Hochschule fiir Angewandte Wissenschaften Hamburg
Hamburg University of Applied Sciences

Fakultét Technik und Informatik Faculty of Engineering and Computer Science
Department Informatik Department of Computer Science

Connor Rohricht

Applications of Decentralized Trust Management in
V2X Communications

Bachelorarbeit eingereicht im Rahmen der Bachelorpriifung

im Studiengang Bachelor of Science Angewandte Informatik
am Department Informatik

der Fakultat Technik und Informatik

der Hochschule fur Angewandte Wissenschaften Hamburg

Betreuender Prufer : Prof. Dr. rer. nat. Christoph Klauck
Zweitgutachter : Dipl.-Ing. Frank Siedel

Abgegeben am 27.10.2015

Connor Roéhricht

Thema der Arbeit
Anwendungen eines Dezentralisierten Vertrauensmanagements in der V2X-Kommunikation

Stichworte
Vertrauen, Dezentralisiertes Vertrauensmanagement, Sicherheit, V2X, Internet of Things

Kurzzusammenfassung

Die zunehmende Konzeption und Implementierung sogenannter V2X-Dienste, basierend
auf intelligenten kommunizierenden Fahrzeugen, stellt die Automobilindustrie und andere
Stakeholder vor eine Vielfalt neuer Herausforderungen. Ein sicheres Vertrauensmanage-
ment ist Kern jeder VANET (= Vehicle Ad-Hoc Network) Anwendung. Ahnliche Heraus-
forderungen entstehen in anderen Bereichen der Software-Branche durch die Ankunft
allgegenwartiger (Mikro-)Computer und des sogenannten Internet of Things. Die fiir diese
Umgebungen charakteristischen Vertrauensprobleme sind jedoch noch relativ oberflachlich
erforscht. Traditionelle Sicherheitssysteme sind oft zu statisch und einfach um die Anfor-
derungen komplexer und dynamischer Multiagentensysteme zu erfiillen. Diese Arbeit
bietet eine Einfihrung in bestehende Konzepte fiir Vertrauensmanagement, was mit der
Entwicklung eines generischen abstrakten Vertrauenssystems abschlieBt. Die Ergebnisse
werden im V2X-Kontext untersucht und die Eigenschaften des Systems in einer simulierten
VANET-Umgebung analysiert.

Connor Roéhricht

Title of the paper
Applications of Decentralized Trust Management in V2X Communications

Keywords
Trust, Decentralized Trust Management, Security, V2X, Internet of Things

Abstract

The increasing conception and implementation of so-called V2X services based on smart
communicating cars presents the automotive industry and other stakeholders with a
variety of new challenges. A secure trust management is fundamental to any VANET
(= Vehicle Ad-Hoc Network) application. Similar challenges also arise in other software
domains with the approach of ubiquitous computing and the Internet of Things. However,
the trust-related problems that are characteristic of these new environments have been
subject to relatively little research. Traditional security systems are often too static and
simple to meet the requirements of complex and dynamic multi-agent systems. This thesis
offers a survey of existing concepts of trust management, which culminates in the design of
a generic abstract trust system. The results of this are evaluated in the context of V2X
communications, and the trust system is analyzed in a simulated VANET environment.

Table of Contents

g 191 o Yo 1V Lot o [0] o I

1.1 INErOTUCTION it 7
1.2 Task FOrmulationc.oeiiiiiiiiiieceeeee e 8
0 T Yoo T o1 OO PP PP PUPPPPPPPPPPPPPPRt 8
1.4 Structure and Methods.........ccooiiiiiiiiiiiiiie e 9

2 Introduction to V2X CommunicationsS......ccceceeeerereececerenee 11

2.1 INtroduction tO V2X SEIVICEScccueiiiiiiiiiiiiiee ettt 11
2.1.1 (72 G U RTUPPRPPRRRPRON 11
2.1.2 V2V ettt ettt b e bt e bt e s be e ebe e sbeesbeesateen 11
2.1.3 L7222 TP RUPPRRPPTPRRPRON 12
2.1.4 Technological SUPPOIT ...t e e 13

2.2 Applications and ChanCeSuuiiiiiiiiiiieee et e e 13
2.2.1 (OF: 1 (=T =10] g1Z- | 1o s I UUU PP PPPPRR 13
2.2.2 Driver ASSiSTanCe SErVICESoovvviciiiiiiiiiiic e 14
223 Autonomous Vehicle SErVICESoocuiiiiiiiiiiiere e 15
2.2.4 Intelligent Transport SYStEM SEIVICES ...ccviieiiieiieiiiiiieeee e e e e 15

2.3 Risks and Limitationscoooiiieiiiiiiiiiiieceee e 15
2.3.1 PeIfOrMANCE . eiiiiii ettt et 15
2.3.2 SAfELY & SECUNITY tuviiiiiiei ittt e e e e e e e e e are e e e e e e e e e e e e sanannes 16
2.3.3 SV o PO PPPTPPR PPt 17

2.3.4 D T=T o110 1VZ0 Y=Y o | O UURPPR 18

3

4

Decentralized Trust Managementcccceeevieenniinenene... 19
3.1 The NOtioN Of TrUST.....iiiiiieeeie e 19
3.1.1 DEfiNING TrUST ..ot e e e e e e e e e rbbar e e e e eaaeeeean 19
3.1.2 Formal Representation of Entity TruStcoooviiiiiiiiiieeieee e, 19
3.13 Semantics Of ENtity TrUST.....cccviiiiiiiieee e e e e 21
3.14 L I AT 0T @ o =T £ USSP PSUTR 22
3.1.5 Trust as @ Computational CoNCEPTuvvieeeeieiii it 25
3.1.6 Acting upon Trust / The ldeal AgeNnt.......coccvieiiieciiee e 29
3.1.7 TrUSt TranSitiVITY cooe e ees 35
3.1.8 DYNAMIC TIUST . ettt e e e e e e e e e e e eb e e e e e eaebaaeeeaees 42
3.1.9 Related TOIMIS ... ittt ettt e e s sare e e sabee e 44
3.2 Trust Management ... e e e 46
3.2.1 Aspects of Trust Managementuceeeeeieieiiiiiiiiiieiee e e e e e e e e saennes 46
3.2.2 Trust Propagation and the Ideal Agent ..., 47
3.23 RiSKS fOr TrUST SYSTEMS .uvviiiiiiiiie ettt e e e e e et e e e e e e e e 53
3.2.4 Economic Trust Management ... iiiiiiiien i 56
3.2.5 Where Should Trust Be Managed?..........ooociiiiiiiiieee e 59
3.3 Centralized Trust Managementcoovviiieieiiniiiieee e 60
33.1 Centralized Trust SYSTEMSuuviiiiiiieeee ettt e e e e e eeccsrrrrrr e e e e e e e e e e e esannnes 60
3.3.2 VUINEIabIlEIES . ..eeieieee et e 61
3.4 Decentralized Trust Managementcc.uueeviiiiiiiieeeeinniiieeee e 63
3.4.1 Decentralized Trust SYSTEMS ...ccciiiiiiiiiiee et e e e re e e e e 63
3.4.2 VUINEIabIlEIES ..eeeeiee et 65
3.5 Example: Generic Trust SYStEM ...t 67
3.5.1 Generic Trust Propagation Protocol..........cccoviiieiieiiii e 67
3.5.2 [deal AZENT BENAVIONuviiiiiii ettt e e e e e e e e e 71
3.5.3 o] o 1=T o A= PO PPTPPRRPRPPRt 74
3.5.4 T aY oY (=T 0 =T o = A Lo o J U UURPPR 75
DTM in V2X communicationscccceeeireeniiiencirencrennnnns 77
4.1 MOTIVAtION ceiiiiiiiiiiiiii e 77
4.2 SYStEM MOAEI ... 78

O B N = Yo =T 1Y/ (oY =] PO PR 79

4.4
4.5
4.6
4.7

4.7.1
4.7.2
4.7.3

4.8

D S PP PP PP OPPRPRO 80
IMPIEMENTATION .eeiiiiiiieee e 85
ANQIYSIS 1eeteeieiteee e e e e e st e e e s e b raeeeesnan 86
Predefined SCENAIIOS.uiiiiii et 86
Observed Effects (SCENAMIOS) ...uuiuiiiiieeei ittt e e e e e e e e e e e e e e e saanees 88
Other Observed Effects (Different Simulation Parameters)......cccccccceeeeunnns 90
CONCIUSION ettt e e s s 91

5 FUture OULIOOK....ccceevieieierieiecerersesecerssseceressssesessssnsesesssses 92

5.1
5.2

5.2.1
5.2.2
5.23

V2X INEEGIAtioN . e 92
Other Potential Applicationscevviiiiiiiiiii i 93
Decentralized SOCIal NETWOIK.......ccocveiiiieiiiiiieiee et 93
Software Collaboration........c.cueeiiie i 93
Sociological, Economical and Evolutionary Study of MASScccccceeeeeeiinnnns 94

(01 3 Lol 111 [0] 1 K- T © |

Acknowledgements.......ccccceiveiiiniiiiiiciiiiiiiinecnenieee... 96

REfEIrENCES c.eeeieiniieieteeieiecrersasereressaseressssasesessasesessssacesesee D7

FAY o] 0 =T 4 Lc [T of X3S £ ¢ I

1 Introduction

1.1 Introduction

The vision of ubiquitous computing and the “Internet of Things” has been slowly solidifying
within the last years. Smartphones and wearable technology such as smartwatches are
already transforming humans into “always online” entities that can interact with remote
real or virtual objects at any time, and our environment is gradually entering our digital
network’. Notable examples of this include smart homes, smart vehicles, and the
monitoring and control of infrastructure and machinery.

It seems unavoidable that the number of digitally connectable objects with embedded
computing systems will substantially rise in the near future. These devices will interact with
each other and with humans, either representing their owner or manufacturer according to
simple deterministic programming, or acting relatively autonomously (ambient intelli-
gence).

As the number of different types and brands of smart devices rises, the number of possible
scenarios where heterogeneous devices should interact rises too, and it becomes
increasingly difficult to predefine behavior. This naturally raises concerns regarding security
and privacy; both humans and autonomous intelligent devices face questions such as
“Whom can | trust to not abuse my personal information?”, “Which data can | rely on?” and
“Is anyone trying to manipulate my behavior?”. All of these questions are already present in
human societies. We intuitively answer them using highly complex and dynamic, often
subconscious, mechanisms to manage interpersonal relationships and assessing the relia-
bility of interaction partners, i.e., their trustworthiness.

Similar mechanisms can be found in almost every piece of information technology;
however, traditional mechanisms such as rule-based access control lack both the fine
granularity and the dynamism that their social equivalents offer. They are also often based
on a single central perspective of trustworthiness, which is by nature subjective; hence they
lack the scalability to model complex relationships among users or nodes in highly

! Which is often the global internet.

Introduction 8

distributed systems. As a consequence, conceptions of trust management, i.e., of
subsystems that operate on symbolic representations of trust, move into the focus of
research; these systems often aim to solve the aforementioned issues with a decentralized
architecture.

Nevertheless, the abstract concept of trust and especially decentralized trust management
is still theoretically underrepresented in the fields of computer sciences and software
engineering. A useful practice-oriented model system could be found in V2X communi-
cations, emerging technologies that wirelessly connect intelligent vehicles in order to
enable software cooperation in traffic. In this thesis, | will investigate core aspects of
decentralized trust management and their applications in V2X environments, aiming to give
the reader an insight into the underlying theory and its future significance. In writing it, |
was supported by NXP Semiconductors, with resources, coordination, and feedback from
colleagues for whose work this research could be relevant.

1.2 Task Formulation
We? set ourselves the following objectives:
* To provide a short introduction to the challenges of V2X communications
* To gain a deeper understanding of the meaning and properties of trust in open
multi-agent-systems®
* The design of a generic abstract system that integrates the necessary functionality
to operate a user-centric trust management system. A future developer of a
concrete, application-specific trust system could then benefit from our survey of
mechanisms and specialize the scheme we propose
* The design and development of simulation software that can be utilized to
investigate the properties of our system in a V2X environment
and
* To identify and suggest potential future areas of application for trust management
schemes (also outside of V2X communications).

1.3 Scope

The target audience for this paper consists of holders of a Bachelor of Science degree in
applied computer science; the reading should not require expertise in traditionally
unrelated fields. We will therefore venture into the sociological and ethical theories of trust
not further than necessary, and limit the mathematical effort to basic formal definitions.
We will investigate different theoretical aspects of trust with the aforementioned goals in
mind; nevertheless, some concepts need to be included for completeness, without
factoring into the design of our abstract system and simulation software. Otherwise, we

% | will use the academic plural pronoun from here on, which is not to be seen as a Sybil attack to
gain the reader’s trust. ©
® We will elaborate on this term in section 3.1.6.

Introduction 9

would give a reader, that is unfamiliar with the matter, an understanding of trust
management theory that is biased towards the aspects we regard as important for our
work. For readers that are only interested in our results and their derivation, we provide
details on the contents of each section in section 1.4, including which aspects could be
skipped.

1.4 Structure and Methods

To begin with, we quickly survey the current state of V2X technology without going into too
much detail in section 2. We mostly focus on the new risks and challenges for V2X systems,
to which decentralized trust management could give remedy.

In the subsections of the sections 3.1 and 3.2, we tackle the questions posed and answered
by trust as a concept and trust management systems, incrementally. By gradually including
important aspects of the underlying theories, we aim extend our understanding, while
guiding the reader through the process. In order to do this, we provide quick surveys of
existing ideas and approaches, draw conclusions, and provide illustrative examples and
abstractions.

Generally, section 3.1 deals with trust between individuals and is mostly based on a local
view of trust relations, while section 3.2 rather describes the global effects of trust in larger
systems.

We begin this investigation with the notion of trust and formalize it, without specifying too
concrete representations of individual statements, since the requirements on the nature of
these statements vary considerably among different approaches and areas of application
(see sections 3.1.1-3.1.3). Subsequently, we investigate trust in objects (section 3.1.4),
which is mostly for completeness and might be skipped by the reader, although we
reference some core aspects later on. In section 3.1.5, we consider trust as a computational
concept, which is important for software implementations. In section 3.1.6, we take a short
excursus into agent ethics to justify the need for trust in an open multi-agent system;
concepts introduced here are then applied in section 3.2. Section 3.1.7 deals with the
notion of trust transitivity and introduces the trust coherency problem, a novel approach
for modelling trust propagation. Section 3.1.8 discusses the dynamic nature of trust and its
causes at the individual level; this could also be skipped by readers only interested in the
results. Lastly, in section 3.1.9, we aim to provide a clear distinction between trust and the
similar term reputation that we will often refer to in the following section.

Subsections of 3.2 illuminate various aspects of the design of trust systems, including the
specification of ideal agent behavior and the use of trust for resource management.

The sections 3.3 and 3.4 compare the advantages and disadvantages of (de-)centralization
in trust systems. We then design and propose our aforementioned generic abstract trust
system in section 3.5.

The initially unrelated contents of the sections 2 and 3 are combined in section 4. As
promised by the title of this thesis, we investigate the applications of decentralized trust
management in V2X communications. We extend an existing VANET simulation software to

Introduction 10

include a basic trust system based on the results of chapter 3. This trust system aims to
solve some of the obstacles referred to in section 2, within the simulation. Subsequently,
we test our system with different trust-related scenarios and analyze the results.

Lastly, we list some potential future areas of application of decentralized trust systems
(section 5), and draw conclusions from all previous sections while summarizing our results
in section 6.

Introduction to V2X Communications 11

2 Introduction to V2X
Communications

2.1 Introduction to V2X Services

2.1.1 V2X

The term “V2X"” covers the services of V2V (= Vehicle-to-Vehicle) and V2I (= Vehicle-to-
Infrastructure) communication. The common denominator of both technologies lies in the
conception of road-bound vehicles as communicating nodes, and also, in many applications,
as at least partially autonomous agents. Current implementations are predominantly ex-
perimental and not commercially available. Their present development is driven by a
demand for increased traffic security and efficiency, as well as the emerging trends of
ubiquitous computing. It is creating new challenges for all branches of the automotive
industry.

The mobility of the participants requires wireless connections with fast buildup and clearing
(Ad-Hoc connections). As cars currently do not include the necessary hardware to support a
V2X infrastructure, mass deployment must be achieved before individual drivers can profit
from cooperative V2X services.

V2X usually denotes the network and transportation layers of intervehicular communi-
cation, but is also used as an umbrella term for all services and applications that are
primarily based on it. To avoid ambiguity, we will refer to those as V2(X/V/I) services.

2.1.2 V2v

In Vehicle-to-Vehicle communication, road-bound vehicles (mostly cars) exchange data over
a peer-to-peer connection. This data can describe the vehicles’ internal states and
environment, to expand the communication partner’s perceptual horizon. This expanded
horizon, also known as “telematics horizon”, closes the gap between local perception (given
by the driver’s field of view and onboard sensors) and long distance communication (e.g.
traffic reporting), as shown in Figure 2.1.2-1.

Intervehicular communication is necessary to prevent fatal road accidents, and has always
been present in the form of automotive lighting, such as turn signals and brake lights. It
seems natural for it to evolve into V2V communication in the digital age.

Introduction to V2X Communications 12

If single nodes can also act as routers and forward messages to a third party®, the resulting
network is a VANET (= Vehicular Ad-Hoc Network). These networks can be regarded as a
dynamic peer-to-peer variant of the mesh network topology (= MANET), with additional
requirements brought forth by the high, yet very predictable, node velocities.

VANETs could form the basis for future implementations of Intelligent Transportation
Systems (ITS).

On board| sensors V2x comn|1unication Long distance communication

A
=T 1 1

~

24 . 7
é ;) - /7
ey »
o &2 2 a 47‘ :

| 100 200 2500

Distance to incident [m]

Figure 2.1.2-l: V2X closes the communication gap. Source: [SCHMO08]

2.1.3 V2l
The United States Department of Transportation defines V2| communication for safety
purposes as follows:

(2.1.3A) US DoT definition of V2I for safety purposes:
“Vehicle-to-infrastructure (V2I) Communications for Safety is the wireless exchange of
critical safety and operational data between vehicles and roadway infrastructure, intended
primarily to avoid motor vehicle crashes.” [USDO15]

This wireless exchange of data can also be used to provide information and entertainment
services to drivers and passengers. Automotive entertainment devices could, for example,
download current weather forecasts, traffic information, or music and other media.

As with V2V services, predecessors of this technology have been around since the adoption
of motor vehicles, initially in static form (such as road signs), but also in dynamic form (such
as traffic lights). While most of their current manifestations can information-theoretically
be regarded as unidirectional broadcasts in information theory, V2l services enable a
bidirectional communication. Vehicles can interact with infrastructure, for instance to alter
the duration of traffic light phases or to report traffic situation and internal state of the
vehicle to an ITS. Roadway infrastructure could also be used for routing purposes in a

4 Recently this term has also been extended to any intervehicular network, even if it only contains
direct communication and incorporates V2I services.

Introduction to V2X Communications 13

VANET. A VANET incorporating roadway infrastructure might be connected to the internet,
thereby integrating in-car devices into the Internet of Things.

2.1.4 Technological Support

Implementation of V2X services requires the installment of antennas, WLAN modules and
dedicated controllers in cars. V2V services often need positional data, especially for
accident prevention, and thus require the integration of a GPS component. To provide
safety in case of malfunction, data from additional sensors like cameras and ultrasonic
distance detection can be evaluated to prevent “insane” decisions. Cameras can also
recognize traffic signs and other vehicles’ visible characteristics (e.g. license plates) to assist
in driving decisions and identification of communication partners; this would provide
backwards compatibility with the current system until V2X is ubiquitous.

2.2 Applications and Chances

2.2.1 Categorization
V2X services, once of purely academic interest, have moved into the center of the
automotive industry’s attention, creating a variety of related use- and business cases. In
this section, | will present and categorize future applications of V2X services, and discuss
their benefits in accident prevention and traffic optimization.
First of all, we will focus only on traffic-related services, excluding, for example, in-car
entertainment. Traffic-related V2X services aim to leverage the collaborative power of
traffic participants and their onboard sensors to optimize and secure traffic.
Ways to categorize these services for further analysis include:

* By their underlying network structure (V2V, V2I, VANET...)

* By their main user groups (drivers, governmental agencies, manufacturers)

* By their scope of influence on traffic
Since the means of influencing the traffic also determine the set of entities that users put
trust in, | will choose the latter for primary classification of V2X services.
The table in Figure 2.2.1-l gives an overview of the primary channels through which V2X
applications can affect traffic, or individual vehicle behavior.
For a more detailed list of possible usecases (within the European traffic system), see
[ETSIO09].

Name Actor (Scope) Decision-making Communication
Driver assistance Driver & Vehicle Driver & Vehicle V2X and HIDs
Autonomous vehicle Vehicle Vehicle V2X

ITS Vehicle & Infrastructure Central authority V2X

Figure 2.2.1-1: V2X service categories according to scope of influence

Introduction to V2X Communications 14

2.2.2 Driver Assistance Services

Driver assistance services use a Human-Machine-Interface to convey critical information to
the driver of the receiving vehicle. While basic applications such as lane departure warning
already exist, they use only the vehicle’s onboard sensors, instead of wireless
communication with other observers. V2X communication can be integrated with these
applications to increase the safety of both technologies, while simultaneously expanding
the driver’s perceptual horizon.

The unique characteristic of these services lies in the decision making process. Unlike in
autonomous applications, the driver is in full control of the vehicle, and responsible for
preventing accidents and complying with traffic laws. Since this corresponds to the status
qguo, adaptation to new technology will be both easier and faster than to autonomous
services.

In the case of software failure (or breach of security), the driver can use their own
observations to prevent potential accidents. The already existing status of safety is largely
retained. Nevertheless, as V2X technology proves successful, driver can become more
reliant on it, allowing for more relaxed driving.

Figure 2.2.2-I: HID for driver assistance services. Source: NXP Semiconductors
Other subcategories of driver assistance services include:
* Warning of approaching emergency vehicles
* Warning of other vehicles in anomalous state (slow/stationary/wrong way driving)
* Assistance in cooperative maneuvers (overtaking/merging/left-turn assistance)
e Optimal speed advisory (e.g. approaching traffic lights)’

> This can also optimize fuel efficiency and offset the cost of V2X implementation through the
beneficial ecological and economical impact.

Introduction to V2X Communications 15

2.2.3 Autonomous Vehicle Services

Autonomous, or self-driving, vehicles are capable of performing some (or, in a possible
future, all) traffic maneuvers without human input.

All autonomous services, when implemented in a secure and safe way, increase safety and
efficiency in traffic by eliminating the delay caused by human reaction time. An intelligent
agent can use onboard sensors to observe the vehicle’s environment, but will most likely
need to communicate with other agents, or roadway infrastructure, by means of V2X
communication.

Plans for the initial implementation of autonomous vehicle services usually include the
driver, who can take control of the vehicle in emergency situations, possibly caused by
malfunction of the system. However, there are also scenarios in which the Al might need to
intervene to prevent an accident caused by human error®. If V2V services detect an
impending collision, the software could trigger an emergency stop. Nevertheless, one could
imagine completely autonomous, driverless vehicles of the future that humans can give
orders to.

2.2.4 Intelligent Transport System Services

In an Intelligent Transportation System (ITS), an intelligent software analyzes, controls and
optimizes traffic. Vehicles are only partially autonomous and serve as both sensors and
actors of the ITS. The ITS can also influence dynamic roadside infrastructure such as traffics
lights, direction-changing lanes and adjustable speed limits (while currently rare, this
infrastructure already exists).

The resulting global’ view and control permits the ITS to operate on large-scale emergent
patterns, such as traffic flows and jams. Especially the prevention of traffic flow is a promis-
ing feature of ITSs. ITSs could also optimize logistics and public transport.

2.3 Risks and Limitations

2.3.1 Performance

When exchanging safety critical information, vehicular agents need to transmit and process
messages within very short time frames in order to avoid collisions. Both [ETSIO9] and
[NHTS14] primarily list usecases that require latencies (reaction times) of less than 100 ms
at message frequencies of 1-10 Hz, but also describe usecases with less than 50 ms or even
20 ms allowable latency. At intersections or in traffic jams, vehicles can easily become
surrounded by more than 50 other nodes within communication range. Since most
scenarios specify point-to-multipoint broadcast messages, even assuming a message
frequency of only 1 Hz, each vehicle would have to process each incoming message in less

® Or sudden incapacity, for instance caused by a heart attack.
7 In the mathematical sense, not “surrounding the globe”.

Introduction to V2X Communications 16

than 20 ms in such a situation. Otherwise, the vehicular agent would risk discarding an
important safety message.

“In order to create the required environment of trust, a V2V system must [...] credential
each message [...]” ([NHTS14] preface p. xviii). With currently available embedded
technology, the verification of a secure signature in this timeframe, combined with the
additional load of other cryptographic operations such as key generation for pseudonym
changes and signing own message would hardly be feasible. Fortunately, not all messages
need to be verified, as most of them would be irrelevant for the agent’s operation. To
ignore unimportant messages, the agent needs to partially interpret them before
performing any expensive operation. This prevents encryption of the messages (or at least
complete encryption), since decryption is both expensive and a prerequisite to inter-
pretation. To allow for partial encryption, the nodes would have to attach unencrypted
promises of severity to their message that the recipient can utilize for prioritization at peak
times. As of now, most conceptions of future V2V implementations do not include the
encryption of messages.

The expensiveness of signature verification also renders VANETs susceptible to Denial-of-
Service (DoS) attacks carried out by intruders in the wireless medium.

2.3.2 Safety & Security

Due to the high risks involved, trust is an important quantity in a V2X environment; trusting
an incorrect message could potentially cause a dangerous or even fatal accident when
vehicles are autonomous. As mentioned in section 2.1.4, sensory data can be utilized to
prevent unsafe decisions, but a high level of trust is nevertheless required to enable
operation especially during cooperative maneuvers. Message must be authenticated and
the signatures must be non-repudiable to prevent abuse.

Current approaches call for the integration of tamper-resistant devices, but a V2X solution
would contain a variety of components that are hard to integrate in a way that also
prevents the exchange of single components, which could be used to control other tamper-
resistant components by simulating a different environment. Trustworthy identities would
be managed by certificate authorities; this opens another area of attack, an attacker that
can temporarily gain control over the registration component could issue new identities
that are falsely recognized as trustworthy. It would therefore be imprudent to assume that
no incidents would ever occur where a hacker gains control over a node identity and can
launch a so-called insider attack. As a consequence, the underlying trust relations between
nodes in the traffic system change; unlike V2X nodes, humans did not have to be on the
lookout for other drivers that try to manipulate them.

Introduction to V2X Communications 17

A survey on security attacks in VANETSs, [ALKA12], lists the following attack scenarios:

(2.3.2A) Security attacks in VANETSs:

(1) Bogus information / lllusion attack
A malicious node purposefully spreads wrong information on traffic situation. The
paper defines an illusion attack® as the variant where the adversary simulates a fake
environment to its own sensors to circumvent tamper-resistant devices.

(2) Denial-of-Service
A malicious node broadcasts much more messages than necessary, jamming
channels and reducing performance and efficiency of the network.

(3) Masquerade / Impersonation attack
A malicious node assumes a fake but verifiable identity by breaking authentication
security and sending on behalf of others or under a new generated identity, or by
resending old messages signed by other nodes (replay attack®).

(4) Timing attack / Black Hole attack
When forwarding a message, a malicious node fakes a higher processing time (or
for the latter, does not forward at all) to introduce delay and reduce network
performance and distribution of the message.

(5) Sybil attack
An attacker generates or assembles multiple identities to simulate multiple nodes.

Note that some attacks listed in [ALKA12] are not included here since they are countered by
defense strategies that are already included in the established prerequisites for VANET
operation.

One might question whether there exist sufficient motives for attackers on V2X systems. To
answer this, there are also examples of such attacks without digital V2X systems. A V2V
trusted warning technology that predates V2X systems is found in the flashing lights of
emergency vehicles. In 2010, a protest movement (known as the Society of Blue Buckets)
emerged in Russia, against the abuse of such lights by “VIP” vehicles of government
officials, businessmen and celebrities. This abuse was often tolerated by government
agencies and occasionally resulted in serious accidents; one could imagine similar scenarios
with trusted V2V messages, where the driver might not even be able to recognize the
abuse.

2.3.3 Privacy

The proposal of large-scale V2X implementation naturally raises some questions regarding
user privacy. A car is usually regarded as a private place, similar to a home, and people
dislike the idea that corporations or government agencies could observe their actions or
collect data that describes their behavior.

® The term illusion attack is often also used to describe attacks where the illusion only affects the
other nodes.
° The latter can easily be prevented by attributing messages with time and position information.

Introduction to V2X Communications 18

Perhaps the most prominent privacy concern with V2X technology is the possibility of
location tracking. Operators of V2X infrastructure could store the location data of inter-
acting vehicles permanently, and use this data to create movement profiles of individuals. A
second possible attack scenario on privacy includes the establishment of a wireless sniffer
network by malicious third parties. This could be possible, since messages are sent
unencrypted in most approaches (due to the broadcast nature of safety messages) and
often contain identification information (for example, via the certificate used to create the
digital signature). Vehicles already possess publicly visible identification markers, namely
license plates, but V2X communication would lower the cost of a tracking network based on
such markers significantly.

Current approaches deal with privacy concerns by equipping vehicular nodes with huge sets
of pseudonyms that the node can switch between at random intervals. Provided that
observers are not able to link pseudonyms®™, this protects users from tracking by third
parties, but not from tracking by infrastructure operators.

2.3.4 Deployment

The future deployment of many V2X technologies faces a “chicken-and-egg”-problem: Their
quality depends on current distribution; if too few vehicles contain V2V systems, they have
nobody to communicate with. Getting many vehicles to include such systems requires
getting many customers to buy such systems (which could be costly), but the willingness of
customers to buy them depends on the quality again.

Government agencies could mandate the integration of V2X systems in the future;
however, this would raise even more privacy concerns.

This process is further obstructed since there is no singular entity that would produce,
integrate and deploy V2X systems. The cooperation of many manufacturers is necessary,
and they would have to agree on common standards and implement them correctly. With
current approaches, all of these conditions would be a precondition to the initial deploy-
ment. If the V2X then would not find sufficient user acceptance, an gigantic economic value
of work effort would have been wasted.

O For example, by observing the switch.

Decentralized Trust Management 19

3 Decentralized Trust
Management

3.1 The Notion of Trust

3.1.1 Defining Trust

As of this writing, the Merriam-Webster’s Collegiate Dictionary [MERRO3] lists 5 possible
definitions of the word trust, all with a different meaning. What they have in common is
that they are based on either social interaction or action theoretical'* concepts.

Since we aim to create a model in which trust directly affects the behavior of an agent, it
seems sensible to choose a definition that reflects the action theoretical impact:

(3.1.1A) “[Trust is] assured reliance on the character, ability, strength, or truth of someone
or something.” (keyword “trust”. Retrieved 2015-06-27, from the online version of
[MERRO3])

According to [MCKN96] (p. 3), “Trust makes cooperative endeavors happen”. The intent to
make cooperative endeavors happen lies at the very core of our investigation, so trust
seems to be a useful concept. However, the second disjunct in (3.1.1A), “reliance on [...]
something”, suggests that this might not always be the case: agents can cooperate, but
inanimate objects (= something) can not; hence we ignore the second disjunct for now.

The first disjunct in (3.1.1A), “reliance on [...] someone”, describes the social aspect of trust,
humans trusting each other. Yet we hope to implement trust in a system composed of
vehicular nodes and other artificial agents. This is why we extend this definition to any pair
of homogenous entities. We refer to this kind of trust as entity trust™.

In order to scientifically study this concept and to embed it in software architecture, we
should begin by representing it in a formal, mathematical, model.

3.1.2 Formal Representation of Entity Trust
In what follows, let E denote the aforementioned set of homogeneous entities which can
trust one another. To find an appropriate mathematical representation for the concept of

1 Philosophical action theory, not to be confused with social action theory.
12 Note that this is not completely identical with the interpretation of entity trust in [MASH11].

Decentralized Trust Management 20

trust, we analyze its properties in common language usage. The simplest expression of
entity trust in normal speech is:

(3.1.2A) “A trusts B”*

This sentence describes a relationship, which prompts us to model entity trust as a binary
relation over E?. We call this simple representation of trust a binary trust relation.
Obviously, (3.1.2A) does not imply the inverse, hence a binary trust relation is directed and
not necessarily symmetric. We call the entity A in this circumstance the trustor, and B the
trustee.

The existence of sentences such as

(3.1.2B) “A trusts B a lot” and
(3.1.2C) “A barely trusts B”

indicates that there can be varying degrees of trust, we call these trust values. To
incorporate trust values, we need to extend our trust relation. Let T denote a set of trust
values. We define the entity trust relation R € E? X T, with (4, B, ¢) € R iff the entity A
trusts the entity B to a degree represented by ¢. (3.1.2B) and (3.1.2C) are mutually
exclusive; an entity can not trust another to multiple degrees at the same time'®. R is
therefore right-unique. If we require modelling every possible trust relationship between
entities as a trust value™, R becomes also left-total. We can regard it as a function, the trust
function.

Since we have not yet considered a potential context dependency of trust, we simply
assume that the trust function models a context-independent kind of trust, for now. This
does not hinder us from modelling context-dependent trust, since we could simply define a
set of trust functions and let an agent choose the most appropriate one for a given
situation. Also, we did not impose any requirements on the nature of trust values, so they
could be functions whose common domain is composed of contexts™.

Because our interpretation of trust requires it to be relevant for an agent’s decisions, it
needs to be interpretable via a structure attached to the set of trust values T, rendering it a
space: the trust space. Concluding this section, we arrive at the following definition:

(3.1.2D) Definition of a context-free trust function:
A context-free trust function over a set of entities E and a trust space T is a function
trreet EXE - T

YABEE

" Regarding the same behavior in the same situation. This dependency on context is discussed in
section 3.1.3.

> This includes the absence of any knowledge regarding the other’s trustworthiness.

® This is equivalent to the currying of a context-dependent trust function.

Decentralized Trust Management 21

3.1.3 Semantics of Entity Trust

The previous two sections provided us with a basic syntax and constraints for modelling
(entity) trust, but not with any advice on how an agent should interpret a trust value. What
does it mean to trust an individual? Jgsang et al."” distinguish between reliability trust and
decision trust. For the former, they usually give a definition based on the definition of trust
in [GAMBOO]:

(3.1.3A) Definition of reliability trust®:
“Trust is the subjective probability by which an individual, A, expects that another
individual, B, performs a given action on which its welfare depends.” ([JOSAOQ5] p. 2)

Is this definition adequate for discussing the impact of entity trust on cooperative behavior
in our setting? Cooperative behavior does not necessarily require performing an action.
When interfering in a situation would reduce the global benefit, passive behavior is
cooperative; thus, one agent can trust another to not act maliciously. Moreover, the term
“subjective probability”*® seems misleading, at least in our case of application, because the
trusting expectation lacks the property of negation. Not completely relying on cooperative
behavior does not imply relying on uncooperative behavior to some degree.

The definition of decision trust integrates a relevance for own decision making:

(3.1.3B) Definition of decision trust:

“Trust is the extent to which one party is willing to depend on the other party in a given
situation with a feeling of relative security, even though negative consequences are
possible.” ([JOS205] p. 1)

While this is slightly misquoted from [MCKN96], where this defines trusting intention, our
focus on cooperative behavior makes it desirable to include the decision making process.
Combining these aspects of trust, we define entity trust as follows:

(3.1.3C) Definition of entity trust:
Entity trust is the certainty with which a decision making entity assumes that another such
entity shows cooperative behavior regarding a given domain of action.

Attentive readers might have noted two oddities in this definition: Firstly, we need to
elaborate on the term “certainty”, we will address its implications in section 3.1.6.
Secondly, we replaced the “given situation” from (3.1.3B) with a “given domain of action”.
A reference to context is necessary. We may trust a person to give a lecture, but at the
same time not trust them to fly an airplane ([DENN93] p. 2). However, we do not need to
consider the entire situation. Trusting a pilot to fly a plane usually comes along with
trusting them to fly any other plane of the same class, regardless of the plane’s serial
number or the names of the passengers. The sum of relevant information is called the
domain of action in [DENN93]. While this multidimensionality of trust could be captured in

In [JOSA05], [J0S205] and [JOSA07]
'8 Term was not used in [GAMBOO].
% Also known as bayesian probability.

Decentralized Trust Management 22

multidimensional trust values (see section 3.1.2), this approach can be impractical when
entities exchange trust-related information®. For that purpose, we define another function

type:

(3.1.3D) Definition of a context-sensitive trust function:
A context-sensitive trust function over a set of entities E, a set of domains D and a trust
space T is a function

teg: EXEXD—>T

Humans often distinguish another dimension of trust: There is trust in the ability to perform
an action, and trust in willingness to perform it (see Figure 3.1.3-l). Using only the definition
in (3.1.3C), there should be no difference: the decision making entity only cares about
observable behavior, not the intention behind it. However, in a social context, this
distinction manifests itself in the assignment of blame. This is not without reason: Unlike
lack of ability, which is heavily dependent on the discipline, intentional uncooperative or
even malicious behavior typically crosses domains of action. Therefore, it is sensible to
generally distrust someone who intentionally harms us, but this does not apply if they do so
by accident. Nevertheless, the detection of malicious entities is a different task than that of
assessing the certainty mentioned in (3.1.3C), so we will not include this distinction in our
model. It is important to not confuse trustworthiness with benevolence, or likewise
untrustworthiness with hostility*".

[Entity trust)
Willingness to perform Ability to perform
cooperative action cooperative action
benevolence <= hostility ability <=y inability
trustworthiness <G———— untrustworthiness
\ J

Figure 3.1.3-1: Components of entity trust

3.1.4 Trustin Objects

We just investigated trust in active entities or agents. Is it also possible to trust inanimate
objects? Evidently, we can not apply our previous definitions, because objects can neither
cooperate with agents, nor can they put trust in them?. When we say that we trust or
distrust an object, we usually express an assumption about its functionality. Not trusting

% 1 the example: An airline interviewing a pilot will not ask them about their cooking skills, so the
transfer of trust related information does not include all domains of action.

! In this chapter, only (un-)trustworthiness is relevant. We will briefly discuss the domain-specific
detection of malicious entities in chapter 4.

*? Because of the latter, we can not include them in the set of homogenous entities.

Decentralized Trust Management 23

food means not relying on it being safe for consumption; not trusting a tool or machine
means supposing that it is defective. This also occurs in software: When a developer does
not check for fault conditions of a utilized library, they implicitly assume that it is functional,
i.e., they trust it. When a user installs software on their PC, there is also trust involved: trust
in the program not being a computer virus.

One might simply treat trust in these examples as shifted entity trust towards the
developer, or more general, the object’s producer. We find the clearest expression of this
shifted trust in the handling of messages. When we receive a message and trust it, we trust
its originator that the content of the message is correct, or at least that they did not
intentionally lie to us. Thus, one might argue that entity trust is sufficient for the evaluation
of messages. But a message is not equivalent to “direct”, e.g., verbal, communication.
Equating the reception of a message with the observation of behavior relevant for (3.1.3C)
would neglect several factors that might have affected the message. To trust a message, we
have to rely on its authenticity. Some deliverer of the message could have altered its
contents, so we also have to consider entity trust towards all middlemen. Another
possibility is that the assumed originator did not send any message at all and someone is
impersonating them. There is not always an entity whom we could trust to prevent this; for
example, post offices usually do not demand proof of identity for sending mail. [MASH11]
introduces the notion of data trust for dealing with suchlike concerns. Summing up its
properties in the context of the paper, we give the following definition of data trust:

(3.1.4A) Definition of data trust:

Data trust is the certainty with which a decision making entity assumes that a message
carries information that will be consistent with its perception, without knowledge of this
information.

Contrary to our definition, [MASH11] suggests generating data trust values based on a
number of factors which depend on knowledge of the message’s contents, such as opinions
from other entities and spatial proximity of these opinions to the described event®®. Some
other systems® also validate a message based on its contents. We find this approach
problematic, because it mixes two different concepts: data trust and data truth®”. Suppose
someone implemented an agent that relies on received messages and sensory data. The
information flow in the agent’s reasoning component might look as illustrated in Figure
3.1.4-1.

> See [MASH11] p. 5 section C.
** |GOLLO4], [MINH10]
> Meaning its accuracy in describing the “real world” (correspondence theory of truth).

Decentralized Trust Management 24

‘ Sensor data j Message data Entity trust

. I

'Message data
+ Data trust
]
Mental]
model

Entity trust LMessage data

\

Message data
+ Data trust

(0) For entity A

O For a message from entity A
For entity B

) For a message from entity B

Decision (O Neutral data

Figure 3.1.4-I: Simple data trust model

First, the agent derives data trust/validity from entity trust in the sender?®, as well as from
the message’s contents and sensory data. Now, it uses all available data, including sensory
data?’, to generate a model of its environment (mental model), in order to plan its actions
and make a decision. The agent also updates entity trust according to data trust®® (“I trust
you because you gave me useful information” / “I distrust you because you lied to me”).

In this scenario, the agent unnecessarily interprets the sensory data multiple times,
implicitly generating multiple models that might not be consistent, while potentially giving
more weight to the sensory data than it should. The verisimilitude of the message data
should be derived from the agent’s single mental model, not the other way around.
Therefore, we suggest an information flow as shown in Figure 3.1.4-1l. Before interpreting
it, each message is attributed with the corresponding data trust according to (3.1.4A). This
data trust can be derived from the corresponding entity trust, combined with additional
useful information as, for instance, a measure of the message’s cryptographic security.
After having derived a single model of its environment, the agent compares it with message
data to calculate a measure of data truth?’. According to this data truth, the agent updates
its entity trust regarding the sender.

Data trust should be independent of message content, while data truth should only be
dependent on its content (and the agent’s conception of reality*°).

%% This approach is also found in [MASH11].

%7 Which could also contain information that did not affect data trust, but does affect the model.

%% Also conceived in [MASH11].

% One could choose a coherence theoretical interpretation of truth in such a system. All sources of
perception that could be used for retrospective judgment are also considered during planning, via
the single model. There is no “more objective” reality that the agent could reason about.

% Keen observers might have noticed that data truth in Figure 3.1.4-ll partially depends on data trust
and entity trust for the same message after all. Should “Entity A sent this message” be a part of said
“conception of reality”? An agent could filter out the effect of data trust on data truth when
updating entity trust, to prevent feedback effects (cf. the feedback filters in 3.1.4-Il).

Decentralized Trust Management 25

[Message dataﬂ [Sensor dataj Message data

‘ Entity trust Data trust Data trust <— Entity trust

B AN |

Mental (7) Forentity A
model (O For a message from entity A

For entity B
I () For a message from entity B

(O Neutral data
Data truth } { Decision } Data truth (® Feedback filter

Figure 3.1.4-1l: Improved data trust model

We already mentioned cryptographic security. An important source of data trust in a
message is trust in its authenticity. Humans have been employing physical authentication
techniques for that purpose, such as seals and signatures. Their digital equivalent is
constituted by asymmetric cryptography. By securely binding keys to identities and using
message authentication codes, software agents can reach a level of security at which trust
in authenticity becomes virtually binary. However, this comes at the cost of performance,
so an agent might choose weaker cryptographic techniques at peak times.

3.1.5 Trust as a Computational Concept

Because of the advantages of reasoning about trust for cooperative endeavors, multi-agent
systems (MAS) should be a promising area of application for software based on entity trust.
How can we enable software agents to reason about entity trust? To possess knowledge
about entity trust, an agent needs to be capable of partially evaluating the entity trust
function. Domain and codomain of the entity trust function need a computational
representation to become data types.

The first two parameters of our trust function are entities. To represent them, one could
simply assign unique identifiers to them. While this allows for easy computation, additional
efforts must be made to ensure their uniqueness. In the simplest case, the first parameter
is constant and represents the reasoning agent itself; the trust function then measures the
agent’s own trust in other agents. More sophisticated agents might also consider a third
party’s trust in another agent. If the system uses a context-sensitive trust function, the
domain of action must also be represented. Provided that a finite number of such domains
are considered, an enumeration is sufficient. Lastly, there is the codomain of the trust
function, the trust space T. There exist various approaches for representing trust values.
First of all, one might regard trust as an ordinal variable within a fixed domain of action. An
agent could then rank its peers according to its measured trust in them, in order to choose
who to cooperate with. [ABDU97], [ZHAOO04] and [SURY06] arrange various degrees of
entity trust on a small ordinal scale (see Figure 3.1.5-1). This is particularly useful when

Decentralized Trust Management 26

humans provide the trust information, because the scale can then be mapped to a small set
of discrete verbal statements which humans can agree or disagree on [JOSAQ7].

Value | Meaning Description

-1 Distrust Completely untrustworthy.

0 Ignorance Cannot make trust-related judgement
about entity.

1 Minimal Lowest possible trust.

2 Average Mean trustworthiness. Most entities
have this trust level.

3 Good More trustworthy than most entities.

4 Complete Completely trust this entity.

Figure 3.1.5-I: Possible enumeration of direct trust values and semantics. Source: [ABDU97]

A major disadvantage of small*! scales is the representation of minor changes in trust.
When an agent observes cooperative behavior, it should naturally memorize this infor-
mation. Frequent collaborators should be assigned higher trust values. However, if the
observation does not justify raising the trust level by a full step on the ladder, it must either
be ignored (defeating the purpose) or stored elsewhere, for example in the form of a
counter. The latter case would be equivalent to using a larger, more finely graduated scale,
with thresholds corresponding to values on the smaller scale (see Figure 3.1.5-ll). As a
result, small discrete scales alone are only practical when trust is either static or subjec-
tively defined by humans, as is the case with PGP key trust.

)
trustworthy + A increase
trustlevel P/ [_trustworthy
rather
trustworthy ;?tf;frorth
ustw Y
+ o -
rather
untrustworthy rather
____________________ | _untrustworthy
decrease
untrustworthy Y trustlevel
—__ J
interaction .
coarse scale fine scale
balance

Figure 3.1.5-1l: Moving on a coarse trust scale according to interaction balance is equivalent
to moving on a fine scale.

31
In terms of cardinality, not interval size.

Decentralized Trust Management 27

One-dimensional continuous trust values such as those conceived in [MARS94], [GAMBO0O0],
[GERLO7], [MINH10], [BISM12] and [WEIZ14] allow for subtle trust adjustments. They can
be mapped to floating point numbers and are frequently interpreted as bayesian
probabilities. As indicated in section 3.1.3, problems can arise when assigning meanings to
the extreme values. Suppose we (as an agent) encounter a previously unknown agent, and
have no categorical knowledge about unknown agents®2. Of course, we could not be less
certain about its intentions or abilities. This profoundly differs from situations where we
strongly expect uncooperative behavior from our peer, and can be regarded as a third
extreme value (besides complete trust and complete distrust). Jgsang® addresses this issue
using a belief calculus, namely subjective logic (see Figure 3.1.5-1ll for an introduction to
subjective logic).

Subjective logic [JOSA01] formalizes subjective beliefs as 4-tuple opinions. Let x be the
statement “Entity B is trustworthy” within Entity A’s mental model. We can denote this as
the opinion w2 = (b4,d2,u?,0.5)*, where b2, d2 and uZ represent A’s belief, disbelief
and uncertainty regarding x, respectively. This can also be written as a)g, and regarded as
the entity trust of A in B. The trust space would then be identified with the opinion space,
which can be mapped to the interior of an equal sided triangle using the barycentric
coordinate B((b{,d¥,uff,af) = (b, df,u¥). Now all three extreme values are repre-
sented in the corners of the triangle, as the both absolute opinions and the point of
absolute uncertainty. Subjective logic might be the ideal foundation for our system, since it
is accompanied by a rich mathematical framework including operators for computing the
effects of recommendations and derivation of trust/opinions from multiple sources.

Some other approaches ([MANC98] and [SABAO02]) use fuzzy logic for reasoning with trust
values. While subjective logic operates on uncertain measures about crisp propositions,
fuzzy logic operates on crisp measures about linguistically vague (and therefore “un-
certain”) propositions (cf. [JOSA01] p. 2). A fuzzy-logical representation of entity trust might
be more suitable for our definition in (3.1.3C), because certainty (the measure) is relatively
easy to describe accurately, for example by putting it into context with risk**, whereas (non-
binary) cooperative behavior (part of the proposition) is hard to give an linguistically clear
account of.

3 l.e., no statement like “30% of all agents in this universe will always act cooperative.”

> For example, in [JOS205] pp 64-67

** The fourth element represents relative atomicity, the size of the state space relative to the frame
of discernment. In this example, the frame of discernment is binary, so a2 = 1/2.

> This is essentially being realized in [MANC98].

Decentralized Trust Management

28

Q@ 0 0 &

Frame of discernment 0 containing 4 elementary states (possible situations) [JOSA01]

Only one elementary state can be true at a time. States are described using sets and can be
grouped into superstates (supersets). Superstates are true iff one of their substates is true; in
the picture above, ® would always be true. A subject can distribute a total belief mass of 1
over the set of all possible superstates (= 2°).
In a frame of discernment with two disjoint states x and —x that contain all substates of the
frame, b(x) is the mass assigned to x (belief), d(x) = b(—x) the mass assigned to states
disjoint from x (disbelief), and u(x) the mass assigned to all other states, i.e., ® in a binary
frame of discernment (uncertainty).
It holds that (Belief function additively):

b(x)+dx) +ulx)=1
Combined with the relative atomicity a(x) (the proportion of elementary states contained in
x), these masses form the opinion w, = (b(x),d(x),u(x),a(x)). The opinion space can be
visualized as a triangle:

Uncertainty

Example opinion:
wy=1(0.7,0.1,02,0.5)

// e ;Y_\ » X Projector
; X S
Disbelief] x‘ T — 0 —t ?slBehef
ax Ex) 1

Probability axis

A subjective probability expectation can be obtained by projection an opinion point onto the
probability axis.

Figure 3.1.5-1ll: Introduction to Subjective Logic

Decentralized Trust Management 29

All approaches that introduce multidimensionality into context-free trust spaces®® in-
evitably complicate decision-making, because the trust space loses a meaningful total
order. Since both certainty and display of cooperative behavior’’ are at least ordinal
variables, it would be possible to preorder the space according to one of them, and then
order the equivalence classes according to the other. Such orderings based on prioritized
criteria have been suggested®, but they are hard to defend when related to intuitive
choice. Should we rather trust someone from whom we uncertainly expect cooperative
behavior than someone from whom we certainly expect minimally less cooperative be-
havior? In real-world situations, when a multitude of factors must be considered, it
becomes unlikely that two options are equal in the first criterion at all, effectively rendering
the second criterion as well as the second variable meaningless and the trust space one-
dimensional®.

When representing context-dependent trust values with domains of action that are
independent of each other, vectors of context-free trust values are ideal. When reasoning
within a domain of action, the corresponding trust value can be extracted through vector
access, and a total ordering of context-dependent trust values should not be necessary.
Apparently, there is a multitude of concepts regarding the computational representation of
entity trust. The ideal choice for a system heavily depends on the requirements regarding
complexity and efficiency. Such being the case, we will attempt to make all schemes
designed in this study independent of the underlying trust spaces and not specify types of
trust values. Instead, we will focus on general trust management (see section 3.2).

Because data trust is usually derived statically from a small number of sources, e.g. entity
trust in the originator and a measure of cryptographic strength, it could also be represented
by simply linking the base measures from each source (e.g. “This message was sent from a
trustworthy agent along with a strong MAC). These combined propositions can also be used
for communicating data trust, leaving the interpretation up to the recipient and reducing
information loss. The information carried by such a message is not identical with data trust
as defined in (3.1.4A), but it becomes data trust when combined with an interpretation
procedure in the recipient’s reasoning component.

3.1.6 Acting upon Trust / The Ideal Agent

An agent usually pursues a strategy or follows a protocol when interacting with other
agents. This guideline is either hardcoded in its programming, or derived by an artificial
intelligence. It serves the purpose of accomplishing specific objectives in the short or long
term. Perhaps the best-known basic strategies are egoism and its complement altruism.
The aim of an egoistic agent is to maximize its total benefit, the so-called utility for itself.

** Those which are limited to a single domain of action from the codomain of a context-sensitive
trust function, and thus do not have an intrinsic multidimensionality from context sensitivity.

> or other degrees of freedom considered in the respective approach.

8 For example, in [JOS205] p. 65, which stems from definition 10 in [JOSAO01] p. 9.

% At least within any reasoning that is based on the ordering.

Decentralized Trust Management 30

Thus, it always acts in self-interest. An altruistic agent, by contrast, aims to maximize the
utility for all other agents, not including itself; it always acts in the interest of others.
Relating these strategies to cooperative behavior, we notice intrinsic problems in both.

On the one hand, if we built a system that only contained egoistic agents, situations might
arise where the utility for one agent, which results from not cooperating, is just slightly
greater than that received by each agent individually (including the first agent), which
results from cooperating. This agent would then refuse to cooperate, vastly decreasing
total utility. The risk for such scenarios naturally increases with the number of agents
involved in a cooperative endeavor, because the total utility is distributed over all agents,
whereas a saboteur might claim the (lower) total utility*® resulting from a failed endeavor
for itself, with potentially dangerous results for the system. For instance, the formation of
an emergency corridor for ambulance vehicles depends on the cooperation of hundreds of
agents*’. A purely egoistic agent would abuse this for overtaking the other vehicles with the
side-effect of obstructing the ambulance’s way.

On the other hand, if the system only contained altruistic agents, they would be obliged to
help others and might also do so in situations where this reduces total utility for all,
because their own loss is greater than the sum of the other’s gains. With altruistic stra-
tegies, the risk for adverse effects increases when the number of agents involved
decreases. When there is more interaction, the chance for cooperative bonuses rises, and
the agent is likely to be compensated. An agent that relies on potential compensation, but
only acts altruistic when the expected compensation is greater than the initial loss, is acting
reciprocally altruistic. An ethical axiom that such a strategy could be based on is the golden
rule:

(3.1.6A) “Do unto others as you would have them do unto you.” ([PUKA15])

Considering dependencies between own reasoning and the reasoning of others* can
provide solutions in situations where ubiquity of egoism or altruism has adverse effects: If
two naive egoistic vehicular agents meet at an intersection, none of them will give way,
resulting in a collision. If two altruistic agents meet, both will give way, resulting in a
stalemate. By reasoning about the respective other’s reasoning, both cars conclude not just
that “one driving while the other gives way” is the correct solution, but also that the other
car is aware of this solution. Without this information, nobody could safely drive®.

As pointed out, both egoistic and altruistic strategies result in suboptimal agent behavior
with regard to the system. This is because their aim does not necessarily include optimizing

*© We refer to this difference as the cooperative bonus. The cooperative bonus is lost in this scenario.
o Currently human drivers, but the existence of this paper is justified by their possible future (at
least partial) replacement.

* This is not a causal dependency; it results from the entities’ homogeneity. Their awareness of this
homogeneity would be essential categorical knowledge in this scenario.

* This is still insufficient for deriving each agent’s behavior: They both discard the options where
both agents would be doing the same, but they still do not know which one should give way. We will
discuss this later in this section.

Decentralized Trust Management 31

the system’s efficiency. If we equate the system’s efficiency with the total additive utility
for all agents, we arrive at yet another strategy, namely utilitarianism.

According to one of the most influential proponents of classical utilitarianism, Jeremy
Bentham,

(3.1.6B) “it is the greatest happiness of the greatest number that is the measure of right
and wrong.” ([BENT76])

In Bentham’s theory, happiness is a measure for utility; in a multi-agent-system, it could be
efficiency of the system, depending on the system’s purpose. Unlike an egoistic agent,
which lacks consideration of the other agents’ total benefit, and an altruistic agent, which
lacks consideration of its own benefit, a utilitarian agent aims to maximize utility for all
agents (see Figure 3.1.6-1).

~
~ .
R
I’ \ N
’ v N
II R
r \’ \‘
[A] 1!
:| ,‘ |‘
'
: ' h L
'
'\ ’ others ‘o
\ ,\
ll
I

egoism
altruism
utilitarianism
Figure 3.1.6-I: Utility maximization targets for egoism, altruism and utilitarianism
Naive utilitarian agents do not encounter the problems we described while criticizing
egoism and altruism, but they still can not solve the intersection problem without con-
sidering behavior dependencies. In order to solve all of the aforementioned problems, we
should attempt to combine utilitarian strategies with the advantages of the golden rule.
First of all, the golden rule only considers the behavior of interaction partners. Utilitar-
ianism extends the perspective to the collectivity of agents, so we should in like manner
extend the scope of the golden rule®. There is an ethical axiom that fits these require-

ments:

(3.1.6C) Categorical imperative®
“Act only according to that maxim whereby you can, at the same time, will that it should

become a universal law.” ([KANT85] p. 30)

* This eliminates its interactive character, because the affected agent does not interact with all

other agents.
** This is Kant’s first formulation, also called the “universalizability principle”.

Decentralized Trust Management 32

An agent whose strategy conforms to the categorical imperative can not chose any
behavior that would be detrimental to itself if other agents chose the same behavior. It
would act optimal, regarding its own aims, in a system entirely composed of homogeneous
entities. However, the categorical imperative in itself is not utilitarian. For heterogeneous
agents, the same consequence might produce different utilities; the agent might choose a
behavior that would also benefit itself when universalized, but has adverse effects for the
system. The following definition combines the ideas of (3.1.6B) and (3.1.6C):

(3.1.6D) Categorical utilitarian imperative:
Act only according to that maxim, which would maximize global utility when established as
a universal law.

A system composed entirely of agents that follow (3.1.6D) would operate at maximum
efficiency per definition, unless there are situations where the best solution can not be
expressed as a universal law*®. How would two agents solve the intersection problem? The
problem’s difficulty is rooted in the solution being asymmetrical, while the situation is
symmetrical in the agents’ perception. Both options (“A gives way” and “B gives way”) will
receive equal valuation®’. Some kind of tie-breaking is necessary.

Firstly, one could introduce non-determinism. The agents could let some source of random-
ness influence their behavior. Of course, there would be additional communication
necessary to prevent a collision, but a solution is theoretically possible. Unfortunately, the
agents’ actual behavior would be completely unpredictable for third entities. Additionally,
the system can easily be cheated when agents have to rely on values produced by other
agents being truly random.

Secondly, it could occur to us that the agents’ perceptions in this scenario are actually not
exactly identical, because of chirality. An agent could use this to derive a solution if it could
rely on the other agent interpreting the chirality in the same way. This can be achieved by
introducing common knowledge (rules) that all agents need to possess. For the intersection
problem, “priority to the right” would be such a tie-breaking rule that is also based on
chirality®®. A peculiarity of these rules is that they can not be totally justified; priority to the
right (combined with driving on the right) is not inherently better than priority to the left
(combined with driving on the left). Independent intelligent agents could not derive the
same rule on their own. An agent’s maxim should therefore include: “In case of doubt, stick
to the rules.”. At this point, doubt implies perfectly equal valuation for all alternatives. This
would render most traffic regulations obsolete®®, because the agent could derive them on

* The law can be parameterized so that the resulting behavior depends on perception. It does not
force homogenous agents to act the same way, unless they share the same perception.

* And they should, because otherwise naive deterministic agents acting only according to (3.1.6D)
could collide when both make the same “better” choice.

*® Such a rule does not to be parameterized based on chirality, it can depend on a factor that would
otherwise not affect valuation.

* For instance, safety distances are not tie-breaking, their necessity results from the system’s
physical properties.

Decentralized Trust Management 33

its own, or find a better solution for specific situations. This is only desirable under the
premise that the system only contains infinitely intelligent omniscient agents. If we do not
wish to rely on that, we could increase the margin of doubt, reducing the agents’ relative
self-confidence. Maximizing this margin of doubt would mean minimizing the agents’
relative self-confidence, resulting in them strictly following the rules.

Up to now, the system we discussed in this section relies on all agents being designed by
the system designer and being free of defects and manipulations. In reality, at least the
latter two requirements can not be achieved. If an agent, due to a bug or manipulation,
follows an egoistic strategy, it could attempt to disrupt the system for its own benefit. We
call such a behavior an insider attack. In the intersection example, an egoistic saboteur that
doesn’t communicate could hardly gain an advantage; driving instead of giving way is very
risky for themselves. A more promising insider attack, the illusion attack™ is realizable
when agents give account of their environment; a malicious (or only misbehaving) agent
can spread incorrect information (the illusion). For example, a malicious vehicular node in a
VANET might wrongfully announce the approach of an emergency vehicle, in order to get
other vehicles out of the way and thus gain a speed advantage. To defend against insider
attacks, agents have to not treat all other agents equally, and to recognize egoists, or more
general, untrustworthy entities. They have to consider their own certainty in assuming that
another entity shows cooperative behavior, which is entity trust>’, according to (3.1.3C).

To sum up, we identify the following requirements for a MAS subject to insider attacks®:

(3.1.6E) Requirements for a MAS subject to insider attacks:
(1) Agents should behave in accordance with the categorical utilitarian imperative
defined in (3.1.6D).
(2) Agents should calculate and keep track of entity trust. They should interpret it
within their decision making process (i.e. They should act upon trust).
(3) The system should specify a set of rules whose compliance does not conflict with
rule (1). These rules do not need any further justification. Agents should prefer the
behavior stipulated in the rules to similar alternatives.

Due to the nature of the system, not all agents will conform to these requirements. In
addition, (3.1.6E1) is hard to achieve in complex systems, even for agents designed by the
system designer. Nevertheless, we can utilize the concept of an entity that conforms to all
of these requirements; we call such an entity an ideal agent.

What does it mean to act upon trust? In situations similar to the (symmetric 2x2) prisoner’s
dilemma ([KHUN14]), cooperative behavior is dangerous when one can not rely on the
opponent’s cooperation. Acting upon trust would imply cooperating when entity trust is
high, and refusing to cooperate when entity trust is low. This can be extended to series of
interactions, and also to data trust which is derived from entity trust. Providing accurate

° An explication for VANETSs is given in [ALKA12] p. 5.

> In the case of illusion attacks, the determining factor is more precisely data trust.

>> We will refer to such a system as an open multi-agent system. This corresponds to the definition
given in [ARTI09] p.461.

Decentralized Trust Management 34

information and trusting each other’s messages is definitely beneficial for both parties in
the long term, and can be regarded as cooperation. However, when entity trust (and hence
also data trust) is low, an agent should doubt of the messages’ validity, to avoid falling
victim to an illusion attack. The impact of entity trust naturally depends on the situation. In
the prisoner’s dilemma, the trust necessary for choosing to stay silent grows with the level
of penalties received if the other player should confess.

It is this amount of trust that we referred to as “certainty [to assume] cooperative
behavior” in (3.1.3C). It can be measured based on risk. The more certain we are in
assuming something, the higher are the risks we will take in regard to being wrong.
Certainty in a proposition is not equivalent with willingness to rely on it. The latter is
influenced by our valuation of the risks involved, while the former can be determined a
priori. The relation between risk and trust is important and will be used as a general
guideline to determine when entity or data trust should increase or decrease.

[MANC98], instead of formalizing trust directly, describes an entity’s trust model using risk-
trust matrices of trust-related variables. By defining regions of trustworthiness, the entity
can make decision based on fuzzy-logical inference rules (see Figure3.1.6-Il). This approach
could also be useful for the implementation of trust-based decision making when trust is
directly represented. Agents in an MAS that includes the communication of trust values
could adapt their interpretation of these trust values by “learning” fuzzy trust zones in
matrices where one variable is a trust value.

) e I E—
I ’» d
‘ 7
// V
| TiustZone |
1lenI} e
1 . \Y% \Y
good | —
| ~
! s A A AY

vV | V A" \Y% A%

| Transaction History },
:
Y

wost |V Vv v Vv Y

micro small medium high _ expensive

’ Cost of ore transaction ‘

V: Vernify every transaction
Figure 3.1.6-1l: Trust Matrix between “Cost of Transaction” and “Transaction History”.
Source: [MANC98]

Decentralized Trust Management 35

3.1.7 Trust Transitivity

Many papers>> mention transitive, or at least partially transitive, trust. First of all, it needs
to be mentioned that the common understanding of a trust relationship contradicts
mathematical transitivity. Transitivity is a property of binary relations, and any inter-
pretation of trust that goes beyond simple statements such as (3.1.2A) can not be
expressed as a binary relation over entities. The notion of partially transitive trust usually
combines two observations: Firstly, that trust can be propagated along chains (also called
trust paths), possibly being weakened or diluted in the process ([JOSA07] p. 9). And
secondly, that trust is conditionally transitive ([ABDU97] p.52); i.e. that its propagation is
subject to certain semantic constraints. These constraints have been investigated in
[JOS205]. One important constraint is induced by the diversity of domains of actions>*: that
Alice trusts Bob to fix her car, and Bob trusts Claire to look after his child, does not imply
that Alice trusts Claire to fix her car or to look after her child ([JOS205] p. 60). Trust
purpose, or the corresponding attribute of a domain of action, should be homogeneous
within a trust path. Moreover, Alice trusting Bob to look after her child would also not
suffice to derive that Alice trusts Claire for this purpose. Instead, Alice needs to put trust in
Bob’s ability to recommend a babysitter. This trust in the ability to refer to a third party is
called referral trust in [JOS205] and enables the definition of another constraint for trust
propagation:

(3.1.7A) “A valid transitive trust path requires that the last edge in the path represents
functional trust and that all other edges in the path represent referral trust [...]” ([JOS205]
p. 61)

Figure 3.1.7-l illustrates this kind of transitive trust derivation along paths. We come to the
conclusion that even this elaboration is not specific enough: (3.1.7A) implies that except for
the last edge, all edges in the trust path represent the same kind of trust; however, the
second-last edge represents trust in the ability to refer to a functional expert, while the
third-last edge represents trust in the ability to refer to another referrer.

Alice . Bob " Clalre DaV|d
8 ¥ “re .
T —l—»
trust trust trust
transitive trust

Figure 3.1.7-I: Transitive trust derivation. Source: [JOS205]

For a trust path with only two edges, this distinction is irrelevant. Therefore, when an entity
A trusts another entity B, B trusts C, and the aforementioned constraints are met, can we
derive that this affects A’s trust in C? We need to consider the model in which this

> For example, [ABDU97], [RANG98], [KAMVO03], [JOS205], [JOSA07] and [MASH11].
4 [JOS205] uses the term trust purpose, which can be regarded as equivalent to “domain of action”
in this context (but not later, after the introduction of referral trust).

Decentralized Trust Management 36

deduction should be made. In an objective model, i.e., an omniscient observer’s knowledge
about this scenario (see Figure 3.1.7-ll), these statements are not sufficient to make the
deduction. It could be possible that A is not aware of B trusting C, or does not even know C

atall.
trusts
external
observer

knows7

trusts? ‘\ trusts
N, \“A

Figure 3.1.7-1l: Objective model of trust transitivity

In a subjective, epistemic model, e.g., from the viewpoint of A (see Figure 3.1.7-1ll), A’s
awareness of B trusting C is not a necessary extension, because it is implied by the very
existence of this trust relationship in the model. However, “B trusts C” is not a legal
statement in this model. Trust is subjective by nature, so A can never definitely know if B
trusts C. A can only indirectly measure this trust, for example by observing B’s behavior, or
by receiving a recommendation from B.

<
trusts

trusts, Atrusts?
justified? 2

Figure 3.1.7-lll: Subjective model of trust transitivity

The above considerations deal with trust in the ability to cooperate, which is only a
component of our concept of entity trust. If an entity wants to rely on another’s
cooperation, it must also take the other’s willingness to cooperate into account. One can
easily see that this component of entity trust can not always be propagated. If B trusts C, it
means that B assumes that C will cooperate with B. A can not infer that C will also
cooperate with A, unless it assumes that C’s willingness to cooperate results from its
attitude towards a category of agents that includes B and A. A could also draw other
abductive inferences from a recommendation; for instance, that B, generally being
trustworthy, is being deluded by the untrustworthy entity C.

An example situation where trust appears to be transitive is found when investigating
access rights. For example, it is normal human behavior to not allow strangers to enter
one’s home. By inviting people, we put ourselves at risk; our property could be damaged or
stolen. An invitation therefore implies a risk tolerance based on the assumption that the

Decentralized Trust Management 37

invitee cooperates, and can be regarded as an expression of entity trust. We can allow
invitees to bring other people, so one might argue that we also put trust in those other
people by transitivity. However, we can not put trust in someone without knowing of their
existence. It is at that point in time when we learn of their existence, that we also learn that
the person in question was brought along by an invitee, who implicitly recommended the
person as trustworthy. This modification of entity trust, according to what an agent learned
about a second agent’s trust in a third agent, is trust propagation.

Intuitively, it would seem that trust propagation should always increase trust. If A learns
that B, whom it trusts a lot, puts some trust in C, this should increase A’s trust in C. This is
only correct in combination with the implicit assumption that A would have not trusted C
without this knowledge. If A initially trusts C a lot, and then learns that B only trusts C a
little, this should decrease A’s trust in C. It becomes evident that the effects of trust
propagation not only depend on the trust relations that are edges of the trust path, but also
on the trustor’s initial trust in the trustee. For combining different sources of trust,
[JOS205] offers the model of parallel trust combination (see Figure 3.1.7-1V).

ref. 3} --

AI|ce e " David
trust trust
’F 2 s A

N
___ ‘C
ref.

laire

combined trust

Figure 3.1.7-1V: Combination of parallel trust paths. Source: [JOS205]

The connector ¢ is used to denote the combination of parallel trust paths>> and, for a trust
model based on subjective logic, the consensus operator @ can be used to compute the
resulting trust value. Unfortunately, this is only sufficient for directly deriving A’s trust in C
if we can represent A’s “initial” trust in C as a combination of other trust paths of
lengths = 2. If this is not the case, for example if A has also derived its trust in C from
previous interactions, the parallel trust combination becomes a fixpoint “equation”:

(3.1.7B) (4,C) = ((4,B) : (B,C)) » (4,0)

Solving this iteratively®® (starting with A’s initial trust in C) should result in a trust value that
reflects a “fair” combination of the initial trust and the trust path. Another option for

> Trust paths are denoted as a concatenation of their edges. A trust path from entity X over Y to Z
would be denoted as (X,Y) : (Y, Z). (cf. [JOS205] p. 61)

*® This requires a modified interpretation of the connector. In [JOS205], duplicate combination with
® would equal adding a second identical opinion. Iterated application is a contraction, so it would

Decentralized Trust Management 38

solving the equation would be for A to alter its trust in B. This seems sensible; if someone
tells us to distrust a trusted person, this should also prompt us to reduce trust in the
recommender. When the fixpoint equation holds, a further recommendation would have
no effect, which should be the objective of trust propagation. This does not necessarily
require that A has actually reasoned about B’s trust in C. The condition could also be
reached “coincidentally”, or by a fourth entity altering trust values in order to fulfil it.
Perhaps a more apt term than trust transitivity would be trust coherency. We provide the
following definitions:

(3.1.7C) Definitions of subjective and objective trust coherency:

Let P(X,Y,V) denote the set of all simple paths from X to Y within the complete directed
graph with vertex set V. For two trust sources p,q for entity X regarding entity Y (for
example trust paths from X to Y), let p ¢ q denote the combined trust source for X. Two
trust sources p, q are equivalent (p = q) iff the trustor would derive the same trust value
from either of them. The trust network defined by the trust function t over a set of entities
E is subjectively coherent for an entity A € E iff VB € E\ {A}: Vp € P(A,B,E) ¢ (4,B) =
(4,B) o p. A trust network is objectively coherent iff it is subjectively coherent for all its
members.

a) b)
lacks subjective
trust coherency

(=g=(0) (=g~

objective trust coherency no objective trust coherency

Figure 3.1.7-V: Objective trust coherency, assuming an interpretation where” x : Yoz =2z
iff trust(x) < 0.5 or [trust(y) — trust(z)| < 0.2

If a trust network is objectively coherent (example with generalized trust shown in Figure
3.1.7-V), further trust propagation would have no effect. Trust coherency can be thought of
as a constraint satisfaction problem (CSP):

converge according to the Banach fixed-point theorem (the opinion triangle is a metric space);
however, the fixpoint would not reflect a “fair” combination. An alternate combination operator
could limit the effects of untrustworthy recommendations regardless of their number.

>’ The trust space in this model is R, and trust((P, Q)) = t(P, Q) for all entities P,Q € E.

Decentralized Trust Management 39

(3.1.7D) Definition of the trust coherency problem:

Let £(V) denote the set of all directed edges and P (V) denote the set of all simple paths
within the complete directed graph with vertex set V. Let e,(p) denote the k-th
directed edge in a trust path p, d(p) denote the directed edge from the first to the last
vertex and ¢(p) denote the length, i.e., the number of edges of said trust path. Let Cj
denote the k + 1-ary relation over a set of entity trust relationships that, for all trust paths
p of length k, contains the tuple (d(p), e1(p), ez (p), ...,eg(p)(p)) iff d(p) = d(p) o p. The
trust coherency problem for a trust network, defined by the trust function t over the set of
entities E and the trust space T, is the constraint satisfaction problem (X, D, C) with the set
of variables X = £(E), the set of domains D which assigns T as the domain to all variables,
and the set of constraints C = {({d(p), e1(p), e2(p), ...,el(p)(p)}, Cip) IpE P(E)}. The
subjective trust coherency problem for an entity A € E is the subproblem including only
those constraints induced by a path starting in A, extended with a fixed evaluation of edges
that do not start in A (= the trust values not controlled by A.

An example of such a problem is shown in Figure 3.1.7-VI. A trust network is objectively
coherent iff its trust function solves its trust coherency problem. If all agents “think
rational”, x = x ¢ x is a tautology and all binary constraints>® always hold. Whether higher
levels of consistency exist, depends on the entities’ interpretations of parallel trust
combination. If the trust space contains a value @ that represents complete
uncertainty/unreliability, all trust coherency problems possess the trivial solution where all
variables evaluate to 0, the trustless state.

Figure 3.1.7-VI: Evaluated objective trust coherency problem (binary constraints not shown)
that corresponds to (a) in Figure 3.1.6-V. The constraints are:

58
These are basically unary constraints since they only include one variable.

Decentralized Trust Management 40

o= (4,0): (C,B) o (4,B) = (4,B)
¢t =(A,B):(B,C)o(AC)=(40)
¢, = (B,A): (A,C)o(B,C) = (B,C)
¢ =(B,C):(C,A) ¢ (B,A) =(B,A)

¢, =(C,B):(B,A)¢(C,A)=(CA
cs =(C,A):(A,B)o(C,B)=(C,B)
For the evaluation in (b), ¢, would not be satisfied.

Objective trust coherency (in a non-trivial solution) is a desirable property of a trust
network, from a system designer’s perspective; the same applies to subjective trust
coherency from an entity’s or agent designer’s perspective. The arguments regarding the
need for trust transitivity that [CHRI13] put forward can be applied here too; essentially,
agents need to rely on others to inspect the state of remote elements in the system, but
the trustworthiness of these agents can be a remote element itself. Since achieving trust
coherency is a desirable objective for everyone, agents naturally cooperate in this endea-
vor. In order to do so, an agent can increase its subjective trust coherency by adjusting its
entity trust in others and subsequently communicating these changes in the form of
recommendations, prompting the recipients to optimize their own subjective trust
coherency. This process can be referred to as trust propagation and corresponds with CSP
solution strategies based on constraint propagation techniques.

Unlike trust transitivity models, the concept of trust coherency can also be applied when
the “trust dependency graph”, i.e., the subgraph of a trust network that only contains
edges which do not evaluate to 0°°, contains cycles. Furthermore, each entity can interpret
trust transitivity and parallel trust combination with according to a different computation.
This only affects those constraints which are exclusive to the entity’s own subjective trust
coherency problem. Multidimensional, context-dependent and referral trust is also
possible, enabling conditional trust transitivity.

—
trusts

*—e—0
trust path

Figure 3.1.7-VII: PKI based on Certification Authorities (CA)

> or any other value that renders the trustee’s opinion of third parties irrelevant to the trustor (for
instance, if it does not contain referral trust).

Decentralized Trust Management 41

When the trust dependency graph is acyclic, it is possible to arrange the entities in a
hierarchy where trust paths between two nodes are concatenations of one path upwards
and one path downwards (higher nodes do not consider the opinions of lower nodes when
computing entity trust in other higher nodes). If the graph is also a tree, simple “partial
trust transitivity” can be assumed. Such is the case in a public key infrastructure (PKI) with a
root certification authority (see Figure 3.1.7-VII).

Trust coherency does not ensure trust accuracy, because trust does not originate from
recommendations alone. When propagating and adjusting trust, entities should always
prefer trust values that approximate entity trust generated by direct sources such as
experience. This initial trust usually varies over time; entity trust can rise or fall during
further interaction, breaking trust coherency. To adapt to these changes and to restore
trust coherency, trust propagation needs to be an ongoing process (see Figure 3.1.7-VIII).
This is crucial in systems that are based on trust transitivity. For example, in an X.509 PKI
[RFC5280], when trust in a certificate is lost, it is usually blacklisted on a certificate
revocation list (CRL). This CRL needs to be constantly updated; in other words, local CRLs
must be consistent with remote CRLs, and available to all entities at all times, or trust
accuracy is lost. According to the CAP theorem (Brewer’s conjecture in [GILBO2]), this
comes at the cost of partition tolerance. When an agent witnesses malicious behavior of a
peer with a certificate that it can not find in the CRL (for example, because it can not
contact the CRL provider), the only possible solution that restores trust coherency is to
(temporarily) reduce trust in the CA, which also reduces trust in all certificates, thereby
incapacitating the agent. Recommendations provide an agent only with a momentary
snapshot of the trust network; to ensure accuracy and trust transitivity, recommendations
need to be not only veracmus but also faster than a possible attacker

O Agents update trust to restore coherency

32,

S i If this causes no further updates, distant
D values are not affected

coherency is lost
trust propagation
trust changes -

Figure 3.1.7-VIII: Propagation of trust changes (cf. Figure 3.1.7-VI)

To sum up this section: trust is not intrinsically transitive and the term “trust transitivity” is
misleading. Instead, one should analyze trust coherency, which is an extrinsic property of a
system that depends on its members’ individual trust reasoning. Trust coherency can be
achieved by using trust propagation methods such as recommendations. However, a
system can only rely on trust transitivity based on trust propagation when it sacrifices
partition tolerance.

Decentralized Trust Management 42

3.1.8 Dynamic Trust

In the last section, we briefly mentioned that trust is usually not constant over time. An
agent uses entity trust to make assumptions about another agent’s future behavior; its
most evident support for these assumptions lies in its past experience with the other, i.e.,
in observations. Therefore, trust can be an empirical®® quantity and is subject to
observational error as such. Moreover, its “correct value” can change if an agent
spontaneously decides to switch to a different strategy, acting more or less cooperative
than before. When reflecting upon interaction, entities are learning and “improving” a trust
value in order to make it more accurate. We call this process of inductive learning trust
refinement, and the corresponding trust source a source of a posteriori trust. However,
there are also trust sources that are independent of experience. For example, infant
mammals instinctively trust their mother. As another example, for future autonomous Als,
it could be useful to define that they may never distrust their human owners. When an Al
applies this knowledge (categorical trust) to infer that it should obey a specific human’s
commands, the inference is deductive. Such trust sources are of non-empirical nature and
can be denoted as a priori trust.

Though a priori trust is usually static, it is not hard to imagine a scenario where it might be
dynamic. When a trust based system does not perform well or has to conform to new
requirements, we could alter its agents a priori trust values via a software update. This is
another variant of trust refinement, but it is not empirical from an agent’s perspective,
unless the update server itself is modelled as a trustworthy entity. A posteriori trust is
inherently dynamic, it can be further distinguished into direct and indirect sources of trust.
When an agent makes the decision to cooperate based on entity trust, its cooperation
partner’s behavior creates a feedback that refines this entity trust (direct trust refinement).
Instead of directly observing another agent’s behavior, an agent could also observe the
consequences of said behavior, for example, in the entity trust produced by third parties
(trust propagation), via recommendations or observation of their behavior towards the
trustee. An overview of trust refinement variants is shown in Figure 3.1.8-I.

4 N\
Trust refinement
a priori a posteriori
direct indirect
- categorical trust - interaction - recommendation
- introduction - observation of effects
|\ J

Figure 3.1.8-I: Trust refinement variants

Entities can purposely attempt to refine trust. In order to increase trust accuracy via direct
trust refinement, an agent might choose to cooperate with another agent even if its current

% Albeit subjective; however, this is an intrinsic property of trust, an external observer could not
measure it directly.

Decentralized Trust Management 43

entity trust would indicate otherwise without consideration of the potential knowledge
gain. In sociological settings, “Trust was built through risking betrayal” ([ADAMO5] p. 318).
Conscious learning via indirect trust refinement can be attained via communication with
third parties. An agent that encounters a previously unknown agent lacks direct sources of
entity trust, but it can compensate for this by making an inquiry that other agents can reply
to with recommendations regarding the unknown agent.

We could include the time dependence of entity trust by adding a time parameter to the
entity trust function. However, old entity trust values should be irrelevant in a decision
making process. Any information that an agent could derive from them should already have
been considered in the computation of the current entity trust value. The entity trust
function itself is therefore time dependent, and only describes a momentary state of a
dynamic trust network; agents do not need to memorize a “trust history”®! for decision
making purposes®.

If trust propagation in a network is based on recommendations or other messages, the
recipient of such a message can inevitably only derive a trust value that was valid at the
time of transmission. Of course, one could define a transmission time that is considered
“fast enough”; i.e. an agent can assume that no major changes in trust occurred between
sending and reception of the message. Nevertheless, messages could be delayed due to
hardware limitations, changes in network topology or man-in-the-middle attacks; they
should therefore carry time information, so that agents can recognize and ignore outdated
recommendations. To denote a context-dependent temporary measurement of entity trust,
i.e., a single point of a context-dependent (3.1.3D) entity trust function t: E X E XD - T,
we need to combine the following data:

* |dentification of the trustor / trust source et € E
* |dentification of the trustee / trust targete™ € E
¢ Identification of the domain of actiond € D

* Trustvalue / measurementu € T

* Timestamp (time of measurement) T

We call such a temporary measurement a trust statement and, adopting the trust edge
notation® given in [JOS205], notate it as a tuple (e*,e™,d,u, 7). We will later use these
trust statements for the communication of entity trust (see section 3.5.1).

®1 Not to be confused with an interaction history, each element in a trust history would correspond
to an accumulation of interactions.

62 However, they might store it for logging purposes, allowing for reconstruction of events and
debugging the system.

® That third element of a tuple in that notation contains a combination of trust type (direct/indirect
+ functional/referral). The equivalent here is the domain of action.

Decentralized Trust Management 44

3.1.9 Related Terms
A term that is often mentioned together, and occasionally equated, with trust is reputation.
The Merriam-Webster’s Collegiate Dictionary [MERRO3] defines it as follows:

(3.1.9A) Definition of reputation in [MERRO3]:
“[Reputation is the] overall quality or character as seen or judged by people in general.”
(keyword “reputation”. Retrieved 2015-10-25, from the online version of [MERRO3])

When we defined entity trust in (3.1.3C), we based our definition on the trustee’s
expression of cooperative behavior, but we did not explicitly state whom the trustee should
cooperate with. Since entity trust should provide a foundation for the trustor’s trust-based
decision making, it seems obvious that it would consider the trustee’s cooperative behavior
towards the trustee itself.

Herein lies the difference to reputation: if we tried to define reputation in this context,
based on cooperative behavior, it would refer to cooperative behavior towards an agent’s
interaction partners in general, i.e., towards the average peer.

The corresponding entity trust is not necessarily identical, but can be derived from
reputation, as the following two statements illustrate ([JOSA07] p. 7):

(3.1.9B): “I trust you because of your good reputation.”
(3.1.9C): “I trust you despite your bad reputation.”

Our definition of entity trust also contains a reference to the trustor’s expectation, which
makes it subjective, whereas the above definition of reputation is clearly objective. Agents
might have different, subjective, opinions of an entity’s overall quality or character;
[MICHO2] captures this using the term “subjective reputation”. Seizing on this idea, we
distinguish between entity trust, subjective reputation and objective reputation and also
include the term influence for completeness, to measure the trust that an entity receives
within a group. The distinction among these terms is illustrated in Figure 3.1.9-I.

Decentralized Trust Management 45

Expectat—ion Of...

...regarding the trustee's the average
)) the trustor roup member
cooperative behavior towards... group
.................... itself Entity trust (3.1.3C) Influence
_____________________ the average Subjective Objective
group member reputation reputation

Figure 3.1.9-I: Distinction of entity trust, subjective and objective reputation, and influence

While entity trust should be considered when interacting with a peer, subjective reputation
should be used when rating it. The difference can be illustrated using the example of an
online product review system. When rating a product, the user should consider general
quality, not the product’s utility for the user; a review such as “Being deaf, | found no use
for this audiobook; would not recommend 1/5.” does not provide the reader with any
useful information regarding quality. Nevertheless, an individual rating is always subjective.
In the context of trust among agents, the review would correspond to entity trust (and the
reviewer should act upon it and not buy another audiobook) and a good review would
correspond to subjective reputation, enabling others to derive their own entity trust.
Objective reputation and influence can be regarded as measurements of an agents social
standing within a group. The former describes the general consensus®, whereas the latter
describes the actual power an entity can utilize by requesting the cooperation of others.

® In the review system example, this would correspond to the often displayed average of ratings.

Decentralized Trust Management 46

3.2 Trust Management

3.2.1 Aspects of Trust Management

In open MASs, the distribution of trust in the system strongly influences the incidence of
cooperation and betrayal and thus also the efficiency of the system and the individual
security for its members. There are multiple stakeholders who can also control the
distribution of trust, e.g., system designers (by specifying rules and protocols), agent
designers (by implementing trust calculation and interpretation), and individual agents (by
propagating trust). Trust management is the application of such methods that improve a
system’s trust distribution by increasing trust coherency and trust accuracy. This includes
trust establishment, trust update and trust revocation techniques (cf. [CHOJ11] p. 6).

We call a dedicated subsystem of an MAS or individual agent that contains trust
management functionality a trust system.

We already mentioned some trust management methods in the previous sections.
Individual agents can manage trust for their own immediate benefit by learning via direct or
indirect trust refinement (see section 3.1.8), but they can also manage trust for others by
issuing recommendations or certificates. Agent designers can implement agent trust
behavior while taking into account its effects on the whole system. Their mission essentially
is to unify the requirements of (3.1.6E1) and (3.1.6E2). They can also react to emergent
risks and weaknesses by altering their agents’ behavior via software updates. Lastly, system
designers can specify rules that individual agents should follow according (3.1.6E3). This is
necessary to enable cooperative trust management; for example, when agents
communicate about trust values, they need a common syntax for parsing each other’s
messages, as well as common semantics that define the risk tolerance that a communicated
trust value suggests. The set of all rules that regulate the propagation of trust through a
communication medium is the trust propagation protocol (TPP) of the system. When
multiple agent designers take part in the design of a system’s agent population, those agent
designers can be regarded as agents in an open MAS themselves and are subject to the
requirements in (3.1.6E). The system designers of the actual MAS also design this “meta-
MAS” implicitly. There can be various concepts for the interpretation and propagation of
trust by agents, that are of equal value when universalized, but less efficient when com-
bined in the system. In this case, the system designers are obligated to meet a decision by
introducing tie-breaking rules, according to (3.1.6E3). In concrete terms, this means that
system designers should develop standards for an ideal agent’s behavior (see Figure 3.2.1-I
for an overview of MAS and meta-MAS). We will discuss the requirements regarding
managed trust propagation and the ideal agent in section 3.2.2.

One of the main tasks of a trust system is to provide security for its underlying functional
distributed system and to protect it against attacks. However, the trust system itself can be
vulnerable to attacks and inherent risks, especially when unknown agents can participate in
trust management. Such risks for trust systems will be investigated in section 3.2.3.

Decentralized Trust Management 47

Ideal Agent
Specification

Trust
Propagation
Protocol

Figure 3.2.1-1: Open MAS and meta-MAS

Various approaches for trust management relate entity trust updates to economic
exchange. Interestingly, it is even possible to treat entity trust as a currency without
overriding its usual meaning or the meaning given in definition (3.1.3C). Section 3.2.4
addresses suchlike economic approaches for trust management.

When entities manage trust, the associated workload and responsibilities need not
necessarily be evenly distributed. In section 3.2.5, we will examine the advantages of
different distribution strategies for trust management activities.

3.2.2 Trust Propagation and the Ideal Agent

The simplest method of trust propagation between two agents is direct communication of
entity trust values, i.e., the transmission of a trust statement from the trustor to a recipient:
a recommendation regarding the trustee. A first distinction can be made between push and
pull trust propagation.

Push propagation can be likened to the publish/subscribe or observer pattern; the request
for initiating communication is made by the originator of the relevant data. The trustor
asynchronously sends a recommendation to the recipient, for instance, a warning against
cooperating with the trustee. Such a warning would usually be broadcast in order to inform
all potentially affected agents as fast as possible. In contrast, pull propagation, similar to
polling, relies on the recipient initiating the transaction, by sending an inquiry message. As
with push propagation, the trustor then issues a trust statement and sends it to the
recipient.

A distributed trust system should provide mechanisms for both pull and push trust
propagation. On the one hand, if it included only pull propagation, betrayed agents could
not warn others. A mobile attacker could exploit the system at will by moving whenever its
local influence is depleted. Recipients would have no means of determining when the entity
trust they aim to refine changes; therefore, they would need to poll for updates

Decentralized Trust Management 48

periodically. This forces agent designers to find a compromise between low trust coherency
and accuracy (too few inquiries), and unnecessary network load (too much inquiries). On
the other hand, in a network featuring only push propagation, agents can not utilize the
indirect trust refinement via third parties mentioned in 3.1.8. An agent that comes across a
stranger can not determine their trustworthiness. Without pull propagation, it needs to
wait for push propagation initiated by third parties before cooperating with the trustee.
Ubiquitous undemanded push propagation would create overhead, so agent designers
need to compromise again. Figure 3.2.2-1 illustrates the overhead introduced by the lack of
either propagation mechanism in a trust system.

B encounters A loses update interval
unknown C trustin C ¢ polling interval
' : I I‘ """"" > time
push only —m}—|—~A—o~A—:}—|—|—|—|—
pulony —9—9—9—9—9m 9999 .
both r’) !
I push message from A to B I ? insignificant messages
l) answered pull message = period with too low
- fromBto A trust accuracy

Figure 3.2.2-I: Superfluous trust propagation in systems with only push or pull propagation,
compared with a system that features both

Entity trust can also be propagated indirectly with the help of intermediaries. An
intermediary agent can conduct a propagation of trust by sending a signed® trust
statement, issued by the trustor, to the recipient. This corresponds with a requirement
imposed on trust propagation in [JOS205]:

(3.2.2A) Unaltered direct trust referral:
“It is thus necessary that [the recipient] receives direct trust referrals unaltered and as
expressed by the original recommending party [= the trustor].” ([JOS205], p. 62)

The intermediary can improve objective trust coherency, and also justify its own trust
statements. In order to prevent trust loss in itself when reporting significant changes (for
example complete loss of trust in another agent after observing an attack), it can combine
its recommendation with a similar trust statement it received earlier, sign the result, and
send it. Because the signature is only valid for the entire message, nobody can receive only
the new recommendation and decide to distrust the recommender based on it. A special
case exists where intermediary and trustee are identical, such as with tickets or certificates:
the intermediary can use the recommendation to attest its own trustworthiness. Inter-
mediary propagation could also be initiated by an inquiry from the recipient. For instance,

% Otherwise the recipient could not validate the results, interpreting it without validation could
harm the recipient or trustor.

Decentralized Trust Management 49

they might ask for a justified opinion; the trustor would then search for statements that
match their own opinion and attach them to their response. If it did not receive such a
statement, it could ask other agents via an inquiry itself; this could be regarded as a
propagation of inquiries. Push, pull and intermediary trust propagation are shown in Figure

3.2.2-Il.
Recipient
wded

push propagation
/’] pull propagation
Inter-) .~
mediary intermediary propagation

interacts

-

Figure 3.2.2-ll: Push, pull and intermediary trust propagation

When an agent processes a received trust statement, the statement is, by nature, never up
to date. Between the generation and processing of the statement, the described entity
trust can vary. As a consequence, the accuracy of the recipient’s entity trust in the trustee is
reduced. Moreover, since trust propagation also affects the entity trust from recipient to
trustor (see section 3.1.7), the accuracy of trust in the trustor is reduced too. It is therefore
in the interests of all stakeholders in trust propagation to define an adequately short period
of validity t,4;;4 for communicated trust statements. Otherwise, an attacker masquerading
as an intermediary could disseminate the statement as often as desired, in order to damage
the trustor’s reputation (and therefore also influence).

Depending on the trust combination operator used, it might be necessary to prevent
recommendations from being considered twice. If the operator is not idempotent, an
attacker could alter trust values using controlled overpropagation as an intermediary. Even
if it was idempotent, intermediary propagation can result in messages being received twice
via different communication paths. While this would not affect the trust network, further
processing of both messages can waste resources, for example, processing time spent
verifying the signature. A trust propagation protocol should therefore specify at-most-once
semantics for recommendations. Recommendations are attributed with a unique identifier,
and recipients memorize that identifier until no valid identical trust statement can be
received, i.e., until the recommendation’s validity expires. Any recommendation with an
already memorized identifier is discarded upon reception. The identifier must also identify
the trustor; if it were otherwise, an attacker that received a recommendation could issue a

Decentralized Trust Management 50

different recommendation with the same identifier and entities that receive the second
recommendation first would ignore the original;, if the attacker possessed a faster
communication channel, they could shut down other communication completely. For the
same reason, identifiers should not be memorized before the recommendation’s signature
is verified; however, ignoring duplicate messages does not require prior verification.

How would the ideal agent outlined in section 3.1.6 utilize the aforementioned trust
propagation techniques and behave in a trust system? First of all, according to (3.1.6E2), it
should act upon trust. When it encounters another agent, it should choose cooperation
when entity trust is high, and refuse to cooperate when it is low. Generally, it needs to
adapt its risk tolerance; assertions with a lower data trust (derived from entity trust)
require more verification to reduce the chance of illusion attacks. This also affects the trust
system itself; agents should not waste resources to propagate recommendations or
inquiries from untrustworthy agents, or to verify their messages’ signatures when they
would probably ignore the content anyway. A characterization of trust-based behavior is
illustrated in Figure 3.2.2-1ll. Cooperative behavior within an open MAS can be derived from
the ideal agent specification; agents want to determine whether others follow the therein
described rules (= they have ideal agent character), since such agents are potential
cooperation partners.

Variable High entity trust Low entity trust
Cooperation engage in refuse
Resources available for message processing high low

Reliance on conformity to specification high low

Derived data trust high low

Adaption to recommendations strong weak

Tolerance of overreaching utility gain high low

Figure 3.2.2-1ll: Characterization of trust-based behavior

Since sufficiently up-to-date trust information is not always available (it would hardly be
feasible to always send an inquiry and wait for the response for every decision), an agent
needs to derive it, based on the last known value; for example, it could assume equality for
low time differences, or reduce the certainty expressed by the old value. In order to utilize
this last known value, the agent needs to store this value for each known entity, in the form
of a mapping from the set of entities to a set of trust statements®, the trust table. For
simple agent implementations, storing own entity trust as statements with themselves as
et (trustor) should suffice.

As it is in the ideal agent’s interest to increase subjective trust coherency®’, it should
actively propagate trust by communicating its own entity trust values (i.e., those describing
trust relationships where it is the trustor) in the form of recommendations. To meet the

66 . . .
Not trust values, since time is a relevant component.
® This is universalizable (3.1.6E1) to objective trust coherency, according to (3.1.7C).

Decentralized Trust Management 51

requirements described earlier in this sections, a recommendation only needs to contain a
trust statement, useful additional information such as justifications, and a signature.

The ideal agent should not adjust any trust statements and only send accurate trust values;
however, these trust statements refer to the recommender as the trustor, while recipients
are rather interested in how the trustee would behave when interacting with themselves.
Recipients therefore attempt to derive the latter from the former.

The recipient should be responsible for specializing the data, so the recommender should,
instead of making any adjustments to their trust statement, interpret it as being general.
What is being generalized is not the trustor as the judging entity, but rather the
interpretation of trust regarding the affected entity. Said statement then describes the
trustor’s expectations regarding the trustee’s cooperation with any entity (instead of just
the trustor), which is subjective reputation (see section 3.1.9). The corresponding data flow

is shown in Figure 3.2.2-1V.
7] subjective reputation

[] entity trust

trust propagation

~1 » [Recipient

generalization U U specialization

M- M-

Figure 3.2.2-1V: Trust propagation / Recommendation dataflow

trust experience (Trustor/ trust-based behavior
B e

It goes without saying that agents can not constantly broadcast their opinions towards all
trusted entities; a gigantic communication overhead would result, with most messages not
carrying any significant information. Therefore, one needs to determine under which
conditions trust should be propagated, as well as the appropriate propagation techniques.
Push propagation does not transfer significant information if a similar trust statement has
only just been sent; hence it should only be applied when the trust value in question has
drastically changed (i.e., betrayal was detected) or the communication resources would
otherwise be wasted (e.g., unused bandwidth). In order to determine whether a trust value
has changed sufficiently, a metric can be defined on the trust space, the trust value metric.
The application of push propagation in a MAS would show similarities to a recurrent neural
network: the propagation layer can be regarded as a hidden layer with opinions as neurons,
computing entity trust values (output layer) from external trust sources (input layer).

Using pull propagation, the recipient itself can determine when an update is necessary. It
should only send an inquiry when additional knowledge is required, for example, when it
encounters an unknown agent.

Lastly, an agent should use intermediary trust propagation to justify its opinions, whenever
recent similar recommendations from third parties are available.

Decentralized Trust Management 52

We just discussed variants of trust propagation shown from the viewpoint of the trustor
that is also the recommender. It remains to examine the viewpoint of the recipient, parti-
cularly, how an agent should interpret and react to incoming recommendations. The agent
aims to maintain subjective trust coherency, which is, if previously present, now broken or
reduced. Combining known trust values, the agent recalculates entity trust in trustee and
recommender to improve coherency, on the one hand aligning its entity trust regarding the
trustee with the recommender’s opinion, on the other hand potentially reducing trust
towards the recommender. Attention should be paid to the fact that the coherency model
never requires an increase in trust towards the recommender. If a combination operator
required this, one could simply reduce this trust again, even to @, without diminishing trust
coherency. Of course, an agent might additionally reward good recommendations with an
increase in entity trust later on, interpreting it as cooperative behavior.

A more vivid explanation for this kind of behavior which is also seen in humans might be
the following: An agent generally trusts recommendations and adapts to them to a certain
extent. However, if a recommendation seems too unreasonable to it, it distrusts the recom-
mender, because they either express poor judgment, or try to manipulate the recipient.

It would hardly be practical for an agent to store all received recommendations and to
incorporate the results into every trust coherency calculation, especially since the impact
on these calculations will usually be negligible for too old trust statements. Nevertheless,
the ideal agent should possess a “short-term memory” component, which stores all recom-
mendations that are younger than a constant time t,,.,,,. We establish this requirement for
the following reasons:

(3.2.2B) Reasons for a short-term memory component in the ideal agent:
(1) At-most-once semantics
The agent can use the identifiers of previous recommendations to filter out incoming
duplicate recommendations. This usecase requires t,,em = tyatid-
(2) Justifications
The agent can insert statements from the short-term memory into messages for the
purpose of intermediary trust propagation, provided that the statements are still valid.
(3) Preventing race conditions
If multiple related recommendations® arrive during a short period of time, race
conditions can easily occur. For example, this is the case when trust between two
entities is lost spontaneously, in both directions. A third agent might receive both of the
resulting negative recommendations. The consequences would then depend on which
recommendation is received first, as the second one would be distrusted. Instead, the
agent should process the first recommendation immediately (to enable quick
propagation), but memorize it. When the second recommendation arrives, it can revise
its previous calculation and combine both recommendations into a new calculation,
effectively distributing the emerging distrust equally among both recommenders.

68 . .
l.e., recommendations that affect common coherency constraints.

Decentralized Trust Management 53

The existence of such a short-term memory component can also improve trust coherency,
because the combination of recommendations as mentioned in (3) permits the agent to
solve multiple constrains in a single operation. An improvement in trust accuracy can also
result: in the scenario described in (3.2.2B3), the distribution of distrust is more accurate
than the state that results from the naive sequential interpretation of one recommendation
at a time.

Figure 3.2.2-V illustrates the necessary components of an agent’s trust system in an open
MAS. The structure shows similarities to the scheme introduced in [ADAMO5]. When
recommendations are received, they are processed by the trust management and, if not
ignored, forwarded to the trust coherency solver. The trust coherency solver then solves
the corresponding subset of the trust coherency problem, updating the trust table. The
overall dataflow is analogous to the dataflow illustrated in Figure 3.1.4-1l; the updated trust
towards the recommended agents corresponds to the mental model of the current trust
situation, and the resulting distrust towards the recommender corresponds to the depicted
modification of entity trust. Attack detection is separated from the trust system due to the
distinction between hostility and untrustworthiness described in 3.1.3.

A possible solution for the aforementioned requirements will be introduced in section 3.5.

é Trust system R C Decision-making)

Trust coherency solva @’ust managemeD /
Trust tabIe Short-term memory \

* recommendation

Attack detection)
\) C

Figure 3.2.2-V: Internal trust system of an agent in an open MAS

3.2.3 Risks for Trust Systems

The operation of an open MAS is vulnerable to certain risks, emerging from either design
flaws or malicious disruption of the system. Protection from the latter is of special
importance for an open MAS, since its own agents, which inevitably need to be granted
access to its resources, can attempt to disrupt it. The trust system protects the MAS from
such attacks, but its operation also puts an additional strain on the system’s resources.
Trust management therefore also includes the management of these resources. On the one
hand, too much trust propagation would negatively affect the performance of the system.
On the other hand, too less trust propagation results in a lack of trust accuracy and leaves
the system vulnerable to attacks.

It is also important to consider the strength of trust propagation. If agents mostly ignore
recommendations, the trust systems efficiency is diminished. However, if they attach too
great value to recommendations, entity trust can be lost faster than it is generated,

Decentralized Trust Management 54

eventually leading to ubiquitous complete distrust, the collapse of the trust system.
Examples of trust system collapse can be found in smear campaigns and health scares;
following the circulation of rumors (with stronger propagation than the corresponding data
trust would allow), people quickly lose trust in a person, product or company. Trust system
designers must therefore ensure that trust propagation is limited by validity periods for
recommendations and adequate general distrust.

A phenomenon that is frequently observed in trust systems is the formation of relatively
isolated groups with a high inner density of strong trust relations. Such groups can be
identified in the corresponding social graph as strongly connected components® (SCCs, also
referred to as clusters). Figure 3.2.3-| displays an example of clusters in a graph.

AN
(VA

Figure 3.2.3-I: CIustering in a graph. The highlighted subgraphs are SCCs.

One example of this is the so-called strong set of a Web of Trust, i.e., the largest completely
interconnected set of keys. Initially, clustering offers the advantage that cooperation within
each SCC is promoted; a new member can be investigated by few old members and quickly
gains the trust of the entire group. Unfortunately, along with the growing size of an SCC,
the number of its single points of failure also grows. Essentially, every member of the
cluster acts as a CA; the compromise of any of its keys endangers the whole cluster
[PERR13]. Note that this risk only affects heavily decentralized systems; more centralized
systems such as X.509 have significantly fewer single points of failure such as the root CAs.
Clustering itself might not be preventable; if one were to compare a graph whose edges
correspond to actual cooperative interactions between agents (nodes), and this graph
exhibited clustering too, an optimal graph of trust relations must inevitably contain the
same clustered structure. Apart from that, a trust system should aim to minimize super-
fluous clustering. Most trust relations in a strong set do not provide any benefit, except for
transitivity, to the nodes, as they will never interact and meet decisions based on this trust.
From the viewpoint of an individual agent: trusting more entities than necessary can have a
negative impact on security, by increasing the risk for betrayal attacks.

While the trust system protects the MAS, it might itself become the target of attackers who
aim to disable it, in order to get access to the underlying resources. The table in Figure
3.2.3-ll lists various attacks on trust systems and possible countermeasures which have
been investigated in the body of literature that this paper is based on.

&\ subgraph in which every vertex is reachable from every other vertex.

Decentralized Trust Management

55

Name(s)
Betrayal attack ((MASH11],
[ZHAN11])

On-off-attack ([CHOJ11], [MASH11])

Conflicting behavior attack
([CHOJ11])

Inconsistency attack ([ZHAN11])
False information attack ([CHOJ11])

Tampering ([REPA06])
Bad-mouthing ([ZHAN11])
Ballot stuffing ([ZHAN11])
Misrepresentation ([SURYO06])
Collusion attack ([REPA06],
[MASH11], [ZHAN11])

Impersonation attack ([SURY06],

[ALKA12])

Masquerade ([RAYAQ7], [ALKA12])

Newcomer attack ([CHOJ11])

Sybil attack ([DOUC02], [GOLLO4],
[CHOJ11], [MASH11], [ZHAN11],

[ALKA12])

Description

Adversary’® cooperates until
reaching sufficient influence,
then turns hostile.

Adversary alternates between
cooperative and hostile
behavior to avoid detection
and breed discord.

Adversary generates arbitrary
(unfair) recommendations to
increase or decrease a peer’s
reputation / influence.

Multiple adversaries collude to
isolate other nodes or to boost
each others’ reputations.
Adversary assumes the
identity of another peer to
gain its influence or harm its
reputation.

Adversary registers or fakes a
new identity to restore trust
after attacking.

Adversary assumes multiple
identities in order to launch a
collusion or newcomer attack.

Countermeasures
Trust is hard to
build up, but easy
to lose ([CHEN10])
Good trust
propagation, trust
coherency
solving”

Cluster filtering
([DELLOOQ]), Trust
coherency
solving”?

To some extent:
Trust coherency
solving”
Message
authentication,
Key-identity-
binding

Low initial trust,
Certification
authorities, Web of
Trust

Physical verifi-
cation’ Adver-
sarial parsimony
principle”®
([GoLLOo4])

’® Here: internal attacker that possesses one or multiple agent identities.

& Especially the use of intermediary trust propagation allows a group of agents to arrive at a
common objective reputation for the adversary, without losing too much trust within the group.

"2 The attacker will harm themselves, and, since the recipient will also communicate with benevolent
nodes, most likely more than the victim (which also prevents further attacks). Of course, this
argument is based on the attacker not being able to perform a newcomer attack.

73 Only if there is a benevolent group that is large enough to detect the adversary group and to
override their claims.

74 l.e., investigating whether physical entities that correspond to the logical nodes (e.g. vehicles)
actually exist.

> When in doubt, a decision-making entity should pick the explanation that involves the fewest
malicious entities.

Decentralized Trust Management 56

Denial of service (DoS) ([CHOJ11]) Adversary floods the system Detection in short-
with unnecessary messages, term memory
blocking important
communication

Figure 3.2.3-ll: Possible attacks on trust systems and countermeasures

Depending on the structure of the underlying systems, various other attacks on the trust
system might be possible, for example, partitioning of the network which effectively
partitions the trust system as well.

The system to be introduced in section 3.5 will also be examined theoretically with regard
to resilience against the listed types of attacks.

3.2.4 Economic Trust Management

Trust relations often play an important role when monetary transactions are involved; for
example, in two-part-transactions, one trading partner has to trust the other to pay, or to
provide the sold asset. It would seem sensible to directly relate trust dynamics and eco-
nomic exchange. Trust can even be regarded as a currency, when entity trust in an agent
(i.e., its influence) is exchanged for goods (system resources) or services (cooperation).

To begin with, we investigate the direct exchange in a two-person-interaction, without
including trust propagation and third parties. Exchanging trust is simple, in contrast to a
usual currency system; there must neither be a physical good transferred, nor third entities
present to witness the transaction. If one agent observably increases another agent’s
utility, the second will naturally increase its entity trust towards the first; if utility is
decreased, trust is decreased too. Being aware of this, the first agent can spontaneously
help the other in expectation of a future reward; analogically, it will refrain from harming
the other in order not to lose a potential cooperation partner. Trust therefore enables the
emergence of reciprocal altruism in such a system.

Agents that trade with trust in this manner naturally employ a tit-for-tat strategy: If the
respective other cooperates, they will respond with cooperation too (since entity trust was
raised to the necessary level); if the other does not cooperate (or betrays), further
cooperation is refused. This concept has some advantages. First of all, both entities can
valuate the same exchanged asset arbitrarily and different; however, to achieve a long-
term stable trade relationship they need to become even in both viewpoints over multiple
transactions. Secondly, other than in a classical tit-for-tat strategy, the keeping of a trust
value allows this long-term view and the representation of a temporary debt. A series of
computer tournaments organized by R. Axelrod ([AXEL84] p. 30) in the 1970s demon-
strated, empirically, that “tit for tat” is the optimal strategy in competition scenarios akin to
the iterated prisoner’s dilemma’® (IPD).

7% At least in populations of agents designed by professional game theorists for exactly that purpose.
Newer simulations from the Axelrod project on GitHub include different populations and different
dominant strategies.

Decentralized Trust Management 57

A major disadvantage of most tit-for-tat-like strategies is the potential creation of a catas-
trophic feedback loop in minor error cases. Such effects could not be observed in Axelrod’s
tournaments’’; they would occur in more complex systems where an agent could mis-
interpret the actions of its peers. In the iterated prisoner’s dilemma of two agents 4 and B,
suppose that both agents cooperated on the first turn. However, due to some kind of
communication error, B interpreted A’s action as betrayal. B, employing “tit for tat”, would
naturally retaliate by betraying in the next turn, while A still cooperates. A notices the
(from their point of view uncalled for) betrayal and retaliates, continuing the cycle’®. In
systems and strategies where agents are prompted to give a retaliation that is harsher than
the perceived offense, this process is accelerated; real-world examples of this could be
trade embargos, arms races or even the creation of wars. In a trust system, this would
merely correspond to a complete loss of trust between both agents; nevertheless, the
resulting loss in efficiency should not arise from a simple communication error (or, possibly,
brief delusion by malicious agents). Measures to prevent such loops include:

(3.2.4A) Measures to prevent vicious cycles in the IPD:
(1) Damping
Reducing the effects of betrayal on trust, so that a “retaliation” is always slightly
weaker than the perceived offense. Agents would aim to be a little friendlier than their
peers. If the sequence of trust losses converges, a (theoretically infinite) distrust loop is
avoided.
(2) Random cooperation
Essentially the opposite of JOSS. By occasionally attempting cooperation with distrusted
peers (a peace offer), agents can break negative feedback loops.
(3) Forgetting
In the iterated prisoner’s dilemma, an agent could choose to attempt cooperation after
being stuck in the loop for a fixed number of iterations. Correspondingly, agents in a
trust system could slowly increase trust in others over time (up to some neutral level),
allowing distrusted agents to recover.

System and agent designers must implement such measures carefully, since they easily cre-
ate vulnerabilities to attacks. On-and-off and newcomer attackers can often ignore the
long-term consequences of their actions, so agents should not be too forgiving in their
response to early betrayal. Defensive strategies can often be countered by negatively
mirroring them, hoping to hit an opponent’s occasional cooperation with occasional
betrayal; being more forgiving allows others to be more abusive.

This simple principle of using trust for reciprocal exchange can also be observed in social
and small economical contexts. Humans naturally help one another, often expecting a

7 However, a similar effect was observed when “tit for tat” played against JOSS, a modified “tit for
tat” that has an additional random chance of betrayal in every round.

% In the iterated prisoner’s dilemma, this does not terminate cooperation yet; every subsequent
turn contains one cooperative action and one betrayal. It needs a second error to produce
continuous betrayal on both sides ([AXEL84] p. 37).

Decentralized Trust Management 58

return of the favor at some point. A local grocery store owner might allow their customers
to chalk something up, but only to a certain extent before refusing service.

At larger economic scales, more complex concepts of trust exchange prevail. Trust propa-
gation mechanisms allow a group of agents (a society) to have a common concept of debt;
for example, credit cards can be used internationally. While a trading partner might not
trust us to reimburse them without a direct exchange of currency, they trust the credit card
company, which in turn trusts us. The credit card serves as a certificate of that trust, which
corresponds to intermediary trust propagation in our model. The existence of trust
propagation allows entity trust to be used as a universal currency and as a tool for resource
management in an open MAS. A simplified example scenario is the following: a group of
agents share a common communication channel, for example, the mesh network of their
individual nodes. They usually treat all packets equal and forward them with equal priority.
Now agent A needs to make an urgent transaction with agent C. A therefore requests
temporary priority for its messages, by marking them as important. Agent B, the sole hop
between them, complies with the request, but lowers its entity trust in A. This distrust is
spread in the group by means of trust propagation. Later, A helps another agent D with a
similar problem, which causes D to increase trust in A; this increase in trust is also
disseminated. When A’s initial influence is restored, it has given enough resources back to
the system, so that the other agents regard the exchange as fair. This principle allows for a
fair distribution of resources without a central authority, even if all agents have different
needs.

A similar concept (for MANETSs, which can be regarded as a special case of open MASs) has
been introduced in [BUTTO1]. Instead of using the concept of trust, the authors suggest the
use of a virtual currency called nuglets; the managed resource is the communication
channel (packet forwarding). Nuglets behave just like a real currency; agents spend trust
when requesting packet forwarding, and gain trust when forwarding packets for others.
Since the system is decentralized, no central authority can control the currency, and the
prevention of nuglet forgery or duplications is a complicated security problem. In [BUTTO01]
(cf. p. 10), this is solved by suggesting the implementation of a tamper-resistant security
module in each agent, essentially a secure element. However, this simply creates a new
central authority (i.e., single point of failure): the manufacturer of the module.

The use of entity trust and trust propagation (in the form which is discussed in this thesis)
for resource management circumvents these issues. Since an agent’s influence is only
controlled by other agents, it can not “forge” trust for itself. It could forge trust for others,
but, with regard to entity trust, this simply means providing more resource to its accom-
plices at its own expense; with regard to subjective (and thus also objective) reputation,
this is a tampering attack (see section 3.2.3), which is limited by trust coherency solving’®. A
sufficient majority of agents could still oppress a minority and control all resources (large-
scale collusion attack). This is an intrinsic problem of decentralized open MASs and can not
be prevented. If an agent is surrounded only by malicious agents, and has no other means
of communication, the malicious group can always prevent it from communicating.

”® The same applies for intentional trust “destruction” (Unfair negative feedback).

Decentralized Trust Management 59

Requiring tamper-resistant pre-manufactured modules installed in all agents is equal to
requiring that there are no malicious agents, in this regard.

Of course, (semi-)centralized systems are not affected by such issues. The system proposed
in [MARTOO] features a so-called watchdog entity. The watchdog entity listens to all
communications, even if they do not involve it®; it can then recognize misbehaving nodes
and issue recommendations to avoid them. Another decentralized approach could be the
use of a decentralized virtual cryptocurrency such as Bitcoin, although such a system would
still be vulnerable to majority collusion attacks (cf. [NAKAQOS8] p. 3).

3.2.5 Where Should Trust Be Managed?

The trust systems referenced in this thesis can generally be grouped into two
fundamentally different styles of architecture: centralized and decentralized systems. Their
key difference is the localization of trust management.

Centralized trust systems (CTS) feature a singular entity (also called the center), which acts
as the sole authority on all trust ratings. Operation of the system is based on a high
collective trust towards the center. This does not require that the center observes and
assesses the trustworthiness of all other agents; it can also accumulate ratings from peers
(cf. [JOSAOQ7] p. 18). For example, the eBay reputation system could be regarded as a trust
system. Despite the fact that users rate each other, the system is centralized, since users
base their decisions on the total score (ideally, objective reputation) that is accumulated by
the service®'. The center is often not the only specialized entity in a centralized system, a
common addition is a hierarchical structure of subordinate centers. Variants that feature
multiple centers are often referred to as semi-centralized systems.

Decentralized trust systems (DTS) are characterized by the lack of such a central entity.
There are usually no special roles; all agents are equal to the trust system and trust
propagation can emerge at any communication path in the network. Operation of the
system is based on a ubiquity of communication partners and, therefore, opinions. Since
there is no central ordering influence, global structures can only emerge from the
accumulation of individual behavior in local subsystems.

There are several distinctive advantages and disadvantages to both centralized and decen-
tralized systems, which often depend on specific additional requirements. Frequently, an-
other determining factor is the underlying network topology, or infrastructural limitations.
The lack of communication paths can often prevent the suitability of one architectural style.
A general discussion of the aforementioned advantages and disadvantages will be the
subject of the following chapters 3.3 and 3.4.

8 This might not always be possible: For example, in the usecase of MANETs, this requires a
promiscuous mode of the wireless interface (cf. [MARTO0O] p. 256).

¥ Asa counterexample, this does not apply for the review system. Users interpret recommendations
of trustworthiness that are contained in individual reviews (subjective reputation). Although com-
munication is relayed via the server, this can be regarded as direct trust propagation between two
users. However, one could also argue that the system is not perfectly decentralized, since eBay (the
center) potentially has the power to manipulate reviews.

Decentralized Trust Management 60

3.3 Centralized Trust Management

3.3.1 Centralized Trust Systems

In trust propagation protocols of centralized trust systems, [ABDU97] identifies a common
trusted intermediary as the key component. This intermediary, also called the trusted
authority (TA), is used to form trust relationships between the other agents (cf. [ABDU97] p.
49). In a fully centralized system, the center is the only TA; every recommendation that
other agents receive must have been issued by it. As a necessary condition, the other
agents (users) do not place any referral trust in each other, at least not within the trust
system. A remaining variable factor is the existence of recommendations sent by agents
(assessing the trustworthiness of other agents) to the center. If agents rate each other in
this way, and the TA objectively computes an average of these trust values (i.e., its valu-
ation of subjective reputation is identical with objective reputation), the resulting system is
called a centralized reputation system (cf. section 3.1.9). [JOSAOQ7] lists two fundamental
aspects of such systems: centralized communication protocols which allow for trust
propagation between users and the TA*®® and a reputation computation engine, the
component utilized by the TA to compute reputation values.

In centralized trust systems where users do not rate each others’ trustworthiness, the TA
issues purely subjective recommendations. These recommendations are often static, or
have a long period of validity, since there is no continuous influx of potentially altering
recommendations. They can take the form of signed certificates, enabling intermediary
trust propagation without further communication with the TA (now also a certificate
authority). It is a common misconception that a certification-based PKI can only provide
identity management. In fact, a CA can certify any subjective statement, for example, in the
form of: “This entity can be trusted for that purpose”. For instance, the X.509 v3 standard’s
certificates can carry such information in an extension field (cf. [RFC5280]).

A semi-centralized trust system contains multiple TAs; they often form a hierarchical struc-
ture of CAs as depicted in Figure 3.1.7-VII. Another option is to include multiple root CAs
(for example as a result of merging two PKIs) using techniques such as cross-certification.

In a CTS with a single root TA, the center essentially controls the whole system, allowing for
clear definitions of global behavior and good prediction of scenarios in a global view. They
are most suitable when entity trust is rather static, since trust propagation can be difficult®
(see section 3.1.7), and independent of the trustor, since all users have to accept the same
reputation value (or the TA’s opinion) for a single trustee. Trust relations between any pair
of users are implicitly established by their certifications, which makes centralized trust
systems ideal for random, unpredictable interactions between users. They also provide
easily implementable security and privacy. Key management for secure communication can

8 Referred to as central authority or reputation center in [JOSAQ7].

® These protocols are the centralized equivalent of the trust propagation protocols discussed in 3.2.
8 Unless the trust system is a reputation system where interaction requires communication with the
center anyway (example: online shops with user reviews).

Decentralized Trust Management 61

be added to the center (since it already needs to be fully trusted) and identities can be
protected using pseudonyms. Each user can store a sufficiently large set of certificates (for
offline interaction), or generate a partially random identifier for each interaction, encrypted
with a CAs public key. When the communication partner requests a recommendation for
the identifier from the center, the CA can then derive the original identifier, but the
communication partner is unable to track the user’s behavior.

Since all recommendations received by agents are issued by the TA and individual agents
hold close to no power, CTSs also offer excellent protection against most insider attacks, for
example tampering attacks. In reputation systems, a majority of users could still suppress a
minority using negative recommendations; however, as we will point out in section 3.4.2,
this applies to decentralized systems as well. Trust coherency solving can not be applied in
a CTS; it would produce no useful results, since all users have to put complete trust in a TA
and are not allowed to reduce it as a result of trust propagation.

To sum up, a CTS should be implemented if strong requirements on the system’s global
behavior are given, availability of the TA is guaranteed®, trust can be regarded as objective,
or privacy between users has higher priority then privacy towards the TA.

3.3.2 Vulnerabilities

The structuring influence of a central authority can also be to the detriment of a trust
system. The number of possible paths along which trust can be propagated is limited by the
valency of the central node; communication with the TA can easily become a bottleneck.
Any necessary security features that can be removed from the nodes are simply shifted
onto the central authority. Blocking a few communication paths can easily incapacitate a
subsystem, or even reenable insider attacks (the trade between availability and consistency
discussed in section 3.1.7). If an attacker gains temporary control over the TA, they can
arbitrarily recommend (certificate) allied malicious nodes and carry out global attacks. The
TA effectively becomes a Single Point of Failure (SPOF). Semi-centralization can render the
issue more critical; completely trusting one entity is dangerous, but completely trusting a
multitude of entities is even worse. In systems with cross-certification, the security of any
certificate is reduced to that of the least trustworthy CA, i.e. the weakest link in the chain
(cf. [GUTM11]). Security breaches of influential CAs have occurred in the past, leaving
entire PKls vulnerable. Two prominent examples of this are the breaches of the Comodo CA
in March 2011 [COMO11] and the DigiNotar CA in July 2011 [PRIN11]. The latter led to man-
in-the-middle attacks using fake *.google.com certificates in Iran and to the subsequent
bankrupt of DigiNotar BV. Centralization of a system is often a difficult decision to make;
while the number of risks is reduced, their magnitude greatly increases. As past experience
shows, rare but severe risks are much harder to manage.

Furthermore, the operation of a CTS requires constant availability of the TA, resulting in
instability against network partition. The static nature of a CTS complicates adaption to
dynamic or complex trust relations. Each change of a trust value influences the entire

®or temporary decommissioning of the user nodes is tolerable otherwise.

Decentralized Trust Management 62

system. In addition, trust is no longer a subjective value; all users share the same entity
trust towards an individual. Isolated clusters, which frequently emerge in decentralized
systems, often reflect preexisting underlying structures, yet can not be represented in a
CTS. Users only know the global assessment of the others’ behavior, but not the local; this
enables attackers to cause damage within a small group while being covered by positive
recommendations from the unsuspecting rest. Counteracting this with harsher punishment
for few negative recommendations has the downside of becoming more vulnerable to
tampering attacks.

While the general availability of trust relations between all users is ideal for random
interactions®, it can have a negative impact in systems where users mostly act in small peer
groups. Every unused trust relation adds an unnecessary risk; as soon as one malicious
agent tricks the CA into recommending it as trustworthy (or turns malicious after
recommendation), it can attack the entire system, even the majority of agents that should
not have the need to trust it.

If agents have largely different local views and peer groups, they will most likely also
acquire different impressions of the same cooperation partner, inconsistent with the
opinion that the TA imposes upon them; trust accuracy is reduced. Provided that the
agents, or agent designers, are aware of this, trust in the TA is lost®’. As [ABDDU97] puts it:

(3.3.2A) Credibility loss of a CTS TA:

“[...] a TA can never be a good enough ‘authority’ (or recommender of trust) for everyone in
a large distributed system. Its credibility depletes, and its recommendations increase in
uncertainty, as its community of trustees grows.” ([ABDU97] p. 49)

Of course, the foundation of any CTS is the complete collective trust towards the TA. In an
open MAS, the establishment of a TA that can fulfil this requirement is not always possible
if the set of agents or of agent designers is predetermined (they might not be able to agree
on a TA). As previously stated, this can not simply be solved by adding alternative TAs.

One of the main arguments for the implementation of a CTS is often privacy. But as with
security, the risks are not eliminated and instead concentrated on a single entity which
holds full knowledge and power. Especially if the agents are or are owned by humans, they
might prefer multiple members of their peer group knowing about a small subset of their
actions (as it naturally is the case in everyday life) to a single entity knowing about all of
their actions (which fiction frequently depicts as a dystopic scenario).

In conclusion, CTSs should not be implemented when the individual agents’ local views
greatly differ from the global view (complex internal structure), entity trust is strongly
subjective (only locally observable behavior, or no consistent concept of cooperative
behavior), the underlying network is incompatible (frequent partitions) or when agents or
agent designers can not agree on a common completely trusted authority.

This implies that the local view of an individual agent is similar (ignoring scale) to the global view.
87 . . e
This loss is usually not represented within the trust system.

Decentralized Trust Management 63

3.4 Decentralized Trust Management

3.4.1 Decentralized Trust Systems

Many of the papers referenced in this thesis propose decentralized trust systems®®. Unlike
in a CTS, agents are usually homogenous and do not possess any special roles or hierar-
chical positions. This lack of a central authority leaves the agents responsible for calculating
their own trust values and organizing the system (self-organization), a “bottom-up” ap-
proach, in contrast to a CTS’s “top-down” approach (cf. [THEOO06] p. 319). Compared to a
CTS, local requirements are easier to meet (for example, subjective trust coherency), while
global behavior is harder to predict®. Agents often have no concept of a global view; they
operate solely on their local view. Any global structure or behavior is an emergent property
of their individual behaviors; not only the underlying MAS, but also the trust management
is fully distributed. As a consequence of this, DTSs are highly robust; any agent can be
removed from the system without hindering its operation. In addition, insider attacks (such
as the tampering attack) can only affect a small group of agents, namely the local environ-
ment of the malicious node. Trust propagation can then take multiple paths in parallel to
recover from the attack, inducing a collective loss of trust towards the attacker and
restoring trust in framed benevolent nodes.

In a decentralized reputation system, agents act upon subjective instead of objective
reputation. According to [JOSAOQ7], the fundamental aspects of a decentralized reputation
system are a distributed communication protocol and a reputation computation method.
The distributed communication protocol allows participants to exchange ratings (recom-
mendations), which they combine in order to compute their own subjective reputations.
This combination operation is handled by the reputation computation method. An
important aspect of a DTS is that each agent can have a different reputation computation
method. The advantage of this is that an agent’s policies “[...] need not be communicated,
so there is less ambiguity and no effort involved in trying to understand them.” ([ABDU97]
p. 51) A DTS can operate without any specification of agent behavior as long as they
understand the communication protocol, although an “ideal agent behavior” specification
could improve the system as suggested in section 3.2.1. Unlike in a CTS, different agents
can put a different amount of trust in the same peer and are not restricted to an averaged
(or completely subjective) value provided by a TA; consequently, DTSs do not suffer the
trust accuracy problems of CTSs pointed out in section 3.3.2. Since there is no need for
unity®®, open MASs with a lot of strong external authorities with different requirements, for
example, agent designers, can be supported by a DTS, but not by a CTS.

8 Notable approaches include [ZIMM95], [BLAZ96], [ABDU97], [BUTTO01], [MICHO2], [SABAO2],

[KAMVO03], [ZHAOO04], [DOTZ05], [REPAO6] and [SURYO06].

¥ An important exception are patterns that emerge from subpatterns which are clearly defined at
agent-level; for instance, objective trust coherency emerges from subjective trust coherency.

% Especially not for appointing a single entity that everyone can put complete trust in.

Decentralized Trust Management 64

Moreover, any CTS can be regarded as or nested in a DTS, provided that the necessary
communication paths exist. In our open MAS model, this permits agent designers to
implement their own CTS for trust propagation among their agents. As agents have full
control over their own interpretation of trust computation; this is legal in a DTS, although it
could conflict with the respective ideal agent specification.

Agents only need to put trust in agents in their local environment, i.e., their peer group,
which is constituted of frequent communication partners. Therefore, a DTS does not
contain more strong trust relations than necessary. Weaker trust relations (this could be
regarded as a “ready for connection” state) are established via trust propagation. This is
especially efficient when interaction is bound to distance in an underlying topology and
agents are more likely to communicate when their distance in the resulting trust graph is
lower.

While simple global patterns can emerge from local mechanisms, the global structure can
also become highly complex, making the system very adaptive, especially to complicated
trust networks in subsystems and to rapid changes. Accordingly, ad-hoc networks, being
based on highly dynamic and rapidly changing topologies and often being bound to a spatial
topology, benefit greatly from an inner DTS; hence the decentralized approach has been
most widely implemented and put into use in such systems (cf. [THEOO06] p. 319).
Compared to a CTS, a DTS does not require as clear trust semantics. In a CTS, propagated
trust values directly affect the actions of agents and grant access rights, whereas in a DTS,
each agent can run its own computation of entity trust based on received trust statements.
An agent might regard its peer group as too credulous and decide to reduce entity trust
derived from recommendations. With trust coherency solving, there is a positive feedback
for the automatic development of a common interpretation of trust values, as agents that
deviate from the norm issue inaccurate recommendations and temporarily lose trust. The
semantics of trust values might drift, but the system remains operational as the agents
adapt, provided that they can interpret entity trust as relative to their long-term
environment®. An illustrative example of this are ratings provided by humans. Throughout
the history of such a rating system, the density distribution of ratings can change; juries in
contests might become reluctant to give impolitely low ratings, or feedback effects cause
voters to depart from the intended interpretation of the ratings (tactical voting). Even so,
recipients in a DTS can adapt and arrive at the same interpretation as the recommenders.
Nevertheless, a basic default interpretation® is necessary to promote convergence and to
prevent chaos.

If an open MAS has few requirements on global behavior, the underlying topology is
dynamic and complex, conflicts between agent designers or agents exist, or clear trust
semantics are hard to define, the implementation of a DTS is indicated.

L Even a non-linear example of this is observable in online markets; buyers have adapted to regard
5-of-5-star average ratings as worse than 4.9-star ratings, since the former usually indicates that
there have been too few ratings to produce a good average.

%2 This is another example of a tie-breaking rule in an MAS.

Decentralized Trust Management 65

3.4.2 Vulnerabilities

Lacking a centralized component that manages trust, a DTS has to shift the burden of
interpreting and combining trust recommendations onto the agents. The resulting dis-
advantage is that more responsibility and expertise is required from these agents (cf.
[ABDU97] p. 51). In an open MAS, if too many agent designers fail to implement sustainable
trust policies”, there will be low average entity trust between agents and cooperation is
obstructed, despite the fact that the agents, or agent designers, do not wish to exploit one
another.

While a DTS promises a higher availability of trust ratings, this comes at the price of con-
sistency. As pointed out in section 3.4.1, agents usually do not need to have any consistent
or even useful opinion of far distant peers, but this can be abused by malicious agents if the
system lacks trust propagation. By simply changing its local environment, i.e., moving, an
agent can switch between peer groups to dodge the penalty of trust loss after attacking. In
order to prevent this, trust propagation must be strong and fast enough, so that a bad
reputation follows an attacker. This can be combined with a low initial trust for unknown
agents; however, this also affects trustworthy agents that travel long distances. Trust
propagation must therefore also facilitate that good reputation follows such an agent.

On the other hand, too strong or too frequent trust propagation can also have adverse
affects (see section 3.2.3). Implementation of a DTS accordingly requires careful adjust-
ments of many parameters to create a stable system.

A particular danger of overpropagation is unnecessary clustering. Superfluous trust rela-
tions expose the system to the same risks as CTSs and single points of failure are created
(cf. [PERR13]). This effect can be contained if propagated entity trust is sufficiently diluted
along trust paths, resulting in small, fuzzy peer groups.

Since there is no central controller, global behavior only emerges from the local behavior of
(homogenous) agents and is subject to feedback effects, as the agents react to their
environment. This makes the system’s global behavior harder to control and to predict. If
there are strong global requirements on a system, such as the collaborative fulfillment of a
single task, a CTS would be more appropriate. The same applies for the distribution of
resources. A central authority can easily distribute resources among the agents; resources
in a DTS that are initially shared by all agents complicate this process. In economic systems,
the problem of a decentralized distribution of resources is solved using currencies; a similar
solution can potentially be applied to DTSs (see section 3.2.4).

[BISM12] proposes a central misbehavior evaluation scheme for VANETSs, citing a lack of
power in detecting Sybil attacks with local misbehavior evaluation, a key component of a
DTS. In fact, this is not limited to VANETs; a general vulnerability to Sybil attacks is a
frequent point of criticism for DTSs. According to the paper that coined the term “Sybil
attack”, “If distinct identities for remote entities are not established [by a certification
authority], [peer-to-peer] systems are susceptible to Sybil attacks” ([DOUCO02] p. 5). While a

> The system designer can remedy by specifying ideal agent behavior.

Decentralized Trust Management 66

decentralized identity management can prevent the forgery of new trusted identities® and
therefore newcomer attacks™, it can not prevent the following attack:

(3.4.2A) Single-target Sybil attack on a DTS:

(1) Asthe adversary, control a single malicious node that is identified by the DTS.

(2) Using only the last assigned identity, gain trust through cooperation or other “legal”
means.

(3) Without using any characteristic of already assigned identities, reapply for iden-
tification of the node, which is still possible without an underlying centralized
identity management®®.

(4) Repeat steps 2 and 3 until you control n node identities.

(5) Construct a situation where your node can communicate with a target node, but
the target node can not detect the overlapping of your identities®’.

(6) Using any kind of multiplex, initiate one communication session with the target for
each owned identity. The combined influence now allows you to continue with
strong collusion or tampering attacks.

This kind of attack is similar to a collusion attack, the difference being that in (3.4.2A),
coordination of the attack®® and gaining trust (step 2)*° is easier, while collusion attackers
have the advantage of higher mobility. Another variant is that the adversary performs an
improved on-off-attack by always switching to the locally most trusted identity. Sybil
attacks with a single malicious node are also much cheaper to perform than collusion
attacks or Sybil attacks with transferred identities (from multiple nodes) and pose a serious
threat to systems such as VANETs (cf. [GROV11] p. 152). We conclude that a DTS at risk
from Sybil attacks should include a centralized identity management. This seems somewhat
contradictory, but centralized identity management does not have all the drawbacks of
centralized trust management, even in an ad-hoc environment. For example, an X.509 PKI
could be utilized, with the CA only certifying unique identity, not trustworthiness (no trust
accuracy issues), preventing the creation of duplicates, for example by observing node
creation. Unlike in a CTS, revocation of these certificates would rarely be necessary; trust
can be highly dynamic, but identity is never lost; that is, unless the private key is stolen.

Theft or malicious transfer (Sybil attack at the cost of acquiring an additional node) is still
possible; however, this also applies to almost every CTS. It can be prevented by introducing

secure elements, or additional characteristics that can be used to identify a node*®.

* For example, using a web of trust.

» Against nodes whose policies specify to not trust any nodes not identified by the system.

% This is why participants at a key-signing party present identity documents.

“Ina VANET, this could simply mean to hide behind a corner reporting multiple fake positions.

% Since a single node controls all identities.

% Collusion attackers risk that not all conspirator nodes are equally / sufficiently trusted and a dis-
trusted node pulls the other members down, whereas in a Sybil attack, all identities gain trust with
the same tactic in the same environment (step 2).

190 An example of such a characteristic is the photograph on a passport.

Decentralized Trust Management 67

In a DTS, ensuring privacy between users, especially pseudonymity, is more complicated
than in a CTS™. Local observers can keep track of an agent’s interaction history and the
agent can not change its pseudonym without losing its reputation. On the other hand,
[GOLLO4] even argues that a DTS offers better privacy, since no privacy sensitive data flows
to a centralized location. If pseudonymity is nonetheless required, a DTS with high agent
mobility could allow its agents to transfer reputation to a new pseudonym with a broadcast
message to their local environment. An agent then only loses the entity trust from remote
peers, which is relatively outdated anyway, does not affect current operation and can be
easily regained via trust propagation. The downside of this approach is that local peers
could link the identities, but unless they collude with many remote nodes, they can not
track interaction history’®. In order to hide the pseudonym changes from potential eaves-
droppers (that are not trustworthy nodes), the transfer messages could be encrypted.
Lastly, since all agents have more or less the same power, a colluding (global) majority
could gain control over the trust system, if agent designers did not react to such a
development.

Decentralized trust systems should not be implemented if strong requirements on global
behavior exist, sufficient trust propagation is not possible, or the trading of influence for
pseudonymity is unacceptable.

3.5 Example: Generic Trust System

3.5.1 Generic Trust Propagation Protocol

In this section, we draft an example trust propagation protocol to meet the requirements
identified in 3.1-3.4: the Generic Trust Propagation Protocol (GTPP). It is agent-centric and
most suited for decentralized systems, but also allows centralized subsystems to be
embedded in a DTS. Figure 3.5.1-1 lists the 4 message types that make up the GTPP; Figure
3.5.1-ll lists constraints on valid messages that are not included in the ASN.1 notation.
Depending on the domain of application and the underlying network structure, additional
fields might need to be included in the messages.

191 The Web of Trust for example leaks private data such as communication partners (cf. [PERR13]).

192 And if they did, no anonymity or pseudonymity scheme could provide privacy.

Decentralized Trust Management 68

1 GenericTrustPropagationProtocol DEFINITIONS ::= BEGIN
2 RecommendationMessage ::= SEQUENCE {
3 timestamp UTCTime,

4 id MessagelD,

5 trustor EntityID,

6 trustee EntityID,

7 domain DomainID,

8 value TrustValue,

9 inquiry MessageID OPTIONAL,
10 inquirer EntityID OPTIONAL,
11 citations SEQUENCE OF RecommendationMessage,
12 signature Signature

13 }

14 InquiryMessage ::= SEQUENCE {
15 expiry UTCTime,

16 id MessagelD,

17 inquirer EntityID,

18 trustee EntityID,

19 domain DomainID,

20 degree INTEGER(@..MAX),

21 signature Signature

22 ¥

23 TrustedMessage ::= SEQUENCE {
24 timestamp UTCTime,

25 id MessagelD,

26 trustor EntityID,

27 value TrustValue,

28 message CHOICE {

29 trustedMessage TrustedMessage,
30 plainMessage BIT STRING
31 +,

32 signature Signature

33 ¥

34 TransferMessage ::= SEQUENCE {
35 timestamp UTCTime,

36 id MessagelD,

37 oldTrustee EntityID,

38 newTrustee EntityID,

39 oldSignature Signature,

40 newSignature Signature

41 ¥

42 END

Figure 3.5.1-1: Message data structures of the Generic Trust Propagation Protocol (GTPP) in
ASN.1 notation [ITUX680]. Figure 3.5.1-Il describes additional constraints.

Decentralized Trust Management 69

RecommendationMessage

(1) The combination of trustor and id must be unique over messages.

(2) The fields trustor and trustee must not have equal values.

(3) The fields inquiry and inquirer, if present, must correspond to the id and
inquirer fields of a previous InquiryMessage.

(4) Each element of citations must contain the same value of trustee as the
containing message and must have a unique trustor within the message.

(5) The field signature must contain a valid signature of the sender identified by
trustor over all other fields.

InquiryMessage
(1) The combination of inquirer and id must be unique over messages.
(2) The field signature must contain a valid signature of the sender identified by
inquirer over all other fields.

TrustedMessage
(1) The combination of trustor and id must be unique over messages.
(2) If message contains another TrustedMessage, it must contain a different
value of trustor.
(3) The field signature must contain a valid signature of the sender identified by
trustor over all other fields.

TransferMessage
(1) The combination of oldTrustee and id must be unique over messages.
(2) The fields oldTrustee and newTrustee must not have equal values.
(3) The field oldSignature must contain a valid signature of the sender identified
by oldTrustee over all prior fields.
(4) The field newSignature must contain a valid signature of the (same) sender
identified by newTrustee over all other fields.

Figure 3.1.5-1l: Additional constraints on GTPP messages.

The message type RecommendationMessage enables push propagation. Agents can identify
themselves as the trustor in a trust relationship and issue an associated recommendation
that corresponds to the trust statement (see section 3.1.8) of (trustor, trustee, domain,
value, timestamp). In addition, the sender of a RecommendationMessage can include
related recommendations to justify their statement in the field citations. This allows for
intermediary trust propagation, but also forces the intermediary to add their own opinion.
The sending agent can therefore not use intermediary trust propagation for tampering
attacks without risking distrust towards itself, should the recipient detect’® the attack. By

103
l.e., detect a large difference from its own or other’s opinions.

Decentralized Trust Management 70

signing the entire message, the sender also confirms the reception and processing of all
nested RecommendationMessages, which increases data trust in them'®*. Recommen-
dationMessages can be uniquely identified by the MessagelD id, generated by the
sender/trustor, in combination with the trustor’s identifier. Note that this message type
contains no reference to a period of validity. The corresponding semantics is that the trust
statement is only fully valid, i.e., correctly describes the trust relation, at the time of
issuance (timestamp). It is up to the recipient to decide when a statement lies too far in the
past to be considered significant for their decision-making. Instead of using a fixed period of
validity, the recipient could also account for the time elapsed by gradually decreasing the
certainty of the derived entity trust.

The second message type, InquiryMessage, offers a mechanism for pull propagation. Again,
messages are uniquely identified by id and the sender (inquirer). By sending such a
message, the inquirer requests a RecommendationMessage as a response, with identical
trustee and domain of action. The sender determines the period of validity (ending at
expiry); messages should only be responded to if the inquirer can receive the response
within this period. Responders can refer to the original inquiry in the inquiry and inquirer
fields of their RecommendationMessage to increase data trust'®. As mentioned earlier,
RecommendationMessages can contain additional nested recommendations. Naturally,
nested responses are more desirable for the recipient as they provide more trust-related
information and also further protection against attacks, because the intermediaries confirm
the nested recommendations. On the other hand, the preparation of a nested response can
be time-consuming and costly, since the intermediary might need to start own inquiries to
acquire enough usable justifications. To measure the trust related information contained in
a nested recommendation, we propose a metric called the degree of a recommendation.

It is computed as follows:

(3.5.2A) Degree of a recommendation:
Let any set of recommendation S represent a recommendation containing all recommen-
dations that are elements of S. The degree of S is defined by the following recursion:

size(S) =1+ Z count(r)
TES
degree(S) = Z count(r) + degree(r)
TES
An example tree of nested recommendations is illustrated in Figure 3.1.5-1ll. Each addition

or confirmation of a recommendation increases the degree of the outer recommendation
by 1.

108 1¢ proves that the new recipient is not the sole recipient of these messages and a tampering
attack would come at a higher cost.

105 By demonstrating that the current propagation of trust was initiated by the recipient and not
them; therefore, they did not have the freedom to chose the trustee to recommend (which is
inconvenient for attackers).

Decentralized Trust Management 71

618 @ degree'

302 211 recommendation

@ 0 1 B 1 D contains

Figure 3.5.1-lll: Degrees of nested recommendations.

For pull propagation, an inquirer can specify the desired degree of responses via the degree
field of an InquiryMessage.

[DOTZ05], [REPAO6] and [CHEN10] employ a technique called opinion piggybacking for the
communication of data trust or relevant entity trust in ad-hoc networks. When a message is
forwarded, the recipient is often interested in additional opinions on its trustworthiness.
The forwarding entity can add its own opinion without creating the overhead of additional
transmissions. To utilize this mechanism, the GTPP includes the message type Trusted-
Message. The message contained in its field message can be any message of a higher
application layer, but also another TrustedMessage; multiple opinions can be attached to
an opinion that is forwarded via multiple hops (cf. [DOTZ05] p.1). Since the messages are
nested, this approach carries more trust-related information with the same network load,
compared to approaches where opinions are simply concatenated.

Lastly, the GTPP contains the message type TransferMessage to enable trust-preserving
pseudonym changes as discussed in section 3.4.2. An agent can send a TransferMessage to
select trusted peers that replace its identifier with a new one internally. General privacy is
preserved, as long as the agent can rely on the recipients not propagating the information
and no other agent being able to deduct a link between the old and new identities.

While all messages that are part of the GTPP can only have one sender, identified by the
fields trustor, inquirer and oldTrustee/newTrustee, respectively, they can have an arbitrary
number of recipients. For example, voluntary’® push propagation messages should usually
be broadcast, whereas transfer messages should only be sent to trusted peers.

3.5.2 Ideal Agent Behavior

As argued in section 3.2.1, in designing a trust system we should specify guidelines for the
implementation of an ideal agent, especially for how it should interpret, propagate, and act
upon trust.

The purpose of trust in an MAS is to defend against insider attacks by recognizing agents
that do not aim to maximize global utility and instead try to abuse the help of cooperating
agents for their own benefit (see section 3.1.6). Both the trust propagation protocol and
the ideal agent specification are rules demanded by (3.1.6E3) and must therefore be
universalizable in compliance with (3.1.6E1). As a result, a benevolent (and hence

1% Here: not responding to an inquiry.

Decentralized Trust Management 72

trustworthy) agent (or agent designer) that acts according to (3.1.6D) has no reason to
deviate from these rules. This allows us to use compliance with the specifications as a
condition for, and indicator of, trustworthiness. An agent should interpret entity trust as
the assumption of conformance to the ideal agent specification (including the GTPP) and
fair use of system resources. It should keep track of entity trust by deriving and
remembering trust information from interactions, and recognizing a local peer group of
frequent collaborators. Not following the protocol, for instance by never responding to
inquiries, causes other agents to distrust the agent, and a loss of influence; this also
provides an incentive for every agent to behave according to the specification.

The goal of the agents’ trust propagation is to increase objective trust coherency, or equi-
valently, increasing each other’s subjective trust coherency to reciprocally improve their
own trust accuracy. Whenever current events reduce trust coherency, the ideal agent
should be prompted to produce relief by means of broadcasted push propagation. This can
be implemented by not only storing the current entity trust value for a trust relationship in
the trust table, but also the last propagated value. When the current value is altered, the
agent can compare the new value to the last propagated and use the difference as an
indication of whether the new value should be propagated (since the old value, as seen by
others, is now inaccurate). For example, when the agent detects an attack, it immediately
loses a lot of trust in the attacker, so it should recommend it as untrustworthy in order to
warn its peers, by broadcasting a RecommendationMessage. As another example, the
agent might often grant an advantage to a second agent, but gets nothing in return. With
each interaction, it loses a little trust towards the second agent, which has no immediate
consequences'”’; however at some point, the accumulative distrust causes the agent to
rate the second agent negatively'®. This also benefits the resource use for trust propaga-
tion by optimizing it according to distance in the trust graph, which correlates to
importance of the trust value. When an agent propagates trust, the effect is diluted and
subsequent agents in the propagation chain will derive small enough changes to forego
further trust propagation. That is, unless they receive an independent similar recommenda-
tion from a different rater, which should naturally increase the range of trust propagation.
Additionally, when the required resources are currently not in use and a trustee is within
the agent’s current peer group, it should also occasionally broadcast Recommendation-
Messages to make up for the decay of certainty of aging trust statements'®®, maintaining a
high local trust accuracy so that no further trust propagation is needed if an immediate
cooperative maneuver suddenly becomes necessary.

Push propagation should be initiated by an agent sending an InquiryMessage when it lacks
sufficient trust accuracy to make trust-based decisions, for example when it encounters a
previously unknown agent. When an agent receives an InquiryMessage, it should respond
with a corresponding accurate RecommendationMessage. If the message was broadcast to

107
If it were otherwise, long-term cooperation would be nearly impossible.

And also, as we pointed out in section 3.2.4, to cease granting favors.
If the other agents only have very old trust statements that make up their knowledge of one
another, they can not sufficiently rely on their accuracy when choosing cooperation.

108
109

Decentralized Trust Management 73

a large number of agents, it should wait for a random short amount of time and cancel the
operation if it receives another agent’s response, so that there is no unnecessary overhead
created. If the InquiryMessage specifies a non-zero recommendation degree, the agent
should eventually start another inquiry to collect trust statements as justifications, but at
first issue a recommendation with the current maximum possible degree, to enable third
agents to generate a response. An agent can always respond with a higher degree to
minimize the risk of losing trust, as long as this does not waste too much system resources.
To process incoming recommendations, the ideal agent should use trust coherency solving
(see section 3.1.7). The trust system should define a combination operator on its trust
space, that calculates new entity trust for both trustee and trustor of a recommendation,
while preserving trust coherency, i.e., the fulfiiment of the corresponding constraint. The
received trust value will often largely differ from an agent’s original opinion, for example, if
the recommendation is an unexpected warning resulting from a detected attack. If this is
the case, application of the combination operator will create significant distrust in the
recommender. This is a necessary temporary evil; it protects the agent from tampering
attacks. If the suspicious trust statement was accurate, affirmative statements from other
agents will restore trust towards the recommender. Trust coherency solving should never
produce more distrust than necessary for enabling the desired entity trust towards the
recommended trustee.

Up to now, in discussing trust coherency solving we ignored the domains of action for
simplicity reasons. While the domains of action of the involved trustor-trustee and
recommender-trustee relations must be identical, the affected trustor-recommender
relation has referral character and can be different. This can be formalized with an
endomorphism r: D — D that maps a domain to its corresponding referral domain®®.

The concrete definition of the combination operator is implementation-specific. The trust
system may require multidimensional trust values, for example, for representing certainty
independent of trust and distrust (cf. Jgsang’s Subjective Logic). Besides adapting the
original entity trust value, the combination operator should increase certainty when
receiving similar recommendations in such a system. The weighting of the combination
operator, i.e. whether it tends to produce strong distrust in the recommender and low trust
adaption (skeptic operator) or weak distrust and high trust adaption'** (credulous operator)
essentially defines the magnitude of trust propagation in the system.

In systems where the agents need to manage and distribute system resources, the ideal
agent should use entity trust as a currency by increasing entity trust in others when
receiving access to resources or services and decreasing trust when providing them (see
section 3.2.4).

Agents need to act upon trust, not only when selecting cooperation partners, but also in
general decision-making; for example, agents should decrypt equal-priority messages from

110
Note that a domain can be its own referral domain, for example when there is only one generic

domain or only one generic referral domain.
111 . . el .
Of course this also depends on the initial trust in the recommender.

Decentralized Trust Management 74

more trustworthy peers first, as the risk of subsequently discarding the message due to low
data trust is less likely. For a characterization of trust-based behavior, see Figure 3.2.2-lll.

Open MASs featuring agents that are or are associated with humans usually need to fulfil
special requirements with regards to privacy. The implementation of privacy-protecting
behavior is facilitated by the message type TransferMessage of the GTPP. When an agent
wishes to switch to a new pseudonym, it should select a set of trusted peers that can vouch
for it, and send them an encrypted TransferMessage after switching to the new identity.
The agent can repeat the same TransferMessage when necessary (for example, after
switching the local environment), but it should not act within the trust system using an old
identity again. Accordingly, recipients of a transfer message should copy entity trust from
the old to the new identity and lose all entity trust towards the old identity''?; the latter is

necessary to prevent Sybil attacks.

3.5.3 Properties
[ADAMO5] lists the following requirements for their trust management system, based on
the Interpersonal Trust Model described in [ABDUOO]:

(3.5.3A) Trust Management System Properties (cf. [ADAMO5] p. 321):

(1) Trust [is] context dependent.

(2) Trust [has] positive and negative degrees of trustworthiness.

(3) Trust [is] expressed in continuous values, as described by Marsh [MARS94].

(4) Trust [is] based on experiences and observations between individuals.

(5) Trust information [is] exchanged between nodes.

(6) Trust [is] subjective. Nodes [calculate] different reputation values for the same
observed node.

(7) Trust [is] dynamic and [is] modified, in a positive or negative direction, based on
new observations and reports.

It is easy to see that the herein described system fulfills all of these requirements. We add
the following properties expressed by the system:
(3.5.3B) Trust Management System Properties (cont.)
(8) Trust converges to coherence, i.e. meets common “transitivity” requirements
without contradictions as a result of trust propagation.
(9) Trust can be used as a currency for inter-agent transactions.
(10) The system protects the individual against tampering attacks by implicitly
producing distrust towards unfair recommenders.
Corresponding to the differentiation pointed out in section 3.1.3, this model of trust man-
agement does produce clear assessments of (un-)trustworthiness, but not of benevolence /
maliciousness. It should be noted that the system therefore can not serve as an attack

2 Not only reverting to the default state of general distrust against unknown identities, but also

marking the old identity as destroyed; the agent should not be able to gain influence under that
identity again.

Decentralized Trust Management 75

detection scheme. It rather allows for the exclusion of unreliable cooperation partners and
forms a basis for trust-related utility transactions. An attack detection system can be built
on top of the trust system and process trust information as well as other sensory data.

3.5.4 Implementation

To implement the aforementioned mechanisms, an agent could incorporate an internal
trust system as depicted in Figure 3.2.2-V. Naturally, an agent designer does not have to
utilize any of the non-functional concepts described in this section; they could even choose
to embed a centralized subsystems including a fully trusted central entity that manages
recommendations (certificates) for their own agents; this would be fully compliant with the
ideal agent specification, since agents are “responsible for their own fate”. Trust can be
gained via trust propagation and external sources such as previous interaction, and possibly
via categorical trust such as “fully trust all other agents designed by the same agent
designer”. The internal policies that define the respective impact of these sources may
arbitrarily differ among agents. Non-universalizable behavior such as overreaching utility
gain in transactions, or unfair ratings, is not explicitly forbidden (this would usually be
impossible to enforce in an open MAS), but gradually punished with distrust from others
instead.

Therefore, for an agent designer, the only strong requirement is to integrate their agents
with the trust system and the underlying protected system. Agent designers are advised to
follow the specifications issued by the system designer.

For a system designer, implementation of the aforementioned trust system requires the
specialization of the GTTP and the corresponding ideal agent behavior (3.5.2) in accordance
with the logical environment. In order to that, they must:

(3.5.4A) Trust system specialization:

(1) Choose an adequate trust space T along with a corresponding interpretation, a
trust value metric (see section 3.2.2) and an encoding of trust values.

(2) Define a trust combination operator ®:T X T? — T? on the trust space that
produces / increases subjective trust coherency'®* and meets their additional
requirementsm.

(3) Define sets of entity, domain and message identifier types (EntitylD = E, DomainID
= D and MessagelD) including encodings.

(4) Define the referral domain mapping r: D — D.

(5) Specialize the ideal agent behavior according to the environment

specification.

> and issue a

3 For all practical purposes, it does not need to produce a stable state within a static system, as

long as it converges to a state where fluctuations are within an acceptable margin.

% These include requirements on the speed, impact (relative to experience-based trust) and balance
(how much the recommender is distrusted) of trust propagation.

3 Eor example, in a VANET (fictional): “Distrust when peer drives on the wrong side” or “Trust when
member of police force”.

Decentralized Trust Management 76

We implemented a small generic library to aid in the implementation of trust coherency
solving and GTPP simulation; its sources are attached in the GenericTrustSystem project.
We also began the implementation of a research tool that enables the investigation of
suitable trust combination operators by performing trust coherency solving (see Figure
3.5.4-1). Unfortunately, due to time constraints, we could not complete it for this thesis; we
will nevertheless continue development. For the interested reader and developer, its
sources are also attached in the TrustCoherencySolver project.

Figure 3.5.4-1: Screenshots of the TrustCoherencySolver Ul for 3 and 4 nodes

In the following chapter, we will assume the role of a trust system designer for a VANET
(Vehicular Ad-Hoc Network) and perform the above operations to create an informal draft,
but not a complete formal specification. The system and attacker models will be simplified
to not shift the focus off the trust system design. We will then implement a subset of the
specified functionality by extending an existing VANET simulator, run some exemplary
scenarios, and analyze the results.

DTM in V2X communications 77

4 DTM in V2X communications

4.1 Motivation

For demonstration and further investigation of the concepts proposed and discussed in
section 3, we are in need of an environment where our generic trust system (see section
3.5) could be employed in a real-world application. Since we are only interested in the
development of a trust system, there should be an already implemented or at least
theoretically developed underlying open MAS that we can with integrate it with.
Completely centralized trust systems are already omnipresent and have been intensively
researched, hence we would prefer an underlying system that is largely decentralized.

As of now, current traffic systems could be regarded as an open MAS''® that is functionally
decentralized'”’ and features rules and regulations that limit the agents’ operations.
Centralized attack prevention exists''?, but there is no strong integrated trust system. In
fact, there is currently no need for such a trust system, since trust-related attacks either
require relative huge effort'™® or are easily detectable and ineffective due to lack of
reliance'®.

As mentioned in section 2.3.2, the advent of V2X communication will change the current
state of trust relations within this traffic system. In a VANET, trust-related attacks are much
cheaper (e.g. delusion or DoS attacks), and, with the current trend towards autonomous
vehicle services, the agents become susceptible to software malfunction'!. It seems
unlikely that no hacker will ever seize of control of a node or create a fake trusted identity,
and vehicles have already been recalled due to delayed detection of software malfunction
in the past, so the system must still be regarded as an open MAS.

As a result, future V2X systems will require the implementation of distributed (but not
necessarily decentralized) trust systems, where vehicles report*?* and receive trust-related
information. Since trust can not be regarded as completely static’®® and a multitude of

'8 Drivers must pass tests to enter the system, but are from then on largely autonomous.

" The problem “Move goods and passengers to their destinations without collisions” is solved by
the set of all drivers.

18 The police force as a singular entity observes the agents and issues traffic tickets.

W ror example, stealing and repositioning a road sign.

120 por example, the malevolent misuse of turn signals.

Not only to failure of their own system but also to failure of other nodes, by relying on communi-
cated information.

122 eor example, suspicious behavior.

New vehicles enter the system and existing components might be hacked or prove faulty.

121

123

DTM in V2X communications 78

manufacturers can produce agents, the trust system must include both a mechanism of
trust propagation and a common specification of ideal agent behavior (see Figure 3.2.1-1).
The concept proposed in section 3.5 meets these requirements.

For the aforementioned reasons, we will attempt to demonstrate and investigate the
application of our generic trust system in a VANET.

4.2 System Model

Because there is no large-scale VANET available that we could integrate our trust system
with, we need to acquire a (necessarily simplified) simulation of a VANET, which in turn
requires a simplification of our system model of a VANET, and the selection of simulation
software prior to the concrete specification of said model. We filtered the simulation
software found by means of online research according to various criteria, including the
possibility of close-to-real-time rendering of the current state on a conventional PC, and the
necessary effort to integrate a trust system (especially source access). The simulator that
most closely matched our criteria'®* was VANETsim, an open-source simulator written in
Java and introduced in [TOMA14]. Its source code and documentation can be accessed at
https://github.com/VanetSim/VanetSim. While this simulation is good at approximating the
dynamics of local node environments, it lacks multiple aspects of realistic driving
behavior'”®. As a consequence of this, we reduced our model of message exchange to
messages that do not affect driving behavior.

A VANET in the context of our model (V2V-only) consists of a set of nodes (vehicles) that
move, according to usual traffic regulations, within a 2-dimensional map, that corresponds
to realistic road infrastructure. VANETsim does not simulate the so-called “urban canyons”
or any other physical intricacies of the wireless medium; we therefore define that every
pair of nodes that are within a fixed distance of each other will be considered as connected
and able to communicate (Ad-Hoc connection). Each node can be assigned a utility value
(real number) that it aims to increase. Nodes that are connected to each other exchange
messages at regular intervals. During message exchange, both nodes independently select
an attitude on a scale between cooperation and betrayal (allowing for the simulation of
trust-based behavior and attackers) and can also transmit a single GTPP message'?. When
two nodes cooperate, both of their utility values increase by a value dependent on their
local environment (o< k! for nodes surrounded by k other nodes at flawless operation
conditions'?’). This approximates the results of the randomly distributed long-term
operation of the more complicated actual VANET usecases. Betrayal by both nodes has no
specified effect'?®. If one node betrays and the other cooperates, the traitor gains a great

2% This is mostly because it focuses on simulation of the application layer, where our trust system

would be located.

12> Most important for our considerations, maneuvers such as overtaking.

This simplifies the simulation, but also leaves us unable to simulate (D)DoS attacks.
So that under normal conditions local average trust is position-independent.

We do not aim to simulate interaction between attackers.

126
127
128

DTM in V2X communications 79

amount of utility while the cooperator loses an even larger amount. Utility per node is
capped at an upper maximum value that represents flawless operation of the VANET.

By default, there are no fractions and all nodes are benevolent and utilitarian (they have
ideal agent character), which implies that they will always fully cooperate with other
benevolent nodes to maximize global utility (sum of all node utilities) when the system is in
a state of flawless operation. The benevolent agents learn from experience (i.e., adjust trust
values) and make honest reports (i.e., issue recommendations that are independent of
recipient and trustee identity’?)

4.3 Attacker Model

We define an attacker, or adversary, as a singular node (inside attacker) that is exempt
from the default node behavior and aims to maximize only its own utility; we will therefore
not be able to simulate Sybil attacks. As pointed out in 4.2, attacks should not affect driving
behavior; nevertheless, they should correspond to somewhat realistic attack scenarios.
From the lists in section 2.3 and section 3.2.3, we derive the following set of adversary

types:

Identifier Name Simulated scenario Attacked
system

Aq Exploiter Will chose minor betrayal instead of cooperation,
to simulate not returning resources and services VANET
(Trust as a currency).

A, Spammer Will send a message that should be displayed to the
driver, claiming complicated hazard information.
Message contains spam instead (Bogus VANET
information, major betrayal). Can be detected
immediately™°.

Aj Slanderer Will broadcast unfair negative trust information for

oo - Trust system

specific targets (Tampering attack).

Ay Colluder Will broadcast only positive information for other
colluders (Collusion attack). Should always be Trust system

combined with another attack type.
Figure 4.3-I: Simulated adversary types

All of these can be combined with betrayal (B;), on-off (B;) and newcomer (B3) attack
behavior (see Figure 3.2.3-ll).

129 sl dependent on the interaction history, of course.

3% within the simulation model, ignoring the driver’s reaction time.

DTM in V2X communications 80

4.4 Trust Model

Our trust model is derived from the generic trust system proposed in section 3.5. To
specialize and implement it in the context of a VANET, we need to follow the steps outlined
in (3.5.4A):

(4.4A) Trust system specialization for our simulated VANET:

(1) For simplicity of implementation and visualization, we chose a one dimensional
trust space of T = {x € R|0 < x < 1} with a linear interpretation of “Do not
cooperate at all” at 0 and “Choose maximum possible cooperation” at 1, for
benevolent nodes. The trust value metric is the absolute difference that we will
refer to as d;. Encoding will be specified in section 4.5.

(2) We chose the experimentally selected trust combination operator of

vrr ® (vr, vg) = (vr, vg) with
ol = {UT + pvr(Vrr — vp) if v = vg
" vr + qur(vgr — vp) if v < g
Vg = Vg — qUrd(Vr, Vrr),
vr/vy being the old/new trust value of the trustor towards the trustee, vg/vg
being the old/new trust value of the trustor towards the recommender, and vgp
the recommended value. p and q are control parameters for the propagation
strength of negative and positive recommendations, respectively. We will demon-
strate the effects of this operator in the following sections.

(3) The set of entity and message identifiers will be defined in section 4.5. We use a
single generic domain of action () for simplicity reasons (generalized trust).
Encodings will be specified in section 4.5.

(4) Asa consequence of (3), D = {Q}and r(Q2) = Q.

(5) Ideal agent behavior was outlined in section 4.2 and will receive more concrete
specification in section 4.5.

and

4.5 Draft

We extend the VANETsim (branch “master” on GitHub, commit of 2014-04-01) to include a
simulated trust system. VANETsim offers the creation of reproducible scenarios that define
an initial state of the simulation, as well as events. To preserve backwards-compatibility, we
plan not to modify the scenario format, and instead build another system of so-called “trust
simulation scenarios” on top of it.

VANETsim already offers a lot of additional features, including the simulation of attacks, but
they are not adapted for integration with a trust system. To reduce complexity, we
deactivate everything except for the traffic simulation in our test scenarios. Instead of
using the built-in attacker management, we extend ordinary Vehicle nodes by attaching an
internal trust system to them and assigning them a role within the current scenario that
determines their behavior. We add a new class TrustSimulationScenario to the package
vanetsim.scenario, which manages the currently active trust simulation scenario and the
corresponding roles.

DTM in V2X communications 81

We define the following roles to implement the adversary types defined in 4.3-I:

Name Attacker Special behavior Internal identifier
type
(4.3-1)
Benevolent = — ROLE_BENEVOLENT
Exploiterl Aq Never cooperates. ROLE_EXPLOITER1
Exploiter2 A4 Betrays by always providing ROLE_EXPLOITER2
slightly less utility than expected.
Spammerl A,B; Will simulate bogus information ROLE_SPAMMER1

attack by greatly reducing utility
for its local environment on
activation. Can be assigned to
same node again to trigger
multiple attacks.
Spammer2 A,B, Will continuously perform bogus ~ ROLE_SPAMMER2
information attack on all
Spammer2Victims.
Spammer2Victim — — ROLE_SPAMMER2VICTIM
Slandererl Az Will continuously provide ROLE_SLANDERER1
negative recommendations for all
Slanderer1Victims.
Slanderer1Victim — — ROLE_SLANDERER1VICTIM
Colluderl AjA, Will continuously provide positive ROLE_COLLUDER1
recommendations for all other
Colluderls. Otherwise behaves
like Exploiter2.

Figure 4.5-I: Roles within a trust simulation scenario
Benevolent nodes assume the following ideal agent behavior:

(4.5A) Benevolent node behavior:

(1) For local trustees with entity trust > baseTrustCooperation, cooperate minimally,
increase granted utility linearly with entity trust.

(2) When receiving utility, adjust entity trust based on the difference to the expected
result. Generally, increase trust slightly for every positive interaction.

(3) For local trustees with entity trust > baseTrustPropagation, accept their recom-
mendations and interpret them using trust coherency solving.

(4) When an own trust value has changed by more than maxTrustDistancelocal/-
Global, propagate the new value by broadcasting a RecommendationMessage.

Other nodes override this behavior as specified in the column “Special behavior” of Figure
4.5-1,

DTM in V2X communications 82

In order to provide the Vehicle nodes with an internal trust system that meets the
requirements of section 4.4, we add the package gts.simple to the GenericTrustSystem
library. The individual requirements shall be implemented by the following classes:

Requirement Implementing Class
One-dimensional trust space [0,1] with the absolute difference OneDTrust

as metric

Trust combination operator as defined in (4.4A2) SimpleOperator
Single generic domain of action Q SimpleDomain
Internal trust system SimpleNode

Figure 4.5-1I: Classes implementing the internal trust system of a Vehicle

For trust-related communication between nodes, we define the class Recommendation-
Message to encode the eponymous message type of the GTPP. Message identifiers are
integers and encoded as int values. Other identifiers are encoded as references to the
respective objects. Trust values are encoded as instances of OneDTrust (value class).

An early prototype showed severe performance issues with pull and intermediary trust
propagation™’; therefore, we choose not to include nested recommendations and Inquiry-
Messages. Instead, frequent random push propagation compensates for the lack of pull
propagation (cf. Figure 3.2.2-1).

We implement the single trust simulation step described in section 4.2 via the sequence
illustrated in Figure 4.5-1V, that is executed once per node each step. The active trust
scenario will be chosen at compile time to reduce unnecessary modifications of the
VANETsim Ul.

The user can assign roles by clicking on the point representations of vehicles on the map.
The role assigned depends on the active scenario and the number of assignments, as
specified in Figure 4.5-II1.

Scenario Click # Assigned role
scenariol =>1 Exploiterl
scenario2 =1 Exploiter2
scenario3 =1 Spammerl
scenario4 1 Spammer2

=2 Spammer2Victim
scenario5 1 Slandererl

=2 Slandererl1Victim
scenario6 =1 Colluderl

Figure 4.5-11l: Role assignment in trust simulation scenarios

B These would not appear if the system was actually distributed and we implemented more

sophisticated agent behavior that includes discarding inquiries.

DTM in V2X communications

83

sd runTrustSystem J
| WorkerThread | Vebhicle (interaction partner)
I . |]
1: runTrustSystem
. Y 0 } Pt 1.1: calculateUtility()
Step n |
|
| -0
| S
| 1.2: processRecommendations()
|
|
! —=-
| < ——=
| 1.3: runTrustBasedInteraction()
| [|
| 1.3.1: receiveUtility(utility, peer)
| \S——— |
| =1
| ! c o
I | 1.4: runGTPPInteraction()
|]
! | I
1.4.1: processRecommendationMessage(msg)
| r—
$j ——————————————————— >
I
............. O e s e e SEEE
Step n+1 2: runTrustSystem() _ | '
i | P71 2.1: calculateUtility()
15
-
| .
I 2.2: processRecommendationMessage()
-— ’
-
<< ——-
n .
1
dependency

Figure 4.5-1V: Partial sequence diagram of two trust simulation steps

DTM in V2X communications 84

We also need to visualize trust relations, so that the user can observe the state of the trust
system. Visualizing the huge amount of global trust relations would overcomplicate inter-
pretation, hence we show only those that affect cooperation, i.e., relations between
connected vehicles (local).

A trust relation is visualized as the half of the edge between trustor and trustee that is
adjacent to the trustor, and colorized to indicate the level of trust. We also visualize a
vehicle’s current local influence through the color of its point representation on the map.
An example of trust visualization is shown in Figure 4.5-V.

A B Cc
Figure 4.5-V: Example of trust visualization. A completely distrusts B, B completely trusts A4,
A has minimal local influence, B has maximal local influence, and C is isolated.

The aforementioned Ul modifications are implemented by modifying the classes Mouse-
ClickManager and Renderer. Altogether, the following changes are introduced to the
VANETsim class structure:

pkg
vanetsim.localization vanetsim.map vanetsim.map.OSM gts.* D unchanged
X D modified
tsi ti] 1 i .
vanetsim.routing . D imported
vanetsim.scenario gts.simpletrust
| TrustSimulationScenario Vehicle > OneDTrust D new
vanetsim.routingA Star | | b — 1 | 1| | 1| ...
A_A >
i ' new dependency
' 1
[[}
]] ’ E SimpleDomain
R . A N
vanetsimiecenanolevents vanetsim i vanetsim.simulation
H
VanetSimStart H WorkerThread
1
] H
H SimpleNode
vanetsim.scenario.messages H
[
[] i []
vanetsim.gui.helpers | vanetsim.gui
] [
vanetsim.gui.control 1 MouseClickManager Renderer e SimpleOperator

Figure 4.5-VI: Changes to the VANETsim class structure

DTM in V2X communications 85

4.6 Implementation
We implemented the trust simulation within the Eclipse project in the attached folder
“VANETsim”, closely following the draft from section 4.5.
To provide a concrete and reusable simulation environment, we used the VANETsim to
generate a map and scenario file, based on a map of a small region of Hamburg, Germany,
that was downloaded from the OpenStreetMap project (www.openstreetmap.org). The
map file can be found under “VANETsim/TrustSimulation/Hamburg_KleinFlottbek.xml” and
the scenario file (500 vehicles simulated) under “VANETsim/TrustSimulation/Hamburg_
KleinFlottbek TrustSim500.xml”.
We adjusted the simulation parameters until the desired effects could be observed. We
chose the following values:

* baseTrustCooperation: 0.4

* baseTrustPropagation: 0.5

* maxTrustDistancelocal: 0.8

* maxTrustDistanceGlobal: 0.16

* SimpleOperator.p: 0.1

* SimpleOperator.q: 0.08
It should be noted that these “desired effects” (and therefore also adequate parameter
values) differ from the effects that would be desirable in a real VANET. For example, trust
loss as a consequence of minor egoistic behavior (Exploiter2) should be much slower in
reality. However, this would require that the user of the simulation runs it for the same,
long time period%. We therefore accelerated the detection of attacks by adjusting the
parameters.
VANETsim uses multithreading, with each simulation thread managing a single rectangular
region of the map. To avoid complications with trust propagation at the borders between
regions, we modified the simulation to use just one single small region.
We then ran all of the trust simulation scenarios specified in Figure 4.5-11l and analyzed the
observed results.

32 0n a 2011 MacBook Air, we could not run the simulation much faster than in real-time.

DTM in V2X communications 86

4.7 Analysis

4.7.1 Predefined Scenarios

The following six figures (Figure 4.7.1-1 to 4.7.1-VI) contain screenshots of the VANETsim
GUI with integrated trust simulation, and illustrate the system’s reactions to the scenarios
defined in section 4.5.

Figure 4.7.1-1: Scenario 1 (Exploiterl). The adversary node quickly loses all local influence.
Nodes directly outside of its local environment are already prepared by means of trust
propagation and are already careful (low trust) before the adversary could harm them.

7

7
W

Figure 4.7.1-11: Scenario 2 (Exploiter2). The adversary node slowly loses local influence.
Initially, other nodes would still cooperate with it, since they expect that it will later
reimburse the system through increased cooperation. This does not happen, so after a
while, cooperation with the adversary node is shut down.

DTM in V2X communications 87

» %

TN . ZiI

i’l,m;‘\ N 5

"’/ v # 2 =
M“‘\\ 1 AT\ w557 NUARZ \

>
~ ~ ~
Figure 4.7.1-1ll: Scenario 3 (Spammerl). The adversary node immediately loses all local
influence. Since it then becomes cooperative again, trust is restored after a while.

Figure 4.7.1-1V: Scenario 4 (Spammer2). The adversary node immediately loses the trust of
its victim, but it can still interact with other local nodes. After later attacking other nodes, it
loses local influence, even though the initial victim has moved away.

Figure 4.7.1-V: Scenario 5 (Slandererl). After the initial attack on a single target, both the
adversary node and its victim lose local influence (although the attacker can not maintain
this state). After an initial attack on two targets, the victims lose less influence than the
adversary and can recover much quicker.

DTM in V2X communications 88

| 2R\ |
Figure 4.7.1-VI: Scenario 6 (Colluder1). Like in scenario 2, the adversary nodes can still
cooperate with their local environment for some time. Nevertheless, their overly positive
recommendations do not prevent their discovery; in fact, they accelerate it due to the
distrust created by inaccurate recommendations.

4.7.2 Observed Effects (Scenarios)

4.7.2.1 Bubble of Distrust

Trust propagation surrounds an adversary node with a local bubble of distrust that is
slightly larger than its local environment (see Figure 4.7.1-1). When the adversary moves,
newly connected peers are already prepared; it is surrounded by a “bubble of distrust”. A
benefit of the trust system’s decentralization is expressed here: remote nodes do not need
to be affected when trust changes, whereas the local environment can be highly adaptive.
This reduces propagation overhead while preventing attackers from “escaping” their bad
reputation by moving.

4.7.2.2 Trust as a Currency

Temporarily taking an unfair amount of system utility does not exclude a node. It could still
restore its status by means of increased cooperation (trade). Until then, its is slightly
distrusted (debt). If it continues to reduce system utility, its influence eventually collapses
to a point where it would need to provide much more utility than gained to recover (see
Figure 4.7.1-1l and -VI). This simplifies resource management (individual nodes are not “on a
tight budget” and can have different demands) and also enables special usecases. For
example, a vehicle in a hurry could ask its peers to assist it by giving way. If all vehicles do
this at the same frequency, the system can operate; if they do not, the vehicles that request
more can reimburse them through increased assistance with cooperative maneuvers etc.

DTM in V2X communications 89

4.7.2.3 Decentralized System Memory

Despite moving away from its initial victims, adversary nodes can not escape the accu-
mulation of bad reputation. This is because the system memorizes their status in a
decentralized way, and the “memory” is preserved through trust propagation. As shown in
Figure 4.7.1-1V, the adversary node is not surrounded by a strong bubble of distrust, and its
environment changes, but the doubt created by the (alleged) attack allows its peers to
distrust it after they gain learn about a second attack.

4.7.2.4 Restoring Trust

Nodes that are recognized as untrustworthy by their local environment can recover by
cooperating (see Figure 4.7.1-1ll). That this is also possible despite the fact that the node’s
behavior is clearly malevolent (Spammerl), is due to the indifference of the trust system
towards the cause of distrust. As argued in section 3.1.3 and 3.5.3, this task should be
undertaken by a special attack detection system. For example, a victim’s internal attack
detection system might forward the non-repudiable attack message to a peer (as proof of
the attack). The peer’s attack detection system could then inform its trust system to
completely distrust the attacker without distrusting the victim, while informing authorities.

4.7.2.5 Power of Majority Tampering Attackers

An adversary node, or a group of them, can temporarily destroy a victim’s influence at the
price of their own influence, provided that they initially hold more influence than the
victim(s) (see Figure 4.7.1-V). However, the attack can not be maintained if the victim does
not actually misbehave. Further broadcasts of negative recommendations will be less
effective since the adversary is already distrusted.

4.7.2.6 Race Conditions

In Figure 4.7.1-V, which of the victims shown in the third screenshot recovers much faster
than the other is determined by a race condition; they are attacked almost simultaneously.
The second attack has much less impact since the attacker is already distrusted.

If we had implemented a short-term memory component, the other peers could reevaluate
both negative recommendations together when they receive the second one. As a result,
trust in the first victim would be restored (since the first recommendation would have less
impact) and it would also recover faster.

DTM in V2X communications 90

4.7.3 Other Observed Effects (Different Simulation Parameters)

4.7.3.1 Distrust in Relative Outsiders

We adjusted the simulation to include a tenfold increase in the frequency of random push
propagation (simulating more pull propagation). We observed the following effect:
Occasionally, a node that entered a local environment, that had been stable for some time,
was quickly distrusted by every other node (see Figure 4.7.3.1-1). This happened only when
the new node had been completely disconnected (or only connected through long paths)
from that environment earlier.

%
3

o

o

Figure 4.7.3.1-I: Distrust in a relative outsider

The reason for is effect is that all other nodes within the group gained high local influence,
but the new node did not “know” them or this development and therefore put only
moderate trust in them. When the new node issued recommendations, the environment
reacted as if it was a tampering attacker. For the same reason, the new node distrusted the
other nodes.

This problem could be easily solved by using a trust space that is more than one-
dimensional and includes a dimension of certainty; for example, the opinion space of
subjective logic ([JOSA01]). When receiving an inquiry, the new node could then simply
issue an honest trust statement with low certainty , without receiving as much distrust.

By also including intermediary trust propagation, one could enable the other nodes to
justify their recommendations with each others earlier statements, so that the new node
does not suspect a tampering attack.

4.7.3.2 “Tit-for-Tat” Vicious Cycle

We removed the minimal base cooperation that benevolent nodes offered from the
simulation. As a consequence of this, nodes that received asymmetric opinions of each
other, for example, when only one of them observed an attack, would continue to lose all
trust between them.

When the more trusted node decreased cooperation, the other node regarded this is as
unfair and also decreased cooperation, causing the first node to trust it even less, and so

DTM in V2X communications 91

on. This stresses the fact that individuals in a trust system need to be slightly more
benevolent than employing a “tit-for-tat”-strategy when interacting with others.

4.8 Conclusion

We implemented a drastically simplified simulation of a decentralized trust system in a
VANET environment. We could observe the expected benefits of such a system and
demonstrate its stability when confronted with various simple attack scenarios.
Nevertheless, our simulation can only serve illustrative purposes since it does not offer a
good representation of realistic behavior and decision-making in a VANET. Moreover, it
does not fully meet the requirements on a trust system, even in the simplified
environment. We did not simulate newcomer attacks or vehicles that only just entered the
system, and instead assumed that all simulated vehicles were already in a moderately
trusted state. In our simulation, we would have to chose between enabling newcomer
attacks, or exposing new benevolent nodes to the risks described in section 4.7.3.1.

On the other hand, most instabilities of the system can be explained by the lack of those
features we proposed in section 3.5, but were not able simulate.

We conclude that push propagation and trust coherency solving can provide a trust system
with improved resistance against some attack scenarios; however, the designer of a trust
system should also include means of pull (and possibly also intermediary) trust propa-
gation, as well as a trust space that has a dimension of certainty. Agent designers should
implement a short-term memory component to enable more sophisticated solving of trust
coherency problems. To defend against specific types of attacks, the trust system should be
coupled with an additional attack detection system.

We illustrated some of the benefits that the implementation of a dynamic and decen-
tralized trust system could offer in a VANET. Attack prevention, detection and containment
benefit from locality and subjective views. Besides that, the normal operation without
malicious nodes could also be improved since the use of trust as a currency facilitates
cooperative resource management and assists with cooperative maneuvers.

Future Outlook 92

5 Future Outlook

5.1 V2XIntegration

In section 1.1, we envisioned future applications in the Internet of Things and in V2X
communications. Neither the Internet of Things nor large-scale VANETs exist today,
although both are already being designed, and infrastructure is being prepared for them.
We illustrated some of the benefits that the integration of a DTS in a VANET could bring,
but a future implementation seems unlikely; firstly, because such a system might be
incompatible with privacy requirements (see section 3.4.2); secondly, because the planning
and design of V2X systems has been in progress for more than ten years and it does not
include a similar component yet.

Nevertheless, one could imagine the implementation of a DTS alongside the currently
planned security mechanisms. While these mechanisms already aim to provide protection
against attacks, a DTS would still enable improved resource management that uses trust as
a currency, and stimulate cooperation of vehicular services. A manufacturer could im-
plement functionality without the requirement that it provides sufficient direct benefit to
own vehicles; a service that is offered to other nodes (such as improved message routing)
would provide indirect benefit by increasing the influence of own nodes in the trust system;
these nodes would then receive increased cooperation from their peers. Decentralized
trust management could also solve some challenges of V2X systems that we did not
investigate in section 4. For example, the obstacle of combining the interests of all included
companies and agencies into global standards would be significantly lowered, if multiple
vendors could implement systems that do need not be fully compatible with each other;
instead, they could form multiple subnets that only cooperate in some functional aspects at
first, but are gradually integrated with the whole system as trustworthiness increases. This
possibility of dynamic and fine-grained trust would also give the agent designers more
freedom regarding new or proprietary features, which removes the possible stagnancy of a
controlled and planned economy and instead boosts competition and progress. Lastly, the
quality of vehicular agents would be easier to control, since a decentralized trust system
would implicitly measure their usefulness for the entire system (via their objective
reputation). Not only could this be utilized for evaluating features, but it also provides
additional incentive for agent designers to improve that quality since nodes that do not
increase system utility are punished by receiving less influence.

Future Outlook 93

5.2 Other Potential Applications

5.2.1 Decentralized Social Network

Common concerns with “traditional” social network services are the lack of privacy among
users and the handling of the massive amount of personal data by the service provider.
Firstly, trust relations between users are usually binary: you are either the friend of a
person or not. Some services allow their users to fine-tune which personal data is seen by
which group of friends, but extensive specification of such rules is tedious and complicated,
and therefore rarely employed. As a consequence, it is often recommended to users of
social networks to carefully decide which personal data should be “put online”.

Secondly, the user is never in full control of their data, since it is commonly stored on a
central server®. The service provider could theoretically sell this data to anyone; it is
almost always sold to advertisers. While the user needs to agree to this by accepting Terms
and Conditions, they are often driven by social pressure, since not accepting would render
them unable to communicate and socialize in a digitalizing society.

A future social network could be fully decentralized and solve the aforementioned
problems using trust management. Intelligent nodes (representing users) would send status
updates and messages directly to other nodes in a peer-to-peer network. A remaining
obstacle is the possibility that a node could never receive another node’s updates, if they
are never online at the same time. A DTS could identify common trusted peers that are
authorized to store and later forward personal data, or suggest new contacts to the user.
There are already existing decentralized social network services such as Diaspora*. With the
implementation of trust management, (preferably open-source) software agents could
manage the distribution of a user’s personal data on their behalf.

5.2.2 Software Collaboration

Autonomous software services could utilize trust propagation and trust coherency solving
to identify trustworthy peers during service discovery. This would be especially useful for
dynamic smart environments in the Internet of Things. Future artificial intelligences could
also perform complex tasks while being protected from abuse. For example, networked
robots deployed in disaster areas could distinguish other helpers from looters. Other fields
for networked robots that could benefit from trust management are swarm robotics and
military applications ([VAND12]).

Peer-to-peer networks that include resource management could be an immediate area of
application. File-sharing networks based on protocols such as BitTorrent often utilize the
so-called “ratio”, i.e., the quotient of uploaded and downloaded data, to exclude unco-
operative users. There are other factors that might lead to the untrustworthiness of a user,
such as the distribution of spam and malware. Using trust propagation and trust coherency

33 n the logical sense; the system is usually physically distributed.

Future Outlook 94

solving, clients could manage resource distribution (network traffic) and exclusion of
untrustworthy peers on their own, without the help of a central server®*.

Another example of trust-related software interaction is email. The email system has been
(and still is) confronted with heavy abuse by spammers. As a consequence, it is also quite
complicated to set up a new mail server, due to of the risk of being placed on blacklists. On
the other hand, if mail servers are mostly owned by large corporations, those corporations
possess complete control over the contained data. The whole process would be simplified if
mail servers utilized some sort of trust propagation, keeping track of spam reports
individually while also reacting to recommendations (warnings).

In general, any kind of open multi-agent system could employ schemes such as the one we

proposed in 3.5 to manage protection and cooperation.

5.2.3 Sociological, Economical and Evolutionary Study of MASs

Trust plays an important role in social and economic systems. Trust management schemes
could be utilized in the creation of such systems, similar to the subject of our investigation.
However, the inverse operation should not be overlooked: preexisting multi-agent systems
could be modeled based on trust systems; these models could then be used to make
predictions about the future development of the systems. This is based on the assumption
that trust propagation exists in these systems. By choosing an appropriate trust space and
trust combination operator’®, trust-related agent behavior could be approximated. For
example, one might research how an advertising character’s recommendations are affected
by other recommendations for different products by the same character.

Another area of research where trust models could find new applications in is the study of
multi-agent organizations. Organizational teamwork includes, among others, the formation
of teams, the negotiation of responsibilities, and the controlling of the team’s operation. In
all of these operations, a trust system could be employed; for the formation, sufficient trust
between the forming agents is necessary; for negotiation, trust as a currency could be
utilized to trade tasks, access to resources, or claims on another agent’s work effort; and
lastly, for controlling, agents could utilize the trust system to keep track of each other’s
performance and cooperation within their respective fields of duty. After convergence of
the trust graph, the resulting network can be utilized to optimize or rebuild the organiza-
tional structure.

In the field of evolutionary computation, trust propagation and coherency solving could be
utilized to include an agent’s effectiveness in cooperative tasks into a fitness rating, while at
the same time preventing the domination of agents that simply provide unfair negative
recommendations for others.

1% As pointed out in 3.3.2, a centralized TA does not only raise privacy concerns, but could also be

unable to represent complex trust relations; users might have different perceptions of which files
should be removed from the network.

3% Which might operate on more arguments than those we investigated, to solve higher-level
constraints.

Conclusions 95

6 Conclusions

In retrospect, we mostly reached the goals we set ourselves in section 1.2.

In chapter 2, we provided the reader with a short introduction to V2X communications, and
to its remaining obstacles which we partially aimed to solve.

In chapter 3, we gained a deeper understanding of trust in the context of multi-agent
systems through surveys of existing literature as well as original research, which culminated
in the design and informal specification of a generic abstract trust system (GTS). Some
interesting results we gained along the way include:

* That the need for entity trust can be derived from the rational considerations of an
open open multi-agent system’s system designer (section 3.1.6)

* That the traditionally separated concepts of transitive trust propagation (adaption)
and protection from slander attacks can be unified into a single concept (trust
coherency problem) and operation (trust coherency solving), which can also replace
inconsistent definitions of trust transitivity (section 3.1.7)

* That trust propagation should be further differentiated and specified in two central
documents that form the foundation of an open MAS (section 3.2.4)

and

* That trust can be used as a currency to enable dynamic and adaptive resource
management even without communication (section 3.2.4).

In chapter 4, we designed and implemented a simulation software that we also used to in-
vestigate the properties of our system in V2X communications. However, we were not able
to simulate the full functionality of the GTS; despite that, we could observe most of the
desired effects.

Lastly, in chapter 5, we listed some potential future areas of application for decentralized
trust management systems.

To conclude: the research and design based on symbolic representations of trust in multi-
agent systems remains an interesting and maybe underrepresented field, whose impor-
tance is nonetheless growing with the approach of the Internet of Things. Decentralized
trust management can solve many of the problems that were encountered with traditional
security systems in dynamic environments.

Acknowledgements 96

7 Acknowledgements

At this point, | would like to express gratitude to my fellow colleagues at NXP Semi-
conductors who gave me the opportunity to conduct the research | summarized in this
paper. They also provided me with an insight into the field of V2X technology and feedback
to my ideas. | would also like to thank my thesis supervisors Prof. Dr. Christoph Klauck and
Dipl.-Ing. Frank Siedel for their critical examination of my work, which has considerably
contributed to it.

References 97

8 References

[RFC5280] COOPER, D.; SANTESSON, S.; FARRELL, S.; BOEYEN, S.; HOUSLEY, R.; POLK, W.:
RFC 5280: Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile. 2008

[ITUX680] INTERNATIONAL TELECOMMUNICATIONS UNION: Information technology-
Abstract Syntax Notation One (ASN.1): Specification of basic notation
(ITU-T Recommendation X.680). ITU, 2008.

[ABDU97] ABDUL-RAHMAN, Alfarez; HAILES, Stephen: A distributed trust model. In:
NSPW '97 Proceedings of the 1997 workshop on New security paradigms.
New York: ACM, 1997. pp 48-60

[ABDUOO] ABDUL-RAHMAN, Alfarez; HAILES, Stephen: Supporting Trust in Virtual
Communities. In: HICSS '00 Proceedings of the 33rd Hawaii International
Conference on System Sciences, Vol. 6. Washington DC, USA: IEEE, 2000.

[ADAMO5] ADpAMS, William J.; DAvIS, Nathaniel J.: Toward a Decentralized Trust-
based Access Control System for Dynamic Collaboration. In: IAW '05
Proceedings from the Sixth Annual IEEE SMC. IEEE, 2005. pp 317-324

[ALKA12] AL-KAHTANI, Mohammed S.: Survey on Security Attacks in Vehicular Ad
hoc Networks. In: 6th International Conference on Signal Processing and
Communication Systems (ICSPCS). IEEE, 2012. pp 1-9

[ARTIO9] ARTIKIS, Alexander; KAPONIS, Dimosthenis; PITT, Jeremy: Dynamic
Specifications for Norm-Governed Systems. In: Handbook of Research on
Multi-Agent Systems: Semantics and Dynamics of Organizational Models.
IGI Global, 2009. pp 460-479

[AXEL84] AXELROD, Robert M.: The evolution of cooperation. New York: Basic Books,
1984.

[BENT76] BENTHAM, Jeremy: A Fragment on Government. Accessed 2015-07-19,
URL: http://www.constitution.org/jb/frag_gov.htm

[BISM12] BIRMEYER, Norbert; NJEUKAM, Joél; PETIT, Jonathan; BAYAROU, Kpatcha M.:
Central misbehavior evaluation for VANETs based on mobility data
plausibility. In: VANET '12 Proceedings of the ninth ACM international
workshop on Vehicular inter-networking, systems, and applications. New
York: ACM, 2012. pp 73-82

References

98

[BLAZ96]

[BUTTO1]

[CHEN10]

[CHOJ11]

[CHRI13]

[COMO11]

[DELLOO]

[DENN93]

[DOTZ05]

[DOUCO2]

BLAZE, Matt; FEIGENBAUM, Joan; LAcY, Jack: Decentralized Trust
Management. In: SP '96 Proceedings of the 1996 IEEE Symposium on
Security and Privacy. Washington DC, USA: IEEE, 1996. pp 164-173

BUTTYAN, Levante; HUBAUX, Jean-Pierre: Nuglets: a Virtual Currency to
Stimulate Cooperation in Self-Organized Mobile Ad Hoc Networks. In:
Technical Report No. DSC/2001/001. Lausanne, Switzerland: Swiss
Federal Institute of Technology, 2001.

CHEN, Chen; ZHANG, Jie; COHEN, Robin; HO, Pin-Han. A Trust Modeling
Framework for Message Propagation and Evaluation in VANETSs. In: 2nd
International Conference on Information Technology Convergence and
Services (ITCS). IEEE, 2010. pp 1-8

CHO, Jin-Hee: Towards Trust-based Cognitive Networks:

A Survey of Trust Management for Mobile Ad Hoc Networks. In:
Communications Surveys & Tutorials, Vol. 13, No. 4. IEEE, 2011. pp 562-
583

CHRISTIANSON, B.: Living in an Impossible World: Real-izing the
Consequences of Intransitive Trust. In: Philosophy and Technology, Vol.
26, no. 4. 2013. pp 411-429

ComMoDO GROUP INC.: Comodo Report of Incident - Comodo detected and
thwarted an intrusion on 26-MAR-2011. 2011. Accessed 2015-09-21, URL:
https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html

DELLAROCAS, Chrysanthos: Immunizing Online Reputation Reporting
Systems Against Unfair Ratings and Discriminatory Behavior. In: EC '00
Proceedings of the 2nd ACM conference on Electronic commerce. New
York: ACM, 2000. pp 150-157

DENNING, Dorothy E.: A new paradigm for trusted systems. In: NSPW '92-
93 Proceedings on the 1992-1993 workshop on New security paradigms.
New York: ACM, 1993. pp 36-41

DOTZER, Florian; FISCHER, Lars; MAGIERA, Przemyslaw: VARS: A Vehicle Ad-
Hoc Network Reputation System. In: WOWMOM '05 Proceedings of the
Sixth IEEE International Symposium on World of Wireless Mobile and
Multimedia Networks. Washington DC, USA: IEEE, 2005. pp 454-456

DOUCEUR, John R.: The Sybil Attack. In: IPTPS '01 Revised Papers from the
First International Workshop on Peer-to-Peer Systems. London: Springer,
2002. pp 251-260

References

99

[ETSI09]

[GAMBOO]

[GERLO7]

[GILBO2]

[GOLLOA4]

[GROV11]

[GUTMO2]

[GUTM11]

[JOSA96]

[JOSAO1]

European Telecommunications Standards Institute: ETS/ TR 102 638
V1.1.1: Intelligent Transport Systems (ITS); Vehicular Communications;
Basic Set of Applications; Definitions. 2007. Accessed 2015-10-14, URL:
http://www.etsi.org/deliver/etsi_tr/102600_102699/102638/01.01.01_6
0/tr_102638v010101p.pdf

GAMBETTA, Diego: Can We Trust Trust?. In: GAMBETTA, Diego (ed.): Trust:
Making and Breaking Cooperative Relations. Electronic edition.
Department of Sociology, University of Oxford, 2000. pp 213-237. URL:
http://www.sociology.ox.ac.uk/papers/gambetta213-237.pdf. Accessed
using the Internet Wayback Machine, version of 2007-03-06

GERLACH, Matthias: Trust for Vehicular Applications. In: ISADS '07 Eighth
International Symposium on Autonomous Decentralized Systems. Berlin:
Fraunhofer FOKUS, 2007. pp 295-304

GILBERT, Seth; LYNCH, Nancy: Brewer's conjecture and the feasibility of
consistent, available, partition-tolerant web services. In: ACM SIGACT
News, Vol. 33, Issue 2. New York: ACM 2002. pp 51-59

GOLLE, Philippe; GREENE, Dan; STADDON, Jessica: Detecting and correcting
malicious data in VANETSs. In: VANET '04 Proceedings of the 1st ACM
international workshop on Vehicular ad hoc networks. New York: ACM,
2004. pp 29-37

GROVER, Jyoti; GAUR, Manoj Singh; LAXMI, Vijay; PRAJAPATI, Nitesh Kumar: A
sybil attack detection approach using neighboring vehicles in VANET. In:
SIN '11 Proceedings of the 4th international conference on Security of
information and networks. New York: ACM, 2011. pp 151-158

GUTMANN, Peter: PKI: It’s Not Dead, Just Resting. In: Computer, Vol. 35,
Issue 8. Los Alamitos, USA: IEEE, 2002.pp 41-49

GUTMANN, Peter: Diginotar broken arrow as a tour-de-force of PKI fail
[Electronic mailing list message]. 2011. Accessed 2015-09-21, URL:
http://comments.gmane.org/gmane.comp.security.cryptography.random
bit/1215

JBSANG, Audun: The right type of trust for distributed systems. In: NSPW
'96 Proceedings of the 1996 workshop on New security paradigms. New
York: ACM, 1996. pp 119-131

JBSANG, Audun: A logic for uncertain probabilities. In: International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, Vol. 9
Issue 3. River Edge, NJ, USA: World Scientific Publishing Co., 2001. pp
279-311

References

100

[JOSA04]

[JOSAO5]

[J0S205]

[JOSAO07]

[KAMVO03]

[KANTS5]

[KHUN14]

[MANC98]

[MARS94]

[MARTOO]

[MASH11]

JBSANG, Audun; Lo PRESTI, Stéphane: Analysing the Relationship between
Risk and Trust. In: Trust Management: Proceedings of the 2nd
International Conference iTrust 2004. Berlin: Springer, 2004. pp 135-145

JBSANG, Audun; KESER, Claudia; DIMITRAKOS, Theo: Can we manage trust?.
In: iTrust'05 Proceedings of the Third international conference on Trust
Management. Heidelberg: Springer, 2005. pp 93-107

JBSANG, Audun; POPE, Simon: Semantic constraints for trust transitivity. In:
APCCM '05 Proceedings of the 2nd Asia-Pacific conference on Conceptual
modelling - Volume 43. Darlinghurst, Australia: Australian Computer
Society Inc., 2005. pp 59-68

JBSANG, Audun: Trust and Reputation Systems. In: ALDINI, Allesandro (ed.);
GORRIERI, Roberto (ed.): Foundations of Security Analysis and Design IV.
Heidelberg: Springer, 2007. pp 209-245

KAMVAR, Sepandar D.; SCHLOSSER, Mario T.; GARCIA-MOLINA, Hector: The
EigenTrust Algorithm for Reputation Management in P2P Networks. In:
WWW '03 Proceedings of the 12th international conference on World
Wide Web. New York: ACM, 2003. pp 640-651

KANT, Immanuel; ELLINGTON, James W. (transl.): Grounding or the
Metaphysics of Morals 3rd ed. (Orig. 1785). Indianapolis, USA: Hackett,
1993.

KHUN, Steven: Prisoner’s Dilemma. In: ZALTA, Edward N. (Bearb.): The
Stanford Encyclopedia of Philosophy (Fall 2014 Edition). 2014. URL
(statisch): http://plato.stanford.edu/archives/fall2014/entries/prisoner-
dilemma/. Abrufdatum: 2015-07-19

MANCHALA, Daniel W.: Trust Metrics, Models and Protocols for Electronic
Commerce Transactions. In: Proceedings of 18th International Conference
on Distributed Computing Systems 1998. El Segundo, CA, USA: Xerox
Corp., 1998. pp 312-321

MARSH, Stephen P.: Formalising Trust as a Computational Concept.
University of Stirling, 1994.

MARTI, Sergio; GiuLl, T.J.; LAI, Kevin; BAKER, Mary: Mitigating Routing
Misbehavior in Mobile Ad Hoc Networks. In: MobiCom '00 Proceedings of
the 6th annual international conference on Mobile computing and
networking. New York: ACM, 2000. pp 255-265

MaA, Shuo; WOLFSON, Ouri; LIE, Jin: A Survey on Trust Management for
Intelligent Transportation System. In: Proceedings of the 4th ACM
SIGSPATIAL International Workshop on Computational Transportation
Science. New York: ACM, 2011. pp 18-23

References

101

[MCKN96]

[MERRO3]

[MICHO02]

[MINH10]

[NAKAOS]

[NHTS14]

[PERR13]

[PRIN11]

[PUKA15]

[RANG9S8]

MCKNIGHT, D. Harrison; CHERVANY, Norman L.: The Meanings of Trust. In:
Technical Report MISRC Working Paper Series 96-04. University of
Minnesota, Management Information Systems Reseach Center. Accessed
2015-06-27, URL: http://misrc.umn.edu/workingpapers/fullPapers/1996/
9604_040100.pdf

Merriam-Webster’s Collegiate Dictionary. 11th ed. Springfield, MA:
Merriam-Webster, 2003. Also available at http://www.merriam-
webster.com/

MICHIARDI, Pietro; MoLvA, Refik: CORE: A Collaborative Reputation
Mechanism to enforce node cooperation in Mobile Ad hoc Networks. In:
Proceedings of the IFIP TC6/TC11 Sixth Joint Working Conference on
Communications and Multimedia Security: Advanced Communications
and Multimedia Security. Deventer, NL: Kluwer BV, 2002. pp 107-121

MINHAS, Umar F.; ZHANG, Jie; TRAN, Thomas; COHEN, Robin: Towards
expanded trust management for agents in vehicular ad-hoc networks. In:
International Journal of Computational Intelligence: Theory and Practice,
Vol. 5, no. 1. Serials Publications, 2010.

NAKAMOTO, Satoshi: Bitcoin: A Peer-to-Peer Electronic Cash System. 2008.
Accessed 2015-09-11, URL: https://bitcoin.org/bitcoin.pdf

National Highway Traffic Safety Administration: HARDING, John; POWELL,
Gregory; YOON, Rebecca; FIKENTSCHER, Joshua; DOYLE, Charlene; SADE,
Dana; Lukuc, Mike; SIMONS, Jim; WANG, Jing: Vehicle-to-Vehicle
Communications: Readiness of V2V Technology for Application (Report
No. DOT HS 812 014). Washington DC, USA: 2014.

PERRY, Mike: [tor-talk] Why the Web of Trust Sucks [Electronic mailing list
message]. 2013. Accessed 2015-09-06, URL: https://lists.torproject.org/
pipermail/tor-talk/2013-September/030235.html

PRINS, J. R.: Fox-IT Interim Report: DigiNotar Certificate Authority breach
“Operation Black Tulip”. 2011. Accessed 2015-09-21, URL:
https://www.rijksoverheid.nl/binaries/rijksoverheid/documenten/rappot
en/2011/09/05/diginotar-public-report-version-1/rapport-fox-it-
operation-black-tulip-v1-0.pdf

PUKA, Bill: The Golden Rule. In: The Internet Encyclopedia of Philosophy.
Accessed 2015-07-19, URL: http://www.iep.utm.edu/goldrule/

RANGAT, P. Venkat: An axiomatic basis of trust in distributed systems. In:
SP'88 Proceedings of the 1988 IEEE conference on Security and privacy.
Washington DC, USA: IEEE, 1988. pp 204-211

References

102

[RAYAO6]

[RAYAQ7]

[REPAO6]

[SABAO2]

[SCHMOS]

[SURY06]

[THEOO6]

[TOMA14]

[USDO15]

[VAND12]

RAYA, Maxim; PAPADIMITRATOS, Panos; HUBAUX, Jean-Pierre: Securing
Vehicular Communications. In: IEEE Wireless Communications, Vol. 13,
no. 5. IEEE, 2006. pp 8-15

RAYA, Maxim; HUBAUX, Jean-Pierre: Securing vehicular ad hoc networks.
In: Journal of Computer Security - Special Issue on Security of Ad-hoc and
Sensor Networks, Vol. 15, Issue 1. Amsterdam: 10S Press, 2007. pp 39-68

REPANTIS, Thomas; KALOGERAKI, Vana: Decentralized Trust Management for
Ad-Hoc Peer-to-Peer Networks. In: MPAC '06 Proceedings of the 4th
international workshop on Middleware for Pervasive and Ad-Hoc
Computing. New York: ACM, 2006.

SABATER, Jordi; SIERRA, Carles: Reputation and Social Network Analysis in
Multi-Agent Systems. In: AAMAS '02 Proceedings of the first international
joint conference on Autonomous agents and multiagent systems: part 1.
New York: ACM, 2002. pp 475-482

ScHMIDT, Robert K; LEINMULLER, Tim; BODDEKER, Bert: V2X Kommunikation.
In: Proceedings of the 17" Aachener Kolloquium. Aachen, Germany: 2008.

SURYANARAYANA, Girish; DIALLO, Mamadou H.; ERENKRANTZ, Justin R.;
TAYLOR, Richard N.: Architectural support for trust models in
decentralized applications. In: ICSE '06 Proceedings of the 28th
international conference on Software engineering. New York: ACM, 2006.
pp 52-61

THEODORAKOPOULOS, George; BARAS, John S.: On Trust Models and Trust
Evaluation Metrics for Ad Hoc Networks. In: IEEE Journal on Selected
Areas in Communications, Vol. 24, Issue 2. IEEE, 2006. pp 318-328

TOMANDL, Andreas; HERRMANN, Dominik; FUCHS, Karl-Peter; FEDERRATH,
Hannes; SCHEUER, Florian: VANETsim: An open source simulator for
security and privacy concepts in VANETSs. In: Proceedings of the 2014
International Conference on High Performance Computing & Simulation
(HPCS). IEEE, 2014. pp 543-550

United States Department of Transportation, Office of the Assistant
Secretary for Research and Technology: Vehicle-to-Infrastructure (V2I)
communications for safety. Accessed 2015-10-14, URL:
http://www.its.dot.gov/factsheets/v2isafety factsheet.htm

VANDENBERGE, Wim; MOERMAN, Ingrid; DEMEESTER, Piet: Adoption of
Vehicular Ad Hoc Networking Protocols by Networked Robots. In:
Wireless Personal Communications: An International Journal, Vol. 64,
Issue 3. Hingham, MA, USA: Kluwer, 2012. pp 489-522

References

103

[WEIZ14]

[ZHAN11]

[ZHAO04]

[ZIMM95]

WEI, Zhexiong; YU, Fei R.; BOUKERCHE, Azzedine: Trust Based Security
Enhancement for Vehicular Ad Hoc Networks. In: DIVANet '14
Proceedings of the fourth ACM international symposium on Development
and analysis of intelligent vehicular networks and applications. New York:
ACM, 2014. pp 103-109

ZHANG, Jie: A Survey on Trust Management for VANETSs. In: AINA '11
Proceedings of the 2011 IEEE International Conference on Advanced
Information Networking and Applications. Washington DC, USA: IEEE,
2011. pp 105-112

ZHAOVYU, Liu; Joy, Anthony W.; THOMPSON, Robert A.: A Dynamic Trust
Model for Mobile Ad Hoc Networks. In: FTDCS 2004. Proceedings of the
10th IEEE International Workshop on Future Trends of Distributed
Computing Systems. IEEE, 2004. pp 80-85

ZIMMERMANN, P.R.: The Official PGP User’s Guide. MIT Press, 1995.

Appendices 104

9 Appendices

This thesis is handed in for review alongside a CD. That CD contains the following attached
files and directories:

* The GenericTrustSystem project (Eclipse: Java)

* The TrustCoherencySolver project (Eclipse: Java)

* The modified VANETsim project (Eclipse: Java)

* A PDF version of this document

Appendices 105

Versicherung Uber Selbststandigkeit

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe
selbststdndig verfasst und nur die angegebenen Hilfsmittel benutzt habe.

Hamburg, den

