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Kurzzusammenfassung

Diese Arbeit stellt eine verteilte zweistufige Streaming- und Kompressionsarchitektur fir Punkt-
wolken von mobilen Android-Geréten vor. Tiefenbilder eines am mobilen Gerit angeschlosse-
nen Structure-Sensors werden effizient auf stationére Systeme iibertragen und anschlieffend in
Punktwolken umgewandelt und weiterverteilt. Das Verfahren eignet sich, um intensive Berech-
nungen wie Handgesten- und Objekterkennung auf leistungsfahigere Gerate auszulagern. Dies
wird zum Beispiel fiir Szenarien mit virtueller und gemischter Realitat benétigt, da der Sensor
am Korper getragen werden kann. Es wird eine effiziente Client-Server-Architektur in Java
vorgestellt. Die Sensordaten werden als Graustufenbilder mit 16-bit Farbtiefe tibertragen. Auf
dem stationiren System werden Punktwolken berechnet und iiber Schnittstellen weiterverteilt.
Entwurfsmuster, die sich fir die Aufgabe der zeitkritischen Ubertragung grofler Datenmengen
eignen, werden angepasst und eingesetzt. Bisherige Losungen boten keine zufriedenstellende
Integration in Android-Systeme. Verschiedene Datenkompressionsalgorithmen werden in
diese Architektur integriert, und die Geschwindigkeit und Latenz unter realen Bedingungen
gemessen. Verglichen wurden Jpeg-LS, Deflate, BZip2 und Snappy mit der unkomprimierten
Ubertragung. Die Performanz-Messung der implementierten Verfahren hat ergeben, dass die
Deflate-Kompression bei Level 2 am Geeignetsten ist, mit einer Ubertragungsrate von 28 Bil-
dern die Sekunde und einer relativ kurzen Latenz von 133ms. Damit eignet sich die vorgestellte
Losung gut fir Benutzer-Interaktion mit virtuellen Umgebungen. Schnellere Systeme oder

Weiterentwicklungen in der Kompressionstechnik konnen diese Werte weiter verbessern.
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Abstract

This work presents a distributed two-stage streaming and compression architecture for point
clouds from mobile devices. Depth images from a Structure sensor attached to a mobile
device are transferred efficiently to stationary systems and then converted to point clouds and
redistributed. The technique is suited for outsourcing intense computations like hand gesture
and object detection onto more powerful devices. This is for example needed for scenarios
with virtual and mixed reality, as the sensor is worn on the body. An efficient client server
architecture in Java is introduced. The sensor data is streamed as 16-bit grayscale images. On
the stationary system, point clouds are computed and redistributed over interfaces. Design
patterns designed for the time-critical transmission of bulk data are customized and used. Prior
solutions did not offer satisfactory integration into android systems. Various data compression
algorithms are integrated into this architecture and the speed and latency are measured under
realistic conditions. Jpeg-LS, Deflate, BZip2 and Snappy were compared to the uncompressed
transmission. Performance measurements of the implemented methods have revealed, that the
Deflate compression using Level 2 was most suitable with a transmission rate of 28 frames
per second and a relatively short latency of 133ms. The presented solution suits well for the
user interaction with virtual environments. Faster systems or further development of the

compression methods can improve these results.
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1 Motivation

Mixed reality (MR) merges physical and digital objects that co-exist and interact in real time.
This is done by superimposing a virtual world over the real world using technologies such
as see-through displays, and is further described by Ohta [25]. Shatte [32] observed that this
topic has recently gained increasing popularity.

Concepts of MR are currently in use in various fields. Coral sea [24] introduces an artificial
aquarium with virtual fishes that can be played with. Ricci [28] uses augmented reality (AR)
technologies and ambient intelligence technologies to create agent-based virtual environments
in a MR system. In MixFab [36], a design and manufacturing process is simulated in a MR
environment.

These fields of application are continuing to expand because MR technologies have been
refined over time. MR technologies can be further classified into stationary and mobile solutions.
One example for a stationary solution is Microsoft’s HoloDesk [12], which uses an optical
see-through display on top of a table where the user sees virtual content merged with the real
world. In MirageTable [2], the author projects geometrically transformed virtual imagery on a
round-shaped canvas to simulate a virtual table extending further behind.

Mobile solutions such as the Epson Moverio [8] have their see-through display built in
eyeglasses, however there are not many products at choice for now. But the ongoing develop-
ment and improvement of more advanced display techniques [16] indicates that the resultant
development in the field of see-through glasses or mobile MR glasses with holographic lenses
and additional functionality is far from complete. Because of this, they will become more and
more a matter of course in the near future.

A mobile see-through display implies conclusively, that the interaction with the MR environ-
ment also has to be mobile, in other words, not limited to a stationary surface of interaction.
The most natural way to interact with the MR world is by hand, e.g. grasping virtual objects
like real objects or performing gestures to manipulate them. Devices that detect this motion
create a physically accurate model of the hand in order to interpret gestures and movement

patterns.
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The “myo” armband [35] detects muscle activity and uses it to differentiate between a set
of basic gestures such as pointing at a screen. Data gloves accurately track the movement of
every finger, but impede motility significantly.

A visual approach to hand tracking is the use of depth sensors. The Leap Motion controller
[15] draws an infrared pattern on the skin of hands and computes a 3-D model out of depth
images. The Leap Motion SDK is available for Windows, OSX and Linux, and a port to mobile
operating systems is in early development. While this accuracy is high enough to recognize
individual finger movements, its interaction range is limited to a maximum distance of about
60cm.

At roughly this distance, Microsoft’s Kinect starts recognizing objects in the environment.
While it can track objects much further away, its mediocre accuracy at higher distances
generates skeletons of people which are not detailed enough to register individual fingers.
Although both Leap Motion’s and Kinect’s viewing range is very narrow, at higher distances
they perform well below the required level for small gestures. While Microsoft’s new Kinect
for XBox One uses Time-of-Flight cameras for real time depth imaging, a technique further
described by Oggier [23], the resolution is not sufficient to extract a detailed hand model with
individual fingers at greater distances.

Depth sensors such as the aforementioned also have the advantage that they can be used
for scanning and tracking 3D objects in the environment to make the MR environment aware
of its shape and properties. To overcome the distance problem, these devices have to become
wearable. It would seem the thing to use mobile depth sensors or to integrate depth sensors in
smart glasses. Presently, the latter is not yet available on the market. Microsoft has released
a few teaser videos of its HoloLens, an all-rounder with all sorts of features embedded, on
YouTube and other websites [33] but it is still unavailable.

Occipital has recently released a mobile depth sensor, called “Structure”, which shares
similarities with the first Kinect, but in the size of a Leap motion device. Since it is relatively
small in size and does not require external power supply, it is a good candidate to be mounted
on virtual reality glasses and serve as a mobile source for depth information. Making a depth
sensor wearable greatly reduces the distance to the hands which allows small details [22]
and individual fingers to be recognized. On the other hand, mobile devices like smartphones
and tablets do not have much computing power and resources, which makes it a challenge to
further process the depth data provided by the sensor locally.

The Structure sensor is shipped with the Structure SDK for iOS, and mobile applications
using this SDK are able to recognize and track objects on a table and progressively create

surface meshes. With this, iOS developers (iOS is the operating system of mobile devices from
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Apple Inc.) can create various applications using the depth information from this sensor. The
SDK calculates the most probable movements of the sensor and overlays consecutive point
clouds to determine surfaces.

Google has demonstrated in its Project Tango [10] that mobile devices are powerful enough
to measure the surrounding world and create environmental mesh-maps for indoor wayfinding,.
Both variants allow for augmented reality applications and scanning of real objects like the
MixFab [36], but their examples are limited to a handheld device moving through a static
world. Also, after completing a “recording” session, a final process further optimizes the
stored data. This allows the assumption that finger, hand and gesture tracking, or generally,
performing calculations with the data may indeed require more advanced hardware. Project
Tango uses a specially crafted device with much more processing power than an average
mobile device. A different approach is to transfer the depth images from mobile devices to a
stationary system with more computing power and throughput that can process them more

efficiently, to overcome the limited processing power of mobile devices.

1.1 Structure of the paper

The structure of this paper is as follows. First, Sec. 2 outlines the goal of this work. In Sec. 3,
research papers and compression algorithms related to the topic are introduced. Within the
scope of this section, why depth image transmission has a higher relevance than point cloud
transmission. My search shows that there is currently no practice to stream depth images or
point clouds from mobile devices, and a streaming architecture in this form is not in existence.
Sec. 4 specifies the functional and non-functional requirements. Sec. 5 presents the design
principles, concepts and implementation details. The main focus is put on architectural patterns
and an efficient processing of bulk data to meet the requirements. A comparative performance
study can be found in Sec. 6, followed by a latency measurement for the best two practices.

Sec. 7 summarizes the essential results and discusses further perspectives.



2 Objectives

The goal of this work is to create and evaluate a mobile solution to transfer the stream of depth
images from a mobile device to a stationary system to allow further processing on a more
powerful computer. Even though processing on a mobile device with limited hardware might
be possible (see [10]), it is the task of this work to evaluate whether transferring the data to a
stationary system is practical and what quality and throughput can be achieved.

The mobile device is an Android device having an OpenNI-compatible depth sensor con-
nected, such as the aforementioned “Structure” sensor. In a mixed reality interaction scenario,
this android device could be part of a mixed reality interface with a depth sensor attached to it.
To preserve the freedom of movement of the user, the transmission shall be over a wireless
network. From these requirements, the Samsung Galaxy Tab2 10.1 Wi-Fi has been chosen
as a mobile device. Its dual-core processor runs a 1 GHz, which is surpassed by most of the
currently available mobile devices. While sometimes referred to as “depth frames” in this work,
depth images and depth frames are to be considered the same.

Fig. 2.1 roughly sketches the final architecture to be developed in this thesis.

al

i

e

Figure 2.1: A schematic of the mobile device and the stationary system. (a) Structure sensor,

(b) typical raw depth image, (c) android device, (d) wireless transmission, (e) stationary system,

(f) an artistic depiction of a hand in a point cloud. The hand is shown as a polygon mesh.
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To ensure that the speed and accuracy is good enough for gesture recognition and gesture
control, different strategies will be developed and used that shall increase the speed and
accuracy of the transmission. Two aspects are significant: Firstly, the use of a stationary system
that takes over the further processing of the depth images for different consumers to take the
computational load off the mobile device, and secondly, the transmission speed. It has to be
examined whether compressing depth images or point clouds on mobile devices makes an
improvement over the transmission of raw, uncompressed images. Compression algorithms
will be tested and compared with the transmission of raw images.

The final architecture will cover (a) accessing the depth sensor from a mobile device, (b)
receive depth images from the sensor, (c) compressing, (d) transferring, (e) uncompressing and

(f) converting them to a point cloud, as shown in Fig. 2.1.



3 Related Work

Point cloud streaming is not a new topic and was presented in multiple theoretical and practical
studies throughout the last 10 years. These works solely refer to the distribution of point
clouds from a stationary system with significant computation power to other consumers. A
mobile solution for point cloud streaming, especially for Android-based architectures, was
unavailable. Furthermore, there were only few solutions to connect a mobile android device
with depth sensors.

Sec. 3.1 will introduce available solutions for connecting depth sensors on mobile devices.
Sec. 3.2 presents architecture variants in the context of point cloud streaming and shows two
different approaches, namely point cloud and depth image compression, to solve this task.
Sec. 3.3 explains methods for point cloud compression and Sec. 3.4 presents different methods

for depth image compression.

3.1 Depth sensors on mobile devices

Connecting depth sensors to a stationary computer, processing sensor data and creating point
clouds is an easy task. It involves downloading and installing drivers and launching a sample
application.

Generating a point cloud on a stationary computer and streaming the point cloud to an
Android device has also been done before. The point cloud viewer [14] for Android, available
as part of the Robot Operating System, receives and loads a single point cloud structure in up
to 30 seconds, after which the user can navigate through a virtual world of points.

There are two solutions where a depth sensor is connected to a mobile Android device. The
aforementioned Project Tango and the Odroid-X [17] has demonstrated that a Kinect sensor
can be connected to an Odroid-X device running Android. A demo application uses basic
object tracking to move a rectangle on the screen. The solution runs on native code that has

never been published by the author.
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3.2 Depth image and point cloud streaming

Streaming depth information from Android devices to powerful stationary computers, in
order to defer complex hand recognition tasks, has not been done by now. As a consequence,
there is a need to implement basic methods and algorithms for efficient transmission from
mobile Android devices. Most of the publications about depth information streaming have
developed or compared compression algorithms that require powerful hardware or cannot run

in real-time. These algorithms can be classified into two classes:

Point Cloud Compression Point clouds are generated first, which are then transmitted over
the network. To achieve sufficient transmission throughput, several point cloud com-
pression algorithms have been developed. Sec. 3.3 will discuss recent solutions for point

cloud compression.

Depth Image Compression Depth images are streamed over the network, and then con-
verted to point clouds. The main task on the mobile device will then be to efficiently
compress depth images. Sec. 3.4 will introduce several methods and applications for

depth image compression.

3.3 Point Cloud Compression

Solutions for compressing point clouds have been developed, using predictions, temporal and/or
spatial optimizations [6] [11], octrees [31] [13], wave functions [4], dynamic generation of
surface normal functions [18] and few of them were directly committed into the PCL source tree
[29]. To convert depth sensor images to point clouds, the built-in CoordinateConverter
from OpenNI can be used. However, the OpenNI documentation recommends to delay the
calculation of point clouds as long as possible since it is an expensive operation. Additional
algorithms should determine the regions of interest prior to conversion [21]. Therefore, these
compression methods are introduced briefly, but not taken into consideration in the course of

this work.

3.3.1 Adaptive arithmetic coding for point cloud compression

In the publication of Daribo [6], point clouds are compressed and encoded as 3-D space curves.
In point clouds that have been captured using structured light cameras, individual point
locations are predicted by exploiting the homogeneity of surfaces. The proposed framework

uses a 3-D extension of the Freeman chain code to encode 3-D space curves describing surfaces.
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The curve is a chain of points, which enclose sections of the curve with a turning angle near
zero, and with a possibility to exploit repetitive patterns and similarities. Adaptive arithmetic
coding is then used to compress floating point values losslessly. It requires less bits to store
floating point values in frequently used intervals than those in rarely used intervals. The peak
signal to noise ratio (PSNR) for sample images was evaluated for data stored with 16 to 28 bits

per point. The author did not do any time performance measurements.

Figure 3.1: Sampled point cloud partitioned into series of curves with respect to the projected

grid pattern. Curves are discriminate by different colors. [6]

As .
T /¢+A¢
=
—

Figure 3.2: 2D example of plane curve sampled at intervals of arc length AS. Each point has a

turning angle « as the angle between two consecutive segments. [6]

3.3.2 Predictive Point-cloud Compression

Predictive Point-cloud Compression [11] omits the construction of meshes and geometric
models and instead puts all the points into a spatially sequential order. Points are then predicted
from previously coded neighbors with simple prediction rules such that only corrective vectors
need to be encoded. To create a spatial sequence in the data, a spanning tree is used. Points are

encoded in the spanning tree and corrective vectors are added. Entropy coding and arithmetic
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coding is used to further compress the data. The author measured that a 2GHz PC requires 20

seconds to encode 100.000 points.

Figure 3.3: prediction trees built with linear prediction (bunny is a 3d scan). [11]

3.3.3 Octree-based Point-cloud Compression

Schnabel [31] uses an octree and encodes the points’ locations as its containing cells’ centers.
Octrees divide a bounding box into equally-sized partitions, two for each dimension. To encode
each node of the octree, a single byte stores whether each child node is occupied. In this
work, the occupied child cell configurations and the number of empty cells are predicted, using
planes and single child cells. To encode color information into the point cloud, a mean color
index is encoded for each octree level and then predicted for their children. The performance

of this scheme allows encoding point clouds with 2 to 8 bits per point.

Figure 3.4: A cell is to be subdivided. Those child cells that are closest to the surface approxi-
mation FQC are more likely to be occupied. [31]

3.4 Depth Image Compression

The raw stream of depth images is a series of uncompressed 16-bit grayscale images, where
each pixel is the distance from the sensor, measured in millimeters. A 16-bit number can
handle values up to 65535, which is, in theory, the maximum distance in millimeters that can be

represented in this format. Depending on the sensor and the requested stream, the resolution
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of these images is either VGA (640 x 480 pixels), QVGA (320 x 240 pixels) or even smaller.
The data structure is exactly the same as the depth data from the RGB-D sensor described by
Coatsworth [5].

The most widely known image compression format is JPEG. It is known for its great
performance shrinking average photos by 33% up to 90% in size without noticeable artifacts.
JPEG uses a color space transformation that converts pixels made of red, green and blue values
(RGB) to a brightness and two color shift values (YUV). Using this transformation allows
to receive better compression quality, especially by downsampling the color shift channels
more than the brightness channel. High frequency brightness changes which a human eye
might hardly see are removed after a discrete cosine transformation and quantization. Movie
compression algorithms such as H.264 or VP8 can go beyond that, as they take full advantage
of areas in the image that changed only slightly from two consecutive frames.

However, most of the image and movie compression algorithms fail to encode more than 8
bits per color channel. Our source image has 16 bits of depth in one single color channel, and
the majority of the few file formats capable of storing images with higher dynamic range apply
almost no compression to them. Some simple image compression algorithms use surrounding
pixels and use linear prediction to reduce the entropy required to encode the pixel values. Data
compression formats such as Deflate recognize patterns in the source data and also reduce
the entropy required to encode them. Works and algorithms that solve this problem can be
subdivided into two categories. Sec. 3.4.1 will present a method to encode 16-bit streams using
lossy 8-bit color compression formats. Sec. 3.4.2 will present methods that encode 16-bit frames

natively.

3.4.1 Three channel 8-bit encoding

Pece [26] compresses depth videos using unmodified standard video encoders with three color
channels of 8 bits each. In the cited work, the results after encoding and decoding with different
bitrates and three different compression algorithms (JPEG, VP8 and H.264) are compared.
To convert the 16-bit grayscale image into three 8-bit color channels, a pre-processing step
is made before the results are fed to the encoder. Similarly, after decoding the compressed
stream, a post-processing step decodes the original depth value from these three color values
(see Fig. 3.5).

10
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Decoding

Video Encoding ‘
Network Streaming M Dgf;‘;, Dr;:'h
Video Decoding . :

Figure 3.5: Graphical overview of the proposed method. The original 16-bit depth map is

encoded in an 8-bit, three-channel image and is then processed by a video encoder and
transferred over the network. When received, the three-channel image is decoded through the
video decoder and is then processed by our method to reconstruct the original 16-bit depth

map. [26]

Using movie encoders can be advantageous when depth and color information are encoded
at the same time, because using the same encoder for both types of information will make the
encoding and transmission less complex. The aforementioned image and movie encoders use
quantization and downsampling to achieve high compression levels. Such methods strongly af-
fect sharp corners or high-frequency changes in data, so the pre-processing and post-processing
should not add continuity gaps or carryover jumps into the source image. The work suggests
that one robust color channel contains the most significant 8 bits of the depth image, while
the other two color channels encode the least significant bits. To ensure continuity, the actual
depth values are transformed using two linear triangle wave functions (see Fig. 3.6), one for

each remaining color channel, differing in their frequency.

Depth Encoding Scheme with np =2048 and w = 2'®

| \‘ |
Il
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Figure 3.6: L (blue), H, (green) and H; (red) with w = 2'6. For illustration, np = 2048 is set
unusually large, and the ordinate shows integer values rather than [0,1]-normalized values.
[26]
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If the encoder uses color space transitions from RGB to YUV before starting the frame
encoding, the source image is fed to these three color channels directly instead, to increase
the accuracy of the data transferred. The Y-channel, which stores the brightness value of each
pixel, typically has a higher precision and stores the most significant bits. The U and V channel,
used for the tone value, have a lower precision and are used to store the triangle waves.

In the conclusion, test results were shown, and a 3 GHz quad-core processor requires 8
milliseconds for each QVGA frame and 30 ms for each VGA frame to encode. The author
makes no assumptions about the performance on mobile devices, but it can be assumed that,
unless hardware optimizations for the encoder are in use, these durations can be much longer

on a mobile device.

3.4.2 Frame-by-frame encoding

Frame-by-frame encoding means that each frame is individually compressed and transferred
one by one. The advantage is, that any single frame can be dropped from the queue without
interfering with other frames. Also, unlike movie encoding, no references are made to frames
in the future, which decreases the latency in both the encoding and the decoding process.
Dropping frames is also very useful when any of the components in the chain (mobile device,

network bandwidth) can’t keep up with the amount of data.

Generic compression algorithms

Coatsworth [5] describes a UAV mounted with a RGB-D camera, that encodes the color image
using JPEG, and the depth image using lossless compression algorithms. Both encoded results
are transmitted over a wireless network and then decoded on the receiver (cf. Fig. 3.7). The
author compared three different available lossless compression algorithms for the depth images:

bzip2, zIlib and snappy.

12
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Figure 3.7: System diagram of server-client system and compression steps [5]

With different slow test platforms used for encoding and transmission, different average
frame rates were achieved. The paper concludes that zlib, being the average of the three
algorithms in terms of speed and compression rate outperformed the other algorithms on
better hardware, while snappy can achieve better frame rates when inferior hardware was
used.

Although not mentioned in the cited work, the deflate compression, which is a combination
of Lempel-Ziv 77 and Huffman coding, may achieve similar results. It is already integrated
into the JRE (Java Runtime Environment) and therefore quite portable. The slow compression
speed of BZip2 will most likely not be worth the slightly better compression ratio.

To use the BZip2 compression in Java, the jbzip2 compression/decompression library [9]
can be used or the Apache CBZip2InputStream/CBZip20utputStream classes.
The first library is a pure Java implementation, and thus more portable than the Apache classes,
which rely on native libraries. The Author furthermore claims that jbzip?2 is typically 5% to
10% faster than the native implementation.

For the Snappy compression algorithm, there is an implementation inside the Hadoop IO
Compression library, which is part of the common library package of the Apache Hadoop
framework. It uses a lot of native code and has dependencies to environment-specific memory
management hacks which abuse exposed methods in earlier versions of the Java Runtime
Environment. Another implementation of the Snappy algorithm [34], written in pure Java also
uses the UnsafeMemory functionality and inherits classes from the Hadoop framework, but

the use of UnsafeMemory can be easily stripped by removing a few files from the source.
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Jpeg-LS

Jpeg-LS, not to be confused with “JPEG Lossless” is a lossless image compression format
capable of compressing 16 bits per channel images. It uses a predictor and context modeler
for gradients and run length encoding for flat regions (see Fig. 3.8). It is based on the LOCO-I
algorithm developed at Hewlett-Packard Laboratories, and a thorough description of this
format has been made [27]. Performance measurements have been performed with software

and hardware implementations [30].

context
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Figure 3.8: A casual template and a basic block diagram for Jpeg-LS. [27]

CharLS [7] is a library that compresses images using Jpeg-LS lossless compression format.
It supports up to 16 bit per color channel and also grayscale images. In comparison to JPEG
2000 it is claimed to be about 3 times faster. The CharLS library offers 6 customizable constants,
namely allowedLossyError, MAXVAL, T1, T2, T3 and RESET. Experiments, where
these values are changed have shown that the compression ratio can be improved by carefully
selecting these values [27]. In this library, changing al lowedLossyError to a non-zero

value has an unexpected result that will be discussed in Sec. 6.3.

BPG

BPG is a lossy image compression format [1], and is based on the Intra-Frame encoding of the
HEVC (High Efficiency Video Coding) video compression standard, also known as H.265, and
capable of compressing 14 bits per channel images. As 14 bits equal 16384, and depth pixels
are measured in millimeters, the maximum distance is reduced from over 65 meters down to
little more than 16 meters, which is more than needed for hand gesture recognition. However,

the special 0.1mm mode of the Structure sensor, which increases the maximum accuracy for
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near objects to 0.5mm, reduces the maximum distance to 6.5 meters at 16 bits and 1.6 meters at
14 bits, which will constrain the ability to scan the surrounding environment.

BPG is also dependent on many libraries, namely the x265 library and the JCTVC reference
encoder, which makes it difficult to compile with unusual build environments. Only if the
JCTVC encoder is used, BPG can use bit depths higher than 8 bits per channel. The JCTVC
reference encoder is even more difficult to compile, as it has many dependencies to other
libraries. The build script obtainable from the BPG developer uses path rewrites, which are

neither supported by the Android NDK toolchain nor by the gradle scripts.

PNG and TIFF

The PNG and TIFF formats also allow encoding images with 16 bits per color channel. The
compression rate of PNG is very low in this case, and almost no compression is noticeable when
the TIFF format is used. The ImageIO classes from Java support 16-bit PNG images if the
user happens to have the Java Advanced Imaging API installed on his computer. This API
only exists for 32-bit Windows and a couple of other operating systems and is closed-source,
so it won’t work on many newer systems. Its native code was created at times when Java was
still developed by Sun Microsystems, Windows ran on a 32-bit architecture and Android was

not known as an operating system at all.

3.5 Conclusion

It has been shown that Android-based software for streaming depth information from depth
sensors are currently not available. Although works and methods exist for point cloud com-
pression, currently there is no method suitable for mobile devices. OpenNI developers have
recommended to delay the calculation of point clouds as long as possible. For the scope of
this work, using a two-stage architecture for the distribution of point cloud data acquired
from a depth sensor connected to an Android device is the most promising: Depth images are
streamed over the network to a stationary device, and then redistributed as a point cloud. The
point cloud generation will thus be performed on a powerful computer, and the efficiency of
the depth image streaming is focused on in the course of this work.

From the algorithms introduced, the following will be examined in this work: Jpeg-LS,
Deflate, BZip2 and Snappy. PNG support can be used on systems running on a 32-bit Windows
environment. The Deflate, Bz2 and snappy compression algorithms can run in pure Java and
for Jpeg-LS and BPG, a C library is available. Due to the unsatisfiable requirements of the build

environment, BPG is passed on in this work.
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4 Requirements Analysis

In Sec. 2, two major subsystems with roles have been introduced: The mobile Android device
and the stationary system. Based on a preliminary decision, different requirements for the
different subsystems are as follows. They are divided into functional requirements for mo-
bile and stationary systems respectively, and non-functional requirements. If the scope of a

requirement is not further specified, it applies to both systems.

4.1 Functional requirements

+ The mobile application has to establish a connection to the depth sensor.

« To reduce the required bandwidth on the wireless transmission, the system should be

able to compress depth frames using different algorithms.

+ To compare the quality of the compression algorithms and the uncompressed transmis-
sion among each other, the system shall show the speed of the transmission and the

required bandwidth.

+ To get a good estimation for the cost of depth image pre-processing, a depth image

viewer similar to the NIViewer from earlier OpenNI packages should be developed.

4.2 Non-functional requirements

Configuration: Configuration settings such as IP addresses, sensor parameters and compres-
sion mode should be easy to change. At runtime, the application shall choose the desired

quality when acquiring depth frames from the sensor.

Maintainability: The system shall have low complexity. By having the exact same architec-
ture both on the stationary system and on the Android device can reduce the complexity
of the system and thereby improve the maintainability. For example, both systems
acquire information, compress or decompress it and then transfer, visualize or process it

directly.
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Openness: Choosing an open architecture is preferred, as this will allow the architecture
to be used as an extension to existing frameworks, e.g. a gesture recognition software.
Extending to an existing architecture requires an open architecture in order to access

data streams by the recognition algorithms, by means of open interfaces.

Performance: A low latency, a high resolution and a high frame rate is desirable, as all of this
improves the quality of the data required by the recognition algorithms. A low latency

will help responding to and reacting on gestures sooner.

Reporting: Transmission speed, such as the average bandwidth and frame rate shall be
displayed on both devices. Automatic measurements shall be performed to determine
the achieved frame rate, compression ratio and bandwidth usage. Latency however
will be extremely hard to measure, because independent systems will have different
clocks. A separate physical device, like a stopwatch, is required to perform the latency

measurement.
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5 Design and Implementation

This section introduces the system design and facilitates the implementation by a thorough
specification. As has been pointed out in Sec. 2, the architecture has (at least) two independent
systems that are connected over a wireless network.

Sec. 5.1 details the system architecture already introduced in Sec. 2. Sec. 5.2 provides the
ways, how each system’s configuration can be set up by the user. Sec. 5.3 continues with
the architectural patterns used in this software architecture, namely the Source-sink concept,
the Strategy pattern and the Factory pattern. Class diagrams, interfaces and characteristics
of each implementation are specified in Sec. 5.5. Sec. 5.6 describes necessary changes to the
development environment and the OpenNI2 framework to allow accessing the Structure sensor

from an Android device. Finally, Sec. 5.7 reviews this section.

5.1 System Architecture

To describe the system architecture, the hardware schematic sketch is shown again in Fig. 5.1
to logically illustrate the whole chain from the depth sensor to the interface for detection
algorithms. Two separate systems, one being the mobile device and one being the stationary

system, are processing the depth data.
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Figure 5.1: A schematic of the mobile device and the stationary system. (a) Structure sensor,
(b) typical raw depth image, (c) android device, (d) wireless transmission, (e) stationary system,

(f) an artistic depiction of a hand in a point cloud. The hand is shown as a polygon mesh.

The mobile device is in charge of accessing the depth sensor and acquiring individual
depth frames. It compresses them, depending on the configuration, and transfers them over a
wireless network. To interact with the depth sensor, the OpenNI2 framework will be used. To
compress the depth data, compression algorithms will be included and used. To transfer the
data, another module is required that delivers the frames to a stationary system. For the sake of
reliably, a TCP connection is chosen over UDP, because the frame sizes are assumed to be larger
than the maximum transmission unit of most network connections, and using TCP is assumed
to be less complex than reinventing the wheel using a custom streaming implementation. A
network operator may automatically assign IP addresses to all connected devices which makes
it necessary to configure the systems to allow finding each other on a network. Thus, the last
module required is a graphical interface for user interaction, which is detailed in the following
section. All these modules will be packaged together into an Android application.

The stationary system is in charge of receiving the depth frames from the network. It
decompresses them and offers them to consumers for further processing. To receive the frames,
a module is required that establishes a TCP connection with the mobile device and receive the
compressed frame data. To decompress the data, the same compression algorithm is needed
that has been used for compression. To allow further processing, an interface is required that
recognition algorithms can use. A helpful addition is a window that serves as a visual feedback
for the transferred data, which is detailed in one of the following sections. All these modules

will be packaged together into a single software.
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5.2 Configurability of the whole system

Each of the system has to be individually configured, to take on the correct role in the chain.
The configuration will cover what is used by each system to acquire depth data, how it is
processed and where it goes after it has been processed. This also includes hostnames, network
ports, sensor parameters such as the resolution and field of view, frame and stream information.

In an Android system, the PreferenceActivity allows for much of the required functionality.
It has number, text, checkboxes and drop down selections, which are suitable for e.g. screen
resolution, hostnames, enabling or disabling features and selecting out of a list of available
algorithms. Fig. 5.2 is an example of a PreferenceActivity to change settings before starting the

transmission by a mobile device.

Frame width: [ 640 pixels |J

Frame height: | 480 pixels

Sensor type: | Depth sensor

Sensor mode: ®) 1mm resolution 100pm resolution
Sensor fps: @: 30fps
BRGEEE YouriPaddess: 19216801

i

Figure 5.2: A mockup of the PreferenceActivity that will be used to change settings on an

Android device.

On a stationary system however, many more possible solutions exist that avoid recompiling
the program from source code. A configuration file can be edited much more easily on a
stationary system than on a mobile device. Parameters can also be given on startup or using a
startup script. A configuration window, much like the PreferenceActivity on Android can be
used.

This work focuses on the open architecture concept, that when actually feeding a real hand-
tracking algorithm to the streaming architecture, a lightweight loader may provide different
configurations on the fly. It is sufficient to include a simple loader that provides a configuration
for testing purposes, and replace it with a different loader when including it in a hand-tracking

solution.
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5.3 Architectural patterns

Architectural patterns have proven themselves as guidelines for a good system design. To
satisfy the non-functional requirements from Sec. 4.2, three commonly used design patterns,
namely the Source-sink concept, the Strategy pattern and the Factory pattern are used in this

software architecture. In the following, each of them will be introduced in more detail.

5.3.1 Source-sink concept

The source-sink concept shown in Fig. 5.3 is frequently used during the encoding or decoding
of video streams. In such context, the source is a provider of information (a camera, a network
stream or a recorded file), the sink is a receiver of information (a television, a network uplink
or recording into a file) and a filter usually applies transformations (change resolution, change

color space, compress or decompress).

Figure 5.3: The source-sink concept. The data comes from the “source”, is transformed in the

“codec” and ultimately sent to the “sink”.

Here, the source is “something that obtains an image”, the codec, a special filter with the
transformations encode’ and decode’ is “something that reads the image and creates a modified
version, and the sink is “something that delivers an image”. This concept proves useful for two

reasons:

1. By enforcing clear, slim interfaces, especially for the data transfer, any of the three
components can be substituted without any needs to handle extra interoperability cases
in the other components. As a consequence, the handling of optional information and
metadata such as frame id and sensor parameters must be realized by other functionality
(see Sec. 5.2).

2. By using an abstract pattern, the implementation of every component can be adjusted

depending on the designated runtime environment.

As Fig. 5.4 demonstrates, choosing different implementations for modules that obtain im-

ages, both systems, the mobile and the stationary system, can be configured using the same
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architecture and concepts. To ease development, it is feasible to also include modules that
replace complex processes with simpler ones that don’t fit the whole scenario. As an example,
an access component for the depth sensor can be replaced by a component that does nothing

else than returning a static, procedurally generated test image over and over.

(%]
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Source Codec

Mobile device:

Depth \ CharlLS Co mpres
Sensor (encode) sed dat

Stationary system:#

= ER<E)
Ao |
RN RN

Figure 5.4: An example implementation of the source-sink concept with specific components.
An Android device is compressing images, a stationary system is decompressing images, using

the same workflow.

5.3.2 Strategy pattern

The strategy pattern defines a family of substitutable algorithms that implement the same
interface. It also eliminates control structures in the main program and uses the application
context in order to select the right implementation. By applying this pattern to the source-sink
concept, the main program only works with the interface and the implementations can be easily
substituted. The actual algorithms behind them, including initialization and configuration are

hidden inside multiple implementations that can be chosen from.

5.3.3 Factory pattern

The factory pattern is used to retrieve the required implementation of an algorithm dynami-
cally at runtime. A set of concrete factories are available to instantiate the required classes on
demand. They can also abstract the way components need to be configured. Different runtime
environments can have different sets of factories to choose from. Fig. 5.5 shows a typical
application of the strategy and the factory pattern using the CharLS codec as an example

implementation.
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This solution would increase the class count significantly and make the code less maintain-

able. Therefore, this work uses a modified variation of the factory pattern:

« The factory is changed from an interface to an abstract class with the two static methods

getFactory(String) and addFactory.

« All available factories are constructed and added using the new static methods at start

of the program.

« Factories available on a specific platform are implemented as anonymous inner classes

in static code.

With this modification, factories are identified and selected by a simple String value in the

configuration.
Main
Main(Config
<<Schnittstelle>> <<Schnittstelle>>
CodecFactory Codec
+getCodec(Config) : Codec +encode(ByteBuffer, ByteBuffer, int) : int

A +decode(ByteBuffer, int, ByteBuffer, int)
|
| B
| |

CharLSCodecFactory CharlLSCodec

— <<creates>>>>

+encode(ByteBuffer, ByteBuffer, int) : int

+getCodec(Config) : Codec
+decode(ByteBuffer, int, ByteBuffer, int)

Figure 5.5: The method getCodec on the CodecFactory interface returns objects of
type Codec. What implementation of Codec is returned depends on which implementation

of CodecFactory is handling the method call.

5.4 Program flow

The simplest program flow that successfully encodes (or decodes) a stream of depth frames is

shown in Fig. 5.6. After initializing the source and sink, it enters an endless loop to retrieve,
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encode and deliver one frame after another. While it serves well as a first prototype, it needs
to be modified significantly to take advantage of pipeline parallelization by means of multi-

threading.

Program flow

Initialization Processing

- Initialize Fetch image Encode / Deliver image
Initialize sink .
source from source Decode to sink
7'y

Figure 5.6: The program flow separated into five steps. Note the repetition after the last step.

5.4.1 Multi-threading

Multi-threading has an advantage of increasing the throughput and thus the frame rate limit a
compression algorithm may enforce, by encoding several frames at the same time. However,
this can also increase the average processing time for each single frame and thus the latency.
The more worker threads in use, the more frames can simultaneously stay in the encoding
or decoding chain before a new frame is read from the sensor, under the assumption that the
worker threads run much slower than the time it takes until a new frame is acquired. The
number of worker threads should thus be configurable.

In a thread pool pattern, every thread can request the next task from the task queue,

process it and request the next task from the queue (see Fig. 5.7).

Task Queue

H((((Wo »O l
ThreadPool O O O "—::. O O

Completed Tasks |

~[([([@@@@@@O «— O «

Figure 5.7: A sample thread pool (green boxes) with waiting tasks (blue) and completed tasks

(yellow).
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The thread pool pattern is very favorable, but its conventional implementation has a lot of
drawbacks. To use this concept for time-critical processing of a large bulk of data, modifications

have to be made:

Fixed number of threads

Typical thread pools can add and remove worker threads dynamically on demand. Here, the

amount of threads is fixed to prevent creating and destroying resources unnecessarily.

Task objects and queues

Typical thread pools work with a queue of unfinished task objects. This would mean that
frames are automatically pulled from the sensor and task objects are put into the task queue
containing the frames in memory buffers. This is disadvantageous because it increases the
latency with every single frame waiting in the queue. Also, a task object would cause typical
overheads of creating and throwing away objects and memory buffers.

The solution to this is not having any task objects and queues at all. Each thread gets
assigned independent resources and memory buffers and recycles them after each completed
“task”.

Instead of task objects, the threads access the source directly to acquire a new depth frame.
The task as such exists only as a frame inside the memory buffer. After finishing the processing,

the threads deliver the processed frames to the sink and obtains the next frame.

Keeping frame order

The solution must ensure that the frame order won’t be changed. Processed frames should be
delivered to the sink in the same order they were obtained from the source.

The order in which the threads access the sensor is predictable. To ensure that the worker
threads don’t fight over the next available depth frame, they will take turns at accessing the
depth sensor. The threads will also have to wait until they can deliver processed frames to the
sink and synchronization becomes necessary. By knowing the order in which threads access

the source and requesting their delivery in the same order, it won’t be changed.

Synchronization

A scheduler determines when a thread may be allowed to read the depth frame. It gets notified
by the worker thread that the read has completed and lets the next thread access the depth
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sensor. The threads are also scheduled in a predictable order, to allow sorting the processed
frames without looking up frame IDs in a list.

After a worker thread has read an image from the depth sensor, the compression algorithm
is starting its work, after which the thread pauses until the processed frame may be delivered.

A delivery thread knows the predictable order in which the processed frames have to be
received from the threads and arranges them in the correct order. The delivery thread notifies
the sink that a new frame has been processed. Only after the sink has finished accessing
the result, the worker thread may start from the beginning, otherwise the memory area may
be overwritten with the next frame data while the sink is reading it. The advantage of this
restriction is that both the source and the sink can reference the same memory mapped area
designated for a worker thread and do not need to copy the binary data at all.

Java uses synchronized objects to acquire locks and concurrency utilities to accomplish the
aforementioned constraints. To run the thread pool, the scheduler, the delivery chain and the
worker threads are initialized and started. The new program flow is outlined in Fig. 5.8. The
number of synchronization points is higher than in conventional thread pools that potentially
shuffle the frame order.

The five synchronization points are:

The scheduler waits for the next worker to become ready

« The worker waits for the scheduler to send a start signal

The scheduler waits for the worker to obtain a frame
+ The delivery waits for the worker to complete processing

« The worker waits for the delivery to complete the delivery
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Scheduler
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Figure 5.8: The scheduler and delivery thread synchronize the worker’s access to the source
and sink. The upper hexagon of the worker thread causes an iteration of the scheduler, and

the lower hexagon causes an iteration of the delivery.

5.5 Class diagram

The design consists of 5 classes controlling and coordinating the whole process and paralleliza-
tion. The factory pattern requires two classes for each factory, and another two classes for
each implementation. Counting all of them, their helper classes and a few other exceptions,
39 classes are required on Android and 48 classes for the stationary system as it has access to

more encoders. The Android user interfaces uses 5 classes for the setup, while the stationary
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system needs only a single one. That being said, the stationary system appears to be slightly
more complex having 54 classes in total compared to the 49 classes on Android. Thus, three
major parts of the solution are visualized in each of the class diagrams.

Sec. 5.5.1 describes all interfaces needed by the main class during the processing. Sec. 5.5.2
includes every factory and implementation, which are used by the main class during the
initialization. Sec. 5.5.3 outlines the additional classes needed on an Android device. Finally,

the NIViewer is described in Sec. 5.5.4.

5.5.1 Main routine and parallelization

Fig. 5.9 contains all the classes needed by the Main routine, except the factories used to initialize

the source, codec and sink, which follow in Sec. 5.5.2.

77777 _

+String source, compression, sink
+boolean compress, decompress
+String sourceUrl, sinkUrl

-Config config
-Source source
-Codec codec

+int sourcePort, sinkPort, threads <<774777> -Sink sink

+shortx, y -ArrayList<CompressionWorker>
+byte depth, mode, fps -Thread schedulerThread

+int frameld -Thread deliveryThread

+Main(Config config)

+boolean sinkControlled, benchmark
+boolean debug, condition

|
|
|
|
+float fovX, fovY |
|
|
|
|

CompressionWorker : Thread = Skl Delivery : Thread

****** <<Schnittstelle>>
Sink

+initialize(Config)
+writelmage(Config, ByteBuffer, int) :
boolean

Scheduler : Thread

-ByteBuffer sourceBuffer
-ByteBuffer compressedBuffer
-boolean canStart

-boolean obtained

-boolean complete

-boolean canReset

-Object startLock

-Object obtainLock

-Object completeLock

-Object resetLock

<<Schnittstelle>>
Source -

+readlmage(Config, ByteBuffer) : boolean

+reset()

<<Schnittstelle>>

Codec

+encode(ByteBuffer, ByteBuffer, int) : int
+decode(ByteBuffer, int, ByteBuffer, int)

Figure 5.9: A class diagram that contains the classes responsible for the Main routine and

parallelization.
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Config

This class contains all the settings required to change the sensor parameters, network addresses
or compression algorithms (cf. Sec. 5.2). Some fields can be changed during runtime by the
source and sink (e.g. fov, the field of view, which is required to calculate point clouds,
and the frameId, which is necessary to be updated independent to the return values of
readImage). The flag sinkControlled will also change the initialization order; if
enabled and TCP is used as a sink, the TCP server (a concrete implementation of sink) retrieves
the desired resolution and other parameters from the first connecting client before the source
is initialized. Finally, the condition flag helps the CompressionWorker understand
why no new depth frame can be obtained. If vital components fail, or the user wants to stop

the processing, the flag is changed to let the workers interrupt naturally.

Main

The Main class has a Main method that initializes all the threads mentioned in Sec. 5.4. It
holds copies of all the other classes shown in the diagram, and because the Threads are inner

member classes, they can access them as desired.

Scheduler, CompressionWorker, Delivery

Scheduler andDelivery change status flags and locks on the CompressionWorker,
and CompressionWorker only needs the references to the interface implementations of
the source, codec and sink, and the Config instance. The detailed program flow of these

threads has already been explained in Sec. 5.4.

5.5.2 Source-sink concept and its factories

The class diagram in Fig. 5.10 shows the factories and their interfaces, and how they are
used by the Main routine. The following subsections will detail the behavior of these classes
and describe concrete implementations of each interface. The factory pattern is outlined in
Sec. 5.3.3. Exceptions and extensions of them are described in the following subsections.
Each abstract factory contains static code that instantiates all the available factories, and
adds them to a list with a call of addFactory. A certain factory implementation can be
obtained by calling getFactory (String). External libraries can add their own factory
implementations to extend the available sources, codecs and sinks in this application, without

needing to change any of the original source code.
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Hereinafter, the factories and interfaces are described (blue boxes in the diagram), and their
respective implementations contained in this solution for different source, codec and sink types

(green annotations in the diagram).

Main(Config

SourceFactory CodecFactory
+getFactory(String) : SourceFactory +getFactory(String) : CodecFactory +getFactory(String) : SinkFactory
+addFactory(SourceFactory +addFactory(CodecFactory +addFactory(SinkFactory!
+getName() : string +getName() : String +getName() : String
+startSource(Config) +getCodec(Config) : Codec +getSink(Config) : Sink

+stopSource(Config)
+getSource() : Source
|

|
|
|
1
Initializing sources is complex. }
Factorylmpl sets up all parameters }
from Config for SoC. Factorylmpl L
acts as a responsible controller \L

|
|
|
|
|
|
|
|
|
|

<<Schnittstelle>> <<Schnittstelle>>
Source Codec
+readlmage(Config, ByteBuffer) : boolean +encode(ByteBuffer, ByteBuffer, int) : int +initialize (Config)
+decode(ByteBuffer, int, ByteBuffer, int) +condition(Config) : Boolean
+writelmage(Config, ByteBuffer, int) :

q boolean
Implementations:

Test image (TestSource)
RAW image (RawFileSource)

Implementations:
Clone (ByteCloneCodec)
Copy (ByteCopyCodec)
Bz2 (Bz2Codec)

Implementations:

PNG16 image (PngFileSource) TCP stream (TCPSink)

ONI record (OniFileSource)
ONI stream (OniStreamSource)
TCP stream (TCPSource)

CharLS (CharLSCodec)
Deflate (DeflateCodec)
JpegLS (JpegLSCodec)
PNG (PNGCodec) Clone & Copy are for debugging purposes. Window
Snappy (SnappyCodec) only works on desktop Java with AWT support.

Window (WindowSink)
Point Cloud (WorldCalculatorSink)

Examples written in italic only work on
Win32, Linux32 or Linux64 systems

Figure 5.10: A class diagram that focuses on the factories and the various implementations of

the source-sink concept.

SourceFactory

Each SourceFactory implementation is responsible for initializing and finalizing the resources
of its respective Source implementation. This practice allows the factories to read the Config
class and translate the initialization parameters to those needed by the sources. Some sources
are more complex to initialize than others. The OniStreamSource requires access to
the depth sensor, and a reference to the current activity is needed on Android platforms (see
Sec. 5.5.3). Obtaining this reference has to be done in the factory. If the Test Source is used,

which creates a procedurally generated test image, it doesn’t need any initialization.
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Source

Source offers the method readImage that inserts new data into the ByteBuffer. Addi-
tionally, it may update fields on the Config, such as the frameId. It can also change the
condition flag to gracefully shut down the application if the pipe to the device or remote
system is broken.

The solution contains implementations for different source types, if they are available for

the designated environment. They are described in the following:

TestSource

The TestSource generates images procedurally, as shown in Fig. 5.11. The gradients are
useful to test the brightness clipping feature for the AWT window: if the white cut-off value

is set low enough, the black horizontal lines turn into gradients. It is the first source to be

implemented to test how Java code works with ByteBuffers.

Figure 5.11: The 16-bit grayscale test image contains randomly colored squares and three
different gradients. The black horizontal lines are incrementing the intensity one unit per pixel,

which can hardly be seen on regular screens.

RawFileSource

The RawFileSource accesses a file in the local file system and reads it into the Byte-
Buffer. As an uncompressed depth frame is a 16-bit grayscale image, the file must have

twice as many bytes as it has pixels.
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PngFileSource

The PngFileSource also accesses a file in the local file system, but calls the ImageIO
classes from Java and then accesses its raster to acquire the raw image. In this context, a
16-bit grayscale PNG is the easiest file type to deal with, if the user happens to have the Java
Advanced Imaging API installed on his computer. Consult Sec. 3.4.2: PNG and TIFF for more
details about the JAI APIL

OniFileSource and OniStreamSource

The OniFileSource initializes the OpenNI2 library using a local file path as the sensor
device. This plays back a previously recorded OpenNI2 file. The default setting is to not skip
any frames and repeat the sequence after the end of the recording has been reached. The
OniStreamSource also initializes the OpenNI2 library, but chooses a connected sensor
instead.

After the initialization, the desired stream type is chosen and physical parameters of the
sensor such as the field of view is stored in the Config class. Reading an image from the
OpenNI2 library is followed by an immediate release of the memory mapped framebuffer, to

prevent leaking memory over time.

TCPSource

The TCPSource creates a TCP client using the SocketChannel from Java’s NIO library.
Choosing this over more usual classes for TCP connections has an important advantage, when
reading and writing data from and to memory-mapped buffers. It is harder to interleave
different types of data structures, so this implementation reads a 8-byte header first and then
reads the exact amount of bytes specified in the header packet. The frame size and frame Id
exactly occupy these 8 bytes, so to transfer other information such as the sensor parameters
required for the point cloud generation, a special condition distinguishes this from an extended
header type consisting of three stacked headers.

The implementation does not need to be thread safe (i.e. protect the header from being
overwritten by another parallel call), because only one thread is allowed to access the source
at any time.

On initialization, TCPSource also sends configuration parameters to the remote server.
If the server reads them, it may change some settings such as the desired resolution. If both

systems have different resolutions configured and the TCP server has the flag sinkCon-
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trolledsetinits Config (see Sec.5.5.1: Config), its configuration gets overwritten before
any memory buffer is initialized to a potentially undesirable size.

Fig. 5.12 plots the three types of data being transferred.

Typical frame Sensor parameters Request header
int frameSize int0 1| depth fps| mode
int frameld short x shorty short x shorty
float fov_x
float fov_y
Raw frame data
fpslmodel depthl pad
int padding

Figure 5.12: Each row in a stack equals 4 bytes. The first two stacks are the communication

from the server to the TCPClient, the third stack is the communication in reverse direction.

CodecFactory

The CodecFactory uses information about the resolution from the Config class, to configure

the constructed codecs if necessary.

Codec

The codec supplies two methods, encode ( ByteBuffer compressedData, Byte-
BufferuncompressedData, int uncompressedLength) anddecode ( Byte-
BufferuncompressedData, int uncompressedLength, ByteBuffer com-
pressedData, int compressedLength). The compressedLength may never
exceed the uncompressedLength, because every ByteBuffer always has the size of
an uncompressed image.

Some codecs actually need to know the dimensions of the image to initialize additional
memory buffers or to set up encoding parameters or metadata. Thus, a subset of codecs inherit
a constructor from AbstractCodec to set up the width and height.

The solution contains implementations for different codec types, if they are available for the

designated environment. They are described in the following:
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ByteCloneCodec and ByteCopyCodec

These two codecs copy the data from a source buffer into a compressed buffer using two
different ways. If the buffers are not both initialized as MappedByteBuffers, Byte-
CloneCodec will fail, indicating that other codecs are also likely to fail, while Byt eCopy-
Codec will not. They are used for debugging purposes.

PNGCodec

PNGCodec internally works by creating a Buf feredImage, updating its raster and en-
coding them using the same libraries as in Sec. 5.5.2: PngFileSource. Decoding uses the same
steps as opening and reading a PNG file. ImageIO is designed to work with binary input and
output streams for files on a local file system. To allow ImageIO use the ByteBufferasa
data source for compressed data, two additional classes, the ByteBufferBackedInput-
Stream and ByteBufferBackedOutputStream are used. Although this solution
might be less efficient than a direct access, as it actually copies chunks of the memory area
into the Java heap, it was better than adopting a two-pronged strategy using different types of
the ByteBuf fer for special codecs. The availability of PNGCodec is limited to the same

conditions mentioned in Sec. 5.5.2: PngFileSource.

JpegLSCodec

JpegLSCodec also works with the same libraries mentioned in Sec. 5.5.2: PngFileSource.
Its internal logic is only slightly different to the PNGCodec. In order to write the com-
pressed data into a stream, a custom ImageWriter or ImageReader is used from the
CLibJPEGImageWriterSpi or CLIibJPEGImageReaderSpi obtained by the na-
tive extensions of Java Image I0, which is also only available under the conditions mentioned

in Sec. 5.5.2: PngFileSource.

Bz2Codec and DeflateCodec

These two classes implement the Deflate and the BZip2 compression algorithms men-
tioned in Sec. 3.4.2, using implementations of the InputStream and OutputStream.
The InflaterInputStreamand InflaterOutputStreamusedfortheDeflate-
Codec are part of the Java Runtime Environment. The BZip2 implementation uses the
JBzip?2 library hosted on Google Code.

Both compression algorithms allow compression levels to be set. To ease working with these

codecs, DeflateCodec has three factories, initializing the codec with the compression
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levels 2, 5 and 9, and Bz2Codec has two factories for the compression levels 1 and 9. Using
very low levels for Deflate such as 0 or 1 is not recommended, because the compressed frame

size might be larger than the uncompressed frame size, which results in a runtime exception.

CharLSCodec

The CharLSCodec class is surprisingly simple: It loads the 1ibCharLS native extension,
defines a native interface for function calls and - because they look similar to the method
signatures in the Codec interface - require only a few lines of code: call the native code with
the two ByteBuffers.

The Jpeg-LS compression algorithm allows six values to be configured, the allowed-
LossyError, MAXVAL, T1, T2, T3 and RESET constants. More information about this
algorithm and its constants can be found in Sec. 3.4.2: Jpeg-LS.

SnappyCodec

The Snappy encoder used in this work is inherited from classes of the Hadoop framework,
and has been introduced in Sec. 3.4.2: Generic compression algorithms. Getting the Hadoop
framework compile on Android is a bit harder, because many classes must be carefully stripped
or rewritten, due to missing classes or changed interfaces in the Android libraries, but it is
worthwhile, because nothing else will have to be changed between these environments.

The Java implementation of the Snappy compressor can only work with Java byte arrays. It
appears reasonable to prevent creating and garbage collecting these byte arrays in conversion,
so another Java class, the SnappyStore is necessary. It handles a list of references to Byte

arrays, tracks their usage and recycles them.

SinkFactory

Calling getSink on the SinkFactory initializes the sink and sets up default parame-
ters for them, similar to the SourceFactory. However, no start and stop calls are

necessary here.

Sink

The sink offers the initialize method, which may modify parameters in the Config
class, or even block the program execution, see Sec. 5.5.1: Config for more details. The
writeImage method receives an additional integer, which is the frameId of the
frame that has been obtained by the CompressionWorker.
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The solution contains implementations for different sink types, if they are available for the

designated environment. They are described in the following:

TCPSink

TCPSink is a very complex class, as it exposes a listening server that allows multiple con-
nections. It uses a ServerSocketChannel much like the TCPSource uses a Sock-
etChannel instead of a simple socket. Although the clients may send data in the opposite
direction (see Fig. 5.12), no thread is created for each client connection. Instead, selectors are
used that listen on and write to any client at the same time. The advantage is, that all streams
can be asynchronously accessed, which is not possible without using them, and information
can be sent to multiple clients at once. However, allowing multiple physically separated clients
connect to the mobile device was not the target of this work, so multi-threading is not required
inside this implementation.
The TCPSink can:

» Receive command headers sent from the connecting client
+ Write extended headers containing all the sensor parameters to the client

« Stream the contents of a mapped memory area to the client

WindowSink

wWindowSinKk creates an AWT window displaying the depth frame as a grayscale image
on the screen, as shown in Fig. 5.13. To render more details visible, the black and white
cut-off values can be changed by sliders, and the intermediate values are mapped onto the
256 grayscale values available on a typical computer screen. The AWT window’s title can be
used to show debug information such as the achieved frame rate or compression ratio, but
this requires the Main class to know about the internal function calls necessary. The Android
implementation doesn’t contain a WindowSink, because the AWT stack is missing in the

Java Runtime Environment.
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Black value: 13849 White value: 65535

—

2
(] 13000 26000 35000 52000 0 0 12000 26000 33000 S2000 5000

Figure 5.13: A depth image rendered in a window.

WorldCalculatorSink

The WorldCalculatorSink is an example implementation using reverse-engineered
information about how the point cloud calculation works on the USB drivers involved in the
OpenNI framework. Using the same formula, it updates an array of floating point triples every

time writeImage is called. An inherited class may use this array to plot the environment.

5.5.3 PreferenceActivity

On an Android device, the PreferenceActivity can be used to easily change all the
configuration parameters, as has been mentioned in Sec. 5.2. “Buttons” inside this window,
which can be clicked but don’t change any setting, can also be used to display information or
to launch a background thread.

To allow accessing the USB device on an Android device, a few prerequisites have to be
made (see Fig. 5.14). A simple Java class called ExecuteAsRootBase can set up arbitrary
console commands and an inherited class will change permissions of the file system to allow C
code read and write to the file descriptors pointing at the connected USB device. A class called
OpenNIHelper from the OpenNI2 library will abstract the way requesting the hardware

access permission.
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Config PreferenceActivity OpenNIHelper
< — <cuses>>— —

+String source, compression, sink +requestDeviceOpen(String, Activity)
+boolean compress, decompress /‘\

+String sourceUrl, sinkUrl ‘ i

+int sourcePort, sinkPort, threads <<create>> Scuses>>

+shortx, y

+Hloat fovX, fovY < — <<uses>> — — —<<uses>>— =

+boolean sinkControlled, benchmark Main(Config)

+boolean debug, condition

Implementatlons

|

|

|

|

that access the }

ExecuteAsRootBase depth sensor }
+canRunRootCommands() : boolean Installation }
+execute() : boolean < R s — — — — — — — — — — — —. <<uses>>— — -

~getCommandsToExecute() ~getCommandsToExecute() :
ArrayList<String> ArrayList<String>

Figure 5.14: Class diagram showing classes required to enable the depth sensor access on an

Android device.

While these classes need a reference to the running activity, it isn’t bad to defer the root
permission and initialization as much as possible, until the device access is needed in the
Source class. Putting it into a static field of the SourceFactory will provide later access.
This also explains why the SourceFactory actually handles the initialization in 5.10.

5.5.4 NlViewer

NIViewer is an application that provides all the streams of an attached sensor and lets the
user inspect the raw, unprocessed depth images or different types of color maps. The user
may choose between different streams and add or remove them as desired (see Fig. 5.15).
Additionally, sessions can be recorded in ONI files, resolutions and sensor types can be changed
and distance can be measured. The NIViewer.java, a Java port of the NIViewer, does not have
the last two features, and both NIViewers crash or freeze after changing the resolution too

often, opening or closing streams etc.
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Agl NiViewer ADDSTREAM  START RECORDING

Sensor Type Depth 4 Video Mode 320 x 240 @ 60 FPS (1 mm) 4

Frame Index: 3.315 | Timesta mp: 58.587.307 | FPS: 39

Figure 5.15: The NIViewer for Android.

It is already an inherent part of the OpenNI2 framework and intended for testing purposes,
shows depth images of a connected sensor and allows for simple measurements. NIViewer for
Android is part of this work, because OpenNI2 has a couple of issues which prevents reliable
operation of the NIViewer and similar programs. Most of the necessary fixes in the Java code
are same to those described in Sec. 5.5.3, but the native library also requires modifications to
make it work on an Android device. Therefore, the first development should start with the
implementation of the NIViewer, because it already contains parts of the Java code required to

access the sensor.

5.6 Preparing the development environment

To use the Structure sensor on any platform, the OpenNI library is required. The binaries can
be obtained for Windows, Mac OS X and Linux, but although their developers promised to
release them for Android, the focus was kept on the development of the Structure SDK for iOS,
and further development of the OpenNI2 libraries were set aside.

The following sections describe the developing, compiling and packaging native libraries on
both the Windows and Android environment. Sec. 5.6.1 focuses on the OpenNI library and the
NIViewer, while Sec. 5.6.2 focuses on the integration of the CharLS library.

5.6.1 OpenNI and NIViewer on Android

The first application to be developed is the NIViewer (see Sec. 5.5.4), as a first attempt to

access the Structure sensor connected to an Android device. Until now, there has not been
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any Android application available to access the Structure Sensor, even though it was requested
many times by users in the Structure SDK forums. Some test code written in C was claimed
by forum users to work, albeit having some limitations that arise when running C code on
an Android operating system. Before any OpenNI-based application runs on Android, the
OpenNI2 library has to be either deployed on an Android device or packaged inside an Android
application. The first method requires root access to the Android device.

Android is a Linux-like operating system with devices accessed like ordinary files, and a
user interface that executes Java applications. It can run code written in C and compiled as a
native binary, but it can also run code written in Java. While it is commonly known that native
code runs more efficiently than Java, using Java has a lot of advantages. Everything that can
be done on Java in an Android device is less likely to break in future versions, has less issues
with compatibility, processor architecture, file structure, execution flags (which disappear after
a reboot) and permissions. Java programs are controllable by the operating system’s scheduler,
and crashes are more easy to debug. On top of that, Java is a platform used by a lot of people
who don’t want to dive too deep into the technical details of a system.

There are two ways to include the OpenNI2 Native Libraries and the Java Wrapper into the
Android application. However, until July 17th 2015, only the first one was available.

The first possibility is to obtain the OpenNI2 SDK, which can be downloaded from Occipi-
tal’s website. Since there are no binaries available for the Android operating system, they need
to be compiled from source. Compiling further requires a specific build environment which is
difficult to set up. The build script can only be run with modifications. Native libraries created
through this procedure are required to use the OpenNI2 module for the Android system. They
contain programming errors that cause memory leaks or crash during the access of image
streams.

In the trunk branch of the OpenNI2 GitHub project, several fixes have been made, but also
other changes to the build script, which requires further changes to create the updated libraries.
From both the master branch and the latest commit, a working version has been constructed.
One remaining disadvantage is, that the Eclipse Android Developer Tools are unable to include
and package the native libraries into the final application. It was necessary to root the mobile
device to store the libraries in the system directory of the device in order to load them.

With the release of the Android Studio 1.3 RC 3 by Google in July 17th 2015, a second
possibility was available to include native libraries into the application packages. Android
Studio could either compile the libraries from source for different processor platforms if they

are placed into the magic “JNTI” directory or embed the compiled library files into the package
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file if they are placed into the magic “JNI1ibs” directory. Android Studio automatically
generates a build script that is included into the build process of the application.

The required build environment of the OpenNI2 library is too complex to be adapted to the
Android Studio build process: dependencies and compilation instructions could not be parsed
correctly and caused hundreds of random build errors. Embedding the compiled libraries is thus
the only valid option. Moreover, they have to be recompiled again (using the first possibility),
because the version of the Android Native Development Kit (NDK) changed from 1.4 to 1.6,
and the current OpenNI library was incompatible to this change. A few fixes to the build script,
the JNI startup module, the Java wrapper and patches to missing functions in the clib for the
Android 5.0 build target allowed it to compile and run. In particular, Google silently changed
the core library functions called from the clib, such as atof, and the frameworks were relying
on their existence. Patching around it with a preprocessor macro helped out, without having to
modify these core libraries. Ultimately worth mentioning, the automatically generated gradle
scripts that successfully compile third party libraries do only work in Android Studio 1.3 RC 3,
when they were precisely adapted to the experimental build process introduced. The necessary
changes could only be derived from online troubleshooting websites and a few commits on
example Android projects that Google maintains to test their own build environment.

After all these modifications have been made, the OpenNI2 native libraries seem to work
flawlessly. Moreover, many problems such as the aforementioned spontaneous freezes or
crashes that happened on a Windows system were fixed by these patches. A simple Java-based
NIViewer application for Android could be compiled and shows that sometimes even a high
frame rate of 40 fps was achieved on a mobile device after closing and reopening the application
or closing and reopening streams multiple times, as they seem to have an impact on the frame

rate.

5.6.2 NI port for CharLS

As described in Sec. 3, only a certain group of compression algorithms are suitable to compress
depth images. Compression algorithm libraries that are written in C or C++ need to be extended
by an interface in order to use them in Java. None of them are available for Android in the
form of a compiled library and have to be compiled from source. This can be done either on a
Linux or a windows system, while the Linux system is less troublesome. In contrast to Linux,
Windows doesn’t integrate the required build- and development environment. As the tests
will be run on a Windows system, a build has to be created on a Windows platform anyway.

For windows, different development environment are available, such as Visual Studio,

DevCPP and CodeBlocks. Visual Studio is a commercial product and requires several gigabytes
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of disk space. DevCPP doesn’t run without errors on newer Windows versions. The easiest of
them was CodeBlocks together with the build environment “XMing-64”. Some of the XMing
versions have bugs and create a library which is not correctly recognized by the Java Native
Interface. With the preferred environment (CodeBlocks and XMing-64), the required libraries
for the compression algorithms can be created for windows, including the interface for Java.
If the compiled libraries work with Windows, the source files just need to be copied into the
Android Studio project using the magic directories, as since July 17th 2015 Android Studio can

create the required binaries without any further problems.

5.7 Conclusion

The design combines architectural patterns to achieve high efficiency and low latency by
preventing queues, as well as low complexity and good extensibility by using simple interfaces,
the source-sink concept and factories. The system has been designed that every compression
algorithm works on the same mapped memory buffer that are used for reading the depth
images from the source or used by the OpenNI library.

The factories add to the simplicity of the system configuration. Since the same architectural
patterns have been applied to both mobile and stationary system code, the major components
are implemented in the same way on both systems, which adds to the simplicity of the system
as a whole. Only minor changes to the configuration parameters allow for different testing
setups.

As aby-product of integrating the necessary libraries for reading depth data, a fully functional

and reliable implementation of the NIViewer has been developed for Android.
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The architecture can use different compression algorithms, and many more configuration
settings. The test shall discover which settings affect the performance and how. The most
important test results are the latency and frame rate. From the test results, the effectivity and
efficiency of the compression algorithms shall be deduced. Also, the effectivity of the modified
thread pool pattern shall be evaluated.

Sec. 6.1 outlines how the test is conducted. In Sec. 6.2, intermediate results are shown,
succeeded by the results of further tests conducted on the faster algorithms. In Sec. 6.3, the

results are summarized and observations of the test results are presented and discussed.

6.1 Test setup and procedure

The architecture can use different compression algorithms, and many more configuration
settings. The test shall discover which settings affect the performance and how. The most
important test results are the latency and frame rate. The test will be performed for each
compression algorithm, using 1, 2 and 4 compression threads and VGA (640x480 pixels) and
QVGA (320x240 pixels) depth frame resolution.

Before starting the test, a few modifications to the software have been made to show the
performance measurements on their respective interface. The Android device shows a few
additional lines below the start button, to display the FPS, compression rate and transmission
bandwidth. The stationary system shows the same information in the title bar of the image

viewer window.
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e

Depth sensor

High speed camera

Figure 6.1: The test setup, with the Structure sensor and a tripod-mounted high-speed camera.

To start testing, the systems are started and the camera is attached to the Android device.
The configuration settings are updated for each test scenario. Between each test, both programs
are restarted and the configuration settings are changed according to the next scenario.

The Structure sensor rests on a table pointing at a person holding a sheet of paper in his hands
(cf. Fig. 6.1). After the stream starts, the devices begin their performance measurements. As the
first measurement contains the delay of the connection setup, only the second measurement is
recorded. Each measurement runs for at least 5 seconds and at least 16 transmitted frames.

The latency will be measured after the performance measurement has been completed. A
high-speed camera recording at 240 frames per second records how the person drops the sheet
of paper. The flat panel display of the stationary system is also in its viewing angle, so the
video stream will also record when the first frame was completely transferred where the sheet
was dropped. On a computer, the recorded video is analyzed frame by frame, do determine the
frame index on the high-speed video sequence when the sheet is dropped and when the same

event is displayed on the computer screen of the stationary system.

6.2 Test Results

In the first test iteration, all implemented compression methods (No compression, CharLS,
Deflate level 9, Deflate level 5, Deflate level 2, Bz2 level 9, Bz2 level 1, Snappy) were run with

1, 2 and 4 compression threads respectively. The Structure sensor was configured to provide
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640x480 pixel depth frames at 30 fps. Tab. 6.1 shows the performance testing results of this
measurement.

Another measurement performed is the frame count deviation. This measurement deter-
mines how many frames have begun their encoding / decoding after an encoded / decoded
frame is transferred or visualized. However, on both systems, this number was always zero,

and is not shown in the following tables.

Method Frames per second || Compression ratio (%) || Bandwidth (kB/s)

Threads 1 2 4 1 2 4 1 2 4
Uncompressed 3.59 3.85 3.60 100 100 100 || 2224 | 2369 | 2214
CharLS 3.60 3.63 3.40 || 34.52 | 32.44 34.48 748 724 720

Deflate level 9 1.25| 146 | 151 811 | 832 9.31 68 74 86
Deflate level 5 596 | 635 | 5.57 9.65 | 9.20 10.34 362 | 357 | 387
Deflate level 2 || 10.59 | 10.94 | 10.91 || 12.99 | 12.15 11.92 811 | 814 | 801

Bz2 level 9 0.94 | 0.90 1.04 595 | 6.11 4.92 34 34 31
Bz2 level 1 0.61 0.59 | 0.57 7.60 | 8.80 8.80 28 32 31
Snappy 6.14 | 6.09 | 7.09 || 24.88 | 25.34 21.72 973 925 | 1027

Table 6.1: Performance results using 640x480 pixel depth frames.

Average FPS @ 640x480

Figure 6.2: Average frames per second achieved using 640x480 pixel depth frames.
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A couple of compression algorithms appear to be far too slow for a smooth stream of depth
images. The second test iteration uses only the compression methods that have achieved at
least 6 fps in the first iteration (see Fig. 6.2), compared to the uncompressed transfer. Tab. 6.2

shows the performance testing results of this measurement.

Method Frames per second || Compression ratio (%) || Bandwidth (kB/s)

Threads 1 2 4 1 2 4 1 2 4
Uncompressed || 14.53 | 15.49 | 13.37 100 100 100 || 2318 | 2488 | 2420
Deflate level 2 27.57 | 27.42 | 27.82 || 21.85 | 20.58 20.66 937 889 912
Snappy 20.41 | 19.56 | 19.07 || 26.34 | 26.74 27.82 833 820 849

Table 6.2: Performance results using 320x240 pixel depth frames.

From the compression algorithms, Deflate level 2 has achieved the highest frame rate. The
number of compression threads do not influence the compression rate, but minuscule changes
in the test chamber do. The third and last iteration was the sheet-dropping test. Fig. 6.3 shows

the test results from the latency test.

Latency measurements

800 ms B Uncompressed, 640x480, 1 thread
646 . B Uncompressed, 640x480, 4 threads
600 ms B Uncompressed, 320x240, 4 threads
475 467
Uncompressed, 320x240, 1 thread
380
400 ms
300 M Deflate level 2, 640x480, 4 threads
229 m Deflate level 2, 640x480, 1 thread
200 ms 133
m Deflate level 2, 320x240, 1 thread
. H Deflate level 2, 320x240, 4 threads
0O ms

Figure 6.3: The latency measurement results from the sheet-dropping test.

A commonly accepted and reasonable feedback delay is around 100ms. The 100ms threshold
was established over 30 years ago. See [3], [19] and [20]. A latency of 100ms and greater is
definitely perceivable, even if it’s still reasonably fast. The measurement results for the Deflate
level 2 compression are very close to this value, and a gesture recognition system with such a
low latency is considered responsive, given that the further processing doesn’t add any further

latency.
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6.3 Observations

First of all, the CharLS$ implementation of the Jpeg-LS compression algorithm is not suitable
for the productive usage. The transmission stopped randomly after about 40 transmitted frames,
and an unexpected error is thrown in the CharLS implementation code. Whether the exception
is thrown depends on the encoded image; some images cause crashes, while the majority
doesn’t. The CharLS encoding parameters have a setting for the maximum allowed error
(allowedLossyError in Sec. 5.5.2). Changing this to anything else than zero caused
the resulting decoded frame to appear as random snow. The test images generated from the
TestSource almost always crash the codec immediately, unless some carefully selected
seed values are hardcoded for the random generator filling the squares.

The highest ever achieved wireless transfer bandwidth was 2488 kBytes/s, as shown in
Tab. 6.2. The compressed transmissions did not need this amount of bandwidth. The band-
width required is the product of the compressed frame size in bytes and the frame rate. If
the compression rate is nearly constant and the maximum bandwidth was 2500 kBytes/s, a
theoretical frame rate limit can be derived. While this number can be seen as a limiting factor
for uncompressed transmission, the compression algorithms’ performance were limited by
other factors, such as the processing power.

The Bz2 compression algorithm achieves a higher compression rate using level 9 instead of
level 1. Surprisingly, the stronger compression achieved a higher frame rate.

Deflate level 2 and Snappy were the only compression algorithms fast enough to be con-
sidered in the test iteration 2, where a lower resolution was used. Surprisingly, reducing the
frame size had an impact on the compression ratio for Deflate, but not for Snappy.

Although the Galaxy Tab 2 10.1 Wi-Fi uses a 1 GHz dual-core processor, the parallelization
mentioned in Sec. 5.4 and choosing 1, 2 or 4 compression threads surprisingly did not have
any effect on the frame rate and their effects on the latency are negligible, or rather resulting
from errors or inaccuracy in measurement.

A possible explanation to this could be, that the OpenNI2 drivers run on a single thread
and use up one processor core entirely for the connection with the sensor (no matter how
many frames are obtained by the application) and leave only one core for the application.
The resulting effect is called starvation, and causes the Java application to lack effective
parallelization gains.

The best latency was achieved with the Deflate level 2 compression. This result also came
as a surprise, as the compression workflow virtually adds a very short queue of unprocessed

frames on both systems respectively, compared to the uncompressed transmission.
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An explanation to the good latency is, that the compression or obtaining of the frames is
slower than any later step. Once the frame is compressed, it is transferred over a very fast
network with enough headroom for the transmission bandwidth, and the stationary system
requires almost no time to decompress it. The TCP streams don’t queue up and the time
required for compressing and transferring a single frame is thus shorter than the time required
to transfer an uncompressed frame. Also, in an uncompressed transmission, the TCP stack may
suck in a few packets before blocking the transmission, which ultimately cause frames to be
dropped from the sensor device. A typical TCP connection can buffer 1 to 3 complete frames,
which account for the significantly higher latency, as long as the network is the slowest link in
the chain. If the frame rate of an uncompressed transmission is intentionally throttled on the

mobile device, the latency may also drop significantly.
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Figure 6.4: Average compression ratio of different codecs.

The highest compression ratio of around 5.6% was achieved by Bz2 level 9 (see Fig. 6.4).
Although its frame rate is too slow for transmission, it is very beneficial for archiving recorded
depth images on a file system.

It is very surprising that CharLS didn’t have a chance against generic stream compression
algorithms, although it should have had a better knowledge about correlations between rows.

The low latency of 133 milliseconds and the high frame rate of almost 28 frames per second
using the Deflate level 2 codec in a QVGA resolution makes it very suitable for gesture

recognition and environment detection.
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This work has proven that a fast and low-latency transmission of depth frames from a mobile
device is possible, and usable for remote processing. It has also proven that compression will
indeed increase the achievable frame rate and reduce the latency significantly. The performance
is suitable for hand detection, online 3-D reconstruction algorithms and object detection. When
the highest possible resolution is used, significantly lower frame rates have been achieved.

The result of this work is a set of working native libraries, streaming clients and servers, tools
and code that can be used by developers and users of the Structure sensor. When integrating
detection algorithms into this framework, their latency must be added to the test results. In
future, these latencies can be further reduced (see below).

For this purpose, methods for point cloud streaming were realized through a depth image
compression method tiered with an extraction of depth clouds out of depth images, were
proposed in Sec. 2.

Existing libraries to retrieve depth image data from the sensor were examined in Sec. 3. Point
cloud compression algorithms were compared with depth image compression algorithms, and
it has been shown that depth image compression algorithms are currently the only promising
practice to stream depth information efficiently and with low latency.

In Sec. 5, a comprehensive solution to stream and redistribute point clouds was presented
that fulfilled the requirements of extensibility, maintainability and performance mentioned in
Sec. 4, by using existing architectural patterns. There are numerous efficient methods to convert
depth images to point clouds. OpenNI and the point-cloud library (PCL) contain algorithms
for this purpose, the latter even contains point cloud compression algorithms. Including
these libraries is sufficient for this purpose. However, the WorldCalculatorSink (see
Sec. 5.5.2) contains a formula extracted from the OpenNI native library. Unlike the OpenNI
library, it can do the conversion remotely, without direct access to the original OpenNI device,
which would otherwise be required. This way, the mobile device is completely freed from the
task of computing point cloud data.

In future, there may exist more compression algorithms that can be examined and compared

to the ones used in this work. Bugs of the CharLS codec may be discovered and fixed. Maybe
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7 Conclusion and Perspective

the integration of the JCTVC reference encoder in Java or using hardware accelerated high bit
depth video compression codecs will become easier or suitable libraries become available for
the mobile platforms.

As hardware and software is continually evolving, modern high-end smartphones possess
stronger and stronger processing units with faster computation speeds. These, or even specially
crafted devices may be powerful enough to do more processing on the mobile device or use
higher resolutions. With this, examining point cloud processing and compression may also
become more and more important.

Mobile devices with integrated see-through displays are a global trend. If a depth sensor
is attached or integrated to a device with sufficient reserve capacity, the mobile device will
not only transmit depth images: it can in parallel be used as a screen to realize mixed reality
applications. The hand position can be determined remotely to control an application that is
rendered in 3-D on the mobile device. Such a device can then achieve capabilities otherwise

only achieved by products not yet available such as Microsoft’s HoloLens.
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