
Bachelorarbeit
Chandrakant Swaneet Kumar Sahoo

Nested Data Parallelism for Image Processing Algorithms

Optimisations in Functional Programming Languages

Fakultät Technik und Informatik
Studiendepartment Informatik

Faculty of Engineering and Computer Science
Department of Computer Science

Chandrakant Swaneet Kumar Sahoo

Nested Data Parallelism for Image Processing Algorithms
Optimisations in Functional Programming Languages

Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung

im Studiengang Bachelor of Science Angewandte Informatik
am Department Informatik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Michael Köhler-Bußmeier
Zweitgutachter: Prof. Dr.-Ing. Andreas Meisel

Eingereicht am: 23. Juli 2015

Chandrakant Swaneet Kumar Sahoo

Thema der Arbeit
Nested Data Parallelism for Image Processing Algorithms - Optimisations in Functional Pro-
gramming Languages

Stichworte
Nested Data Parallelism, Haskell, Bewertung, Vectorization, Fusion, Histogrammausgleich,
Funktionale Programmierung, Parallele Programmierung, Bildverarbeitung

Kurzzusammenfassung
Nested Data Parallelism ermöglicht den prägnanten und tre�enden Ausdruck irregulär-paralleler
Programme und erreicht trotzdessen eine Performance vergleichbar zu Flat Data Parallelism.
Dies wird durch eine Programmtransformation (’Vectorization’) erreicht. Verschachtelte Funk-
tionen und Datenstrukturen werden dabei auf �ache Funktionen und Datenstrukturen reduziert.
Diese Arbeit verlgeicht und bewertet die E�ektivität von Nested Data Parallelism und manuel-
ler Parallelisierung. Es werden vier Implementierungen des Histogramausgleichs erstellt - eine
Sequentielle, eine Manuell-parallelisierte, Eine die Nested-Data-Parallelism verwendet und die
davon Vektorisierte. Diese werden bezüglich Arbeitsaufwand, Ähnlichkeit zum Algorithmus,
Komplexitätklassen und mehr bewertet. Dies gechieht in Haskell als Example für funktionale
Programmiersprachen. Die Arbeit zieht den Schluss, dass Nested Data Parallelism e�ektiv im
allgemeinen Verlgeich ist. Jede Implementierung hat Stärken und Schwächen. Es gibt allerdings,
keine beste Implementierung.
Chandrakant Swaneet Kumar Sahoo

Title of the paper
Nested Data Parallelism for Image Processing Algorithms

Keywords
Nested Data Parallelism, Haskell, Evaluation, Vectorization, Fusion, Histogram Balancing,
Functional Programming, Parallel Programming, Image Processing

Abstract
Nested Data Parallelism enables the concise expression of irregularly parallel programs while
still being nearly as performing as �at data parallel programs. This is achived by a program
transformation (’Vectorizaiton’) . It �attens complex nesting of data structures and functions.
This thesis is a comparison and evaluation of Nested Data Parallelism and manual parallelism of

irregular image processing algorithms such as Histogram Balancing in functional programming
languages by the example of Haskell. Four implementations for Histogram Balancing are
created and evaluated on constant factors, running time complexity, human workload and
more. They are: sequential, manually-parallelized, nested data parallel and �nally a vectorized
thereof. The thesis comes to the conclusion, that Nested Data Parallelism compares well to the
other approaches. Though, every implementation has its advantages and drawbacks - none is
the best.

iv

Contents

1 Introduction 1
1.1 Aim and Methodology . 1
1.2 Structure . 2

2 Basics 3
2.1 Haskell . 3
2.2 Nested Data Parallelism . 6

2.2.1 Vectorization . 8
2.2.2 Communication Fusion . 12
2.2.3 Stream Fusion . 13

2.3 Parallel Complexity Measures . 15
2.4 AC : Histogram Balancing . 18

3 Sequential: Pseq 23
3.1 Implementation . 23
3.2 Complexities . 25

4 Manually parallelized: Pman 27
4.1 Parallel histogram accumulation . 28
4.2 Implementation . 29
4.3 Complexities . 30

5 Nested-Data-Parallel: Pnest 32
5.1 Utilities . 32
5.2 Implementation . 35
5.3 Complexities . 37

6 Vectorized Nested-Data-Parallel: Pvect 39
6.1 Transformations . 39

6.1.1 Vectorization . 39
6.1.2 Communication Fusioning . 41
6.1.3 Stream Fusioning . 43

6.2 Final Program . 44
6.3 Complexities . 46

v

Contents

7 Results and Discussion 48
7.1 Complexity Analysis . 48
7.2 Pro and Contra . 49
7.3 Conclusion . 51

8 Outlook 52
8.1 Summary . 52
8.2 Related Work . 52
8.3 Future Work . 53
8.4 Final words . 54

Appendix 55

Bibliography 56

Glossary 59

vi

List of Tables

2.1 Parallel functions in NDP . 9
2.2 Overview of Functions and Phases in NDP . 15
2.3 Rewrite Rules in NDP . 16
2.4 Work and Depth - De�nitions and Complexities 17

3.1 Complexities for Pseq . 26

4.1 Flat Data-Parallel Primitives . 27
4.2 Complexities for Pman . 31

5.1 Complexities for Pnest . 38

6.1 Complexities for Pvect . 47

7.1 Complexities for Pseq , Pman, Pnest and Pvect 48
7.2 Pros and Contras . 50

vii

List of Figures

2.1 Workload distribution in Flat and Nested Data Parallelism 8
2.2 Flattening of Nested Parallelism . 11
2.3 Unbalanced Image . 19
2.4 Unbalanced Histogram . 19
2.5 Balanced Histogram . 20
2.6 Balanced Image . 21

4.1 Parallel Histogram Accumulation . 28

5.1 Three-Step Parallel Pre�x Sum . 33
5.2 Parallel Evaluation of groupP . 34

viii

1 Introduction

The exponentially increasing number of processors and machines available in current hardware
are a great opportunity to speed-up programs. This is desired in image processing and is
frequently expressed with Data Parallelism.

Data-parallel programs express parallelism via bulk-primitives over parallel data structures -
e.g. map/reduce. They perform well on �at data and with regular non-recursive program �ow.
However, most applications in need of parallelism have irregular behaviour. Their algorithms
work with nested arrays (e.g. images or matrices), graphs, trees or complex recursion (e.g.
clustering or machine learning). Direct parallel implementation of such algorithms in �at data
parallelism results in a performance penalty. Programming parallel algorithms then mostly
becomes manual work and utterly complex.

In contrast, Nested Data Parallelism Blelloch (1996) lifts these limits and enables the concise
expression of irregularly-parallel programs - while still compiling to e�cient machine code. It
uses a non-trivial program transformation called ’Vectorization’ (or ’Flattening’) where the
original program is transformed into an equivalent �at data-parallel program.

Due to properties like Immutability and Referential Transparency, functional programming
languages like Haskell are fruitful grounds for sophisticated program transformations and
high-level expressiveness. They are key building blocks for e�ective Nested Data Parallelism.
Programming in Haskell is guided by important principles - conciseness of expression and
"let the compiler do the work for you". Nested Data Parallelism in Haskell is an excellent
embodiment of these principles.

All in all, this thesis aims to give an evaluation on Nested Data Parallelism and manual
parallelization in the functional programming language Haskell for application in image
processing.

1.1 Aim and Methodology

The question on how Nested Data Parallelism (NDP) compares to conventional parallelism is
tackled by the following methodology: An image processing algorithm with irregular behaviour

1

1 Introduction

is implemented in four variations. These variations are then compared on performance, human
workload and other aspects. Finally a conclusion is drawn.

AC := Histogram Balancing, a conceptual image processing algorithm
Pseq := A direct sequential implementation of AC

Pman := A manually-parallelized implementation of AC

Pnest := A nested data-parallel implementation of AC

Pvect := The vectorized implementation of AC from Pnest

The sequential implementation Pseq serves as a control-implementation for the parallel
programs. The manual implementation Pman will be compared against the nested data parallel
ones. It is also distinguished between the original program Pnest and its vectorization Pvect.
This distinctions enables to pin-point the advantages created by Vectorization.

Given the generalisations of NDP into Haskell Jones (2008), Haskell is an optimal choice
for the implementation. The results of this thesis however can be easily adopted to related
functional programming languages.

Contrary to any expectations, the thesis does not present directly executable programs.
NDP is Haskell is still in development and the program transformation is not yet completely
implemented. The vectorization - usually done by the compiler - is done manually here. This
leads to a theoretical analysis of all programs instead of benchmarking and statistical analysis.

Histogram Balancing was chosen for AC because of its simplicity and limited-irregularity.
It suits for three implementations and manual vectorization.

1.2 Structure

This thesis begins with the basics in chapter 2. It presents Haskell and Nested Data Parallelism
with Vectorization. Parallel complexity measures and Histogram Balancing are introduced
either. The subsequent four chapters present and analyse four implementations. First, the
sequentialPseq is presented (chapter 3). Second, comes the manually parallelizedPman (chapter
4). Third, the nested data parallel Pnest is given (chapter 5). Fourth, its vectorization Pnest

is examined (chapter 6). The thesis then compares and evaluates the programs in chapter 7.
Finally, chapter 8 summarizes the thesis, references to related work and gives an outlook.

2

2 Basics

"Auf den Schultern von Riesen"

Johannes von Salisbury

This chapter will give an introduction into the basics needed to understand this thesis. First,
an introduction into functional programming in Haskell is given - it is to ease the understanding
of the code involved. Then Nested Data Parallelism (NDP) is covered where key insights are
made and concepts that exploit them are presented. Afterwards an introduction into parallel
complexity measures is given. The concept of work and depth complexities are presented -
together with de�nitions to calculate them. Finally, Histogram Balancing is presented. Its
problem is described and the algorithm is formulated.

2.1 Haskell

Haskell is a general-purpose strongly-typed purely-functional programming language. It
has full type-inference, referential transparency, higher-order-functions and more features.
Functional programming in Haskell and similar languages is guided by two ideas - "write what
you mean" and "let the compiler do the work for you". The former means the use of high
abstractions to write concise code - while the latter means the use of sophisticated compilers 1

to optimise the abstractions to e�cient machine code.
A few of the main features needed in this thesis are presented now:

Syntax Consider this function de�nition:

1 foo :: Double -> Int
2 foo x = round (max 5 x)

foo takes the maximum of 5 and the argument number x and rounds it to the nearest integer.
The function is given a type signature in the �rst line. f :: t denotes that f is of type t. The
type of foo describes a function from a double �oating number to an integer. Multiple argument

1some which - like the Glasgow Haskell Compiler - are written in Haskell themselves

3

2 Basics

functions are typed with multiple arrows - e.g. max :: Double -> Double -> Double. In
contrast to many programming languages parentheses () are not used for function application
(as in f(a)) but instead are used to specify precedence/ordering. Function application is
expressed with spaces - as in ’ ’. E.g. round 5.2 applies the built-in �oating point rounding
function to return the integer 5. Multiple-argument functions are be applied with multiple
spaces. E.g. max 5 x applies max on 5 and x.

The function can be written alternatively as:

1 foo :: Double -> Int
2 foo x = let a = max 5 x
3 b = round a
4 in b

let-statements bind expressions to variables. The expression after the in-keyword is the
return value of the entire expression.

The function can be written without the explicit use of its argument x.

1 foo = (round) . (max 5)
2 foo = round . max 5

This is called Currying and function composition. One can omit the last argument of a function
and de�ne the function foo by a series of compositions. Function composition is denoted by a
dot (.). In this case foo is the composition of x 7→ max 5 x and x 7→ round x. Both lines
are equivalent and show, that function application ’ ’ binds stronger than composition (.).

In functional programming one often ends up nesting multiple functions:

1 myFunc x = (bar a b (baz c (foo d x)))

One can write the same function in various di�erent ways - depending on space and visual
ease.

1 myFunc x = (bar a b . baz c . foo d) $ x
2 myFunc x = bar a b . baz c . foo d $ x −− single−line, explicit argument
3 myFunc = bar a b . baz c . foo d −− single−line, implicit argument
4 myFunc x = bar a b −− multi−line, explicit argument
5 . baz c
6 . foo d
7 $ x
8 myFunc = bar a b −− multi−line, implicit argument
9 . baz c

10 . foo d

The $ operator denotes function application either. However, it has very low precedence. Such
that the functions are composed �rst before the argument is applied into the composition (line

4

2 Basics

1). The reader is noted, that the multi-line de�nitions apply the functions from bottom to up.
First foo, then baz and �nally bar is applied - even though foo is written last.

Naming Conventions Higher order functions are denoted with f,g or h. Variables are
denoted with x,y,z,a,b,c or with longer names like divisor or multWith2. Two closely
related variables are given primes. E.g. they are named x and x’. A prime is a part of the
variable name. Finally, a collection of x will be referred to by xs. E.g. xs is an array, xss is a
two dimensional array, etc.

Strong typing and Type Inference Every expression has a type. A program containing
ill-typed expressions, e.g. 3 + False, is rejected by the compiler. Types can be (almost always)
be inferred from the context and then don’t need to be speci�ed.

Type Synonyms Type synonyms enable one to refer to a complicated type by a simpler
name. E.g. type Foo a = (Int,a) de�nes a type synonym - such that Foo Double is
replaced by (Int,Double) during compilation.

Referential Transparency and Immutability Functions and expressions are referentially
transparent in Haskell. Like their inspiring equivalent in Mathematics, they always return
the same result when evaluated (with the same arguments). A consequence is Immutability -
variables and data structures cannot be mutated. Functions over data structures return new
copies instead of mutating the argument. This enables powerful optimization techniques such
as Inlining and Rewrite Rules. They are explored in section 2.2.

Record Syntax Records combine multiple values into a single complex value. The following
snippet creates a record of type Person with the �elds name and age.

1 Person {
2 name = "Mark"
3 age = 23
4 }

Polymorphism Types can be polymorphic. E.g. one can write the following general function
without nesessarily �xing to concrete types.

1 foo :: a -> b -> a
2 foo x y = x

5

2 Basics

Lower case letters in the type signature denote type variables. This function is well-de�ned for
both arguments as long as the return type is same as the type of x. This restriction is re�ected
in the type signature - the �rst and the last type variables are equal.

Similarly, one can de�ne functions over polymorphic data types. E.g. List a denotes a list
of elements of type a. List Int is by that de�nition a list of integers.

Polymorphisim is for example useful in map :: (a -> b) -> List a -> List b.

Higher Order Functions Functions are values and can be taken or passed as arguments to
other functions. map is an example.

1 map :: (a -> b) -> List a -> List b

Given a function from a to b and a List of a-typed values, map applies the function on every
element and produces a List of b-typed values.

Lambdas Functions can be written literally using Lambda expressions. For example, the func-
tion f x = 2*(x+1) can be written directly as f = λx -> 2*(x+1) or f = \x -> 2*(x+1).
The backslash \ is used inside code snippets - λ is used outside of them. 2

Identity, Flip and Function Composition Three commonly used functions are:

1 id :: a -> a
2 id x = x
3 flip :: (a -> b -> c) -> b -> a -> c
4 flip f x y = f y x
5 (.) :: (b -> c) -> (a -> b) -> a -> c
6 g . f = \x -> g (f x)

id is the identity function and flip exchanges a functions �rst two arguments. The identity
function is the neutral element of function composition (.) and the following law holds:
∀f: f . id = id . f = f. This is useful for Rewrite Rules.

A brief overview has been given. An introduction to Nested Data Parallelism is given next.

2.2 Nested Data Parallelism

In the ground breaking work Blelloch (1996) major contributions to parallel programming in
functional programming languages were made. The paper presented his earlier work Blelloch

2The \ is used because of its similarity to λ.

6

2 Basics

et al. (1993) on NESL - a programming language speci�cally designed for expressing parallelism
in functional programming languages. Its ideas and insights were adapted to various languages
- one of them being Haskell. Multitude years of research generalized the results of the special
purpose language NESL to the widely used general purpose language Haskell. 3 This project is
called Nested Data Parallel Haskell and this section will give an overview of its key concepts.

In Flat Data Parallelism, the programmer is provided with parallel mapping primitives to
express parallelism. Such a function might be map such that map f xs applies f on each of
the elements in the array xs in parallel.

This function has a fairly intuitive parallel implementation: First distribute the input array
evenly across the processing units (PUs), then compute each local chunk of the array with its
PU and �nally join all elements together. The inner function f is run sequentially.

Statements like map incr 4 can be perfectly parallelized. However, it reaches its limit when
considering statements like map (map incr) or map (map (map incr)). Within Flat Data
Parallelism only the outer-most level is run in parallel. That can lead to unbalanced work
distribution. The sub-arrays can be of very di�erent length. Figure 2.1 shows an example.
Running the inner elements in parallel requires a di�erent approach in dividing up the workload.

Nested Data Parallelism lifts these limitations. In NDP f can be a parallel operation either.
All levels of nesting can be executed in parallel - hence the name: Nested Data Parallelism.
It achieves this by transforming the source program into a functionally equivalent �at data-
parallel program. This (non-trivial) transformation is called ’Flattening’ or ’Vectorization’ and
includes subsequent compiler optimisations.

The entire program transformation can be broken down in three steps. Each step introduces
its new data types. They are presented below:

1. Vectorization - The nested arrays [:a:] which are used by the programmer are converted
to �at type-dependent array representations - namely PA a. The �attening is also applied
to nested parallel functions like those mentioned in the previous paragraph.

2. Communication Fusioning - By inlining the de�nitions of the parallel functions and using
semantics-preserving rewrite rules one can eliminate speci�c synchronisation points
and create tight processing pipelines. It uses Dist (PA a) to denote distributed chunks
of the global array PA a.

3Papers on NDP in Haskell: Jones (2008), Chakravarty et al. (2007), Leshchinskiy (2005), Leshchinskiy et al. (2006),
Keller and Chakravarty (1999) and Lippmeier et al. (2012).

4incr :: Int -> Int increments an integer.

7

2 Basics

Figure 2.1: Workload distribution in Flat and Nested Data Parallelism

3. Stream Fusioning - Sequential functions local to each PU can further be optimised to
reduce the number of intermediate arrays and to create tight loops. It uses Vector a

and Stream a5to implement the local array chunks and to fuse loops, respectively.

A few functions are prede�ned for parallel arrays. They correspond to functions used in
conventional functional programming. Their names and their types are given in 2.1.

2.2.1 Vectorization

Vectorization involves two major steps - Type dependent representation and Lifting. Both will
be explained in detail below.

Type dependent representation

Type dependent representation enables the programmer to work with arrays containing
complex data structures without scarifying. It is described in Chakravarty and Keller (2003)
and Chakravarty et al. (2005).

5Stream is a data structure designed to speci�cally enable non-recursive de�nitions of fusing functions (e.g.
mapP) by moving the recursion from the function to a step-wise stream-ful iteration. See Mainland et al. (2013).

8

2 Basics

Table 2.1: Parallel functions in NDP
function type description

(!:),indexP [:a:] -> Int -> a indexes the array; zero-based
lengthP [:a:] -> Int returns the length of the array
headP [:a:] -> a returns the �rst element
lastP [:a:] -> a returns the last element
mapP (a -> b) -> [:a:] -> [:b:] applies a function on all elements
zipWithP (a -> b -> c) zip together pairs of elements by f

-> [:a:] -> [:b:] -> [:c:] and return an array of results 6

sortP [:Int:] -> [:Int:] sorts an array
sumP [:Int:] -> Int sums the arrays elements
concatP [:[:a:]:] -> [:a:] removes a level of nesting
unconcatP [:[:a::]] -> [:b:] -> [:[:b:]:] exposes a structure to a �at array
replP Int -> a -> [:a:] replicates an element

Consider for example [:Int:] and [:[:Int:]:]. The former can be easily implemented
using a contiguous region of memory and inserting the bytes. The latter however cannot be
implemented equally. The sub-arrays could be of di�erent size. To allocate a block of memory,
one needs to know the size of all arrays beforehand. Implementing nested array naively would
use an array of pointers to to arrays of integers. Pointers however are undesirable, since they
decrease Cache Locality. CPU Caching is crucial for performance and is directly linked to
Cache Locality. Denning (2005).

Nested arrays need a di�erent approach for representation. That approach is the sep-
aration of data and structure. The following example describes how a nested array like
[[1,2,3],[4,5],[],[6]] :: [:[:Int:]:] can be implemented to increase Cache Local-
ity: 7

1 array :: PA (PA Int)
2 array = AArr {
3 data = [# 1,2,3,4,5,6 #],
4 indices = [# 0,3,5,5 #]
5 lengths = [# 3,2,0,1 #]
6 }

All data is packed together into a data �eld - regardless of nesting. All structural information
is divided into two arrays of integers. The indices-array contains - for every subarray in the

6e.g. zipWithP (+) [:1,2,3:] [:1,3,4:] = [:1+1,2+3,3+4:]. The arrays as assumed to
be of equal size.

7[#1,2,3#] is the notation used for a contiguous-memory byte-array.

9

2 Basics

original array - the index of the �rst element if it were to be indexed into the data �eld. The
lengths describe the lengths of each sub-array. Each sub-array corresponds to a pair of index
and length. For example, the second sub-array ([4,5]) corresponds to the second index (3)
and second length (2). Extracting 2 elements starting at index 3 in the data array will return
exactly these two elements.

This �at representation uses the new type PA (PA Int) instead of the old [:[:Int:]:].
The functions concatP and unconcatP become constant time operations. Removing a level
of nesting is as simple as discarding the segment descriptors. Adding a nesting structure of an
existing array to a �at array is implemented by adding the segment descriptor of the nested
array to the �at array.

The �at representation of irregularly nested arrays and the constant time (un-)�attening
operations are crucial insights in NDP.

Implementation for all other types - such as arrays of ints, arrays of doubles, are also given.
For example [:1,2,3:] :: [:Int:] can be simply represented as:

1 array :: PA Int
2 array = AInt [# 1,2,3 #]

Finally, during �attening the compiler transforms every parallel function (like fooP) to
their prede�ned scalar counterpart (like fooPS). The scalar functions work directly on the �at
representation and are designed to exploit them for e�ciency. concatPS and unconcatPS

are examples thereof. In fact, functions like fooP have no implementation because they are
entirely replaced by their fooPS counterparts. They are solely used to simplify the programmer
view.

Li�ing

During lifting, all occurrences of mapPS f are replaced by fL. fL is the lifted version of the
original function. Compared to the original scalar function f :: a -> b, the lifted function
applies the mapping over arrays. It is given by fL :: PA a -> PA b. For user-de�ned
functions, the lifted function is de�ned by lifting the de�nition of f recursively. The key is
now the de�nition of the lifted functions for the built-in functions. The most important one
among them is lifted mapPS - namely mapPL. To mapPS of type (a -> b) -> PA a -> PA b,
mapPL is of type (a -> b) -> PA (PA a) -> PA (PA b) 8 . To overcome the limitations
of �at data parallelism, its implementation has to map over all elements at once (instead of
mapping over the outer-nesting level only). The following implementation does that.

8Its type actually is PA (a :-> b) -> PA (PA a) -> PA (PA a) and works with a parallel array
of functions as the mapping argument. However, that is a detail independent of the conclusions of this thesis.

10

2 Basics

1 mapPL :: (a -> b) -> PA (PA a) -> PA (PA b)
2 mapPL f xss =
3 unconcatPS xss
4 . fL
5 . concatPS
6 $ xss

The de�nition of mapPL is curcial. First it �attens the array (line 5), then it applies the �at data-
parallel operation (line 4) using fL and �nally the array is un-�attened to the original structure
(line 3). 9 Figure 2.2 shall visually aid the understanding using the example mapP (mapP incr).
The call to incrL is divided among the processors evenly as shown in �gure 2.1.

Figure 2.2: Conceptual view and actual implementation of mapP (mapP incr)10

This is the key insight in NDP. Nested parallel functions are transformed into calls of mapPL
which avoid the nesting of the arrays entirely and map over the array is a single pass. Since
the (un-)�attening functions are constant time operations, there is only the cost involved in
mapping over all the elements. Using this procedure, one can transform nested data parallel
programs to �at data parallel programs. The former is easier to write in and �exible - while
the latter can be implemented directly and is e�cient.

9This implementation is di�erent from the original in one important aspect - namely the handling of pre-supplied
arguments in the function. Our implementation only handles functions without pre-supplied arguments - but it
is simpler to convey than the original in in Leshchinskiy (2005) and Leshchinskiy et al. (2006). More accurately,
one has an additional expression expandPS xss fEnv. Introducing it wouldn’t a�ect the overall situation
in this thesis. Therefore, it was omitted.

10The commas in-between the elements have been omitted for visual clarity. This thesis will sometimes use such
spaces for separation instead of commas.

11

2 Basics

Vectorization itself is a complex transformation and many details were omitted. More details
can be found in Jones (2008).

2.2.2 Communication Fusion

During Communication Fusion 11 lifted functions like incrL are inlined. They generally have
following form:

1 incrL :: PA Int -> PA Int
2 incrL = joinD . mapD incrS . splitD

The types of the new functions are explained in table 2.2. Essentially, the lifted functions are
implemented by explicitly splitting the array across all PUs (splitD), applying the original
function (in this case incrS) on each local chunk sequentially (mapD) and �nally joining all
chunks joinD.

The type Dist a denotes a distributed value of type a. Distributable values can for example
be arrays or linked lists. In case of arrays, the array is chunked and distributed evenly. In case
of linked lists, the lists is chunked and inter-PU pointers are used when each chunk reaches its
end.

Another aspect to note is the following distinction: The use of PA a means, that the entire
array is processed by a single PU locally and then redistributed globally to all PUs. The use of
Dist a means, that each PU is locally processing its chunk of the distributed value.

After these introducing words, one can take a look at an example of the expressions Com-
munication Fusion is designed to optimise. Here is an example.

1 myFunc :: PA Int -> PA Int
2 myFunc = mult2L . incrL

mult2L is a function which doubles each element in the array. Currently, the function works
in two steps - applying each operations individually. First, it splits the array, increments its
elements and joins the array (incrL). Second, it splits the array again, doubles its elements
and rejoins the array (mult2L). A more e�cient alternative would execute both operations
locally in a single pass rather than two. The compiler however can optimise this.

E�ective optimisation strategies in referentially transparent programming languages like
Haskell are Inlining 12 and Rewrites Rules 13 . Inlining refers to the inlining of de�nitions of
functions and variables. Applying that on the previous snippet of code gives the following:

11as described in Keller and Chakravarty (1999) and Chakravarty and Keller (2000)
12Jones and Marlow (2002)
13Peyton Jones et al. (2001)

12

2 Basics

1 myFunc :: PA Int -> PA Int
2 myFunc = joinD . mapD mult2S . splitD . joinD . mapD incrS . splitD

Then rewrite rules are used. They allow the speci�cation of general semantic-preserving laws
and allow the compiler to rewrite parts of the code according to them. They are speci�ed by
humans and table 2.3 introduces a few of them. Among them is "splitD/joinD". It states the
general law, that joining and re-splitting an array does not change the array at all. This is
clear for humans - but not for the compiler. By specifying such rules the compiler is aided in
optimising the code. In our case the compiler �nds the splitD/joinD pair and applies the rule
to get:

1 myFunc :: PA Int -> PA Int
2 myFunc = joinD . mapD mult2S . mapD incrS . splitD

The compiler eliminated communication in-between two phases of computation. This is a step
towards more e�cient evaluation. Using another rule, namely "mapD/mapD", the compiler
can further optimise to.

1 myFunc :: PA Int -> PA Int
2 myFunc = joinD . mapD (mult2S . incrS) . splitD

Communication Fusion did not only reduce the communication but also packed together
consecutive operations. This is desirable behaviour. Now the compiler can further optimise
local operations using Stream Fusion.

2.2.3 Stream Fusion

Stream Fusion concerns the optimisation of recursive composed functions into a single loop.
It is a complex topic 14 and this section will give a broad overview. For the purposes of this
thesis it is su�cient to state the following:

• Stream Fusion is applied similarly to Communication Fusion.

• Instead of inlining fooL functions, the fooS functions are inlined.

• Instead of mergeing "splitD/joinD", pairs of "unstream/stream" are merged.

• Instead of joining "mapD/mapD", pairs of "mapS/mapS" are joined.

• Stream a is a special stream-full data structure. Functions over streams are implemented
non-recursively. They are crucial for Stream Fusion.

14A few papers on Stream Fusion: Mainland et al. (2013), Coutts et al. (2007), Chakravarty and Keller (2001) and
Leshchinskiy et al. (2002)

13

2 Basics

• Any streams left over after optimisations are converted back into. Vector a. Streams
are only used for optimisation, but not as a collection.

Applying Stream Fusion creates the following code:

1 myFunc :: PA Int -> PA Int
2 myFunc = joinD . mapD (mapS (mult2 . incr)) . splitD

In contrast to the prior - two step - distributed computation, the new function has been
optimised to reduce communication and applies both operations in a single loop per PU.

Functions and Rewrite Rules

The transformation in chapter 6 is going to make use of many functions. Most common ones
are explained in table 2.2. The table also holds for other functions with same su�x - e.g. the
mapP row similarly applies to scanlP, groupP etc.

Most of the functions are simply inlined during optimisation. They do not exist at runtime
anymore and therefore they are marked ’not-executed’. Besides these functions, the compiler
needs rewrite rules. Most important ones are described in table 2.3.

A word on accuracy

The project of NDP in Haskell is - even after 15 years - still in work in progress. Due to frequent
changes, the source papers use con�icting notation and refer to di�erent statuses of progress.
Inconsistent literature and a project still in work is a problem for a thesis on that topic. It is not
simple to use the original ideas from NESL directly on Haskell as there are great di�erences
in-between them (not mentioning the 15 years of research already in it).

Therefore, in this thesis, the author has improvised on a few con�icting or missing details to
create an overall consistent view on NDP. The author speci�cally used implementations which
could really have been used in NDP.15 The reader is hereby noted that the details mentioned
here are implementable - but not necessarily an accurate representation of the current state of
progress.

After this introduction to NDP, the next sections will explain parallel complexitiy measures
and Histogram Balancing.

15E.g. groupP as introduced in chapter 5 is not included in NDP currently. However, its implementation described
there is perfectly possible.

14

2 Basics

Table 2.2: Overview of Functions and Phases in NDP
function �rst appearance/ type/

execution context description

mapP f xs Programmer-view (a -> b) -> [:a:] -> [:b:]
not executed Parallel array functions the programer uses

mapPS f xs Vectorization (a -> b) -> PA a -> PA b
not executed Parallel Scalar functions over �at arrays

indexPL is xs Vectorization PA Int -> PA (PA a) -> PA a
not executed Parallel Lifted indexing on �at arrays. It’s scalar

function is indexPS :: Int -> PA a -> a
mapD f x Communication Fusion (Vector a -> Vector b)

mapD: all PUs -> Dist (PA a) -> Dist (PA b)
f: local per PU Each PU applies f on it’s chunk of the

distributed value. True parallelism here!
fooS f xs Communication Fusion Vector a -> Vector b

local per PU Applies a function sequentially.
Vector is the Haskell implementation of
conventional PU-local in-memory arrays.

splitD Communication Fusion PA -> Dist (PA a)
all PUs splits a glboal array into chunks and

distributes them to each of the PUs
joinD Communication Fusion Dist (PA a) -> PA a

all PUs join a distributed array into a global array
replD Communication Fusion Int -> a -> Dist (PA a)

local per PU create the local chunk of a distributed
replication directly

stream Stream Fusion Vector a -> Stream a
not executed convert from an array to stream-ful data

unstream Stream Fusion Stream a -> Vector a
not executed convert back to an array

mapSt f xs Stream Fusion (a -> b) -> Stream a -> Stream b
not executed Applies a function on a stream of values

2.3 Parallel Complexity Measures

In Parallel Computing, the notion of time complexity has to be revisited. The time complexity
becomes dependent on the number of processors available.

Two key measures of an algorithm are work complexity and depth complexity. Work is
de�ned to be the time (counted in number of operations) the algorithms needs, if it were
executed on a single processor. Depth is de�ned as the longest chain of sequential data

15

2 Basics

Table 2.3: Rewrite Rules in NDP
name rewrite description

splitD/joinD splitD . joinD = id Joining and splitting an distributed array
is equivalent to a no-op.

mapD/mapD mapD g . mapD f Two consecutive mappings are
= mapD (g . f) equivalent to a single mapping

with both of the functions
mapD/replD mapD f . replD n Replicating a value and mapping

= replD n . f all values is equivalent to
directly applying the function and
subsequently replicating it.

splitD/replPS splitD . replPS n Replicating and splitting a value
= replD n is equivalent to creating the local chunks

directly. ReplD implements this and knows
which chunk its PU is responsible for.

ZipReplSplit zipWithD f (replD a) Zipping with a replicated value
. splitD already in scope - is equivalent to - applying
= mapD (f a) the mapping with the value

curried into the function.
mapD/zipWithD mapD f . zipWithD g xs = A map operation after a zip operation

zipWithD (λx y -> f (g x y)) xs is equivalent to a single zip operation
that applies both f and g.

unstream/stream unstream . stream = id Converting back and fourth is
equivalent to doing nothing.

dependency. It is also the time needed if one had an unlimited number of processors - or if one
had as many processors as the length of the longest intermediate array.

There are limited ways to calculate work and depth. Both are de�ned recursively over work
and depth of their sub-expressions. Generally, work is the sum of operations involved in all of
the sub-expressions - while depth is the maximum of number of operations involved in any
particular chain of sub-expressions. In this thesis, the functions W(·) and D(·) denote work
and depth, respectively. In some cases, syntactic constructs like W(f, x) are used to denote the
work involved in applying f on x. It does not include the work involved in calculating x in the
�rst place. Sometimes, the thesis denotes W(n) or D(n, gmax) to emphasize, that the work
and depth is dependent of the length of the input or of the parameter gmax. In these cases,
the function referred to is clear from the context. Table 2.4 gives work and depth complexities
for the parallel primitives of table 2.1. Landau-Notation O(·) is used for the complexity classes.

16

2 Basics

Table 2.4: Work and Depth - De�nitions and Complexities

function work depth

g . f W(g) + W(f) D(g) + D(f)
mapP f xs 1 + W(xs) +

∑
x∈xs W(f, x) 1+ D(xs) + maxx∈xs D(f, x)

zipWith f as bs 1 + W(as) + W(bs) 1 + D(as) + D(bs)
+
∑

pairs(x,y)∈(xs,ys) W(f, x, y) +maxpairs(x,y)∈(xs,ys) D(f, x, y)

sortP O(n log n) O(log n)
sumP n log n
replP n 1
(!:),indexP 1 1
lengthP 1 1
headP 1 1
lastP 1 1
concatP 1 1
unconcatP 1 1

The work and depth of mapP embodies the idea, that both are the sum or maximum of the
sub-expressions. Work and depth of a function composition are the sum of the work and depths
of each function.

An example is given now. Given the expression ys = mapP inrc (replP n 1), one can
apply the formulas to calculate its work and depth complexity.

W(ys) = 1 + W(replP, n, 1) +
∑
x∈xs

W(incr, x)

= 1 + n+ n

∈ O(n)

D(ys) = 1 + D(replP, n, 1) + max
x∈xs

D(incr, x)

= 1 + 1 + 1

∈ O(1)

xs is the intermediate array created by replP. The expression has constant depth - and
therefore is expected to be executable in constant time if given enough processors. If one had
as many PUs as the array is in size - one could assign each PU one element of the array and
process the elements locally. Each PU would execute a constant number of operations This is
indeed constant time in total.

17

2 Basics

These measures, as introduced in Blelloch (1996), work neatly within Nested Data Parallelism.
Consider for example the expression mapP (mapP incr) ass where the nested array ass

has dimensions w × h. Within NDP, the nested parallel operation is �attened and the array is
only once mapped over. Therefore, work of O(w · h) and depth of O(1) are expected. This is
indeed the result.

W(mapP,mapP, incr) = 1 +
∑

as∈ass
W(mapP, incr, as)

= 1 +
∑

as∈ass
(1 +

∑
a∈as

W(incr, a))

= 1 +
∑

as∈ass
(1 +

∑
a∈as

1)

= 1 +
∑

as∈ass
(1 + h)

= 1 + w · (1 + h)

∈ O(w · h)

D(mapP,mapP, incr) = 1 + max
as∈ass

D(mapP, incr, as)

= 1 + max
as∈ass

(1 + max
a∈as

D(incr, a))

= 1 + max
as∈ass

(1 + max
a∈as

1)

= 1 + max
as∈ass

2

= 1 + 2

∈ O(1)

Work and depth are an useful tool in measuring programs complexity. In the remaining
thesis, the work and depth complexities will be presented mostly without explicit derivation.

2.4 AC : Histogram Balancing

This section will introduce Histogram Balancing Masters (1999). It will state the problem and
give an overview of its solution.

18

2 Basics

Problem

Suppose an w × h-8-bit-gray-tone image with low contrast. 16

Figure 2.3: An image with low contrast

The goal is to make details more visible to the human viewer. Inspecting the images histogram
reveals new insights. 17

Figure 2.4: The histogram of the original image with absolute(red) and accumulative(black)
count.

A histogram shows the gray tone distribution of the image. The x-axis denotes the gray
tone and the y-axis denotes the number of pixels with a gray tone x (red). The black curve
denotes the total number of pixels with a gray tone g such that g ≤ x.

Details are di�cult to recognize in the original image due to the tight packing in the
histogram. The entire image limits its values to the range [120..205]. Histogram Balancing solves
this problem by de�ning a mapping f : Graytone→ Graytone, such that the accumulating

16Photo by Phillip Capper. Source: https://en.wikipedia.org/wiki/File:Unequalized_
Hawkes_Bay_NZ.jpg

17made by Wikipedia user Jarekt. Source: https://en.wikipedia.org/wiki/File:
Unequalized_Histogram.svg

19

https://en.wikipedia.org/wiki/File:Unequalized_Hawkes_Bay_NZ.jpg
https://en.wikipedia.org/wiki/File:Unequalized_Hawkes_Bay_NZ.jpg
https://en.wikipedia.org/wiki/File:Unequalized_Histogram.svg
https://en.wikipedia.org/wiki/File:Unequalized_Histogram.svg

2 Basics

count of the resulting image increases as uniformly as possible from 0 to 255. The histogram
2.5 18 is the envisioned goal.

Figure 2.5: The images balanced histogram

This mapping can be de�ned by spreading out the gray tones such that more frequent gray
tones get a larger range to occupy. This idea is explained detailed next.

Algorithm

To describe the image transformation hbalance : Image → Image a few de�nitions are
necessary:

Image = (Width,Height,Width×Height→ Graytone)
Histograma : Graytone→ a
gmax : Graytone

An Image assigns a gray tone to each pair of coordinates. It is bounded in width and height.
A Histograma assigns a value of type a to each gray tone. For a = Int, this becomes is an
(accumulated) histogram. For a = Double, one can describe normalised histograms. gmax is
the maximum gray tone for the gray tones in use (e.g. 255 for 8-bit gray tones).

The method is broken down into the following functions:

1. hist : Image→ HistogramInt

It calculates the histogram of an image.

2. accu : HistogramInt → HistogramInt

It calculates the accumulating histogram from the original histogram.

18made by Wikipedia user Jarekt. Source: https://en.wikipedia.org/wiki/File:
Equalized_Histogram.svg

20

https://en.wikipedia.org/wiki/File:Equalized_Histogram.svg
https://en.wikipedia.org/wiki/File:Equalized_Histogram.svg

2 Basics

3. normalize : Int× Int×HistogramInt → HistogramDouble

It normalizes the accumulated histogram to a range from 0 to 1. The arguments are
denoted a0 and agmax. a0 denotes the number of pixels having the lowest gray tone.
agmax denotes the total number of pixels in the image. Normalisation is de�ned in
mapping the histogram values by x 7→ (x−a0)

agmax−a0 .

4. scale : Graytone×HistogramDouble → HistogramInt

It scales the normalized values to the maximum gray tone (gmax) and rounds down to the
nearest integer. Scaling is de�ned in mapping the histogram values by x 7→ bx · gmaxc.

5. apply : HistogramInt × Image→ Image

It maps each gray tone to its new value as dictated by the histogram in the �rst argument.

Given these functions hbalance : Image→ Image can be de�ned as:

h := hist(img)

a := accu(h)

n := normalize(a(0), a(gmax), a)

gs := scale(gmax, n)

hbalance(img) := apply(gs, img)

Concrete implementations are given in the coming chapters. Applying the algorithm to the
example image gives 2.6 19 . Details are indeed more distinguishable in the balanced image.

Figure 2.6: The balanced image

19Photo by Phillip Capper. Source: https://en.wikipedia.org/wiki/File:Equalized_
Hawkes_Bay_NZ.jpg

21

https://en.wikipedia.org/wiki/File:Equalized_Hawkes_Bay_NZ.jpg
https://en.wikipedia.org/wiki/File:Equalized_Hawkes_Bay_NZ.jpg

2 Basics

Histogram Balancing is a frequently used algorithm in image processing. It is one of �rst
methods applied on images to decrease their complexity. These balanced images are often then
forwarded to sophisticated image processing algorithms.

The introduction is over and the programs Pseq , Pman Pnest and Pvect are presented and
analysed next.

22

3 Sequential: Pseq

"Only one who devotes himself to a cause
with his whole strength and soul can be a
true master. For this reason mastery
demands all of a person.

Albert Einstein

This chapter introduces Pseq- a sequential implementation of Histogram Balancing. The
implementation is given �rst. Then its work and depth complexities - as introduced in section
2.3 - are given.

3.1 Implementation

Pseq is a direct implemenation of AC as described in 2.4. First the data structures used are
presented. Then each component of the implementation is given. Afterwards the components
are assembled to Pseq .

Data Structures The implementation uses two data types.

1 type Image = PtrVector (PtrVector Int)
2 type Hist a = TreeMap Int a

PtrVector a is a pointer-based array holding values of type a. The use of pointers enables
them to be nested. Thus they can be directly used to represent two-dimensional images.
TreeMap k a is a binary search tree indexed by keys of type k and containing values of type a.
They are used for the representation of a histogram. 1 Functions over PtrVector are su�xed
-V. Functions over TreeMap are su�xed -M.

Histogram Calculation The steps for the creation of the initial histogram are given below:

1Due to Immutability, arrays are not an option. They require the replication of the entire array to change a single
value.

23

3 Sequential: Pseq

1 hist :: Image -> Hist Int
2 hist = foldrV (\i -> insertWithM (+) i 1) emptyM . concatV

hist proceeds in two steps. First the image is �atten into an one-dimensional array. Then, a
TreeMap is created counting the number of occurrences of each gray tone. foldrV is linear
in the size of the �attened image array. insertWithM is logarithmic in the number elements
inserted into the map. Its size is bounded by the number of gray tones - namely gmax+1.

Accumulation Calculating the accumulated histogram can be implemented by a pre�x sum
over values. It is linear in the size of the map.

1 accu :: Hist Int -> Hist Int
2 accu = scanlM (+) 0

Normalisation After accumulation, one has to normalise the histogram. The normalisation
is a direct implementation of its formula in 2.4.

1 normalize :: Int -> Int -> Hist Int -> Hist Double
2 normalize a0’ agmax’ as =
3 let a0 = fromIntegral a0’
4 agmax = fromIntegral agmax’
5 divisor = agmax - a0
6 in mapM (\freq’ -> (fromIntegral freq’ - a0) / divisor) as

It applies the mapping over the tree-map using mapM. fromIntegral explicitly converts from
Int to Double since Haskell clearly distinguishes them. Variable names with a prime (’) denote
values of type Int. Variable names without a prime denote Doubles. This naming convention
is equally used in Pman, Pnest and Pvect.

Scaling Scaling occurs similar to normalisation. It is implemented by a mapping over all
values in the histogram.

1 scale :: Int -> Hist Double -> Hist Int
2 scale gmax = mapM (\d -> floor (d * fromIntegral gmax))

Apply The application of the gray tone mapping to the images pixels is implemented by a
nested mapV over the image. It uses lookupLessEqualM to lookup the values for the histogram.
(It reverts back to a lower gray tone, if the gray tone is not found in the map.)

1 apply :: Hist Int -> Image -> Image
2 apply as img = mapV (mapV (lookupLessEqualM as)) img

24

3 Sequential: Pseq

Histogram Balancing Having de�ned the components, one can now directly de�ne Pseq :

1 hbalance :: Image -> Image
2 hbalance img =
3 let h = hist img
4 a = accu h
5 a0 = firstM a
6 agmax = lastM a
7 n = normalize a0 agmax a
8 gs = scale gmax n
9 img’ = apply gs img

10 in img’

First the histogram is created (line 3). Then it is accumulated (line 4). After that it is normalised
(line 5 to 7) and scaled(line 8). And �nally, the gray tone mapping is applied and returned (line
9 to 10). It is de�ned exactly as previously envisioned.

3.2 Complexities

For sequential algorithms, work and depth fall together with their time complexity class. This
is true for the purely sequential program Pseq .

Before the time complexity is calculated, a few variables are introduced:

n: the number of pixels in the image

h: the height of the image and equally the the number of sub-arrays in the nested array

w: the width of the image and equally the length of the sub-arrays

The complexity for the functions involved in Pseq are given in table 3.1. The functions are
grouped together by their context. Each component of Pseq (e.g. hist, accu) is given a group
with its each of its sub-functions and the components complexity. For example, hist uses
three functions. concatV has linear complexity in the number of total elements in the nested
array - that is n. insertWithM is an logarithmic time insertion operation into a tree. foldrV
traverses each pixel, starting with an empty map emptyM and adds each pixel into the tree-map
using insertWithM. There are n pixels in the array and and each insertion takes at-most time
logarithmic to the maximum gray tone gmax. Therefore its time complexity is O(n log gmax).
Further analysis of the other functions reveals the complexities given in the table.

Finally, hbalance uses hist (O(n log gmax)) and a few other functions (O(gmax)). There-
fore Pseq has a complexity of O(n log gmax+ gmax).

25

3 Sequential: Pseq

Table 3.1: Complexities for Pseq

function or variable O(...)

hbalance n log gmax+ gmax
�rstM 1
lastM 1

hist n log gmax
concatV n
emptyM 1
insertWithM log gmax
foldrV n log gmax

accu gmax
scanlM gmax

normalize gmax
scale gmax
mapM gmax

apply n log gmax = w · h · log gmax
lookupLessEqualM log gmax

The next chapter introduces the �rst parallel implementation Pman.

26

4 Manually parallelized: Pman

"When we had no computers, we had no
programming problem either. When we
had a few computers, we had a mild
programming problem. Confronted with
machines a million times as powerful, we
are faced with a gigantic programming
problem. "

Dijkstra, 1998

This chapter will give an implementation of Histogram Balancing that cannot make use
of NDP. This is the case when one is only given a few parallel primitives that don’t support
nesting of operations (at least not without falling back to sequential evaluation). Table 4.1
shows a few of these primitives.

Table 4.1: Flat Data-Parallel Primitives

function type

parMap (a -> b) -> Vector a -> Vector b
parZipWith (a -> b -> c)

-> Vector a -> Vector b -> Vector c
parReplicate Int -> a -> Vector a
parGenerate Int -> (Int -> a) -> Vector a

They are analogous to the parallel functions in NDP. parGenerate is a function such that
parGenerate size f creates a new array of size size and uses the generator function f to
create the elements by their indices. E.g. parGenerate 5 (λi -> i*i) = [0,1,4,9,16] .
These primitives all have work O(n) and depth O(1).

27

4 Manually parallelized: Pman

4.1 Parallel histogram accumulation

To implement Histogram Balancing in parallel, one has to revisit the sequential implementation.
The parallel creation of the accumulated histogram is a di�cult task. The goal is to try to come
up with an low complexity algorithm for the histogram calculation. After a few tries, one can
give the following implementation:

1 accuHist :: Image -> Hist
2 accuHist [] = parReplicate gmax 0
3 accuHist [x] = parGenerate gmax (\i -> if (i >= x) then 1 else 0)
4 accuHist xs = let (left,right) = splitMid xs
5 [leftRes,rightRes] = parMap accuHist [left,right]
6 in parZipWith (+) leftRes rightRes

The general idea is to merge accumulation and histogram creation into a single tree-like
reduction. To each array of pixels, accuHist returns the accumulated histogram of its gray
tones. The algorithm can be broken down into two edge-cases and one recursive case . Figure
4.1 gives an example of its evaluation.

Figure 4.1: Evaluation of accuHist [1,3,1,0]

Suppose gmax = 4 then the algorithm returns [0 0 0 0 0] if the input array was empty.
If the image only contained a single gray tone x, then it creates its accumulated histogram
[0 0 ... 0 1 ... 1 1] such that x is the index of the �rst 1. For example, for x = 2 the
array [0 0 1 1 1] is returned. This is implemented using the parGenerate function. Finally,

28

4 Manually parallelized: Pman

one has the recursive case. In this case, the the calculation of larger images is broken down by
splitting the array into half 1 and applying accuHist recursively. Finally, the histograms are
combined by element-wise addition with zipWith(+) (histogram merging).

This algorithm was carefully constructed after many failed approaches on such an algorithm.
Alternatives were considered, but they did not yield an acceptable complexity when compared
to accuHist.

4.2 Implementation

Given the introduction, the manually parallelized Pman can �nally be implemented. The
parallel primitives can be integrated well into normalisation and scaling. However, accuHist
and apply need to be adapted. The code is given below. (!) is used for indexing.

1 type Image = Vector Int
2 type Hist = Vector Int
3

4 hbalance :: Image -> Image
5 hbalance img =
6 let as = accuHist img
7 a0 = as ! 0
8 agmax = as ! gmax
9

10 sclNrm x = floor ((x-a0)/(agmax - a0)*gmax)
11 gs = parMap sclNrm as
12

13 apply gs = parMap (\i -> gs ! i) img
14 img’ = apply gs img
15

16 in img’

As explained in the previous section, the parallel histogram accumulation has been implemented
in accuHist. For the gray tone mapping (apply) to work, nested arrays cannot be used 2 . One
needs to change the entire image representation to a �at array manually. To retrieve a speci�c
pixel one needs to calculate the o�set using the image’s width. Fortunately, for Histogram
Balancing, indexed retrieval of pixels is not needed. However, any subsequent algorithms
in the pipeline of image processing would have to cope with the �at image representation
directly.

1splitting is a constant time operation for these view-based arrays
2as they would result into an array of pointers to sub-arrays. This is undesirable due to Cache Locality.

29

4 Manually parallelized: Pman

4.3 Complexities

In this section, complexity measures for the functions involved in Pman will be given. To
calculate work and depth of Pman, one needs the measures of all sub-functions and sub-
expressions. accuHist is not a built-in function - and so needs an individual analysis �rst.

accuHist The recursive case of accuHist involves functions of workO(gmax) and depth
O(1) - namely parZipWith (+) and splitMid. The exceptions are the two recursive calls
(packed together into a parMap).

One can formulate the work of accuHist as a recursive function.

W(n, gmax) =

gmax if n ≤ 1

2W(n2) + gmax else

where the edge-cases and recursive-cases correspond one-to-one to the de�nition of accuHist.
Such a recurrence relation can be resolved by tying the knot or using the Master Theorem’s
�rst case 3 4 . The following equations shall tie the knot:

W(n, gmax) =

gmax if n ≤ 1

20gmax+ 21W(n2) if n = 2

20gmax+ 21gmax+ 22W(n4) if n = 3

20gmax+ 21gmax+ ...+ 2logn−1gmax+ 2lognW(1) else

= (... tying the knot ...)

= gmax

logn∑
i=0

2i

= gmax(2logn+1 − 1)

= gmax(2n− 1)

∈ O(n · gmax)

The work involved is an product of the number of gray tones and the number of pixels
O(g · gmax). The reduction tree has height logarithmic in the size of the input array. The
input array is the image and has size n. Therefore, one can conclude D(n, gmax) ∈ O(log n).

3Master theorem: Cormen et al. (2001)
4However, the Master Theorem does not apply directly because it treats gmax as a constant - and not as a variable

parameter. The Master Theorem givesO(n) whereas tying the knot gives the more accurate classO(n ·gmax).

30

4 Manually parallelized: Pman

Pu�ing it together Given the code forPman, one can now give work and depth complexities.
These complexities are given in table 4.2. The table summarises the work and depths of each
of the calls. It is calculated by applying the formulas from section 2.3.

Table 4.2: Complexities for Pman

function or variable W ∈ O(...) D ∈ O(...)

hbalance n · gmax log n
apply n 1
parMap sclNrm gmax 1
accuHist n · gmax log n

accuHist n · gmax log n
splitMid 1 1
parZipWith gmax 1
parReplicate gmax 1
parGenerate gmax 1
arr ! i 1 1

The outer-most work and depth of Pman is given below:

W(n, gmax) = W(accuHist) + W(parMap, sclNrm) + W(apply, gs)

= n · gmax+ gmax+ n

∈ O(n · gmax)

D(n, gmax) = D(accuHist) + D(parMap, sclNrm) + D(apply, gs)

= max{log n, 1, 1}

∈ O(log n)

One can note, how work and depth of Pman is entirely bounded by the complexities of
accuHist. Improvements to accuHist complexities will improve Pman either.

Before moving to the next chapter - one shall be reminded that Pman involved much manual
work. It was not a direct translation of the algorithms description. It, especially requires the
subsequent algorithms to use a �at image representation.

The next chapter covers Pnest- an implementation using NDP.

31

5 Nested-Data-Parallel: Pnest

"Yields falsehood when
preceded by its quotation"
yields falsehood when
preceded by its quotation

Quine’s paradox

This chapter describes an implementation of Histogram Balancing that uses Nested Data
Parallelism in Haskell (as in Jones (2008)). First, a few prede�ned functions are presented to
increase their the understanding of their operational behaviour. Then the implementation is
presented and �nally its complexities are calculated.

5.1 Utilities

Scanl

Parallel pre�x sum has well studied e�cient implementations. One of them is the following:

1 scanlP f z xs =
2 joinD
3 . mapD (\(as,a) -> mapS (f a) as)
4 . propagateD f z
5 . mapD (scanlS f z)
6 . splitD
7 $ xs

This implementation is designed to reduce communication and therefore increase e�ciency. It
works in three steps. First, each PU computes its local pre�x sum (line 5). Second, the total
sum of each of the PUs is propagated - adding up subsequent values (line 4). Third, the updated
sum is used to increase the values of the local chunks (line 39). This approach is visualised in
�gure 5.1

In terms of depth and parallel complexity, the propagation is the bottleneck. However,
since the propagation itself is structurally isomorphic to pre�x summing itself, one can use

32

5 Nested-Data-Parallel: Pnest

Figure 5.1: Parallel pre�x sum in three steps (Figure from Keller and Chakravarty (1999))

a binary-tree-like scheme for propagation for the local values distributed on the PUs. This
propagation runs in time logarithmic to the number of PUs. It an be derived from Ladner and
Fischer (1980). For the purposes of this thesis, it is su�cient to state the following complexities
for scanlP (+) 0: W(n) ∈ O(n) and D(n) ∈ O(log n).

GroupP

groupP is a frequently used function in functional programming. It’s type is [:a:] -> [:[:a:]:]

and given an array it returns an array of arrays, where each subarray contains equal con-
secutive elements of the source array. For example groupP [4,2,2,2,2,3,3,1] becomes
[[4],[2,2,2,2],[3,3],[1]]. In NDP, the latter is represented by

1 AArr {
2 data = [# 4,2,2,2,3,3,1 #],
3 indices = [# 0,1,5,7 #]
4 lengths = [# 1,4,2,1 #]
5 }

An e�cient parallel implementation of groupP relies on the following key insight: The data

�eld in the nested array is the identical to the source array itself. To implement groupP one
only needs to e�ciently calculate the segment descriptor �eld and attach it to the source array.
This is possible in depth logarithmic to the size of the input array.

As visualised in the �gure 5.2, all elements are split onto the PUs �rst. Then each PU creates
a local chunk of a linked list of (Value,StartIdx,Count)-Triplets to record its singleton.
After that, each level of recursion merges two PUs by merging the last triplet of the left list

33

5 Nested-Data-Parallel: Pnest

Figure 5.2: An example calculation of groupP. Each box is a PU.

with the �rst triplet of the right list. If both triplets correspond to the same value, then a
new triplet with the total count and the left index is used. If both are unequal, then they
are left unchanged. The implementation of groupP uses a sub-function segdSplitMerge to
implement the splitting and merging. This function will be exposed later-on in the vectorization
of Pnest. Further analysis reveals the complexities W(n) ∈ O(n) and D(n) ∈ O(log n). All in
all, groupP is an operation which can very well exploit the �at representation of nested arrays.

34

5 Nested-Data-Parallel: Pnest

SortP

General parallel sorting can be as simple as a parallel implementation of merge-sort Cole
(1988) where the recursive calls are executed in parallel. sortP of type [:Int:] -> [:Int:]

implements this, and has complexities of W(n) ∈ O(n log n) and D(n) ∈ O(log n). 1

Histogram calculation

Conventional functional programming often enables one to write consise and correct im-
plementations by composing independent and general functions. For example - consider
the problem of run length encoding. Given a (possibly long) array, the goal is to create a
sparse array that compresses elements by encoding consecutive equal elements with a tuple
of the element and its number of occurrences. E.g. it transforms [4,2,2,2,2,3,3,1] to
[(4,1),(2,4),(3,2),(1,1)]. An implementation can be formulated directly.

1 runLengthEncode :: [:a:] -> [:(a,Int):]
2 runLengthEncode = mapP (\xs -> (headP xs, lengthP xs)) . groupP

This function uses groupP to �rst create sub-arrays of equal consecutive elements. Then it
transforms sub-arrays like [2,2,2,2] to tuples like (2,4). This is the second step of run
length encoding.

Run length encoding is an useful intermediate step in creating the histogram. It implements
the "counting"-property of a histogram. To make create a full histogram, the input image has
to be �attened �rst (unconcatP), then sorted(sortP) and �nally applied runLengthEncode

on. The sorting is necessary, as it groups together pixels regardless of their position in the
original image. The result is an array of type [:(Int,Int):] where each element describes a
gray tone (�rst integer in tuple) and its number of occurrences (second integer in tuple). Using
this approach, one has a parallel implementation of the histogram calculation. Comping up
with this approach is easier than creating an entire reduction as was the case in Pman.

5.2 Implementation

One can now give the implementation of Pnest. The code implements Histogram Balancing
using Nested Data Parallelism in Haskell and is given below:

1There exists other sorting mechanism like Batcher’s Bitonic Sort Batcher (1968) with O(n log2 n) work and
O(log2 n) depth. The author did not use its implementation as it is sophisticated and the workload of its
vectorization were expected to be enormous (on top of the all the other work). Retrospectively, the thesis does
not inline and expose the internals of sortP in Pvect. But this was not clear beforehand.

35

5 Nested-Data-Parallel: Pnest

1 type Image = [:[:Int:]:]
2 type Hist a = [:a:]
3

4 hbalance :: Image -> Image
5 hbalance img =
6 let h = hist img
7 a = accu h
8 a0 = headP a
9 agmax = lastP a

10 n = normalize a0 agmax a
11 gs = scale gmax n
12 img’ = apply gs img
13 in img’
14

15 hist :: Image -> Hist Int
16 hist = sparseToDenseP (gmax+1) 0
17 . mapP (\g -> (headP g,lengthP g))
18 . groupP
19 . sortP
20 . concatP
21

22 accu :: Hist Int -> Hist Int
23 accu = scanlP (+) 0
24

25 normalize :: Int -> Int -> Hist Int -> Hist Double
26 normalize a0’ agmax’ as =
27 let a0 = fromIntegral a0’
28 agmax = fromIntegral agmax’
29 divisor = agmax - a0
30 in mapP (\freq’ -> (fromIntegral freq’ - a0) / divisor) as
31

32 scale :: Int -> Hist Double -> Hist Int
33 scale gmax as = mapP (\a -> floor (a * fromIntegral gmax)) as
34

35 apply :: Hist Int -> Image -> Image
36 apply as img = mapP (mapP (as !:)) img

The �rst two lines describe the data structure used to encode an image - namely nested data-
parallel arrays. As described in the basics chapter - in NDP nested arrays are converted to �at
data and a segment descriptor during vectorization. Therefore nesting can be used from the
programmer point of view to simplify the programming and to support the intuition - without
sacri�cing performance.

36

5 Nested-Data-Parallel: Pnest

Pnest, like the description of Histogram Balancing, is split up in histogram calculation (lines
20 - 16) ,histogram accumulation (line 23), normalisation (lines 26 - 30), scaling (line 33) and
the �nal gray tone mapping (line 36). The signi�cant di�erent between Pnest and Pseq is the
calculation of the histogram. 2 In Pnest, it is implemented based on the approach explained
in the previous section. First, it �attens the array, then it sorts it and afterwards it uses run
length encoding.

At the end, however, it uses sparseToDenseP3. The expression sparseToDenseP size z

to converts the sparse array (typed [:(Int,Int):]) to its corresponding dense array (typed
[:Int:]). The dense array has size size and inserts z for elements not speci�ed in the sparse
array 4 . Using this approach, hist can create an array where the element at the index i is the
number of occurrences of the gray tone i in the original image. This is a simpler format for
the histogram. 5

The function apply uses a nested application of parallel functions. Within NDP, it will be
subject to �attening in Pvect.

5.3 Complexities

Using the work and depth measures as introduced in section 2.3, one can assign the following
measures to the functions involved. Let n be the number of pixels in an w × h image, then
the complexities are given in table 5.1. For the depths, hist and accu get logarithmic bounds
by either the size of the image and the maximum gray tone, respectively. All in all, Pnest has
W ∈ O(n log n+ gmax) and D ∈ O(log n+ log gmax).
Pnest is mostly a direct translation of Pseq and Histogram Balancing. A parallel implemen-

tation of histogram calculation is given by using only common purely functional processing
operations (such as grouP and sortP). All in all, it involves less workload for the programer
then it was the case in Pman.

In the next chapter Pnest is going to be transformed into Pvect manually. It will show, what
the compiler would do automatically.

2Aside from the the less signi�cant fact, that Pnest uses an array for its histogram while Pseq uses a binary-
search-tree.

3Its type is Int -> a -> PA (Int,a) -> PA a
4E.g. sparseToDenseP 8 0 [: (1,5),(2,4),(6,7) :] => [: 0,5,4,0,0,0,7,0 :]
5Keeping sparse arrays for the representation of the histogram is a viable option yielding possibly di�erent (maybe

better?) complexities.

37

5 Nested-Data-Parallel: Pnest

Table 5.1: Complexities for Pnest

function or variable W ∈ O(...) D ∈ O(...)

hbalance n log n+ gmax log n+ log gmax

hist n log n+ gmax log n
sparseToDenseP gmax 1
groupP n log n
sortP n log n log n
concatP 1 1

accu gmax log gmax
scanlP gmax log gmax

normalize gmax 1
scale gmax 1

apply n = w · h 1

38

6 Vectorized Nested-Data-Parallel: Pvect

"Now I will have less distraction."

Leonhard Euler, after loosing
his right eyesight

This chapter will apply the core transformation and optimisations o�ered by Nested Data
Parallelism in Haskell. This chapter will go through the transformations �rst and then present
the �nal program Pvect. The program would have been the results of the compilers automatic

optimisations before it would be translated into machine code and �nally executed. At the end
of this chapter, complexity measures for Pvect are given.

6.1 Transformations

As presented in section 2.2, the compiler applies three phases of program transformations:

1. Vectorization - Flattening of array representations and �attening of nested parallel func-
tions.

2. Communication Fusioning - Inlining of parallel functions and the use of Rewrite Rules
to eliminate communication.

3. Stream Fusioning - Inlining of local traversals and the use of Rewrite Rules to reduce the
number of traversals.

The compiler begins with Vectorization.

6.1.1 Vectorization

Applying the vectorization procedure as described in Jones (2008) yields the following code:

1 hbalance img :: PA (PA Int)
2 hbalance img =
3 let a = scanlPS plusInt 0

39

6 Vectorized Nested-Data-Parallel: Pvect

4 . sparseToDensePS (plusInt gmax 1) 0
5 . (\g -> ATup2 (headPL g) (lengthPL g))
6 . groupPS
7 . sortPS
8 . concatPS
9 $ img

10 n = lengthPS a
11 gs = floorDoubleL
12 . multDoubleL (int2DoubleL (replPS n gmax))
13 . divL
14 (minusL
15 (int2DoubleL a)
16 (replPS n (int2Double (headPS a)))
17)
18 . replPS n
19 $ minusDouble (int2Double (lastPS a)) (int2Double (headPS a))
20 in unconcatPS img
21 . indexPL (expandPS img gs)
22 . concatPS
23 $ img

Various functions (like hist and accu) have been inlined and are tightly packed together
here. The program also replaced the nested [:a:] by �at PA a. It also replaced polymorphic
functions like fromIntegral by speci�c monomorphic primitive machine functions like
int2Double.

Starting, lines 9 to 4 describe the calculation of the histogram. It’s only di�erence is the
use of vectorized scalar functions (e.g.groupPS). These functions operate of the e�cient �at
representation instead of the nested representation.

After that in line 4, the accumulated histogram is calculated.
Lines 19 to 13 and 21 to 11 describe the normalisation and scaling of the gray tones respec-

tively. The vectorized code uses lifted arithmetic functions (like floorDoubleL) that operate
over arrays. The normalisation constants gmax’,a0 and divisor have been inlined and are
replicated1 to the length of the gray tone array before the lifted arithmetic operations are
applied.

Finally, lines 32 to 20 describe the mapping of the images gray tones. The nested parallel
operation mapP (mapP (!a)) - formerly a part of apply - has now been �atten to use a lifted
parallel operation, namely indexPL, over a �at array of the pixels of the image. This is an
embodiment of the key insight in Nested Data Parallelism.

1replPS n x creates an array of length n - all containing the element x. It has the type
Int -> a -> PA a

40

6 Vectorized Nested-Data-Parallel: Pvect

The compiler however had to add an expression expandPS img gs for it to be correct. That
is an artefact of the actual �attening procedure. It is responsible for the redistribution of the
gs array. It does not a�ect the overall situation (in terms of work and depth) and therefore it is
not further discussed.

In total, the program has a few smaller Constant Factors now. This is mainly due to the
elimination of nested data structures and operations. However, there is still much room for
improvement.

6.1.2 Communication Fusioning

Communication Fusioning consists of inlining de�nitions of parallel functions and using
rewrite rules to eliminate unnecessary communication. Applying this transformation changes
the de�nition of the histogram a and the gray tones gs. They are separately discussed below.

Histogram calculation

The new de�nition of the accumulated histogram calculation is given below:

1 let a = joinD −− scanlPS ends
2 . mapD (\(as,a) -> mapS (plusInt a) as)
3 . propagateD plusInt 0
4 . mapD (scanlS plusInt 0) −− scanlPS begins; fused
5 . sparseToDenseD (plusInt gmax 1) 0 −− sparseToDensePS ends
6 . splitSparseD (plusInt gmax 1)
7 . joinD −− sparseTodensePS begins
8 . mapD tripletToATup2 −− fused lambda and groupPS
9 . segdSplitMerge 0 −− workhorse of groupPS

10 . sortPS
11 . concatPS
12 $ img

One can �rstly observe the occurrence of distributed functions (with a -D su�x). They operate
either on each PU locally (as with mapD) or implement some speci�c inter-PU calculation
(as does propagateD). These functions are the result of inlining various parallel functions
and eliminating communication. The correspondence to their original functions is given as
comments in the code. Only sortPS and concatPS are unchanged. A real compiler would have
inlined their de�nitions and looked for optimisations.

Aside from them, inlining scanlPS and sparseToDensePS 2 exposes their internals. In-
between both of the functions, there was a composition of the distribution primitives - namely

2It’s de�nition is given in the appendix 8.4.

41

6 Vectorized Nested-Data-Parallel: Pvect

splitD . joinD. Applying the rewrite rule "splitD/joinD" eliminated a point of synchronisa-
tion.

This leaves propagateD as the only inter-PU communication in-between the splitting of
the sparse array and joining the histogram at the end (line 1).

The expression mapP (λg -> (headP g,lengthP g)) . groupPS was involved in a
rather special fusion. Essentially, the lambda expression was was applied to the result
of groupPS. This enabled further communication fusion and created the local operation
tripletToATup2 3 . It creates the local chunks of the sparse-array directly. segdSplitMerge
does the actual work of the distributed grouping4.

Normalisation and Scaling

The new code for normalisation and scaling is given below:

1 let n = lengthPS a
2 gs = joinD . mapD f . splitD $ a
3 f = (\gmax’ divisor a0 x ->
4 floorDoubleS
5 (multDoubleS
6 (divDoubleS
7 (minusDoubleS
8 (int2DoubleS x)
9 a0)

10 divisor)
11 gmax’)
12)
13 $ (replD n . int2Double $ gmax)
14 $ (replD n
15 . minusDouble (int2Double (lastPS a))
16 . int2Double . headPS $ a)
17 $ (replD n . int2Double . headPS $ a)

The de�nitions of the lifted functions are similar to these two examples:

1 floorDoubleL = joinD . mapD floorDoubleS . splitD
2 multDoubleL as = joinD . zipWithD multDoubleS (splitD as) . splitD

Inlining these functions created �ve pairs of splitD . joinD - which were then immediately
eliminated using the "splitD/joinD" rule.

3tripletToATup2 :: LinkedList (Int,Int,Int) -> PA (Int,Int).
4as explained in chapter 5

42

6 Vectorized Nested-Data-Parallel: Pvect

After that, a cascade of rewrite rules �red and propagated the normalisation and scaling
constants into local computation. A sophisticated combination of the rules "mapD/zipWithD",
"splitD/replPS", "mapD/replD" and "ZipReplSplit" resulted in the code given above.

Operationally, there is an important change in the normalisation and scaling. Although,
constants (like int2Double $ gmax) are still being replicated into arrays before applying the
arithmetic mapping - now the replication is only limited to the local PU. This is di�erent than
before, when the constants were replicated globally and subsequently split.

In terms of speed, communication fusion eliminated six points of synchronisation. It greatly
reduced constant factors in its complexity by pushing replications from global redistributions
into local PU operations. Stream Fusion further improves this.

6.1.3 Stream Fusioning

Stream Fusioning is the �nal step of optimisation. Applying it improves the normalisation and
scaling only. The new code is given below: 5

1 let a0 = int2Double . headPS $ a
2 divisor = minusDouble (int2Double (lastPS a))
3 . int2Double . headPS $ a
4 gmax’ = int2Double $ gmax
5 normScale = floorDouble
6 . (flip multDouble) gmax’
7 . (flip divDouble) divisor
8 . (flip minusDouble) a0
9 . int2Double

10 gs = joinD . mapD (mapS normScale) . splitD $ a

The replications have been removed entirely. Constants are calculated �rst and then used
in normScale to apply the arithmetic calculation. The arithmetic functions also have been
merged together into single function normScale. This function is now applied element-wise
on each value in each of the local chunks of the entire histogram array.

The code is the result of inlining the local sequential functions (like multDoubleS) and
subsequent stream fusion. For example, multDoubleS and floorDoubleS are de�ned as:

1 floorDoubleS :: Vector Double -> Vector Int
2 floorDoubleS = unstream . mapSt floorDouble . stream
3

4 multDoubleS :: Vector Double -> Vector Double -> Vector Double
5 multDoubleS as = unstream . zipWithSt multDouble (stream as) . stream

5flip were not actually inserted by the compiler. However, the nesting of functions is easier to display using
flips.

43

6 Vectorized Nested-Data-Parallel: Pvect

Inlining these de�nitions creates expressions of unstream . stream. Applying the "un-
stream/stream" rule and a few other rules analogous to Communication Fusioning �nally
propagates the constants outside of any traversals.

The transformation is over now. The next section will give an overview of the results.

6.2 Final Program

Summing up the steps, the compiler gives the following optimised code for Pvect:

1 type Image = PA (PA Int)
2 type Hist = PA Int
3

4 hbalance :: Image -> Image
5 hbalance img =
6 let a :: Hist
7 a = joinD
8 . mapD (\(as,a) -> mapS (plusInt a) as)
9 . propagateD plusInt 0

10 . mapD (scanlS plusInt 0)
11 . sparseToDenseD (plusInt gmax 1) 0
12 . splitSparseD (plusInt gmax 1)
13 . joinD
14 . mapD tripletToATup2
15 . segdSplitMerge 0
16 . sortPS
17 . concatPS
18 $ img
19 n :: Int
20 n = lengthPS a
21

22 a0, divisor, gmax’ :: Double
23 a0 = int2Double . headPS $ a
24 divisor = minusDouble (int2Double (lastPS a))
25 . int2Double . headPS $ a
26 gmax’ = int2Double gmax
27

28 normScale :: Int -> Int
29 normScale = floorDouble
30 . (flip multDouble) gmax’
31 . (flip divDouble) divisor
32 . (flip minusDouble) a
33 . int2Double

44

6 Vectorized Nested-Data-Parallel: Pvect

34

35 gs :: Hist
36 gs = joinD . mapD (mapS normScale) . splitD $ a
37

38 in unconcatPS img
39 . indexPL (expandPS img gs)
40 . concatPS
41 $ img

On the surface, the algorithm works quite similar to a direct implementation of Pnest. First
the histogram is calculated (lines 18 to 11) and accumulated (lines 10 - 7). Then the constants
a0,divisor and gmax’ are calculated globally and distributed to each PU (lines 22 to 33). After
that, each PU applies the normalisation and scaling transformations (line 36). The mapping
array gs is then �nally used to map each gray tone to its new value (lines 41 to 38). The gray
tone mapping is an example of the �attening of nested parallel functions in NDP.

All in all, Pvect o�ers a few advantages over Pnest:

• a decreased number of communication and synchronisation points

• �at data structures and �at operations further decrease constant factors

• Inlining and optimisation fused normalisation and scaling together - even though they
were separated in Pnest. The programmer did not need to fuse them manually. This
stands in contrast to the situation in Pman.

• After writing Pnest, there is no more work involved for the programmer in generating
this optimised code.

Having transformed Pnest to Pvect, one is now ready to give a complexity analysis thereof.

45

6 Vectorized Nested-Data-Parallel: Pvect

6.3 Complexities

The complexity analysis for work and depths remains similar to that of Pnest. After all, both
are the same algorithm. Pvect is only better at it’s constant factors. Let n be the number of
pixels in the image, then its complexity is given by: 6 7

W(w × h, gmax) = W(hist) + W(accu) + W(gs) + W(img′)

∈ O((n log n+ gmax) + gmax+ gmax+ n)

= O(n log n+ gmax)

D(w × h, gmax) = D(hist) + D(accu) + D(gs) + D(img′)

∈ O(log n+ log gmax+ 1 + 1)

= O(log n+ log gmax)

The use of the plentiful new functions does not change the overall situation compared to
Pnest. Pvect has the same work and depth complexities as before. Being at O(n log n+ gmax)

in work the histogram calculation remains the most expensive when executed on a single
processor. With increasing number of processors, the various logarithmic depth operations in
the (accumulated) histogram calculation become the bottleneck. They require time logarithmic
in the number of gray tones gmax and the number of pixels n. A overview of all the functions
an their complexities can be found in the table 6.1.

The implementation and analysis of the programs Pseq , Pman, Pnest and Pvect have been
given. The next chapter with the discussion of the results.

6 The calculation of a is re-split into hist and accu.
7 The reader might ask, why propagateD has higher depth than work - and why work is simply 1. That is,

because the value increases logarithmically with the number of PUs. Since in ’work’ only a single processor is
used, there is no propagation of values and the time is constant.

46

6 Vectorized Nested-Data-Parallel: Pvect

Table 6.1: Complexities for Pvect

function or variable W ∈ O(...) D ∈ O(...)

hbalance n log n+ gmax log n+ log gmax

hist n log n+ gmax log n
concatPS 1 1
sortPS n log n log n
segdSplitMerge n log n log n
mapD tripletToATup2 gmax 1
joinD xs gmax 1

accu gmax log gmax
sparseToDenseD gmax 1
splitSparseD gmax 1
mapD scanlS gmax 1
propagateD 1 log gmax
mapD (mapS plusInt) gmax 1
joinD gmax 1

as gmax 1
splitD gmax 1
mapD normScale gmax 1
joinD gmax 1

expandPS n 1

img’ n 1
concatPS 1 1
indexPL n 1
unconcatPS 1 1

47

7 Results and Discussion

"Vertrauen ist gut, Kontrolle ist besser."

Redewendung

This chapter summarises results of the four implementations Pseq , Pman, Pnest and Pvect.
First the complexities of the programs are given and discussed. Then, the pros and contras
of each program are presented. They compare them on di�erent aspects. Finally, the chapter
ends with a conclusion on Nested Data Parallelism.

7.1 Complexity Analysis

The complexities of all four programs are summarised in table 7.1. Note that in most image
processing applications gmax < n holds. The number of pixels in an image is usually greater
than the number of gray tones each pixel has available.

Table 7.1: Complexities for Pseq , Pman, Pnest and Pvect

program W ∈ O(...) D ∈ O(...)

Pseq n log gmax+ gmax n log gmax+ gmax
Pman n · gmax log n
Pnest n log n+ gmax log n+ log gmax
Pvect n log n+ gmax log n+ log gmax

A few observations can be made.

Pnest versus Pvect: Pnest and Pvect have equal work and depth complexities. Compiler
optimisations can rarely optimise into a lower complexity class. However, the use of �at data
structures, the optimisation for cache locality and the fusion of communication and loops
greatly reduces the constants factors of Pvect.

48

7 Results and Discussion

Pman versus Pvect: Work and depth complexities of Pman and Pvect are competing. While
the work of Pman is a product of the parameters n and gmax - the work of Pvect (and Pnest) is
only a sum. For larger parameters, and a limited number of processors Pvect will out-compete
Pman. Pvect has a speed-up linear in gmax.

Regarding depth however, the opposite is the case. Pman grows logarithmic to n whereas
Pvect grows logarithmic to n and gmax. For large values of gmax and a high number of
processors, Pman will out-compete Pvect. However, the speed-up is only a summand of
log gmax.

Sequential versus Parallel: Out of all programs, Pseq has the best bounds of work. This
is due to its iteration-based histogram creation. Parallel programs cannot use this method
because they then were to fall back to sequential traversal. Pman and Pnest instead used more
advanced methods to implement parallel histogram creation.

On one hand, their methods have worse work complexities. If gmax is treated as a constant,
then Pseq grows linearly - whereas Pman and Pvect grow O(n log n). On the other hand, they
greatly improve in depth complexities. While Pseq remains linear to n, Pman and Pvect are
only logarithmic to n.

Parallel Programs have an overhead when the number of PUs is low. With an increasing
number of PUs, they out-compete Pseq .

Parameter configuration: Di�erent parametrization in n and gmax leads to di�erent
programs being better and worse and others. As stated in paragraph 7.1, for large parameters
and a limited number of PUs, Pvect performs better than Pman. However, for large gmax and
a high number of PUs the situation is reversed. Depending on the application context, di�erent
parameters gmax and n are given. This makes some algorithms faster than the others.

7.2 Pro and Contra

Table 7.2 gives an extensive pro and contra analysis of the four programs. They compare the
programs on their similarity to AC , running time with variation of the number of PUs, amount
of human workload involved and more.

49

7 Results and Discussion

Table 7.2: Pros and Contras

program pro/contra

Pseq + It is a direct implementation of AC .
+ It requires the least amount of human work.
- It has semi-high constant factors due to pointer-based nesting.
- It is purely sequential and cannot gain from parallelism.

Pman + It achieves time logarithmic to n for large number of PUs.
+ It has low constant factors.
+ It has a short implementation.
+/- The programmer trades �exibility and comfort for �ne grained control.
- The work is product of n and gmax. It grows faster than all other complexities.
- It is only a surface translation of AC .
- Normalisation, scaling and histogram creation were fused together manually.

They are not separated steps anymore.
- Much human work was necessary to parallelize the histogram creation.
- Subsequent algorithms have to be coded to operate on �at images. 1

Pnest + It achieves time logarithmic to n and gmax for large number of PUs.
+ It is almost a direct implementation of AC .
+ It implements parallel histogram creation using

only high level function compositions.
+ It involves only limited workload for the human.
- It has high constant factors (compared to Pman and Pvect) due

to nesting and unoptimised communication and traversals.
Pvect

+ The programmer does not need to think about the �at representation of the image.
+ Flattening of arrays and nested functions reduce constant factors.
+ Communication Fusion and Stream Fusion reduce constant factors

and automatically fuse normalisation and scaling.
+ The compiler optimises automatically.
- If failed, compiler optimisations are di�cult to guide.
+/- The programmer trades �ne grained control for �exibility and comfort.
- Real code produced by the compiler is mostly incomprehensible for humans.

50

7 Results and Discussion

7.3 Conclusion

Given the prior analysis, a few conclusions on parallel functional programming with NDP can
be drawn. Using Nested Data Parallelism, high-level �exible parallel programs can be written
and e�ciently executed. In NDP much work and burden is taken from the programmer to
the compiler. Solving the same problem using conventional parallel programming methods
requires more time and thought, but can lead to better performance and more control on the
execution. For small numbers of PUs, sequential programming is faster and simpler than
parallel programming. However, for large number of PUs parallel programs perform better.

All in all, the four programs, Pseq , Pman, Pnest and Pvect, have di�erent strengths and
weaknesses. No program is strictly better in all aspects than any other. However, the use of
Nested Data Parallelism enabled a su�ciently high-level implementation with only modest
performance drawbacks as compared to manual parallelization.

1Unless one wraps Pman with (un-)�attening operations. This approach however manually implements the
�attening approach used in NDP.

51

8 Outlook

"I claim to be a simple individual
liable to err like any other fellow mortal.
I own, however, that I have humility
enough to confess my errors
and to retrace my steps.

Mahatma Gandhi

8.1 Summary

This thesis gave an evaluation of Nested Data Parallelism in the functional programming
language Haskell by giving four implementations of Histogram Balancing and comparing
them to each other. They were Pseq , Pman, Pnest and Pvect. The results suggest that no
program was clearly better than all other programs. Each of them had its advantages and
disadvantages. While Pseq performs the best on a few number of processors, it is out-competed
by parallelized programs when the number rises. Pman has the lowest complexity for large
number of processors - though it has the highest complexity for small numbers. However,
Pvect is a good compromise between both extremes. It enables almost as much abstraction as
does Pseq while still performing well on varying number of processors.

This leads to the conclusion, that Nested Data Parallelism is a very welcome programming
model in functional programming.

8.2 Related Work

There is much active research in parallel programming in general and in the programming
language Haskell.

Generally, there are two approaches on parallel programming. In the following a summary
of these approaches is given. The comments after the semi-cola state properties of problems
for which the approach is fruitful.

52

8 Outlook

• Task Parallelism; irregular, non-deterministic

– dependence graph-based: Streit et al. (2015), deterministic, medium-abstraction

– futures-based: Cohen et al. (2012), simple integration, subtle-preconditions

– thread-based: Butenhof (1997), high-control, low-abstraction

– In Haskell: Marlow (2012)

∗ Algorithm + Strategy = Parallelism: Trinder et al. (1998); task-based, determin-
istic, subtle-preconditions

∗ The Par Monad; Marlow et al. (2011); dependency graph, in-concise, high-
performing

∗ STM: Harris et al. (2005); transactional, non-det. IO, safe, composable

• Data Parallelism: Hillis and Steele (1986); (ir-)regular, deterministic

– Flat GPU Parallelism: CUDA Nickolls et al. (2008), OpenCL Stone et al. (2010);
highly regular and high-performing, deterministic,

– In Haskell: Marlow (2012)

∗ Repa: Keller et al. (2010); nested arrays, regular, data-parallel, high-performing

∗ Accelerate: McDonell et al. (2013); GPU, high-performing, data-parallel, regular

∗ Nested Data Parallel: Jones (2008); type-dependent, irregular/�exible, concise

All related work on parallelism in Haskell (except for Marlow et al. (2011)) implement sophisti-
cated optimisations strategies like NDP. In functional programming, these optimisations are
more necessary than an option. Unoptimised functional programs are usually slower by a
magnitude than their imperative counterparts.

8.3 Future Work

Based on the results on this thesis, further work can be of interest:

Brent’s Equation

The work and depth complexities calculated in this thesis are mere complexitiy classes. Given
more time and details on the implementation of the NDP functions, one could give an exact
expression for the work and depth of each program. One could then use Brent’s Equation
Gustafson (2011):

53

8 Outlook

W

P
≤ T ≤ W

P
+ L ·D

where P is the number of processors, L is the communication latency in number of machine
instructions, and W and D are work and depth in number of instructions, respectively.

Brent’s Equation gives upper and lower bounds on the time a program with work W and
depth D requires given a latency of L and P processors.

If given exact numbers for work and depth (of table 7.1), one could do a more fruitful and
exact analysis in the parameter-space spanned by n, gmax, P and L. For concrete parameters
one could solve for the optimal algorithm to use.

Alternate Algorithms

Given the �exibility of NDP, alternate algorithms and data structures can be considered.
The original papers Jones (2008) use the ’Banes-Hut-Algorithm’ for their examples. It is
an O(n log n) algorithm for the approximate of calculation of n-bodies moving in three-
dimensional space under the force of gravity. A comparison with manual implementation is a
relevant question - since the algorithm is known to be hard to parallelize. For image processing,
one could similarly consider other algorithms such as ’Connected-Components-Labelling’ or
’Face-Detection’.

Distributed NDP

The implementation of NDP in Haskell is much more general than its original implementation
in NESL. Considering the explicit distinction of locality (e.g the use of Dist) used, there might
be only limited work necessary to expand NDP from working on a single machine with many
processors to working on multiple machines with multiple processors.

8.4 Final words

With this paragraph, the thesis comes to an end. The thesis gave a short evaluation of Nested
Data Parallelism in Haskell for implementations of Histogram Balancing. The author thanks
greatfully for your attention.

54

Appendix

SparseToDensePS

1 sparseToDensePS :: Int -> a -> PA (Int,a) -> PA a
2 sparseToDensePS size z ps =
3 joinD
4 . sparseToDenseD size z
5 . splitSparseD size
6 $ ps
7

8 splitSparseD :: Int -> PA (Int,a) -> Dist (PA (Int,a))
9 sparseToDenseD :: Int -> a -> Dist (PA (Int,a)) -> Dist (PA a)

SparseToDensePS converts a sparse array of index-value-pairs to a dense array, where the
elements are inserted in the appropriate indices. Unspeci�ed indices are given the default
value z.

The function operates by �rst splitting/distributing the sparse array to the various PUs. It
does that in such a way, that if all PUs were to hold a chunk of an array of lenght size, then
each PU would get those index-value-pairs for which it would be responsible for on the dense
array. This approach enables the second step to be purely local. The second step converts each
local chunk of the sparse array to its corresponding local chunk of the dense array.

Further analysis reveals complexities W(z, ps) ∈ O(z+ length(ps)) and D(z, ps) ∈ O(1).

55

Bibliography

Batcher, K. E. (1968). Sorting networks and their applications. In Proceedings of the April

30–May 2, 1968, Spring Joint Computer Conference, AFIPS ’68 (Spring), pages 307–314, New
York, NY, USA. ACM.

Blelloch, G. E. (1996). Programming parallel algorithms. Commun. ACM, 39(3):85–97.

Blelloch, G. E., Hardwick, J. C., Chatterjee, S., Sipelstein, J., and Zagha, M. (1993). Implementa-
tion of a portable nested data-parallel language. SIGPLAN Not., 28(7):102–111.

Butenhof, D. R. (1997). Programming with POSIX threads. Addison-Wesley.

Chakravarty, M. and Keller, G. (2003). An approach to fast arrays in haskell. In Jeuring, J.
and Jones, S., editors, Advanced Functional Programming, volume 2638 of Lecture Notes in
Computer Science, pages 27–58. Springer Berlin Heidelberg.

Chakravarty, M. M. T. and Keller, G. (2000). More types for nested data parallel programming. In
Proceedings of the Fifth ACM SIGPLAN International Conference on Functional Programming,
ICFP ’00, pages 94–105, New York, NY, USA. ACM.

Chakravarty, M. M. T. and Keller, G. (2001). Functional array fusion. In Proceedings of the Sixth

ACM SIGPLAN International Conference on Functional Programming, volume 36 of ICFP ’01,
pages 205–216, New York, NY, USA. ACM.

Chakravarty, M. M. T., Keller, G., Jones, S. P., and Marlow, S. (2005). Associated types with class.
In Proceedings of the 32Nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’05, pages 1–13, New York, NY, USA. ACM.

Chakravarty, M. M. T., Leshchinskiy, R., Jones, S. P., Keller, G., and Marlow, S. (2007). Data
parallel haskell: A status report. In Proceedings of the 2007 Workshop on Declarative Aspects

of Multicore Programming, DAMP ’07, pages 10–18, New York, NY, USA. ACM.

Cohen, A., Gérard, L., and Pouzet, M. (2012). Programming parallelism with futures in lustre.
In Proceedings of the Tenth ACM International Conference on Embedded Software, EMSOFT
’12, pages 197–206, New York, NY, USA. ACM.

56

Bibliography

Cole, R. (1988). Parallel merge sort. SIAM J. Comput., 17(4):770–785.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001). Introduction to Algorithms,
pages 65+. MIT Press and McGraw-Hill, second edition.

Coutts, D., Leshchinskiy, R., and Stewart, D. (2007). Stream fusion: From lists to streams
to nothing at all. In Proceedings of the 12th ACM SIGPLAN International Conference on

Functional Programming, volume 42 of ICFP ’07, pages 315–326, New York, NY, USA. ACM.

Denning, P. J. (2005). The locality principle. Commun. ACM, 48(7):19–24.

Gustafson, J. (2011). Brent’s theorem. In Padua, D., editor, Encyclopedia of Parallel Computing,
pages 182–185. Springer US.

Harris, T., Marlow, S., Jones, S. P., and Herlihy, M. (2005). Composable memory transactions.
In Proceedings of the Tenth ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, PPoPP ’05, pages 48–60, New York, NY, USA. ACM.

Hillis, W. D. and Steele, G. L. (1986). Data parallel algorithms. Commun. ACM, 29(12):1170–1183.

Jones, S. P. (2008). Harnessing the multicores: Nested data parallelism in haskell. In Proceedings

of the 6th Asian Symposium on Programming Languages and Systems, APLAS ’08, page 138,
Berlin, Heidelberg. Springer-Verlag.

Jones, S. P. and Marlow, S. (2002). Secrets of the glasgow haskell compiler inliner. J. Funct.
Program., 12(5):393–434.

Keller, G. and Chakravarty, M. (1999). On the distributed implementation of aggregate data
structures by program transformation. In Rolim, J., Mueller, F., Zomaya, A., Ercal, F., Olariu,
S., Ravindran, B., Gustafsson, J., Takada, H., Olsson, R., Kale, L., Beckman, P., Haines, M.,
ElGindy, H., Caromel, D., Chaumette, S., Fox, G., Pan, Y., Li, K., Yang, T., Chiola, G., Conte,
G., Mancini, L. V., Méry, D., Sanders, B., Bhatt, D., and Prasanna, V., editors, Parallel and
Distributed Processing, volume 1586 of Lecture Notes in Computer Science, pages 108–122.
Springer Berlin Heidelberg.

Keller, G., Chakravarty, M. M. T., Leshchinskiy, R., Jones, S. P., and Lippmeier, B. (2010). Regular,
shape-polymorphic, parallel arrays in haskell. SIGPLAN Not., 45(9):261–272.

Ladner, R. E. and Fischer, M. J. (1980). Parallel pre�x computation. J. ACM, 27(4):831–838.

57

Bibliography

Leshchinskiy, R. (2005). Higher order nested data parallelism: semantics and implementation.

PhD thesis, Berlin Institute of Technology.

Leshchinskiy, R., Chakravarty, M. M. T., and Keller, G. (2002). Costing nested array codes.
Parallel Process. Lett., 12(02):249–266.

Leshchinskiy, R., Chakravarty, M. M. T., and Keller, G. (2006). Higher order �attening. In
Proceedings of the 6th International Conference on Computational Science - Volume Part II,
ICCS’06, pages 920–928, Berlin, Heidelberg. Springer-Verlag.

Lippmeier, B., Chakravarty, M. M. T., Keller, G., Leshchinskiy, R., and Jones, S. P. (2012). Work
e�cient higher-order vectorisation. SIGPLAN Not., 47(9):259–270.

Mainland, G., Leshchinskiy, R., and Jones, S. P. (2013). Exploiting vector instructions with
generalized stream FusioN. SIGPLAN Not., 48(9):37–48.

Marlow, S. (2012). Parallel and concurrent programming in haskell. In Proceedings of the 4th

Summer School Conference on Central European Functional Programming School, CEFP’11,
pages 339–401, Berlin, Heidelberg. Springer-Verlag.

Marlow, S., Newton, R., and Jones, S. P. (2011). A monad for deterministic parallelism. In
Proceedings of the 4th ACM Symposium on Haskell, Haskell ’11, pages 71–82, New York, NY,
USA. ACM.

Masters, B. R. (1999). The image processing handbook. Journal of Microscopy, 196(1):79–80.

McDonell, T. L., Chakravarty, M. M. T., Keller, G., and Lippmeier, B. (2013). Optimising purely
functional GPU programs. In Proceedings of the 18th ACM SIGPLAN International Conference

on Functional Programming, ICFP ’13, pages 49–60, New York, NY, USA. ACM.

Nickolls, J., Buck, I., Garland, M., and Skadron, K. (2008). Scalable parallel programming with
CUDA. Queue, 6(2):40–53.

Peyton Jones, S., Tolmach, A., and Hoare, T. (2001). Playing by the rules: Rewriting as a
practical optimization technique in GHC. In Proceedings of the 2001 Haskell Workshop, pages
203–233.

Stone, J. E., Gohara, D., and Shi, G. (2010). OpenCL: A parallel programming standard for
heterogeneous computing systems. IEEE Des. Test, 12(3):66–73.

58

Glossary

Streit, K., Doerfert, J., Hammacher, C., Zeller, A., and Hack, S. (2015). Generalized task
parallelism. ACM Trans. Archit. Code Optim., 12(1).

Trinder, P. W., Hammond, K., Loidl, H. W., and Jones, S. L. P. (1998). Algorithm + strategy =
parallelism. J. Funct. Program., 8(1):23–60.

59

Glossary

Vector is the Haskell implementation of conventional local in-memory arrays. They are
used for the distributed chunks of Dist (PA a) , page 14

Cache Locality Use of contiguous-memory data over pointer-based data to create an execution
behaviour that simpli�es CPUs cache hierarchies to optimise for and greatly increases
performance , page 9

Chunk An local array (or linked list) that is part of a globally distributed array (or linked list) ,
page 7

Constant Factors Constant factors increasing the running time of a program that are hidden
inside Landau-Notation O(·). They are important for decreasing practical running
time. , page 43

Flat Data Parallelism Expression of parallelism via parallel primitives over �at arrays. The
primitives cannot be nested , page 7

Fusion The use of Inlining and semantic-preserving Rewrite Rules to �nd and eliminate com-
munication (Communication Fusion) or intermediate data structures (Stream Fusion) ,
page 8

Nested Data Parallelism Expression of parallelism via parallel primitives over nested arrays.
The primitives can be nested. It �attens the code before execution , page 7

PU A processing unit. Refers mostly to CPUs on a single machine. Can also be CPUs in a
cluster or in a distributed setting , page 7

Vectorization A compiler transformation which �attens and uses Fusion a nested data parallel
program to increase cache locality, decrease communication and traversals for higher
performance , page 8

Work and Depth Language-based measures for the time necessary if given one processor
(work) or in�nitely many (depth) in number of instructions , page 16

60

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig verfasst und

nur die angegebenen Hilfsmittel benutzt habe.

Hamburg, 23. Juli 2015 Chandrakant Swaneet Kumar Sahoo

	1 Introduction
	1.1 Aim and Methodology
	1.2 Structure

	2 Basics
	2.1 Haskell
	2.2 Nested Data Parallelism
	2.2.1 Vectorization
	2.2.2 Communication Fusion
	2.2.3 Stream Fusion

	2.3 Parallel Complexity Measures
	2.4 AC: Histogram Balancing

	3 Sequential: Pseq
	3.1 Implementation
	3.2 Complexities

	4 Manually parallelized: Pman
	4.1 Parallel histogram accumulation
	4.2 Implementation
	4.3 Complexities

	5 Nested-Data-Parallel: Pnest
	5.1 Utilities
	5.2 Implementation
	5.3 Complexities

	6 Vectorized Nested-Data-Parallel: Pvect
	6.1 Transformations
	6.1.1 Vectorization
	6.1.2 Communication Fusioning
	6.1.3 Stream Fusioning

	6.2 Final Program
	6.3 Complexities

	7 Results and Discussion
	7.1 Complexity Analysis
	7.2 Pro and Contra
	7.3 Conclusion

	8 Outlook
	8.1 Summary
	8.2 Related Work
	8.3 Future Work
	8.4 Final words

	Appendix
	Bibliography
	Glossary

