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ABSTRACT

With the recent focus on climate protection amidst rising energy prices, the need of
the hour is the utilization of renewable energy sources. Many countries are already
on the right track, however, new technical and economical challenges arise with the
penetration of renewable energy sources. Once such challenge arises in commercial
buildings having huge energy expenses and at the same time trying to be self sufficient.
A huge portion of the energy expense in commercial buildings in countries with hot
climate can be attributed to space cooling. An effective way to control and integrate
the space cooling with a renewable source such as a PV plant has been demonstrated in
this thesis. A hypothetical building with a water cooled chiller unit and a solar PV plant
has been modeled. A supervisory controller has been designed to provide set points to
the chiller unit considering the output of the PV plant and the price of electricity from
the local grid. This supervisory control problem has been formulated as a standard
linear optimization problem. Three model based control methods have been proposed
to design the supervisory controller. The supervisory controller designed according to
the three methods have been tested on the building model for different scenarios and
the results have been compared. All the modeling, designing and simulations have been
done in Matlab/Simulink.
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1. INTRODUCTION

1.1 Motivation

The building sector accounts for a substantial amount of a country’s primary energy
consumption. In the building energy consumption, a big percentage can be attributed
to space cooling or heating purposes. This is the case alike in developed and develop-
ing countries. For this reason there is great amount of interest in the building energy
efficiency sector, including optimization methods, energy efficient buildings, zero energy
buildings, energy efficient equipments, etc.

Renewable energy has been a crucial topic for quite a few years now. European coun-
tries such as Germany, Denmark, Norway are covering a big percentage of their energy
demands through renewable sources. Developing countries such as India and China
have optimistic targets regarding the renewable sources. One main problem with the
renewable sources is their availability and one solution to this problem is demand side
management or matching the demand to the availability. Traditionally, the electrical
systems worked with costumers as the basic focus and the generation was based on the
demand. Now there is paradigm shift with the penetration of renewable energy in a way
that the power generation is no more just dictated by the consumers and the present
infrastructure is struggling to cope up with this. Several storage methods have also been
tried out. But the best case is to use the energy when it is available.

With renewable installation such as PV plants, buildings now are not only energy con-
sumers but also energy producers. A building energy system in a futuristic setup could
look like the one in Fig. 1.1 adapted from [1]. The challenge now is to design intelligent
controllers that can not only make use of the self generation but also coordinate the
operation of the various loads in the buildings such as a chiller, boiler, storage systems
etc., in order to make the building energy efficient and self sustaining at the same time.
This is the main challenge taken up in this thesis.



Fig. 1.1: A futuristic building energy system

1.2 Thesis objective

The main objective of this thesis is to design a supervisory controller for a futuristic
building energy system. At the beginning of this thesis, it was planned to design the
supervisory controller based on a real building energy system. After some initial at-
tempts to obtain data from a real building energy system which were not successful, it
was decided to design a generalized supervisory controller and test this on a hypothet-
ical model of a building energy system with one load (chiller) and two sources (public
electric grid and solar PV). To this end, the main objectives are the following:

• Model a building energy system with a chiller unit, solar PV and public electric
grid based on first physical equations assuming suitable values for the different
parameters reflecting real cases.

• Design a supervisory controller for such a system which would provide setpoints
for the chiller considering the output from solar PV and the price of electricity
from public grid.

• Test the supervisory controller on different test scenarios.
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1.3 Supervisory control system

Some basic background on control systems is given in this chapter upon which the subse-
quent chapters are based. The designing process of a control system can be summarized
in the following steps:

1. Establishing the objectives

2. Obtaining the model of the process

3. Designing the controller

4. Simulation

The chapters of this thesis are organized in the same way as the steps above.

1.3.1 Establishing the objective

The first step in controller design is to know the goal or formulate the control objec-
tive. Every controller in a system is trying to achieve something (control the speed,
temperature, etc.) by controlling some variables of the system. For example, in a room
heating system, a thermostat is a controller which tries to control the room temperature
by varying the mass flow rate of the hot water through the radiator. It does so by
providing control signals to an actuator, which in this case could be an electric valve.
Here, the objective of the thermostat is to maintain the room temperature as close as
possible to the setpoint specified by the user.

The user who is specifying the setpoint to the thermostat can also be considered as
a controller. The user’s objective may be to maintain the thermal comfort of the room
and he does so by varying the setpoint of the thermostat. The user may also have
multiple objectives such as maintaining the thermal comfort spending the least amount
of energy. Now, the user may give different setpoints to the thermostat than the first
case with a single objective. It is already easy to imagine in a complex system such a
building energy system with different loads, there could be a web of objectives which
would be not manageable for a human user. This is where the supervisory control system
assists the human user. From this explanation, a supervisory controller can be thought
of as a higher level controller controlling lower level controllers towards achieving a
common higher objective, which could be cost efficiency, energy efficiency or multiple
objectives. This can be represented as a hierarchy of controllers as in Fig. 1.2 from [2].
This schematic is a representation of a controllers hierarchy in a processing plant. It can
be seen from the figure that each level has a different objective and works on a different
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time scale.

Fig. 1.2: Hierarchy of controllers in a processing plant

For a building energy system a simplified version of this is shown in Fig. 1.3. In [2]
the author explains how the Model Predictive Control (MPC) method is used in an in-
dustrial control system as a local controller, controlling the lower level distributed PID
controllers. In this thesis, a model based method similar to the MPC has been used to
design the supervisory controller.
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Fig. 1.3: Supervisory control system

Now, the description of a supervisory controller defined above will be adapted to the
building energy system shown in Fig 1.1 which would form the basis of further discus-
sion. In this case the supervisory controller needs to provide the setpoints for the local
controllers controlling the various units such as chiller, boiler, storage systems etc. The
objective of the supervisory controller considered in this thesis is to maximize the uti-
lization of the self generation and minimize the energy expense to maintain the indoor
comfort of the building.

1.3.2 Obtaining the model of the process

The model of the process is needed to get a relationship between the objective and
the parameter varied to obtain the objective. Going back to the heating system ex-
ample, the model needed for the thermostat to control the room temperature needs to
be a set of equations relating the mass flow of water with the room temperature and
the mass flow rate with voltage on the valve control circuit. A supervisory controller,
whose objective is to maintain the room temperature within comfort levels spending the
least amount of energy needs a model relating the room temperature to the energy spent.

The model of a physical process or a system can be obtained from the physical equa-
tions (white box modeling) or it could be a data based model (black box modeling) or
a mix of both (gray box modeling) [3]. For modeling a building energy, system various
software tools are available such as EnergyPlus, TRNSYS, Dymola which have detailed
libraries for common components of a building energy system. Modeling of a building
energy system is described in [1]. A gray box model for an heating, ventilation and air
conditioning (HVAC) system is given in [3] and [4] gives a model for an HVAC system
in India. A model for a hybrid renewable energy system is given in [5].
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There are different ways to express a physical process such as a set of ordinary or
partial differential equations, difference equations, transfer functions, state space equa-
tions etc. In this thesis, a state space representation is used. More on modeling is given
in chapter 2.

1.3.3 Designing the controller

The controller needs to provide input signals to an actuator depending on the setpoint
of the controller and in case of closed loop systems, the feedback received from the
plant. A good representation of a basic closed loop control system is given in Fig. 1.4
from [7]. There are various ways in which a controller can be designed. Traditional
methods include the proportional, integral and differential controllers which act on the
error between the reference and the feedback signals to provide the control signal.

Fig. 1.4: Closed loop control system

In this thesis, a model based control similar to the MPC is used. In a model based
control, process inputs are computed so as to optimize future plant behavior over a
time interval known as the prediction horizon. In the general case any desired objec-
tive function can be used. Plant dynamics are described by an explicit process model
which can take, in principle, any required mathematical form. Process input and output
constraints are included directly in the problem formulation so that future constraint
violations are anticipated and prevented. The first input of the optimal input sequence
is injected into the plant and the problem is solved again at the next time interval using
updated process measurements [2]. A MPC solves a quadratic optimization problem
to minimize the error between the predicted outputs and reference outputs to compute
optimum process inputs. In this thesis, the model based controller solves a linear op-
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timization problem to compute the inputs or in the supervisory sense the ’setpoints’.
Chapter 3 discusses the controller design in detail. The supervisory control system as
designed in this thesis, is represented in Fig. 1.5.

Fig. 1.5: Supervisory control system for a building energy system with renewable sources

1.3.4 Simulation

The supervisory controller designed needs to be tested before it can be implemented in
the hardware. The testing can be done as a computer simulation. The mathematical
programming and simulation tool Matlab/Simulink is chosen since it has a number of
toolboxes with extensive features for modeling and designing controllers and developing
mathematical models. It also provides tools for solving optimization problems which
have been used in this thesis. The supervisory controller has to be simulated in various
scenarios depicting the real cases in which it might be used. More on simulation is given
in chapter 4.
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2. MODELING OF THE COOLING SYSTEM AND COOLING SPACE

Tab. 2.1: List of Abbreviations
Abbreviation Expansion

AHU Air Handling Unit
CCU Cooling Coil Unit
COP Coefficient Of Performance

Tab. 2.2: List of Symbols
Symbol Description Unit
ṁa mass flow rate of air kg/s

ṁw mass flow rate of water kg/s

cw specific heat capacity of water J/kgK

ca specific heat capacity of air J/kgK

Ca heat capacity of air J/K

Cccu overall heat capacity of the CCU J/K

Uccu heat transfer coefficient of CCU J/m2K

Accu effective surface area of CCU m2

Twi temperature of the chilled water from the chiller oC

Two temperature of the return water from the CCU oC

Tai temperature of the air input to the AHU oC

Tao temperature of the air output from the AHU oC

Ta ambient temperature oC

Tr room temperature oC

Cb overall heat capacity of the building J/K

Kb overall heat transfer coefficient of the building J/m2K

PC chiller power kW
Hr heat extracted by the chiller kW
Wc chilled water from the chiller J/s

Wo return water from the AHU J/s

Ai air input from AHU to the room J/s

Ao air recirculation to AHU from the room J/s



The scope of the model developed during this thesis is to be a base model for the su-
pervisory controller and not to be an accurate model of a commercial building cooling
system with all the components and heat flows. As mentioned in the previous chapter,
the supervisory controller is designed to work on different systems and the model de-
veloped in this chapter will act as one test case. The model is based on the common
cooling systems in commercial buildings in countries with tropical climate. Due to lack
of data, the model is not validated. Suitable parameters have been assumed to provide
a reasonable test case for the supervisory controller. The system considered here has
three main components as follows :

1. Chiller system,

2. Air Handling Unit (AHU) with Cooling Coil Unit (CCU),

3. Thermal zone which is a single room.

The simplified cooling system and the room considered in this thesis can be represented
by the schematic diagram in Fig. 2.1.

Fig. 2.1: Schematic representation of the chiller and room model

The chiller is considered to be a chilled water type, which is common in commercial
buildings. The chiller block is a complex system with various other components such
as compressor, cooling tower, evaporator, pumps, distribution systems etc. These are
not considered in this model because the controlling of the sub components is the task
of the local controllers. It is assumed that the local controllers are able to operate the
chiller at the setpoint given by the supervisory controller. There are different variables
in a chiller system such as chilled water temperature, condenser water temperature etc.,
which can be adjusted to influence the chiller power [8]. One such variable is the chilled
water temperature Twi which will be considered in this thesis. The chiller efficiency can
be defined in various ratios such as the energy efficiency ratio, part load ratio, coefficient
of performance (COP) etc. Here the COP is considered which is defined as the ratio
of heat extracted to the mechanical input [9]. For electrical motor driven chillers, the
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mechanical input is defined in terms of the electrical input to the motor. The higher
the COP, the higher the efficiency. Chillers are more efficient at higher leaving water
temperatures [8].
The following assumptions are made regarding the chiller system :

1. The chilled water temperature is adjustable from 5 to 10oC

2. The COP of the chiller varies from 3 to 5.5 corresponding to 5oC and 10oCrespectively

3. Constant flow rate of water is considered from and to the chiller

4. Simple power consumption model for the chiller is assumed

In [10] and [11] detailed models for chiller power consumption are given. These models
however require other parameters such as the condenser water temperature, part load
ratio, rated chiller power etc. Since these variables are not available the power consump-
tion of the chiller Pc is approximated corresponding to the COP and the heat extracted
Hr as

COP = Hr/Pc ,

Hr = mwcw(Twi − Two) , (2.1)

where mw is the mass flow rate of water, cw is the specific heat capacity of water,
Twi , Two are temperatures of the chilled water and the return water respectively.
An Air Handling Unit supplies cool air input to the room by circulating the air from
the room over a cooling coil. During the circulation, some fresh air is added to maintain
the air quality in the room. The input to the AHU is the chilled water from the chiller
unit whose temperature is fixed by the supervisory controller. In the AHU only the
cooling coil unit is considered as it is the main part where the actual heat transfer takes
place and it is modeled based on the equations from [13] which uses a lumped parameter
approach. The schematic diagram of the CCU is given in Fig. 2.2.

18



Fig. 2.2: Schematic Representation of the CCU

The CCU is modeled based on equations from [13]. Here the CCU is considered as a
perfectly mixed vessel, therefore the outflow water temperature is same as the mean
temperature of the water content of the coil. The energy balance on the water side of
the coil, is given by

CccuṪwo = ṁwcw(Twi − Two)− UccuAccu(Two − Tao) (2.2)

and the energy balance on the air side of the coil, is given by

CaṪao = UccuAccu(Two − Tao)− ṁaca(Tao − Tai) , (2.3)

where Cccu is the overall heat capacity of the CCU, Ca is the heat capacity of air, Uccu

is the heat transfer coefficient of CCU, Accu is the effective surface area of CCU, Tao is
the temperature of the air input to the room and the temperature of the input air to
the AHU Tai is considered to be the same as that of the room Tr. Constant mass flow
of air and water is considered. To simplify the model, the quality of the air fed to the
room by the AHU is not considered. As mentioned before, the purpose of this model is
to act as a simple model reflecting the real cooling process in a building to a reasonable
extent for the supervisory controller. The setpoint given by the controller may vary if
there is fresh air added, but the controller algorithm remains the same. This is another
test case for the controller, however this has not been tested in this thesis.

Instantaneous heat transfer between the air and the cooling coil is assumed, therefore

19



(2.3) can be written in terms of Tao as

Tao = UccuAccuTwo + ṁacaTai

UccuAccuṁaca
. (2.4)

For simplicity, the cooling space is modeled as a single thermal zone. The temperature
change in the thermal zone can be expressed in terms of the heat transferred to the zone
Q̇room. The thermal zone will be referred to as the room. The following equations

Q̇room = Qgain −Qlost , (2.5)

where

Q̇room = CbṪr , (2.6)

Qgain = Kb(Ta − Tr) , (2.7)

Qlost = ṁaca(Tr − Tao) , (2.8)

describe the dynamics of the room and are based on the equations from [12].

2.1 Simulink Model

Simulink is a modeling and simulating tool with a graphical programming interface.
Simulink/Matlab is one of the effective software that has advanced possibilities to de-
sign thermodynamic models and controllers for indoor climatic conditions [12]. The
physical equations (2.2) to (2.5) describing the cooling system and the room has been
implemented in Simulink. Fig. 2.3 shows the Simulink implementation of the cooling
system and the room.

Fig. 2.3: Simulink model of the cooling system and the room
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It can be seen from the above figure that there are two blocks in the Simulink model
representing the AHU and room respectively. The block representing the room has two
inputs, the ambient temperature Ta and the temperature of the input air from the AHU
Tao. Equation (2.5) is implemented in the block representing the room. This can be
seen in Fig. 2.4.

Fig. 2.4: Equations representing the room in Simulink

Equations (2.2) and (2.4) are implemented in the block representing the AHU as seen
in Fig. 2.5. The block has two inputs, the temperature of the chilled water from the
chiller Twi and the temperature of the air input to the AHU which is also the room
temperature Tai.

Fig. 2.5: Equations representing the AHU in Simulink
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The parameters required by the Simulink model are given in a Matlab m-file. The model
is simulated with temperature data from a sample file and a constant chiller set point
of 8oC for a period of 7 days. Fig. 2.6 shows the result of the simulation. It can be seen
that the room temperature varies with the ambient temperature.

Fig. 2.6: Continuous time simulation of the cooling system

If heat gained by the room from the ambient is not removed by the cooling system (the
chiller is turned off), the room temperature quickly approaches the ambient tempera-
ture. This can be seen in Fig. 2.7.
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Fig. 2.7: Room temperature approaching ambient temperature

2.1.1 State-Space representation and discretization

A state-space model is just a structured form or representation of the differential equa-
tions of a system. It is especially useful in Multi Input, Multi Output ’MIMO’ systems
modeling and analysis. According to [14] a linear, time-invariant system in continuous
time can be modeled by a set of differential equations of type

Ẋ(t) = AX(t) + BU(t) ,

Y(t) = CX(t) + DU(t) , (2.9)

X(0) = X0 ,

where the state vector X ∈ Rn, the input vector U ∈ Rm, the output vector Y ∈ Rr,
the system matrix A ∈ Rn×n, the input matrix B ∈ Rn×m, the output matrix C ∈ Rr×n

and the feed through matrix D ∈ Rr×m.
The set of differential equations representing the cooling system and the room from the
previous section can be represented in the same form as (2.9). The Matlab command
’linmod’ is used to obtain a continuous time linear state-space model of a Simulink model
around a given operating point and initial condition. The command ’linmod’ is used
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on the Simulink model show in Fig. 2.8 to obtain the state-space representation of the
cooling system and room. The initial values for the two states of this system Two and
Tr are 12oC and 24oC respectively and inputs Twi and Ta are 5oC and 35oC respectively.

Fig. 2.8: Simulink model used for linmod command

The supervisory controller is designed to give setpoints at discrete time of 15 minutes.
This is a reasonable control interval for a cooling system, considering that the temper-
ature change of the room is not too big in a 15 minute interval. Since the supervisory
controller is working at a 15 minute interval, the continuous time state-space model has
to be discretized at a 15 minute interval as well. The MATLAB command ’c2d’ is used
to discretize a continuous time system. The discretization interval has to specified in
seconds. Here the ’c2d’ command is used with a discretization interval of 900 seconds.
The discretized state space model thus obtained is simulated with the same inputs as
with the continuous time model in the previous section. The comparison of the results
can be seen in Fig. 2.9
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Fig. 2.9: comparison of continuous and discretized system

The discretized form of the equation (2.9) is,

X(k + 1) = AX(k) + BU(k) ,

Y(k + 1) = CX(k) + DU(k) , (2.10)

X(0) = X0 ,

where k is the time step. The chiller system can be represented by the following discrete
state-space model : X1(k + 1)

X2(k + 1)

 =

 a11 a12

a21 a22

 X1(k)
X2(k)

+

 b11 b12

b21 b22

 U1(k)
U2(k)

 , (2.11)

 Y1(k)
Y2(k)

 =

 c11 c12

c21 c22

 X1(k)
X2(k)

+

 d11 d12

d21 d22

 U1(k)
U2(k)

 , (2.12)

where Two is state X1, Tr is state X2, Twi is input U1 and Ta is input U2. The input
U1 ∈ U, where U=(5,5.5,6.....10).
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The supervisory controller has to give the optimal input U1 to the chiller unit at each
time step, considering the room temperature X2 does not exceed the allowable limits
for all time steps k.
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3. OPTIMIZATION

The supervisory control problem of providing the best setpoints to the chiller unit con-
sidering constraints on the room temperature is formulated as a linear optimization
problem.

In order to follow the arguments made in this chapter, some basic mathematical defini-
tions on polytopes from [15] are given below.

Polytope: A subset P ⊆ Rd that can be presented as a V -polytope or as an H-polytope.

V -polytope: Vertex representation of a polytope is the convex-hull of a finite set
F = (f1 . . . fn) of points in Rd. Convex-hull P of the set F is,

P = conv(F) :=
{

n∑
i=1

λif
i

∣∣∣∣∣λi ≥ 0,
n∑

i=1
λi = 1

}
.

H-polytope: Half-plane representation is a bounded solution set of a finite system of
linear inequalities:

P = P(L, b) :=
{
f ∈ Rd

∣∣∣ lTi f ≤ bi for 1 ≤ i ≤ m
}
,

where L ∈ Rm×d is a real matrix with rows lTi , and b ∈ Rm is a real vector with entries bi.

d-Polytope: A d-dimensional polytope. A 2-d polytope is a polygon, a 3-d poly-
tope is a polyhedron and so on.

3.1 Linear Optimization

Linear optimization also known as linear programming is an important class of opti-
mization problems in which all the objectives and constraints are linear [16]. According
to [17] linear optimization deals with minimizing or maximizing the value of a function
called as objective function by choosing some optimum values for the decision variables
of the function.



The values which these variables are allowed to take are defined by set of inequalities.
Linear programming in its standard form as described in [17] for a n-dimensional space
is formulated as follows :

Minimize

J = c1x1 + c2x2 + · · ·+ cnxn (3.1)

subject to

a11x1 + a12x2 + · · ·+ a1nxn ≤ b1

a21x1 + a22x2 + · · ·+ a2nxn ≤ b2

...

am1x1 + am2x2 + · · ·+ amnxn ≤ bm

x1, x2, · · ·xn ≥ 0 .

The variables in (3.1) are known as the decision variables and the vector containing
these variables is known as the decision vector

x =


x1

x2
...
xn

 ∈ Rn

and the constants in (3.1) are the costs for choosing a certain value for the variables in
the decision vector. This is known as the cost vector

c = (c1 c2 . . . cn) ∈ Rn .

The linear inequalities form the constraints of the linear optimization problem. Each
constraint is an half-plane and the set of feasible solution is just the intersection of the
half-planes given by the constraints which is a polytope, a polygon in case of two decision
variables and polyhedron in case of three decision variables and so on [17]. The solution
to the linear optimization problem contains the optimum value for all the elements in
the decision vector. The rest of this chapter shows how the model based supervisory
control problem is formulated as a standard linear optimization problem.
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3.2 Problem definition

Referring to the (2.11), the problem is to determine the input vector U1 at time step
k, such that, the state variable X2 is within allowable limits defined by Xlow for the
lower limit and Xup for the upper limit for all the time steps k to k + Hp,where Hp is
the prediction horizon. This problem of finding the optimum future input vector has
to be formulated as standard linear optimization problem. This can be mathematically
formulated as,

min W.U1

subject to Ulow ≤ U1 ≤ Uup (3.2)

Xlow ≤ X2 ≤ Xup

where the cost vector

W = (Wk Wk+1 . . .Wk+Hp−1) ∈ RHp ,

contains the costs for choosing a particular U1. The costs can be real price in $/kWh

or some virtual cost.

U1 =


U1(k)

U1(k + 1)
...

U1(k +Hp − 1)

 ∈ UHp ,

is the input vector time step k = 1 to k = k +Hp − 1,

Ulow =


Ulow(k)

Ulow(k + 1)
...

Ulow(k +Hp − 1)

 ∈ UHp ,

is the lowest setpoint at which the chiller can operate and

Uup =


Uup(k)

Uup(k + 1)
...

Uup(k +Hp − 1)

 ∈ UHp ,
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is the highest setpoint at which the chiller can operate. From (3.1), it can be seen
that all the constraints formulated as inequalities are in the decision variable, whereas
here the decision variable for the objective function is U1 but the constraints are in
variable X2. In this case either the objective function has to be formulated in X2 or
the constraints have to be formulated in U1.

3.3 Formulation of the objective function

In this section three different methods of defining the objective function are discussed.

1. Method 1: Objective function with U1 as decision variable and constraints trans-
formed from variable X2 to U1

2. Method 2: Objective function with X2 as decision variable

3. Method 3: Objective function with real price vector

The cost vector can be the real price or some virtual cost vector. The price vector has
the real price in /kWh. The methods 1 and 2 work with a virtual cost vector, whereas
method 3 works with a real price vector.

3.3.1 Method 1

The objective function in terms of U1 is defined as

J1 = W1 ·U1 , (3.3)

subject to
Ulow ≤ U1 ≤ Uup ,

where ,
W1 = (W1(k) W1(k + 1) . . .W1(k +Hp − 1)) ∈ RHp ,

is the cost vector that has the costs for achieving the setpoints U1, considering the price
for electricity, renewable energy output. This cost vector does not reflect the real price
of the electricity but rather a virtual price.

Here the constraint on X2 are not specified. It has to be included in the constraints on
U1. How can this be done ?

To answer this question, first a set N is defined which contains points from the space
UHp . The entries in N are the points from UHp which when given to the chiller does not
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violate the constraints on the room temperature over the prediction horizon Hp. For
the condition when the constraint is not active, this set N would have all points in the
space UHp . For a Hp=2, the convex hull of N denoted by conv(N) is shown in Fig. 3.1
which is a square.

Fig. 3.1: Convex hull of N without constraints on X2

Now the constraints in X2 are considered, depending on the ambient temperature and
the present state of the room temperature some points in UHp could not be applied as
it would violate the constraint on the room temperature. This would change the shape
of the convex hull from a square as seen in Fig. 3.1 to a different one. To find out which
points from the space UHp does not violate the constraints, equation (2.11) is computed
iteratively for each time step with all the values from U. With ’D’ number of discrete
levels which the input U1 can take, a prediction horizon of Hp gives DHp possible input
combinations. Here the set U has 12 discrete levels which means for a Hp =2, there are
144 different combinations in U1. Fig. 3.2 show the convex hull conv(N) of N at a
time step k with active constraint on X2. It can be seen that the shape of the polygon
is no more a square. The vertices of this polygon is the feasible set of solution for the
objective function (2.11)
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Fig. 3.2: Convex hull of N with constraints on X2

In (3.3), U1 ∈ conv(N), where conv(N) ∈ UHp . In this way now the constraints in X2

have been transformed to constraints in U1.

3.3.2 Method 2

The method of obtaining the convex hull as explained in section 3.3.1 becomes com-
plicated for higher dimensional spaces, that is for higher values of Hp. To overcome
this problem, the cost function in this section is formulated as a function of the room
temperature.

J2 = W2 ·X2 , (3.4)

where,

W2 = (W2(k) W2(k + 1) . . .W2(k +Hp − 1)) ∈ RHp ,

is the cost vector that has the costs for achieving the desired room temperature X2,
considering the price for electricity, renewable energy output. This cost vector does not
reflect the real price of the electricity but rather a virtual price. The decision vector
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containing the optimum room temperature for each time is,

X2 =


X2(k)

X2(k + 1)
...

X2(k +Hp − 1)

 ∈ RHp .

The constraints are given by
Xlow ≤ X2≤ Xup ,

X2(k)−X2(k + 1)
X2(k + 1)−X2(k + 2)

...
X2(k +Hp − 1)−X2(k +Hp)

 ≤


P (k)
P (k + 1)

...
P (k +Hp − 1)

 ,

where, Xlow and Xup are the vectors giving the lower and upper limits of the room
temperature at each time step, the first values of which are Tr(k). The second inequal-
ity constraint is required to consider the power constraint of the chiller. Therefore a
limit on the difference between the room temperatures at the present time step and
the next time step is specified as variable P (k). Here for simplicity all the elements
in the vector (P (k) . . . P (k + Hp − 1))T are considered to have the same value, which
can be obtained from the heat transfer equations mentioned in chapter 2 or by analysis
of the energy data from the chiller and corresponding room temperature data if available.

The equation (2.11) is rearranged in terms of the state variables X1 and X2 to ob-
tain the chiller set point U1 as

U1(k) = X2(k + 1)− a22 ·X2(k)− a21 ·X1(k)− b22 · U2(k)
b21

(3.5)

X1(k + 1) = a11 ·X1(k) + a12 ·X2(k) + b11 · U1(k) + b12 · U2(k) . (3.6)

The value X2(k + 1) from the decision vector X2 obtained by solving the optimization
problem defined by (3.4) is substituted in (3.5) to compute the input U1 to be applied
to the chiller at the present time step.

Constant reference temperature

In the case where the electricity price is always constant and there is no self generation,
the lowest cost of operation of the chiller unit would be achieved with the highest set-
point, such that the room temperature is always maintained at the upper end of the
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comfort requirements.

The linear inequalities to the cost function from (3.4) can be defined in a way that
the decision vector has the same value for all the elements. The upper and lower bounds
should be set to the same value which is the upper bound of the room temperature. In
this case the solution to the optimization problem (3.4) is always the upper limit of the
room temperature. The chiller set point is obtained by substituting this value in (3.5).

Assuming that the maximum allowable room temperature is 25oC, the decision vec-
tor will be

X2 =


25
25
...

25

 .

This approach is certainly not the best approach due to the following reasons.
W2 depends on different variables

In a practical case where the building has a renewable energy source such as a solar
plant, the cost vector W2 will depend on the following variables:

• Output EP V of the solar plant

• Cost of electricity Cele purchased from the utility

• Ambient temperature Ta

• Occupancy rate Or of the building

The utilization of the self generation from solar plant has the highest priority and hence
the room is cooled to its minimum allowed temperature when EP V is at its maximum.
With a fixed reference vector R this would not be possible. Also it is a good economic
strategy to pre-cool the room when Cele is low and stop cooling when it is high.

3.3.3 Method 3

In the previous sections the cost function J was defined such that the weights vector
W did not reflect the real cost of the energy purchased from the grid or from the solar
plant. Here, the cost function J is defined such that both the public electric grid and the
solar plant are considered as external power suppliers supplying electricity at a certain
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$/kWh.

J3 = Wg ·Eg + Ws ·Es , (3.7)

where,
Wg = (Wg(k) Wg(k + 1) . . .Wg(k +Hp − 1)) ∈ RHp ,

is the cost vector of length Hp containing the costs of one unit of electricity purchased
from the electric grid,

Ws = (Ws(k) Ws(k + 1) . . .Ws(k +Hp − 1)) ∈ RHp ,

is the cost vector of length Hp containing the costs of one unit of electricity purchased
from the solar plant,

Eg =


Eg(k)

Eg(K + 1)
...

Eg(k +Hp − 1)

 ∈ RHp ,

is the decision vector of length Hp containing the amount of electricity to be purchased
from the electric grid at each time step and

Es =


Es(k)

Es(K + 1)
...

Es(k +Hp − 1)

 ∈ RHp ,

is the decision vector of length Hp containing the amount of electricity to be purchased
from the solar plant at each time step.

Equation (3.7) is subjected to the following inequalities :

Egl ≤ Eg ≤ Egu (3.8)

Esl ≤ Es ≤ Esu (3.9)

Emin ≤
∑

Eg + Es ≤ Emax (3.10)

Ekmin ≤ Ek ≤ Ekmax (3.11)

Egl and Egu in (3.8) are the vectors of length Hp containing the lower and upper limits
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for the electricity to be purchased from the electric grid.

Esl and Esu in (3.9) are the vectors of length Hp containing the lower and upper limits
for the electricity to be purchased from the Solar plant.

Equation (3.10) gives the upper and lower bounds for the electricity that has to be
purchased from the electric grid and the solar plant over the entire prediction horizon
from time step k to (k + Hp − 1). Emin and Emax are the values of electricity needed
if the chiller is operated at its highest and lowest setpoints respectively from time step
k to (k + Hp − 1). The total amount of electricity that has to be purchased from the
electric grid and the solar plant from time step k to (k+Hp− 1) is given by

∑
Eg + Es.

Equation (3.11) gives the upper and lower bounds for the electricity to be purchased at
each time step. These upper are lower bounds are corresponding to the electrical energy
required by the chiller unit to maintain the room temperature within the limits, where

Ek = Eg + Es

is a vector of length Hp containing the sum of electricity to be purchased from the elec-
tric grid and solar plant at each time step,

Ekmin =


Ekmin(k)

Ekmin(k + 1)
...

Ekmin(k +Hp − 1)

 ∈ RHp ,

is a vector of length Hp containing the lower bounds of electric energy required by the
chiller to maintain the room temperature at its maximum allowable limit at each time
step and

Ekmax =


Ekmax(k)

Ekmax(k + 1)
...

Ekmax(k +Hp − 1)

 ∈ RHp ,

is a vector of length Hp containing the upper bounds of electric energy required by the
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chiller to maintain the room temperature at its minimum allowable limit at each time
step.

The electricity consumption of the chiller is dependent on the setpoint of the chiller.
Therefore the vectors Ekmax and Ekmin are specified in terms of the chiller setpoint
by (2.1). The maximum and minimum allowable chiller setpoints are obtained as men-
tioned in section (3.3.1).

The vector Ek obtained as a solution to linear optimization problem is used to compute
the chiller setpoints by (2.1).
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4. TESTING

The different methods for the supervisory controller described in the previous chapters
have to be tested on the model system developed in chapter 2. Since the model has been
implemented in the Simulink environment, the supervisory controller is also designed in
Simulink.

4.1 Controller design in Simulink

An user defined function can be implemented as a S-function in Simulink. The S-function
can be written in MATLAB, C, C++ and Fortran. In this thesis the S-function for the
controller is written in MATLAB. 1-level S-function is used. Three different S-function
for the three methods described has been developed. The algorithms of the S-functions
for the different methods are given below:

4.1.1 Method 1

As described in section 3.3.1, the objective function here is defined in terms of the chiller
setpoint.

1. Get the value of the state vector X at the current time step k

2. Obtain the set N containing points from UHp by solving (2.11)

3. Get the convex hull of N using ’convhull’ command in MATLAB.

4. Solve (3.3) with the set conv(N).

5. Find the minimum value of the resulting vector and the point in conv(N) corre-
sponding to the index of the minimum value is the optimum solution point.

6. Give the first coordinate of the optimum solution point as the setpoint.

7. Repeat for the next time step.



4.1.2 Method 2

The objective function is defined in terms of the room temperature and the constraints
are in room temperature.

1. Get the value of the state vector X at the current time step k.

2. Formulate the objective function, the equality and inequality vectors of length Hp

from (3.4)

3. Solve the objective function (3.4) subject to the constraints using ’linprog’ com-
mand in MATLAB.

4. Compute (3.5) with the X2 obtained as a solution from the previous step.

5. Apply the first value of the resulting vector as the setpoint.

6. Repeat for the next time step.

The command ’linprog’ requires all the inequalities and the equalities as vectors. The
first entries of Xlow and Xup are set to the value X2(k) which is the present value of
the room temperature. The other values are set according to the ambient temperature.

4.1.3 Method 3

The cost function here is defined with the electricity used by the chiller as the decision
variable and real electricity price as the cost vector.

1. Get the value of the state vector X at the current time step k.

2. Formulate the objective function, the equality and inequality vectors of length Hp

from (3.7)

3. Solve the objective function (3.7) subject to the constraints using ’linprog’ com-
mand in MATLAB.

4. Compute the chiller setpoint from (2.1) by substituting the result from the previous
step.

5. From the resulting vector of the previous step apply the first value to the chiller.

6. Repeat for the next time step
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4.2 Simulation results

The simulation has been performed for different scenarios. Each scenario has been
simulated for a period of seven days. For the simulation, the forecasts of the weather
and solar power are needed. The performance of the three methods under the different
scenarios will be compared with respect to a baseline based on the following criteria:

• Criterion 1: Maintaining the room temperature within constraints

• Criterion 2: Electricity used by the chiller

• Criterion 3: Total cost of operating the chiller

4.2.1 Scenario 1

In this scenario the chiller is considered to be oversized. The weather and solar energy
data used for the simulation are shown in Fig. 4.1 and Fig. 4.2. The temperature data
here depicts the ambient temperature profile in summer season.

Fig. 4.1: Weather forecast used for scenario 1
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Fig. 4.2: Solar power generation forecast used for scenario 1

The forecast for the solar power is based on a typical bell shaped curve resembling the
typical solar irradiation over a day. The power level of the solar plant is chosen to be
higher than the full load of the chiller, such that the solar plant can supply the chiller
on a stand alone mode when the irradiation is high.
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Fig. 4.3: Electricity price scheme used for scenario 1

A variable cost for electricity is considered as shown in Fig. 4.3. The lowest tariff is
0.22 $/kWh during off peak hours, normal tariff is 0.24 $/kWh and during the peak
hours it is 0.26 $/kWh.
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Fig. 4.4: Virtual cost vector

The cost vectors W1 and W2 are subsets of a virtual cost vector defined for the during
of the simulation time. The virtual cost vector is shown in Fig. 4.4. The virtual cost
vector defined here depends on the real price of electricity and the solar power genera-
tion forecast. It can be seen in the figure that the values that the elements of the virtual
cost vector can take are -1, 0 or 1. -1 is during the case when there is sufficient solar
power generation or when the electricity price is at its off peak. 0 is during the case
when the electricity price is normal and there is no solar power. 1 is during the case
when the electricity price is at its peak value and when there is no solar power generation.

Criterion 1

A performance indicator β, is defined to asses the performance of the different methods
according to criterion 1.

β = 1− Number of time steps when Tr(k) ≥ 1.02 ·Xup(k)
Total number of time steps , (4.1)

where Tr(k) is the room temperature and Xup(k) is the upper limit of the room tem-
perature at the present time step. A threshold of +2 % for the upper limit is assumed.
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Baseline

As a baseline for scenario 1 the chiller set point is maintained at a constant value
of 10oC.

Fig. 4.5: Baseline simulation with a constant chiller setpoint at 10oC

Method 1

The simulation result in Fig. 4.6 shows the performance of the supervisory controller
based on method 1 for a Hp = 2. It can be seen from the figure that the supervisory
controller sets the setpoint to the lowest possible value when the corresponding value of
the virtual cost vector is -1 or 0 and the highest possible value when the value is 1. The
room temperature is also within the constraints.
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Fig. 4.6: Scenario 1: Method 1 supervisory controller performance

Method 2

The simulation result in Fig. 4.6 shows the performance of the supervisory controller
based on method 2 for a Hp = 8. Similar to the performance of method 1, it can be seen
from the figure that the supervisory controller sets the setpoint to the lowest possible
value when the corresponding value of the virtual cost vector is -1 or 0 and the highest
possible value when the virtual cost vector is 1. The room temperature is also within
the constraints.
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Fig. 4.7: Scenario 1: Method 2 supervisory controller performance

Comparing Fig. 4.7 with Fig. 4.6, the difference in the setpoint given by both the
methods can be seen. The setpoint given by method 1 was either 5 or 10, where as
the setpoint given by method 2 takes different values from the set U. This is because
the objective function is in terms of the room temperature and the chiller setpoint is
calculated from the room temperature set over the prediction horizon. The room temper-
ature obtained as the solution of (3.4) can be seen in Fig. 4.7 mentioned as ’Tr-setpoint’.

Method 3

Method 3 is different from the first two methods since it uses real price for electricity
instead of the virtual cost as used in the methods 1 and 2. The simulation result in
Fig. 4.8 shows the performance of the supervisory controller based on method 3 for a
Hp = 8.
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Fig. 4.8: Scenario 1: Method 3 supervisory controller performance

Comparing with methods 1 and 3 the setpoints given method 3 is most of the times at
the upper end. This is because of the real electricity price. Since there is always a price
associated with purchasing electricity from the gird, the controller decides to purchase
the least amount of energy required to maintain the room temperature within limits.
The controller chooses the lowest chiller set point when there is sufficient solar energy or
during off peak times. It can be seen from Fig. 4.8, the room temperature is maintained
closer to the upper limit compared to the first two methods. On the 6th day highlighted
by a black square, when there is not sufficient solar energy the setpoint is at the up-
per end and it is set to the lowest setpoint when the electricity price is at the lowest value.

Criterion 2

The comparison of total electricity consumed by the chiller when controlled by the
three methods with respect to the baseline is shown in Fig. 4.9. It can be seen that
the electricity consumption of the chiller at the baseline scenario is the lowest, this is
because the chiller is always operating at the highest possible setpoint. Among the three
methods, method 3 has the best energy performance which is around 1.8 times that of
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the baseline followed by method 2 which is around 2.14 times that of baseline. Method
1 is around 2.24 times that of baseline value.

Fig. 4.9: Scenario 1: Comparison of electricity consumption of the chiller among the three meth-
ods

Criterion 3

The performance of the different methods with respect to the price of electricity from
the gird and solar plant is shown in Fig. 4.10. Here the price of one unit of electricity
from the solar plant is assumed to be 0.10 $, which is considered to be the feed-in tariff
provided by the public grid. In case where there is no feed in tariff, the price for the
electricity from the solar plant can be considered as 0. The performance of the controllers
are similar to that in criterion 2. The baseline has the best value followed by method
3. The comparison of the different methods according to the criteria is summarized in
Tab. 4.1

48



Fig. 4.10: Scenario 1: Performance of the methods with respect to the electricity price

Tab. 4.1: Scenario 1: Summary of performance
Baseline Method 1 Method 2 Method 3

Criterion 1: β value 1 1 1 1
Criterion 2: Total kWh 488 1095 1048 876

Criterion 3: Total $ 98 221 213 167

4.2.2 Scenario 2

For scenario 2 the size of the room is increased, such that the cooling load on the chiller
is increased. The chiller is considered to be sized rightly for the room, which is closer
to the practical cases than scenario 1. The ambient temperature profile, solar power
forecast and the virtual cost vector remains the same as from scenario 1. The upper
limit for Tr is considered to be a constant value of 26oC at all time steps.
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Criterion 1

Baseline

As a baseline for scenario 2 the chiller set point is maintained at a constant value
of 5oC. Fig .4.11 show the result of the simulation at the baseline case. It can be
seen that the room temperature exceeds the limits at certain time steps because of the
increased cooling load on the chiller. However, the β is 1 for the baseline case, since Tr

does not go beyond the threshold at any time step. Since the baseline case is working
at the lowest possible setpoint at all time steps and still not able to maintain the room
temperature within limits, one can say that the other methods would also fail to keep
the room temperature within limits during all the time steps. However, since this is
more likely the scenario in real applications, it is interesting to see the performance of
the different methods.

Fig. 4.11: Baseline simulation with a constant chiller setpoint at 5oC
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Method 1

The performance of method 1 supervisory controller for a Hp = 2 is shown in Fig. 4.12.
The room temperature is maintained on the upper limit and it exceeds the upper limit
at certain time steps but the the β is 1 similar to the baseline. Compared to Fig. 4.12,
here the setpoints given by the chiller on the lower limit most of the times as expected.

Fig. 4.12: Scenario 2: Method 1 supervisory controller performance

Method 2

The performance of the method 2 supervisory controller for a Hp = 8 is shown in Fig.
4.13. As in method 1, the room temperature is maintained on the upper limit and it
exceeds the upper limit at certain time steps but the β value is 1.
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Fig. 4.13: Scenario 2: Method 2 supervisory controller performance

Method 3

The performance of the method 3 supervisory controller for a Hp = 8 is shown in Fig.
4.14. From the figure it can be seen that the setpoints look lot different than the first
two methods. Compared to Fig.4.8, here the chiller operates at its lowest values not
only when sufficient solar power is available, but also during other time steps when the
room temperature is near the upper limit. As a result the room temperature is almost
always maintained on the upper limit and it exceeds the upper limit at certain time
steps. The β value is 0.9911 for this method. In this the first two methods marginally
perform better than method 3.
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Fig. 4.14: Scenario 2: Method 3 supervisory controller performance

Criterion 2

The comparison of total electricity consumed by the chiller when controlled by the three
methods with respect to the baseline is shown in Fig. 4.15. Contrary to scenario 1,
the electricity consumption of the chiller at the baseline scenario is the highest since
the chiller is always operating at the lowest possible setpoint. All the three methods
perform better than the baseline. Among the three methods, method 3 has the best
energy performance which is around 0.76 times that of the baseline followed by method
2 which is around 0.91 times that of baseline. Method 1 is around 0.92 times that of
baseline value.
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Fig. 4.15: Scenario 2: Comparison of electricity consumption of the chiller among the three
methods

Criterion 3

The performance of the different methods with respect to the price of electricity from
the grid and solar plant is shown in Fig. 4.16. Method 3 has the best price performance
followed by method 1 and method 2. One may expect the method 2 to have a better
price performance than method 1 since the electricity consumed by method 2 is lower
than method 1. This is due to the fact that the method 2 gives setpoints at the lowest
level for more time steps than method 1. The comparison of the different methods
according to the criteria is summarized in Tab. 4.2
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Fig. 4.16: Scenario 2: Performance of the methods with respect to the electricity price

Tab. 4.2: Scenario 2: Summary of performance
Baseline Method 1 Method 2 Method 3

Criterion 1: β value 1 1 1 0.9911
Criterion 2: Total kWh 1491 1368 1352 1130

Criterion 3: Total $ 308 276 282 221

From the summary, one can see the method 3 supervisory controller performs better
than the other methods even though its β value is not 1.

4.2.3 Scenario 3

In scenario 3, the performance of the different methods under conditions where the
system is subjected to disturbance are simulated and compared. The disturbance in the
system may be due to heat gains such as leaving a window open, adding an extra load
or increased occupancy. There may also be error in the prediction of the future states
due to modeling errors or due inaccurate forecasts. The disturbance is added to the
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feedback to the supervisory controller. The system remains the same as in scenario 2.
The disturbance profile is shown in Fig. 4.17.

Fig. 4.17: Disturbance profile added to the feedback

Criterion 1

Baseline

The baseline is the same as in scenario 2, the set point is maintained at 5oC. As
seen in Fig. 4.18 the room temperature exceed the upper limit at certain time steps due
to the disturbance and the β value is no more 1. Due to the disturbance, the β value is
0.9152.
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Fig. 4.18: Scenario 3: Baseline simulation with a constant chiller setpoint at 5oC

Method 1

From the Fig. 4.19, it can be seen that setpoints given remain as in scenario 2 for
most of the time steps. In Fig. 4.12 on the 5th day which can be identified by the
5th peak on the ambient temperature, the setpoint is increased to 8oC when the virtual
cost is 1, whereas at the same time step in Fig. 4.19 the setpoint remains at 5oC which
indicates that, the supervisory controller adjusts the setpoints according to account for
the disturbance. The β value is 0.8869.
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Fig. 4.19: Scenario 3: Method 1 supervisory controller performance

Method 2

The observation made for method 1 also applies here. On the 5th day, the setpoint
remains at 5oC in Fig. 4.20, whereas in Fig. 4.13 it is about 8oC. The β value is 0.8929.
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Fig. 4.20: Scenario 3: Method 2 supervisory controller performance

Method 3

Comparing Fig. 4.14 and Fig. 4.21, it can be seen the major difference in the setpoints
occur during the last three days when the ambient temperature is higher than the other
days. The β value is 0.8601 which is the lowest among all the case.
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Fig. 4.21: Scenario 3: Method 3 supervisory controller performance

Criterion 2

As one would expect,with the introduction of disturbance, the chiller consumes more
electricity than scenario 2 for all the methods. The interesting indicator here, is how
much the consumption increases with respect to the corresponding values at scenario
2. For the baseline there is 2.15 % increase. For methods 1, 2 and 3 the consumption
increases by 3.51 %, 4.07 % and 10.44 % respectively. Fig. 4.22 shows the energy
performance of the different methods at scenario 3.
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Fig. 4.22: Scenario 3: Comparison of electricity consumption of the chiller among the three
methods

Criterion 3

As with criterion 2, the price paid for the electricity increases under all the methods
with method 3 having the greatest increase as in criterion 2. The price performance of
the different methods is given in Fig. 4.23. The comparison of the different methods
according to the criteria is summarized in Tab. 4.3
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Fig. 4.23: Scenario 3: Performance of the methods with respect to the electricity price

Tab. 4.3: Scenario 3: Summary of performance
Baseline Method 1 Method 2 Method 3

Criterion 1: β value 0.9152 0.8869 0.8929 0.8601
Criterion 2: Total kWh 1523 1416 1407 1248

Criterion 3: Total $ 315 289 293 249

4.2.4 Effect of Hp

The prediction horizon Hp plays an important role in the setpoints given by the supervi-
sory controller as it decides how far the controller is looking into the future. A large Hp

would lead to high computational time and a small Hp may not be the most economical.

As mentioned before the supervisory controller based on method 1 has been designed
for a Hp = 2. If the prediction horizon is increased the convex hull of the set N will
vary. This is because, with an increase in Hp, the number of points in UHp will decrease.
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The supervisory controllers based on method 2 and method 3 have been designed to
work for different prediction horizons. The simulations for different scenarios were done
for a Hp = 8. Now, the Hp is changed to 4 and scenario 2 is simulated again.

Fig. 4.24: Method 3: Effect of Hp

The effect of varying the Hp on the setpoints given by supervisory controller based on
method 3 is shown in Fig. 4.24. The highlighted region shows the time steps when the
supervisory controller decides to cool down in case of Hp = 4 and wait until there is
sufficient PV output in case of Hp = 8.

Tab. 4.4: Scenario 2: Effect of Hp

Hp = 4 Hp = 8
Criterion 1: β value 0.9955 0.9911

Criterion 2: Total kWh 1178 1130
Criterion 3: Total $ 233 221

From Tab. 4.4 it can be observed that with an higher Hp the energy consumption is low
and also the economical performance is better. This can be explained with an example.
Considering the Hp = 4, with a time step of 15 minutes, this would mean the controller
is looking 1 hour into the future. Now, if the solar PV forecast is such that from 10 a.m.
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the solar output is high enough to operate the chiller at the lowest setpoint. With
Hp = 4, at 8 a.m., the controller would not see the solar output at 10 a.m. and may
decide to cool down the room. If the Hp = 8, at 8 a.m., the controller would see that the
solar output is high at 10 a.m. and it would delay the cooling to this point. This would
explain why a small Hp may not have the best economical performance. However, the
β value for Hp = 4 is marginally better.

Fig. 4.25: Method 2: Effect of Hp

From Fig. 4.25, it can be seen that the Hp does not have a big influence on the setpoints
given by supervisory controller based on method 2. This is because the objective function
of method 2 is formed with the room temperature as the decision variable and a virtual
cost vector is used. The value of the room temperature obtained as a solution to the
optimization problem depends only on the value of the virtual cost vector at the current
time step.
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5. CONCLUSION

A supervisory controller has been designed which provides optimum setpoints for a chiller
unit considering the price of electricity and output from a PV plant. This problem has
been formulated as a standard linear optimization problem. Three different methods
have been proposed and three different supervisory controllers based on these methods
have been designed and tested.

5.1 Results

• The results show that the supervisory controller designed based on method 3 has
the best economic performance.

• The supervisory controller performs well on a rightly sized chiller unit. If it is
oversized it can be set to operate at the highest possible set point for the lowest
economic performance and if it is undersized the supervisory controller cannot
keep the room temperature within constraints.

• All the methods fail to keep the room temperature within constraints when the
system is subjected to disturbance because of the increased cooling load, how-
ever, all the methods changed the input trajectory given to the chiller when the
disturbance is introduced.

• The performance of the supervisory controller can be tuned by varying the pre-
diction horizon Hp.

5.2 Limitations

• The model built in this thesis is not validated due to lack of data.

• The state space model of the building energy system is valid only for the conditions
when the chiller is in operation since the physical model has been linearized about
this operating point. Therefore the supervisory controller is not turning off the
chiller because the test model is not valid for such a condition. This is the reason
why in scenario 1, even though the chiller is oversized, the supervisory controller
does not turn off the chiller.



• For simplicity, single zone thermal model is used in this thesis. The working of
the supervisory controller remains the same for a detailed building model.

• The electricity consumption of the chiller is based on a simple approximation of
the heat rejected by the chiller.

• The building energy system is considered to have only one load and two sources.

5.3 Recommendations for further work

A basic framework for a supervisory controller has been provided in this thesis. The
adaptability of the methods when other loads and sources of the building energy system
are included should be further studied. Following chapter 3, one should be able to
formulate objective function and constraints to include other loads and sources. In
this thesis the setpoint of the chiller is considered to be the chilled water temperature,
however in practice there might be other variables which could be setpoints to the chiller
and the methods described in this thesis could be adapted to provide setpoints other
than chilled water temperature as a setpoint. Also an accurate model for the chiller
power consumption based on the chiller setpoint is needed.
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6. OUTLOOK

This thesis will be used as a basis for further research in supervisory control problems
at Envidatec GmbH. It has been planned to adapt the methods developed in this thesis
to include other loads and sources in subsequent bachelor and master works resulting
in a modular supervisory controller in which prediction models for different loads and
sources can be added or removed to suit a particular application.

Simultaneously the incorporation of the supervisory control system as a feature or a
tool box of the JEVis energy monitoring software will be studied. The JEVis system is
the monitoring software of the Envidatec GmbH, which has been specifically developed
for the evaluation and processing of energetically and operationally relevant process
variables. The JEVis system can communicate with a variety of data sources, read-out
data and control the analysis and visualization of the processed data. The captured
data are stored in a database within the JEVis system. Initially it has been proposed
to develop an interface between JEVis and Matlab and use the Matlab code developed
in this thesis with certain adaptations as needed. This is an offline optimization setup
where the JEVis system transfers the setpoints computed by Matlab and the Matlab
models use data from the JEVis system. The performance requirements for such an
intermediate setup will be studied. Later the possibilities of incorporating the Matlab
based supervisory controller to a setup native to the JEVis system and its performance
requirements will be identified.

One immediate application at Envidatec GmbH is the on going research project ’Green
Power Efficiency (GPE)’ funded by the German Ministry of Commerce. GPE aims at
providing cost effective energy and water supply through operational optimization of so-
lar thermal facilities. The limited access to electricity and drinking water is a key issue
in the development of many regions worldwide. The use of solar energy by local solar
thermal power plants and desalination plants as a solution to this problem has been ob-
served. Despite the elimination of fossil fuels, the full potential of the solar plants have
not yet been tapped, because of the absence of solutions for the safe and simultaneously
energy efficient operation in practice on the spot. This prevents demand based dimen-
sioning and leads to high capital and operating costs. The aim of this project is a new
management system that facilitates a cost efficient use solar energy for electricity and



water supplies. The approach is based on optimizing the efficiency by forecasting the
load volume and energy input. It uses an estimation method, which allows for both the
assessment of the energy status and the predictive detection of defects with minimum
additional equipments. The system is largely neutral to the plant and is thus particularly
suitable for retrofitting. The suitability of this thesis to the GPE project will be studied.

Apart from the R&D applications mentioned above, the results from this thesis can
also be utilized as a value added service to the customers of Envidatec GmbH, espe-
cially in the south east Asia region. South east Asia is a dynamic and a fast growing
region facing huge challenges towards sustainability. To address this, Envidatec GmbH
has been active in the south east Asia region, especially in Thailand and Vietnam. A
branch of Envidatec GmbH has been recently established in Bangkok. Several commer-
cial buildings with high energy costs have expressed interests in the services offered by
Envidatec. A common trait identified in these buildings has been the huge cooling costs
partly due to inefficient operation. The suitability of this thesis for such commercial
buildings in this region will be studied in a series of pilot projects.
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