Bachelorarbeit

Philipp Baumgart

Ansteuerung, Regelung und Erprobung eines Servomotors für einen Wellenkanalantrieb

Fakultät Technik und Informatik Department Fahrzeugtechnik und Flugzeugbau Faculty of Engineering and Computer Science Department of Automotive and Aeronautical Engineering

Philipp Baumgart

Ansteuerung, Regelung und Erprobung eines Servomotors für einen Wellenkanalantrieb

Bachelorarbeit eingereicht im Rahmen der Bachelor-/Masterprüfung

im Studiengang Maschinenbau Energie- und Anlagensysteme am Department Maschinenbau der Fakultät Technik und Informatik der Hochschule für Angewandte Wissenschaften Hamburg

in Zusammenarbeit mit: HAW Hamburg La Ola Wellenkanal Berliner Tor 5 20099 Hamburg

Erstprüfer : Prof. Dr.-Ing. Peter Wulf Zweitprüfer : Prof. Dr.-Ing. Stefan Wiesemann

Abgabedatum: 18.08.2015

Zusammenfassung

Name des Studenten

Philipp Baumgart

Thema der Bachelorthesis

Ansteuerung, Erprobung und Regelung eines Servomotors für einen Wellenkanalantrieb

Stichworte

Steuerung, Wellenkanal, LabVIEW, LaOla, Wellenkraftwerk

Kurzzusammenfassung

Diese Arbeit beschäftigt sich mit der Ansteuerung und Erprobung eines Servomotors für einen Wellenkanalantrieb mittels LabVIEW. Zu diesem Zweck wurde eine TCP Verbindung des Rechners mit dem Frequenzumrichter gewählt und ein Programm mit LabVIEW geschrieben, welches die Steuerung realisieren soll.

Des Weiteren wird auf die Möglichkeit einer Steuerung mittels Modbus/TCP eingegangen und die einzelnen Schritte zur Programmierung der TCP Verbindung erläutert. Außerdem werden die technischen Grundlagen von Netzwerken im Rahmen der Arbeit erläutert um ein eingehendes Verständnis der Theorie zu gewährleisten.

Name of Student

Philipp Baumgart

Title of the paper

Controlling, testing and regulation of a servomotor for a wavecanal

Keywords

Controlling, wave canal, LabVIEW, LaOla, wave power plant

Abstract

The following bachelor thesis deals with controlling and testing of a servomotor for a wave cannel drive via LabVIEW. For this purpose a TCP connection between the computer and the frequency inverter was created and a program with LabVIEW was written in order to achieve control of the servomotor.

Furthermore, the thesis adresses the possibility of controlling the servomotor via Modbus/TCP, as well as the necessary steps required to program the TCP connection.

In addition, the technical fundamentals of networks as part of the thesis are explained thoroughly in order to ensure comprehension of the relevant theory.

Aufgabenstellung

Im Zentrum für Energietechnik an der HAW Hamburg soll im Rahmen des studentischen Projekts LaOla ein neuer Wellenkanal in Betrieb genommen werden. Der Wellenkanal besteht aus einem 10m langen Tank mit transparenten Wänden. Am Wellenkanal sollen zukünftig Prototypen von Wellenkraftwerken im Labormaßstab untersucht werden.

Die Wellen sollen durch einen Wellenerzeuger generiert werden, bei dem eine Umschaltung zwischen Schwing- und Hubbewegung möglich ist. Für die aktuell laufende Inbetriebnahmephase steht dabei jedoch zunächst die Schwingbewegung im Vordergrund. Der Wellenerzeuger soll in den späteren Untersuchungen durch die Überlagerung von einzelnen phasenverschobenen Wellen mit jeweils eigener Amplitude und Frequenz das vorgegebene Seegangsspektrum eines irregulären Seegangs möglichst realistisch abbilden. Um dies realisieren zu können, ist es notwendig, den Elektromotor des Wellenerzeugers zuverlässig und in Quasi-Echtzeit über eine noch zu definierende Schnittstelle aus der LabVIEW-Umgebung zuverlässig an steuern und in ein Regelkonzept einbinden zu können.

Im Einzelnen sind dazu folgende Aufgaben im Rahmen dieser Bachelorthesis vorgesehen:

- Einarbeitung in die vorliegende Antriebstechnik ("SEW-Syncron-Servomotor"), die vorhandenen Schnittstellen und in die LabVIEW-Umgebung
- Auswahl einer geeigneten Motor-Schnittstelle und Herstellung einer zuverlässigen Verbindung zwischen LabVIEW und dem Antriebssystem
- Definition, Auswahl und Programmierung von einfachen Testsequenzen in LabVIEW (z.B. Winkelverstellung, Verfahrgeschwindigkeit, ...) und Test am realen Motor
- Einbindung und Test der ausgewählten Schnittstelle in ein LabVIEW-Programm zur Regelung des Wellenkanalantriebs (aus [6])
- Einbindung und Test der Schnittstellenkarte eines Wellendrahtmesssystems (Ist-Wert-Geber) in das LabVIEW-Programm (s. [3])
- Ausführliche Erprobung der gesamten Steuerungs- bzw. Regelstrecke am realen Motor
- Ausführliche Dokumentation der Schnittstellen, der Erprobungen und der erzielten Ergebnisse

Bei den praktischen Tests ist sicherzustellen, dass der Servomotor nicht mit der Mechanik des sog. "Paddels" verbunden ist und frei drehen kann. Damit soll sichergestellt werden, dass bei einem ungünstig verlaufenden Test keine Schäden an Personen oder Anlagen auftreten. Falls ferner elektrische oder mechanische Arbeiten am Antrieb notwendig werden, dürfen diese nur von dafür autorisierten Personen der HAW Hamburg durchgeführt werden.

Der Arbeit ist ein Datenträger (CD oder DVD) mit der Arbeit selbst (im PDF-Format) sowie allen relevanten Dateien (insbesondere den LabVIEW-Dateien und ggf. verwendeten Treibern für die Schnittstelle) beizulegen. Die Leitlinien des Instituts ICAMM zur formalen Gestaltung der Arbeit sind zu beachten.

Zu beachtende Vorarbeiten:

[1] P. Baumgart, B. Niemax: CAN-Bus-Ansteuerung für einen elektrischen Wellenkanalantrieb. Hausarbeit HAW Hamburg, 2014. [2] M. Hartlev, G. Nobis: Inbetriebnahme und Erprobung einer Steuerung für einen Wellenkanalantrieb. Hausarbeit HAW Hamburg, 2014.

[3] A. Klemichen, M. Simon: Inbetriebnahme, Eichung und Erprobung eines Wellendrahtmesssystems für einen Wellenkanal. Masterprojekt HAW Hamburg, 2014.

[4] L. Assfalg, S. Decher, D. Karathomas, H. Krieg, R. Templin: Wellenkanalantrieb - Optimierung einer vorhandenen Konstruktion und Bau des Prototyps. Bachelorprojekt, HAW Hamburg, 2013.

[5] M. Kirk, J. Pless, H. Röhrs, F. Schulz: Redesign und Konstruktion eines Wellenerzeugers für den HAWWellenkanal. Bachelorprojekt, HAW Hamburg, 2012.

[6] N. Krieger: Entwicklung einer Regelung für den Antrieb einer maritimen Versuchsanlage. Bachelorthesis, HAW Hamburg, 2012.

Abkürzungs- und Formelverzeichnis

EEG	Erneuerbare-Energien-Gesetz	
EMEC	Europe Marine Energy Centre	
HAW	Hochschule für angewandte Wissenschaften Hambur	rg
TCP	Transmission Control Protocol	
IP	Internetprotocol	
OSI	Open Systems Interconnection	
TCP/IP	Transmission Control Protocol / Internet Protocol	
EtherNet/IP	EtherNet Industrial Protocol	
E/A	Eingang/Ausgang	
SYN	synchronize Massage	
ACK	acknowledgement	
IANA	Internet Assigned Numbers Authority	
ICANN	Internet Corporation for Assigend Names and Number	ers
UDP	User Datagram Protocol	
CIP	Common Industrial Protocol	
SMLP	Simple Movilink Protocol	
LRC	longitudinal redundancy check	
RTU	Remote Terminal Unit	
CRC	cyclic redundancy check	
IRC	International Electotechnical Commission	
VI	Virtual Instrument	
ms	Millisekunde	
ω	Winkelgeschwindigkeit	[rad/s]
~	Winkel	[rad]
n	Drehzahl	[1/min]
+		
l	Zeit	[Sek]

Abbildungsverzeichnis

Abbildung 1: Brutto-Stromerzeugung 2013 [5]	. 1
Abbildung 2: Pelamis (Seeschlange) im EMEC Test vor Schottland [6]	.2
Abbildung 3: Wellenkanal [7]	.2
Abbildung 4: Anschlussmöglichkeiten des DFE33B	.3
Abbildung 5: Auszug aus dem SEW Systemhandbuch [19]	. 3
Abbildung 6: Wireshark Startbildschirm	. 5
Abbildung 7: Wireshark Protokoll [18]	. 6
Abbildung 8: OSI Schichtmodell (Ausschnitt) [10]	.7
Abbildung 9: Aufbau der TCP Verbindung [10]	.7
Abbildung 10: Port zuordnung für TCP/IP [10]	. 8
Abbildung 11: Aufbau des TCP Headers [11]	. 8
Abbildung 12: Aufbau des TCP-Headers in Wireshark1	10
Abbildung 13: TCP Flags im Wireshark Protokoll1	11
Abbildung 14: OSI Schichtmodell mit EtherNet/IP CIP-Schicht [12]1	12
Abbildung 15: Modbuskarte CIFX 50-RE von Hilscher [14]1	14
Abbildung 16: TCP Verbindung herstellen [16]1	16
Abbildung 17: TCP Schreiben [16]1	16
Abbildung 18: TCP Verbindung trennen [16]1	17
Abbildung 19: Movitools, Auswahl der Scan Verbindung1	18
Abbildung 20: Movitools Aufbau der TCP Ethernetverbindung1	19
Abbildung 21: Wireshark Binding Request	19
Abbildung 22: Handbetrieb von Movitools	20
Abbildung 23: Wireshark Protokollierung des Handbetrieb	21
Abbildung 24: Wireshark Protokollierung des Drehzahlbefehl	22
Abbildung 25: Einfache TCP sende Programmierung	22
Abbildung 26: Blockdiagramm, Aufbau der TCP Verbindung	23
Abbildung 27: Frontpanel, Eingabe für die Verbindungsdaten	23
Abbildung 28: Blockdiagramm, Handbetrieb einschalten	24
Abbildung 29: Frontpanel, Anzeige für den Start des Handbetrieb	24
Abbildung 30: Blockdiagramm, Drehzahleingabe	24
Abbildung 31: Frontpanel, Drehzahleingabe	25
Abbildung 32: Blockdiagramm, Zeitschleife zum Senden der Drehzahl	25
Abbildung 33: Senden der Drehzahl via LabVIEW	26
Abbildung 34: Frontpanel, Zeiteingabe	27
Abbildung 35: Blockdiagramm, Senden des Haltebefehls	27
Abbildung 36: Frontpanel, Motorstopp	27
Abbildung 37: Blockdiagramm, Trennen der TCP Verbindung	28
Abbildung 38: Frontpanel der Programmierung	29
Abbildung 39: Blockdiagramm der vollständigen Programmierung	30
Abbildung 40: Antwort des Frequenzumrichters auf das LabVIEW Programm	31
Abbildung 41: Blockdiagramm des SEW Modbus Programms	32
Abbildung 42: Frontpanel des SEW Modbus Programms	33
Abbildung 43: Winkelmessscheibe [17]	34
Abbildung 44: Überbrückung der Anschlussstelle X13 des DFE33B	35

Tabellenverzeichnis

Tabelle 1: Wireshark Gliederung [9]	5
Tabelle 2: Beispiele für Wireshark Filter	6
Tabelle 3: Bedeutung der Felder im TCP Header [10]	9
Tabelle 4: Übertragungsarten für EtherNet/IP [12]	. 13
Tabelle 5: Aufbau des Modbus/ASCII Telegramm	. 14
Tabelle 6: Aufbau des Modbus/RTU Telegramm	. 15
Tabelle 7: Aufbau des Modbus/TCP Telegramm	. 15

Inhaltsverzeichnis

Aufo	gabenstellung	I
Abk	ürzungs- und Formelverzeichnis	III
Abb	ildungsverzeichnis	IV
Tab	ellenverzeichnis	V
1.	Einleitung	1
1.	1 Gesamtkontext	1
1.	2 Zielsetzung	2
2.	Grundlagen	5
2.	1 Wireshark	5
2.	2 Netzwerktheorie	7
	2.2.1 Transmission Control Protocol TCP	7
	2.2.2 Simple Movilink Protocol SMLP	11
	2.2.3 EtherNet Industrial Protocol EtherNet/IP	12
	2.2.4 Nagle-Algorithmus	13
2.	3 Modbus	14
	2.3.1 Modbus/ASCII	14
	2.3.2 Modbus/RTU	15
	2.3.3 Modbus/TCP	15
2.	4 LabVIEW	16
3.	Programmierung	18
3.	1 Vorgehen zur Programmierung	18
3.	2 Programmierung	23
	3.2.1 Abschnitt 1: Aufbau der TCP Verbindung	23
	3.2.2 Abschnitt 2: Handbetrieb einschalten	24
	3.2.3 Abschnitt 3: Drehzahl Umwandlung und Bildung des Datensatz	24
	3.2.4 Abschnitt 4: Zeitschleife zum Senden der Drehzahl	25
	3.2.5 Abschnitt 5: Senden des Haltebefehl	27
	3.2.6 Abschnitt 6: Trennen der TCP Verbindung	28
3.	3 Fazit zur Programmierung	31
4.	SEW eigenes Modbus Programm	32
5.	Winkelmessung	34
6.	Problematik	35
7.	Aussichten	36
Que	llenverzeichnis	37

1. Einleitung

1.1 Gesamtkontext

Durch die Energiewende in Deutschland, die durch den Atomausstieg vom 14. März 2011 verschärft wurde ist es vermehrt nötig in Deutschland erneuerbare Energien zu fördern und diese massiv auszubauen. Zum 6. August 2011 verloren acht deutsche Atomkraftwerke ihre Betriebserlaubnis, dies wurde in der Bundeskabinettssitzung vom 6. Juni 2011 beschlossen [1][2]. Bis zum Jahr 2022 sollen alle deutschen Atomkraftwerke abgeschaltet werden. Die hieraus resultierende Differenz in der Energieerzeugung muss durch neue Kraftwerke ausgeglichen werden. Im Rahmen des Gesetzes für den Ausbau erneuerbarer Energien (Erneuerbare-Energien-Gesetz EEG 2014) soll der Anteil der erneuerbaren Energien bis zum Jahr 2025 auf 40-45 Prozent am Bruttostromverbrauch steigen [3], hierdurch können die Verluste der Atomenergie behoben werden. Im Zuge des Gesetzes sollen vor allem Windenergie und solare Strahlungsenergie gefördert und ausgebaut werden [4]. Das Gesetz als solches berücksichtigt die Wasserkraft nur minimal, da die konventionelle Wasserkraft in Deutschland bereits nahezu vollständig erschlossen ist. Der Betrag der konventionellen Wasserkraftwerke an der gesamten Energieerzeugung betrug zum Stand Dezember 2013 3,4% [5] (Abbildung 1).

Abbildung 1: Brutto-Stromerzeugung 2013 [5]

Um die Wasserkraft weiter auszubauen und somit eine im Gegensatz zu Windenergie und Solarenergie stetige und Wetter unabhängige Energiegewinnung zu gewährleisten ist es nötig neue Wege zu gehen. Zu diesem Zweck muss die Entwicklung von neuartigen Wasserkraftanlagen, wie Wellenhubkraftwerken und Strömungs- beziehungsweise Gezeitenkraftwerken voran getrieben werden.

Ein erster Schritt in dieser Entwicklung ist das vom Europe Marine Energy Centre (EMEC) getestete und von den Firmen Pelamis Wave Power und Enersis entwickelte Seeschlangenkraftwerk (Pelamis) [6], welches vor der schottischen Küste erprobt wurde.

Abbildung 2: Pelamis (Seeschlange) im EMEC Test vor Schottland [6]

Des Weiteren werden küstengebundene Wellenkraftwerke, die mittels Wellenhub und dem damit erzeugten Luftstrom durch eine Wells-Turbine Strom erzeugen, getestet. Wells-Turbinen drehen sich unabhängig der Anströmrichtung nur in eine Richtung, was Energieverluste durch den Wechsel der Drehrichtung verhindert. Die Firma Voith baute eine solche Anlage im November des Jahres 2000 an der Küste der schottischen Insel Islay.

Das Potential der Wellen kann jedoch auf hoher See besser genutzt werden, zu diesem Zweck müssen neue Prototypen zunächst in Simulationen und maßstäblichen Versuchen erprobt werden. Hierzu wurde an der Hochschule für angewandte Wissenschaften Hamburg (HAW) das Projekt LaOla ins Leben gerufen. Im Laufe des Projekts wurde ein Wellenkanal mit den Ausmaßen 10m x 1,50m x 1m (LxBxH) (Abbildung 3) zum Test von Modellen gebaut.

Abbildung 3: Wellenkanal [7]

Die Anlage soll nach der Fertigstellung und Inbetriebnahme im Laborbetrieb eingesetzt werden und als Forschungsprojekt geführt werden.

1.2 Zielsetzung

Ziel dieser Arbeit ist es eine Möglichkeit für die Steuerung des Stellmotors, welcher das Wellenpaddel zur Wellenerzeugung antreibt, zu realisieren. Dies soll mit einer Programmierung durch LabVIEW und einer ausgewählten Schnittstelle erfolgen. Die möglichen Schnittstellen werden durch die Anschlussmöglichkeiten des Frequenzumrichters festgelegt. Der DFE33B verfügt über Anschlüsse für Modbus (X30, X32), CANOpen (X15) und EtherCat (X30, X32), diese sind in Abbildung 4 zu sehen. Da sich die Hausarbeit CAN-Bus-Ansteuerung für einen elektrischen Wellenkanalantrieb bereits mit der Möglichkeit einer LabVIEW Steuerung mittels CANOpen beschäftigt hat, wird diese Schnittstelle nicht weiter betrachtet.

Abbildung 4: Anschlussmöglichkeiten des DFE33B

Es wurde eine Steuerung via TCP in einem lokalen Netzwerk gewählt, da sich diese nach der Recherche als einfachste Methode darstellt und nicht die Anschaffung weiterer Bauteile wie einer Modbuskarte erfordert. Auf die Möglichkeit einer Steuerung mittels Modbus soll allerdings kurz eingegangen werden, da SEW hierzu ein eigenes LabVIEW Programm anbietet.

Option DFE33B										
DFE33B MCOALE STATUS NETWORK	Applikations-Protokolle	 EtherNet/IP (Ethernet Industrial Protocol) oder Modbus/TCP zur Steuerung und Parametrierung des Antriebsumrichters. HTTP (Hypertext Transfer Protocol) zur Diagnose mittels Web-Browser. SMLP (Simple MOVILINK Protocol), Protokoll, das von MOVITOOLS[®] MotionStudio genutzt wird. DHCP (Dynamic Host Configuration Protocol) zur automatischen Vergabe de Adressparameter. 								
mic. 18 00. 86 48 40. 65 48	Verwendete Port-Nummern	44818 EtherNet/IP (TCP) 2222 EtherNet/IP (UDP) 502 Modbus/TCP 300 SMLP (TCP, UDP) 80 HTTP 67 / 68 DHCP								
2	Ethernet-Dienste	ARP ICMP (Ping)								
	ISO / OSI-Schicht 1/2 ISO / OSI-Schicht 4/5	Ethernet II TCP/IP und UDP/IP								
(Territ	Automatische Baudraten- erkennung	10 MBaud / 100 MBaud								
2	Anschlusstechnik	2 x RJ45 mit integriertem Switch und Auto-Crossing								
- Manuel	Adressierung	4 Byte IP-Adresse bzw. MAC-ID (00-0F-69-xx-xx)								
DEF P AS THERNETAP	Herstellerkennung (Vendor-ID)	 013B_{nex} (EtherNet/IP) "SEW-EURODRIVE" (Modbus/TCP) 								
	Hilfsmittel zur Inbetriebnahme	 Engineering-Software MOVITOOLS[®] MotionStudio ab Version 5.40 Bediengerät DBG60B 								
1455412875	Firmware-Stand des MOVIDRIVE [®] MDX61B	Firmware-Stand 824 854 0.17 oder höher (→ Anzeige mit P076)								

4.16.3 Elektronikdaten

Abbildung 5: Auszug aus dem SEW Systemhandbuch [19]

Anhand des Systemhandbuchs von SEW (Abbildung 5) können die möglichen Protokolle eingesehen werden, die zur Datenübertragung genutzt werden können. In den nachfolgenden Kapiteln soll auf die einzelnen Protokolle und ihre Möglichkeiten eingegangen werden. Es werde Folgende Möglichkeiten von Protokollen erläutert:

- 44818 EtherNet/IP (TCP)
- 502 Modbus/TCP
- 300 SMLP (TCP, UDP)

Ergänzend zu der Programmierung soll eine Methode entworfen werden, mit der die Genauigkeit der eingestellten Winkel überprüft werden kann.

2. Grundlagen

2.1 Wireshark

Wireshark ist ein Netzwerkpaket Analysierer, auch Sniffer genannt. Wireshark greift die Netzwerkpakete eines Netzwerkes oder einer bestimmten Verbindung ab und versucht diese möglichst detailliert widerzugeben [8]. Mit neueren Versionen ist auch das Abgreifen von Daten in einem CANopen Netzwerk möglich.

Abbildung 6: Wireshark Startbildschirm

Nachdem eine Verbindung gewählt wurde, die überwacht und mitgeschrieben werden soll, wird das Hauptprogramm gestartet. Hier werden nun die Datenpakete angezeigt und können im Einzelnen analysiert werden. Die Anzeige gliedert sich wie in der folgenden Tabelle.

No	\rightarrow	Nummer des Pakets. Das erste aufgezeichnete Paket erhält die Nummer 1
Time	\rightarrow	Ankunftszeit des Paketes (je nach Konfiguration Uhrzeit oder vergan- gene Zeit seit Beginn der Aufzeichnung)
Source	\rightarrow	Absender des Paketes (je nach Konfiguration IP-Adresse, FQDN, Hostname oder MAC-Adresse)
Destination	\rightarrow	Empfänger des Paketes (je nach Konfiguration IP-Adresse, FQDN, Hostname oder MAC-Adresse)
Protocol	\rightarrow	Verwendetes Netzwerk-Protokoll, beispielsweise im Falle eines PingRequests typischerweise ICMP
Info	\rightarrow	Kurze Beschreibung des Inhaltes des Paketes, beispielsweise im Fal- le eines Ping-Reply typischerweise "Echo (ping) reply"

Tabelle 1: Wireshark Gliederung [9]

Abbildung 7: Wireshark Protokoll [18]

Im oberen Teil der Anzeige, der Paketliste, werden die abgegriffenen Netzwerkpakete angezeigt. Klickt man eines dieser Pakete an, so können im unteren Teil die Details des Pakets angezeigt werden. Die Detailanzeige unterscheidet sich zwischen der Paketdetailliste und der Paketinhaltsliste, in der die Daten als Hexadezimalcode angezeigt werden.

Wenn es nicht erwünscht ist, dass bestimmte Protokolle oder andere Daten angezeigt werden, kann der Mitschrieb über das Anbringen verschiedener Filter in der Displayfilterleiste bereinigt werden, sodass nur die gewünschten Pakete protokolliert werden. Die Filter unterliegen dabei in der Eingabe ähnlichen regeln wie in der Programmierung, so bedeutet ein "!" eine Negation des nachfolgenden Wertes der Art "nicht", während "==" eine Eindeutigkeit der Art "ist genau gleich" beschreibt.

Filter Eingabe	Beschreibung
ip.addr == 192.168.10.24	Zeigt jeden Traffic von oder zu der IP Adresse 192.168.10.24 an
! (ip.addr == 192.168.10.24)	Jeder Traffic, der die IP Adresse 192.168.10.24 beinhaltet wird ausgeblendet

Tabelle 2: Beispiele für Wireshark Filter

2.2 Netzwerktheorie

2.2.1 Transmission Control Protocol TCP

Das Transmission Control Protocol (TCP) gilt zu den transportorientierten Netzwerkprotokollen und dient der Definition für den Datenaustausch zwischen den einzelnen Stationen in einem Netzwerk. Es stellt eine End-to-End Verbindung zwischen den Sockets, also den Endpunkten, im Netzwerk her. Diese Endpunkte sind zumeist durch ihre Internet Protokoll (IP) Adresse definiert, da das TCP auf der Internet Schicht im Open System Interconnection Modell (OSI) aufbaut, daher wird auch vom TCP/IP gesprochen.

Schicht	Dier	Dienst / Protokolle / Anwendung										
Anwendung	HTTP	IMAP	DNS	SNMP								
Transport	тс	P	UDP									
Internet		IP (IPv4	l / IPv6)									
Netzzugang	tzzugang Ethernet,											

Abbildung 8: OSI Schichtmodell (Ausschnitt) [10]

TCP ist ein Vollduplex Datenübertragungssystem, was bedeutet, dass Daten in beide Richtungen gleichzeitig ausgetauscht werden können. Zudem kann das TCP bei Datenverlust diesen automatisch erkennen und beheben.

Zum Verbindungsaufbau wird der sogenannte drei Wege Handschlag (engl. 3-wayhandshake) (Abbildung 9) verwendet. In diesem sendet der Anfragende Part, auch Client genannt, eine TCP-Verbindungsanforderung, die sogenannte synchronize massage (SYN). Der angefragte TCP-Server antwortet darauf mit einer Bestätigung, bestehend aus einer weiteren Synchronisation und einer Bestätigungsnachricht, diese wird acknowledgement (ACK) genannt, worauf der Client eine weitere ACK Nachricht zur widerholten Bestätigung der Verbindung sendet. Ist eine Verbindung aufgebaut, können Daten zwischen beiden Teilen der Verbindung gleichberechtigt ausgetauscht werden. In einem TCP Netzwerk gibt es nach dem Kommunikationsaufbau keinen Unterschied zwischen Server und Client.

TCP-Client

Abbildung 9: Aufbau der TCP Verbindung [10]

Daten werden in einer TCP-Verbindung mittels sogenannter Ports bestimmten Anwendungen zugeordnet. Diese Portnummern sind klar genormt durch die Internet Assigned Numbers Authority (IANA) und die Internet Corporation for Assigned Names and Numbers (ICANN).

Abbildung 10: Port zuordnung für TCP/IP [10]

Man unterscheidet zwischen den "Well Known Ports", den "Registered Ports" und den "Dynamically Allocated Ports".

Die "Well Known Ports" sind standardisierte und fest zugeordnete Ports, die eine einfache Kommunikation über TCP ermöglichen. Sie sind unabhängig vom Betriebssystem und Zielsystem anwendbar. So ist wie oben zu sehen die Portnummer 25 dem Simple Mail Transfer Protocol (SMTP) zuzuschreiben. Dieser Dienst ermöglicht eine einfache Kommunikation zwischen Mailservern und Clients um die E-Mailkommunikation zu vereinfachen.

Als "Registered Ports" werden die Portnummern 1024 bis 49151 bezeichnet. Diese sind nicht alle belegt und können bei der IANA/ICANN für Dienste reserviert werden. So ist beispielsweise der Port 23399 für Anwendungen von Skype reserviert. Die Dienste in diesem Portnummernbereich sind nicht auf allen Systemen standardisiert.

"Dynamically Allocated Ports" sind dynamisch vergebene Dienste und können jederzeit von Clients benutzt werden um eigene Dienste anzusprechen.

TCP Datenpakete sind immer gleich aufgebaut, sie bestehen aus dem Datenbereich und dem Headerbereich. Im TCP-Header stehen die verbindungsrelevanten Daten, die zum Aufbau der Verbindung im Netzwerk nötig sind.

Absender	-Port	Empfänger-Port						
	Sequenz	znummer						
Bestätigungsnummer								
Daten-Offset	Reserviert	Code	Fenster					
Prüfsum	nme	Dringlichkeitszeiger						
Option	en	Füllzeichen						
	Da	iten						

Abbildung 11: Aufbau des TCP Headers [11]

Feldinhalt	Bit	Beschreibung
Quell-Port (Source- Port)	16	Hier steht der Quell-Port, von der die Anwendung das TCP-Paket verschickt. Bei einer Stellenanzahl von 16 Bit beträgt der höchste Port 65.535.
Ziel-Port (Destina- tion-Port	16	Hier steht der Ziel-Port, über welchen das TCP-Paket der Anwendung zugestellt wird. Bei einer Stellenanzahl von 16 Bit beträgt der höchste Port 65.535.
Sequenz-Numer	32	Bei jeder TCP-Verbindung werden Nummern zwischen den Kommunikationspartner ausgehandelt. Während der Verbindung werden diese Nummern verwendet um die TCP-Pakete eindeutig zu identifizieren.
Acknowledgement- Nummer	32	Alle Datenpakete werden bestätigt. Dazu dient das ACK- Flag und die Acknowledgement-Nummer, die sich aus der Sequenz-Nummer und der Anzahl von empfangenen Bytes errechnet. Damit kann der Sender feststellen, ob die Daten beim Empfänger vollständig angekommen sind.
Data Offset		Hier steht die Anzahl der 32-Bit-Blöcke des TCP-Headers. Die Mindestmenge beträgt 5.
Reserviert	6	Dieser Bereich ist auf 000000 gesetzt und für Erweiterun- gen des TCP-Headers gedacht.
Flags	6	Kennzeichnung bestimmter für die Kommunikation und Weiterverarbeitung der Daten wichtiger Zustände (URG, ACK, PSH, RST, SYN, FIN).
Window-Größe	16	Der Empfänger sendet dem Sender in diesem Feld die Anzahl an Daten, die der Sender senden darf. Dadurch wird das Überlaufen des Empfangspuffers beim Empfän- ger verhindert. Den Vorgang nennt man Windowing und dient der Datenflusssteuerung.
Check-Summe	16	Dieses Feld dient der Kontrolle von Header- und Daten- bereich.
Urgent-Pointer	16	Zusammen mit der Sequenz-Nummer gibt dieser Wert die genaue Position der Daten im Datenstrom an. Der Wert ist nur gültig, wenn das URG-Flag gesetzt ist.
Optionen/Füllbits (C ons/Padding), jewei 32 Bit lang)pti- Is	Dieses Feld beinhaltet optionale Informationen. Um die 32-Bit-Grenze einzuhalten wird das Options-Feld mit Nul- len aufgefüllt.

Tabelle 3: Bedeutung der Felder im TCP Header [10]

Der in Abbildung 11 dargestellte Aufbau des TCP Headers kann anhand eines mit Wireshark erstellten Protokolls von einer Verbindung vom Rechner mit dem Frequenzumrichter nachvollzogen werden. Hier wurde mittels Movitools eine Verbindung aufgebaut.

Capturing from LAN-Verbindung [Wireshark 1.12.5 (v1.12.5-0-g5819e5b from master-1.12)]	
Elle Edit View Go Capture Analyze Statistics Telephony Iools Internals Help	
● ◎ ∡ ■ & ⊟ 🖹 ※ 2 ९ 수 수 🎝 ኛ 👱 🗐 🗟 ९ ९ ९ ೮ छ 🗹 🥵	- 8 😫
Filter: p.src == 192.168.10.24 and I classicstun	
o. ITime Source Destination Protocol Length Info	
103741 1074. 913054000 192.168.10.24 192.168.10.4 TCP 54 1151+300 FACK	1 seg=1079311 Ack=1079
103754 1075.114229000 192.168.10.24 192.168.10.4 TCP 54 1151+300 TACK] Seg=1079431 Ack=1079
103767 1075.314445000 192.168.10.24 192.168.10.4 TCP 54 1151+300 [ACK]] Seg=1079551 Ack=1079
103960 1078.434612000 192.168.10.24 192.168.10.4 TCP 54 1151+300 [ACK]] Seg=1081471 Ack=1081
104153 1081 652457000 192 168 10 24 - 192 168 10 4 - TCP	1 sen=1083391 &ck=1083
	<u>.</u>
Source Port: 1151 (1151) Destination Port: 300 (300) [Stream index: 0] [TCP Segment Len: 0] Sequence number: 1079551 (relative sequence number) Acknowledgment number: 1079583 (relative ack number) Header Length: 20 bytes 0000 0000 = Flags: 0x010 (ACK) window size value: 65515 [Calculated window size: 65515] [Window size scaling factor: -1 (unknown)] Checksum: 0x9587 [validation disabled] Urgent pointer: 0 E [SEQ/ACK analysis]	
0000 00 0f 69 07 0a 8e 00 16 76 5a 5b 5e 08 00 45 00i vZ[^E. 0010 00 28 cc 2b 40 00 80 06 99 37 c0 a8 0a 18 c0 a8 .(.+@7 0020 0a 04 04 7f 01 2c b5 1f 3d 81 0b 50 f2 c0 50 10,. =PP. 0030 ff eb 95 87 00 00	
) M LAN-Verbindung : <live capture="" in="" progress=""> File Packets: 119879 · Displayed: 7355 (6,1%) [F</live>	Profile: Default

Abbildung 12: Aufbau des TCP-Headers in Wireshark

Es ist zu sehen, dass der Source Port (Quellport) 1151 ist, somit handelt es sich um ein TCP/UDP Protokoll, welches von der IP-Adresse 192.168.10.24 an die Zieladresse 192.168.10.4, also an den Frequenzumrichter auf den Destination Port (Zielport) 300 versendet wird. Dieser Port ist wie weiter unten beschrieben ein SEW eigenes Protokoll, das Simple Movilink Protocol (SMLP).

🔏 Сар	turing f	rom LA	N-Verbin	dung	[Wir	eshark i	.12.5	(¥1.12	.5-0-g	5819e5	o from mas	er-1	.12)]									<u>- 0 ×</u>
Eile	<u>E</u> dit <u>V</u> ie	w <u>G</u> o	Captur	e <u>A</u> na	ilyze	Statistics	Tele	phony	Tools	Interna	ils <u>H</u> elp											
O) 🖌 🖲		i e	8 🔘	×	2	0, 4	>	 Solution 	₹ 5			Ð	QC	2 🖂	1 🗃	1) 🐻	%	Ø		
Filter:	ip.src =	= 192.1	68.10.24	and ! cl	assics	tun					Expressio	њ.,	Clear	Apply	Save	Filter	ŕ					
vo.	Time			Sourc	e			Desti	nation		Protocol			Length	In	fo						
1037	41 107	4.913	05400	0 192	.168	.10.24		192	.168	.10.4	TCP				54 1	151+3	300	[ACK]	Seq=:	1079311	Ack=	1079:
1037	54 107	5.114	22900	0 192	.168	.10.24		192	.168	.10.4	TCP				54 1	151+3	300	[ACK]	Seq=	1079431	Ack=	1079
1037	67 107	5.314	44500	0 192	.168	.10.24		192	.168	.10.4	TCP				54 1	151+3	300	[ACK]	Seq=	L079551	Ack=	1079
1039	60 107	8.434	61200	0 192	.168	.10.24		192	.168	.10.4	TCP				54 1	151+3	300	[ACK]	Seq=:	1081471	Ack=	1081 _
1041	53 108	1.652	45700	0 192	.168	.10.24		192	.168	.10.4	TCP				54 1:	151+3	300	FACK1	Sea=	1083391	Ack=	1083
22																						
•	vindow (Calcu Windo Jrgent	0 .0. 1 size lated w siz um: 0 poin	 0 .0 .0. valu winda e sca x9587 ter: 0	= NO = CO = Ur = AC = Pu = Re = Sy = Fi 2: 65 Dw si ling [val 0 -1	nce: nges gent know sh: set: N: N 515 ze: fact idat	Not s tion w tho: Not ledgme Not se Not set sot set cor: -1 ion di	et indo t se set t et (un sabl	w Rec t Set knowr ed]	iuced ນ]]	(CWR)	: Not s	et										
0000	00 0	f 69	07 Oa	8e 0	0 16	76 5	a 5b	5e 0	8 00	45 00			vZ[ле.							2014	100
0010	00 2	8 CC	2b 40	00 8	0 06	993	7 C0	a8 0	a 18	C0 a8	. (. +	····	.7.									
0020	ff e	4 04 h 95	7F UL 87.00	2C D	э тт	30 8	T UD	SU T	2 CU	50 I(101010	· · ·	=	ΡΡ.								
	1616 S	ನ ಸನ	517 B.M.	0.000							10101010	353										
011	LAN-Ver	oinduna :	<live ca<="" td=""><th>nture in</th><th>prodre</th><th>ess> File</th><th>Pac</th><th>kets: 13</th><th>6604 ·</th><th>Displayer</th><th>. 7398 (5.49</th><td>.)</td><th></th><th></th><th></th><th></th><th></th><th>Pr</th><th>ofile: De</th><td>fault</td><td></td><td>_</td></live>	nture in	prodre	ess> File	Pac	kets: 13	6604 ·	Displayer	. 7398 (5.49	.)						Pr	ofile: De	fault		_

Abbildung 13: TCP Flags im Wireshark Protokoll

Als einzige Flag ist das Acknowledgment gesetzt (Abbildung 13), es handelt sich daher bei der abgebildeten Nachricht um eine Verbindungsanfrage.

Zusätzlich zu den Headerdaten werden zudem die Daten der IPv4 Verbindung sowie die Hardwaredaten der Ethernet II Verbindung angezeigt. Hieraus lassen sich die Hardwareadresse der Netzwerkpartner erkennen, beispielsweise die Sourceadresse *IntelCor_5a:5b:5e* die auf den IntelCore Netzwerkchip des Rechners verweist.

2.2.2 Simple Movilink Protocol SMLP

Das Simple Movilink Protocol ist ein SEW eigenes TCP Netzwerk Kommunikationsprotokoll, welches auf der Port Nummer 300 liegt und somit nicht zu den standardisierten Ports gehört. Mit dem SMLP können TCP-Daten von Movitools an den Frequenzumrichter DFE33B übermittelt werden.

2.2.3 EtherNet Industrial Protocol EtherNet/IP

Ethernet Industrial Protocol (EtherNet/IP) ist ein offener Standard für industrielle Netzwerke, der zyklische Eingang/Ausgabe-Nachrichtenübertragung (E/A) sowie azyklische (explizite) Nachrichtenübertragung unterstützt [12]. Das Protokoll hat die Portnummer 44818. Das EtherNet/IP setzte auf dem TCP und User Datagram Protocol (UDP) auf. Es wird Common Industrial Protocol (CIP) genannt und befindet sich in den Darstellungs-, Sitzungs-, Anwendungs-, sowie Geräteprofil-Ebenen der OSI Schichten.

Abbildung 14: OSI Schichtmodell mit EtherNet/IP CIP-Schicht [12]

Man unterscheidet beim CIP zwei Arten von EtherNet/IP Übertagungen, zum einen explizite Informationsübertragungen und zum anderen Echtzeit-E/A-Datenübertragungen (implizit).

Explizite Datenübertragung befasst sich mit der Übertragung nicht zeitkritischer Informationen von einem Sender zu einem einzelnen Ziel. Die Daten werden mittels des TCP/IP-Protokolls übertragen, da sie zumeist größere Datenpakete umfassen. Sie dienen einfachen Lese- oder Schreibbefehlen.

Implizite E/A-Daten werden zum Echtzeittransfer verwendet und können von einem Sender an eine beliebige Anzahl Empfänger gesendet werden. Sie dienen zum Steuern von E/A-Geräten wie Sensoren oder Frequenzumrichtern. Aufgrund der kleinen Datengröße und des erhöhten benötigten Datendurchsatzes wird das UDP/IP-Protokoll verwendet.

EtherNet/IP Übertra- gungsarten	Nachrichtenart	Beschreibung	Beispiel
Information	Explizit	Nicht zeitkritiche In- formationsdaten	Lesen/Schreiben von Daten mittels Nachrichtenbefehlen
E/A-Daten	Implizit	Echtzeit-E/A-Daten	Steuern von Echtzeitdaten über ein de- zentrales E/A-Gerät, Austausch von Echt- zeitdaten zwischen Steuerungen

Tabelle 4: Übertragungsarten für EtherNet/IP [12]

Man unterscheidet bei E/A-Geräten zwischen Scannern und Adaptern. Diese sind am ehesten mit einer Master-Slave-Verknüpfung vergleichbar. Adapter sind beispielsweise Sensoren, Aktoren und Frequenzumrichter. Diese Geräte müssen zunächst von einem Scanner aktiv angesprochen werden, es können hierbei mehrere Geräte parallel kontrolliert und angesprochen werden. In der hier beschriebenen Anordnung würde dem Rechner die Scanner- und dem Frequenzumrichter DFE33B die Adapter Rolle zu fallen.

2.2.4 Nagle-Algorithmus

Der Nagle-Algorithmus dient in Netzwerken dazu, zu kleine Datenpakete im TCP Teil zu verhindern. Dies ist in normalen Netzwerken wichtig, da durch zu kleine Pakete der Datenduchsatz verringert wird, somit leidet die Übertragungsgeschwindigkeit. Für die Verminderung des Duchsatzes ist der Aufbau von TCP Nachrichten verantwortlich, da diese mit einem festen Header erstellt werden und bei zu kleinen Paketen die Relevanz des Header die Relevanz der Nachricht überwiegen kann.

Der Nagle-Algorithmus basiert auf zwei Grundprinzipien.

- Wenn ein Paket voll ist, soll dieses gesendet werden
- Wenn ein Paket nicht voll ist, soll solange gewartet werden, bis alle bestätigten Pakete abgearbeitet sind

Die normale Wartezeit des Nagle-Algorithmus beträgt 200 Millisekunden [ms]. Dies führt im Rahmen der Programmierung mit LabVIEW zu Problemen, da wie später erläutert wird, die Daten mittels TCP alle 80 ms übermittelt werden sollen. Um dies zu realisieren muss der Algorithmus umgangen werden. Hierzu gibt es zum Einen die Möglichkeit direkt in die windowsinternen Netzwerkprotokolle einzugreifen, was mit erheblichem Aufwand und Kenntnissen über Netzwerk und Systemprogrammierung verbunden wäre. Zum Anderen bietet ein LabVIEW VI, welches von National Instrument zum Download angeboten wird, die Möglichkeit den Nagle-Algorithmus für einzelne TCP Verbindungen zu umgehen.

2.3 Modbus

Das Modbus-Protokoll wurde von der Firma Modicon für den Datenverkehr mit ihren Controllern entwickelt [13]. Es basiert auf einem klassischen Master/Slave-Protokoll. In diesem steuert ein Single-Master, zum Beispiel ein Computer, einen einzelnen oder eine Reihe von Slave Geräten mittels Telegrammen. Im Gegensatz zum TCP sind hier Master und Slave nicht gleichberechtigt. Slave Geräte sind nicht berechtigt ohne Anfrage des Masters Telegramme zu senden.

Abbildung 15: Modbuskarte CIFX 50-RE von Hilscher [14]

Man unterscheidet zwischen drei Modbusprotokollen

- Modbus/ASCII
- Modbus/RTU
- Modbus/TCP

Jeder Teilnehmer im Netzwerk muss eine eindeutige Adresse besitzen, damit er vom Master identifiziert und direkt angesprochen werden kann.

2.3.1 Modbus/ASCII

Im ASCII Modus werden die Daten mittels ASCII-Code übertragen und nicht in Binärfolge. Das bedeutet, die Befehle sind in Klartext verfasst und können direkt gelesen werden. Die Übertragung von ASCII-Code erfordert allerdings eine höhere Rechenleistung, wodurch der Datendurchsatz im Vergleich zum RTU oder TCP Modus deutlich geringer ist.

Das ASCII Telegramm setzt sich dabei wie in Tabelle 5 dargestellt zusammen.

Start	Adresse	Funktion	Daten	LR-Check	Ende				
1 Zeichen	2 Zeichen	2 Zeichen	n Zeichen	2 Zeichen	2 Zeichen (CRLF)				
Tabelle 5: Aufbau des Modbus/ASCII Telegramm									

Als Startzeichen steht normalerweise ein ":", die Adresse bilden zwei ASCII-Zeichen, die das Zielgerät identifizieren. Im Datenfeld werden die auszuführenden Befehle in Klartext eingegeben. Diese Befehle sind vom Zielgerät abhängig. Im Check Feld wird eine Längenparitätsprüfung (longitudinal redundancy check, LRC) durchgeführt. Bei dieser Prüfung wird über eine bestimmte Anzahl von gesendeten Daten eine Prüfsumme gebildet und ein Prüfdaten-

satz gesendet. Werden diese nun miteinander verglichen, so sollen sie gleich groß sein. Hierdurch können 1 Bit Datenfehler erkannt werden.

2.3.2 Modbus/RTU

Beim Modbus/RTU (Remote Terminal Unit) werden die Daten in Binärfolge übertragen, dies ermöglicht einen hohen Datendurchsatz. Jedoch ist es hierbei nötig eine dauerhafte Verbindung zu gewährleisten, da bei einem Abbruch der Verbindung Daten nicht vervollständigt werden können und der Slave im Netzwerk eine Fehlermeldung auslöst. Den Start des RTU-Telegrammes bildet eine Sendepause von mindestens drei Zeichen. Die Wartezeit selber ist somit von der Übertragungsrate abhängig, in der die drei Wartezeichen gesendet werden können. Die Adresse bildet ein 1 Byte, also 8 Bit Datensatz, der ähnlich wie im ASCII Modus den Empfänger identifiziert. Im Funktionsfeld wird dem Slave übermittelt, welche Art von Befehl ausgeführt werden soll. Das Datenfeld enthält die auszulesenden Daten. Der Slave füllt dieses Datenfeld aus und sendet es an den Master zurück. Im Gegensatz zum LRC wird hier eine zyklische Redundanzprüfung (cyclic redundancy check, CRC) durchgeführt. Bei diesem Verfahren wird für jedes Datenwort ein CRC-Wert berechnet und nach dem Senden vom Empfänger überprüft. Stimmen die Werte überein, so ist davon auszugehen, dass kein Sendefehler aufgetreten ist.

Start	Adresse	Funktion	Daten	CR-Check	Ende
Wartezeit (min. 3,5 Zeichen)	1 Byte	1 Byte	n Byte	2 Byte	Wartezeit (min. 3,5 Zeichen)

Tabelle 6: Aufbau des Modbus/RTU Telegramm

2.3.3 Modbus/TCP

Im Modbus/TCP werden TCP/IP-Pakete versendet, um die Daten zu übermitteln. Die Kommunikation findet somit gemäß der Standards einer TCP Verbindung statt. Die Kontrolle wird hierbei wie in einem regulären TCP-Paket durch die Verbindung selbst gewährleistet und es sind keine Kontroll-Bits, wie in den anderen beiden Modi nötig. Modbus/TCP ist in der IEC 61158 genormt und liegt auf dem TCP-Port 502.

Transaktionsnummer	Protokollkennzeichen	Zahl der noch folgenden Bytes	Adresse	Funktion	Daten
2 Byte	2 Byte (immer 0x0000)	2 Byte (n+2)	1 Byte	1 Byte	n Byte

Tabelle 7: Aufbau des Modbus/TCP Telegramm

2.4 LabVIEW

Die oberflächlichen Grundlagen von LabVIEW wurden bereits in den Arbeiten CAN-Bus-Ansteuerung für einen elektrischen Wellenkanalantrieb (*Hausarbeit HAW Hamburg, 2014*), sowie Inbetriebnahme und Erprobung einer Steuerung für einen Wellenkanalantrieb (*Hausarbeit HAW Hamburg, 2014*) behandelt. Daher wird hier nur kurz auf diese Grundlagen eingegangen und die TCP Netzwerk Programmierung mit LabVIEW insbesondere betrachtet.

Bei LabVIEW werden Programmbausteine, sogenannte virtuelle Instrumente (Virtual Instrument, VIs), auf einer Arbeitsfläche platziert und die Ein- und Ausgänge mittels Drähten verbunden. Eingaben finden über das Frontpanel statt, während die eigentlichen Bausteine auf dem Blockdiagramm zusammen gefügt werden.

Zur Programmierung einer Netzwerkkommunikation mit Schreibbefehl in LabVIEW werden drei VIs benötigt, diese sollen im Folgenden erläutert werden.

Das in Abbildung 16 dargestellte VI dient zum Aufbau einer TCP-Verbindung zwischen dem Computer und einem Zielgerät. Am Adresseingang wird dem Funktionsbaustein die Zieladresse mitgeteilt. Diese kann als IP-Adresse oder als Computername eingegeben werden. Den Netzwerkport bildet die Portnummer, über die eine Verbindung aufgebaut werden soll. Diese ist wie in Kapitel 3.2 unter dem Abschnitt TCP aufgeführt definiert. Der Timeout legt fest wie lange auf eine Antwort gewartet werden soll, bevor ein Fehler ausgegeben wird. Wird dieser Wert auf -1 gesetzt so wird kein Fehler ausgegeben. Die Voreinstellung liegt bei 60000 ms (1 min). Der Timeout sollte nicht als Eingabe sondern als Konstante festgelegt werden. Der Fehlereingang wird wie in allen VIs Mit einem Fehlerdisplay belegt und die so-genannte Errorline bis zum Ende des Programms durchgezogen. Der lokale Port dient zum Identifiezieren des Ausgangsdienstes, bei einer Voreinstellung von 0 wird die Portnummer automatsch festgelegt. Die Ausgangsklemme gibt die Verbindungs-ID aus, die an die anderen TCP-VIs weitergegeben wird, um diese mit den Verbindungsdaten zu versorgen.

Das "TCP Schreiben"-VI (Abbildung 17) benötigt als Eingang die Verbindungsdaten, die in Form der Verbindungs-ID vom oben beschriebenen "Verbindung herstellen"-VI bereitgestellt werden. Des Weiteren werden die Daten als Text eingegeben und durch das VI in ein TCP-Datenpaket umgewandelt und gesendet. Der Ausgang "Geschriebene Bytes" gibt die Länge des Datensatzes wider, hierdurch kann überprüft werden, ob das TCP-Paket korrekt übermittelt wurde. Die Eingänge für den Timeout und den Fehler sind belegt, wie beim Herstellen der TCP Verbindung.

Abbildung 18: TCP Verbindung trennen [16]

Zum Trennen der TCP-Verbindung wird das VI aus Abbildung 18 verwendet. Dieses wird ebenfalls mit der Verbindungs-ID und zudem mit einem booleschen Element belegt, welches den Befehl zum Trennen der Verbindung ein- oder ausschaltet.

Neben diesen drei VI gibt es noch weitere, die zum Lesen von TCP Nachtrichten und zum Abrufen von Internet-Daten dienen. Da diese für die spätere Programmierung allerdings nicht relevant sind, werden sie hier nicht weiter betrachtet. Die Hilfe von LabVIEW gibt hierfür Hinweise, wie diese VIs verwendet werden können.

3. Programmierung

3.1 Vorgehen zur Programmierung

Das Ziel der Programmierung ist es, die von Movitools über TCP/IP geschickten Befehle nachzubilden und so eine Steuerung des Motors mittels LabVIEW zu ermöglichen. Zu diesem Zweck wird die Befehlsstruktur mit Wireshark analysiert und die einzelnen Befehle ausgelesen und nachgebildet.

Im ersten Schritt wird mittels Movitools eine Verbindung zum Frequenzumrichter aufgebaut. Hierzu wird der Rechner mittels eines LAN-Kabels mit dem Frequenzumrichter DFE33B verbunden. Anschließend wird über den Button "Scan" und die Einstellung, dass nach einer Ethernet-, also einer Netzwerkverbindung gesucht werden soll, eine Kommunikation zwischen den beiden Geräten aufgebaut.

	Ethernet	Ethercat aktivieren: Nein	I♥ Aktivieren
	Seriell		Bearbeiten
	SBus	*	-
9	Profibus		I Aktivieren

Abbildung 19: Movitools, Auswahl der Scan Verbindung

Hierbei ist zu beachten, dass sowohl der Computer als auch der Frequenzumrichter in dem gleichen IPv4 Bereich liegen müssen. Dies bedeutet dass beide Netzwerkparteien eine IP-Adresse mit dem gleichen Aufbau haben müssen. Zum Beispiel wie hier in der Form *192.168.10.XXX*, 192.168.10.24 für den Computer und 192.168.10.4 für den DFE33B.

Projekt / Netzwerk 4	Toolstart-Seite		_0>
Pefault_2	Neues Projekt erstellen oder Projekt laden	Allgemein Vergleich (Online): Tool zum Vergleichen der Geräte (Parametersätze, IPOS-Variabler	odaten n etc.).
	Verbindungsmodus wählen und Netzwerk einrichten	Inbetriebnahme	$\overline{\mathbf{O}}$
	Parametersätze verwalten	Inbetriebnahme (Online): Inbetriebnahme-Assistenten, um an den Motor anzupassen und de zu optimieren.	den Umrichter n Regelkreis
	Mit dem Gerät arbeiten	Parameterbaum (Online): Tool zum Editieren und Anzeigen Geräteparameter in einer übersie Baumstruktur.	aller Shtlichen
	Ansicht bearbeiten	Handbetrieb (Online): Tool zum Testen des Antriebs na Inbetriebnahme.	ch der
Netzwerk		Prozessredler (Opline):	

Abbildung 20: Movitools Aufbau der TCP Ethernetverbindung

Ist die Verbindung aufgebaut, ist dieses bereits im Wireshark Protokoll zu erkennen. Wie in Abbildung 21 zu sehen ist, senden beide Parteien des Netzwerkes abwechselnd eine "Binding Requests", die zu einem "Classic-Stun", welches ein TCP-Unterprotokoll ist, gehört. Dieses sind einfache Anfragen, ob die Verbindung weiterhin besteht.

	t yiew <u>G</u> o Capturi	e Analyze Statistics I	elephony Iools Internals		Q. Q. 🖂 🌉 🗹 畅 % 🚊
Filter:			•	Expression Clear	Apply Save Filter
No.	Time	Source	Destination	Protocol	Length Info
17403	287.513665000	192.168.10.4	192.168.10.24	CLASSIC-STUN	74 Message: Binding Request
17404	287.513859000	192.168.10.24	192.168.10.4	CLASSIC-STUN	74 Message: Binding Request
17405	287.528370000	192.168.10.4	192.168.10.24	CLASSIC-STUN	74 Message: Binding Request
17406	287.528547000	192.168.10.24	192.168.10.4	CLASSIC-STUN	74 Message: Binding Request
17407	287.543968000	192.168.10.4	192.168.10.24	CLASSIC-STUN	74 Message: Binding Request
17408	287.544158000	192.168.10.24	192.168.10.4	CLASSIC-STUN	74 Message: Binding Request
17409	287.557762000	192.168.10.4	192.168.10.24	CLASSIC-STUN	74 Message: Binding Request
17410	287.557949000	192.168.10.24	192.168.10.4	CLASSIC-STUN	74 Message: Binding Request
17411	287.573739000	192.168.10.4	192.168.10.24	CLASSIC-STUN	74 Message: Binding Request
17412	287.674761000	192.168.10.24	192.168.10.4	TCP	54 1227+300 [ACK] Seq=173641 Ack=17366
17413	287.677888000	192.168.10.24	192.168.10.4	CLASSIC-STUN	74 Message: Binding Request
17414	287.692146000	192.168.10.4	192.168.10.24	CLASSIC-STUN	74 Message: Binding Request
17415	287.692412000	192.168.10.24	192.168.10.4	CLASSIC-STUN	74 Message: Binding Request
17416	287.708178000	192.168.10.4	192.168.10.24	CLASSIC-STUN	74 Message: Binding Request
17417	287.708426000	192.168.10.24	192.168.10.4	CLASSTC-STUN	74 Messade: Binding Request
17417	287.708178000	192.168.10.4	192.168.10.24	CLASSIC-STUN	74 Message: officing Request 74 Message: Binding Request

Ethernet II, Src: IntelCor_5a:5b:5e (00:16:76:5a:5b:5e), Dst: SewEurod_07:0a:8e (00:0f:69:07:0a:8e)
 Internet Protocol Version 4, Src: 192.168.10.24 (192.168.10.24), Dst: 192.168.10.4 (192.168.10.4)
 Transmission Control Protocol, Src Port: 1227 (1227), Dst Port: 300 (300), Seq: 170501, Ack: 170521, Len: 20
 Simple Traversal of UDP Through NAT

Abbildung 21: Wireshark Binding Request

Handbetrieb [Default (MDX6180110-5A3)]

Handbetrieb

Anschließend wird das Menü für den Handbetrieb aufgerufen und hier eine variable Drehzahl von 100 min⁻¹ eingestellt (Abbildung 21). Über den Button "Handbetrieb einschalten" wird nun der eigentliche Handbetrieb gestartet. Hierdurch wird eine TCP Nachricht an den Frequenzumrichter geschickt. Diese wird nun mittels Wireshark abgegriffen und im Protokoll festgehalten. Da die Classic-Stun Nachrichten allerdings einen Großteil des Protokolls einnehmen und in einem sehr kurzen Zeitintervall gesendet werden, müssen diese ausgefiltert werden, um die Steuerbefehle von Movitools auslesen zu können. Zudem interessieren zu diesem Zeitpunkt nur die ausgehenden Nachrichten an den DFE33B. Hierzu wird der Filter wie folgt eingegeben.

ip.src == 192.168.10.24 and ! classicstun

Es werden nun nur noch Nachrichten, die von der IP-Adresse 192.168.10.24, also vom Computer aus gesendet werden (ip.src) und keine Classic-Stun Nachrichten mehr angezeigt. Nachdem der Filter angebracht ist lässt sich die Nachricht zum einschalten des Handbetriebs ermitteln und auslesen (Abbildung 23).

100

Capi	t <mark>uring</mark> idit \	from iew	LAN-Ve Go Ca	rbind oture	lung Analy	[Wir ze	eshark 1 Statistics	.12.5 Tele	(v1.12 phony	.5-0- Tools	g 581 ; Int	9e.5b i ernals	from master- Help	1.12)]	
D (đ			*	2	0		-	- 7	2		Ð	. q. q. 🖻 👹 🗹 🥵 % 👹
ilter:	I class	icstun										•	Expression	Clear	r Apply Save Filter
	Tim	e			Source				Dest	ination	16		Protocol		Length Info
21!	58 37	.207	782500	00	192.3	168	.10.24		192	2.168	3.11	.255	NBNS		92 Name query NB ARMMF.ADOBE.COM<00>
220	01 37	. 957	790100	00	192.3	168	.10.24		192	2.168	3.11	.255	NBNS		92 Name query NB ARMMF.ADOBE.COM<00>
22!	59 38	. 920	066200	00	192.3	168	.10.24		192	2.168	3.11	.255	NBNS		92 Name query NB ARMMF.ADOBE.COM<00>
230	08 39	. 669	980800	00	192.3	168	.10.24		192	2.168	3.11	.255	NBNS		92 Name query NB ARMMF.ADOBE.COM<00>
234	45 40	.279	918500	00	192.3	168	.10.24		192	2.168	3.10	.4	TCP		54 1138+300 [ACK] Seq=23237 Ack=23247
23	58 40	.419	981900	00	192.3	168	.10.24		192	2.168	3.11	.255	NBNS		92 Name query NB ARMMF.ADOBE.COM<00>
250	03 42	. 894	48600	00	192.3	168	.10.24		192	2.168	3.10	.4	TCP		54 1138+300 [ACK] Seq=24797 Ack=24807
2 5 1	L6 43	. 095	567100	00	192.3	168	.10.24		192	2.168	3.10	.4	TCP		54 1138+300 [ACK] Seq=24917 Ack=24927
27.	71 47	.197	744300	00	192.	168	.10.24		192	2.168	3.10	.4	TCP		70 1138+300 [PSH, ACK] Seq=27457 Ack=2
273	72 47	.212	224200)0	192.	168	.10.4		192	2.168	3.10	.24	TCP		76 300+1138 [PSH, ACK] Seq=27467 Ack=2
278	33 47	.408	304 500	00	192.3	168	.10.24		192	2.168	3.10	.4	TCP		80 1138+300 [PSH, ACK] Seq=27573 Ack=2
278	34 47	.422	279300	00	192.3	168	.10.4		192	2.168	3.10	.24	TCP		80 300+1138 [PSH, ACK] Seq=27589 Ack=2
					4.00		** **					•			
Eth Int Tra Dat	erne nsmi a (1	t II t Pr ssic 6 by	(, Src rotoco on Cor ⁄tes)	: I)) V)tro	ntelC ersio l Pro	or_ n 4 toc	5a:5b: , Src: ol, Sr	5e (192 c Pc	00:10 .168. ort: 1	5:76 10.1 L138	:5a: 24 ((11	5b:5 192. 38),	ie), Dst: 168.10.24 Dst Port	SewEl), Ds : 300	urod_07:0a:8e (00:0f:69:07:0a:8e) ost: 192.168.10.4 (192.168.10.4) 00 (300), Seq: 27457, Ack: 27467, Len: 16
000 010 020 030	00 00 0a fe	of 6 38 3 04 0 ab 9	9 07 4 81 4 72 5 97	0a 8 40 (01 3 00 (Be 00 00 80 2c c3 00 00	16 06 14 01	76 5 30 c a9 4 00 0	a 5b 2 c0 6 0b 0 00	5e (a8 (45 (00 8)8 00)a 18 16 c0 3a 00	0 45 3 c0 0 50 0 00	00 a8 18 00	i .84.@ r.,.	. vz[. 0 F.	[^E.
				_~ `											
		1	1	a - 224 i		122.013	una mila	Des	lakes 17	7941 1	Director	und. O	704/16 10/3		Duckley Duckey II

Abbildung 23: Wireshark Protokollierung des Handbetrieb

Über den "Start" Button wird der Motor nun mit der eingestellten Drehzahl von 100 min⁻¹ gestartet. Im Netzwerkprotokoll lassen sich die einzelnen Pakete auslesen, die dem Frequenzumrichter die Daten übermitteln (Abbildung 24). Anhand des Mitschriebes erkennt man, dass die Übermittlung der Drehzahl aus dem vorherigen Startbefehl des Handbetriebs und einem angehängten 2 Byte langen Bereich besteht. Der angehängte Bereich entspricht hierbei der eingestellten Drehzahl in Hexadezimaler Schreibweise. Es ist allerdings zu beachten, dass der Motor pro Hexdiget 0,2 min⁻¹ schneller dreht. Somit berechnet sich die Hexadezimale Zahl am Ende des Datenpakets wie folgt:

 $100 \min^{-1} \div 0,2 = 500 = hex \, 1F4$

Diese Datenpakete werden alle 0,07 bis 0,1 Sekunden gesendet.

🔏 Capt	uring fr	om LAN-\	/erbin	idung	[Wir	eshark	c1.12	2.5 (v1	.12.5	-0-g5	819	e5b	from master	1.12)]								
<u>File</u>	dit <u>V</u> ie	w <u>G</u> o <u>(</u>	Captur	e <u>A</u> n	alyze	Statisti	cs 🤇	Telepho	n <u>y</u> I	ools	Inte	ernals	Help									
0				8	×	2	Q	. 4			T	2		∣ ⊕,	Q (Q E	• •	K 0	2 🔜	%	Ø	
Filter:	! classic	stun										•	Expression	Clear	Apply	Sav	/e Filte	r				
No.	Time			Source	e			(C	estina	tion			Protocol		Lengt	h i	Info					
3019	6 271	.759938	3000	192	.168	.10.2	24	-	.92.	168.	10.	4	TCP			80	1138+3	300	[PSH,	ACK]	Seq=316579	Ack=
3019	7 271	.774143	3000	192	.168	.10.4	ŀ	1	.92.	168.	10.	24	TCP			80	300+13	L38	[PSH,	ACK]	Seq=316595	Ack=:
3020	8 271	.849273	3000	192	.168	.10.2	24	-	.92.	168.	10.	4	TCP			80	1138+3	300	[PSH,	ACK]	Seq=316705	Ack=:
3020	9 271	.86496	0000	192	.168	.10.4	ŀ	-	.92.	168.	10.	24	TCP			80	300+11	L38	[PSH,	ACK]	Seq=316721	Ack=:
3022	20 271	.944834	4000	192	.168	.10.2	24	-	.92.	168.	10.	4	TCP			80	1138+3	300	[PSH,	ACK]	Seq=316831	Ack=:
3022	21 271	.958513	L000	192	.168	.10.4	ŀ	-	.92.1	168.	10.	24	TCP			80	300+11	L38	[PSH,	ACK]	Seq=316847	Ack=:
302	0 272	.02279	3000	192	.168	.10.2	4		92.	168.	10.	4	TCP			80	1138+3	300	[PSH,	ACK]	Seq=316937	ACK=
3023	1 272	.038528	3000	192	.168	.10.4		-	92.	168.	10.	24	TCP			80	300+11	L38	[PSH,	ACK]	Seq=316953	Ack=
3023	8 272	.08903	5000	192	.168	.10.2	24	-	.92.	168.	10.	4	TCP			80	1138+3	300	[PSH,	ACK]	Seq=317023	Ack=:
3023	9 272	.106579	9000	192	.168	.10.4	ŀ	-	.92.	168.	10.	24	TCP			80	300+11	L38	[PSH,	ACK]	Seq=317039	Ack=:
3025	0 272	.189250	5000	192	.168	.10.2	24	-	.92.	168.	10.	4	TCP			80	1138+3	300	[PSH,	ACK]	Seq=317149	Ack=:
3025	51 272	.20273	5000	192	.168	.10.4	ļ.	-	.92.	168.	10.	24	TCP			80	300+11	L38	[PSH,	ACK]	Seq=317165	Ack= +
1																			[-		•
In the	mp 20	220. 90	bud	tos s	un wi	nn (4	10	hite	5 0	0 b	đ pe		nturod (6	40 h	(+c) c	n i	ntorf	200	0			
	ne su	230. O	o byi	tes t tetal	Con	53.54	340 3.57	0105	, o 16	76.5	nces Intes	5 CC 56-6	iptureu (d	5000	mod (0.7 C	nteria n:90 d	100.	01.60	.07.0		
E Eth	ernet	Droto		(ppci					. 10. 10.1	0.04	/1	0.	169 10 74	Dewel	1 00_0)/.U	4.00 LA	4 /	107 14	07.0	4)	
E Inc	er net	Prococ ciep Co	- 10-	al pr	on 4	, 514	te d	Dont	JO. I 10. I	20.24	- L1 	192. 201	108.10.24	, 200	SL. 19	92.I	00.10.	4 (192.10	-6.10	.4) 16057 DD.	76
	- (76	sion co	SHICE C	JI PI	0000	.01, 3	si c	PULC	. II	20 (د لل لل	, , ,	DSC POIL	\$ 500	J (SUC	υ,	sey. s)TO2	ы, ж	.K. 5.	10935, Len.	20
H Dat	a (20	bytes,	,																			
0000	00.0	E 69 07	2 O 2	8e (0.16	76	5 a	5h 54	08	00	45	00		V7	A E	2						
0010	00 4	2 40 63	40	00 8	0 06	24	e6	c0 at	3 0a	18	c0	a8	. B@c@	. \$.								
0020	0a 0-	4 04 72	2 01	2c c	3 19	14	0e	0b 4a	a 41	8e	50	18	r.,.		JA.P.							
0030	fe b	3 95 al	. 00	00 0	0 01	00	00	00 00) 8a	00	00	00										
0040	00 0	e 03 02	2 16	03 0	0 00	00	84	01 04	00	06	13	88										
0 1	AN-Verb	indung : <	live caj	pture in	progre	ess> File		Packets	: 3225	51 · Dis	splay	ed: 5	596 (17,4%)						Pr	ofile: De	fault	

Abbildung 24: Wireshark Protokollierung des Drehzahlbefehl

Im nächsten Schritt wird eine einfache Programmierung mit LabVIEW etabliert, die dazu dienen soll, einfache hexadezimale Eingaben via TCP zu senden um so die Datenpakete von Movitools nachzubilden.

Abbildung 25: Einfache TCP sende Programmierung

Im Datenfeld auf dem Frontpanel werden die einzelnen Datenpakete, die von Movitools geschickt wurden, direkt eingegeben. Das Programm als solches besteht lediglich aus einem einfachen TCP-Verbindungs-VI, einem TCP-Sende-VI und einem TCP-Trennungs-VI. Hiermit soll versucht werden, ob es möglich ist, die gleichen Datenpakete mittels LabVIEW zu senden, wie sie auch mit dem SEW-eigenen Programm gesendet werden.

3.2 Programmierung

Die vollständige Programmierung besteht aus insgesamt sechs Abschnitten, die im Folgenden einzeln erläutert werden sollen. In den Abbildungen 38 und 39 sind die gesamte Programmierung und das dazugehörige Frontpanel dargestellt.

3.2.1 Abschnitt 1: Aufbau der TCP Verbindung

Abbildung 26: Blockdiagramm, Aufbau der TCP Verbindung

Den Anfang des Blockdiagramms bildet der Verbindungsaufbau mit dem Netzwerk. Hierzu wird ein "TCP Open Connection"-VI verwendet. In dieses werden an den Anschlussstellen die nötigen Daten wie folgt eingegeben.

- TCP Zielport
- IP Adresse des Zielgeräts
- Timeout
- Fehler Eingang
- Lokaler Port

Die Dateneingabe für den Zielport, die IP Adresse sowie den lokalen Port findet auf dem Frontpanel im oberen ersten Bereich statt.

18)
10,
.0.4
.0

Abbildung 27: Frontpanel, Eingabe für die Verbindungsdaten

Der Zielport kann auf 300 oder 44818 gesetzt werden. Die Portnummer 300 steht hierbei für das oben beschriebene Simple Movilink Protocol, während die Portnummer 44818 für ein EtherNet/IP Protokoll steht. Laut dem Systemhandbuch von SEW sind dies, neben dem Modbusport 502, die beiden einzigen TCP Ports, auf die der Frequenzumrichter anspricht. Der lokale Port wird auf 0 gesetzt, wodurch das Betriebssystem selbständig einen Port für den Ausgangspunkt der Verbindung wählt.

Als Ziel IP-Adresse wird die IP des DFE33B eingeben, diese lautet 192.168.10.4. Der Timeoutanschluss des VIs wird mit einer Konstanten belegt, die auf -1 gesetzt wird. Dadurch wird die Timeoutzeit unendlich. Hierdurch wird verhindert, dass die Verbindung nach einer bestimmten Zeit ohne Eingabe in den nachfolgenden Abschnitten beendet wird.

Die Errorline wird bis zum Ende des Blockdiagramms durchgezogen um mögliche Fehler in der Programmierung zu erkennen und diese im Nachhinein auslesen zu können.

3.2.2 Abschnitt 2: Handbetrieb einschalten

Abbildung 28: Blockdiagramm, Handbetrieb einschalten

Im zweiten Abschnitt wird ein "TCP Write" VI verwendet, um einen fixen Datensatz zu senden (Abbildung 28), der dem Handbetrieb Starten Befehl von Movitools entspricht. Dieser Datensatz wird auch auf dem Frontpanel angezeigt und mittels des Anzeigeelements "Premassege Bytes" kann die Länge des Datensatzes kontrolliert werden. Wenn das Programm gestartet wird muss diese Anzeige auf 16 springen.

Abbildung 29: Frontpanel, Anzeige für den Start des Handbetrieb

3.2.3 Abschnitt 3: Drehzahl Umwandlung und Bildung des Datensatz

Abbildung 30: Blockdiagramm, Drehzahleingabe

In diesem Teil des Programms wird die Eingabe der Drehzahl in den Datensatz für den Frequenzumrichter implementiert. Die Drehzahl wird zunächst auf dem Frontpanel (Abbildung 31) eingegeben. Zusammen mit der Konstanten 0,2 werden diese Werte in ein Divisions-VI eingespeist. Aus der Division ergibt sich der Wert, der in dezimaler Schreibweise dem Wert der Drehzahl in hexadezimaler Schreibweise entspricht. Es ist nötig, diese Umrechnung durchzuführen, da der Motor pro Diget um 0,2 min⁻¹ schneller dreht. Das Drehzahl Diget wird darauf auf dem Frontpanel angezeigt, um die Berechnung zu überprüfen. Anschließend wird die Doublezahl in ein Integer 16 Wert umgewandelt. Doublewerte können im Gegensatz zu Integerwerten auch aus Nachkommastellen bestehen, was bei hexadezimalen Werten nicht möglich ist, daher ist die Umwandlung von Double nach Integer nötig.

Abbildung 31: Frontpanel, Drehzahleingabe

Der Drehzahlwert wird nun durch einen Formatwandler in einen Hexwert gewandelt. Hierzu wird das gewünschte Format als leeres Datenfeld im oberen Teil eingestellt und die Anschlussklemme mit dem Ausgang des Integer-16-Wandlers verbunden. Hiernach wird der Drehzahlwert als hexadezimaler Wert abgegriffen und auf dem Frontpanel dargestellt (Abbildung 31). Nachfolgend wird die zwei Byte Drehzahl mit dem 24 Byte langen Datensatz zusammengefügt, um so das vollständige TCP Datenpaket zur Übermittlung wie durch Movitools zu bilden. Die ersten 16 Byte entsprechen hier der Fortführung des Handbetriebs, die nachfolgenden 8 Byte stehen für Daten wie die Beschleunigung des Motors, die sogenannte Rampe und andere wichtige Daten für den Betrieb des Motors.

Das vollständige TCP-Paket wird an die Zeitschleife des vierten Abschnitts weitergeleitet und auf dem Frontpanel dargestellt (Abbildung 34).

3.2.4 Abschnitt 4: Zeitschleife zum Senden der Drehzahl

Abbildung 32: Blockdiagramm, Zeitschleife zum Senden der Drehzahl

Damit das Datenpaket zum Drehen des Motors wie auch durch Movitools alle 0,08 Sekunden gesendet wird, muss das "TCP Write" VI in eine Schleife eingebunden sein.

Die Schleifenbedingung benötigt als Eingabe eine Iterationsanzahl. Diese wird benutzt um die Zeit festzulegen, die der Motor drehen soll. Da die Iteration im Normalfall jede Millisekunde um einen Schritt voranschreitet, muss innerhalb der Schleife eine Wartebedingung einge-

setzt werden, diese wird durch das VI mit dem Metronom Symbol erzeugt. Die Konstante, die dem VI eingegeben wird, entspricht der Zeit in Millisekunden die gewartet werden soll. Die Iterationszahl ergibt sich aus der Eingabe auf dem Frontpanel und der Multiplikation mit einer Konstante. Die Zeit, die der Motor dreht, ergibt sich somit aus der Wartezeit sowie der Iterationszahl und wird wie folgt berechnet:

$$x \cdot 13 \cdot 80 \ [ms] = y \ [ms]$$

Wie zu erkennen ist, entspricht die Eingabe somit annähernd der Zeit in Sekunden, die der Motor drehen soll.

Aufgrund der geringen Sendezeit und der nur 26 Byte großen Datenpakete tritt der Nagle-Algorithmus in Kraft. Dieser muss unterbunden werden, da ansonsten ein Senden wie durch Movitools nicht möglich ist und die Pakete zusammengefasst werden und nur alle 0,2 Sekunden gesendet werden (siehe Erläuterung des Nagle-Algorithmus, Seite 13).

Cap	turing from	LAN-Verb	ndung	[Wires	nark 1.1	.2.5 (v	1.12.	5-0-g5	819e	5b fi	rom maste	-1.12)]								
Eile E	Edit ⊻iew	<u>Go C</u> aptu	ire <u>A</u> naly	yze <u>S</u> ta	atistics	Telepho	on <u>y</u>	Tools	Inter	nals	Help									
0 (9 🔏 📕	1	BB	X	9 C	6	\$	٩	T	<u>P</u>		Ð	Q	0	• (2 👧	*	8	
Filter:										•	Expression	Clear	Appl	ly Sa	/e Filt	er				
No.	Time		Source		0.24	1	Destin	ation		<i></i>	Protocol		Len	gth 1	Info		TRAD	AL N I	SEUELSUI	^
1	65 67.318	852000	192.	168.1	0.24		192.	168.	10.4	4	TCP			80	1180-	+300	[PSH.	ACK]	Seg=1525	Ack=13
1	66 67.335	023000	192.	168.1	0.4		192.	168.	10.3	24	TCP			78	300+1	180	[PSH,	ACK]	Seg=1385	Ack=15
10	67 67.398	894000	192.	168.1	0.24		192.	168.	10.4	4	TCP			80	1180-	+300	[PSH,	ACK]	Seg=1551	Ack=14
10	68 67.412	875000	192.	168.1	0.4		192.	168.	10.3	24	TCP			78	300+1	180	[PSH,	ACK]	Seq=1409	Ack=15
1	69 67.478	952000	192.	168.1	0.24	1	192.	168.	10.4	4	TCP			80	1180-	+300	[PSH,	ACK]	Seq=1577	Ack=14
1	70 67.492	990000	192.	168.1	0.4		192.	168.	10.3	24	TCP			78	300+1	180	[PSH,	ACK]	Seq=1433	Ack=16
1	71 67.557	119000	192.	168.1	0.24		192.	168.	10.4	4	TCP			80	1180-	+300	[PSH,	ACK]	Seq=1603	Ack=14
17	72 67.571	356000	192.	168.1	0.4		192.	168.	10.3	24	TCP			78	300+1	L180	[PSH,	ACK]	Seq=1457	Ack=16
13	73 67.637	199000	192.	168.1	0.24		192.	168.	10.4	4	TCP			80	1180-	+300	[PSH,	ACK]	Seq=1629	Ack=14;
13	74 67.653	221000	192.	168.1	0.4		192.	168.	10.3	24	TCP			78	300+1	180	[PSH,	ACK]	Seq=1481	Ack=16
1	75 67.717	330000	192.	168.1	0.24		192.	168.	10.4	4	TCP			80	1180-	+300	[PSH,	ACK]	Seq=1655	Ack=15
1	76 67.733	319000	197.	168.1	0.4		192.	168.	10.3	24	TCP			78	300+1	180	IPSH.	ACKI	Sed=1505	Ack=16
4	100000							A.,						241			1			
🛨 Fra	ume 169:	80 byte	es on w	/ire (640 b	its),	80	byte	es c	apt	ured (64	0 bit	s) or	n int	erfac	ie O				
. Etł	nernet II	, src:	IntelC	ior_5a	:5b:5	e (00	:16:	:76:5	ia:5	b:5	e), Dst:	SewE	ur od_	_07:0	a:8e	(00)	:0f:69	:07:0	a:8e)	
🕂 Int	ernet Pr	otocol	versio	on 4,	Src: 3	192.1	.68.1	LO.24	(1	92.:	168.10.2	4), D	st: 1	192.1	68.10).4 1	(192.1	68.10	.4)	
. Tra	nsmissic	in Contr	ol Pro	otocol	, Src	Port	: 11	L80 ((118)	0),	Dst Por	t: 30	0 (3(00),	seq:	1573	7, Ack	: 143	3, Len: 2	6
🖂 Dat	:a (26 by	rtes)																		
E	ata: 000	1000000)008a00	000000	00e03	02160	3000	00006	5501	04.0	006									
	Length:	26]																		
0000	00 0E 6	9 07 08	8e 00	16	76 5a	56.5	e 08	3 00	45 (00	. i	. V7	ΓΛ Ε							
0010	00 42 0	5 81 40	00 80	06	5f c8	c0 a	8 Qa	18	cū i	a8	.в@.									
0020	0a 04 0	4 9c 01	. 2c 3a	, cb	92 d7	0b 9	b 20	: 66	50 1	18	· · · · ,	i	,fF	۶.						
0030	ta 67 9	5 al 00	00 00	01	00 00	00 0	0 88	1 00	00 0	00 F4	.g	••••	• • • • •	• •						
0040	oo oe o	5 02 IC	05 00	00	00 03	OT 0	4 00	00	UL I	4		е	• • • • •	· · · ·						
0 **	L & N-Verbindu	na : Zlive c	anture in n	rograss	File	Darkat	e: 217	Dien	aved	217	(100.0%)						p	rofile: De	Fault	
	CHIN YOLDIHUU	ng i sive c	aprare in p	n ogi caa s	e 1 11 G	I GUNEL	5.217	Dispi	ayeu.	441	(100,070)						15	ronies De	raaic	

Abbildung 33: Senden der Drehzahl via LabVIEW

Das Umgehen des Nagle-Algorithmus übernimmt in diesem Fall das VI, welches dem "TCP Write" VI vorgeschaltet ist (NoDelay). Dieses VI schaltet den Nagle-Algorithmus für diese Verbindung aus. Hierzu erhält es zum Einen die Verbindungsdaten und eine True-Konstante. Wird die Konstante Auf "False" gesetzt, wird das VI nicht aktiviert und der Nagle-Algorithmus tritt wieder in Kraft. Die Drehzahl wird nun mit jedem Schleifendurchlauf an den Frequenzumrichter übermittelt. Zur Kontrolle der Datenlänge wird auf dem Frontpanel die Anzahl der Datenbytes ausgegeben. Die Datenpakete sollen immer eine Länge von 26 Byte haben.

Abbildung 34: Frontpanel, Zeiteingabe

3.2.5 Abschnitt 5: Senden des Haltebefehl

Abbildung 35: Blockdiagramm, Senden des Haltebefehls

Im vorletzten Abschnitt wird im Anschluss an die vorherige Zeitschleife der Motorstopp über ein weiteres "TCP Write" VI ausgeführt. Hierzu wird ein Drehzahlbefehl ähnlich dem Vorherigen gesendet, jedoch mit dem Unterschied, dass hier das Datenpaket eine Konstante ist, die als Drehzahl den Wert 0 hat. Dies ist in dem TCP-Paket durch die letzten vier Nullen repräsentiert. Auch hier wird die Länge des Motorstoppbefehls und der Befehl selber auf dem Frontpanel angezeigt.

Abbildung 36: Frontpanel, Motorstopp

3.2.6 Abschnitt 6: Trennen der TCP Verbindung

Abbildung 37: Blockdiagramm, Trennen der TCP Verbindung

Den Abschluss des Blockdiagramms bildet die Trennung der TCP Verbindung. Zu diesem Zweck wird ein "TCP Close Connection" VI eingesetzt. Wird auf dem Frontpanel der Button zum Trennen der Verbindung betätigt schaltet der True-False Schalter die Bedingung um und die Verbindung zwischen dem Computer und dem Frequenzumrichter wird beendet.

1. Aufbau der TCP Verbindung TCP Port für DFE33B (300/44818) 300 IP Adresse DFE33B (192.168.10.4) Lokaler Port (0) 0	Verbindung trennen
Handbetrieb einschalten Premasse 0001 0000 0000 8A00 0000 0004 0302 1601 0	ge Bytes
2. Drehzahl festlegen und umrechnen, bzw umwandeln Drehzahl 0 Drehzahl Diget 0 Umwandlung von Dezimal in Hexadezimal	lex
3. Zeiteingabe und Aufbau des TCP Datensatzes Zeiteingabe in Sek Iterration Drehzahl i	n Hex
Datensatz 🔹	Datensatz Bytes
4. Motorstop Nachricht und Fehlerauswertung Motorstop entspricht Drehzahl = 0 = hex 0000 0001 0000 0000 8A00 0000 000E 0302 1603 0000 0065 0104 0002 0000	Motorstop Bytes
Fehler (Eingang, kein Fehler) Status Code Status Code	ng) e

Abbildung 38: Frontpanel der Programmierung

Abbildung 39: Blockdiagramm der vollständigen Programmierung

3.3 Fazit zur Programmierung

Die Programmierung sendet die Telegramme wie es vorgesehen ist, jedoch ist die Antwort vom Frequenzumrichter nicht genau lesbar und der Motor dreht sich nicht (Abbildung 40).

🔏 Capt	uring fro	om LAN-Verbi	ndung	[Wiresh	ark 1.1	.2.5 (¥1	.12.5-0)-g58	319e5b	from maste	r-1.12)]							<u>_ ×</u>
<u>File</u>	dit <u>V</u> iew	y <u>G</u> o <u>C</u> aptu	re <u>A</u> naly	/ze <u>S</u> tal	tistics	Telepho	n <u>y</u> Io	ols	Interna	ls <u>H</u> elp								
0 (📕 🙋 I	9 🕅	XR	; q	. 4	¢ (2 2	7 J		I O	QQ		🌌 (¥ 🔊	%	Ø	
Filter:										Expression	. Clear	Apply	Save	Filter				
No.	Time		Source			lc.	estinati	on		Protocol		Length	Info	\				
112	25 471.	647464000	192.	168.10).24		.92.1	68.1	L0.4	TCP		8	30 12:	23+300	[PSH,	ACK]	Seq=511	Ack=473
112	26 471.	662645000	192.	168.10).4		.92.1	68.1	L0.24	TCP		7	78 30	0+1223	[PSH,	ACK]	Seq=473	Ack=537
112	27 471.	727547000	192.	168.10).24		.92.1	68.1	L0.4	TCP		8	30 12;	23+300	[PSH,	ACK]	Seq=537	Ack=497
112	28 471.	742753000	192.	168.10).4	-	.92.1	68.1	LO.24	TCP		7	78 30	0+1223	[PSH,	ACK]	Seq=497	Ack=563
112	29 471.	807660000	192.	168.10).24	-	.92.1	68.1	L0.4	TCP		8	30 12;	23+300	[PSH,	ACK]	Seq=563	Ack=521
113	30 471.	822863000	192.	168.10).4	-	.92.1	68.1	LO.24	TCP		7	78 30	0+1223	LPSH,	ACK]	Seq=521	Ack=589
113	31 471.	888704000	192.	168.10).24		.92.1	68.1	L0.4	TCP		8	30 12:	23+300	[PSH,	ACK]	Seq=589	Ack=545
113	32 471.	904286000	192.	168.10).4		.92.1	68.1	LO.24	TCP			78 30	0+1223	[PSH,	ACK	Seq=545	Ack=615
113	33 471.	968830000	192.	168.10).24	-	.92.1	68.1	L0.4	TCP		8	30 12;	23+300	LPSH,	ACK	Seq=615	Ack=569
113	34 471.	984386000	192.	168.10).4	-	.92.1	68.1	L0.24	TCP		7	78 30	0+1223	LPSH,	ACK	Seq=569	Ack=641
113	35 472.	048911000	192.	168.10).24	-	.92.1	68.1	L0.4	TCP		8	30 12;	23+300	LPSH,	ACK	Seq=641	Ack=593
113	36 472.	064496000	192.	168.10).4		.92.1	68.1	L0.24	TCP			78 30	0+1223	LPSH,	ACK	Seq=593	Ack=667
4		1					0.0.4		· · ·						1			
 Int Int Tra Dat 	me 113 ernet nsmiss a (24 ata: 0 Length	II, Src: Protocol ion Contr bytes) 001000000 : 24]	es on SewEur Versio ol Pro 008a00	wire (od_07: in 4, 5 itocol,	024 :0a:8 Src: : Src: : 00c034	e (00 192.1) Port 42168	:0f:6 58.10 : 300 30000	9:03 .4 (3) (3)	25 Ca 7:0a: (192. 30), 50000	ptured (6 8e), Dst: 168.10.4) Dst Port: 0004	Inte , Dst: 1223	lCor_5a : 192.1 (1223)	:5b: 68.10 , Sec	14Ce 5e (00).24 () 3: 545	0 :16:76 192.16 , Ack:	:5a:5 8.10. 615,	b:5e) 24) Len: 24	
1 0000 0010 0020 0030 0040	00 16 00 40 0a 18 01 0b 00 0c	76 5a 5b 01 80 00 01 2c 04 e0 60 00 03 42 16	5e 00 00 3c c7 11 00 00 83 00	0f 6 06 6 5a 1 01 0 00 0	59 07 27 cb 6 f8 00 00 00 65	Oa 86 CO 88 76 09 00 00 00 00	2 08 3 0a 9 f0 9 8a 9 00	00 4 04 0 51 5 00 0 04	45 00 20 a8 50 18 00 00	vz[^ .@ 	i < .Z e.	E. (QP. 						
01	AN-Verbin	ndung : <live ca<="" td=""><td>apture in p</td><td>rogress></td><td>File</td><td>Packets</td><td>: 1143 ·</td><td>Displ</td><td>ayed: 1</td><td>143 (100,0%)</td><td></td><td></td><td></td><td></td><td>P</td><td>ofile: De</td><td>fault</td><td></td></live>	apture in p	rogress>	File	Packets	: 1143 ·	Displ	ayed: 1	143 (100,0%)					P	ofile: De	fault	

Abbildung 40: Antwort des Frequenzumrichters auf das LabVIEW Programm

Wie erkennbar ist, antwortet der Frequenzumrichter mit einem Telegramm, welches dem ihm zugesandten Telegramm ähnelt. Jedoch fehlen die letzten 2 Byte, die eigentlich die Drehzahl des Motors widerspiegeln sollten. Es ist davon auszugehen, dass dieses eingehende Datenpaket eine Fehlermeldung ist, die jedoch nicht ausgelesen werden kann. Auch der Frequenzumrichter selbst gibt auf dem Error-Display und am Handbediengerät keine Fehlermeldung aus.

Eine tiefergehende Analyse ist leider nur bis zu einem bestimmten Grad möglich, da die direkte Programmierung der VIs nicht einsehbar ist. Eine Steuerung über TCP sollte allerdings möglich sein, da der Motor auch mittels Movitools via TCP gesteuert werden kann. Die Programmierung von Movitools ist zudem ebenfalls nicht einsehbar und somit auch nicht näher analysierbar.

4. SEW eigenes Modbus Programm

SEW stellt ein LabVIEW Programm zu Verfügung, mit dem laut eigener Aussage der Frequenzumrichter mittels Modbus/TCP angesteuert werden kann. Das in Abbildung 41 dargestellte Blockdiagramm, zeigt die Programmierung und soll im Folgenden oberflächlich erläutert werden.

Abbildung 41: Blockdiagramm des SEW Modbus Programms

Zunächst wird durch das Programm eine TCP-Verbindung mit dem Frequenzumrichter aufgebaut und der Port 502 für Modbus Anwendungen hierfür festgelegt. Anschließend wird eine Schleife gestartet, die zum Update der Lese-und-Schreib-Befehle dient. Innerhalb der Schleife werden der Lesebefehl (Abbildung 41 1) sowie der Schreibbefehl (Abbildung 41 2) ausgeführt.

Der Schreibbefehl erhält ein Register, also eine Ansammlung an Daten vom Frontpanel und schreibt diese an die Zieladresse. Der Lesebefehl hingegen schreibt die gelesenen Daten parallel in ein Register im Frontpanel. Die Updatetime gibt die Zeit zwischen zwei Aktionen an.

Ein Test dieser Software konnte leider nicht stattfinden, da noch keine Modbuskarte vorhanden ist.

Remote IP Address	PD's (Inverters) to read								
127.0.0.1									
Output (Write Multiple Register)	Input (Read Holding Register)	error out Status Code	error out Status Code Quelle						
	0000								
	0000	Ouelle							
	0000								
	0000								
T U	0000								
+	0000								
+0	0000								
+ 0	0000								
÷]0	0000								
÷0	0000								
÷0	0000								
÷0	0000		STOPP						
÷ 0	0000	STOPP							
<i>4</i> 0	0000								
<i>4</i> 0	0000								
(+) 0	0000								
4 0	0000								
40	0000	Update [ms]	Update [ms] Timeout [ms]						
40	0000	A1000	20 1000 J 10000						
40	0000								
40	0000								
40	0000								
40	0000								
	0000								
1210									

Abbildung 42: Frontpanel des SEW Modbus Programms

5. Winkelmessung

Ziel bei einer funktionsfähigen Programmierung ist es, eine Zeit sowie eine Drehzahl einzustellen und die Genauigkeit des Winkels nach Ablauf der Zeit zu überprüfen. Der Winkel berechnet sich nach:

$$\omega = 2\pi \cdot \frac{n}{60}$$
$$\alpha = \omega \cdot t = 2\pi \cdot \frac{n}{60} \cdot t$$

Um den Winkel zu überprüfen ist es vorgesehen, eine Winkelmessscheibe (Abbildung 42) zu nutzen. Hierzu wird eine Markierung an der Welle des Motors angebracht und nach Ablauf der Zeit die Änderung des Winkels mit der berechneten Winkeländerung verglichen. Hieraus lassen sich Rückschlüsse auf die Genauigkeit der Winkelstellung ziehen.

Abbildung 43: Winkelmessscheibe [17]

Eine weitere Methode ist es, die Winkeländerung über Movitools auszulesen und so einen Vergleich zuzulassen.

Im späteren Verlauf des Projekts kann zudem ein TCP Read Programm mittels LabVIEW aufgebaut werden, welches die Winkelstellung anhand eines Lesebefehls ausließt und widergibt. In Verbindung mit dem im vorangegangenen Kapitel beschriebenen Programm kann dann ein Vergleich des eingestellten Winkels und das tatsächlichen Winkels direkt auf dem Desktop stattfinden und theoretisch über eine Rückkopplung nachgesteuert werden.

6. Problematik

Wie schon erwähnt ist eines der größten Probleme, dass man die Programmstrukturen der VIs in LabVIEW nicht genau einsehen kann. Hierdurch ist eine Analyse, was die VIs tatsächlich bewirken, nicht möglich und Fehler in der Programmierung sind schwerer ausfindig zu machen.

Eine weitere Hürde war es, das der technische Support von SEW Eurodrive Hamburg fehlerhafte Informationen bereitgestellt hatte. Es hieß in einem Telefonat, dass eine Ansteuerung des DFE33B über TCP nicht möglich sei. Dies kann allerdings nicht sein, da eine Steuerung durch Movitools mittels einer EtherCat TCP Verbindung möglich ist und das Systemhandbuch ebenfalls eine Steuerbarkeit über TCP erwähnt.

Zum Start der Arbeit musste zudem die Klemme X13 (Abbildung 43) am Frequenzumrichter DFE33B überbrückt werden, um eine Steuerung mittels Movitools und TCP zu erlauben. Ist diese Brücke nicht aktiv, gibt Movitools einen Fehler aus, der jedoch im Systemhandbuch nicht direkt erläutert wird. Ein Telefonat mit dem Support ergab die nicht aktive Brücke. Nach dem Setzen dieser war eine Steuerung problemlos möglich

Abbildung 44: Überbrückung der Anschlussstelle X13 des DFE33B

Des Weiteren ist darauf zu achten, dass die IP-Adresse des Rechners nicht geändert wird, da dies zu Problemen bei der Kommunikation mit dem Frequenzumrichter führen kann und, wenn die Änderung nicht dokumentiert wird in eine längere Fehlersuche ausarten.

Beim Betrieb des Motors über Movitools sollte zudem in Betracht gezogen werden, dass man das Handbediengerät vom Frequenzumrichter abkoppelt, da in einigen Fällen durch Eingaben am Rechner das Handbediengerät Fehlermeldungen ausgab. War das Gerät jedoch nicht angeschlossen, traten diese Fehler nicht weiter auf. Es ist davon auszugehen, dass hier eine Rückkopplung zwischen dem Rechner und der manuellen Eingabe am Frequenzumrichter stattfindet, da beide gleichberechtigt agieren können.

7. Aussichten

Für das weitere Vorgehen im LaOla Projekt ist es zu empfehlen, die Firmen SEW und National Instuments direkt einzubinden. Beide Firmen haben Ableger in Hamburg und können so mit ihrer Erfahrung und Anwesenheit im Projekt Unterstützung leisten. Durch eine Einbindung der Firmen in das Forschungsprojekt könnte es möglich sein, Probleme, wie die, die hier zum Misserfolg der Programmierung oder wie in der Hausarbeit CAN-Bus-Ansteuerung für einen elektrischen Wellenkanalantrieb, zu vermeiden.

Ein weiteres Projekt könnte die Ansteuerung des Motors über Modbus/TCP sein, da SEW hierzu bereits, wie in Kapitel 5 erwähnt, ein eigenes Programm anbietet und somit Hilfestellung bieten könnt. Die Anschaffung einer Modbus Karte sollte hierzu überdacht werden.

Des Weiteren muss das Wellenpaddel, welches zum Erzeugen der Wellen genutzt wird am Boden des Wellenkanals befestigt werden. Diese Befestigung könnte im Rahmen einer Hausarbeit erarbeitet werden. Außerdem muss ein Wellenabsorber am Ende des Kanals installiert werden, um ein Zurückschlagen der Wellen von der Wand des Kanals zu verhindern.

Die Einbindung in den Ablauf des Bachelor Projekts könnte zudem dafür sorgen, mehr Aufmerksamkeit auf das LaOla Projekt zu lenken und kleinere Aufgabestellungen zu bearbeiten, die nicht Teil einer Hausarbeit oder einer Bachelorthesis sein können.

Quellenverzeichnis

- [1] Der Weg zur Energie der Zukunft www.bundesregierung.de S. 1 Nr 4
- [2] Artikel der Süddeutschen Zeitung. Kabinett beschließt Atomausstieg bis 2022 6. Juni 2011 http://www.sueddeutsche.de
- [3] Erneuerbare-Energien-Gesetz EEG §1 Abs. 2
- [4] Erneuerbare-Energien-Gesetz EEG §3 Nr.1, Nr.2 & Nr.3
- [5] BDEW Bundesverband der Energie- und Wasserwirtschaft http://www.bundesregierung.de/Content/DE/Artikel/2014/01/2014-01-13bdew-energiebilanz-2013.html (Aufgerufen im Juli 2015)
- [6] Pelamis Wave Power *http://www.emec.org.uk/about-us/wave-clients/pelamis-wave-power/* (Aufgerufen im Juli 2015)
- [7] Mathias Simon, Antje Klemichen. *Aufbau und Implementierung der Mess*technik in einem Wellenkanal S. 12
- [8] Wireshark User Guide
- Info Management Systems AG IMS. SH_Checkup_NetzwerkFremdeinfluss.pdf S. 2 http://www.imsinfo.ch/support/pdf/SH_Checkup_NetzwerkFremdeinfluss.pdf (Aufgerufen Juli 2015)
- [10] Elektronik Kompendium beruhend auf Patrick Schnabel *Netzwerktechnik-Fibel http://www.elektronik-kompendium.de/sites/net/0812271.htm* (Aufgerufen Juni 2015)
- [11] Kevin Washburn, Jim Evans. *TCP/IP Aufbau und Betrieb eines TCP/IP-Netzes 2.Auflage* S. 281
- [12] DKE Deutsche Kommission Elektrotechnik Elektronik Informationstechnik in DIN und VDE. *enetipcommondescription.pdf*
- [13] Camille Bauer AG. *Modbus_Grundlagen.pdf* http://www.camillebauer.com
- [14] Hilscher CIFX 50-RE http://www.hilscher.com/de/produkte/produktgruppen/pc-karten/pci/cifx-50reomb/ (Aufgerufen Juli 2015)
- [15] Erstellt nach *MODBUS over Serial Line Specification and Implementation Guide* (Modbus_over_serial_line_V1_02.pdf) www.modbus.org
- [16] LabVIEW Hilfe Datei
- [17] http://www.izgmf.de/izgmf-winkelscheibe.jpg (Aufgerufen August 2015)
- [18] Hochschule Mittweida telecom group *https://www.telecom.hs-mittweida.de/teachware0.html* wireshark.pdf S.2
- [19] SEW Eurodrive *Systemhandbuch Movidrive MDX60B/61B* S. 107 Ausgabe 09/2010