
D���������� �� 	
�	����� ����	���

Environment for Heating Circuits on the Basis

of the UDOO developing board utilizing Scilab

/ Xcos

Master’s Thesis

by

Patrick Kohl

Faculty of Life Sciences

Department of Renewable Energies

&

Department of Process Engineering

P������ ����

Development of a Real-Time Simulation Environment

for Heating Circuits on the Basis of the UDOO

developing board utilizing Scilab / Xcos

Master’s thesis handed in as part of the master’s examination for the degree programme

of Renewable Energy Systems (M.Eng.) at the departments of Umwelttechnik and Ver-

fahrenstechnik in the faculty of Life Sciences at the university Hochschule für Angewandte

Wissenschaften Hamburg.

Hand in date: June 9, 2015

Submitted by: Patrick Kohl (B.Sc.), Student number: 1867164

1st supervisor: Dr.-Ing. G. Lichtenberg

2nd supervisor: Dipl.-Ing. Nico Mock

i

A�������

Keywords

hardware-in-the-loop (HIL), real-time simulation, heating system, PI-controller, UDOO,

DDC4200, Scilab, Xcos, Arduino

Abstract

This thesis outlined the development of a real-time, hardware-in-the-loop (HIL) simulation

of a heating system for a non-residential building on the basis of the UDOO development

board. The result was a low-cost HIL simulation of an open-source software modelled

heating system, controlled by a PI-controller in a feedback loop. The components of the

HIL included the DDC automation station and the software heating model running on

an OS Ubuntu laptop computer. A discrete-time model of the heating system was devel-

oped in the open-source Scilab/Xcos programming language on the basis of an existing

continuous-time Matlab/Simulink R© model. An Arduino IDE sketch was implemented,

managing the I/O and serial-USB data transfer. An electrical interface was developed

for the physical signal transfer. First simulation results prove the operational readiness

of the HIL. The control variable is plotted over the simulation time showing a curve pro-

gressions converging towards a set-point temperature. The modular technical platform

created enables future developers to extend the existing controlling functions of the HIL

simulation.

ii

F ! " # $ %&'

iii

()*+,-./01/2/+3

I thank Kai Kruppa for the outstanding support he has offered me, whilst developing this

thesis. I wish to express my gratitude to my Professor Dr. G. Lichtenberg for his valuable

guidance during my studies. My gratitude also goes to the team of the electronics lab of

the HAW-Hamburg, especially to Dipl.-Ing. Nico Mock and Dipl.-Ing. Jan-Klaas Böhmke

for their help in solving many practical problems and helping me navigate through the

shallows of Linux. My special thanks goes to Lydia Schulze Heuling, Jona Schwarz,

Fabian Kording, Lea Drolshagen and and Erik Pietsch for their constructive feedback,

proofreading and moral support. I am most grateful for the love, tolerance, patience and

abiding support of Sandra Janßen, without it I could not have finished this thesis. Finally,

my heart-felt gratitude goes to my parents for their selfless support during my studies.

iv

4567898:;<=

I hereby declare that I produced the present work myself and only with the help of the

indicated aids and sources.

Hamburg, June 9, 2015 Patrick Kohl

v

C>?@BEGHI

Copyright 2015

Patrick Kohl

All Rights Reserved

vi

JKLMNLMO

List of Figures xi

List of Tables xii

Nomenclature xiii

1 Introduction 1

2 HIL system 3

2.1 Motivation . 3

2.2 Overview . 3

3 Theory: controller and heating system model 5

3.1 Control system . 5

3.2 PI-Controller of the DDC4200 automation station 6

3.3 Heat power balances . 8

3.4 Discretization of continuous heating system model 9

3.5 Components of the heating system model 10

3.5.1 Building model . 10

3.5.2 Pump model . 12

3.5.3 Consumer model . 14

3.5.4 Boiler model . 16

3.6 Block diagram of the heating system model 20

4 Hard- and Software used in the HIL 21

4.1 Software in the HIL . 21

4.1.1 Arduino IDE . 21

4.1.2 Scilab/Xcos . 22

4.1.3 Linux Ubuntu . 23

4.2 Hardware in the HIL . 24

vii

QRSRT UVWW XYZ[\] ^_`ab b]c]_de]Zf d\`fg_ae R R R R R R R R R R R R R R 24

4.2.2 DDC4200 automation station and laptop computer 26

5 I/O data transfer in the HIL 28

5.1 I/O signal route . 28

5.2 I/O Software functions . 28

5.2.1 Scilab/Xcos functions . 28

5.2.2 Arduino functions . 30

5.3 I/O hardware: electrical interface . 31

5.4 Electrical interface: calculations . 34

5.4.1 Differential amplifier . 34

5.4.2 Voltage divider . 35

6 Simulation results of test environment and discussion 37

7 Troubleshooting 41

8 Conclusion & Outlook 43

9 Appendix I

9.1 Software setup . I

9.1.1 Ubuntu: removing and updating package repositories I

9.1.2 Compiling & configuring Scilab . I

9.1.3 Connecting to the USB serial interface IV

9.2 Software code . V

9.2.1 Arduino Sketch . V

9.2.2 Code in the XCOS serial communication block VI

9.2.3 Scilab serial communication script VI

9.2.4 Scilab adapted openserial function VIII

9.3 Datasheets . X

9.3.1 UDOO specifications . X

viii

hijik lmnop qrnjs i XII

9.3.3 Freescale i.MX6 ARM Cortex-A9 quad core XIII

9.3.4 DDC 4200 . XVII

9.3.5 Operational amplifier . XVIII

9.3.6 Potentiometer . XIX

9.3.7 DC-to-DC converter . XX

Glossary XXI

References XXIII

ix

tuvw xy zu{|}~v

List of Figures

2.1 Schematic of HIL simulation . 4

3.1 Control system schematic including the plant and controller 6

3.2 Feedback control loop . 7

3.3 PI-controller block diagram . 7

3.4 Continuous-time integral function block in Xcos 10

3.5 Discrete-time delay function block in Xcos 10

3.6 The building model with the radiator as consumer 11

3.7 Xcos block diagram of building model . 12

3.8 Ideal pump characteristic . 13

3.9 Xcos block diagram of pump model . 14

3.10 Xcos consumer model with input and output parameters 15

3.11 Xcos block diagram of consumer model . 16

3.12 The boiler model with the input and output parameters 17

3.13 Xcos block diagram of boiler model . 19

3.14 Xcos block diagram of thermal power loss 19

3.15 Xcos block diagram of power difference between flow and return 19

3.16 Xcos block diagram of input power . 19

3.17 Xcos block diagram of emergency stop calculation 20

3.18 Xcos block diagram of heating system model including serial communica-

tion module . 20

4.1 Arduino sketch - basic structure . 22

4.2 10-bit DAC output voltage on DAC0 . 24

4.3 Data transfer between SAM3x and i.MX6 via UART-serial 25

4.4 Temperature readings from the DDC menu 27

5.1 Serial communication block diagram . 30

5.2 I/O interface schematic of the UDOO and peripheral circuitry 32

5.3 Photo of UDOO connected to stripboard with differential amp 33

x

���� �� �������

5.4 Photo of stripboard connected to DDC . 34

5.5 Voltage divider reducing the output voltage from the DDC 35

6.1 Simulation results with identical parameters 38

6.2 Simulation results with modified parameters 39

7.1 A constant Xcos function block with a product as single value 42

xi

���� �� ������

List of Tables

2 Building model input and output variables 11

3 Building parameters . 11

4 Pump model input and output variables 13

5 Pump parameters . 13

6 Consumer model input and output variables 15

7 Consumer parameters . 15

8 Boiler model input and output variables 17

9 Boiler parameters . 18

xii

������������

Nomenclature

Symbol Units Description

α modulates heat input (0...1) [−]

boilerInit starting temperature for Tboil [K]

onOff boiler switch (1=on, 0=off) [−]

c specific heat capacity of water [J
kgK

]

emerStop indicator for emergency

shutdown

[−]

emerStopT ime emergency stop time [s]

emerTempStop emergency shut-down

temperature

[K]

InitTempCon initial temp. of consumer [K]

kb building heat capacity [J
K
]

kb,a heat transfer coeff. build. →

ambient

[W
m2K

]

kboil power loss coeff. [kW
K
]

kr,b heat transfer coeff. radiator →

building

[W
m2K

]

Pmin min. boiler output [kW]

Pn rated boiler output [kW]

Q thermal energy [J]

Q̇in heat power input [kW]

Q̇out heat power ouput [kW]

ρ density of water [kg
m3]

ts sampling time [s]

Ta ambient temperature [K]

Tamb ambient temperature of boiler [K]

Tb building temperature [K]

xiii

 ¡¢£¤¥¦§¨©ª£

Tb,set set building temperature [K]

∆Tb temperature difference [K]

TbInit starting value build. temperature [K]

Tr return flow temperature [K]

Ts supply flow temperature [K]

V̇ input and/or output volume flow [m
3

s
]

V̇a volume flow amplitude [m
3

s
]

Vb volume boiler [m3]

V̇m mean volume flow [m
3

s
]

VV er volume consumer [m3]

w set-point temperature [◦C]

xiv

«¬®¯°±²³¯¬

1 Introduction

In striving to develop more energy efficient heating systems the motivation for devel-

oping model-based methods for heating solutions in non-residential buildings, compare

favourably high to the heuristic methods, which often exist to date [11]. Often, the cur-

rent practise in controlling a heating system is that the boiler settings and thermostat

programming are determined arbitrarily [14]. If the boiler is oversized, even a modulated

boiler may turn to an on / off system. Furthermore, when sudden changes to the system

occur, like a rapid dropping of the outside temperature, more intelligent controllers in the

control loop like MPC (model predictive control) is needed [16]. The challenge is that

heating systems are individually planed, so that a component-based modelling platform

would be desirable.

Currently, an existing continuous-time heating system model derived from first principle

equations exists [10]. Set parameters of this model were generated from measurement data

of a real non-residential building [12]. However, for effective MPC computing a discrete-

time model is needed [5]. A numerical programming language for calculating dynamic

systems, like the Matlab/Simulink clone Scilab/Xcos masters this task. Furthermore, an

automation station with set-point controller functionality is provided by the company

Kieback & Peter GmbH & Co.KG to the HAW-Hamburg. Thus a software model simu-

lating thermal behaviour of a heating system may be controlled by a PI-controller. Using

the functionality of an I/O-board, like an UDOO single board computer to transfer the

data across the interfaces, a simplified hardware-in-the-loop (HIL) simulation is set-up.

This real-time environment is ready to be used for modular, component orientated de-

velopment of heating systems. As it is advantageous for such a modular platform to be

cost-efficient, the software implemented is open source and the UDOO single board com-

puter, open-hardware. This thesis discusses a set-up of such a real-time HIL simulation.

In chapter 2 the motivation for the HiL is described, introducing the components and the

controlling signals for data transfer across the interface. This is followed by a description

of the applied theory for the controller and the thermodynamic principles of a heating

system model in chapter 3. Firstly, an overview of the control system is presented and the

PI-controller theory formulated. Secondly, the physical principle equations of the heat-

ing system are outlined and the continuous-time model discretized, resulting in difference

equations for the system states of each component for the heating system model.

The following chapter 4 gives a detailed description of the hardware and software com-

ponents needed for the HIL simulation. The Arduino IDE for serial and I/O data man-

agement, the programming language Scilab/Xcos and the OS Ubuntu is introduced. The

1

´µ¶·¸¹º»¶¼¸µ

UDOO development board, DDC4200 automation station and laptop computer specifica-

tions are presented.

Chapter 5 outlines the I/O-signal route between the HIL simulation components, as well

as the serial and I/O functions of Scilab and the Arduino IDE. Furthermore, the electrical

interface for the data transfer and the calculations for the required circuity is specified.

In chapter 6 the results of the working HIL simulation are presented and discussed, ac-

complishes underlined and further investigations proposed.

A troubleshooting guide for errors and bugs identified during projecting is presented in

chapter 7, while chapter 8 rounds off the discussion with the conclusion and an outlook.

2

½¾¿ ÀÁÀÂÃÄ

2 HIL system

2.1 Motivation

A HIL simulation is a technique to test complex real-time embedded systems [8]. In this

case the thermal behaviour of a heating system model is simulated, controlled by an exter-

nal PI-controller within a feedback control loop. The objective of this project is to create

a low-cost, open source developing platform which may be modularly extended. There-

fore, the UDOO single board computer was chosen for its high processing performance

and relative low cost. Similarly, for the simulation software the numerical programming

language Scilab/Xcos on 32-bit Ubuntu OS was selected. Scilab/Xcos is a popular, free-

of-cost Matlab/Simulink clone and like the implemented open source Ubuntu OS, has a

large web-based development community [20]. Thus an open source platform is created

for developing individual model based solutions for specific heating systems within the

scope of the Observe research project [11].

2.2 Overview

The HIL simulation reproduces the thermal behaviour of a heating system in real-time

by software and hardware components. A DDC4200 automation station is connected via

a UDOO single board computer to a Xcos software model of a heating system running on

a laptop computer, as described in chapter 4.2.

The data transfer between the DDC4200 automation station and the UDOO development

board is handled by an electrical interface, as described in chapter 5.3. The development

software Scilab/Xcos and Arduino IDE are outsourced on the laptop, further detailed in

chapter 4.1.

Figure 2.1 shows the data transfer between the HIL components, specifically the gener-

ated control variable Ts and the actuating variable α as described in chapter 5.2. The

Xcos heating system model generates Ts and accepts the actuating variable α from the

PI-controller. The signal transfer between the UDOO and the laptop is processed via

the USB to UART-serial bridge, whilst the data between the UDOO and the DDC4200

is processed via the UDOO’s I/O-pins. The I/O-transfer of data is described in chapter 5.

3

ÅÆÇ ÈÉÈÊËÌ

ÍÎÏÐre 2.1: Schematic of HIL simulation, including the signal route of control variable
Ts and actuating variable α (Source: own sketch, photo: [24])

4

ÑÒÓÔÕÖ× ØÔÙÚÕÔÛÛÓÕ ÜÙÝ ÒÓÜÚÞÙß àÖàÚÓá áÔÝÓÛ

3 Theory: controller and heating system model

This chapter outlines the control system under discussion and introduces the theoretical

principles of the controller and the heating system. A detailed description of each compo-

nent of the Xcos heating system model is given and the calculation for the system state

variables defined.

3.1 Control system

The control system under investigation is made up of the plant and the controller. The

plant or heating system consists of a boiler, a pump and the building, within which the

consumer in shape of a radiator is installed. The heating system model is programmed in

Xcos and generates the control variable supply flow temperature Ts (also state variable)

which is transmitted to the controller. The equations for this non-linear system are de-

scribed in chapter 3.5.

The controller is a software module installed on the DDC4200 automation station as a

fixed set-point controller (PI-Controller), referred to in chapter 3.2. It returns a modu-

lated signal (actuating variable) α which regulates the burner of the boiler.

The basis for the following discussion is the continuous-time heating system model (build-

ing model, consumer model, pump model and boiler model) developed by K. Kruppa. The

continuous-time model components are detailed in the HeatLib [10], a library of Simulink R©

functions blocks for simplified heating systems. The set parameters for the heating system

model described in the following are generated from measurement data from an official

building of the district council of Düsseldorf, Germany [12]. The discretization step of

the continuous-time model is described in chapter 3.4.

The following state variables for the components of the heating system model under

discussion are defined as:

• Tb : building temperature ⇒ calculated by the building model

• Tr : return flow temperature ⇒ calculated by the consumer model

• Ts : input flow temperature ⇒ calculated by the boiler model.

Figure 3.1 shows a schematic overview of the control system including the state variables.

5

âãäåæçè éåêëæåììäæ íêî ãäíëïêð ñçñëäò òåîäì

óôõöre 3.1: Control system schematic including the plant and controller. The dotted line
shows the location of the components in the HIL simulation. (Source: own
sketch, photo: www.wikipedia.org)

3.2 PI-Controller of the DDC4200 automation station

The controller implemented in the control system in Figure 3.1 of chapter 3.1 is a fixed

set-point controller, set to a two term proportional and integral controller (PI-Controller)

within the DDC automation station software. Figure 3.2 shows the controller embedded

into a feedback control-loop [17]. The control variable Ts and the actuating variable α

from the Xcos heating system model are assigned y and u respectively. In reference to

chapter 5, the control variable y or Ts is passed from the Xcos heating system via the

UDOO to the DDC, while the actuating variable u or α is sent back to the heating system.

The set-point variable w in ◦C is set in the controller software. The difference of the set-

point variable w and the control variable y is named control deviation e which is passed to

the PI-controller. The actuating variable u is described in the figure 3.3. The disturbance

variable d is the ambient temperature Ta of the Xcos building model within the heating

system described in chapter 3.5.1.

6

÷øùúûüý þúÿTûú��ùû �ÿ� øù�T�ÿ� �ü�Tù� �ú�ù�

F��	re 3.2: Feedback control loop with set-point variable w, control deviation e, actuat-
ing variable u, disturbance variable d and control variable y (Source: own
sketch)

Figure 3.3 shows the block diagram of a PI-characteristic. The PI-controller combines both

positive characteristics of a P- and I-controller. The control deviation e passes through

both the proportional and integral component. The respective outputs are superimposed

to the actuating variable u.

F��	re 3.3: PI-controller block diagram (Source: own sketch)

The reset time Ti and the proportional gain Kp are the characteristic parameters of a PI-

controller and function as tuning parameters. According to BEIER following relationships

are described [2]. The proportional gain:

KP =
up

e
(3.1)

and the integral gain:

KI =
∆ui

e
·
1

∆t
(3.2)

7

����� �������� ��� ������� ������ ����

with ∆t the integration time, define the reset time Ti when the actuating variables up and

ui are equated, resulting in:

Ti =
KP

KI

. (3.3)

The reset time Ti thus provides a weight to the integral gain KI so that the influence of

integral action can be independently adjusted. Therefore a greater reset time minimizes

the integral gain KI of the PI-controller and vice versa, while the relationship of the P-and

I-part is fixed.

3.3 Heat power balances

The physical basis of the heating system model is the energy balance described by the

first law of thermodynamics, the conservation of energy states [21]. The total energy of

an isolated system is constant, therefore energy is not lost, but may change it’s form. As

no mechanical work is done, one component of the system supplies another with thermal

energy. This thermal energy or heat Q is stored in the system and is described by

Q = c · ρ · V · T, (3.4)

with c being the specific heat capacity, ρ the density at temperature T with volume V .

The medium used here is potable water. Taking into account the time dependency of

temperature and volume, the first derivative of equation 3.4, whilst applying the product

rule, results in

Q̇ = ρ · c(V̇ T + V Ṫ), (3.5)

with Q̇ as heat power. Depending on the environment for calculating the heat power Q̇,

either the temperature T or the volume V is considered constant over time, thus converg-

ing towards zero when differentiated. Accordingly, the partial derivatives of equation 3.5

by case are described by

Q̇ =

ρ · c · V̇ · T for T = const

ρ · c · V · Ṫ for V = const.
(3.6)

8

����� ! "�#$��%%�� &#' ��&$(#) * *$�+ +�'�%

The heating system model components described in the following chapters do not take

into account all the physical effects encountered in reality, but offer a simplified model

keeping the core functionality in place.

Equation 3.6 is the starting point for calculating the state variables of each of the heating

system components at a nodal point in the Xcos block diagram, described in the following

chapters. In the Xcos diagrams the notation e.g. dV is used for V̇ , as the latter may not

be depicted. Likewise x′ is used for ẋ for the derivative of the state variables.

3.4 Discretization of continuous heating system model

Typically, the Xcos solver is able to numerically solve discrete-time or continuous IVPs

(initial value problems). To construct a model, which is able to implement advanced

controller models like MPC’s (model predictive control) [5], the continuous ODE’s from

the HeatLib are transformed to difference equations. This is achieved by implementing

the 1st order EULER forward discretization method [13]. The resulting finite number of

point model problem is then adapted to Xcos code.

In general terms the starting point in each case is an explicit ODE of first order ẋ = f(t, x)

with initial values x(0) for x, at a start time t(0): x(t(0))
!
= x(0) or IVP. The continuous

function f has a unique solution to the IVP. The function f is then discretized using

EULER forward. The signal x(t) is sampled at a fixed time interval or step size, here

labelled the sampling time ts (set throughout to 1 s). Therefore the next approximative

function value x(k + 1) for the EULER method from time t(k) to t(k + 1) = t(k) + ts is

x(k + 1) = x(k) + ts · f(t(k), x(k))
︸ ︷︷ ︸

Y

(k = 1, 2, ..., n) (3.7)

with n the value of the final integration time of the simulation. Figures 3.4 and 3.5

show the Xcos continuous-time (ẋ) and discrete-time (x(k + 1)) function blocks needed

respectively for solving differential or difference equations. The input of each block dia-

gram represents the right hand side of either the continuous-time or discrete-time system

describing equation.

9

,-./012 3/450/66.0 748 -.7594: ;1;5.< </8.6

=>?@re 3.4: Continuous-time integral function block in Xcos (Source: Xcos)

=>?@re 3.5: Discrete-time delay function block in Xcos (Source: Xcos)

In the following chapters the Y part of equation 3.7 is replaced with the right hand side

of the ODE, describing the state variable for each respective heating system component.

Finally, the resulting discretizised Xcos block diagrams of each component are connected

together to form a complete heating system model, as shown in figure 3.18 of chapter 3.6.

3.5 Components of the heating system model

3.5.1 Building model

The building model is considered to be a simple so-called 1-zone model, calculating the

inside building temperature Tb which is assumed to be uniform throughout. Furthermore,

the model calculates the heat capacity demand Q̇out, needed by the consumer model to

determine the return temperature Tr of the flow back to the boiler. Within the building,

radiators adopt the same temperature as the return temperature. It is assumed that

the radiators emit heat to the building model, described by the heat transfer coefficient

kr,b. Heat loss to the outside occurs determined by the heat transfer coefficient kb,a and

is dependent on the ambient temperature Ta. The building model itself has a certain

heat capacity kb. Figure 3.6 shows the building model with the radiator and its main

input/output parameters.

10

ABCDEGH IDJKEDLLCE MJN BCMKOJP QGQKCR RDNCL

SUVWre 3.6: The building model with the radiator as consumer (Source:own sketch, photo:
www.wikipedia.org)

The tables 2 and 3 show the input and output variables of the building’s Xcos model and

parameters with set values.

Table 2: Building model input and output variables

Input Description Unit

Ta ambient temperature [K]

Tr return flow temperature [K]

Output Description Unit

Tb building temperature [K]

Q̇out heat demand of consumer [kW]

Table 3: Building parameters

Parameter Description Set value Unit

kb building heat capacity 1010 [J
K
]

kr,b heat transfer coeff. radiator → building 2.5 · 104 [W
m2K

]

kb,a heat transfer coeff. build. → ambient 4.7 · 104 [W
m2K

]

TbInit starting value build. temperature 293 [K]

The thermal behaviour of the building model over time by calculation of the system state

11

XYZ[\]^ _[`a\[bbZ\ c`d YZcae`f g]gaZh h[dZb

variable building temperature Tb may be described by

Ṫb =

Q̇out

︷ ︸︸ ︷

kr,b
kb

(Tr − Tb)−

Q̇loss

︷ ︸︸ ︷

kb,a
kb

(Tb − Ta) . (3.8)

Application of the EULER method described in equation 3.7 results in the difference

equation

Tb(k + 1) = Tb(k) + Ts

(
kr,b
kb

(Tr(k)− Tb(k))−
kb,a
kb

(Tb(k)− Ta)

)

. (3.9)

The Xcos block diagram, representing equation 3.9, is shown in figure3.7.

ijklre 3.7: Xcos block diagram of building model (Source: Xcos)

3.5.2 Pump model

The pump model determines the volume flow V̇ in the heating system model, setting

the flow dependant on the difference between the actual building temperature Tb and the

desired set building temperature Tb,set. If the building temperature Tb is below the set

building temperature Tb,set the pump generates higher volume flow resulting in a higher

mean volume flow V̇m. Likewise, if Tb is higher than Tb,set the pump provides a volume flow

less than V̇m. The ideal pump characteristic shown in figure3.8 has a linear trend. If the

absolute deviation between building temperature and set building temperature |Tb−Tb,set|

is greater than the temperature difference ∆Tb, the volume flow V̇ is in saturation on its

minimum, respectively maximum value V̇m± V̇a. The volume flow amplitude is described

by V̇a. The pump flow V̇ is essentially regulated by the thermostatic valves, installed on

the radiators (consumer) in the building.

12

mnopqrs tpuvqpwwoq xuy noxvzu{ |r|vo} }pyow

~���re 3.8: Ideal pump characteristic (Source: own sketch)

The tables 4 and 5 show the input and output variables of the pump and the parameters

with set values.

Table 4: Pump model input and output variables

Input Description Unit

Tb building temperature [K]

Output Description Unit

V̇ volume flow [m
3

s
]

Table 5: Pump parameters

Parameter Description Set value Unit

V̇m mean volume flow 4.75 · 10−3 [m
3

s
]

V̇a amplitude of volume flow 3.25 · 10−3 [m
3

s
]

Tb,set building temperature set-point 294 [K]

∆Tb temperature difference between set and actual value 4 [K]

13

������� ���������� ��� ������� ������ �����

The case-equations

V̇ =

V̇m − V̇a if

min. saturation
︷ ︸︸ ︷

Tb − Tb,set ≥ ∆Tb

V̇m + V̇a

∆Tb

(Tb − Tb,set) if

ideal linear characteristic
︷ ︸︸ ︷

−∆Tb < Tb − Tb,set < ∆Tb

V̇m + V̇a if

max. saturation
︷ ︸︸ ︷

Tb − Tb,set ≤ −∆Tb

(3.10)

describe the ideal linear characteristic of the volume flow V̇ within set limits. There is

no discretization of equation 3.10, as there are no states changing over time in the model.

The figure 3.9 shows the Xcos block diagram for the pump model depicting the case equa-

tion 3.10.

����re 3.9: Xcos block diagram of pump model (Source: Xcos)

3.5.3 Consumer model

Within the simplified consumer model only the input/output behaviour relative to the

heat producer (boiler model) is discussed, neglecting other parasitic influence such as

irradiation, window area, ventilation or other heat producers, like electrical appliances.

The supply volume flow V̇ with temperature Ts from the boiler model flows into the

consumer with initial temperature InitTempCon heating the building model by power

Q̇out in the process. Therefore, the consumer model (or radiator) provides the heat for

the building model. The consumer model’s volume VV er is assumed constant, containing

the total water volume of the consumer’s heating circuit. The cooled off water then exits

the consumer as return flow V̇ with temperature Tr. Input and output flow V̇ is assumed

equal as pressure loss in the piping and valves is neglected.

Figure 3.10 shows the consumer model with the main input and output variables.

14

������� ��� ��¡¡�� ¢�£ ��¢ ¤�¥ ¦�¦ �§ §�£�¡

¨©ª«re 3.10: Xcos Consumer model with input and output parameters (Source: Xcos)

The tables 6 and 7 show the input and output variables of the consumer model and the

parameters with set values.

Table 6: Consumer model input and output variables

Input Description Unit

Q̇out heat power input [kW]

Ts temperature of input volume flow [K]

V̇ input volume flow [m
3

s
]

Output Description Unit

Tr return flow temperature [K]

V̇ return flow [m
3

s
]

Table 7: Consumer parameters

Parameter Description Set value Unit

VV er volume consumer 5 [m3]

c specific heat capacity of water 4182 [J
kgK

]

ρ density of water 1000 [kg
m3]

InitTempCon initial temp. of consumer 335 [K]

The thermal behaviour of the consumer model over time by calculation of the state variable

return flow temperature Tr is described by

15

¬®¯°±² ³¯´µ°¯¶¶®° ·´¸ ®·µ¹´º »±»µ®¼ ¼¯¸®¶

Ṫr =

heat input
︷ ︸︸ ︷

c · ρ · V̇ (Ts − Tr)−

consumed heat by building
︷︸︸︷

Q̇out

c · ρ · VV er

. (3.11)

Application of the EULER method described in equation 3.7 results in the difference

equation

Tr(k + 1) = Tr(k) + ts

(

c · ρ · V̇ (k)(Ts(k)− Tr(k))− Q̇out(k)

c · ρ · VV er

)

. (3.12)

The Xcos block diagram representing the difference equation 3.12 is shown in figure3.11.

½¾¿Àre 3.11: Xcos block diagram of consumer model. (Source: Xcos)

3.5.4 Boiler model

The return flow temperature Tr determined by the consumer model is input to the boiler

model. The boiler returns the supply volume flow V̇ at temperature Ts. The water of

the boiler with volume Vb , initial temperature boilerInit and ambient boiler temperature

Tamb, is heated by multiplying a modulated signal α (0 ... 1) with the boiler’s rated power

Pn, whilst assuming no stratification in the boiler. The resulting heating power Q̇in is

input to the boiler cycle.

The input heating power Q̇in is limited to the rated boiler power Pn and may not fall under

a certain minimum Pmin. The onOff switch activates or deactivates power input. Heat

loss is summarized as power loss Q̇loss which describes the heat transfer from the boiler to

the environment. The specific power loss coefficient kboil is a proportional constant and is

16

ÁÂÃÄÅÆÇ ÈÄÉÊÅÄËËÃÅ ÌÉÍ ÂÃÌÊÎÉÏ ÐÆÐÊÃÑ ÑÄÍÃË

set here to zero, thus disregarding any power loss. The boiler ambient temperature Tamb

is set to fixed value.

A safety mechanism prevents the boiler of taking damage when the supply flow temper-

ature Ts exceeds an emergency shut-down temperature emerTempStop. In this event,

the boiler is switched off, the emergency stop mode indicator emerStop is set to 1 for

the period of the emergency stop time emerStopT ime. As soon as emerStopT ime has

passed, heating input power with the previous modulation signal, from the previous step,

is reactivated. Figure 3.12 shows the boiler model with its main input/output variables.

ÒÓÔÕre 3.12: The boiler model with the input and output parameters. (Source:own
sketch, photo: www.wikipedia.org)

The tables 8 and 9 show the input/output variables of the boiler model and parameters

with set values.

Table 8: Boiler model input and output variables

Input Description Unit

Tr return flow temperature [K]

V̇ return volume flow (build.) [m
3

s
]

α modulates heat input (0...1) [−]

onOff switch (1=on, 0=off) [−]

Output Description Unit

Ts supply flow temperature [K]

V̇ outgoing volume flow [m
3

s
]

emerStop indicator for emergency shutdown [−]

17

Ö×ØÙÚÛÜ ÝÙÞßÚÙààØÚ áÞâ ×ØáßãÞä åÛåßØæ æÙâØà

Table 9: Boiler parameters

Parameter Description Set value Unit

Vb volume boiler 1.05 [m3]

c specific heat capacity of water 4182 [J
kgK

]

ρ density of water 1000 [kg
m3]

emerTempStop emergency shut-down temperature 368 [K]

emerStopT ime emergency stop time 10 [s]

boilerInit starting temperature for Ts 338 [K]

Tamb ambient temperature of boiler 303 [K]

kboil specific power loss coeff. 0 [kW
K
]

Pn rated boiler output 1.1 · 103 [kW]

Pmin min. boiler output 200 [kW]

As previously described, the input flow is assumed equal to the output flow, thus assigned

one variable V̇ , as pressure drop through the piping and valves is disregarded. The thermal

behaviour of the boiler model over time by calculation of the state variable supply flow

temperature Ts is described by

Ṫs =

power input
︷︸︸︷

Q̇in −

power loss
︷ ︸︸ ︷

kboil(Ts − Tamb)+

power difference between flow and return
︷ ︸︸ ︷

c · ρ · V̇ (Tr − Ts)

c · ρ · Vb

. (3.13)

Application of the EULER method described in equation 3.7 results in the difference

equation

Ts(k + 1) = Ts(k) + ts

(

Q̇in(k)− kboil(Ts(k)− Tamb) + c · ρ · V̇ (k)(Tr(k)− Ts(k))

c · ρ · Vb

)

.

(3.14)

The Xcos block diagrams representing the terms of the difference equation 3.14 are shown

in figure3.13 to figure 3.17.

18

çèéêëìí îêïðëêññéë òïó èéòðôïõ öìöðé÷ ÷êóéñ

øùúûre 3.13: Xcos block diagram of boiler model (Source: Xcos)

øùúûre 3.14: Xcos block diagram of thermal power loss (Source: Xcos)

øùúûre 3.15: Xcos block diagram of power difference between flow and return (Source:
Xcos)

øùúûre 3.16: Xcos block diagram of input power (Source: Xcos)

19

üýþÿT�� �ÿ��Tÿ��þT ��� ýþ����	
�
�þ� �ÿ�þ�

F��re 3.17: Xcos block diagram of emergency stop calculation (Source: Xcos)

3.6 Block diagram of the heating system model

The figure 3.18 shows the Xcos block diagram of chapters 3.5.1 to 3.5.4 adjoined together

to form a simplified heating system model. Included is the serial communication super-

block discussed in chapter 5.2.1.

F��re 3.18: Xcos block diagram of heating system model including serial communication
super-block (Source: Xcos)

20

H���� ��� �������� ���� �� ��� H��

4 Hard- and Software used in the HIL

This chapter describes the hard- and software compontents need for the HIL-simulation,

introducing Arduino IDE, Scilab/Xcos, Linux Ubuntu, UDOO and DDC4200.

4.1 Software in the HIL

4.1.1 Arduino IDE

The Arduino IDE R© (integrated development environment) is a cross-platform application

written in a C/C++ dialect using a specific JAVA programming environment [4]. The

free installation files may be downloaded from the official Arduino web-page [1]. To use

the Arduino IDE from an external laptop computer, connected to the UDOO via UART-

serial bridge, a program patch must be downloaded and installed as described on said

web-page. The code produced in the Arduino IDE is called a "sketch". The language

includes pre-defined analog and digital I/O functions for serial data processing.

The basic structure of a cyclic executive Arduino sketch comprises of two functions, void

setup and void loop [18]. The former is used to initialize settings like opening a serial

line with a set baud rate (data bits per second) for serial data transmission and is called

once. The latter is called repeatedly once uploaded until the UDOO computer is switched

off. The sketch itself is uploaded to the SAM3x flash memory. Within the loop function,

script code is placed for reading and writing to the GPIO-pins or the UART-serial line

as described in chapter 5.2.2. For reading in- and output from the serial line buffer the

Arduino IDE’s inbuilt serial monitor is useful for debugging. Figure 4.1 shows the opening

screen of the Arduino IDE with an "empty" sketch, including only the initial setup und

loop functions, as well as indicators for important icons.

21

 !"#$!%# &'()*!"+ ,-+# .%)/+ 01

2345re 4.1: Arduino sketch - basic structure (Source: [1])

In the Arduino IDE menu "Tools" tab, under the sub-menu item "Board", the Arduino

Due (Programming Port) is selected for uploading the sketches via the mini USB-to-

serial converter as described in chapter 4.2.1). Once the laptop computer is connected to

the UDOO, the correct physical serial port /dev/ttyUSB0 is selected on the "Port" sub-

menu, the same which is set in the openserial_udoo serial function of Scilab as described

in chapter 5.2.1. Refer to chapter 7 for troubleshooting a connection problem occuring

while upload sketches.

4.1.2 Scilab/Xcos

Scilab is an open source, numerically orientated programming language [20]. The optional

free package Xcos is part of Scilab and is used for calculations of dynamical systems, con-

tinuous or discrete. Both packages use the same syntax, whereas the Xcos block diagram

sketches have direct access to the Scilab functions and variables. The 5.5.1 version is

implemented here, compiled from the source code for 32-bit GNU/Linux and installed on

both the laptop computer and the UDOO single board computer. Hence, the Scilab/Xcos

script programmed may be transferred from one platform to another without any data

loss or compatibility issues. Scilab is compiled from the source files, as to date no readily

compiled binary package for the latest Scilab version is available for the ARM Cortex-A9

architecture, as described in chapter 4.2.1. Refer to appendix 9.1.2 for a step-by-step

22

6789: 7;9 <=>?@78A BCA9 D; ?EA 6GI

instructions on the compilation process for Ubuntu OS.

All the time dependent Xcos function blocks used are discrete-time. The sampling time

ts sets the cycle clock pulse of each simulation iteration in XCOS. It is set in the Sample-

CLK function blocks of the Xcos heating system block diagrams, boiler model, consumer

model and building model, as described in chapter 3.5. SampleCLK is used instead of

CLOCK_c as all events triggered by this block run synchronous due to the specific in-

ternal compilation method. Additionally a 1 s offset is set in the SampleCLK block to

delay the simulation for better stability results.

The Xcos blocks which need activation all inherent the event activation (inherent=1),

except the delay element used for calculating the system states. It is triggered by the

clock pulse set by the sampling time ts of the SampleCLK function block.

To have access to Scilabs serial functions for data transfer across the UART-serial line,

the Serial Communication Toolbox is installed via the Scilab ATOMS module manager

[7] found in the "Applications" tab in Scilab. For installation error troubleshooting refer

to chapter 7.

4.1.3 Linux Ubuntu

The operating system (OS) running on the UDOO is an adaptation of Lubuntu 12.04 with

LXDE, a lightweight desktop environment designed to save precious processing power

and includes readily available "hard-float" hardware support for higher efficiency [9]. The

UDOO is ready to use once a bootable microSD (8 GB) is created from an ISO-image file

of Lubuntu, downloadable from the official UDOO website [24].

The laptop computer runs on Ubuntu 14.04.02 LTS 32-bit as OS which is freely available

to download from the Canonical website [23].

Prior to compiling Scilab 5.x on the laptop (or UDOO) the dependency packages like

JAVA etc. need to be installed. Refer to appendix 9.1.1 for a sequence of administrator

run commands from a terminal to remove any unmet (broken) dependencies from the

Ubuntu OS.

23

JKLMN KOM PQRSUKLV WXVM YO SZV J[\

4.2 Hardware in the HIL

4.2.1 UDOO single board development platform

The UDOO is a single board computer designed as an open hardware platform equipped

with two processors for prototyping projects [24]: the Freescale i.MX6 ARM Cortex-A9

quad core 1 GHz processor (datasheet: 9.3.3), also used in the Rasberry Pi
TM

single

board computer and an Arduino Due [18] compatible ATMEL SAM3x ARM proces-

sor (datasheet: 9.3.2). The i.MX6 handles the Ubuntu OS and other applications like

Scilab/Xcos or the Arduino IDE. The SAM3x gives the UDOO the option to be utitlized

as a stand-alone Arduino Due board and manages the I/O (input/output) data transfer

via the GPIO (general purpose I/O) pins.

The UDOO features 76 fully available, 3.3 V compliant (max. 3.445 V), GPIO pins.

Of these I/O pins, 8 feature as ADC’s (analog-to-digital converter) and two as DAC’s

(digital-to-analog converter) [3]. The default setting for the ADC is a 10-bit resolution,

while the DAC’s is 8-bit. The resolution of both the ADC and DAC may be changed

from within an Arduino sketch as described in chapter 5.2.2. Due to the Atmel SAM3x

architecture, the DAC’s output signal ranges from a minimum (1/6)*VADV REF to a maxi-

mum (5/6)*VADV REF , with VADV REF = 3.445 V . Figure 4.2 shows plotted measurements

of output voltages 0.571 V ...2.87 V on the DAC0 pin for input values 0...1023, proving a

linear characteristic for the DAC.

]^_`re 4.2: 10-bit DAC output voltage on DAC0 between 0.571 V ...2.87 V for values
0...1023 (Source: Libre Calc.)

The output signal (DAC0) is adjusted implementing a differential amplifier circuit to up-

24

abcde bfd ghijkbcl mnld of jpl aqr

scale the output voltage signal, as described in chapter 5.3.

The full potential of the UDOO board is utitlized using the always active UART-serial

(universal asynchronous receiver transmitter) line between the two processors. This se-

rial line may be accessed from an external connection via the mini-USB serial bridge as

depicted in figure 4.3. The serial data transfer sequentially transmits individual bits of

data, sending and receiving only once the previous cycle is finished [19]. Both processors

may run a script (or event managers) to read or write data to the serial line. For example,

a serial port is opened via a Scilab script running on the i.MX6 writing some data into

the serial buffer, while the Arduino sketch processes data from the buffer and forwards

it to the I/O-pins via the SAM3x functionality. Figure 4.3 shows a schematic of the two

processors of the UDOO with the UART-serial line terminals.

stuvre 4.3: Data transfer between SAM3x and i.MX6 via UART-serial (Source: [24])

Other features of the UDOO include a HDMI port, Ethernet RJ45, 1 GB RAM and a

GPU Vivante. Refer to appendix 9.3.1 for full specifications of the UDOO.

For the HIL simulation discussed in this thesis, the i.MX6 is essentially bypassed, using

only the functionality of the SAM3x. This means the UDOO is implemented as a stand-

25

wxyz{ x|z }~���xy� ���z �| ��� w��

alone Arduino Due board [1], for the serial communication to the laptop computer and

the data transfer to the DDC across the UDOO’s GPIO pins. Running the Scilab/Xcos

model simulation on a stand-alone UDOO is generally possible, as processing performance

of the i.MX6 is sufficient. However, for development and debugging purposes the above

mentioned setup is preferred, in order to utilize the extra processing performance of the

laptop. This is to avoid high latency and resulting time loss during simulation runs.

Nonetheless, identical versions of Linux 32-bit Scilab are installed on both the UDOO

and the laptop computer so that scripts are interchangeable for both systems.

The UDOO is connected to the laptop via the mini-USB port (CN6) with the USB cable

provided. To determine the USB-port address from the laptop, whilst the UDOO is

connected, the command dmesg may be used from an Ubuntu terminal logged in as root

user.

4.2.2 DDC4200 automation station and laptop computer

DDC4200

The DDC 4200 is a stand-alone automation station developed by the company Kieback &

Peter GmbH & Co.KG for controlling and monitoring functions for non-residential build-

ing heating systems [15]. It implements the BACnet (building automation and control

networks) protocol for building automation. Kieback & Peter has provided one unit to

the HAW-Hamburg for research purposes in line with the Observe project [11].

The DDC features a variety of bus connection, interfaces and I/O terminals, refer to ap-

pendix 9.3.4 for full specifications. For the purpose of the HIL implemented, two of the

available 24 analog input/output pins are used for sending/receiving signals. They are as-

signed the pin-object P.02 and P.01 respectively in the software. The pins are switchable

to various sensor types (Pt100, Ni100 etc.). For both input an output the sensor type is

selected to 0 V ...10 V DC. The input 0...10 V signal correlates to a temperature signal

of 0◦C ...100 ◦C. Figure 4.4 shows a plotted measurement result of voltage signals in 5

V increments, generated by a voltage source, input on pin-object P.02 and the resulting

temperature readings in ◦C. The result proves the linear characteristic of the DDC’s 0

V ...10 V input sensor.

26

����� ��� �������� ���� �� ��� ���

����re 4.4: Temperature readings from the DDC menu in ◦C with 0 V ...10 V input on
P.02, in 5 V increments (Source: Libre Calc.)

A set-point controller software module is installed in the DDC and set to a PI-controller

as described in chapter 3.2. Within the controller software, the input pin-object P.02

must be set to the source of the set-point controller for the control variable, whereas the

actuating signal is set as the source for the outgoing pin-object P.01.

Laptop computer

The laptop computer used is a Lenovo T420s model running on an Intel R© quad CoreTM

i5-sandy-bridge gen. series chip with 4 GB RAM.

27

� ¡ ¢£¤£ ¤¥£¦§¨©¥ ª¦ ¤«© ¬�

5 I/O data transfer in the HIL

This chapter outlines the I/O signal route between the HIL-components and gives an

introduction to the software functions for I/O and UART-serial data-transfer. The electric

interface including calculations is detailed.

5.1 I/O signal route

In reference to figure 2.1 of chapter 2.2, the control variable Ts is calculated by the Xcos

heating system model to a value of 0...1023 which is passed via the serial line to the

UDOO. The 10-bit DAC maps this signal to a 0.57 V ... 2.87 V signal which is amplified

by the differential amplifier circuit and passed on to the pin object P.02, 0-10V input

sensor, of the DDC.

The pin object P.01 of the DDC outputs a 0 V ... 10 V signal, or actuating variable α

from the PI-controller. It is downscaled to a max. 2.54 V signal by a voltage divider

and passed onto the UDOO as described in chapter 5.3. The 10-bit ADC maps the signal

from the voltage divider to a 0...758 value and passes it via the UART-serial line to the

Xcos heating system model on the laptop computer.

5.2 I/O Software functions

5.2.1 Scilab/Xcos functions

The Scilab/Xcos serial functions realize the data transfer via the UART-serial line between

the UDOO and the laptop computer, whilst the signal processing via the UDOO’s I/O-

pins is performed via the functions of the Arduino IDE.

The Scilab serial functions are accessible once the Serial Communication Toolbox [20] is

installed via the Atoms module manager as mentioned in chapter 4.1.2. The opening

and closing of a serial port is established from within the Scilab script, while reading and

writing to the serial port is performed in the Xcos serial communication super-block of

the heating system model shown in figure 3.18. A super-block in Xcos is a simplification

block encompassing more than one function block.

The task of the super-block is to write the control variable Ts to the serial port and to

read the actuating signal α from the serial port. The control variable Ts is also a system

state variable, the modulated signal α regulates the burner of the boiler as described in

28

®¯° ±²³² ³´²µ¶·¸´ ¹µ ³º¸ »®¼

chapter 3.5.4.

The following core serial communication functions are implemented within the Scilab

• openserial_udoo

• xcos_simulate

• closeserial

and for the Xcos read / write communications super-block

• readserial

• writeserial.

The openserial_udoo function is a modification of openserial from the Scilab functions

library. It assigns a handle to the serial port, opening serial communication via the mini-

USB-serial port to the UART serial line of the SAM3x and i.MX6 on the UDOO, as

described in chapter 4.2.1. The full code with the amended line changÃŋng the physi-

cal USB-port address, is appended in 9.2.4. The port number and baud rate set in the

argument must be identical to the port number set in the Arduino sketch, as described

in chapter 5.2.2. The default 9600 bit/s is upheld. A delay of 1 s using the function

xpause is set after calling openserial for a stable serial line connection. To close the serial

connection the function closeserial is called. The xcos_simulate function calls the Xcos

diagram specified in the argument and initiates the simulation.

The Xcos function block scifunc_block_m is used to embed Scilab code in a Xcos dia-

gram. Within this block the readserial and writeserial functions read, respectively write a

string, one character at a time, in ASCII format into the buffer of the serial port [9]. The

cycle is dependant on the set sampling time ts as a parameter of the SampleCLK Xcos

function block, as mentioned in chapter 4.1.2. The full code of the scifunc_block_mis

appended in 9.2.2.

Figure 5.1 shows the read / write function block handling the data transfer over the serial

port connection from within the serial communication super-block of figure 3.18.

29

½¾¿ ÀÁÂÁ ÂÃÁÄÅÆÇÃ ÈÄ ÂÉÇ Ê½Ë

ÌÍÎÏre 5.1: Serial communication block diagram (Source: Xcos)

The state variable (or control variable) Ts from the boiler model is converted from K to
◦C by subtracting 273. This value is then multiplied by the correction factor 1063 and

divided by 100. The resulting value between 0...1023 is passed to the read / write function

block. The proportional calculation to determine the correction factor yields

9.62V = 1023

10V = x

⇒ x ≈ 1063.

The 0...1023 value is mapped by the UDOO’s 10-bit-DAC to 0.57 V ...2.87 V which is am-

plified by the differential amplifier circuit to 0 V ...9.62 V , further explained in chapter 5.3.

On the output side of the read / write function block, the readserial function reads a

character string from the serial buffer and converts it to an integer using the function

strtod. This integer value is divided by 758 resulting in the modulated signal α between

0...1, regulating the heat power input of the boiler, as described in chapter 3.5.4. The

value of 758 corresponds to the maximum voltage 2.543 V which is converted by the

UDOO’s 10-bit ADC, as described in chapter 5.3.

5.2.2 Arduino functions

The Arduino sketch implements functions for the serial communication to the external

laptop computer, as well as for the data transfer across the I/O-pins of the UDOO to the

DDC. The core of the Arduino IDE library [1] for serial communication are

• Serial.begin

30

ÐÑÒ ÓÔÕÔ ÕÖÔ×ØÙÚÖ Û× ÕÜÚ ÝÐÞ

• Serial.available

• Serial.parseInt

• Serial.println

and for the data transfer across the UDOO’s I/O-pins

• analogRead

• analogWrite.

For an overview of an Arduino sketch refer to chapter 4.1.1. Within void setup the

serial.begin function initializes the serial connection to a set baud rate specified in the

argument, identical to the one set in openserial_udoo of the Scilab script described in

chapter 5.2.1. The following functions may be placed within the void loop method. The

Serial.available function listens on the UART-serial line if any data is available in the

serial buffer. If so, Serial.parseInt reads the next integer, while Serial.println writes

an integer value received by analogRead to the serial buffer. The analogRead function

reads the value from the analog input pin A0 which is mapped by the ADC to a value

0 ... 758, as described in chapter 5.3. The resolution of the ADC is set to 10-bit by

analogReadResolution.

The function analogWrite writes the parsed integer from Serial.parseInt to the DAC

output pin DAC0. The received 0...1023 value from the Xcos script is mapped to 0.57 V

... 2.87 V , as described in chapter 5.3. A delay of 20 ms is set with the function delay

to give the DAC time to reset after each iteration. The DAC’s resolution is set to 10-bit

with analogWriteResolution. The full code of the Arduino sketch is appended in 9.2.1.

5.3 I/O hardware: electrical interface

The DDC’s outgoing voltage signal is higher as the compatibility range of the UDOO’s

I/O pins. Similarly, the outgoing signal range off the DAC-pin of the UDOO is to low for

the 0-10 V DDC sensor to map the signal to a 0-100◦C temperature range. The following

presents a solution to these obstacles and creates an electrical interface.

Figure 5.2 illustrates the circuit diagram of the UDOO connected to external circuitry.

The laptop computer is connected to the UDOO via USB as described in chapter 4.2.1.

On the input side of the UDOO a voltage divider is connected, whilst on the output side

a differential amplifier circuit.

31

ßàá âãäã äåãæçèéå êæ äëé ìßí

îïðñre 5.2: I/O interface schematic of the UDOO connected to a voltage divider on input
and a differential amplifier on output (Source:own sketch - not to scale, photo:
www.udoo.org c©)

The maximum 10 V signal output by the DDC-pin must be downscaled, as the UDOO’s

analog pin only accepts a maximum 3.445 V without taking damage. For this purpose

a voltage divider circuit is soldered onto an external stripboard. On the output side of

the UDOO the 10-bit-DAC outputs a 0.57 V ... 2.87 V signal. To eliminate the offset of

0.57 V and amplify the remaining 2.3 V to 9.62 V , a differential amplifying circuit [6] is

connected, soldered on an external stripboard. As the sensor in the DDC is set to 0-10

V , 9.62 V is analogous to 96 ◦C.

The outgoing 0 V ... 10 V signal U1 from the DDC pin P.01 is split by the voltage divider

to a 0.00 V ... 2.54 V signal, refer to chapter 5.4.2 for the calculation. This voltage signal

U2 is input to the UDOO’s analog pin A0, where the signal is mapped by the 10-bit-ADC

to a value of 0...758. This is the range averaged over 5000 measurements.

On the output side the 0...1023 value is mapped by the 10-bit-DAC on the DAC0 pin

of the UDOO to an output voltage signal ranging from 0.57 V to 2.87 V . The DAC’s

characteristic is due to the Atmel SAM3x specific architecture described in chapter 4.2.1.

For the differential amplifier circuit a potentiometer (refer to datasheet 9.3.6) is placed in

series with the input resistor of the non-inverting input (−) of the operational amplifier

(refer to datasheet 9.3.5). The potentiometer, powered by the 3.3 V UDOO power supply,

is adjusted so that the offset Ue− of 0.57 V is subtracted and the remaining voltage Ue+

of 2.3 V amplified. Refer to chapter 5.4.1 for the calculation.

A 2 W DC-to-DC converter (refer to datasheet 9.3.7) is connected to the UDOO’s 5 V

32

òóô õö÷ö ÷øöùúûüø ýù ÷þü ÿòI

power supply, upscaling the 5 V to 12 V to power the operational amplifier. Subtracting

the off-set voltage and amplifying the remainder results in a final output voltage Ua of

the circuit from 0.01 V ...9.62 V .

For setting up and testing the connection it is useful to have readily available: two FlukeTM

multimeters, a couple of banana plugs, testing terminals and some cables.

Figure 5.3 shows a photo of the UDOO development board connected to the differential

amplifier circuitry, while figure 5.4 shows a photo of the voltage divider circuitry con-

nected to the DDC4200.

F���re 5.3: Photo of UDOO connected to stripboard with differential amplifier
(Source:own photo)

33

��� ���� �	�
��	 �
 �� ���

����re 5.4: Photo of stripboard connected to DDC (Source:own photo)

5.4 Electrical interface: calculations

5.4.1 Differential amplifier

The differential amplifier circuit is connected to the output of the UDOO as described in

figure 5.2 of chapter 5.3. In a differential amplifier circuit the operational amplifier is wired

to function as an inverting and non-inverting amplifier simultaneously. The relationship

between input Ue+, difference Ue− and output Ua voltage is described by [22]

Ua =
(R3 +R6)R4

(R5 +R4)R3

· Ue+ −
R6

R3

· Ue−. (5.1)

If the resistances are selected so that R3 = R5 and R4 = R6, then equation 5.1 simplifies

to

Ua =
R6

R3

· (Ue+ − Ue−)
︸ ︷︷ ︸

X

(5.2)

so that Ua is a proportionate to the relation of R6 to R3. The potentiometer is adjusted so

34

��� ���� ������ � !� �" #�$

that Ue− = 0.57 V removing the offset cause by the DAC. The term X of equation 5.2 thus

equals 2.87 V - 0.57 V = 2.3 V . Initial resistances were selected so R6 = 4.7 kΩ and R3

= 1.1 kΩ, corresponding to a gain factor of 4.3. By measurements a gain factor of 3.9 was

determined. The lower as expected gain factor is explained by thermal losses occurring in

the operational amplifier. Therefore, the resistance R6 by rule of proportion is increased

to 5.1 kΩ, resulting in an output voltage Ua of 9.62 V which suffices for this purpose.

Thus the resulting voltage output Ua of 0 V ...9.62 V corresponds to a temperature of

0◦C... 96.2 ◦C, when converted by the DDC’s 0-10 V sensor.

5.4.2 Voltage divider

Before the input of the UDOO a voltage divider circuitry is connected, as described in

figure 5.2 in chapter 5.3. Figure 5.5 shows a magnification of the voltage divider circuit.

%&'(re 5.5: Voltage divider reducing the output voltage from the DDC (Source:own
sketch)

According to the voltage divider rule [22] under Ohm’s law, the relationship of voltage

and resistance in the above circuit is described as

U2,1 = U1 ·
R2

R1 +R2

. (5.3)

Inserting R1 = 14.92 kΩ and R2 = 5.10 kΩ into 5.3 with U1 = 10 V , results in U2,1 =

2.55 V . Due to heat losses in the resistors, the actual maximum output for U2 is 2.54 V .

The UDOO’s I/O-pin input current is limited to 50 mA [24]. To check if the current stays

within the limit, Ohmic law is used,

I =
Umax

Rtot.

. (5.4)

35

)*+ ,-.- ./-0123/ 40 .53 6)7

Inserting Umax = 10 V and Rtot = 20.02 kΩ into 5.4 results in I = 0.5 mA which is a

factor 100 below the limit of 50 mA.

36

S89:;<=8>? @AB:;=B >C =AB= A?D8@>?9A?= <?E E8BG:BB8>?

6 Simulation results of test environment and discussion

The first set of simulation results for the HIL simulation is described in the following. To

simulate the Xcos script in real-time, the real time scaling parameter in Xcos via the setup

submenu of the simulation tab has to be set to 1. The final integration time parameter

sets the total simulation time in s. The solver is set to the default Sundial/CVODE -

BDF - Newton. Within the menu of the DDC fixed set-point controller software, the reset

time (ger. Nachstellzeit) Ti in minutes, the proportional gain (ger. Proportionalbeiwert)

KP and set-point temperature w (ger. Sollwert) may be assigned to set values. The

boiler’s temperature initial value boilerInit is set to 338 K within the Xcos boiler model,

as described in chapter 3.5.4. The cycling time (ger. Zykluszeit) in the DDC’s controller

software is set to 1 s, as is the sampling time ts in the Xcos heating system model. The

following simulation results were selected from more than 13 hours of simulation time,

using varying parameter values.

Figure 6.1 shows four example simulation runs of five minutes each, plotting the curve

progressions of the control variable Ts converging towards the set-point w in K. All

parameters are set to identical values.

37

HJKLMNOJPQ RTULMOU PV OTUO TQWJRPQKTQO NQX XJUYLUUJPQ

Z[\ 1. simulation run Z]\ 2. simulation run

Z^\ 3. simulation run Z_\ 4. simulation run

Figure 6.1: Four simulation results for the curve progression of control variable Ts

converging towards the set-point w = 340.5 K, initial boiler temperature
boilerInit = 338 K, final integration time = 300 s. PI-controller: KP = 0.5,
Ti=60 s, cycling time = sampling time = 1 s (Source: Scilab plot)

An assumption for the deviating curve progression in these results is a lack of synchronous

behaviour between the Xcos model and the DDC controller affecting data transmission.

In addition, the reason might be related to the USB to SERIAL bridge. Compared to a

standard RS232 serial port, USB uses a cycle based communication concept with possible

delays in the serial communication [25].

Figure 6.2 shows four additional simulation results with modified parameters to demon-

strate further the behaviour of the DDC’s fixed set-point controller. Again the curve

progressions are plotted of the control variable Ts converging towards the set-point w.

38

`abcdefagh ijkcdfk gl fjkf jhmaighbjhf ehn nakockkagh

pqr Simulation over 5 min., KP = 0.5, Ti

= 120 s, w = 340.5 K, boilerInit =
338 K.

psr Simulation over 5 min., KP = 1, Ti =
60 s, w = 340.5 K, boilerInit = 338
K.

ptr Simulation over 5 min., KP = 65, Ti

= 60 s, w = 340.5 K, boilerInit =
338 K.

pur Simulation over 30 min., KP = 2, Ti

= 0,w = 340.5 K, boilerInit = 338
K.

Figure 6.2: Four simulation results for the curve progression of the control variable Ts

converging towards the set-point w = 340.5 K, initial boiler temperature
boilerInit = 338 K, with varying integration times, cycling time = 1 s
(Source: Scilab plot)

The simulation result of figure 6.2 (a) shows a similar curve progression as figure 6.1 (a-d),

for a doubling of the reset time Ti induces an overall decrease of the output signal, as

expected from equation 3.3.

In figure 6.2 (b) the progression curve of Ts drops off, away from the set-point w. As

the proportional gain KP has been doubled, compared to figure 6.1, this progression is

contrary to the expected result.

The curve progression in figure 6.2 (c) seems to converge promisingly towards the set-

point line, however it does not coincide with the previous results of a lower KP value.

39

vwxyz{|w}~ ���yz|� }� |��| �~�w�}~x�~| {~� �w��y��w}~

Finally, figure 6.2 (d) shows the progression of Ts with a similar result as in figure 6.1.

The controller is set to a P-controller, albeit with a substantial greater KP as in 6.1 and

a nonuniform behaviour.

The simulation results of figure 6.2 demonstrate that further simulation and testing is

needed, to develop a better understanding of the data transfer in the HIL. At this stage,

a degree of randomness in the results may be observed, due to a possible bug or error

on the signal route. Further testing of the I/O interface, espcially the serial connection

is needed. After a number of simulation runs, occasionally the serial communication is

disrupted. Chapter 7 describes a workaround solution for when such an error occurs.

40

���������������

7 Troubleshooting

The following solutions for errors were identified, whilst developing the HIL simulation

components and during debugging and simulating.

UDOO

After cycling around 10 simulation runs, it may occur that the serial communication

breaks off, or at least does not transfer feasible data (NaN-Error). The causes may be

subject of further investigations. The following workaround solution is helpful. Install

and setup the serial communication application Minicom as described in appendix 9.1.3.

Open Minicom using sudo minicom -w as root in an Ubuntu terminal. Make sure the

jumper on the UDOO is on J18. After a UDOO reset stop the boot-up process by hitting

any-key.

− Close the serial monitor. Unplug J18 jumper to allow the communication with the

programming port of SAM3x.

− Plug the jumper J22 for 1 second, then remove it (to erase the old sketch pro-

grammed in SAM3x).

− Plug the jumper J16 for 1 second, then remove it (to reset the SAM3x).

− Upload the Arduino sketch using the Arduino Due programming port button.

− Press the reset button to restart i.MX6.

Arduino IDE

− When uploading the Arduino sketch, occasionally a "Port not found"-error may

occur. Try unplugging the USB cable from the laptop and reinserting it. Using the

dmesg command in an Ubuntu terminal shows the port address of the connecting

device.

Scilab/XCOS

− For the Xcos function blocks it is possible to define variables for the "Variable

Browser" similar to the "Workspace" in Matlab R©. However it is recommended to

hard-code the variables into the function blocks of Xcos, if a math operation is

41

���������������

involved, else the Scilab compiler computes senseless data. However, the "Variable

Browser" may be used to define single value variables, which may be used on all

levels of the Xcos block hierarchy. Figure 7.1 shows an example of a const_m

function block for a product.

 ¡¢£re 7.1: A constant Xcos function block with a product as single value

− Use SampleCLK function block instead of CLOCK_c function block, as all Sam-

pleCLK blocks are synchronous. In each of the SampleCLK function blocks of the

heating system models set an offset of 1 s for stable simulation runs.

− The minimum sampling time for the SampleCLK function blocks is 0.015 s for the

serial read/write functions to transfer data across the serial connection in a stable

way.

− Occasionally an error occurs while installing the Atoms Module Manager : "No

ATOMS module is available. Please, check your Internet connection or make sure

that your OS is compatible with ATOMS.". This might mean that the system lan-

guage is not set to "English".

. Open a terminal in Ubuntu logged on as root-user.

. Check for the language setting with locale (it should be en_US.UTF-8). Else,

enter the following commands:

. sudo locale-gen en_US.UTF-8

. sudo update-locale LANG=en_US.UTF-8

. Restart the terminal and / or Ubuntu.

42

¤¥¦§¨©ª«¥¦ ¬ ©®¨¥¥¯

8 Conclusion & Outlook

Within the scope of this thesis a hardware-in-the-loop (HIL) simulation was developed,

in which the physical behaviour of a heating system for a non-residential building was

reproduced by a software model. The project was regarded in context with the Observe

research project. The result was a HIL simulation of a software modelled heating sys-

tem, controlled by an external PI-controller in a feedback loop. Each physical hardware

component for the real-time simulation was described, specifically the functionality of

the UDOO single board computer and the DDC4200 automation station including the

PI-controller. The UDOO was implemented as an I/O-board, connected to a laptop com-

puter via an USB-serial interface. The software model simulation of the heating system

was outsourced onto the laptop. This setup proved to be advantageous in reducing the

latency, compared to running the Xcos simulation on the UDOO.

The PI-controller, contained within the DDC4200, forwarded an actuation signal to the

programmed heating system model, which returned the control variable via the UDOO

I/O-functionality. The physical theory of the heating system was outlined and the existing

continuous-time model of a heating system discretized using the EULER forward method.

The heating model was thus concentrated to its core physical functionality. A set of dif-

ference equations was derived for the state variable of each heating system component.

The conversion from a continuous-time to a discrete-time model made the model adapt-

able to advanced control systems like MPC. The numerical, open source programming

language Scilab/Xcos was introduced to realize the discrete-time models. The operating

system implemented was a 32-bit Ubuntu OS version for the purpose of creating a cost-

free software development platform as an advantage compared to the pricey licenses of

Matlab/Simulink R© and MS Windows R©. A step-by-step instruction on installing Scilab

from the source file in Ubuntu OS was included.

In addition, the serial functionality of Scilab was presented for the transfer of data from

the heating system model across the serial-USB bridge to the UDOO. The basic structure

of an open source Arduinio IDE sketch was specified, detailing the management of data

transfer between the serial line and the I/O pins of the UDOO to forward the signal to

the DDC4200 automation station. The electrical interface needed for this purpose was

specified, including the calculations for the additional circuitry for converting the voltage

signals in compliance with the input pins of either the UDOO or the DDC4200.

A troubleshooting guide recorded some of the practical debugging errors and solutions

encountered during setup of the HIL.

A set of simulations was carried out of five to thirty minutes each, with set parameter

43

°±²³´µ¶·±² ¸ ¹µº´±±»

values, for testing the HIL simulation controllability. The plotted result, shows the curve

progressions of the control variable converging towards a set-point temperature.

At first, the simulations compared curve progressions with identically set control param-

eters. A disparity of the curve characteristic of each result was observed. This deviation

between the results was explained due to potential asynchronous data transfer between

the Scilab/Xcos model and the controller of the DDC4200. A second set of simulations

compared curve progressions with varying controller parameters. The results partly devi-

ate from the expected controller theory with further simulations necessary to explore the

causes.

In fact, the simulation results demonstrated the operational readiness of the HIL, proving

the controllability of the Xcos heating system model by an external fixed set-point con-

troller. The limitation was the lack of comparability of the results with another controller.

The data transfer lacked perfect stability and further simulation tests are needed to garner

a better understanding for both the data transfer within the HIL and the controller.

In conclusion, a low-cost, technical platform was created as a basis for future projects.

In a next step the DDC’s PI-controller may be replaced with a Xcos function block PI-

controller to compare the results. The modular nature of the HIL enables the developer

to implement other software or hardware components. For instance, more sophisticated

controllers may be implemented on a separate UDOO, attached to the existing platform,

for advanced controlling like model predictive control. Further developing the existing

HIL simulation to include advanced controllers, could be a future approach to develop

more energy efficient heating systems.

44

¼½¾¿ÀÁÂÃ ÄÃ¿ÅÆ

9 Appendix

9.1 Software setup

9.1.1 Ubuntu: removing and updating package repositories

Using the Ubuntu APT (advanced packaging tool) apt-get [9] for removing and updating

package repositories from Ubuntu, the following sequence of commands is useful [26] :

sudo apt-get install -f // fixes broken dependencies if there are any

sudo apt-get clean // deletes download installation files from the cache

sudo apt-get autoclean // deletes all downloaded package files that aren’t existent in the

sources file.

sudo apt-get update // all package-sources from the /etc/apt/sources.list are read again

checking the signature

sudo apt-get upgrade // updates the already installed packages from the package sources

sudo apt-get dist-upgrade // updates the already installed packages from the package

sources and installs new packages if required

Possibly the APT package repositories sources in the /etc/apt/sources.list file needs to

be edited (using vi or nano).

9.1.2 Compiling & configuring Scilab

To be able to compile Scilab 5.X some core dependencies for your linux distribution are

mandatory, see

http://wiki.scilab.org/Dependencies%20of%20Scilab%205.X for further reading.

Open a terminal in Ubuntu and enter following commands as root-user:

sudo apt-get update // refreshes packages source information in the /etc/apt/sources.list

sudo apt-get upgrade // upgrades package from package source to latest release

sudo apt-get dist-upgrade // same as "upgrade", also installs new packages replacing old

ones which are obsolete through new dependencies

Create a new folder:

mkdir /usr/local/src // makes new directory

I

ÇÈÉÊËÌÍÎ ÏÎÊÐÑ

sudo chmod -R 777 /usr/local/src // change user rights to read/write/execute for created

directory

sudo chown -cR $USER /usr/local/src // change owner of directory to root

Install the following required packages:

sudo apt-get install libcurl3 // installs the libcurl3 package

sudo apt-get install libcurl3-dev // installs the libcurl3-dev package

Download the "libmatio" package from:

http://sourceforge.net/projects/matio/matio-1.5.2.tar.gz

Extract the files using the tar command to usr/local/src:

tar -xvzf filename.tar.gz

According to the README file install the package in /usr/local .

Download the "libarpack" package from:

http://forge.scilab.org/index.php/p/arpack-ng/arpack-ng_3.1.5.tar.gz

Extract the files using the tar command to usr/local/src .

According to the README file install the package in /usr/local .

Download the "libxml2" package from:

ftp://xmlsoft.org/libxml2/libxml2-sources-2.9.2.tar.gz

Extract the files using the tar command to /usr/local/libxml2.

According to the README file install the package by typing the following commands

into the terminal:

./configure –prefix=/usr/local/libxml2

make

sudo make install

Next download the source files for Scilab 5.5.1 and the prerequiremtents from:

http://www.scilab.org/development/sources/stable

In a terminal switch to the folder: /usr/local/src:

Extract the compressed files of the prerequirements and Scilab using the tar command.

II

ÒÓÔÕÖ×ØÙ ÚÙÕÛÜ

All required dependencies for Scilab 5.5.1 should be installed, switch to folder:

/usr/local/src/scilab-5.5.1 and enter the following commands:

./configure –prefix=/usr/local –with-libxml2=/usr/local/libxml2 // builds the makefile

make all // builds the program

sudo make install //install program set in the makefile

DONE!

To run type ./bin/scilab

To make the script universally available in the terminal. Using the example

of Scilab:

echo $SHELL // check which shell you’re running

for BASH SHELL enter:

echo ’export PATH=$PATH:/usr/local/src/scilab-5.5.1/bin’ » /.bashrc // this adds the

path of Scilab to .bashrc config-file

Now type "scilab" from anywhere in a terminal to run the program.

III

ÝÞßàáâãä åäàæç

9.1.3 Connecting to the USB serial interface

To install Minicom, text-base modem control for serial communication from the Linux

console, log on as root and do the following steps:

To install minicom:

sudo apt-get update

sudo apt-get install minicom

To configure use the following command:

sudo minicom -sw

Go to Serial port setup and edit as follow:

Serial Device: /dev/ttyUSB0

Hardware Flow Control: No

Software Flow Control: No

Press exit and Save setup as dfl and exit from Minicom.

Change access permissions to the serial port with:

sudo chmod 666 /dev/ttyUSB0

To start listening on the serial line use:

sudo minicom -w

Restart the UDOO and press-any-key to connect to the serial console shell.

IV

èéêëìíîï ðéñï

9.2 Software code

9.2.1 Arduino Sketch

//declare integer variables

int inNum = 0;

int outPin = DAC0;

int inPin = A0;

int val = 0;

// setup serial connections

void setup() // setup function

{

Serial.begin(9600); // set baud rate to 9600 Bd

delay(2000); // wait 2000ms

analogReadResolution(10); // set ADC to default 10 bit returns values betwenn 0-1023

analogWriteResolution(10); // change resolution of DAC from default 8 bit to 10 bit

}

//main method of sketch

void loop()

{

val = analogRead(inPin); // reads value form ADC, here converts 0.002 V - 2.543 V to

0.5 - 758

Serial.println(val); // prints the value to the serial interface

delay(20); //waits 20 ms

if (Serial.available() > 0) { // if values in serial buffer

inNum = Serial.parseInt(); // read first integer from serial buffer

analogWrite(outPin, inNum); // maps integer value to 0-1023 and writes to pin

delay(20); //wait 20 ms

}else{

delay(20);//waits 20 ms

}

}

V

òóôõö÷øù úóûù

9.2.2 Code in the XCOS serial communication block

The following code is embedded in the scifunc_block_m Xcos function block within the

read / write super-block.

str=string(round(u1))+ascii(44); // round the float, create a string and add a ,

writeserial(h,str); // write the string one char at a time to the serial port

data_temp=strsubst(readserial(h),ascii(10),’,’); // read char from serial port to form

string replacing the ASCII control character ’linefeed’ with a ’,’

data_temp2=strtod(strsplit(data_temp,’,’)); // split string add ’,’ as a denominator; cre-

ate an integer from the string

y1=data_temp2(1); // only use first row in the vector

9.2.3 Scilab serial communication script

The following code is a Scilab script to open the serial connection on set port number and

to simulate the XCOS diagram.

clc; //clear console

getd(’/home/patrick/Desktop/Scilab/2015/xcos’); // get access on the directory specified

h = openserial_udoo(0,"9600,n,8,1"); // open serial port 0, 9600 baud rate, n parity bits,

8 data bits, 1 stop bit

xpause(1000000); //pause 1 sec

importXcosDiagram(’/home/patrick/Desktop/Scilab/2015/xcos/building/Streckensimulator_mar19.zcos’);

// import the xcos code to this script

xcos_simulate(scs_m,4); // run import xcos script

// create a vector setpointf of size tkessel_out.values for set-point value

for i=1:length(tkessel_out.values)

setpointf(i)=340.5;

end

x=1:length(setpointf); // create vector the same size as setpointf

plot(x,tkessel_out.values’,’-’,x, setpointf ’,’–’); // plot simulated boiler temp. values

a=gca(); //get am axis handle

a.data_bounds=[0,334;300,346]; //set range of axis

hl=legend([’Flow temp.’;’Setpoint’],[-1]); // set the legend

VI

üýþÿS��� �ý��

title(’Model Temperatures over ’+string(300/60)+ ’ min’,’fontname’,4); // set the title

with the number of simulated minutes

xlabel(’time / s’); // label the x-axis

ylabel(’Temp. / K’); // label the y-axis

closeserial(h); // close the serial port

VII

����	
�� ���

9.2.4 Scilab adapted openserial function

The following function is a customization of the openserial function from the Serial Com-

munication Toolbox in Scilab. The amended line is bold-faced.

h=openserial_udoo(p,smode,translation,handshake,xchar,timeout)

//port name if exists("p","local") then p=1; end

if type(p)==1 | type(p)==8 then

// if p<=0 then error("port number must be greater than zero"); end

if getos() == "Windows" then

port="COM"+string(p)+":"

else

port="/dev/ttyUSB"+string(p); // assign the serial port to the USB-port end

elseif type(p)==10

port=p

else

error("port to open must be either a number or a string")

end

TCL_EvalStr("set porthandle [open "+port+" r+]");

h=TCL_GetVar("porthandle");

// parsing communication modes: via fconfigure: -translation

// -mode,-handshake, -xchar, -timeout, -blocking

// translation=["auto","binary","cr","crlf","lf"]

// handshake=["none","rtscts","xonxoff","dtrdsr"]

// xchar=[,]

if exists("smode","local") then

TCL_EvalStr("fconfigure "+h+" -mode "+smode)

end

//default translation is binary to avoid input character count skew

if exists("translation","local") then

translation="binary"

end

TCL_EvalStr("fconfigure "+h+" -translation "+translation)

//does nonblocking work the way I’d expect?

if exists("blocking","local") then

blocking=%f

VIII

�������� ����

end

TCL_EvalStr("fconfigure "+h+" -blocking "+string(bool2s(blocking)))

if exists("handshake","local") then

TCL_EvalStr("fconfigure "+h+" -handshake "+handshake)

end

if exists("xchar","local") then

TCL_EvalStr("fconfigure "+h+" -xchar "+string(xchar)+"")

end

if exists("timeout","local") then

TCL_EvalStr("fconfigure "+h+" -timeout "+string(timeout)+"")

end

endfunction

IX

D���������

9.3 Datasheets

9.3.1 UDOO specifications

2-page extract from the UDOO starting manual (beta V.04):

UDOO Starting manual (beta) Version 0.4

http://www.udoo.org/ 4

1. Introduction

1.1. What's UDOO?

UDOO is a mini PC that can be used both with Android and Linux OS, with an
embedded Arduino-compatible board. It is a powerful prototyping board for
software development and design; it’ s easy to use and allows developing projects
with minimum knowledge of hardware. UDOO merges different computing worlds
together: each one has its proper strenght- and weak- points, but all of them are
useful in today's life for educational purposes as well as Do-It-Yourself (DIY) and
quick prototyping. UDOO is an open hardware, low-cost platform equipped with an
ARM i.MX6 Freescale processor, and an Arduino Due compatible section based on
ATMEL SAM3X ARM processor, all this available on the same board!

1.2. UDOO goals

Develop an innovative product for a growing market

Give a new vision to the educational framework, with the idea of training up a
new generation of engineers, designers and software developers skilled in
digital technology: physical computing, multi-media arts, interactive arts, IoT...

Give a boost to the DIY world

Offer a low cost embedded platform for interactive arts with powerful tools:
Processing, OpenCV, PureData, openFramework

Provide companies with a great tool for fast prototyping

1.3. Specifications

UDOO retail line up consists of three models, sharing most of the featuresand
different only for connectivity and i.MX6 processor used. All three models feature an
embedded Arduino compatible section based on Arduino Due schematic. UDOO’ s
size are 4.33 inch x 3.35 inch (11 cm x 8.5 cm).
Warning: The UDOO I/O pins are 3.3V compliant. Higher voltages (like 5V) would
damage the board.

1.3.1. GPIO features

Current version, UDOO rev. D, has these additional features:

S/PDIF digital audio in & out through pin headers;

I2S/AC97/SSI digital audio multiplexer through pin headers;

FlexCAN (Flexible Controller Area Network) through pin headers, it is possible
to switch this function’ s management between i.MX6 processor and SAM3X8E
processor;

External SD card support through pins header: plug an external controller for
an additional SD card slot or for an eMMC module.

1.3.2. UDOO Quad

Freescale i.MX6Quad, 4 x ARM® Cortex™-A9 core @ 1GHz with ARMv7A
instruction set

X

�� �!"## !

UDOO Starting manual (beta) Version 0.4

http://www.udoo.org/ 5

GPU Vivante GC 2000 for 3D + Vivante GC 355 for 2D (vector graphics) +
Vivante GC 320 for 2D (composition)

Atmel SAM3X8E ARM Cortex-M3 CPU (same as Arduino Due)

RAM DDR3 1GB

76 fully available GPIO with Arduino-compatible R3 1.0 pinout

HDMI and LVDS + Touch

2 Micro USB (1 OTG)

2 USB 2.0 type A and 1 USB 2.0 internal pin header (requires adapter cable)

Analog Audio and Mic jacks

CSI Camera Connection

on board Micro SD card reader (boot device)

Power Supply (6-15V) and External Battery connector

Ethernet RJ45 (10/100/1000 MBit)

WiFi Module

SATA connector with power header

1.3.3. UDOO Dual

Freescale i.MX6DualLite, 2x ARM® Cortex™-A9 core @ 1GHz with ARMv7A
instruction set

GPU Vivante GC 880 for 3D and 2D (vector graphics) + Vivante GC 320 for 2D
(composition)

Atmel SAM3X8E ARM Cortex-M3 CPU (same as Arduino Due)

RAM DDR3 1GB

76 fully available GPIO with Arduino-compatible R3 1.0 pinout

HDMI and LVDS + Touch

2 Micro USB (1 OTG)

2 USB 2.0 type A and 1 USB 2.0 internal pin header (requires adapter cable)

Analog Audio and Mic jacks

CSI Camera Connection

on board Micro SD card reader (boot device)

Power Supply (6-15V) and External Battery connector

Ethernet RJ45 (10/100/1000 MBit)

WiFi Module

SATA connector with power header

1.3.4. UDOO Dual Basic

Freescale i.MX6DualLite, 2x ARM® Cortex™-A9 core @ 1GHz with ARMv7A
instruction set

GPU Vivante GC 880 for 3D and 2D (vector graphics) + Vivante GC 320 for 2D
(composition)

Atmel SAM3X8E ARM Cortex-M3 CPU (same as Arduino Due)

RAM DDR3 1GB

76 fully available GPIO with Arduino-compatible R3 1.0 pinout

HDMI and LVDS + Touch

$%

&'(')*++()

9.3.2 Atmel Sam3x

SAM3S8 / SAM3SD8 [DATASHEET]
Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

1080

Note: DAC Clock (fDAC) = 50 MHz, fs = 2 MHz, fIN = 127 kHz, IBCTL = 01, FFT using 1024 points or more, Frequency band = [10 kHz,

500 kHz] – Nyquist conditions fulfilled.

Table 41-40. Dynamic Performance Characteristics

Symbol Parameter Conditions Min Typ Max Unit

SNR Signal to Noise Ratio 71 dB

THD Total Harmonic Distortion -71 dB

SINAD Signal to Noise and Distortion 68 dB

Table 41-41. Analog Outputs

Symbol Parameter Conditions Min Typ Max Unit

VOR Voltage Range (1/6) × VADVREF (5/6) × VADVREF V

SR Slew Rate

Channel Output Current vs Slew Rate

(IBCTL for DAC0 or DAC1, noted

IBCTLCHx)

RLOAD = 5k , 0pF < CLOAD< 50 pF

IBCTLCHx = 00

IBCTLCHx = 01

IBCTLCHx = 10

IBCTLCHx = 11

2.7

5.3

8

11

V/µs

Output Channel

Current Consumption

No resistive load

IBCTLCHx = 00

IBCTLCHx = 01

IBCTLCHx = 10

IBCTLCHx = 11

0.23

0.45

0.78

0.9

mA

tsa Settling Time RLOAD = 5k , 0pF < CLOAD< 50pF 0.5 µs

RLOAD Output Load Resistor 5 k

CLOAD Output Load Capacitor 50 pF

,--

./0/123301

9.3.3 Freescale i.MX6 ARM Cortex-A9 quad core

i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 3

4 Freescale Semiconductor

Introduction

Ensure that you have the right data sheet for your specific part by checking the temperature grade

(junction) field and matching it to the right data sheet. If you have questions, see freescale.com/imx6series

or contact your Freescale representative.

Figure 1. Part Number Nomenclature—i.MX 6Quad and i.MX 6Dual

1.2 Features

The i.MX 6Dual/6Quad processors are based on ARM Cortex-A9 MPCore platform, which has the
following features:

ARM Cortex-A9 MPCore 4xCPU processor (with TrustZone®)

The core configuration is symmetric, where each core includes:

32 KByte L1 Instruction Cache

32 KByte L1 Data Cache

Private Timer and Watchdog

Cortex-A9 NEON MPE (Media Processing Engine) Co-processor

The ARM Cortex-A9 MPCore complex includes:

General Interrupt Controller (GIC) with 128 interrupt support

Global Timer

Snoop Control Unit (SCU)

Part differentiator @

Industrial w/ VPU, GPU, no MLB 7

Automotive w/ VPU, GPU 6

Consumer w/ VPU, GPU 5

Automotive w/ GPU, no VPU 4

Temperature Tj +

Extended Commercial: -20 to + 105 C E

Industrial: -40 to +105 C C

Automotive: -40 to + 125 C A

Frequency $$

800 MHz2 (Industrial grade) 08

852 MHz (Automotive grade) 08

1 GHz3 10

1.2 GHz 12

Package type RoHS

FCPBGA 21x21 0.8mm (lidded) VT

FCPBGA 21x21 0.8mm (non lidded) YM

Qualification level MC

Prototype Samples PC

Mass Production MC

Special SC

Part # series X

i.MX 6Quad Q

i.MX 6Dual D

Silicon revision1 A

Rev 1.2 C

Rev 1.3 D

Fusing %

Default Setting A

HDCP Enabled C

MC IMX6 X @ + VV $$ % A

1. See the freescale.com\imx6series Webpage for latest information on the available silicon revision.

2. If a 24 MHz input clock is used (required forUSB), themaximum SoC speed is limited to 792 MHz.

3. If a 24 MHz input clock is used (required forUSB), themaximum SoC speed is limited to 996 MHz.

4555

67879:;;89

Introduction

i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 3

Freescale Semiconductor 5

1 MB unified I/D L2 cache, shared by two/four cores

Two Master AXI (64-bit) bus interfaces output of L2 cache

Frequency of the core (including Neon and L1 cache) as per Table 6

NEON MPE coprocessor

SIMD Media Processing Architecture

NEON register file with 32x64-bit general-purpose registers

NEON Integer execute pipeline (ALU, Shift, MAC)

NEON dual, single-precision floating point execute pipeline (FADD, FMUL)

NEON load/store and permute pipeline

The SoC-level memory system consists of the following additional components:

Boot ROM, including HAB (96 KB)

Internal multimedia / shared, fast access RAM (OCRAM, 256 KB)

Secure/non-secure RAM (16 KB)

External memory interfaces:

16-bit, 32-bit, and 64-bit DDR3-1066, LVDDR3-1066, and 1/2 LPDDR2-1066 channels,

supporting DDR interleaving mode, for 2x32 LPDDR2-1066

8-bit NAND-Flash, including support for Raw MLC/SLC, 2 KB, 4 KB, and 8 KB page size,

BA-NAND, PBA-NAND, LBA-NAND, OneNAND and others. BCH ECC up to 40 bit.

16/32-bit NOR Flash. All EIMv2 pins are muxed on other interfaces.

16/32-bit PSRAM, Cellular RAM

Each i.MX 6Dual/6Quad processor enables the following interfaces to external devices (some of them are
muxed and not available simultaneously):

Hard Disk Drives SATA II, 3.0 Gbps

Displays Total five interfaces available. Total raw pixel rate of all interfaces is up to 450

Mpixels/sec, 24 bpp. Up to four interfaces may be active in parallel.

One Parallel 24-bit display port, up to 225 Mpixels/sec (for example, WUXGA at 60 Hz or dual

HD1080 and WXGA at 60 Hz)

LVDS serial ports One port up to 165 Mpixels/sec or two ports up to 85 MP/sec (for example,

WUXGA at 60 Hz) each

HDMI 1.4 port

MIPI/DSI, two lanes at 1 Gbps

Camera sensors:

Parallel Camera port (up to 20 bit and up to 240 MHz peak)

MIPI CSI-2 serial camera port, supporting up to 1000 Mbps/lane in 1/2/3-lane mode and up to

800 Mbps/lane in 4-lane mode. The CSI-2 Receiver core can manage one clock lane and up to

four data lanes. Each i.MX 6Dual/6Quad processor has four lanes.

Expansion cards:

Four MMC/SD/SDIO card ports all supporting:

<=>

?@A@BCEEAB

i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 3

6 Freescale Semiconductor

Introduction

1-bit or 4-bit transfer mode specifications for SD and SDIO cards up to UHS-I SDR-104

mode (104 MB/s max)

1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards up to 52 MHz in both SDR

and DDR modes (104 MB/s max)

USB:

One High Speed (HS) USB 2.0 OTG (Up to 480 Mbps), with integrated HS USB PHY

Three USB 2.0 (480 Mbps) hosts:

One HS host with integrated High Speed PHY

Two HS hosts with integrated HS-IC USB (High Speed Inter-Chip USB) PHY

Expansion PCI Express port (PCIe) v2.0 one lane

PCI Express (Gen 2.0) dual mode complex, supporting Root complex operations and Endpoint

operations. Uses x1 PHY configuration.

Miscellaneous IPs and interfaces:

SSI block capable of supporting audio sample frequencies up to 192 kHz stereo inputs and

outputs with I2S mode

ESAI is capable of supporting audio sample frequencies up to 260kHz in I2S mode with 7.1

multi channel outputs

Five UARTs, up to 4.0 Mbps each:

Providing RS232 interface

Supporting 9-bit RS485 multidrop mode

One of the five UARTs (UART1) supports 8-wire while others four supports 4-wire. This is

due to the SoC IOMUX limitation, since all UART IPs are identical.

Five eCSPI (Enhanced CSPI)

Three I2C, supporting 400 kbps

Gigabit Ethernet Controller (IEEE1588 compliant), 10/100/10001 Mbps

Four Pulse Width Modulators (PWM)

System JTAG Controller (SJC)

GPIO with interrupt capabilities

8x8 Key Pad Port (KPP)

Sony Philips Digital Interconnect Format (SPDIF), Rx and Tx

Two Controller Area Network (FlexCAN), 1 Mbps each

Two Watchdog timers (WDOG)

Audio MUX (AUDMUX)

MLB (MediaLB) provides interface to MOST Networks (150 Mbps) with the option of DTCP

cipher accelerator

1. The theoretical maximum performance of 1 Gbps ENET is limited to 470 Mbps (total for Tx and Rx) due to internal bus

throughput limitations. The actual measured performance in optimized environment is up to 400 Mbps. For details, see the

ERR004512 erratum in the i.MX 6Dual/6Quad errata document (IMX6DQCE).

FG

HIJIKLMMJK

Introduction

i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 3

Freescale Semiconductor 7

The i.MX 6Dual/6Quad processors integrate advanced power management unit and controllers:

Provide PMU, including LDO supplies, for on-chip resources

Use Temperature Sensor for monitoring the die temperature

Support DVFS techniques for low power modes

Use Software State Retention and Power Gating for ARM and MPE

Support various levels of system power modes

Use flexible clock gating control scheme

The i.MX 6Dual/6Quad processors use dedicated hardware accelerators to meet the targeted multimedia

performance. The use of hardware accelerators is a key factor in obtaining high performance at low power

consumption numbers, while having the CPU core relatively free for performing other tasks.

The i.MX 6Dual/6Quad processors incorporate the following hardware accelerators:

VPU Video Processing Unit

IPUv3H Image Processing Unit version 3H (2 IPUs)

GPU3Dv4 3D Graphics Processing Unit (OpenGL ES 2.0) version 4

GPU2Dv2 2D Graphics Processing Unit (BitBlt)

GPUVG OpenVG 1.1 Graphics Processing Unit

ASRC Asynchronous Sample Rate Converter

Security functions are enabled and accelerated by the following hardware:

ARM TrustZone including the TZ architecture (separation of interrupts, memory mapping, etc.)

SJC System JTAG Controller. Protecting JTAG from debug port attacks by regulating or

blocking the access to the system debug features.

CAAM Cryptographic Acceleration and Assurance Module, containing 16 KB secure RAM and

True and Pseudo Random Number Generator (NIST certified)

SNVS Secure Non-Volatile Storage, including Secure Real Time Clock

CSU Central Security Unit. Enhancement for the IC Identification Module (IIM). Will be

configured during boot and by eFUSEs and will determine the security level operation mode as

well as the TZ policy.

A-HAB Advanced High Assurance Boot HABv4 with the new embedded enhancements:

SHA-256, 2048-bit RSA key, version control mechanism, warm boot, CSU, and TZ initialization.

1.3 Updated Signal Naming Convention

The signal names of the i.MX6 series of products have been standardized to better align the signal names

within the family and across the documentation. Some of the benefits of these changes are as follows:

The names are unique within the scope of an SoC and within the series of products

Searches will return all occurrences of the named signal

The names are consistent between i.MX 6 series products implementing the same modules

The module instance is incorporated into the signal name

NOP

QRTRUVWWTU

9.3.4 DDC 4200

Technical data sheet 2.60-10.200-01-en

DDC4200 DDC Central Unit Device Description

Technical data

Bus connection Ethernet 99 DDC4000 Central Units can be administrated,
networkable worldwide on active network
components, 10/100 Mbit/s

Field Bus; F Bus:
63 Field Bus Module FBM,

 2 CAN buses switchable as
Field or Control Cabinet Bus

2000m; 20kBaud, CAN, J-Y(St) Y 2x2x0.8mm²

Control Cabinet Bus; SBM Bus:
16 Control Cabinet Bus Modules SBM or BMA/D;
200m;

40kBaud, CAN
 Field and Control Cabinet

Bus
At the farthest removed point from the central
unit a terminator resistance of 180 Ohms must be
attached between "BUS+" and "BUS-".

Interfaces Serial RS232 Modem, printer

 RS485 decoupling for J Y(St)-Y connection

 CompactFlash for CompactFlash card; update, data backup / file
recovery (behind the front panel)

32 digital inputs DI /
digital outputs DO

Transistor output potential-free contact against
0V=24V DC; 50mA,

switchable 8 BI of these for pulse count to 80Hz
24 analog inputs AI / Sensor type Value range and unit
analog outputs AO 0..10V 0 to 100%
switchable KP10 -50 to +150°C
 Pt100 -50 to +850°C
 Pt1000 -50 to +150°C
 Ni100 -50 to +150°C
 Ni1000 (DIN) -50 to +150°C

Inputs and outputs

 Ni1000 (L&G) -50 to +150°C
 KP250 -50 to +150°C
 Output 10V/50mA

24V AC +/-10%; 50..60Hz; 33VA; 1.4A or
24V DC +/-10%; 14.4W; 0.6A or

Operating voltage for DDC central unit

12V DC +/-10%; 15.6W; 1.3A
 for digital inputs and outputs 24V DC +/-10% / 50mA
Fuses Mains fuse, T 3.15A

Display TouchScreen with active back-lighted ¼ VGA color TFT display
14 cm diagonal (5.7 inches)

Memory 128 MByte Flash Disc; 48MByteSDRAM; 1 MByte Flash-PROM (boot)
Operating system Embedded Linux

Power outage data
backup

7 years, clock components battery-buffered

Degree of enclosure
protection

IP30

Ambient temperature 0..45°C
In operation: 20..80% r. h., not condensing Environmental humidity
Out of operation: 5..90% r. h., not condensing

19" short cassette out of plastic, 4-fold cassette with a base and separated
connections for Ethernet and RS232

Housing

B x H x T; 202mm x 132mm x 137mm

Front panel cutout 200.4mm x 112.0mm
Weight 1.225kg

Designation CE

Technology for building automation

Page 2 / 4

YZ[[

\]^]_`aa^_

9.3.5 Operational amplifier

Philips Semiconductors Product specification

NE/SA/SE5532/5532A
Internally-compensated dual low noise
operational amplifier

21997 Sept 29 853-0949 16639

DESCRIPTION
The 5532 is a dual high-performance low noise operational amplifier.

Compared to most of the standard operational amplifiers, such as

the 1458, it shows better noise performance, improved output drive

capability and considerably higher small-signal and power

bandwidths.

This makes the device especially suitable for application in

high-quality and professional audio equipment, instrumentation and

control circuits, and telephone channel amplifiers. The op amp is

internally compensated for gains equal to one. If very low noise is of

prime importance, it is recommended that the 5532A version be

used because it has guaranteed noise voltage specifications.

FEATURES

• Small-signal bandwidth: 10MHz

• Output drive capability: 600Ω, 10VRMS

• Input noise voltage: 5nV Hz (typical)

• DC voltage gain: 50000

• AC voltage gain: 2200 at 10kHz

• Power bandwidth: 140kHz

• Slew rate: 9V/µs

• Large supply voltage range: ±3 to ±20V

• Compensated for unity gain

PIN CONFIGURATIONS

FE, N, D8 Packages

D Package1

NOTE:

1. SOL and non-standard pinout.

7

6

54

3

2

1

BA

V+

OUTP UT B

INVERTING INP UT B

NON-INVER TING INP UT B

OUTP UT A

INVERTING INP UT A

NON-INVER TING INP UT A

V-

TOP VIEW

–INA

+INA

NC

–VCC

NC

NC

+INB

–INB

NC

NC

NC

OUTA

1

2

3

4

5

6

7

8 9

10

11

12

13

14

16

15

+VCC

OUTB

NC

NC

TOP VIEW

SL00332

8

Figure 1. Pin Configurations

ORDERING INFORMATION

DESCRIPTION TEMPERATURE RANGE ORDER CODE DWG #

8-Pin Plastic Dual In-Line Package (DIP) 0 to 70°C NE5532N SOT97-1

8-Pin Plastic Dual In-Line Package (DIP) –40°C to +85°C SA5532N SOT97-1

8-Pin Plastic Dual In-Line Package (DIP) –40°C to +85°C SA5532AN SOT97-1

8-Pin Ceramic Dual In-Line Package (CERDIP) 0 to 70°C NE5532FE 0580A

8-Pin Plastic Dual In-Line Package (DIP) 0 to 70°C NE5532AN SOT97-1

8-Pin Ceramic Dual In-Line Package (CERDIP) 0 to 70°C NE5532AF 0580A

8-Pin Ceramic Dual In-Line Package (CERDIP) -55°C to +125°C SE5532FE 0580A

8-Pin Ceramic Dual In-Line Package (CERDIP) -55°C to +125°C SE5532AF 0580A

8-Pin Small Outline Package (SO) 0 to 70°C NE5532AD8 SOT96-1

8-Pin Small Outline Package (SO) –40°C to 85°C SA5532D8 SOT96-1

8-Pin Small Outline Package (SO) –40°C to 85°C SA5532AD8 SOT96-1

8-Pin Small Outline Package (SO) -55°C to +125°C SE5532AD8 SOT96-1

8-Pin Small Outline Package (SO) 0 to 70°C NE5532D8 SOT96-1

8-Pin Small Outline Package (SO) –40°C to 85°C SA5532D8 SOT96-1

8-Pin Small Outline Package (SO) –40°C to 85°C SA5532AD8 SOT96-1

8-Pin Small Outline Package (SO) -55°C to +125°C SE5532D8 SOT96-1

16-Pin Plastic Small Outline Large (SOL) Package 0 to 70°C NE5532D SOT162-1

16-Pin Plastic Dual In-Line Package (DIP) -55°C to +125°C SE5532N SOT38-4

bcddd

efgfhijjgh

9.3.6 Potentiometer

Square Trimming Potentiometer – 3296 & 3266 Suntan®

TSR-3296 & 3266
TSR-3296 TSR-3266

k
lmnopqrsotuvowx
yz{|}~}{��o �����}o ���{�}�~�|o ���|���
�
y� Terminal Styles)

���� Electrical Characteristics

TS������ ��������

Standard Resistance Range
10 - 5M 10 - 5M

Resistance Tolerance

10% 10%

Absolute Minimum Resistance

1% R 10n 1% R 10

Contact Resistance Variation

CRV 3% 5n CRV 3% 5

Insulation Resistance

R1 1G (100Vac) R1 1G (100Vac)

Withstand Voltage

640Vac 500Vac

Effective Travel

30±2 turns nom 12±2 turns nom

���� Environmental Characteristics

TS������ ��������

Power Rating
�������ts max

0.5W@70 , 0W@125 0.25W@70 , 0W@125

Temperature Range

-55 ~ +125 -55 ~ +125

Temperature
Coefficien¡

100ppm/ 100ppm/

Temperature
Variation

-55 ,30min, +125 -55 ,30min, +125

Vibration

10 – 500Hz, 0.75mm, 6h

R 5%R, (Uab/Uac) 7.5%

10 – 500Hz, 0.75mm, 6h

R 5%R, (Uab/Uac) 7.5%

Collision

390m/s
2
,4000cycles, R 5%R 390m/s

2
,4000cycles, R 5%R

70
Electrical
Endurance at 70

0.5W@70
1000h, R 10%R
CRV 3% or 5

0.25W@70
1000h, R 10%R
CRV 3% or 5

Rotational Life

200 (200 cycles)

TR 10%R,CRV 3% or 5n

200 (200 cycles)

R 10%R,CRV 3% or 5

Standard Resistance table

¢£¤¥¤¦§¨©£ª«¬¤¯ °±²³²´µ¶·± ¸¹º±
»¼ 100
20 200
50 500

100 101
150 151
200 201
250 251
300 301
470 471
500 501
680 681

1,000 102
1,500 152
2,000 202
2,200 222
2,500 252
3,000 302
4,700 472
5,000 502
6,800 682
10,000 103
15,000 153
20,000 203
22,000 223
25,000 253
30,000 303
33,000 333
47,000 473
50,000 503
68,000 683

100,000 104
150,000 154
200,000 204
220,000 224
250,000 254
300,000 304
330,000 334
470,000 474
500,000 504
680,000 684

1,000,000 105
2,000,000 205
2,200,000 225
5,000,000 505

Special resistances available.

½¾¿ ÀÁÂ ÃÁ ÄÅÆÇÅ

 TSÈÉÊËÌÍ Î ÊËÍÍ ÉÉÉ Ï ÉÉÉ ÐÑÊ ÉÉ È
 Model

 Style

 Resistance Code

 RoHS

 WIPER 2(d)

 CLOCKWISE

 : 0.25

Tolerance is 0.25 if no identification

ÒÓÔÕ Physical Characteristics

Ö×ØÙ

Starting Torque
35mN·m

Marking

(10%)

·

Resistance Tolerance

(When no identification, it is of

Standard

Packaging

50 /

(50pcs, per tube)

TSR-3296
ÚÛÜÝ Common Dimensions

TSR-3296W

 TSR-3296Y

TSR-3266
ÚÛÜÝ Common Dimensions

 TSR-3266P

TSR-3266W

Þßàáâãääå

TSR-3296P

TSR-3296X

TSR-3296Z

TSR-3266X

TSR-3266Z

Note: Specification are subject to change without notice. For more detail and update, please visit our website.

Suntanæ Technology Company Limited Website: www.suntan.com.hk Email: info@suntan.com.hk Tel: (852) 8202 8782 Fax: (852) 8208 6246

çèç

éêëêìíîîëì

9.3.7 DC-to-DC converter

ïï

ðñòssary

Glossary

ADC analog-to-digital converter

ASCII American Standard Code for Information Interchange

BACnet building automation and control networks

DAC digital-to-analog converter

DDC automation station for building facilities

GPIO general purpose intput / output

HIL hardware-in-the-loop

IDE integrated development environment

I/O input / output

IVP initial value problem

MPC model predictive controller

ODE ordinary differential equation

OS operating system

UDOO single-board computer

XXI

óôõssary

References

[1] Arduino: Arduino official web page. http://www.arduino.cc/en/Reference/

HomePage. – Accessed: 31.05.2015

[2] Beier, T. ;Wurl, P.: Regelungstechnik - Basiswissen, Grundlagen, Anwendungs-

beispiele. 1. Carl Hanser, München, 2013

[3] Bernstein, Herbert: Grundlagen der Hard- und Software der Mikrocontroller

ATtiny2313, ATtiny26 und ATmega32. Wiesbaden: Springer, 2015. – ISBN 978–

1–4200–9157–1. – Accessed: 31.05.2015

[4] Dembowski, K.: Mikrocontroller - Der Leitfaden für Maker - Schaltungstechnik

und Programmierung von Raspberry, Arduino & Co. 1. dpunkt.verlagwe, 2014

[5] Ding, Bao-Cang: Modern Predictive Control. CRC Press, 2010. – ISBN 978–1–

4200–9157–1. – Accessed: 31.05.2015

[6] Dugge, K. ; Ei ner, A.: Grundlagen der Elektronik. 6. Vogel, Würzburg, 1997

[7] Faes, G.: Eine Einführung in das Mathematikprogramm Scilab. 1. Books on

Demand, Norderstedt, 2014

[8] Hwang, T. ; Rohl, J. ; Park, K.: Development of HIL Systems for active

Brake Control Systems. In: SICE-ICASE International Joint Conference 30 (2006),

December, Nr. 1, S. 205–231. http://dx.doi.org/10.1137/060676489. – DOI

10.1137/060676489. – Accessed: 31.05.2015

[9] Kofler, M.: Linux das umfassende Handbuch. Galileo Press, Bonn, 2014

[10] Kruppa, K.: Dokumentation Matlab HeatLib - Zur Vewendung mit Matlab

/ Hochschule für Angewandte Wissenschaften Hamburg. TU Hamburg-Harburg,

2014. – Dokumentation

[11] Observe: official project webpage. http://ob-serve.de/. – Accessed: 31.05.2015

[12] Pangalos, G. ; Eichler, A. ; Lichtenberg, G.: Tensor Systems: Multilinear

Modeling and Applications. In: 3rd Int. Conference on Simulation and Modeling

Methodologies, Technologies and Applications, 2013. – submitted

[13] Papula, L.: Mathematik für Ingenieure und Naturwissenschaftler. 12.

Vieweg+Teubner, Wiesbaden, 2009

XXII

ö÷ø÷ù÷úû÷ü

[14] Peeters, L. ; Veken, J. V. ; Hens, H. ; Helsen, L. ; D?haeseleer,

W.: Control of heating systems in residential buildings: Current prac-

tice. In: Energy and Buildings 40 (2008), Nr. 8, 1446 - 1455. http:

//dx.doi.org/http://dx.doi.org/10.1016/j.enbuild.2008.02.016. – DOI

http://dx.doi.org/10.1016/j.enbuild.2008.02.016. – ISSN 0378–7788

[15] Peter, Kieback :̇ company webpage. http://www.kieback-peter.de. – Accessed:

31.05.2015

[16] Privara, Samuel ; Siroky, Jan ; Ferkl, Lukas ; Cigler, Jiri: Model predictive

control of a building heating system: The first experience. In: Energy and Buildings

43 (2011), Nr. 2?3, 564 - 572. http://dx.doi.org/http://dx.doi.org/10.1016/

j.enbuild.2010.10.022. – DOI http://dx.doi.org/10.1016/j.enbuild.2010.10.022.

– ISSN 0378–7788

[17] Reuther, K.-H.: Grundlagen der Regelungstechnik - Eine Einführung in die The-

orie und die analoge und digitale Realisierung. 2. Shaker, Aachen, 2007

[18] Schmidt, M.: Arduino - Ein schneller Einstieg in die Microcontroller- Entwick-

lung. 2. dpunkt.verlag, Heidelberg, 2015

[19] Schmitt, G.: Mikrocomputertechnik mit Controllern der Atmel AVR-RISC-

Familie. 5. Oldenbourg Verlag, München, 2010

[20] Scilab, INRIA: Scilab official web page. http://www.scilab.org/resources/

documentation. – Accessed: 31.05.2015

[21] Stephan, K. ; Mayinger, F.: Thermodynamik - Grundlagen und technische

Anwendungen. 12. Springer, Berlin, Heidelberg, New York, 1986

[22] Tkotz, K.: Fachkunde Elektrotechnik. 26. Europa-Lehrmittel, Norney, 2008

[23] UBUNTU: official webpage. https://ubuntu.com/. – Accessed: 31.05.2015

[24] UDOO: official webpage. http://udoo.org/. – Accessed: 31.05.2015

[25] Weichinger, K.: Scicos Serial-Interface-Block Manual V12.05. www.bioe.at.tt.

– Accessed: 31.05.2015

[26] WIKI, UBUNTU: User-platform for german speaking Ubuntu users. https://

wiki.ubuntuusers.de/. – Accessed: 31.05.2015

XXIII

