
Bachelor thesis
Björn Eberhardt

Distributed streaming and compression architecture for point
clouds from mobile devices

Fakultät Technik und Informatik
Studiendepartment Informatik

Faculty of Engineering and Computer Science
Department of Computer Science

Björn Eberhardt

Distributed streaming and compression architecture for point
clouds from mobile devices

Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung

im Studiengang Bachelor of Science Angewandte Informatik

am Department Informatik

der Fakultät Technik und Informatik

der Hochschule für Angewandte Wissenschaften Hamburg

Betreuende Prüferin: Prof. Dr. Birgit Wendholt

Zweitgutachter: Prof. Dr. Thomas Schmidt

Eingereicht am: 11. September 2015

Björn Eberhardt

Thema der Arbeit
Verteilte Streaming- und Kompressionsarchitektur für Punktwolken von mobilen Geräten

Stichworte
Punktwolkenübertragung, Tiefenbildübertragung, Übertragung, Punktwolken, Tiefenbilder,

Kompression, Datenkompression, Kompressionsalgorithmen, Performanz, Latenz, Verfahren,

Structure Sensor, drahtlos, mobil, stationär, System, Handgestenerkennung, Objekterken-

nung, auslagern, Virtuelle Realität, Gemischte Realität, Tiefensensor, Wearable, Client-Server-

Architektur, Java, Graustufenbilder, 16-bit, Schnittstellen, zeitkritisch, Android, Architektur,

Geschwindigkeit, Jpeg-LS, De�ate, BZip2, Snappy, Samsung Galaxy Tab 2, P5110, QVGA,

Benutzerinteraktion, Parallelisierung

Kurzzusammenfassung
Diese Arbeit stellt eine verteilte zweistu�ge Streaming- und Kompressionsarchitektur für Punkt-

wolken von mobilen Android-Geräten vor. Tiefenbilder eines am mobilen Gerät angeschlosse-

nen Structure-Sensors werden e�zient auf stationäre Systeme übertragen und anschließend in

Punktwolken umgewandelt und weiterverteilt. Das Verfahren eignet sich, um intensive Berech-

nungen wie Handgesten- und Objekterkennung auf leistungsfähigere Geräte auszulagern. Dies

wird zum Beispiel für Szenarien mit virtueller und gemischter Realität benötigt, da der Sensor

am Körper getragen werden kann. Es wird eine e�ziente Client-Server-Architektur in Java

vorgestellt. Die Sensordaten werden als Graustufenbilder mit 16-bit Farbtiefe übertragen. Auf

dem stationären System werden Punktwolken berechnet und über Schnittstellen weiterverteilt.

Entwurfsmuster, die sich für die Aufgabe der zeitkritischen Übertragung großer Datenmengen

eignen, werden angepasst und eingesetzt. Bisherige Lösungen boten keine zufriedenstellende

Integration in Android-Systeme. Verschiedene Datenkompressionsalgorithmen werden in

diese Architektur integriert, und die Geschwindigkeit und Latenz unter realen Bedingungen

gemessen. Verglichen wurden Jpeg-LS, De�ate, BZip2 und Snappy mit der unkomprimierten

Übertragung. Die Performanz-Messung der implementierten Verfahren hat ergeben, dass die

De�ate-Kompression bei Level 2 am Geeignetsten ist, mit einer Übertragungsrate von 28 Bil-

dern die Sekunde und einer relativ kurzen Latenz von 133ms. Damit eignet sich die vorgestellte

Lösung gut für Benutzer-Interaktion mit virtuellen Umgebungen. Schnellere Systeme oder

Weiterentwicklungen in der Kompressionstechnik können diese Werte weiter verbessern.

Björn Eberhardt

Title of the paper
Distributed streaming and compression architecture for point clouds from mobile devices

Keywords
point cloud streaming, depth image streaming, streaming, point clouds, depth images, com-

pression, data compression, compression algorithms, performance, latency, methods, Structure

sensor, transmission, wireless, mobile, stationary, system, hand gesture detection, object detec-

tion, outsource, virtual reality, mixed reality, depth sensor, wearable, client server architecture,

java, grayscale images, 16 bit, interfaces, time critical, Android, architecture, speed, Jpeg-LS,

De�ate, BZip2, Snappy, Samsung Galaxy Tab 2, P5110, QVGA, user interaction, parallelization

Abstract
This work presents a distributed two-stage streaming and compression architecture for point

clouds from mobile devices. Depth images from a Structure sensor attached to a mobile

device are transferred e�ciently to stationary systems and then converted to point clouds and

redistributed. The technique is suited for outsourcing intense computations like hand gesture

and object detection onto more powerful devices. This is for example needed for scenarios

with virtual and mixed reality, as the sensor is worn on the body. An e�cient client server

architecture in Java is introduced. The sensor data is streamed as 16-bit grayscale images. On

the stationary system, point clouds are computed and redistributed over interfaces. Design

patterns designed for the time-critical transmission of bulk data are customized and used. Prior

solutions did not o�er satisfactory integration into android systems. Various data compression

algorithms are integrated into this architecture and the speed and latency are measured under

realistic conditions. Jpeg-LS, De�ate, BZip2 and Snappy were compared to the uncompressed

transmission. Performance measurements of the implemented methods have revealed, that the

De�ate compression using Level 2 was most suitable with a transmission rate of 28 frames

per second and a relatively short latency of 133ms. The presented solution suits well for the

user interaction with virtual environments. Faster systems or further development of the

compression methods can improve these results.

iv

Contents

1 Motivation 1
1.1 Structure of the paper . 3

2 Objectives 4

3 Related Work 6
3.1 Depth sensors on mobile devices . 6

3.2 Depth image and point cloud streaming . 7

3.3 Point Cloud Compression . 7

3.3.1 Adaptive arithmetic coding for point cloud compression 7

3.3.2 Predictive Point-cloud Compression 8

3.3.3 Octree-based Point-cloud Compression 9

3.4 Depth Image Compression . 9

3.4.1 Three channel 8-bit encoding . 10

3.4.2 Frame-by-frame encoding . 12

3.5 Conclusion . 15

4 Requirements Analysis 16
4.1 Functional requirements . 16

4.2 Non-functional requirements . 16

5 Design and Implementation 18
5.1 System Architecture . 18

5.2 Con�gurability of the whole system . 20

5.3 Architectural patterns . 21

5.3.1 Source-sink concept . 21

5.3.2 Strategy pattern . 22

5.3.3 Factory pattern . 22

5.4 Program �ow . 23

5.4.1 Multi-threading . 24

5.5 Class diagram . 27

5.5.1 Main routine and parallelization . 28

5.5.2 Source-sink concept and its factories 29

5.5.3 PreferenceActivity . 37

5.5.4 NIViewer . 38

5.6 Preparing the development environment . 39

5.6.1 OpenNI and NIViewer on Android . 39

v

Contents

5.6.2 JNI port for CharLS . 41

5.7 Conclusion . 42

6 Testing 43
6.1 Test setup and procedure . 43

6.2 Test Results . 44

6.3 Observations . 47

7 Conclusion and Perspective 49

vi

List of Tables

6.1 Performance results using 640x480 pixel depth frames. 45

6.2 Performance results using 320x240 pixel depth frames. 46

vii

List of Figures

2.1 Schematic sketch of the mobile device and the stationary system 4

3.1 Sampled point cloud . 8

3.2 Plane curve . 8

3.3 Linear prediction . 9

3.4 Octree cell subdivision . 9

3.5 Three channel 8-bit encoding overview . 11

3.6 Triangle wave functions . 11

3.7 Server-client system . 13

3.8 Jpeg-LS template and block diagram . 14

5.1 Schematic sketch of the mobile device and the stationary system 19

5.2 Mockup of the PreferenceActivity . 20

5.3 The source-sink concept . 21

5.4 An example implementation of the source-sink concept 22

5.5 Factory pattern with a CodecFactory . 23

5.6 The program �ow . 24

5.7 Thread pool . 24

5.8 Scheduling multiple worker threads . 27

5.9 Class diagram for parallelization . 28

5.10 Class diagram for factories . 30

5.11 Test image . 31

5.12 TCP message layout . 33

5.13 A window showing the transferred image . 37

5.14 Class diagram for the Android environment 38

5.15 The NIViewer for Android . 39

6.1 Test room setup . 44

6.2 Average frames per second achieved using 640x480 pixel depth frames. 45

6.3 The latency measurement results from the sheet-dropping test. 46

6.4 Average compression ratio of di�erent codecs. 48

viii

1 Motivation

Mixed reality (MR) merges physical and digital objects that co-exist and interact in real time.

This is done by superimposing a virtual world over the real world using technologies such

as see-through displays, and is further described by Ohta [25]. Shatte [32] observed that this

topic has recently gained increasing popularity.

Concepts of MR are currently in use in various �elds. Coral sea [24] introduces an arti�cial

aquarium with virtual �shes that can be played with. Ricci [28] uses augmented reality (AR)

technologies and ambient intelligence technologies to create agent-based virtual environments

in a MR system. In MixFab [36], a design and manufacturing process is simulated in a MR

environment.

These �elds of application are continuing to expand because MR technologies have been

re�ned over time. MR technologies can be further classi�ed into stationary and mobile solutions.

One example for a stationary solution is Microsoft’s HoloDesk [12], which uses an optical

see-through display on top of a table where the user sees virtual content merged with the real

world. In MirageTable [2], the author projects geometrically transformed virtual imagery on a

round-shaped canvas to simulate a virtual table extending further behind.

Mobile solutions such as the Epson Moverio [8] have their see-through display built in

eyeglasses, however there are not many products at choice for now. But the ongoing develop-

ment and improvement of more advanced display techniques [16] indicates that the resultant

development in the �eld of see-through glasses or mobile MR glasses with holographic lenses

and additional functionality is far from complete. Because of this, they will become more and

more a matter of course in the near future.

A mobile see-through display implies conclusively, that the interaction with the MR environ-

ment also has to be mobile, in other words, not limited to a stationary surface of interaction.

The most natural way to interact with the MR world is by hand, e.g. grasping virtual objects

like real objects or performing gestures to manipulate them. Devices that detect this motion

create a physically accurate model of the hand in order to interpret gestures and movement

patterns.

1

1 Motivation

The “myo” armband [35] detects muscle activity and uses it to di�erentiate between a set

of basic gestures such as pointing at a screen. Data gloves accurately track the movement of

every �nger, but impede motility signi�cantly.

A visual approach to hand tracking is the use of depth sensors. The Leap Motion controller

[15] draws an infrared pattern on the skin of hands and computes a 3-D model out of depth

images. The Leap Motion SDK is available for Windows, OSX and Linux, and a port to mobile

operating systems is in early development. While this accuracy is high enough to recognize

individual �nger movements, its interaction range is limited to a maximum distance of about

60cm.

At roughly this distance, Microsoft’s Kinect starts recognizing objects in the environment.

While it can track objects much further away, its mediocre accuracy at higher distances

generates skeletons of people which are not detailed enough to register individual �ngers.

Although both Leap Motion’s and Kinect’s viewing range is very narrow, at higher distances

they perform well below the required level for small gestures. While Microsoft’s new Kinect

for XBox One uses Time-of-Flight cameras for real time depth imaging, a technique further

described by Oggier [23], the resolution is not su�cient to extract a detailed hand model with

individual �ngers at greater distances.

Depth sensors such as the aforementioned also have the advantage that they can be used

for scanning and tracking 3D objects in the environment to make the MR environment aware

of its shape and properties. To overcome the distance problem, these devices have to become

wearable. It would seem the thing to use mobile depth sensors or to integrate depth sensors in

smart glasses. Presently, the latter is not yet available on the market. Microsoft has released

a few teaser videos of its HoloLens, an all-rounder with all sorts of features embedded, on

YouTube and other websites [33] but it is still unavailable.

Occipital has recently released a mobile depth sensor, called “Structure”, which shares

similarities with the �rst Kinect, but in the size of a Leap motion device. Since it is relatively

small in size and does not require external power supply, it is a good candidate to be mounted

on virtual reality glasses and serve as a mobile source for depth information. Making a depth

sensor wearable greatly reduces the distance to the hands which allows small details [22]

and individual �ngers to be recognized. On the other hand, mobile devices like smartphones

and tablets do not have much computing power and resources, which makes it a challenge to

further process the depth data provided by the sensor locally.

The Structure sensor is shipped with the Structure SDK for iOS, and mobile applications

using this SDK are able to recognize and track objects on a table and progressively create

surface meshes. With this, iOS developers (iOS is the operating system of mobile devices from

2

1 Motivation

Apple Inc.) can create various applications using the depth information from this sensor. The

SDK calculates the most probable movements of the sensor and overlays consecutive point

clouds to determine surfaces.

Google has demonstrated in its Project Tango [10] that mobile devices are powerful enough

to measure the surrounding world and create environmental mesh-maps for indoor way�nding.

Both variants allow for augmented reality applications and scanning of real objects like the

MixFab [36], but their examples are limited to a handheld device moving through a static

world. Also, after completing a “recording” session, a �nal process further optimizes the

stored data. This allows the assumption that �nger, hand and gesture tracking, or generally,

performing calculations with the data may indeed require more advanced hardware. Project

Tango uses a specially crafted device with much more processing power than an average

mobile device. A di�erent approach is to transfer the depth images from mobile devices to a

stationary system with more computing power and throughput that can process them more

e�ciently, to overcome the limited processing power of mobile devices.

1.1 Structure of the paper

The structure of this paper is as follows. First, Sec. 2 outlines the goal of this work. In Sec. 3,

research papers and compression algorithms related to the topic are introduced. Within the

scope of this section, why depth image transmission has a higher relevance than point cloud

transmission. My search shows that there is currently no practice to stream depth images or

point clouds from mobile devices, and a streaming architecture in this form is not in existence.

Sec. 4 speci�es the functional and non-functional requirements. Sec. 5 presents the design

principles, concepts and implementation details. The main focus is put on architectural patterns

and an e�cient processing of bulk data to meet the requirements. A comparative performance

study can be found in Sec. 6, followed by a latency measurement for the best two practices.

Sec. 7 summarizes the essential results and discusses further perspectives.

3

2 Objectives

The goal of this work is to create and evaluate a mobile solution to transfer the stream of depth

images from a mobile device to a stationary system to allow further processing on a more

powerful computer. Even though processing on a mobile device with limited hardware might

be possible (see [10]), it is the task of this work to evaluate whether transferring the data to a

stationary system is practical and what quality and throughput can be achieved.

The mobile device is an Android device having an OpenNI-compatible depth sensor con-

nected, such as the aforementioned “Structure” sensor. In a mixed reality interaction scenario,

this android device could be part of a mixed reality interface with a depth sensor attached to it.

To preserve the freedom of movement of the user, the transmission shall be over a wireless

network. From these requirements, the Samsung Galaxy Tab2 10.1 Wi-Fi has been chosen

as a mobile device. Its dual-core processor runs a 1 GHz, which is surpassed by most of the

currently available mobile devices. While sometimes referred to as “depth frames” in this work,

depth images and depth frames are to be considered the same.

Fig. 2.1 roughly sketches the �nal architecture to be developed in this thesis.

Figure 2.1: A schematic of the mobile device and the stationary system. (a) Structure sensor,

(b) typical raw depth image, (c) android device, (d) wireless transmission, (e) stationary system,

(f) an artistic depiction of a hand in a point cloud. The hand is shown as a polygon mesh.

4

2 Objectives

To ensure that the speed and accuracy is good enough for gesture recognition and gesture

control, di�erent strategies will be developed and used that shall increase the speed and

accuracy of the transmission. Two aspects are signi�cant: Firstly, the use of a stationary system

that takes over the further processing of the depth images for di�erent consumers to take the

computational load o� the mobile device, and secondly, the transmission speed. It has to be

examined whether compressing depth images or point clouds on mobile devices makes an

improvement over the transmission of raw, uncompressed images. Compression algorithms

will be tested and compared with the transmission of raw images.

The �nal architecture will cover (a) accessing the depth sensor from a mobile device, (b)

receive depth images from the sensor, (c) compressing, (d) transferring, (e) uncompressing and

(f) converting them to a point cloud, as shown in Fig. 2.1.

5

3 Related Work

Point cloud streaming is not a new topic and was presented in multiple theoretical and practical

studies throughout the last 10 years. These works solely refer to the distribution of point

clouds from a stationary system with signi�cant computation power to other consumers. A

mobile solution for point cloud streaming, especially for Android-based architectures, was

unavailable. Furthermore, there were only few solutions to connect a mobile android device

with depth sensors.

Sec. 3.1 will introduce available solutions for connecting depth sensors on mobile devices.

Sec. 3.2 presents architecture variants in the context of point cloud streaming and shows two

di�erent approaches, namely point cloud and depth image compression, to solve this task.

Sec. 3.3 explains methods for point cloud compression and Sec. 3.4 presents di�erent methods

for depth image compression.

3.1 Depth sensors on mobile devices

Connecting depth sensors to a stationary computer, processing sensor data and creating point

clouds is an easy task. It involves downloading and installing drivers and launching a sample

application.

Generating a point cloud on a stationary computer and streaming the point cloud to an

Android device has also been done before. The point cloud viewer [14] for Android, available

as part of the Robot Operating System, receives and loads a single point cloud structure in up

to 30 seconds, after which the user can navigate through a virtual world of points.

There are two solutions where a depth sensor is connected to a mobile Android device. The

aforementioned Project Tango and the Odroid-X [17] has demonstrated that a Kinect sensor

can be connected to an Odroid-X device running Android. A demo application uses basic

object tracking to move a rectangle on the screen. The solution runs on native code that has

never been published by the author.

6

3 Related Work

3.2 Depth image and point cloud streaming

Streaming depth information from Android devices to powerful stationary computers, in

order to defer complex hand recognition tasks, has not been done by now. As a consequence,

there is a need to implement basic methods and algorithms for e�cient transmission from

mobile Android devices. Most of the publications about depth information streaming have

developed or compared compression algorithms that require powerful hardware or cannot run

in real-time. These algorithms can be classi�ed into two classes:

Point Cloud Compression Point clouds are generated �rst, which are then transmitted over

the network. To achieve su�cient transmission throughput, several point cloud com-

pression algorithms have been developed. Sec. 3.3 will discuss recent solutions for point

cloud compression.

Depth Image Compression Depth images are streamed over the network, and then con-

verted to point clouds. The main task on the mobile device will then be to e�ciently

compress depth images. Sec. 3.4 will introduce several methods and applications for

depth image compression.

3.3 Point Cloud Compression

Solutions for compressing point clouds have been developed, using predictions, temporal and/or

spatial optimizations [6] [11], octrees [31] [13], wave functions [4], dynamic generation of

surface normal functions [18] and few of them were directly committed into the PCL source tree

[29]. To convert depth sensor images to point clouds, the built-in CoordinateConverter
from OpenNI can be used. However, the OpenNI documentation recommends to delay the

calculation of point clouds as long as possible since it is an expensive operation. Additional

algorithms should determine the regions of interest prior to conversion [21]. Therefore, these

compression methods are introduced brie�y, but not taken into consideration in the course of

this work.

3.3.1 Adaptive arithmetic coding for point cloud compression

In the publication of Daribo [6], point clouds are compressed and encoded as 3-D space curves.

In point clouds that have been captured using structured light cameras, individual point

locations are predicted by exploiting the homogeneity of surfaces. The proposed framework

uses a 3-D extension of the Freeman chain code to encode 3-D space curves describing surfaces.

7

3 Related Work

The curve is a chain of points, which enclose sections of the curve with a turning angle near

zero, and with a possibility to exploit repetitive patterns and similarities. Adaptive arithmetic

coding is then used to compress �oating point values losslessly. It requires less bits to store

�oating point values in frequently used intervals than those in rarely used intervals. The peak

signal to noise ratio (PSNR) for sample images was evaluated for data stored with 16 to 28 bits

per point. The author did not do any time performance measurements.

Figure 3.1: Sampled point cloud partitioned into series of curves with respect to the projected

grid pattern. Curves are discriminate by di�erent colors. [6]

Figure 3.2: 2D example of plane curve sampled at intervals of arc length ∆S. Each point has a

turning angle α as the angle between two consecutive segments. [6]

3.3.2 Predictive Point-cloud Compression

Predictive Point-cloud Compression [11] omits the construction of meshes and geometric

models and instead puts all the points into a spatially sequential order. Points are then predicted

from previously coded neighbors with simple prediction rules such that only corrective vectors

need to be encoded. To create a spatial sequence in the data, a spanning tree is used. Points are

encoded in the spanning tree and corrective vectors are added. Entropy coding and arithmetic

8

3 Related Work

coding is used to further compress the data. The author measured that a 2GHz PC requires 20

seconds to encode 100.000 points.

Figure 3.3: prediction trees built with linear prediction (bunny is a 3d scan). [11]

3.3.3 Octree-based Point-cloud Compression

Schnabel [31] uses an octree and encodes the points’ locations as its containing cells’ centers.

Octrees divide a bounding box into equally-sized partitions, two for each dimension. To encode

each node of the octree, a single byte stores whether each child node is occupied. In this

work, the occupied child cell con�gurations and the number of empty cells are predicted, using

planes and single child cells. To encode color information into the point cloud, a mean color

index is encoded for each octree level and then predicted for their children. The performance

of this scheme allows encoding point clouds with 2 to 8 bits per point.

Figure 3.4: A cell is to be subdivided. Those child cells that are closest to the surface approxi-

mation FC
Q are more likely to be occupied. [31]

3.4 Depth Image Compression

The raw stream of depth images is a series of uncompressed 16-bit grayscale images, where

each pixel is the distance from the sensor, measured in millimeters. A 16-bit number can

handle values up to 65535, which is, in theory, the maximum distance in millimeters that can be

represented in this format. Depending on the sensor and the requested stream, the resolution

9

3 Related Work

of these images is either VGA (640 x 480 pixels), QVGA (320 x 240 pixels) or even smaller.

The data structure is exactly the same as the depth data from the RGB-D sensor described by

Coatsworth [5].

The most widely known image compression format is JPEG. It is known for its great

performance shrinking average photos by 33% up to 90% in size without noticeable artifacts.

JPEG uses a color space transformation that converts pixels made of red, green and blue values

(RGB) to a brightness and two color shift values (YUV). Using this transformation allows

to receive better compression quality, especially by downsampling the color shift channels

more than the brightness channel. High frequency brightness changes which a human eye

might hardly see are removed after a discrete cosine transformation and quantization. Movie

compression algorithms such as H.264 or VP8 can go beyond that, as they take full advantage

of areas in the image that changed only slightly from two consecutive frames.

However, most of the image and movie compression algorithms fail to encode more than 8

bits per color channel. Our source image has 16 bits of depth in one single color channel, and

the majority of the few �le formats capable of storing images with higher dynamic range apply

almost no compression to them. Some simple image compression algorithms use surrounding

pixels and use linear prediction to reduce the entropy required to encode the pixel values. Data

compression formats such as De�ate recognize patterns in the source data and also reduce

the entropy required to encode them. Works and algorithms that solve this problem can be

subdivided into two categories. Sec. 3.4.1 will present a method to encode 16-bit streams using

lossy 8-bit color compression formats. Sec. 3.4.2 will present methods that encode 16-bit frames

natively.

3.4.1 Three channel 8-bit encoding

Pece [26] compresses depth videos using unmodi�ed standard video encoders with three color

channels of 8 bits each. In the cited work, the results after encoding and decoding with di�erent

bitrates and three di�erent compression algorithms (JPEG, VP8 and H.264) are compared.

To convert the 16-bit grayscale image into three 8-bit color channels, a pre-processing step

is made before the results are fed to the encoder. Similarly, after decoding the compressed

stream, a post-processing step decodes the original depth value from these three color values

(see Fig. 3.5).

10

3 Related Work

Figure 3.5: Graphical overview of the proposed method. The original 16-bit depth map is

encoded in an 8-bit, three-channel image and is then processed by a video encoder and

transferred over the network. When received, the three-channel image is decoded through the

video decoder and is then processed by our method to reconstruct the original 16-bit depth

map. [26]

Using movie encoders can be advantageous when depth and color information are encoded

at the same time, because using the same encoder for both types of information will make the

encoding and transmission less complex. The aforementioned image and movie encoders use

quantization and downsampling to achieve high compression levels. Such methods strongly af-

fect sharp corners or high-frequency changes in data, so the pre-processing and post-processing

should not add continuity gaps or carryover jumps into the source image. The work suggests

that one robust color channel contains the most signi�cant 8 bits of the depth image, while

the other two color channels encode the least signi�cant bits. To ensure continuity, the actual

depth values are transformed using two linear triangle wave functions (see Fig. 3.6), one for

each remaining color channel, di�ering in their frequency.

Figure 3.6: L (blue), Ha (green) and Hb (red) with w = 216. For illustration, np = 2048 is set

unusually large, and the ordinate shows integer values rather than [0,1]-normalized values.

[26]

11

3 Related Work

If the encoder uses color space transitions from RGB to YUV before starting the frame

encoding, the source image is fed to these three color channels directly instead, to increase

the accuracy of the data transferred. The Y-channel, which stores the brightness value of each

pixel, typically has a higher precision and stores the most signi�cant bits. The U and V channel,

used for the tone value, have a lower precision and are used to store the triangle waves.

In the conclusion, test results were shown, and a 3 GHz quad-core processor requires 8

milliseconds for each QVGA frame and 30 ms for each VGA frame to encode. The author

makes no assumptions about the performance on mobile devices, but it can be assumed that,

unless hardware optimizations for the encoder are in use, these durations can be much longer

on a mobile device.

3.4.2 Frame-by-frame encoding

Frame-by-frame encoding means that each frame is individually compressed and transferred

one by one. The advantage is, that any single frame can be dropped from the queue without

interfering with other frames. Also, unlike movie encoding, no references are made to frames

in the future, which decreases the latency in both the encoding and the decoding process.

Dropping frames is also very useful when any of the components in the chain (mobile device,

network bandwidth) can’t keep up with the amount of data.

Generic compression algorithms

Coatsworth [5] describes a UAV mounted with a RGB-D camera, that encodes the color image

using JPEG, and the depth image using lossless compression algorithms. Both encoded results

are transmitted over a wireless network and then decoded on the receiver (cf. Fig. 3.7). The

author compared three di�erent available lossless compression algorithms for the depth images:

bzip2, zlib and snappy.

12

3 Related Work

Figure 3.7: System diagram of server-client system and compression steps [5]

With di�erent slow test platforms used for encoding and transmission, di�erent average

frame rates were achieved. The paper concludes that zlib, being the average of the three

algorithms in terms of speed and compression rate outperformed the other algorithms on

better hardware, while snappy can achieve better frame rates when inferior hardware was

used.

Although not mentioned in the cited work, the de�ate compression, which is a combination

of Lempel-Ziv 77 and Hu�man coding, may achieve similar results. It is already integrated

into the JRE (Java Runtime Environment) and therefore quite portable. The slow compression

speed of BZip2 will most likely not be worth the slightly better compression ratio.

To use the BZip2 compression in Java, the jbzip2 compression/decompression library [9]

can be used or the Apache CBZip2InputStream / CBZip2OutputStream classes.

The �rst library is a pure Java implementation, and thus more portable than the Apache classes,

which rely on native libraries. The Author furthermore claims that jbzip2 is typically 5% to

10% faster than the native implementation.

For the Snappy compression algorithm, there is an implementation inside the Hadoop IO

Compression library, which is part of the common library package of the Apache Hadoop

framework. It uses a lot of native code and has dependencies to environment-speci�c memory

management hacks which abuse exposed methods in earlier versions of the Java Runtime

Environment. Another implementation of the Snappy algorithm [34], written in pure Java also

uses the UnsafeMemory functionality and inherits classes from the Hadoop framework, but

the use of UnsafeMemory can be easily stripped by removing a few �les from the source.

13

3 Related Work

Jpeg-LS

Jpeg-LS, not to be confused with “JPEG Lossless” is a lossless image compression format

capable of compressing 16 bits per channel images. It uses a predictor and context modeler

for gradients and run length encoding for �at regions (see Fig. 3.8). It is based on the LOCO-I

algorithm developed at Hewlett-Packard Laboratories, and a thorough description of this

format has been made [27]. Performance measurements have been performed with software

and hardware implementations [30].

Figure 3.8: A casual template and a basic block diagram for Jpeg-LS. [27]

CharLS [7] is a library that compresses images using Jpeg-LS lossless compression format.

It supports up to 16 bit per color channel and also grayscale images. In comparison to JPEG

2000 it is claimed to be about 3 times faster. The CharLS library o�ers 6 customizable constants,

namely allowedLossyError, MAXVAL, T1, T2, T3 and RESET. Experiments, where

these values are changed have shown that the compression ratio can be improved by carefully

selecting these values [27]. In this library, changing allowedLossyError to a non-zero

value has an unexpected result that will be discussed in Sec. 6.3.

BPG

BPG is a lossy image compression format [1], and is based on the Intra-Frame encoding of the

HEVC (High E�ciency Video Coding) video compression standard, also known as H.265, and

capable of compressing 14 bits per channel images. As 14 bits equal 16384, and depth pixels

are measured in millimeters, the maximum distance is reduced from over 65 meters down to

little more than 16 meters, which is more than needed for hand gesture recognition. However,

the special 0.1mm mode of the Structure sensor, which increases the maximum accuracy for

14

3 Related Work

near objects to 0.5mm, reduces the maximum distance to 6.5 meters at 16 bits and 1.6 meters at

14 bits, which will constrain the ability to scan the surrounding environment.

BPG is also dependent on many libraries, namely the x265 library and the JCTVC reference

encoder, which makes it di�cult to compile with unusual build environments. Only if the

JCTVC encoder is used, BPG can use bit depths higher than 8 bits per channel. The JCTVC

reference encoder is even more di�cult to compile, as it has many dependencies to other

libraries. The build script obtainable from the BPG developer uses path rewrites, which are

neither supported by the Android NDK toolchain nor by the gradle scripts.

PNG and TIFF

The PNG and TIFF formats also allow encoding images with 16 bits per color channel. The

compression rate of PNG is very low in this case, and almost no compression is noticeable when

the TIFF format is used. The ImageIO classes from Java support 16-bit PNG images if the

user happens to have the Java Advanced Imaging API installed on his computer. This API

only exists for 32-bit Windows and a couple of other operating systems and is closed-source,

so it won’t work on many newer systems. Its native code was created at times when Java was

still developed by Sun Microsystems, Windows ran on a 32-bit architecture and Android was

not known as an operating system at all.

3.5 Conclusion

It has been shown that Android-based software for streaming depth information from depth

sensors are currently not available. Although works and methods exist for point cloud com-

pression, currently there is no method suitable for mobile devices. OpenNI developers have

recommended to delay the calculation of point clouds as long as possible. For the scope of

this work, using a two-stage architecture for the distribution of point cloud data acquired

from a depth sensor connected to an Android device is the most promising: Depth images are

streamed over the network to a stationary device, and then redistributed as a point cloud. The

point cloud generation will thus be performed on a powerful computer, and the e�ciency of

the depth image streaming is focused on in the course of this work.

From the algorithms introduced, the following will be examined in this work: Jpeg-LS,

De�ate, BZip2 and Snappy. PNG support can be used on systems running on a 32-bit Windows

environment. The De�ate, Bz2 and snappy compression algorithms can run in pure Java and

for Jpeg-LS and BPG, a C library is available. Due to the unsatis�able requirements of the build

environment, BPG is passed on in this work.

15

4 Requirements Analysis

In Sec. 2, two major subsystems with roles have been introduced: The mobile Android device

and the stationary system. Based on a preliminary decision, di�erent requirements for the

di�erent subsystems are as follows. They are divided into functional requirements for mo-

bile and stationary systems respectively, and non-functional requirements. If the scope of a

requirement is not further speci�ed, it applies to both systems.

4.1 Functional requirements

• The mobile application has to establish a connection to the depth sensor.

• To reduce the required bandwidth on the wireless transmission, the system should be

able to compress depth frames using di�erent algorithms.

• To compare the quality of the compression algorithms and the uncompressed transmis-

sion among each other, the system shall show the speed of the transmission and the

required bandwidth.

• To get a good estimation for the cost of depth image pre-processing, a depth image

viewer similar to the NIViewer from earlier OpenNI packages should be developed.

4.2 Non-functional requirements

Configuration: Con�guration settings such as IP addresses, sensor parameters and compres-

sion mode should be easy to change. At runtime, the application shall choose the desired

quality when acquiring depth frames from the sensor.

Maintainability: The system shall have low complexity. By having the exact same architec-

ture both on the stationary system and on the Android device can reduce the complexity

of the system and thereby improve the maintainability. For example, both systems

acquire information, compress or decompress it and then transfer, visualize or process it

directly.

16

4 Requirements Analysis

Openness: Choosing an open architecture is preferred, as this will allow the architecture

to be used as an extension to existing frameworks, e.g. a gesture recognition software.

Extending to an existing architecture requires an open architecture in order to access

data streams by the recognition algorithms, by means of open interfaces.

Performance: A low latency, a high resolution and a high frame rate is desirable, as all of this

improves the quality of the data required by the recognition algorithms. A low latency

will help responding to and reacting on gestures sooner.

Reporting: Transmission speed, such as the average bandwidth and frame rate shall be

displayed on both devices. Automatic measurements shall be performed to determine

the achieved frame rate, compression ratio and bandwidth usage. Latency however

will be extremely hard to measure, because independent systems will have di�erent

clocks. A separate physical device, like a stopwatch, is required to perform the latency

measurement.

17

5 Design and Implementation

This section introduces the system design and facilitates the implementation by a thorough

speci�cation. As has been pointed out in Sec. 2, the architecture has (at least) two independent

systems that are connected over a wireless network.

Sec. 5.1 details the system architecture already introduced in Sec. 2. Sec. 5.2 provides the

ways, how each system’s con�guration can be set up by the user. Sec. 5.3 continues with

the architectural patterns used in this software architecture, namely the Source-sink concept,

the Strategy pattern and the Factory pattern. Class diagrams, interfaces and characteristics

of each implementation are speci�ed in Sec. 5.5. Sec. 5.6 describes necessary changes to the

development environment and the OpenNI2 framework to allow accessing the Structure sensor

from an Android device. Finally, Sec. 5.7 reviews this section.

5.1 System Architecture

To describe the system architecture, the hardware schematic sketch is shown again in Fig. 5.1

to logically illustrate the whole chain from the depth sensor to the interface for detection

algorithms. Two separate systems, one being the mobile device and one being the stationary

system, are processing the depth data.

18

5 Design and Implementation

Figure 5.1: A schematic of the mobile device and the stationary system. (a) Structure sensor,

(b) typical raw depth image, (c) android device, (d) wireless transmission, (e) stationary system,

(f) an artistic depiction of a hand in a point cloud. The hand is shown as a polygon mesh.

The mobile device is in charge of accessing the depth sensor and acquiring individual

depth frames. It compresses them, depending on the con�guration, and transfers them over a

wireless network. To interact with the depth sensor, the OpenNI2 framework will be used. To

compress the depth data, compression algorithms will be included and used. To transfer the

data, another module is required that delivers the frames to a stationary system. For the sake of

reliably, a TCP connection is chosen over UDP, because the frame sizes are assumed to be larger

than the maximum transmission unit of most network connections, and using TCP is assumed

to be less complex than reinventing the wheel using a custom streaming implementation. A

network operator may automatically assign IP addresses to all connected devices which makes

it necessary to con�gure the systems to allow �nding each other on a network. Thus, the last

module required is a graphical interface for user interaction, which is detailed in the following

section. All these modules will be packaged together into an Android application.

The stationary system is in charge of receiving the depth frames from the network. It

decompresses them and o�ers them to consumers for further processing. To receive the frames,

a module is required that establishes a TCP connection with the mobile device and receive the

compressed frame data. To decompress the data, the same compression algorithm is needed

that has been used for compression. To allow further processing, an interface is required that

recognition algorithms can use. A helpful addition is a window that serves as a visual feedback

for the transferred data, which is detailed in one of the following sections. All these modules

will be packaged together into a single software.

19

5 Design and Implementation

5.2 Configurability of the whole system

Each of the system has to be individually con�gured, to take on the correct role in the chain.

The con�guration will cover what is used by each system to acquire depth data, how it is

processed and where it goes after it has been processed. This also includes hostnames, network

ports, sensor parameters such as the resolution and �eld of view, frame and stream information.

In an Android system, the PreferenceActivity allows for much of the required functionality.

It has number, text, checkboxes and drop down selections, which are suitable for e.g. screen

resolution, hostnames, enabling or disabling features and selecting out of a list of available

algorithms. Fig. 5.2 is an example of a PreferenceActivity to change settings before starting the

transmission by a mobile device.

640 pixels

480 pixels

Depth sensor

Source Config

Codec Config

Sink Config

Data Config

Frame width:

Frame height:

Sensor type:

Sensor mode:

Sensor fps:

Activate Your IP address: 192.168.0.1

1mm resolution 100µm resolution

30fps

Figure 5.2: A mockup of the PreferenceActivity that will be used to change settings on an

Android device.

On a stationary system however, many more possible solutions exist that avoid recompiling

the program from source code. A con�guration �le can be edited much more easily on a

stationary system than on a mobile device. Parameters can also be given on startup or using a

startup script. A con�guration window, much like the PreferenceActivity on Android can be

used.

This work focuses on the open architecture concept, that when actually feeding a real hand-

tracking algorithm to the streaming architecture, a lightweight loader may provide di�erent

con�gurations on the �y. It is su�cient to include a simple loader that provides a con�guration

for testing purposes, and replace it with a di�erent loader when including it in a hand-tracking

solution.

20

5 Design and Implementation

5.3 Architectural pa�erns

Architectural patterns have proven themselves as guidelines for a good system design. To

satisfy the non-functional requirements from Sec. 4.2, three commonly used design patterns,

namely the Source-sink concept, the Strategy pattern and the Factory pattern are used in this

software architecture. In the following, each of them will be introduced in more detail.

5.3.1 Source-sink concept

The source-sink concept shown in Fig. 5.3 is frequently used during the encoding or decoding

of video streams. In such context, the source is a provider of information (a camera, a network

stream or a recorded �le), the sink is a receiver of information (a television, a network uplink

or recording into a �le) and a �lter usually applies transformations (change resolution, change

color space, compress or decompress).

Source Codec Sink

Figure 5.3: The source-sink concept. The data comes from the “source”, is transformed in the

“codec” and ultimately sent to the “sink”.

Here, the source is “something that obtains an image”, the codec, a special �lter with the

transformations ’encode’ and ’decode’ is “something that reads the image and creates a modi�ed

version, and the sink is “something that delivers an image”. This concept proves useful for two

reasons:

1. By enforcing clear, slim interfaces, especially for the data transfer, any of the three

components can be substituted without any needs to handle extra interoperability cases

in the other components. As a consequence, the handling of optional information and

metadata such as frame id and sensor parameters must be realized by other functionality

(see Sec. 5.2).

2. By using an abstract pattern, the implementation of every component can be adjusted

depending on the designated runtime environment.

As Fig. 5.4 demonstrates, choosing di�erent implementations for modules that obtain im-

ages, both systems, the mobile and the stationary system, can be con�gured using the same

21

5 Design and Implementation

architecture and concepts. To ease development, it is feasible to also include modules that

replace complex processes with simpler ones that don’t �t the whole scenario. As an example,

an access component for the depth sensor can be replaced by a component that does nothing

else than returning a static, procedurally generated test image over and over.

Depth
Sensor

Raw
CharLS

(encode)
Compres-
sed data TCP Server

TCP Client Compres-
sed data

CharLS
(decode)

Raw Window

Stationary system:

Mobile device:

Source Codec Sink

Figure 5.4: An example implementation of the source-sink concept with speci�c components.

An Android device is compressing images, a stationary system is decompressing images, using

the same work�ow.

5.3.2 Strategy pa�ern

The strategy pattern de�nes a family of substitutable algorithms that implement the same

interface. It also eliminates control structures in the main program and uses the application

context in order to select the right implementation. By applying this pattern to the source-sink

concept, the main program only works with the interface and the implementations can be easily

substituted. The actual algorithms behind them, including initialization and con�guration are

hidden inside multiple implementations that can be chosen from.

5.3.3 Factory pa�ern

The factory pattern is used to retrieve the required implementation of an algorithm dynami-

cally at runtime. A set of concrete factories are available to instantiate the required classes on

demand. They can also abstract the way components need to be con�gured. Di�erent runtime

environments can have di�erent sets of factories to choose from. Fig. 5.5 shows a typical

application of the strategy and the factory pattern using the CharLS codec as an example

implementation.

22

5 Design and Implementation

This solution would increase the class count signi�cantly and make the code less maintain-

able. Therefore, this work uses a modi�ed variation of the factory pattern:

• The factory is changed from an interface to an abstract class with the two static methods

getFactory(String) and addFactory.

• All available factories are constructed and added using the new static methods at start

of the program.

• Factories available on a speci�c platform are implemented as anonymous inner classes

in static code.

With this modi�cation, factories are identi�ed and selected by a simple String value in the

con�guration.

Main

Main(Config)

<<Schnittstelle>>

Codec

+encode(ByteBuffer, ByteBuffer, int) : int
+decode(ByteBuffer, int, ByteBuffer, int)

<<creates>>

<<Schnittstelle>>

CodecFactory

+getCodec(Config) : Codec

CharLSCodecFactory

+getCodec(Config) : Codec

CharLSCodec

+encode(ByteBuffer, ByteBuffer, int) : int
+decode(ByteBuffer, int, ByteBuffer, int)

Figure 5.5: The method getCodec on the CodecFactory interface returns objects of

type Codec. What implementation of Codec is returned depends on which implementation

of CodecFactory is handling the method call.

5.4 Program flow

The simplest program �ow that successfully encodes (or decodes) a stream of depth frames is

shown in Fig. 5.6. After initializing the source and sink, it enters an endless loop to retrieve,

23

5 Design and Implementation

encode and deliver one frame after another. While it serves well as a �rst prototype, it needs

to be modi�ed signi�cantly to take advantage of pipeline parallelization by means of multi-

threading.

Program flow

ProcessingInitialization

Initialize sink
Initialize
source

Fetch image
from source

Encode /
Decode

Deliver image
to sink

Figure 5.6: The program �ow separated into �ve steps. Note the repetition after the last step.

5.4.1 Multi-threading

Multi-threading has an advantage of increasing the throughput and thus the frame rate limit a

compression algorithm may enforce, by encoding several frames at the same time. However,

this can also increase the average processing time for each single frame and thus the latency.

The more worker threads in use, the more frames can simultaneously stay in the encoding

or decoding chain before a new frame is read from the sensor, under the assumption that the

worker threads run much slower than the time it takes until a new frame is acquired. The

number of worker threads should thus be con�gurable.

In a thread pool pattern, every thread can request the next task from the task queue,

process it and request the next task from the queue (see Fig. 5.7).

Task Queue

...

ThreadPool

Completed Tasks

...

Figure 5.7: A sample thread pool (green boxes) with waiting tasks (blue) and completed tasks

(yellow).

24

5 Design and Implementation

The thread pool pattern is very favorable, but its conventional implementation has a lot of

drawbacks. To use this concept for time-critical processing of a large bulk of data, modi�cations

have to be made:

Fixed number of threads

Typical thread pools can add and remove worker threads dynamically on demand. Here, the

amount of threads is �xed to prevent creating and destroying resources unnecessarily.

Task objects and queues

Typical thread pools work with a queue of un�nished task objects. This would mean that

frames are automatically pulled from the sensor and task objects are put into the task queue

containing the frames in memory bu�ers. This is disadvantageous because it increases the

latency with every single frame waiting in the queue. Also, a task object would cause typical

overheads of creating and throwing away objects and memory bu�ers.

The solution to this is not having any task objects and queues at all. Each thread gets

assigned independent resources and memory bu�ers and recycles them after each completed

“task”.

Instead of task objects, the threads access the source directly to acquire a new depth frame.

The task as such exists only as a frame inside the memory bu�er. After �nishing the processing,

the threads deliver the processed frames to the sink and obtains the next frame.

Keeping frame order

The solution must ensure that the frame order won’t be changed. Processed frames should be

delivered to the sink in the same order they were obtained from the source.

The order in which the threads access the sensor is predictable. To ensure that the worker

threads don’t �ght over the next available depth frame, they will take turns at accessing the

depth sensor. The threads will also have to wait until they can deliver processed frames to the

sink and synchronization becomes necessary. By knowing the order in which threads access

the source and requesting their delivery in the same order, it won’t be changed.

Synchronization

A scheduler determines when a thread may be allowed to read the depth frame. It gets noti�ed

by the worker thread that the read has completed and lets the next thread access the depth

25

5 Design and Implementation

sensor. The threads are also scheduled in a predictable order, to allow sorting the processed

frames without looking up frame IDs in a list.

After a worker thread has read an image from the depth sensor, the compression algorithm

is starting its work, after which the thread pauses until the processed frame may be delivered.

A delivery thread knows the predictable order in which the processed frames have to be

received from the threads and arranges them in the correct order. The delivery thread noti�es

the sink that a new frame has been processed. Only after the sink has �nished accessing

the result, the worker thread may start from the beginning, otherwise the memory area may

be overwritten with the next frame data while the sink is reading it. The advantage of this

restriction is that both the source and the sink can reference the same memory mapped area

designated for a worker thread and do not need to copy the binary data at all.

Java uses synchronized objects to acquire locks and concurrency utilities to accomplish the

aforementioned constraints. To run the thread pool, the scheduler, the delivery chain and the

worker threads are initialized and started. The new program �ow is outlined in Fig. 5.8. The

number of synchronization points is higher than in conventional thread pools that potentially

shu�e the frame order.

The �ve synchronization points are:

• The scheduler waits for the next worker to become ready

• The worker waits for the scheduler to send a start signal

• The scheduler waits for the worker to obtain a frame

• The delivery waits for the worker to complete processing

• The worker waits for the delivery to complete the delivery

26

5 Design and Implementation

The follow-up
image for the
sink is ready

Supply the
image to the

sink

The sink has
finished reading

Allow the
worker to

retrieve the
next image

A worker wants
to retrieve the

next image

Supply a source
image to the

worker thread

The image has
been retrieved

Remember the
image counter

and wait for the
next worker

The left chain
supplies a new
image to the

worker

Compress the
image, if

requested
(configuration)

Decompress
the image, if
requested

(configuration)

The image is
ready. Wait for
clearance from
the right chain

Notify the left
chain that a

new image can
be supplied

Scheduler DeliveryWorker Thread

Figure 5.8: The scheduler and delivery thread synchronize the worker’s access to the source

and sink. The upper hexagon of the worker thread causes an iteration of the scheduler, and

the lower hexagon causes an iteration of the delivery.

5.5 Class diagram

The design consists of 5 classes controlling and coordinating the whole process and paralleliza-

tion. The factory pattern requires two classes for each factory, and another two classes for

each implementation. Counting all of them, their helper classes and a few other exceptions,

39 classes are required on Android and 48 classes for the stationary system as it has access to

more encoders. The Android user interfaces uses 5 classes for the setup, while the stationary

27

5 Design and Implementation

system needs only a single one. That being said, the stationary system appears to be slightly

more complex having 54 classes in total compared to the 49 classes on Android. Thus, three

major parts of the solution are visualized in each of the class diagrams.

Sec. 5.5.1 describes all interfaces needed by the main class during the processing. Sec. 5.5.2

includes every factory and implementation, which are used by the main class during the

initialization. Sec. 5.5.3 outlines the additional classes needed on an Android device. Finally,

the NIViewer is described in Sec. 5.5.4.

5.5.1 Main routine and parallelization

Fig. 5.9 contains all the classes needed by the Main routine, except the factories used to initialize

the source, codec and sink, which follow in Sec. 5.5.2.

Main

-Config config

+Main(Config config)

Scheduler : Thread CompressionWorker : Thread

-ByteBuffer compressedBuffer

Delivery : Thread

Config

+int sourcePort, sinkPort, threads

<<Schnittstelle>>

Source

+readImage(Config, ByteBuffer) : boolean

<<Schnittstelle>>

Codec

+encode(ByteBuffer, ByteBuffer, int) : int

<<Schnittstelle>>

Sink

+writeImage(Config, ByteBuffer, int) :
boolean

-ByteBuffer sourceBuffer

-Source source
-Codec codec
-Sink sink
-ArrayList<CompressionWorker>
-Thread schedulerThread
-Thread deliveryThread

+decode(ByteBuffer, int, ByteBuffer, int)

+initialize(Config)

-Object resetLock

-boolean canStart
-boolean obtained

-Object completeLock
-Object obtainLock

-boolean complete
-boolean canReset
-Object startLock

+reset()

+String source, compression, sink
+boolean compress, decompress
+String sourceUrl, sinkUrl

+short x, y
+byte depth, mode, fps
+int frameId
+float fovX, fovY
+boolean sinkControlled, benchmark
+boolean debug, condition

Figure 5.9: A class diagram that contains the classes responsible for the Main routine and

parallelization.

28

5 Design and Implementation

Config

This class contains all the settings required to change the sensor parameters, network addresses

or compression algorithms (cf. Sec. 5.2). Some �elds can be changed during runtime by the

source and sink (e.g. fov, the �eld of view, which is required to calculate point clouds,

and the frameId, which is necessary to be updated independent to the return values of

readImage). The �ag sinkControlled will also change the initialization order; if

enabled and TCP is used as a sink, the TCP server (a concrete implementation of sink) retrieves

the desired resolution and other parameters from the �rst connecting client before the source

is initialized. Finally, the condition �ag helps the CompressionWorker understand

why no new depth frame can be obtained. If vital components fail, or the user wants to stop

the processing, the �ag is changed to let the workers interrupt naturally.

Main

The Main class has a Main method that initializes all the threads mentioned in Sec. 5.4. It

holds copies of all the other classes shown in the diagram, and because the Threads are inner

member classes, they can access them as desired.

Scheduler, CompressionWorker, Delivery

Scheduler andDelivery change status �ags and locks on theCompressionWorker,

and CompressionWorker only needs the references to the interface implementations of

the source, codec and sink, and the Config instance. The detailed program �ow of these

threads has already been explained in Sec. 5.4.

5.5.2 Source-sink concept and its factories

The class diagram in Fig. 5.10 shows the factories and their interfaces, and how they are

used by the Main routine. The following subsections will detail the behavior of these classes

and describe concrete implementations of each interface. The factory pattern is outlined in

Sec. 5.3.3. Exceptions and extensions of them are described in the following subsections.

Each abstract factory contains static code that instantiates all the available factories, and

adds them to a list with a call of addFactory. A certain factory implementation can be

obtained by calling getFactory(String). External libraries can add their own factory

implementations to extend the available sources, codecs and sinks in this application, without

needing to change any of the original source code.

29

5 Design and Implementation

Hereinafter, the factories and interfaces are described (blue boxes in the diagram), and their

respective implementations contained in this solution for di�erent source, codec and sink types

(green annotations in the diagram).

Main

Main(Config)

SourceFactory

+getFactory(String) : SourceFactory

+getSource() : Source

CodecFactory

+getFactory(String) : CodecFactory

+getCodec(Config) : Codec

SinkFactory

+getFactory(String) : SinkFactory

+getSink(Config) : Sink+startSource(Config)
+stopSource(Config)

+getName() : string +getName() : String +getName() : String

<<Schnittstelle>>

Source

+readImage(Config, ByteBuffer) : boolean

<<Schnittstelle>>

Sink

+writeImage(Config, ByteBuffer, int) :
boolean

+initialize(Config)

Examples written in italic only work on
Win32, Linux32 or Linux64 systems

Clone & Copy are for debugging purposes. Window
only works on desktop Java with AWT support.

<<Schnittstelle>>

Codec

+encode(ByteBuffer, ByteBuffer, int) : int
+decode(ByteBuffer, int, ByteBuffer, int)

+addFactory(SourceFactory) +addFactory(CodecFactory) +addFactory(SinkFactory)

+condition(Config) : Boolean

Initializing sources is complex.
FactoryImpl sets up all parameters
from Config for SoC. FactoryImpl
acts as a responsible controller

Implementations:
Test image (TestSource)

RAW image (RawFileSource)
PNG16 image (PngFileSource)

ONI record (OniFileSource)
ONI stream (OniStreamSource)

TCP stream (TCPSource)

Implementations:
Clone (ByteCloneCodec)
Copy (ByteCopyCodec)

Bz2 (Bz2Codec)
CharLS (CharLSCodec)
Deflate (DeflateCodec)
JpegLS (JpegLSCodec)

PNG (PNGCodec)
Snappy (SnappyCodec)

Implementations:
TCP stream (TCPSink)

Window (WindowSink)
Point Cloud (WorldCalculatorSink)

Figure 5.10: A class diagram that focuses on the factories and the various implementations of

the source-sink concept.

SourceFactory

Each SourceFactory implementation is responsible for initializing and �nalizing the resources

of its respective Source implementation. This practice allows the factories to read the Con�g

class and translate the initialization parameters to those needed by the sources. Some sources

are more complex to initialize than others. The OniStreamSource requires access to

the depth sensor, and a reference to the current activity is needed on Android platforms (see

Sec. 5.5.3). Obtaining this reference has to be done in the factory. If the TestSource is used,

which creates a procedurally generated test image, it doesn’t need any initialization.

30

5 Design and Implementation

Source

Source o�ers the method readImage that inserts new data into the ByteBuffer. Addi-

tionally, it may update �elds on the Config, such as the frameId. It can also change the

condition �ag to gracefully shut down the application if the pipe to the device or remote

system is broken.

The solution contains implementations for di�erent source types, if they are available for

the designated environment. They are described in the following:

TestSource

The TestSource generates images procedurally, as shown in Fig. 5.11. The gradients are

useful to test the brightness clipping feature for the AWT window: if the white cut-o� value

is set low enough, the black horizontal lines turn into gradients. It is the �rst source to be

implemented to test how Java code works with ByteBuffers.

Figure 5.11: The 16-bit grayscale test image contains randomly colored squares and three

di�erent gradients. The black horizontal lines are incrementing the intensity one unit per pixel,

which can hardly be seen on regular screens.

RawFileSource

The RawFileSource accesses a �le in the local �le system and reads it into the Byte-
Buffer. As an uncompressed depth frame is a 16-bit grayscale image, the �le must have

twice as many bytes as it has pixels.

31

5 Design and Implementation

PngFileSource

The PngFileSource also accesses a �le in the local �le system, but calls the ImageIO
classes from Java and then accesses its raster to acquire the raw image. In this context, a

16-bit grayscale PNG is the easiest �le type to deal with, if the user happens to have the Java
Advanced Imaging API installed on his computer. Consult Sec. 3.4.2: PNG and TIFF for more

details about the JAI API.

OniFileSource and OniStreamSource

The OniFileSource initializes the OpenNI2 library using a local �le path as the sensor

device. This plays back a previously recorded OpenNI2 �le. The default setting is to not skip

any frames and repeat the sequence after the end of the recording has been reached. The

OniStreamSource also initializes the OpenNI2 library, but chooses a connected sensor

instead.

After the initialization, the desired stream type is chosen and physical parameters of the

sensor such as the �eld of view is stored in the Config class. Reading an image from the

OpenNI2 library is followed by an immediate release of the memory mapped framebu�er, to

prevent leaking memory over time.

TCPSource

The TCPSource creates a TCP client using the SocketChannel from Java’s NIO library.

Choosing this over more usual classes for TCP connections has an important advantage, when

reading and writing data from and to memory-mapped bu�ers. It is harder to interleave

di�erent types of data structures, so this implementation reads a 8-byte header �rst and then

reads the exact amount of bytes speci�ed in the header packet. The frame size and frame Id

exactly occupy these 8 bytes, so to transfer other information such as the sensor parameters

required for the point cloud generation, a special condition distinguishes this from an extended

header type consisting of three stacked headers.

The implementation does not need to be thread safe (i.e. protect the header from being

overwritten by another parallel call), because only one thread is allowed to access the source

at any time.

On initialization, TCPSource also sends con�guration parameters to the remote server.

If the server reads them, it may change some settings such as the desired resolution. If both

systems have di�erent resolutions con�gured and the TCP server has the �ag sinkCon-

32

5 Design and Implementation

trolled set in its Config (see Sec. 5.5.1: Con�g), its con�guration gets overwritten before

any memory bu�er is initialized to a potentially undesirable size.

Fig. 5.12 plots the three types of data being transferred.

int frameSize

int frameId

int 0

short x short y

float fov_x

float fov_y

Raw frame data

fps mode depth pad

int padding

1 depth fps mode

short x short y

Typical frame Sensor parameters Request header

Figure 5.12: Each row in a stack equals 4 bytes. The �rst two stacks are the communication

from the server to the TCPClient, the third stack is the communication in reverse direction.

CodecFactory

The CodecFactory uses information about the resolution from the Con�g class, to con�gure

the constructed codecs if necessary.

Codec

The codec supplies two methods, encode(ByteBuffer compressedData, Byte-
BufferuncompressedData,intuncompressedLength) anddecode(Byte-
BufferuncompressedData,intuncompressedLength,ByteBuffercom-
pressedData, int compressedLength). The compressedLength may never

exceed the uncompressedLength, because every ByteBuffer always has the size of

an uncompressed image.

Some codecs actually need to know the dimensions of the image to initialize additional

memory bu�ers or to set up encoding parameters or metadata. Thus, a subset of codecs inherit

a constructor from AbstractCodec to set up the width and height.

The solution contains implementations for di�erent codec types, if they are available for the

designated environment. They are described in the following:

33

5 Design and Implementation

ByteCloneCodec and ByteCopyCodec

These two codecs copy the data from a source bu�er into a compressed bu�er using two

di�erent ways. If the bu�ers are not both initialized as MappedByteBuffers, Byte-
CloneCodec will fail, indicating that other codecs are also likely to fail, while ByteCopy-
Codec will not. They are used for debugging purposes.

PNGCodec

PNGCodec internally works by creating a BufferedImage, updating its raster and en-

coding them using the same libraries as in Sec. 5.5.2: PngFileSource. Decoding uses the same

steps as opening and reading a PNG �le. ImageIO is designed to work with binary input and

output streams for �les on a local �le system. To allow ImageIO use the ByteBuffer as a

data source for compressed data, two additional classes, the ByteBufferBackedInput-
Stream and ByteBufferBackedOutputStream are used. Although this solution

might be less e�cient than a direct access, as it actually copies chunks of the memory area

into the Java heap, it was better than adopting a two-pronged strategy using di�erent types of

the ByteBuffer for special codecs. The availability of PNGCodec is limited to the same

conditions mentioned in Sec. 5.5.2: PngFileSource.

JpegLSCodec

JpegLSCodec also works with the same libraries mentioned in Sec. 5.5.2: PngFileSource.

Its internal logic is only slightly di�erent to the PNGCodec. In order to write the com-

pressed data into a stream, a custom ImageWriter or ImageReader is used from the

CLibJPEGImageWriterSpi or CLibJPEGImageReaderSpi obtained by the na-

tive extensions of Java ImageIO, which is also only available under the conditions mentioned

in Sec. 5.5.2: PngFileSource.

Bz2Codec and DeflateCodec

These two classes implement the Deflate and the BZip2 compression algorithms men-

tioned in Sec. 3.4.2, using implementations of the InputStream and OutputStream.

TheInflaterInputStream andInflaterOutputStream used for theDeflate-
Codec are part of the Java Runtime Environment. The BZip2 implementation uses the

JBzip2 library hosted on Google Code.

Both compression algorithms allow compression levels to be set. To ease working with these

codecs, DeflateCodec has three factories, initializing the codec with the compression

34

5 Design and Implementation

levels 2, 5 and 9, and Bz2Codec has two factories for the compression levels 1 and 9. Using

very low levels for De�ate such as 0 or 1 is not recommended, because the compressed frame

size might be larger than the uncompressed frame size, which results in a runtime exception.

CharLSCodec

The CharLSCodec class is surprisingly simple: It loads the libCharLS native extension,

de�nes a native interface for function calls and - because they look similar to the method

signatures in the Codec interface - require only a few lines of code: call the native code with

the two ByteBuffers.

The Jpeg-LS compression algorithm allows six values to be con�gured, the allowed-
LossyError, MAXVAL, T1, T2, T3 and RESET constants. More information about this

algorithm and its constants can be found in Sec. 3.4.2: Jpeg-LS.

SnappyCodec

The Snappy encoder used in this work is inherited from classes of the Hadoop framework,

and has been introduced in Sec. 3.4.2: Generic compression algorithms. Getting the Hadoop

framework compile on Android is a bit harder, because many classes must be carefully stripped

or rewritten, due to missing classes or changed interfaces in the Android libraries, but it is

worthwhile, because nothing else will have to be changed between these environments.

The Java implementation of the Snappy compressor can only work with Java byte arrays. It

appears reasonable to prevent creating and garbage collecting these byte arrays in conversion,

so another Java class, the SnappyStore is necessary. It handles a list of references to Byte

arrays, tracks their usage and recycles them.

SinkFactory

Calling getSink on the SinkFactory initializes the sink and sets up default parame-

ters for them, similar to the SourceFactory. However, no start and stop calls are

necessary here.

Sink

The sink o�ers the initialize method, which may modify parameters in the Config
class, or even block the program execution, see Sec. 5.5.1: Con�g for more details. The

writeImage method receives an additional integer, which is the frameId of the

frame that has been obtained by the CompressionWorker.

35

5 Design and Implementation

The solution contains implementations for di�erent sink types, if they are available for the

designated environment. They are described in the following:

TCPSink

TCPSink is a very complex class, as it exposes a listening server that allows multiple con-

nections. It uses a ServerSocketChannel much like the TCPSource uses a Sock-
etChannel instead of a simple socket. Although the clients may send data in the opposite

direction (see Fig. 5.12), no thread is created for each client connection. Instead, selectors are

used that listen on and write to any client at the same time. The advantage is, that all streams

can be asynchronously accessed, which is not possible without using them, and information

can be sent to multiple clients at once. However, allowing multiple physically separated clients

connect to the mobile device was not the target of this work, so multi-threading is not required

inside this implementation.

The TCPSink can:

• Receive command headers sent from the connecting client

• Write extended headers containing all the sensor parameters to the client

• Stream the contents of a mapped memory area to the client

WindowSink

WindowSink creates an AWT window displaying the depth frame as a grayscale image

on the screen, as shown in Fig. 5.13. To render more details visible, the black and white

cut-o� values can be changed by sliders, and the intermediate values are mapped onto the

256 grayscale values available on a typical computer screen. The AWT window’s title can be

used to show debug information such as the achieved frame rate or compression ratio, but

this requires the Main class to know about the internal function calls necessary. The Android

implementation doesn’t contain a WindowSink, because the AWT stack is missing in the

Java Runtime Environment.

36

5 Design and Implementation

Figure 5.13: A depth image rendered in a window.

WorldCalculatorSink

The WorldCalculatorSink is an example implementation using reverse-engineered

information about how the point cloud calculation works on the USB drivers involved in the

OpenNI framework. Using the same formula, it updates an array of �oating point triples every

time writeImage is called. An inherited class may use this array to plot the environment.

5.5.3 PreferenceActivity

On an Android device, the PreferenceActivity can be used to easily change all the

con�guration parameters, as has been mentioned in Sec. 5.2. “Buttons” inside this window,

which can be clicked but don’t change any setting, can also be used to display information or

to launch a background thread.

To allow accessing the USB device on an Android device, a few prerequisites have to be

made (see Fig. 5.14). A simple Java class called ExecuteAsRootBase can set up arbitrary

console commands and an inherited class will change permissions of the �le system to allow C

code read and write to the �le descriptors pointing at the connected USB device. A class called

OpenNIHelper from the OpenNI2 library will abstract the way requesting the hardware

access permission.

37

5 Design and Implementation

PreferenceActivity

Main

OpenNIHelper

+requestDeviceOpen(String, Activity)

Config

ExecuteAsRootBase

+execute() : boolean
+canRunRootCommands() : boolean Installation

~getCommandsToExecute() :
ArrayList<String>

Main(Config)

+int sourcePort, sinkPort, threads

+String source, compression, sink
+boolean compress, decompress
+String sourceUrl, sinkUrl

+short x, y
+byte depth, mode, fps
+int frameId
+float fovX, fovY
+boolean sinkControlled, benchmark
+boolean debug, condition

~getCommandsToExecute() :
ArrayList<String>

<<create>>

<<uses>>

<<uses>>

<<uses>>
SourceFactory

<<uses>>

<<uses>>

Implementations
that access the

depth sensor

Figure 5.14: Class diagram showing classes required to enable the depth sensor access on an

Android device.

While these classes need a reference to the running activity, it isn’t bad to defer the root

permission and initialization as much as possible, until the device access is needed in the

Source class. Putting it into a static �eld of the SourceFactory will provide later access.

This also explains why the SourceFactory actually handles the initialization in 5.10.

5.5.4 NIViewer

NIViewer is an application that provides all the streams of an attached sensor and lets the

user inspect the raw, unprocessed depth images or di�erent types of color maps. The user

may choose between di�erent streams and add or remove them as desired (see Fig. 5.15).

Additionally, sessions can be recorded in ONI �les, resolutions and sensor types can be changed

and distance can be measured. The NIViewer.java, a Java port of the NIViewer, does not have

the last two features, and both NIViewers crash or freeze after changing the resolution too

often, opening or closing streams etc.

38

5 Design and Implementation

Figure 5.15: The NIViewer for Android.

It is already an inherent part of the OpenNI2 framework and intended for testing purposes,

shows depth images of a connected sensor and allows for simple measurements. NIViewer for

Android is part of this work, because OpenNI2 has a couple of issues which prevents reliable

operation of the NIViewer and similar programs. Most of the necessary �xes in the Java code

are same to those described in Sec. 5.5.3, but the native library also requires modi�cations to

make it work on an Android device. Therefore, the �rst development should start with the

implementation of the NIViewer, because it already contains parts of the Java code required to

access the sensor.

5.6 Preparing the development environment

To use the Structure sensor on any platform, the OpenNI library is required. The binaries can

be obtained for Windows, Mac OS X and Linux, but although their developers promised to

release them for Android, the focus was kept on the development of the Structure SDK for iOS,

and further development of the OpenNI2 libraries were set aside.

The following sections describe the developing, compiling and packaging native libraries on

both the Windows and Android environment. Sec. 5.6.1 focuses on the OpenNI library and the

NIViewer, while Sec. 5.6.2 focuses on the integration of the CharLS library.

5.6.1 OpenNI and NIViewer on Android

The �rst application to be developed is the NIViewer (see Sec. 5.5.4), as a �rst attempt to

access the Structure sensor connected to an Android device. Until now, there has not been

39

5 Design and Implementation

any Android application available to access the Structure Sensor, even though it was requested

many times by users in the Structure SDK forums. Some test code written in C was claimed

by forum users to work, albeit having some limitations that arise when running C code on

an Android operating system. Before any OpenNI-based application runs on Android, the

OpenNI2 library has to be either deployed on an Android device or packaged inside an Android

application. The �rst method requires root access to the Android device.

Android is a Linux-like operating system with devices accessed like ordinary �les, and a

user interface that executes Java applications. It can run code written in C and compiled as a

native binary, but it can also run code written in Java. While it is commonly known that native

code runs more e�ciently than Java, using Java has a lot of advantages. Everything that can

be done on Java in an Android device is less likely to break in future versions, has less issues

with compatibility, processor architecture, �le structure, execution �ags (which disappear after

a reboot) and permissions. Java programs are controllable by the operating system’s scheduler,

and crashes are more easy to debug. On top of that, Java is a platform used by a lot of people

who don’t want to dive too deep into the technical details of a system.

There are two ways to include the OpenNI2 Native Libraries and the Java Wrapper into the

Android application. However, until July 17th 2015, only the �rst one was available.

The �rst possibility is to obtain the OpenNI2 SDK, which can be downloaded from Occipi-

tal’s website. Since there are no binaries available for the Android operating system, they need

to be compiled from source. Compiling further requires a speci�c build environment which is

di�cult to set up. The build script can only be run with modi�cations. Native libraries created

through this procedure are required to use the OpenNI2 module for the Android system. They

contain programming errors that cause memory leaks or crash during the access of image

streams.

In the trunk branch of the OpenNI2 GitHub project, several �xes have been made, but also

other changes to the build script, which requires further changes to create the updated libraries.

From both the master branch and the latest commit, a working version has been constructed.

One remaining disadvantage is, that the Eclipse Android Developer Tools are unable to include

and package the native libraries into the �nal application. It was necessary to root the mobile

device to store the libraries in the system directory of the device in order to load them.

With the release of the Android Studio 1.3 RC 3 by Google in July 17th 2015, a second
possibility was available to include native libraries into the application packages. Android

Studio could either compile the libraries from source for di�erent processor platforms if they

are placed into the magic “JNI” directory or embed the compiled library �les into the package

40

5 Design and Implementation

�le if they are placed into the magic “JNIlibs” directory. Android Studio automatically

generates a build script that is included into the build process of the application.

The required build environment of the OpenNI2 library is too complex to be adapted to the

Android Studio build process: dependencies and compilation instructions could not be parsed

correctly and caused hundreds of random build errors. Embedding the compiled libraries is thus

the only valid option. Moreover, they have to be recompiled again (using the �rst possibility),

because the version of the Android Native Development Kit (NDK) changed from 1.4 to 1.6,

and the current OpenNI library was incompatible to this change. A few �xes to the build script,

the JNI startup module, the Java wrapper and patches to missing functions in the clib for the

Android 5.0 build target allowed it to compile and run. In particular, Google silently changed

the core library functions called from the clib, such as atof, and the frameworks were relying

on their existence. Patching around it with a preprocessor macro helped out, without having to

modify these core libraries. Ultimately worth mentioning, the automatically generated gradle

scripts that successfully compile third party libraries do only work in Android Studio 1.3 RC 3,

when they were precisely adapted to the experimental build process introduced. The necessary

changes could only be derived from online troubleshooting websites and a few commits on

example Android projects that Google maintains to test their own build environment.

After all these modi�cations have been made, the OpenNI2 native libraries seem to work

�awlessly. Moreover, many problems such as the aforementioned spontaneous freezes or

crashes that happened on a Windows system were �xed by these patches. A simple Java-based

NIViewer application for Android could be compiled and shows that sometimes even a high

frame rate of 40 fps was achieved on a mobile device after closing and reopening the application

or closing and reopening streams multiple times, as they seem to have an impact on the frame

rate.

5.6.2 JNI port for CharLS

As described in Sec. 3, only a certain group of compression algorithms are suitable to compress

depth images. Compression algorithm libraries that are written in C or C++ need to be extended

by an interface in order to use them in Java. None of them are available for Android in the

form of a compiled library and have to be compiled from source. This can be done either on a

Linux or a windows system, while the Linux system is less troublesome. In contrast to Linux,

Windows doesn’t integrate the required build- and development environment. As the tests

will be run on a Windows system, a build has to be created on a Windows platform anyway.

For windows, di�erent development environment are available, such as Visual Studio,

DevCPP and CodeBlocks. Visual Studio is a commercial product and requires several gigabytes

41

5 Design and Implementation

of disk space. DevCPP doesn’t run without errors on newer Windows versions. The easiest of

them was CodeBlocks together with the build environment “XMing-64”. Some of the XMing

versions have bugs and create a library which is not correctly recognized by the Java Native

Interface. With the preferred environment (CodeBlocks and XMing-64), the required libraries

for the compression algorithms can be created for windows, including the interface for Java.

If the compiled libraries work with Windows, the source �les just need to be copied into the

Android Studio project using the magic directories, as since July 17th 2015 Android Studio can

create the required binaries without any further problems.

5.7 Conclusion

The design combines architectural patterns to achieve high e�ciency and low latency by

preventing queues, as well as low complexity and good extensibility by using simple interfaces,

the source-sink concept and factories. The system has been designed that every compression

algorithm works on the same mapped memory bu�er that are used for reading the depth

images from the source or used by the OpenNI library.

The factories add to the simplicity of the system con�guration. Since the same architectural

patterns have been applied to both mobile and stationary system code, the major components

are implemented in the same way on both systems, which adds to the simplicity of the system

as a whole. Only minor changes to the con�guration parameters allow for di�erent testing

setups.

As a by-product of integrating the necessary libraries for reading depth data, a fully functional

and reliable implementation of the NIViewer has been developed for Android.

42

6 Testing

The architecture can use di�erent compression algorithms, and many more con�guration

settings. The test shall discover which settings a�ect the performance and how. The most

important test results are the latency and frame rate. From the test results, the e�ectivity and

e�ciency of the compression algorithms shall be deduced. Also, the e�ectivity of the modi�ed

thread pool pattern shall be evaluated.

Sec. 6.1 outlines how the test is conducted. In Sec. 6.2, intermediate results are shown,

succeeded by the results of further tests conducted on the faster algorithms. In Sec. 6.3, the

results are summarized and observations of the test results are presented and discussed.

6.1 Test setup and procedure

The architecture can use di�erent compression algorithms, and many more con�guration

settings. The test shall discover which settings a�ect the performance and how. The most

important test results are the latency and frame rate. The test will be performed for each

compression algorithm, using 1, 2 and 4 compression threads and VGA (640x480 pixels) and

QVGA (320x240 pixels) depth frame resolution.

Before starting the test, a few modi�cations to the software have been made to show the

performance measurements on their respective interface. The Android device shows a few

additional lines below the start button, to display the FPS, compression rate and transmission

bandwidth. The stationary system shows the same information in the title bar of the image

viewer window.

43

6 Testing

High speed camera

Figure 6.1: The test setup, with the Structure sensor and a tripod-mounted high-speed camera.

To start testing, the systems are started and the camera is attached to the Android device.

The con�guration settings are updated for each test scenario. Between each test, both programs

are restarted and the con�guration settings are changed according to the next scenario.

The Structure sensor rests on a table pointing at a person holding a sheet of paper in his hands

(cf. Fig. 6.1). After the stream starts, the devices begin their performance measurements. As the

�rst measurement contains the delay of the connection setup, only the second measurement is

recorded. Each measurement runs for at least 5 seconds and at least 16 transmitted frames.

The latency will be measured after the performance measurement has been completed. A

high-speed camera recording at 240 frames per second records how the person drops the sheet

of paper. The �at panel display of the stationary system is also in its viewing angle, so the

video stream will also record when the �rst frame was completely transferred where the sheet

was dropped. On a computer, the recorded video is analyzed frame by frame, do determine the

frame index on the high-speed video sequence when the sheet is dropped and when the same

event is displayed on the computer screen of the stationary system.

6.2 Test Results

In the �rst test iteration, all implemented compression methods (No compression, CharLS,

De�ate level 9, De�ate level 5, De�ate level 2, Bz2 level 9, Bz2 level 1, Snappy) were run with

1, 2 and 4 compression threads respectively. The Structure sensor was con�gured to provide

44

6 Testing

640x480 pixel depth frames at 30 fps. Tab. 6.1 shows the performance testing results of this

measurement.

Another measurement performed is the frame count deviation. This measurement deter-

mines how many frames have begun their encoding / decoding after an encoded / decoded

frame is transferred or visualized. However, on both systems, this number was always zero,

and is not shown in the following tables.

Method Frames per second Compression ratio (%) Bandwidth (kB/s)

Threads 1 2 4 1 2 4 1 2 4

Uncompressed 3.59 3.85 3.60 100 100 100 2224 2369 2214

CharLS 3.60 3.63 3.40 34.52 32.44 34.48 748 724 720

De�ate level 9 1.25 1.46 1.51 8.11 8.32 9.31 68 74 86

De�ate level 5 5.96 6.35 5.57 9.65 9.20 10.34 362 357 387

De�ate level 2 10.59 10.94 10.91 12.99 12.15 11.92 811 814 801

Bz2 level 9 0.94 0.90 1.04 5.95 6.11 4.92 34 34 31

Bz2 level 1 0.61 0.59 0.57 7.60 8.80 8.80 28 32 31

Snappy 6.14 6.09 7.09 24.88 25.34 21.72 973 925 1027

Table 6.1: Performance results using 640x480 pixel depth frames.

Figure 6.2: Average frames per second achieved using 640x480 pixel depth frames.

45

6 Testing

A couple of compression algorithms appear to be far too slow for a smooth stream of depth

images. The second test iteration uses only the compression methods that have achieved at

least 6 fps in the �rst iteration (see Fig. 6.2), compared to the uncompressed transfer. Tab. 6.2

shows the performance testing results of this measurement.

Method Frames per second Compression ratio (%) Bandwidth (kB/s)

Threads 1 2 4 1 2 4 1 2 4

Uncompressed 14.53 15.49 13.37 100 100 100 2318 2488 2420

De�ate level 2 27.57 27.42 27.82 21.85 20.58 20.66 937 889 912

Snappy 20.41 19.56 19.07 26.34 26.74 27.82 833 820 849

Table 6.2: Performance results using 320x240 pixel depth frames.

From the compression algorithms, De�ate level 2 has achieved the highest frame rate. The

number of compression threads do not in�uence the compression rate, but minuscule changes

in the test chamber do. The third and last iteration was the sheet-dropping test. Fig. 6.3 shows

the test results from the latency test.

Figure 6.3: The latency measurement results from the sheet-dropping test.

A commonly accepted and reasonable feedback delay is around 100ms. The 100ms threshold

was established over 30 years ago. See [3], [19] and [20]. A latency of 100ms and greater is

de�nitely perceivable, even if it’s still reasonably fast. The measurement results for the De�ate

level 2 compression are very close to this value, and a gesture recognition system with such a

low latency is considered responsive, given that the further processing doesn’t add any further

latency.

46

6 Testing

6.3 Observations

First of all, the CharLS implementation of the Jpeg-LS compression algorithm is not suitable

for the productive usage. The transmission stopped randomly after about 40 transmitted frames,

and an unexpected error is thrown in the CharLS implementation code. Whether the exception

is thrown depends on the encoded image; some images cause crashes, while the majority

doesn’t. The CharLS encoding parameters have a setting for the maximum allowed error

(allowedLossyError in Sec. 5.5.2). Changing this to anything else than zero caused

the resulting decoded frame to appear as random snow. The test images generated from the

TestSource almost always crash the codec immediately, unless some carefully selected

seed values are hardcoded for the random generator �lling the squares.

The highest ever achieved wireless transfer bandwidth was 2488 kBytes/s, as shown in

Tab. 6.2. The compressed transmissions did not need this amount of bandwidth. The band-

width required is the product of the compressed frame size in bytes and the frame rate. If

the compression rate is nearly constant and the maximum bandwidth was 2500 kBytes/s, a

theoretical frame rate limit can be derived. While this number can be seen as a limiting factor

for uncompressed transmission, the compression algorithms’ performance were limited by

other factors, such as the processing power.

The Bz2 compression algorithm achieves a higher compression rate using level 9 instead of

level 1. Surprisingly, the stronger compression achieved a higher frame rate.

De�ate level 2 and Snappy were the only compression algorithms fast enough to be con-

sidered in the test iteration 2, where a lower resolution was used. Surprisingly, reducing the

frame size had an impact on the compression ratio for De�ate, but not for Snappy.

Although the Galaxy Tab 2 10.1 Wi-Fi uses a 1 GHz dual-core processor, the parallelization

mentioned in Sec. 5.4 and choosing 1, 2 or 4 compression threads surprisingly did not have

any e�ect on the frame rate and their e�ects on the latency are negligible, or rather resulting

from errors or inaccuracy in measurement.

A possible explanation to this could be, that the OpenNI2 drivers run on a single thread

and use up one processor core entirely for the connection with the sensor (no matter how

many frames are obtained by the application) and leave only one core for the application.

The resulting e�ect is called starvation, and causes the Java application to lack e�ective

parallelization gains.

The best latency was achieved with the De�ate level 2 compression. This result also came

as a surprise, as the compression work�ow virtually adds a very short queue of unprocessed

frames on both systems respectively, compared to the uncompressed transmission.

47

6 Testing

An explanation to the good latency is, that the compression or obtaining of the frames is

slower than any later step. Once the frame is compressed, it is transferred over a very fast

network with enough headroom for the transmission bandwidth, and the stationary system

requires almost no time to decompress it. The TCP streams don’t queue up and the time

required for compressing and transferring a single frame is thus shorter than the time required

to transfer an uncompressed frame. Also, in an uncompressed transmission, the TCP stack may

suck in a few packets before blocking the transmission, which ultimately cause frames to be

dropped from the sensor device. A typical TCP connection can bu�er 1 to 3 complete frames,

which account for the signi�cantly higher latency, as long as the network is the slowest link in

the chain. If the frame rate of an uncompressed transmission is intentionally throttled on the

mobile device, the latency may also drop signi�cantly.

Figure 6.4: Average compression ratio of di�erent codecs.

The highest compression ratio of around 5.6% was achieved by Bz2 level 9 (see Fig. 6.4).

Although its frame rate is too slow for transmission, it is very bene�cial for archiving recorded

depth images on a �le system.

It is very surprising that CharLS didn’t have a chance against generic stream compression

algorithms, although it should have had a better knowledge about correlations between rows.

The low latency of 133 milliseconds and the high frame rate of almost 28 frames per second

using the De�ate level 2 codec in a QVGA resolution makes it very suitable for gesture

recognition and environment detection.

48

7 Conclusion and Perspective

This work has proven that a fast and low-latency transmission of depth frames from a mobile

device is possible, and usable for remote processing. It has also proven that compression will

indeed increase the achievable frame rate and reduce the latency signi�cantly. The performance

is suitable for hand detection, online 3-D reconstruction algorithms and object detection. When

the highest possible resolution is used, signi�cantly lower frame rates have been achieved.

The result of this work is a set of working native libraries, streaming clients and servers, tools

and code that can be used by developers and users of the Structure sensor. When integrating

detection algorithms into this framework, their latency must be added to the test results. In

future, these latencies can be further reduced (see below).

For this purpose, methods for point cloud streaming were realized through a depth image

compression method tiered with an extraction of depth clouds out of depth images, were

proposed in Sec. 2.

Existing libraries to retrieve depth image data from the sensor were examined in Sec. 3. Point

cloud compression algorithms were compared with depth image compression algorithms, and

it has been shown that depth image compression algorithms are currently the only promising

practice to stream depth information e�ciently and with low latency.

In Sec. 5, a comprehensive solution to stream and redistribute point clouds was presented

that ful�lled the requirements of extensibility, maintainability and performance mentioned in

Sec. 4, by using existing architectural patterns. There are numerous e�cient methods to convert

depth images to point clouds. OpenNI and the point-cloud library (PCL) contain algorithms

for this purpose, the latter even contains point cloud compression algorithms. Including

these libraries is su�cient for this purpose. However, the WorldCalculatorSink (see

Sec. 5.5.2) contains a formula extracted from the OpenNI native library. Unlike the OpenNI

library, it can do the conversion remotely, without direct access to the original OpenNI device,

which would otherwise be required. This way, the mobile device is completely freed from the

task of computing point cloud data.

In future, there may exist more compression algorithms that can be examined and compared

to the ones used in this work. Bugs of the CharLS codec may be discovered and �xed. Maybe

49

7 Conclusion and Perspective

the integration of the JCTVC reference encoder in Java or using hardware accelerated high bit

depth video compression codecs will become easier or suitable libraries become available for

the mobile platforms.

As hardware and software is continually evolving, modern high-end smartphones possess

stronger and stronger processing units with faster computation speeds. These, or even specially

crafted devices may be powerful enough to do more processing on the mobile device or use

higher resolutions. With this, examining point cloud processing and compression may also

become more and more important.

Mobile devices with integrated see-through displays are a global trend. If a depth sensor

is attached or integrated to a device with su�cient reserve capacity, the mobile device will

not only transmit depth images: it can in parallel be used as a screen to realize mixed reality

applications. The hand position can be determined remotely to control an application that is

rendered in 3-D on the mobile device. Such a device can then achieve capabilities otherwise

only achieved by products not yet available such as Microsoft’s HoloLens.

50

Bibliography

[1] Bellard, F. BPG Image format. http://bellard.org/bpg/. Accessed: 2015-09-

06.

[2] Benko, H., Jota, R., and Wilson, A. Miragetable: freehand interaction on a projected

augmented reality tabletop. In Proceedings of the SIGCHI conference on human factors in

computing systems (2012), ACM, pp. 199–208.

[3] Card, S. K., Robertson, G. G., and Mackinlay, J. D. The information visualizer, an

information workspace. In Proceedings of the SIGCHI Conference on Human factors in

computing systems (1991), ACM, pp. 181–186.

[4] Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J., Fright, W. R., McCallum,

B. C., and Evans, T. R. Reconstruction and representation of 3d objects with radial

basis functions. In Proceedings of the 28th Annual Conference on Computer Graphics and

Interactive Techniques (New York, NY, USA, 2001), SIGGRAPH ’01, ACM, pp. 67–76.

[5] Coatsworth, M., Tran, J., and Ferworn, A. A hybrid lossless and lossy compression

scheme for streaming rgb-d data in real time. In Safety, Security, and Rescue Robotics

(SSRR), 2014 IEEE International Symposium on (Oct 2014), pp. 1–6.

[6] Daribo, I., Furukawa, R., Sagawa, R., and Kawasaki, H. Adaptive arithmetic coding for

point cloud compression. In 3DTV-Conference: The True Vision - Capture, Transmission

and Display of 3D Video (3DTV-CON), 2012 (Oct 2012), pp. 1–4.

[7] de Vaan, J. CharLS, a JPEG-LS library. https://charls.codeplex.com/.

Accessed: 2015-09-06.

[8] Epson America. Epson Moverio BT-200. http://www.epson.com/cgi-bin/
Store/jsp/Landing/moverio-bt-200-smart-glasses.do. Ac-

cessed: 2015-07-10.

[9] Francis, M. J. jbzip2 - A Java bzip2 library. https://code.google.com/p/
jbzip2/. Accessed: 2015-09-06.

51

http://bellard.org/bpg/
https://charls.codeplex.com/
http://www.epson.com/cgi-bin/Store/jsp/Landing/moverio-bt-200-smart-glasses.do
http://www.epson.com/cgi-bin/Store/jsp/Landing/moverio-bt-200-smart-glasses.do
https://code.google.com/p/jbzip2/
https://code.google.com/p/jbzip2/

Bibliography

[10] Google. Project Tango – Google. https://www.google.com/atap/
project-tango/. Accessed: 2015-07-10.

[11] Gumhold, S., Kami, Z., Isenburg, M., and Seidel, H.-P. Predictive point-cloud com-

pression. In ACM SIGGRAPH 2005 Sketches (New York, NY, USA, 2005), SIGGRAPH ’05,

ACM.

[12] Hilliges, O., Kim, D., Izadi, S., Weiss, M., and Wilson, A. Holodesk: Direct 3d in-

teractions with a situated see-through display. In Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems (New York, NY, USA, 2012), CHI ’12, ACM,

pp. 2421–2430.

[13] Huang, Y., Peng, J., Kuo, C.-C. J., and Gopi, M. Octree-based progressive geometry coding

of point clouds. In Proceedings of the 3rd Eurographics / IEEE VGTC Conference on Point-

Based Graphics (Aire-la-Ville, Switzerland, Switzerland, 2006), SPBG’06, Eurographics

Association, pp. 103–110.

[14] Lavi, O. android pointcloud viewer - ROS Wiki. http://wiki.ros.org/
android_pointcloud_viewer, 2015. Accessed: 2015-07-10.

[15] Leap Motion. Leap Motion | Mac & PC Motion Controller for Games, Design, Virtual

Reality & More. https://www.leapmotion.com/. Accessed: 2015-09-06.

[16] Lee, S., Jeon, S., Chaji, R., and Nathan, A. Transparent semiconducting oxide technology

for touch free interactive �exible displays. Proceedings of the IEEE 103, 4 (2015), 644–664.

[17] Lo, R. Odroid-X + Android 4.0.4 + OpenNI + OpenCV +

PCL. http://raymondlo84.blogspot.ca/2012/11/
odroid-x-android-404-openni-opencv-pcl.html. Accessed:

2015-07-10.

[18] Merry, B., Marais, P., and Gain, J. Compression of dense and regular point clouds.

In Proceedings of the 4th International Conference on Computer Graphics, Virtual Reality,

Visualisation and Interaction in Africa (New York, NY, USA, 2006), AFRIGRAPH ’06, ACM,

pp. 15–20.

[19] Miller, R. B. Response time in man-computer conversational transactions. In Proceedings

of the December 9-11, 1968, fall joint computer conference, part I (1968), ACM, pp. 267–277.

[20] Myers, B. A. The importance of percent-done progress indicators for computer-human

interfaces. In ACM SIGCHI Bulletin (1985), vol. 16, ACM, pp. 11–17.

52

https://www.google.com/atap/project-tango/
https://www.google.com/atap/project-tango/
http://wiki.ros.org/android_pointcloud_viewer
http://wiki.ros.org/android_pointcloud_viewer
https://www.leapmotion.com/
http://raymondlo84.blogspot.ca/2012/11/odroid-x-android-404-openni-opencv-pcl.html
http://raymondlo84.blogspot.ca/2012/11/odroid-x-android-404-openni-opencv-pcl.html

Bibliography

[21] Occipital. OpenNI 2 API Reference. http://com.occipital.openni.s3.
amazonaws.com/openni2_doxygen.zip. Accessed: 2015-07-10.

[22] Occipital. Structure Sensor Depth Precision. http://io.structure.assets.
s3.amazonaws.com/structure_sensor_precision.pdf. Accessed:

2015-07-10.

[23] Oggier, T., Lustenberger, F., and Blanc, N. Miniature 3d tof camera for real-time

imaging. In Perception and interactive technologies. Springer, 2006, pp. 212–216.

[24] Ohshima, T., and Tanaka, C. Mr coral sea: Mixed reality aquarium with physical mr

displays. In SIGGRAPH Asia 2014 Emerging Technologies (New York, NY, USA, 2014), SA

’14, ACM, pp. 10:1–10:2.

[25] Ohta, Y., and Tamura, H. Mixed Reality: Merging Real and Virtual Worlds, 1 ed. Springer

Publishing Company, Incorporated, 2014.

[26] Pece, F., Kautz, J., and Weyrich, T. Adapting standard video codecs for depth streaming.

In Proceedings of the 17th Eurographics Conference on Virtual Environments & Third

Joint Virtual Reality (Aire-la-Ville, Switzerland, Switzerland, 2011), EGVE - JVRC’11,

Eurographics Association, pp. 59–66.

[27] Rane, S. D., and Sapiro, G. Evaluation of jpeg-ls, the new lossless and controlled-lossy

still image compression standard, for compression of high-resolution elevation data.

Geoscience and Remote Sensing, IEEE Transactions on 39, 10 (2001), 2298–2306.

[28] Ricci, A., Tummolini, L., Piunti, M., Boissier, O., and Castelfranchi, C. Mirror worlds

as agent societies situated in mixed reality environments. In 13th International Conference

on Autonomous Agents and Multiagent Systems (AAMAS 2014): The 17th International

Workshop on Coordination, Organisations, Institutions andNorms (2014), pp. AAMAS2014–

W22.

[29] Rusu, R., and Cousins, S. 3d is here: Point cloud library (pcl). In Robotics and Automation

(ICRA), 2011 IEEE International Conference on (May 2011), pp. 1–4.

[30] Savakis, A., and Piorun, M. Benchmarking and hardware implementation of jpeg-ls. In

Image Processing. 2002. Proceedings. 2002 International Conference on (2002), vol. 2, IEEE,

pp. II–949.

53

http://com.occipital.openni.s3.amazonaws.com/openni2_doxygen.zip
http://com.occipital.openni.s3.amazonaws.com/openni2_doxygen.zip
http://io.structure.assets.s3.amazonaws.com/structure_sensor_precision.pdf
http://io.structure.assets.s3.amazonaws.com/structure_sensor_precision.pdf

Bibliography

[31] Schnabel, R., and Klein, R. Octree-based point-cloud compression. In Proceedings

of the 3rd Eurographics / IEEE VGTC Conference on Point-Based Graphics (Aire-la-Ville,

Switzerland, Switzerland, 2006), SPBG’06, Eurographics Association, pp. 111–121.

[32] Shatte, A., Holdsworth, J., and Lee, I. Mobile augmented reality based context-aware

library management system. Expert Systems with Applications 41, 5 (2014), 2174 – 2185.

[33] Siever, T. News: Microsoft kündigt Datenbrille mit volumetrischen Inhalten an| medien-

sprache.net. Torsten Siever, mediensprache.net, 2015.

[34] Sundstrom, D. Snappy in Java. https://github.com/dain/snappy. Ac-

cessed: 2015-09-06.

[35] Thalmic Labs Inc. Myo Gesture Control Armband - Wearable Technology by Thalmic

Labs. https://www.myo.com/. Accessed: 2015-09-06.

[36] Weichel, C., Lau, M., Kim, D., Villar, N., and Gellersen, H. W. Mixfab: A mixed-

reality environment for personal fabrication. In Proceedings of the 32Nd Annual ACM

Conference on Human Factors in Computing Systems (New York, NY, USA, 2014), CHI ’14,

ACM, pp. 3855–3864.

54

https://github.com/dain/snappy
https://www.myo.com/

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbstständig verfasst

und nur die angegebenen Hilfsmittel benutzt habe.

Hamburg, 11. September 2015 Björn Eberhardt

	1 Motivation
	1.1 Structure of the paper

	2 Objectives
	3 Related Work
	3.1 Depth sensors on mobile devices
	3.2 Depth image and point cloud streaming
	3.3 Point Cloud Compression
	3.3.1 Adaptive arithmetic coding for point cloud compression
	3.3.2 Predictive Point-cloud Compression
	3.3.3 Octree-based Point-cloud Compression

	3.4 Depth Image Compression
	3.4.1 Three channel 8-bit encoding
	3.4.2 Frame-by-frame encoding

	3.5 Conclusion

	4 Requirements Analysis
	4.1 Functional requirements
	4.2 Non-functional requirements

	5 Design and Implementation
	5.1 System Architecture
	5.2 Configurability of the whole system
	5.3 Architectural patterns
	5.3.1 Source-sink concept
	5.3.2 Strategy pattern
	5.3.3 Factory pattern

	5.4 Program flow
	5.4.1 Multi-threading

	5.5 Class diagram
	5.5.1 Main routine and parallelization
	5.5.2 Source-sink concept and its factories
	5.5.3 PreferenceActivity
	5.5.4 NIViewer

	5.6 Preparing the development environment
	5.6.1 OpenNI and NIViewer on Android
	5.6.2 JNI port for CharLS

	5.7 Conclusion

	6 Testing
	6.1 Test setup and procedure
	6.2 Test Results
	6.3 Observations

	7 Conclusion and Perspective

