeetleETL uses for merging data is universal for all data that can be
imported and can be automated, complete understanding of it is no longer required to make
decisions about what data needs to be synchronised. If, for example, a new entity needs to be
imported, this can be de�ned by simply adding a new import directive to the transformation
�le, instead of �guring out which queries need to be executed in what order.

The DSL underlines the simplicity of the metal model that BeetleETL establishes. It allows
reasoning about import process on a higher level of abstraction: Users do not decide which
steps of the import process need to be run, but instead decide what entities need to be imported.
This allows a more declarative approach to one-way synchronisation where users de�ne the
desired state of a system and the library handles actually applying changes to the system so
that it resembles this desired state.

The parallel execution model that BeetleETL implements also improves execution time when
comparing it to a strictly sequential approach. At any given point during the application of the
import process all steps that could possibly run in parallel are dispatched asynchronously to
the DBMS. A comparison of execution times between BeetleETL and Mercury’s importer can
be found in appendix A.

BeetleETL has been released as an open source library on https://rubygems.org/ and can
be installed using the gem or bundler package managers for Ruby. The source code can be
found at https://github.com/mawiald/beetle_etl.

47

https://rubygems.org/gems/beetle_etl
https://github.com/mawiald/beetle_etl

5. Conclusion

5.1. Areas of Improvement

5.1.1. Analytics

Even though BeetleETL provides logging for individual steps and aggregates the durations of
all steps after each import run, there is potential for improving the library.

Durations of individual steps may be of interest in and of itself, but there is more value to
it when comparing them to the durations of previous runs. Especially when using complex
transformation queries, comparing runtimes of multiple applications of the import process can
o�er insights and suggestions as to what parts should be optimised.

Another helpful addition to the library would be statistics for changes in the imported
entities. Seeing how many entities were created, updated and, deleted might be of interest to
users of the application.

5.1.2. Validation Loop

Another possible improvement of BeetleETL would be the addition of a validation loop, a
concept found in the Epic-Relations importer.

In addition to transforming and importing data, it features the concept of a validation loop.
Because a large number of the entities imported are related to each other and validity of certain
records depends on the existence of certain others records, it is not feasible to �lter these
entities in the transformation queries as is done in BeetleETL.

Instead, a validation loop checks a number of conditions for every record before they are
loaded into the target tables and if these conditions are met, the record is deleted. If the
deletion of this particular record then causes the conditions for deleting a referencing record to
occur, that record is deleted in a subsequent run of the validation loop. This cycle is repeated
until no more records are deleted, which states that the remaining records are valid.

5.1.3. SQL parser

One further area of improvement for BeetleETL lies in the DSL. Currently, users are required
to supply the list of columns they wish to import for a given entity. Hence, the necessity
to understand the concept of external_ids in order to use BeetleETL for importing complex
graphs of related entities, complicates the mental model for synchronising data.

A possible solution to these problems is the use of an SQL parser. Using an SQL parser to
analyse the user supplied transformation queries results in abstract syntax trees from which
the imported columns could be extracted. This would make stating them obsolete, simplifying

48

5. Conclusion

the library’s interface.
Parsing the query could also be used to hide the existence of stage tables from the user. Users

could simply formulate their queries as if they operated on the target tables and BeetleETL

could replace the table in the AST.
The parsed query could also be transformed in a way that users would not have to insert

data the external_*_id columns. It would instead be possible to de�ne transformation queries
solely in the source’s primary key namespace using regular foreign key columns, simplifying
the the API even further and leaving it to the library to generate the necessary queries.

49

Appendices

50

A. Performance Comparison

In addition to importing and merging data, the Mercury importer also contains extracting data
from a Microsoft Access database �le and dumping the data into the source tables. Therefore,
all tests results include the duration of this extraction which varies between 3 and 4 minutes,
depending on the amount of data being imported.

In order to compare the execution time of bothBeetleETL and theMercury importer, BeetleETL
was integrated into the mercury importer, replacing the functionality.

A.1. Test Setup

The tests were run on an Early 2011 MacBook Pro with a 2GHz Core i7 processor and 8GB of
DDR3 ram, running Mac OS X 10.10.2 with the internet connection disabled. Measurements
for the duration of each import were taken using the unix time tool.

In order to run the test in a realistic environment, actual import data from the Mercury

project was used. Each test run consists of executing Mercury’s full ETL process.
Mercury imports 14 entities using transformations of varying complexity, ranging from

simple queries that merely move data to queries that require multiple joins and common table
expressions.

A.2. Results

The tests were run importing three di�erent Microsoft Access database �les: 1.33GB, 1.33GB
and, 1.42GB.

51

A. Performance Comparison

0m 0s

8m 47,5s

17m 35s

26m 22,5s

35m 10s

1: 1.33 GB 2: 1.33 GB 3: 1.42 GB

16m 4s14m 31s14m 18s

35m 10s

23m 29s22m 56s

Mercury BeetleETL

Figure A.1.: Importing three di�erent sets of data

52

Bibliography

[rub15] Ruby on rails. http://rubyonrails.org/, April 2015.

[TvS06] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems - Principles and

Paradigms, Second Edition. Prentice Hall, 2006.

[wik14a] Don’t repeat yourself. http://en.wikipedia.org/wiki/Don%27t_repeat_yourself, Octo-
ber 2014.

[wik14b] Extract, transform, load. http://en.wikipedia.org/wiki/Extract,_transform,_load,
October 2014.

[wik15] Master data. http://en.wikipedia.org/wiki/Master_data, April 2015.

53

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig verfasst und

nur die angegebenen Hilfsmittel benutzt habe.

Hamburg, 30. April 2015 Luciano Maiwald

	Introduction
	Project Background
	Motivation
	Extract, Transform, Load - ETL
	Structure
	Disclaimer
	PostgreSQL
	Importing vs. synchronising Data
	Third Party Data & Information System

	Developing the Algorithm
	Separation of Primary Key Namespaces
	An Introductory Example
	Separating Business- & Import Logic
	Transforming Data
	Calculating Changes
	Applying Changes
	Abstraction

	Deleting and Reinstating Data
	Importing Data with Foreign Key References
	Mapping Relations

	Completing the Import Process

	Design of the Library
	Extracting functionality
	API Design

	Functional Requirements
	Synchronising Data
	Enable Test-Driven Development

	Implementation
	Disclaimer
	Background
	Test Driven Development
	Schema Conventions

	Implementing the Algorithm
	Executing Steps

	Domain Specific Language - DSL
	Evaluating the DSL

	Parallelism
	Calculating Dependencies
	Parallel Execution

	Generating Stage Tables
	Generating Table Names
	Dropping Stage Tables

	Preventing Data Corruption
	Running Imports
	Testing

	Conclusion
	Areas of Improvement
	Analytics
	Validation Loop
	SQL parser

	Appendices
	Performance Comparison
	Test Setup
	Results

	Bibliography

