

Bachelor Thesis
Süleyman Berk Çemberci

Resource Aware Concept and Implementation of
a PC Pool Status Indicator

Fakultät Technik und Informatik
Department Informations- und
Elektrotechnik

Faculty of Engineering and Computer Science
Department of Information and
Electrical Engineering

Süleyman Berk Çemberci

Resource Aware Concept and Implementation of a
PC Pool Status Indicator

Bachelor Thesis based on the study regulations
for the Bachelor of Engineering degree programme
Information Engineering
at the Department of Information and Electrical Engineering
of the Faculty of Engineering and Computer Science
of the Hamburg University of Aplied Sciences

Supervising examiner : Prof. Dr. rer. nat. Henning Dierks
Second Examiner : Prof. Dr.-Ing. Lutz Leutelt

Day of delivery 15. Februar 2016

Süleyman Berk Çemberci

Title of the Bachelor Thesis
Resource Aware Concept and Implementation of a PC Pool Status Indicator

Keywords
PC Pool Status Indicator, Raspberry Pi, Resource Aware Concept and Implementati-
on, Self-maintained

Abstract
Inside this thesis, the design process and implementation of the self-maintained PC
Pool Status Indicator are described. The PC Pool Status Indicator, with its resource
aware concept, is a software application running on a Raspberry Pi. It displays the
availability of PC pools that are located on the 13th floor of Berliner Tor 7.

Süleyman Berk Çemberci

Titel der Arbeit
Ein Ressourcen schonendes Konzept und Implementierung einer PC-Pool Bele-
gungsanzeige

Stichworte
PC Pool Belegungsanzeige, Raspberry Pi, Ressourcen schonend, Implementierung,
Wartungsarm

Kurzzusammenfassung
In dieser Bachelor Theses wird der Entwurfsprozess und die spätere Implementie-
rung einer wartungsarmen PC Pool Belegungsanzeige beschrieben. Die PC Pool
Belegungsanzeige soll Ressourcen schonen und ist daher als Programm auf einem
Raspberry Pi realisiert worden. Es zeigt die Verfügbarkeit der verschiedenen Räume
des PC Pools im 13.ten Stockwerk im Berliner Tor 7 der HAW Hamburg an.

Contents

List of Tables 6

List of Figures 7

Listings 9

1. Introduction 10
1.1. Requirements . 10

2. Analysis 12
2.1. Hardware . 12

2.1.1. Raspberry Pi Model B Revision 2 . 12
2.1.2. WLAN Dongle - RT5370 Chipset . 15

2.2. Software . 16
2.2.1. Operating System - Raspbian GNU/Linux 8 16
2.2.2. Java GUI . 18
2.2.3. Python Scripts . 19
2.2.4. ICS File Format . 19

3. Design 21
3.1. Raspbian Installation & Setup . 21

3.1.1. SD Card Partitioning and OS Image Installation 22
3.1.2. Configuration . 25
3.1.3. WLAN Dongle Setup . 28

3.2. Project Directory . 31
3.3. Python Scripts . 31

3.3.1. Establish WiFi Connection . 31
3.3.2. Download ICS Files . 32
3.3.3. Keep a Process Running . 33
3.3.4. Hide Mouse . 34

3.4. Java GUI . 34
3.4.1. Layout Design . 35
3.4.2. GUI Update Timer Task . 37
3.4.3. OOP View . 38

Contents 5

4. Realization 40
4.1. Python Scripts . 40

4.1.1. Common Methods . 40
4.1.2. establishWifiConnection . 47
4.1.3. downloadIcsFiles . 50
4.1.4. keepRunning . 52
4.1.5. hideMouse . 54

4.2. Java GUI . 55
4.2.1. Detailed View of Classes . 56
4.2.2. Test Cases . 85

4.3. Bash Script PcpSI . 91
4.4. Final GUI View . 92

5. Conclusion 93
5.1. Possible Improvements & Further Development 94

5.1.1. API Option . 95
5.1.2. Webpage . 96

References 97

Appendix A. RT5370 Wireless Adapter lsusb -v Output 100

Appendix B. The Default Crontab of Raspbian OS 103

Appendix C. Configuration File labels 104

Appendix D. DVD Contents 106

List of Tables

2.1. Power consumption comparison . 14

4.1. Execution time of scenarios A, B and C for the script establishWifiConnection 50
4.2. Execution time of scenarios A and B for the script downloadIcsFiles 52
4.3. Example to an event list table representation returned from the method Room-

InfoCollector.scheduleToString() . 66
4.4. Execution time of PcpSI_GUI.update() on different systems 91

List of Figures

2.1. Raspberry Pi model B revision 2, current consumption during boot up [21] . . 13
2.2. Raspberry Pi price comparison in respect to offered hardware specifications [16] 14
2.3. Sysbench results of Raspberry Pi and its competitors [16] 15

3.1. Raspbian desktop view from its first ever boot 24
3.2. Main window of the tool raspi-config . 25
3.3. Advanced options window with the entry SSH 26
3.4. SSH server enabled success message . 26
3.5. Activity diagram of the Python script establishWifiConnection 32
3.6. Activity diagram of the Python script downloadIcsFiles 33
3.7. Activity diagram of the Python script keepRunning 33
3.8. Floor plan with rooms of interest in blue - GUI background 35
3.9. PC pool room 1381 with its availability information 37
3.10.Variety of different labels showing availability 37
3.11.Activity diagram of the GUI update timer task 38
3.12.A simplified class diagram as an overview 39

4.1. Activity diagram - runCommand(cmd, blocking=False) 41
4.2. Activity diagram - getPath() . 42
4.3. Activity diagram - ping() . 43
4.4. Activity diagram - getPIDs(pName) . 44
4.5. Activity diagram - killProcess(pName) . 45
4.6. Activity diagram - restartWifiModule() . 46
4.7. Activity diagram - connectToWPAwifi() . 47
4.8. Sequence diagram - establishWifiConnection 48
4.9. Sequence diagram - downloadIcsFiles . 51
4.10.Sequence diagram - keepRunning . 52
4.11.Sequence diagram - hideMouse . 54
4.12.Class diagram - Controller and its associations 55
4.13.Class diagram - GUI and its associations 56
4.14.Class diagram - DateHandler . 57
4.15.Class diagram - FileHandler . 59
4.16.Class diagram - ImageHandler . 60

List of Figures 8

4.17.Class diagram - RoomInfoCollector . 61
4.18.Sequence diagram - updateRemainingTime() 63
4.19.Sequence diagram - collectRoomInfo() . 65
4.20.Class diagram - Controller . 67
4.21.Sequence diagram - Controller.collectRoomInfo() 70
4.22.Sequence diagram - refreshRoomStatus() 71
4.23.Class diagram - JImage & JComponentWithBackground 72
4.24.Sequence diagram - paintComponent(Graphics g) 72
4.25.Class diagram - StatusLabelHandler . 73
4.26.Sequence diagram - addLabel(available : boolean) 75
4.27.Sequence diagram - updateLabel(index : int, text : String, color : String) . . . 77
4.28.Class diagram - PcpSI_GUI . 78
4.29.Displayed JLabels clock, date and left, right directions 79
4.30.Sequence diagram - update() . 83
4.31.Class diagram - UpdateGuiTimerTask . 84
4.32.Sequence diagram - main . 85
4.33.Event list of room 1360 for 17.11.2015 . 87
4.34.Remaining time change of the top event . 87
4.35.Event list transition at the end of a day . 88
4.36.Top event transition - available to occupied 89
4.37.Top event transition - occupied to available 89
4.38.Last event finishes - transition to available 90
4.39.Final view of the GUI . 92

C.1. Resulting labels defined by the default labels configuration file 105

Listings

2.1. Event definition from the ICS file of the room 1381 19

3.1. SHA-1 key of the downloaded image created by a Linux terminal 22
3.2. Stdout of df before connecting the SD card 22
3.3. Stdout of df after connecting the SD card 23
3.4. Unmounting mounted partition of the SD card 23
3.5. Execution of the dd command and its stdout 24
3.6. Command to start raspi-config . 25
3.7. SSH login credentials . 26
3.8. Cron jobs added to the crontab . 27
3.9. Command to append /boot/config.txt . 28
3.10.WPA Supplicant configuration file . 29
3.11.WPA Supplicant arguments . 29
3.12.WLAN dongle specifications obtained by the Linux command ifconfig 30
3.13.Execution of wpa_supplicant and its stdout 30
3.14.The xdotool command to be executed to move the cursor outside of the screen 34
3.15.Label definition for the configuration file labels 36
3.16.Example for changing a room label . 36

4.1. Ping command with root privileges . 43
4.2. Stdout of the command ps -C PcpSI . 53
4.3. Stdout of the command ps -C PcpSI with the new process 53
4.4. Arguments for logging the room schedules 69
4.5. Html code for aligning texts in a JLabel . 70
4.6. ICS file contents of the room 1360 for 17.11.2015 86

5.1. Content example to the log file room_status.log 95

1. Introduction

On the 13th floor of Berliner Tor 7, there is a PC pool composed of 7 rooms which are
available for either lectures and laboratories or individual study unless they are occupied. A
lot of students are faced with the challenge of wandering around from room to room to find
an available space, which causes disturbances to ongoing lectures and laboratories. In order
to avoid these and direct students to the available rooms in a quick and efficient way, a new
system is to be created. The PC Pool Status Indicator, composed of a Raspberry Pi and
a display, is a self-maintained system that provides information on the availability of rooms
located on the 13th floor of Berliner Tor 7.

In order to demonstrate the implementation of certain processes, the Unified Modeling
Language - UML - diagrams are used throughout this thesis [22].

1.1. Requirements

As mentioned earlier, the PC Pool Status Indicator needs to display information regarding
the availability of certain rooms; but in order to do so, it first needs to have access to that
information. The necessary calendar files containing the availability descriptions of individual
rooms are stored at an online location. Therefore, Internet access needs to be acquired first.
Since the main goal is to achieve a self-maintained system, it is necessary for the PC Pool
Status Indicator to be able to check its network connection status. In case of no Internet
access, it needs to be able to establish Internet connection; which also makes it necessary
for the system to be able to reset and restart its own hardware modules such as a wireless
adapter. Having a wireless adapter is a necessity due to the location decided for the PC Pool
Status Indicator, which lacks a network socket.

Assuming that the system has the ability to acquire its own Internet access by controlling
some hardware modules, it would also need the ability to download the mentioned calendar
files and store them at a specific location that is accessible offline, such as an internal mem-
ory. Once this is also made possible, the PC Pool Status Indicator would need to read the

1. Introduction 11

contents of the calendar files and parse the necessary availability information so that it can
be displayed in a user friendly manner. Since these calendar files are updated frequently,
they also need to be downloaded periodically.

Another requirement is that the system should have a long life span, meaning it should be
easily customized when needed. If the calendar file locations are changed or certain rooms
are renamed, it should have the ability to adapt to these changes easily. This can be achieved
by having the ability to allow secure connections from remote to its internal memory, so that
certain changes can be made when necessary.

Last but not least, the system should be low cost. This can be easily achieved through low
power consumption and the acquisition of low priced hardware.

As an overview, all the aforementioned requirements can be listed as follows:

• Automated process of establishing Internet access by controlling a wireless adapter

• Ability to download calendar files periodically and to retrieve the necessary information
by parsing them

• Acquiring a long life span by being able to adapt to changes easily

• Ability to allow secure connections from remote

• Low cost and low power consumption

• Ability to display room information in a user friendly manner

2. Analysis

2.1. Hardware

In order to keep the hardware costs low and avoid high levels of power consumption, it is
decided to target a low power computer system; more precisely a barebone. Barebones are
computer systems that contain only the components that are vital for the system to function,
which keeps their cost and power consumption low [14]. Usually, barebones come with
motherboards that have integrated graphics, which is crucial for this project considering the
requirement of displaying room availability information on a graphical user interface.

Due to their cutting-edge price, computation power and very low power consumption, Bea-
gle Bone Black (BBB) from Texas Instruments, Edison from Intel, CI20 from MIPS and Rasp-
berry Pi model B revision 2 are considered for the PC Pool Status Indicator.

2.1.1. Raspberry Pi Model B Revision 2

Considering the barebones available on the market, Raspberry Pi - the credit card sized
linux box, with its more than enough computation power - is by far the best seller and the most
popular [31]. This may appear to be irrelevant in the decision making process of choosing a
barebone; however, considering the impact its popularity has on finding necessary informa-
tion about the device such as documentation and tutorials, it is quite important to have a wide
user community. Only this aspect considered, with its enormous user community and unlim-
ited number of open source projects, as well as documentation and tutorials, the Raspberry
Pi is ahead of its competitors. Other aspects that are evaluated are power consumption and
computation power offered in respect to the price.

Power Consumption

The size of its user community is, of course, not the only criterion on which the choice of
the barebone is based; power consumption is also quite an important aspect. According to

2. Analysis 13

its official website, the Raspberry Pi model B revision 2 is recommended to be used with
a 5V DC power supply of 1.8A current capacity [28]. Based on this recommendation only,
assuming a constant full current draw at all times, the Raspberry Pi would consume 9 Watts
at most (Equation 2.1).

P[W] = V[V] ∗ I[A] (2.1)

Power calculation [13]

Clearly, the scenario above is only possible in theory; in practice, it is impossible for the
Raspberry Pi to consume that amount of current. As demonstrated in Figure 2.1, the peaks
of current draws with and without a WLAN dongle during boot up are 500mA and 400mA
respectively.

Figure 2.1.: Raspberry Pi model B revision 2, current consumption during boot up [21]

Considering the assumption of the device constantly drawing 500mA, which is the peak
current draw with a WLAN dongle during boot up (Figure 2.1), from the equation 2.1 the
power consumption would be 2.5 Watts. Comparing this to the average power consumption
of a desktop computer - which is around a minimum median of 86.89 Watt at Idle state [27] -
a barebone is indeed the right choice to keep the power consumption at a minimum.

2. Analysis 14

Power consumption of Raspberry Pi model B revision 2 is compared to its competitors in
Table 2.1. All the devices require a 5V DC power supply, hence the demonstrated power
values.

IDLE Current MAX Current IDLE Power MAX Power
Raspberry Pi [21] 380mA 500mA 1.9W 2.5W
Beaglebone Black [1] 310mA 520mA 1.6W 2.6W
Edison [3] 200mA 500mA 1W 2.5W
CI20 [6] 210mA 750mA 1.1W 3.8W

Table 2.1.: Power consumption comparison

As demonstrated, power consumptions of the devices are almost identical and very low at
the same time.

CPU Performance and the Price

Since the Raspberry Pi has competitors that are able to match similar power consumption
rates, the size of its user community is so far the only area where it provides significant
difference. However, what is unique and cutting-edge about Raspberry Pi is its price together
with the computation powered offered. A price comparison between Raspberry Pi and its
competitors is demonstrated in Figure 2.2. Prices are shown in the bottom row and BBB
stands for Beaglebone Black.

Figure 2.2.: Raspberry Pi price comparison in respect to offered hardware specifications [16]

2. Analysis 15

Just by looking at the prices, Raspberry Pi model B revision 2 is indeed the cheapest; but
this does not make it inferior when it comes to the computation power offered. As shown
in Figure 2.2, it is shipped with 1GB of RAM and an ARM Cortex-A7 quad core processor
clocked at 900Mhz [2]. A benchmarking test known as Sysbench, is performed on all the
competitors shown in Figure 2.2. Basically, Sysbench’s CPU test verifies prime numbers
by dividing each number by all numbers between 2 and the square root of the number. If
any number gives a remainder of 0, it continues with the next number, until it reaches the
maximum number defined by the user [11]. With this in mind, Figure 2.3 demonstrates the
results of Sysbench test with the maximum number set to 20000.

Figure 2.3.: Sysbench results of Raspberry Pi and its competitors [16]

For the requirements of this project, the quad core ARM Cortex-A7 - which is able to
verify prime numbers up to 20000 in less than 100 seconds - is proven to offer the required
computation power necessary.

Considering the facts demonstrated, with its cutting-edge price, computation power and
very low power consumption, Raspberry Pi model B revision 2 is decided to be used for the
PC Pool Status Indicator.

2.1.2. WLAN Dongle - RT5370 Chipset

The decision on the Raspberry Pi makes the decision on the WLAN dongle easier. Ralink
RT5370 Chipset is shown to be working on the Raspberry Pi revision 2 out of the box [9].
Considering this fact, the decision is made to purchase a LB-LINK wireless USB adapter with
a Ralink RT5370 Chipset [18].

2. Analysis 16

Unfortunately, due to the WLAN Dongle not being well known, a detailed datasheet con-
taining information regarding its power consumption in terms of current draws could not be
found. For this reason, the linux bash command lsusb is used. When run with the argument
-v, the command lsusb lists all the USB devices detected by the operating system with their
determined characteristics [30]. From the stdout of the lsusb -v, the defined maximum cur-
rent draw for the RT5370 wireless adapter is found out to be 450mA (the complete stdout
of lsusb -v can be found in Appendix A). Even though the maximum current draw of 450mA
does not seem high, the default allowed maximum total USB peripheral current on the Rasp-
berry Pi 2 model B of 600mA proves otherwise [28]. 600mA are set to be distributed among
the four USB ports of Raspberry Pi, which increases the likelihood of the WLAN dongle not
receiving the required amount of current. Due to these facts, this limit is changed from its de-
fault value to the maximum allowed 1.2A, so that the WLAN dongle gets the current it needs
at all times.

2.2. Software

Once the hardware decisions are made based on the knowledge gained through hardware
analysis, software decisions can be made and the possible outcomes can be analyzed.

2.2.1. Operating System - Raspbian GNU/Linux 8

Regardless of its hardware based capabilities, without an operating system to drive its
hardware, Raspberry Pi is nothing but a circuit board with a piece of silicon on it. Fortunately,
due to its wide user community and the enormous development support, there are several
options when it comes to deciding for an operating system.

Based on Debian - which is one of the original Linux distributions - Raspbian is an open
source operating system modified specifically for the Raspberry Pi [15]. Due to it being the
recommended operating system for the Raspberry Pi, as well as it being shipped with Java
and Python installed, the decision is made upon Raspbian. In order to keep things up to
date and have a stable system with the most current bug fixes, the latest available version of
Raspbian is used. Raspbian Jessie, also referred to as Raspbian GNU/Linux 8, released in
November 2015, is the latest version available.

2. Analysis 17

Java and Python

Raspbian already comes preinstalled with two very important programming languages for
this project, Java and Python. By executing java –version and python –version in the termi-
nal of the Rasbian, it is discovered that the versions are 1.8.0 and 2.7.9 respectively. The
Java version 1.8.0 corresponds to JDK8 and JRE8, which are up to date [25]. As any unix
based operating system, Raspbian is capable of running several different scripting laguages,
such as bash, tcsh etc. However, since dealing with a more advanced, object-oriented pro-
gramming language is easier than programming scripts based on bash or tcsh, Python is
decided to be used. Therefore the decision is made upon using Python as the main script-
ing language responsible for performing certain tasks in the background, with Java as the
programming language for the user interface.

Secure Shell - SSH

In order to fulfill the requirements that are mentioned in Section 1.1, remote connections
need to be granted to the system. To allow these connections to the Raspberry Pi, the Rasp-
bian operating system comes with a prebuilt SSH server [29]. The easiest way of granting
secure connections to the device is to configure and use this prebuilt server. Therefore the
decision is made upon using SSH.

Cron Command Scheduling

As in any Unix based operating system, Raspbian is also capable of running cron jobs.
Cron jobs are processes or commands that are executed by the operating system at desig-
nated times defined by the user [17]. As previously mentioned in the requirements (Section
1.1), the system requires the ability to check its Internet connectivity and establish WiFi con-
nection, as well as download certain files periodically. Since the operating system is already
capable of running scheduled commands by cron jobs, instead of trying to schedule these
tasks on the software level by timers or timer equivalent processes, it is decided to use cron
jobs.

WPA Supplicant

In order to automate the mechanism of establishing Internet connection, a very basic
command line based network utility is required. One of the preinstalled programs on Ras-
bian, called wpa_supplicant, is able to control wireless adapters and achieve exactly what
is needed [19]. The main purpose of this open source program is to run in the background

2. Analysis 18

as a daemon and control the wireless connections. It is able to extract its stdout into a file
when needed, as well as read wireless network configurations from a file defined by the user.
By the help of the mentioned configuration file option, wpa_supplicant also allows the wire-
less settings to be easily changed when desired. Therefore it is a great fit to achieve longer
life span for the system, allowing it to adapt to changes in the wireless network. Therefore,
in order to avoid searching for an alternative that might fit the mentioned requirements, the
decision is made upon using the wpa_supplicant.

2.2.2. Java GUI

As mentioned earlier, Java is decided to be the programming language for the graphical
user interface. Following this decision, a GUI development library needs to be selected. In
order to avoid downloading and installing additional packages, Swing and AWT libraries can
be used. These libraries are present in the Oracle JDK which is preinstalled in Raspbian.

There are certain things that are to be displayed on the GUI:

• Floor plan of the PC Pool

• Names and labels of each room

• Emergency exits on the floor

• Current date and time

• Available or occupied status of the seven rooms of interest

In order to start with this task, a floor plan needs to be drawn. In addition, the room labels
on the 13th floor need to be collected manually so that they can be displayed on the GUI.
In order to mark the emergency exits in a nice way, an icon for these exits need to found.
Since it is safe to assume that the location of the restrooms on the floor is already known by
the students and since this area is more or less located right in the center of the floor plan,
the restroom area can be used to place the current date and time information instead. At the
locations where the seven rooms of interest are placed, a basic schedule information should
be shown. This can be done in a way that the current ongoing event and its remaining time
are displayed together with the upcoming events, including their start and end times.

Additionally, the final GUI should be realized in full screen mode so that the entire screen is
dedicated to the application. This way, a more professional look can also be established.

2. Analysis 19

2.2.3. Python Scripts

As mentioned earlier, there are some tasks that need to be executed periodically by the
system. These tasks are as follows:

A. Checking Internet connectivity and establishing WiFi connection

B. Downloading ICS files of the rooms of interest, keeping the availability information up to
date

C. Checking the list of running processes for the Java GUI and starting it if not found

In order to achieve a periodic execution of tasks A and B, cron command scheduling is
used. The easiest way to schedule tasks using cron jobs is to create them as executable
scripts and therefore the decision is made to realize the mentioned tasks in Python.

On the other hand, task C needs to be realized with a shorter period compared to the other
tasks. The reason behind this is that if the Java GUI crashes or quits for some reason, it is
better to restart it as soon as possible. Therefore, the mentioned task needs to have a period
in seconds and since the smallest form of a period for a cron job is in minutes, a different
approach needs to be taken [17]. Therefore, instead of it being a cron job, task C should be
realized in the form of a Python wrapper, responsible for starting or restarting the Java GUI
when necessary.

2.2.4. ICS File Format

The availability information of the PC Pool rooms of interest is accessible in the form of ICS
files. Therefore, the system should be capable of parsing the mentioned files and getting the
necessary availability information. To do so, a parsing mechanism needs to be created. An
example of a certain event from an ICS file of interest is demonstrated in Listing 2.1.

1 BEGIN :VEVENT
2 SUMMARY:B−EE1−PR1 Tutorium
3 LOCATION:1381 Stand 01−12−2015
4 UID:151201135425.100962@etech . haw−hamburg . de
5 DTSTART; TZID=Europe / B e r l i n :20151028T155500
6 DTEND; TZID=Europe / B e r l i n :20151028T172500
7 END:VEVENT

Listing 2.1: Event definition from the ICS file of the room 1381

2. Analysis 20

As can be seen in lines 1 and 7, an event in an ICS file is surrounded by "BEGIN:VEVENT "
and "END:VEVENT ". Therefore, the system should be able to detect occurrences of these
keywords and mark them as the beginning and end of an event respectively. Each event has
a descriptive field marked with the keyword "SUMMARY ", which explains what the event is
about (Line 2). The mentioned field is also of interest, since the Java GUI needs to display
the name of the lecture or laboratory taking place if the room is occupied. Therefore, the
system needs the ability to mark occurrences of the keyword "SUMMARY " within an event
description. Since each room has its own ICS file and the ICS file creation date is irrelevant,
line 3 only contains redundant information and can be skipped. A similar situation is valid
for line 4 as well; the UID of the event is not of interest and therefore line 4 can be ignored.
Lines 5 and 6, which are marked with the keywords "DTSTART " and "DTEND", are of high
interest. These are the fields defining the start and end of an event with the date format
"yyyyMMdd’T’HHmmSS". Therefore, once again the system should be capable of retrieving
this information by the occurrences of the aforementioned keywords.

3. Design

Following up on the hardware and software analysis, there are certain things to be covered
in the detailed description of the design process:

• Operating system installation and configuration

• WLAN dongle setup and creation of the wpa_supplicant configuration file

• Detailed descriptions and work flows of the Python scripts

• Java GUI design including layout and class hierarchy

• Project directory setup and overview

3.1. Raspbian Installation & Setup

In order to install Rasbian and set it up, the latest Raspbian image needs to be obtained
first. For this reason, the Rasbian Jessie image with the following credentials is down-
loaded:

• Version: November 2015

• Release date: 2015-11-21

• Kernel version: 4.1

• SHA-1: ce1654f4b0492b3bcc93b233f431539b3df2f813

• Download URL: https://www.raspberrypi.org/downloads/raspbian/

• Home URL: http://www.raspbian.org

• Support URL: http://www.raspbian.org/RaspbianForums

• Bug report URL: http://www.raspbian.org/RaspbianBugs

3. Design 22

The SHA-1 key shown in the image credentials above is obtained from the download URL.
The purpose of this key is to uniquely identify the image to be downloaded, so that it can be
verified if the retrieved image is indeed the one which is displayed on the download page.
Therefore, before installing the downloaded image, its SHA-1 is obtained by the Linux com-
mand demonstrated in Listing 3.1 and compared to the one from the download URL. The
command openssl sha <path-to-image> runs the software openssl and with the help of the
argument sha, commands it to create the SHA-1 key of the given image [23].

> $ openssl sha 2015−11−21−raspbian−j e s s i e . img
> SHA(2015−11−21−raspbian−j e s s i e . img) =

ce1654f4b0492b3bcc93b233f431539b3df2f813

Listing 3.1: SHA-1 key of the downloaded image created by a Linux terminal

As demonstrated, SHA-1 keys are matching. Therefore, the image is marked as safe and
it is to be installed on the Raspberry Pi.

3.1.1. SD Card Partitioning and OS Image Installation

Since the Raspberry Pi does not have any internal memory, the only way to boot it from a
disk is to use an SD card. For this purpose, a MicroSDHC card of 16GB is used.

In order to be able to boot Raspbian from the SD card, it is sufficient to write the image
without changing its contents. Therefore, the Linux command dd [17] is used. Using this
command to write the image to the SD card requires the device name of the SD card to be
known in advance. Additionally, before the execution of dd, the SD card should be unmounted
so that the writing process can proceed safely. For these purposes, the df Linux command is
used. Once executed, this command lists all the mounted drive partitions available [17]. By
executing df before and after connecting the SD card (Listings 3.2 and 3.3 correspondingly),
the device name of the card is discovered to be /dev/sdb.

> $ d f
> Fi lesystem 1K−blocks Used Ava i l ab le Use% Mounted on

/ dev / sda5 103075104 19744516 82265692 20% /
. . .
/ dev / sda7 681071328 5723612 673947208 1% / home

Listing 3.2: Stdout of df before connecting the SD card

3. Design 23

> $ df
> Fi lesystem 1K−blocks Used Ava i l ab le Use% Mounted on

/ dev / sda5 103075104 19744516 82265692 20% /
. . .
/ dev / sda7 681071328 5723612 673947208 1% / home
/ dev / sdb1 15052040 1648 15050392 1% / media / boot

Listing 3.3: Stdout of df after connecting the SD card

As demonstrated, instead of /dev/sdb1, /dev/sdb is taken as the device name. The reason
behind this is that the /dev/sdb1 points to the mounted partition of the drive /dev/sdb. Since
the target is not just a partition of the SD card, but the SD card itself, device name is found
to be /dev/sdb.

Once the device name is determined, its mounted partition is unmounted by the Linux
command demonstrated in Listing 3.4.

> $ umount / dev / sdb1

Listing 3.4: Unmounting mounted partition of the SD card

After the partition is unmounted, the writing process can start with the dd command. This
command expects 3 arguments in order to be able to write the given source image to the
given target disk. These arguments are as follows:

• bs - used to set the block size of the writing process. Defined as read and write up to
the number of bytes at a time: bs=<#bytes>

• if - used to set the source path, in other words the path of the image to be written.
Defined as: if=<image-path>

• of - similar to the if argument, used to set the target path, in this case the path to the
SD card: of=<SD-card-path>

3. Design 24

The resulting dd command and its execution to write the downloaded image to the SD card
is demonstrated in Listing 3.5.

> $ dd bs=1M i f =2015−11−21−raspbian−j e s s i e . img of =/ dev / sdb
> 3752+0 records i n

3752+0 records out
3934257152 bytes t r a n s f e r r e d i n 794.670148 secs (4950805 bytes /

sec)

Listing 3.5: Execution of the dd command and its stdout

There is one additional thing worth mentioning about the dd command shown in Listing
3.5. From the documentation on the SD card setup for Raspberry Pi [7], it is discovered that
the block size of 4M usually works; however the documentation suggests using 1M when it
does not work. Therefore, in order to avoid a possible repetition of the process, block size
1M is used instead of 4M.

Once the writing process of the image is done, the SD card is plugged into the Raspberry
Pi. This also marks that the Raspberry Pi reached a bootable state (Figure 3.1).

Figure 3.1.: Raspbian desktop view from its first ever boot

3. Design 25

3.1.2. Configuration

Once the installation process of the Raspbian OS is done, it is configured according to the
needs of the system.

Secure Shell - SSH

As previously mentioned in Section 2.2.1, remote connections to the system can be se-
curely granted through an SSH server. In order to do so, the SSH server needs to be enabled
and for this purpose the raspi-config tool is used. Raspi-config, which is a bash script in its
core, is designed to configure several operating system related settings on the Raspberry
Pi [8]. By executing the command demonstrated in Listing 3.6 the tool is started.

> $ sudo rasp i−con f i g

Listing 3.6: Command to start raspi-config

Since the tool is capable of changing operating system related settings, it requires root
priviledges, hence it is executed with sudo [17]. Once the raspi-config is started, the window
demonstrated in Figure 3.2 is displayed.

Figure 3.2.: Main window of the tool raspi-config

The available configuration options can be seen in Figure 3.2. By navigating to Advanced
Options, which is number 8 on the list, some additional options can be displayed (Figure
3.3).

3. Design 26

Figure 3.3.: Advanced options window with the entry SSH

As the description suggests, number A4 from the list on the advanced options window
is used to enable / disable the SSH server. By navigating to that number on the list and
pressing Enter, the SSH server is enabled (Figure 3.4).

Figure 3.4.: SSH server enabled success message

For security purposes, the SSH connection is secured by a password. Login credentials
are demonstrated in Listing 3.7.

username : p i
host : 141.22.80.211
po r t : 22
password : cQnbtps979@

Listing 3.7: SSH login credentials

3. Design 27

Cron Commands

Assigning scripts as cron jobs to the operating system is done by executing the crontab
command with the argument -e [26]. This command opens the system’s default command-
line based text editor so that the crontab can be edited (the default version of the crontab
from Raspbian OS can be found in Appendix B). Once the crontab is opened for editing, the
following two lines demonstrated in Listing 3.8 are added to the end of the crontab.

1 ∗ /10 ∗ ∗ ∗ ∗ / home / p i / pcp_si / s c r i p t s / es tab l i shWi f iConnec t ion
2 0 0 ∗ ∗ ∗ / home / p i / pcp_si / s c r i p t s / downloadIcsFi les
3 @reboot / home / p i / pcp_si / s c r i p t s / keepRunning PcpSI
4 @reboot / home / p i / pcp_si / s c r i p t s / hideMouse

Listing 3.8: Cron jobs added to the crontab

There are 6 parameters (columns) to be set in a crontab entry: minute, hour, day, month,
day of the week and the path to an executable. Each of these columns is separated by an
empty space. A star means "any" in this context and the character "/" after a star is used
for splitting the corresponding column into intervals. Line 1 in Listing 3.8 is used to register
the Python script establishWifiConnection as a cron job that is executed every 10 minutes.
As its name suggests, this Python script is used for establishing a connection to the wireless
network HAW.1X, which is described in detail in Sections 3.3.1 and 4.1.2.

Additionally, line 2 of the Listing 3.8 is used to register the Python script responsible for
downloading ICS files, downloadIcsFiles. The execution period is defined to be every day
exactly at 00:00. The Python script downloadIcsFiles is described in detail in Sections 3.3.2
and 4.1.3.

As can be seen in line 3 and 4 two other Python scripts with the names keepRunning and
hideMouse are registered as cron jobs. The script keepRunning expects a command or an
executable as an argument and it is responsible of ensuring that the process is running by
checking its status every 5 seconds. If it detects that process is terminated, it restarts the
process. The other script, hideMouse, as its name suggests is responsible for hiding the
mouse cursor when the system boots up. Both of the mentioned scripts are scheduled to run
once at every boot. Detailed descriptions of the scripts can be found in Sections 3.3.3, 4.1.4
for keepRunning and Sections 3.3.4, 4.1.5 for hideMouse.

3. Design 28

USB Ports Max Current

As previously mentioned in Section 2.1.2, by default Raspberry Pi model B revision 2
allows a total of 600mA of current to be drawn by the USB peripherals. In order to ensure that
the WLAN dongle gets the necessary amount of current at all times, this limit is pushed to the
maximum allowed. Since the power supply is able to deliver in total up to 2A, considering the
current draw of the Raspberry Pi itself, directing a maximum of 1.2A to the USB peripherals
is in the safe limits. Therefore, the following line demonstrated in Listing 3.9 is executed with
root privileges. Once executed, the boot configuration file is appended by the line defined
in quotation marks. This allows the USB peripheral current limit to be changed to 1.2A next
time the device boots [10].

> $ echo " max_usb_current =1" >> / boot / con f i g . t x t

Listing 3.9: Command to append /boot/config.txt

Additional Fonts

Since the Swing and AWT GUI libraries use the fonts defined by the operating system,
regardless of how nice the GUI design would be, its appearance would eventually be limited
by the system fonts. In order to make the labels and texts on the GUI look nicer, the font
Arial is added to the system. As a first step, all the Arial font files are copied to the directory
/usr/local/share/fonts. Afterwards, by executing the command fc-cache with the argument
-fv, the system is forced to rebuild its font cache [4]. Once all these steps are completed, the
font Arial becomes available to the operating system.

3.1.3. WLAN Dongle Setup

The wireless adapter is automatically recognized by the operating system once plugged
in. First tests are carried out before updating the maximum allowed current on the USB
peripherals and it is found that the WLAN dongle does not function in a stable manner with the
USB peripheral current limitation of 600mA. Connections to wireless networks are possible;
however it often disconnects and shows instable behavior. All these problems are discovered
to be fixed once the maximum current is pushed up to 1200mA.

3. Design 29

WPA Supplicant Configuration

As previously mentioned in Section 2.2.1, wpa_supplicant is an open source command-
line based tool that allows to control wireless adapters and establish connections to wireless
networks. In order to work with this tool, a configuration file needs to be created with a
specific syntax. Based on the example file obtained from the official page of the tool, the
following configuration file is set (Listing 3.10).

In the configuration file the desired wireless network for connection is defined by net-
work={}, with all the network specifics going inside the curly brackets. As can be seen in line
2 of Listing 3.10, the SSID of the desired wireless network for acquiring Internet access is
defined to be "HAW.1X". Line 4 with the keyword key_mgmt is used to define the authenti-
cated key management protocol used by the network "HAW.1X". By setting the key_mgmt
to "WPA-EAP", wpa_supplicant is configured to use LEAP authentication, which is required
by the "HAW.1X" network [32]. Once the authentication method is set, the corresponding
authentication credentials needs to be defined and lines 3 and 4 are used for this purpose.
The keyword identity and password are used to identify the user name and password com-
bination required to connect to the wireless network.

1 network ={
2 ss id ="HAW.1X"
3 key_mgmt=WPA−EAP
4 i d e n t i t y ="abk284 "
5 password ="cQnbtps979@"
6 }

Listing 3.10: WPA Supplicant configuration file

After the creation of the configuration file, wpa_supplicant need to be tested. The tool
requires two specific arguments: the identifier for the network adapter to be used and the
path to a config file (Listing 3.11).

wpa_suppl icant −i <network−adapter−i d e n t i f i e r > −c<conf ig−f i l e−path >

Listing 3.11: WPA Supplicant arguments

The identifier of the WLAN dongle is retrieved from the operating system by the Linux
command ifconfig [17]. This command is used to list all the available network adapters with
their specifications as well as their identifiers.

3. Design 30

> $ ifconfig
> ...

wlan0 Link encap:Ethernet HWaddr ac:a2:13:7f:9e:2d
UP BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Listing 3.12: WLAN dongle specifications obtained by the Linux command ifconfig

As demonstrated in Listing 3.12, the identifier for the wireless adapter is found to be wlan0.
With this information at hand, wpa_supplicant is executed with root priviledges and the Rasp-
berry Pi is successfully connected to the wireless network "HAW.1X" (Listing 3.13).

> $ sudo wpa_supplicant -iwlan0 -cconfig/wpa_supplicant.conf
> Successfully initialized wpa_supplicant

wlan0: SME: Trying to authenticate with 00:26:cb:d2:23:61 (SSID
=’HAW.1X’ freq=2412 MHz)

wlan0: Trying to associate with 00:26:cb:d2:23:61 (SSID=’HAW.1X
’ freq=2412 MHz)

wlan0: Associated with 00:26:cb:d2:23:61
wlan0: CTRL-EVENT-EAP-STARTED EAP authentication started
wlan0: CTRL-EVENT-EAP-METHOD EAP vendor 0 method 21 (TTLS)

selected
wlan0: CTRL-EVENT-EAP-PEER-CERT depth=3 subject=’/C=DE/O=

Deutsche Telekom AG/OU=T-TeleSec Trust Center/CN=Deutsche
Telekom Root CA 2’

wlan0: CTRL-EVENT-EAP-PEER-CERT depth=1 subject=’/C=DE/O=
Hochschule fuer Angewandte Wissenschaften Hamburg/CN=HAW
Hamburg CA - G02’

wlan0: CTRL-EVENT-EAP-PEER-CERT depth=0 subject=’/C=DE/ST=
Hamburg/L=Hamburg/O=Hochschule fuer Angewandte
Wissenschaften Hamburg/OU=IT Service Center/CN=radius.haw-
hamburg.de/emailAddress=dialup@haw-hamburg.de’

wlan0: CTRL-EVENT-EAP-SUCCESS EAP authentication completed
successfully

wlan0: WPA: Key negotiation completed with 00:26:cb:d2:23:61 [
PTK=CCMP GTK=TKIP]

wlan0: CTRL-EVENT-CONNECTED - Connection to 00:26:cb:d2:23:61
completed [id=0 id_str=]

Listing 3.13: Execution of wpa_supplicant and its stdout

3. Design 31

3.2. Project Directory

For future reference it is important to demonstrate the project directory hierarchy with the
respective subdirectory names. In order to keep configuration files, Java classes and Python
scripts in an organized fashion, the following directory hierarchy is created under /home-
/pi/pcp_si/ with the corresponding subdirectories:

• classes - Java source code is stored under this directory

• config - All the configuration files are located in this directory including the
wpa_supplicant configuration file

• fonts - A copy of the installed fonts are placed under this directory

• ics_files - This is a directory for the downloaded ICS files

• images - Images for the graphical user interface are kept under this directory

• logs - Stdout of the wpa_supplicant as well as a table in text format which contains all
the displayed information on the Java GUI are located in this directory

• scripts - This is a directory for the Python scripts

3.3. Python Scripts

As for any operating system, there are only certain things that can be handled by the
Raspbian OS. The tasks that are out of the operating system’s scope need to be implemented
manually. These tasks are mainly to do with the automation of certain processes, which can
be considered as the backend of the system.

3.3.1. Establish WiFi Connection

Establishing WiFi connection is one of the aforementioned back-end tasks that need to be
automated. For this purpose a script is designed. As can be seen in the activity diagram
demonstrated in Figure 3.5, the script first needs to check Internet connectivity. This is
achieved by pinging http://www.google.com. The reason for selecting google.com is the very
low probability of this domain name changing in the near future. As demonstrated, if the script
discovers that the system has Internet access, it should simply terminate. Otherwise it should
restart the wireless adapter and try to connect to the wireless network "HAW.1X" with the help
of wpa_supplicant. If the connection to the network fails, it should keep trying by restarting
the wireless adapter. Once the network connection is established, Internet access should

3. Design 32

be tested by pinging google.com. This ping step should be repeated for a maximum of 50
times separated by 0.2 seconds of sleep until it succeeds; if all 50 attempts are unsuccessful
(approximately after 10 seconds), then the whole process should be repeated from the restart
of the wireless adapter. If at any time pinging google.com succeeds, then the script should
terminate.

Figure 3.5.: Activity diagram of the Python script establishWifiConnection

3.3.2. Download ICS Files

Downloading ICS files is another back-end task that requires automation and this is
achieved with the help of a script (Figure 3.6). The python script downloadIcsFiles should
first execute the previously demonstrated establishWifiConnection (Section 3.3.1), through
which it can ensure that the system has Internet access. Afterwards, links for the ICS files
should be retrieved from a configuration file. As previously mentioned, all the PC Pool rooms

3. Design 33

of interest have their own ICS files located at an online location. In case the location of these
files or their names change in the near future, these links should not be hard coded and
should be realized in the form of a configuration file, which is parsed by this script. Once the
links are determined, the script should download the files one by one and store them in the
directory called ics_files.

Figure 3.6.: Activity diagram of the Python script downloadIcsFiles

3.3.3. Keep a Process Running

As previously mentioned, a wrapper is required to periodically check whether the graphical
user interface is running and restart it if not. This wrapper is designed in the form of a Python
script that does the mentioned check every 5 seconds and its corresponding activity diagram
can be found in Figure 3.7.

Figure 3.7.: Activity diagram of the Python script keepRunning

3. Design 34

3.3.4. Hide Mouse

As previously mentioned, the idea is to realize the Java GUI application in full screen mode.
The challenge here is to make the mouse cursor displayed on the GUI invisible. Initially,
the idea was to use Java to set the cursor of the GUI application invisible, however this was
unsuccessful. As an alternative, the window system of Raspbian OS (X by XOrg Foundation)
is discovered to be offering this functionality through the optional argument -nocursor [33].
Unfortunately, this option is found to be non-existent for versions older than 1.7. Once the
version being used by the Raspbian OS is checked, it is found out that the installed and used
version is 1.6. The workaround offered for the earlier versions , however, only makes the root
window cursor invisible, meaning the Java GUI application would still have its own cursor
visible. For the aforementioned reasons, it is decided to implement another workaround by
using a tool called xdotool [12]. This tool offers an option to move the cursor to the given
(x, y) coordinate on the screen, hence setting the coordinates somewhere outside of the
screen would make the cursor invisible. Therefore, considering that the screen size is going
to have a full HD resolution of 1920x1080, moving the cursor to the position (2000, 2000)
would ensure that the cursor is not visible, hence in theory the execution of the command
xdotool mousemove 2000 2000 should be sufficient. However, since the idea is to execute
this command at the start up of the system in the form of a cron job, the display has to be
specified for the shell where the cron command is executed. Otherwise, since there is no
display known to the xdotool, it terminates with an error message not being able to locate the
cursor. Therefore, the final command to be executed also specifies the display which can be
seen in Listing 3.14. Considering that there is going to be only one screen attached to the
Raspberry Pi, the index number for the display is 0. In a unix system, displays detected by the
operating system are indexed starting from 0 and accessed via DISPLAY=:<index> [17].

DISPLAY=:0 xdotoo l mousemove 2000 2000

Listing 3.14: The xdotool command to be executed to move the cursor outside of the screen

3.4. Java GUI

So far the back-end offers the ability to maintain background tasks, which involves estab-
lishing an Internet connection and downloading the ICS files that are essential for the Java
GUI. As previously mentioned, room schedules need to be parsed from the corresponding
ICS files and displayed in a user friendly manner. Since the ICS files are only downloaded
at midnight, precisely at 00:00, accessing the files once a day right after midnight should
be sufficient. In addition, since the displayed schedule is only dependent on date and time,
it can only change with the smallest possible time unit of one minute. Therefore, in order

3. Design 35

to save power and avoid unnecessary computations, the GUI should be active for updating
the displayed information once every 60 seconds. In order to achieve the aforementioned
functionality one timer with a period of 60 seconds is sufficient. With the help of this timer,
the GUI can be updated and access to the ICS files can be triggered right after midnight.
Additionally, the ICS files should be accessed only after the download process is completed.
Therefore, the files should be read a couple of minutes after midnight just to ensure that the
download process is over and new files are available.

3.4.1. Layout Design

In order to provide not only the availability information of the PC Pool rooms, but also
information regarding their locations including orientation, it is decided to display a floor plan
with the focus on the PC Pool rooms of interest as a base for the GUI (Figure 3.8).

Figure 3.8.: Floor plan with rooms of interest in blue - GUI background

Room Labels

In order to have room for future changes, the background image is kept free of text and the
room labels are decided to be set by the GUI. For this purpose a configuration file is placed
in the config directory with the name labels. The configuration file contains a line for each
room in the PC Pool and the labels are defined as demonstrated in Listing 3.15.

3. Design 36

<current_room_name>=<label_to_be_displayed_on_the_GUI >

Listing 3.15: Label definition for the configuration file labels

It is worth mentioning that the GUI can only know where to place these labels if the <cur-
rent_room_name> is set correctly. In other words, the left hand side of the equal sign defines
the location of a given label and therefore it should not be changed. For example, if in the
future the room 1381 starts to be called 1390 and the label needs to be updated, the en-
try in the file should look as demonstrated in Listing 3.16. The default version of the labels
configuration file with its effect on the GUI background can be found in Appendix C.

1380=1390\ nThis i s an example o f changing the l a b e l f o r the room
1380 and making a new l i n e w i t h i n the l a b e l i t s e l f

Listing 3.16: Example for changing a room label

In order to avoid restarting the GUI when the configuration file labels is edited, the GUI
should access this file once a day at midnight as well and update its labels accordingly.

Labels Regarding Availability

For displaying availability information of a room, rectangular shaped labels are used.
These labels contain event summary including start-end times and the remaining time if
applicable. The idea is to place a label for each event, sorting them by their start times within
a box that symbolizes the room (locations of the PC Pool rooms on the floor plan can be
seen in Appendix C).

The label of the ongoing event is set to be larger than the others in order to draw attention
and focus on the ongoing event. Ongoing events should also display the remaining time
together with an image of a stopwatch. Green is used to indicate that the room is available
and red is used for occupied. For the upcoming events a third color option is present; blue
is used for an event that is going to take place between the shown start-end times. If there
are no events present for a given room for that day, then a large green label is displayed
stating that the room is available (Figure 3.10). In order to make it easier to modify the
labels according to the changes in events, it is decided to assign stationary labels to the
rooms. According to changes in events during a given day, the visibility setting of the labels
is altered, making it easier to apply changes without moving the labels around. For this

3. Design 37

purpose each room is assigned a large available label as well as a different sized label for
the top event. In addition, depending on the space that the room occupies on the GUI,
smaller labels for upcoming events are created and up to 3 labels are assigned to a given
room. As an example, room 1381 is demonstrated in Figure 3.9. Even though there are a
minimum of 4 events scheduled for the room, only 3 are visible. This is due to the maximum
number of labels fitting in the room space being 3. Once the top event’s remaining time runs
out, labels move upwards and the 4th event becomes visible.

Figure 3.9.: PC pool room 1381 with its availability information

Figure 3.10.: Variety of different labels showing availability

3.4.2. GUI Update Timer Task

As previously mentioned, updating labels on the GUI is to be done by a timer, so that the
update would take place precisely every 60 seconds. In addition, as also mentioned earlier,
before the regular update process starts, it is also required to detect if it is after midnight. In
order to give enough buffer for the download process to be completed, the time for parsing
the new ICS files and also refreshing stationary room labels is defined to be 00:02. The
given buffer of 2 minutes is more than enough for the ICS files to be downloaded, which is
completed within seconds (Table 4.2).

3. Design 38

Figure 3.11.: Activity diagram of the GUI update timer task

As demonstrated in Figure 3.11, first the time and date displayed on the GUI are updated.
Afterwards, the current time is compared to 00:02 and if it is a match, then first the labels
configuration file is parsed, which is followed by the parsing of the new ICS files including
the creation of a schedule map. A schedule map in this context refers to a map containing
room name : event list pairs. Once the mentioned tasks are completed, the GUI updates the
availability labels of each room according to the schedule map.

3.4.3. OOP View

Considering the activity diagram demonstrated in Figure 3.11, the process including the
timer can be distributed among the following classes:

• UpdateGuiTimerTask - Timer class which extends the Java class TimerTask [24]

• PcpSI_Gui - Contains the frame, labels, images etc. In other words anything related
to the display is part of this class

• JComponentWithBackground - A class that extends Java class JComponent [24] to
add background image support

• JImage - Extends Java class JLabel [24] to add background image support

3. Design 39

• StatusLabelHandler - Responsible for updating the availability labels of rooms

• DateHandler - A class for handling all the necessary tasks in regard to date and time

• FileHandler - Read / write operations from / to files are done by this class

• ImageHandler - Similar to FileHandler, reads images from files

• RoomInfoCollector - A class that creates the schedule map from the ICS files

• Controller - Handles all the classes except PcpSI_Gui, JComponentWithBackground,
JImage and StatusLabelHandler

An overview of the aforementioned classes is demonstrated in Figure 3.12 with a simplified
class diagram. A detailed explanation of why this specific OOP design is used can be found
in Section 4.2.

Figure 3.12.: A simplified class diagram as an overview

4. Realization

Following up on the design, Python scripts and the Java GUI are implemented. This chap-
ter focuses on the actual implementation and the reasoning for the taken steps as well as the
test cases.

4.1. Python Scripts

In order to avoid having redundant code, all the methods required by the Python scripts are
put into a separate file called functions.py, which is located together with the scripts under
the scripts directory. Each Python script is tested and the evaluation of these tests can be
found in the corresponding sections.

4.1.1. Common Methods

There are in total 7 methods implemented and put into the functions.py, which is located
in scripts directory.

runCommand(cmd, blocking=False)

The method runCommand is implemented to execute a given command and buffer its
stdout and stderr so that they can be accessed by a Python module. Executed commands
can be as basic as a Linux command or they can be scripts or even programs written in
another language such as Java. In order to achieve the mentioned functionality, there are
two Python libraries providing useful methods: os.system() and subprocess.Popen() [20].
Both of these methods allow executing commands that can be executed within a Linux shell.
However, the method Popen from the library subprocess is a better fit for the task. Unlike the
system method, it allows access to stdout and stderr, which are just echoed by the system
method to the shell where the parent Python process is started. Therefore, a decision is
made to use the library subprocess allowing the stdout and stderr of an executed command
to be retrieved.

4. Realization 41

The implementation uses the method Popen with 3 arguments:

• An array of strings containing the command to be executed as its first element and
arguments to this command as the other elements.

• Either a file to direct the stdout, or PIPE object from the subprocess library to buffer it.

• Similar to stdout, either a file to direct the stderr, or again PIPE object from the sub-
process library for buffering.

Once executed with the corresponding arguments, Popen returns an object referring to a
subprocess started by the parent Python process itself. The method runCommand, in its
simplest form, expects an array of strings defining a command with its arguments so that it
can be executed by Popen. When provided, Popen is executed with the given array storing
the stdout and stderr inside its buffers by using PIPEs from the subprocess library. Once
buffered, stdout and stderr can be accessed through the object returned by Popen, which is
a reference to the subprocess started. The method runCommand returns this object without
any alteration. As an addition to this functionality, a flag is defined, which is an optional
argument to runCommand and set to False by default. If this argument is set to true, the
object referring to the subprocess is not returned until the subprocess is fully executed, which
is achieved with the help of the reference object’s method wait. This way the program can
wait on that function call until the subprocess terminates. This functionality is useful when a
Linux command is used. In most Linux commands, stdout and stderr only become available
once the command has run its course. This is why if the flag is set, the object referring to the
executed Linux command is not returned until the stdout and stderr become available. The
corresponding functionality is demonstrated by an activity diagram in Figure 4.1.

Figure 4.1.: Activity diagram - runCommand(cmd, blocking=False)

4. Realization 42

getPath()

In order to make the Python scripts executable from any directory, a method is required to
inform the Python script about its own path so that the script can point to the right relative
path inside the project. This scenario might sound straightforward, which is the case when
the script is executed from a shell with its pwd set to the script’s directory. No problems occur
with the relative paths in this case, since accessing a file called temp located in a directory
above with the path ../temp simply works. However, things change if the shell has a differ-
ent pwd [17] and executes the script from a different directory by just pointing to the script’s
location. For example, assuming that the script is located in the directory sub within parent
inside grandparent. For the sake of simplicity, this is how the directory looks like: grandpar-
ent/parent/sub/script.py. Now, considering that the required file temp is located inside parent
and is accessed by the script with the relative path ../temp. Let’s assume that the script is
executed from the grandparent by parent/sub/script.py. Then the relative path ../temp would
point to grandparent/../temp, which is the directory above, hence not parent ; resulting in the
script being not able to locate the file temp. In order to avoid such problems and make the
scripts fully executable by cron command scheduling, the getPath method is implemented.
This method returns the absolute path to the script where it is executed. For this purpose,
the Python library os and its methods path.dirname and path.realpath are used [20]. The
method os.path.realpath() returns the absolute path to the File object passed as an argu-
ment. Python attribute __file__ points to the path of the script where it is accessed. For
example, if a script with the name test.py is located in a directory with the following path:
/home/user/, executing print __file__ inside the script would print /home/user/test.py to the
console. In other words, executing os.path.realpath(__file__) returns the absolute path of the
script. However, the path to the directory where the script is located is the path that is re-
quired. Therefore, the other os method, os.path.dirname() is used. Given path to a file as an
argument, this method returns the path to the directory where the file is located. The method
getPath uses both of these methods and returns the absolute path to the functions.py ’s di-
rectory. The corresponding functionality is demonstrated by an activity diagram in Figure
4.2.

Figure 4.2.: Activity diagram - getPath()

4. Realization 43

ping()

The method ping() is implemented to test Internet connectivity. By using the runCommand
method, the linux command ping [17] is executed with root privileges (Listing 4.1).

1 sudo ping −c 4 google . com −W 1

Listing 4.1: Ping command with root privileges

There are two things worth mentioning from the ping command demonstrated. The argu-
ment -c is used to define the number of packets to be transferred during the ping process;
which is set to 4. The reason why not 1 but 4 packets are transferred is the intention to
test not only the connectivity but also the stability of the Internet connection. For the same
purpose, the timeout is set to be 1 second by the -W option. By these settings, it is ensured
that the connectivity is stable enough for downloading the ICS files.

The method runCommand is called with the optional argument blocking set to True, so that
the program waits until the ping command runs its course and terminates. Afterwards with
the help of the reference to the subprocess, stderr is checked for errors and the method re-
turns a boolean indicating the success or failure of the execution of ping. The corresponding
functionality can be seen in the activity diagram demonstrated in Figure 4.3.

Figure 4.3.: Activity diagram - ping()

4. Realization 44

An alternative to using ping would have been directly trying to download the ICS files.
The reason why ping is called beforehand is the way it allows checking the stability of the
connection. If the connection is not stable, procedure might get interrupted while a file is
being downloaded. No problems would occur if this is detected; the download process can
simply be restarted. However if missed, one of the ICS files would end up being corrupt.
With the help of the ping call, such errors are less likely to occur.

getPIDs(pName)

The method getPIDs is implemented to retrieve process ids for a given process name
(pName). For this purpose, again the method runCommand is used. The linux command ps
is executed with the argument -C [17]. This is used to retrieve information regarding running
processes from the operating system. The argument -C followed by a process name is used
to filter out processes by the given name. After executing the runCommand, the returned
reference is used to parse the stdout for the process ids. First, the stdout is split into lines,
then the leading and trailing empty spaces are stripped from each line. This is followed by the
line getting split by the remaining empty spaces, resulting into an array of strings containing
the process id in its first element. Afterwards, all the process ids are packed into an array
and the method returns the aforementioned array before it terminates. The activity diagram
of the method getPIDs(pName) can be found in Figure 4.4.

Figure 4.4.: Activity diagram - getPIDs(pName)

4. Realization 45

killProcess(pName)

The method killProcess kills all the processes by the given name with the help of the
runCommand and the getPIDs methods. First, the process ids for the given pName are
retrieved by the getPIDs(pName) call. Afterwards, by iterating through the list, for each
process id the linux command kill is executed by calling the runCommand [17]. Blocking is
set to ensure that the program waits until the termination of one process before calling the
kill command for the next one. The corresponding functionality is demonstrated with the help
of an activity diagram (Figure 4.5).

Figure 4.5.: Activity diagram - killProcess(pName)

restartWifiModule()

In order to restart the WiFi module, first all running wpa_supplicant processes need to
be killed. For this exact reason, the method killProcess is implemented. When called, the
first thing that is done by the method restartWifiModule is to call the previously mentioned
method killProcess with the argument "wpa_supplicant". Once it is ensured that all the run-
ning sessions of wpa_supplicant are killed, the linux command ifconfig is used to disable and
enable the wireless adapter [17]. This command stands for "interface configuration" and it is
used to display and configure network interfaces. Given a network interface as an argument,
by passing keywords up or down as an argument, the given network interface is enabled
or disabled respectively. Therefore, it is executed with root privileges using the arguments
wlan0 and down first. The method runCommand is called with the corresponding command
for this purpose. Afterwards, the same command with up instead of down is executed, which
ensures that the previously disabled wlan0 interface is enabled again. For both cases the

4. Realization 46

runCommand is called with the blocking set to True, which ensures that the enable com-
mand is not called before the adapter is disabled. The corresponding activity diagram is
demonstrated in Figure 4.6.

Figure 4.6.: Activity diagram - restartWifiModule()

connectToWPAwifi()

The final common method is called conenctToWPAwifi. As its name suggests, purpose
of this method is to connect to the wireless network specified in the wpa_supplicant.conf
file located in the config directory. By using the runCommand method, wpa_supplicant is
executed with the arguments shown in the previously demonstrated Listing 3.11. Additional
to the given arguments, for debug purposes -f with a path to a log file is added and the log file
is stored under the logs directory. The reason for directing the stdout to a file instead of the
subprocess itself is that a buffer with a constant size is used by the subprocess otherwise.
Since wpa_supplicant runs in the background as long as the wireless connection is in the
established state, the stdout can grow up to a size that violates the buffer size, which can
cause a crash. To avoid problems of this sort, usage of a log file is preferred and the stdout
of the wpa_supplicant is directed there.

In order to define the log file and additionally to get the directory of the network config-
uration file (wpa_supplicant.conf), the method getPath is called first. Once the log and the
configuration file paths are defined, the existence of a previous wpa_supplicant log file is
checked and it is cleared by using the method runCommand and calling the linux command
rm [17]. After this step, wpa_supplicant is executed again with the help of the runCommand
method. Since the program wpa_supplicant runs as long as the wireless connection is ac-
tive without terminating, the blocking flag of the runCommand is set to False. Afterwards,

4. Realization 47

the program sleeps for 0.1 seconds and starts checking the log file line by line continiuously
looking for an error or a success message. A boolean is returned as an indicator (Figure
4.7).

Figure 4.7.: Activity diagram - connectToWPAwifi()

4.1.2. establishWifiConnection

As previously explained in Section 3.3.1, the purpose of the script establishWifiConnec-
tion is to connect to the "HAW.1X" wireless network. In order to implement the necessary
functionality, methods ping(), restartWifiModule() and connectToWPAwifi() are used (Section
4.1.1). The method ping is used to test the Internet connectivity and the script exits if ping is
successful. As previously mentioned, if ping fails the wireless adapter is restarted. For this
purpose, as its name suggests, the method restartWifiModule is executed. This method call
is followed by establishing a connection to the wireless network with the help of the method
connectToWPAWifi. This process is repeated until the connection is established and the
method ping is successful. Since in Python everything, including functions themselves, is an
object, the corresponding implementation is demonstrated with a sequence diagram (Figure
4.8).

4. Realization 48

Figure 4.8.: Sequence diagram - establishWifiConnection

4. Realization 49

Test Cases

There are 3 different scenarios that need to be tested:

A. Internet connection is present and the script terminates

B. Internet connection is not present and the script establishes connection to "HAW.1X"

C. Internet connection is not present and the script establishes connection to "HAW.1X",
however it fails to acquire Internet access

Scenario A is tested first by executing the script establishWifiConnection with Internet con-
nection being present. After 10 consecutive time measurements, the mean value for this
scenario is found out to be 4.08 seconds. As expected, the script has run its course by just
pinging google.com and terminating once the Internet connection is detected.

As the next step, scenario B is tested. For this purpose the system is forced to disconnect
from the wireless network "HAW.1X" and the script is called afterwards. Similarly to scenario
A, the total run time is measured. As expected, the script first detected that the system
has no internet access and restarted the wireless adapter, followed by the connection to the
wireless network "HAW.1X". After 10 consecutive time measurements, the mean value of
this scenario is found out to be 12.37 seconds.

As the last step, scenario C is tested. In order to simulate the scenario, first the system is
connected to a wireless network without Internet access. Once the connection is established,
wpa_supplicant configuration file is reverted back to its original so that the system connects
to "HAW.1X" in its second attempt. The reason for testing this scenario is the possibility of the
system connecting to the network "HAW.1X" without being able to acquire Internet access.
Usually such issues are fixed once the wireless adapter is restarted. Therefore, the system
is allowed access to the correct network in its second attempt. After 10 consecutive time
measurements, the mean value is found out to be 24.41 seconds.

Once all the tests are completed, it is found out that the execution of the script establish-
WifiConnection takes 4.08 and 24.41 seconds best and worst cases respectively (Table 4.1).

4. Realization 50

Scenario A Scenario B Scenario C
Execution Time [s] 4.08 12.37 24.4

Table 4.1.: Execution time of scenarios A, B and C for the script establishWifiConnection

4.1.3. downloadIcsFiles

The purpose of the script downloadIcsFiles, as explained in Section 3.3.2, is to download
the ICS files from the links provided in the configuration file ics_file_links. In order to achieve
the given task, the script uses the following methods from the given Python libraries [20]:

• re.sub(): Python library re allows operations on strings by regular expressions. The
method sub() expects 3 arguments: pattern to be replaced, replacement string and
the target string.

• urllib.urlretrieve(): The library urllib has useful methods for accessing the Internet from
Python. The method urlretrieve() allows to download a file from a given link (first argu-
ment) and save it to the given path (second argument).

Additional to the libraries mentioned, the script uses the methods getPath and runCom-
mand. As explained in Section 4.1.1, absolute paths are required while accessing configura-
tion files so that the scripts can be executed as cron jobs. The getPath method is used for this
purpose, returning the absolute path to the directory where the Python scripts are located.
The method runCommand on the other hand, is used to call the other Python script estab-
lishWifiConnection to ensure the system has internet access before it starts to download the
ICS files.

Once executed, the script retrieves the absolute path to its own directory and defines the
relative paths to the file ics_file_links and to the directory ics_files where the downloaded ICS
files are stored. Afterwards, by calling the script establishWifiConnection it ensures Internet
connectivity. Once all the aforementioned steps are successfully executed, it downloads
each ICS file by iterating through the links that are read from the file ics_file_links. Links
are stored with "file name = link" pairs. Therefore, each read line is split into the file name
and the link before the method urlretrieve is called. The corresponding implementation is
demonstrated with a sequence diagram in Figure 4.9.

4. Realization 51

Figure 4.9.: Sequence diagram - downloadIcsFiles

Test Cases

There are 2 scenarios to be tested on the script downloadIcsFiles:

A. Internet connection is present and the script is called

B. Script is called when the system has no Internet access

The reason for testing both cases is to determine exactly how long it takes to download the
ICS files in the best and worst case scenarios. In the best case scenario (scenario A), the
script only pings google.com and starts downloading the ICS files. After 10 consecutive time
measurements, this scenario is found out to take 4.82 seconds in average with the download
process only taking 0.61 seconds.

The worst case scenario (scenario B) is dependent on Internet access. As it is found out
from the test cases run on the script establishWifiConnection the best and worst cases for
this script to execute are 4.08 and 24.41 seconds respectively (Table 4.1). Bearing this in
mind, it can be assumed that the script downloadIcsFiles takes 4.7 to 25.1 seconds as best
and worst cases respectively (Table 4.2).

4. Realization 52

Scenario A Scenario B
Execution Time [s] 4.7 25.1

Table 4.2.: Execution time of scenarios A and B for the script downloadIcsFiles

As previously mentioned in Section 3.4.2, from the Table 4.2 it can be concluded that the
given buffer time of 2 minutes for the ICS files to be downloaded before the GUI to start
parsing is more than enough.

4.1.4. keepRunning

The purpose of the script keepRunning, as previously mentioned, is to ensure that a given
command is restarted if it terminates. The implementation of this functionality is demon-
strated with a sequence diagram in Figure 4.10.

Figure 4.10.: Sequence diagram - keepRunning

4. Realization 53

As demonstrated, the script expects the command to be passed as an argument and if a
command is not provided, it terminates itself. In order to perform the required check, it uses
the Python library sys [20]. The library allows access to the arguments array containing the
relative path used to execute the string as the first element and each provided argument as
an element located at the following indexes starting from 1. In other words, if the length of
the arguments array is not equal to exactly 2, either a command is not specified or more
than one command is given, hence the script should terminate. If the mentioned check is
passed, then the script starts checking if the given command is running every 5 seconds.
In order to achieve the summarized functionality, the script uses the methods getPIDs and
runCommand. By calling the method getPIDs with the command as the argument, it re-
trieves an array of strings containing the process ids for the given command. If the returned
array is empty, then it simply calls the method runCommand to execute the given command.
Afterwards, it sleeps for 5 seconds and repeats the same procedure again.

Test Cases

In order to test the script keepRunning, it is executed with the bash executable called
PcpSI as its argument 4.3. Once the script is executed, the stdout of the linux command ps
-C PcpSI [17] is checked and the list of processes demonstrated in Listing 4.2 is retrieved.

PID TTY TIME CMD
8810 pts /0 00:00:00 PcpSI

Listing 4.2: Stdout of the command ps -C PcpSI

As can be seen, the script successfully started the process PcpSI. Afterwards, by killing
the process with the id 8810 (process id of PcpSI), the behavior of the script is tested. As
expected, within 5 seconds a new process with the name PcpSI is started having a different
process id (Listing 4.3).

PID TTY TIME CMD
8948 pts /0 00:00:00 PcpSI

Listing 4.3: Stdout of the command ps -C PcpSI with the new process

With the aforementioned test, it is found out that the implemented script keepRunning
works as desired.

4. Realization 54

4.1.5. hideMouse

As mentioned earlier, this script is responsible for moving the mouse cursor to a loca-
tion outside of the visible screen by using the tool xdotool. Unfortunately, the implemented
function runCommand cannot be used for this purpose. Since the command needs to be
executed together with the display definition, a shell is required. The Python library os offers
a method called system for executing shell commands, which is used for this purpose [20].
However, it is found out that the cron command scheduled to run at the system start up gets
executed before the X window system is fully established. Therefore, the xdotool fails to
move the cursor since the cursor does not exist at the time of the execution. For this reason
a sleep of 10 seconds is introduced before attempting to move the cursor. The corresponding
functionality is demonstrated by a sequence diagram in Figure 4.11.

Figure 4.11.: Sequence diagram - hideMouse

4. Realization 55

4.2. Java GUI

An overview for the OOP design is demonstrated in Section 3.4.3. The reason behind
this design is the desire to keep the GUI class as minimalistic as possible. The aim is to
make room for possible changes on the GUI without having the necessity of altering a lot of
code. With the current design of classes, the GUI is working just as a display and all the
work is done by other classes. The interactive labels of the GUI are controlled by the class
StatusLabeLHandler, while the Controller ensures that all the room availability information
is collected with the help of the classes RoomInfoCollector, DateHandler and FileHandler.
Even the images used inside the GUI are loaded through the ImageHandler class over the
Controller. All of these make it possible for the GUI to be redesigned or even completely
removed while keeping the rest of the program functional by changing very little of code. In
other words, the core functionality of the front-end is independent of the class PcpSI_GUI.

In order to give a detailed overview of the OOP design, two class diagrams are created:
one focuses on the GUI related classes such as PcpSI_GUI, JComponentWithBackground,
JImage and StatusLabelHandler, while the other focuses on the Controller and its associ-
ations such as DateHandler, FileHandler, ImageHandler and RoomInfoCollector (Figures
4.12 and 4.13).

Figure 4.12.: Class diagram - Controller and its associations

4. Realization 56

Figure 4.13.: Class diagram - GUI and its associations

As can be seen in the class diagram demonstrated in Figure 4.13, UpdateGuiTimerTask
contains the PcpSI_GUI and PcpSI_GUI contains the Controller. When a timer interrupt
occurs, UpdateGuiTimerTask calls the update method of the PcpSI_GUI and PcpSI_GUI
collects the updated information from the Controller. If desired, the class PcpSI_GUI can be
removed and by associating the Controller with the UpdateGuiTimerTask, the program would
continue to function as it does without a graphical user interface. The Controller object
is implemented in a way that it logs all the information made available to the GUI, hence,
removing the GUI would turn the program into an API. This also means that the program
with its current implementation together with its GUI can also be used as an API, which is
explained in detail in Section 5.1.1.

4.2.1. Detailed View of Classes

The implementation details of the classes shown in the class diagrams from Figures 4.12
and 4.13 are explained in detail within this Section. The order is set to be from the lower
layer classes (handlers) to the upper layer classes (GUI). The reason behind this ordering is
to provide a stable understanding of how the core works before explaining the top layer by
making references to the core. All the methods and attributes of each class are explained in
order to provide a complete overview, which is necessary for demonstrating the realization
of the application.

4. Realization 57

DateHandler

As previously mentioned during the design process (Section 3.4.3), the class DateHandler
is responsible for handling tasks related to date and time. For this purpose it needs to be
familiar with two specific date formats:

• ICS format: yyyyMMdd’T’HHmmSS

• GUI format: dd.MM.YYYY-HH:mm

The main purpose of having two separate date formats is to convert the date format present
in the ICS files to a more readable format. The class diagram of the class DateHandler
showing its attributes and implemented methods is demonstrated in Figure 4.14.

Figure 4.14.: Class diagram - DateHandler

As can be seen in the class diagram, both attributes of this class are private, static and
final. The reason why the access level is set to be private is that these date formats are
not required by any of the associations of the class, in other words they are only defined to
be used within the class. Since the intention is to keep these formats the same at all times
within all instances of the class, they are set to be static and final. The following methods are
implemented to give the necessary functionality to the class:

• getDateStr(): Returns the current date and time with the GUI date format. Access level
is set to be private because none of this class’ associations require the raw date string.

• getDateStrICS(): Similar to the method getDateStr, it returns the current date and time;
however, the returned date string is formatted with the ICS date format. For the same
reason as in the getDateStr, this method is set to be private.

4. Realization 58

• getCurrentDate(): Extracts the current date from the raw date string that it retrieves by
calling the method getDateStr. Since this method is used by the class’ associations,
access level is defined to be protected.

• getCurrentDateICS(): Does the exact same thing as the method getCurrentDate; how-
ever, the returned date has the ICS date format. Access level is also set to be protected
for the same reason as in getCurrentDate.

• getCurrentTime(): Similar to methods that return a string that contains the date, this
method extracts the current time from the raw date string. Access level is set to be
protected for the same reasons.

• compareDateStrToNow(dateStr : String): This method is implemented to compare a
given date string to the one retrieved from the method getCurrentDateICS. It is mainly
used to filter out events from an ICS file. The method returns true if the compared
dates are a match. Since the method is required to be accessed from other classes,
access level is set to be protected.

• compareTimes(time1 : String, time2 : String): As its name suggests, it compares two
given time strings. Return value is an integer: 0 for time1 equals time2, 1 for time1
greater than time2 and -1 for time1 less than time2. This method is implemented so
that it can be checked if an event, with its start or end time given, has started or ended.

• timeStrToMinutesInt(time : String): Converts a given time string to an integer contain-
ing the total minutes. For example if the method is called with the time string "10:30", it
returns 10*60 + 30. The reason for implementing this method is to calculate remaining
time of an event before it starts or ends.

• getRemainingTime(endTime : String): As its name suggests, this method calculates
the remaining time for a given endTime. First it retrieves the minutes representation
of the current time and the given time by calling the method timeStrToMinutesInt. Af-
terwards, by subtracting the retrieved integer values, it calculates the remaining time.
As the last step, the remaining time in minutes is converted to "hh:mm" format and
returned as a string so it can be displayed on the GUI.

• convertDateFormat(dateTimeStr : String): Given raw date string with ICS date format
is converted into GUI date format. The method splits the resulting string into date and
time and returns an array composed of these strings. The reason for the implementa-
tion of this method is that the raw date strings retrieved from the ICS files are not easy
to read, so they need to be converted into a more readable format.

4. Realization 59

FileHandler

As its name suggests and as previously mentioned in Section 3.4.3, the class FileHandler
is responsible for executing read and write operations on files. The necessity for the class
comes from the room availability information being stored in ICS files. An overview of the
class is demonstrated with a class diagram in Figure 4.15.

Figure 4.15.: Class diagram - FileHandler

As can be seen in the class diagram, FileHandler has only one attribute: fileContents :
String. After a read operation on a given file is executed, the contents of the file are assigned
to this attribute as a string. Access level of the attribute is set to be private and a getter is
implemented so that the code is more readable when a read operation is called on a file. The
following methods are implemented to give the desired functionality to the class:

• readFile(filePath : String): Reads the file located at the given path and assigns the
contents to the attribute fileContents. The method returns an integer to indicate the
status of the read operation: 0 for FileNotFoundException, -1 for IOException (in other
words file is found at the given path but cannot be read), 1 for indicating that the read
process is executed successfully. Implementation of this method is mainly based on
the need for reading ICS files.

• writeFile(filePath : String, content : String): Writes the given content to a file at the
given path. Similar to the readFile method, this method also returns an integer to
indicate the status of the write process: -1 for IOException, 1 for write process is
successful. The main reason of implementing this method is to give the ability to
store all the information displayed on the GUI to log files. Having this information also
present in a file makes debugging easier as well as making the system less dependent
on the GUI by offering an API functionality.

• getFileList(path : String): The purpose of the method is to return a list of files at
a given directory specified by the path. It returns an ArrayList of strings with each
string containing the absolute path of a file located at the given path. The method is
implemented so that every image from the images directory can be loaded to the GUI.

4. Realization 60

ImageHandler

This class is implemented to provide the functionality of reading image files from the im-
ages directory. The necessity of this class comes from the fact that the background of the
GUI is created to be just a plain image of the floor plan. For this reason all the additional
images are required to be loaded. The main purpose behind this is to make things more
customizable; which at the end directly affects the lifespan of the system. An overview of the
class can be seen in Figure 4.16.

Figure 4.16.: Class diagram - ImageHandler

As can be seen in the class diagram, the only attribute this class has is a HashMap of
String : BufferedImage pairs. The keys in the map are defined to be image file names and the
values are the images loaded into Java as BufferedImage objects. The map is implemented
to be private and two getters are implemented to make the code more readable. As it can
also be seen in the class diagram, the following methods are implemented to give the desired
functionality to the class:

• readAllImages(filenames : ArrayList<String>): Iterates through the list of image file
names given and loads the corresponding images from the images directory into
BufferedImage objects, which are then put into the map with keys as their file name.
This method is implemented so that all the images located in the images directory are
loaded into Java with just one function call.

• getImage(imageKey : String): Returns the BufferedImage associated with the given
key from the image map. By the help of this method, the GUI can load a specific
image when needed instead of getting a reference to the entire map.

• getImages(): Returns a reference object to the image map containing all the loaded
images.

4. Realization 61

RoomInfoCollector

As previously explained in Section 3.4.3, this class is responsible for retrieving the neces-
sary information from an ICS file with the help of a FileHandler object. An instance of this
class is created for each ICS file so that the event list of each room is contained in a sepa-
rate object. It also offers the functionality to provide necessary spacing to be added to the
information retrieved so that the GUI can use the information as it is without altering. This
ability is added to this class to minimize the dependency on the GUI.

Figure 4.17.: Class diagram - RoomInfoCollector

There are 2 alternatives to achieve the aforementioned goal of the class above: either by
creating the schedule information as a complete string ready to be directly set to a label, or
by putting all the necessary event information into an array of strings which can be used to
formulate the final label text at an upper layer. The first option would indeed minimize the
dependency on the GUI, however it would not offer enough room for customization. Cus-
tomization is important in case certain updates on the GUI view need to be made. As also
previously mentioned, a longer life span of the system can only be achieved by allowing
customization and for this reason the second option is taken. Therefore, this class provides
event information in the form of an array of strings which can be used to create final label
texts at an upper layer. An overview of the class can be seen in Figure 4.17.

4. Realization 62

As demonstrated in the class diagram, there are 3 attributes:

• textSpacing: A private, static and final attribute of type HashMap<String, String[]>.
Specific text spacings for each room are set within this map. Keys are defined to be
room names so that each instance of the class can retrieve the required information
by just using their roomName attribute.

• dateHandler: Another private, static and final attribute. Since all attributes of the date-
Handler class are static and final, this attribute of RoomInfoCollector class has no
chance of getting altered. Therefore, it is set to be static and final. This attribute is
used to compute some date time related information regarding the events collected
from the ICS files.

• roomName: A private attribute that is accessed only within this class. It is used as an
identification for each instance of the class.

• roomSchedule: A private attribute realized in the form of a TreeMap. Different than
a HashMap, entries in the TreeMap objects are sorted by their keys [25]. As it is
explained in the design process of the GUI layout in Section 3.4.1, events belonging
to each room are displayed in a sorted form starting with the minimum remaining time.
For this reason the TreeMap object offers the desired behavior. The retrieved list of
events is sorted within this map by their start times so that the GUI can directly display
the information provided without any alteration. As mentioned earlier, these kind of
functionalities are provided to minimize the dependency on the GUI.

In order to completely deliver the desired functionality of this class, the following methods
are implemented:

• cloneAndResetMap(): A private method intended to be used only within the class.
Makes a clone to be returned and resets the TreeMap attribute roomSchedule. The
purpose of implementing this method is to make the code more readable by allowing
cloning and resetting of the map by one function call.

• updateRemaniningTime(): This method is implemented to update the remaining times
of the scheduled events according to the current time. This method, being one of the
key methods in the display process of the scheduled events on the GUI, is explained
in detail. For this purpose, the functionality is demonstrated with a sequence diagram
in Figure 4.18.

4. Realization 63

Figure 4.18.: Sequence diagram - updateRemainingTime()

As can be seen in the demonstrated sequence diagram, the method first calls clone-
AndResetMap() to retrieve a clone of the attribute roomSchedule and reset it after-
wards. Then it iterates through the scheduled events within the clone and updates
their remaining times. If the event is registered to start at a given time (indicated by the

4. Realization 64

index 0 of its schedule information array of strings - info), then the remaining time is
updated according to its start time (indicated by the index 2). Additionally, if the event is
an ongoing event, then the remaining time is updated according to the event’s end time
(indicated by index 3). Afterwards, it is checked whether the updated remaining time
is equal to "00:00", which indicates that the event has finished. If that is the case, then
a flag is set and the event is skipped by calling continue on the loop. This flag is used
to tell the next event that it should become the top event since the current event has
finished. However, the flag is ignored if the next event is the last event in the queue.
This is indicated by the end time of an event being set to an empty string. Event lists
are appended by an entry indicating from what time onwards the room is available and
these entries have no end time. This is the reason why the flag is ignored. If the flag is
found to be true and the event has a valid end time, then the event information (index
0) is set to indicate that this is an ongoing event by the string "tofinish". Afterwards,
the remaining time is updated accordingly and the event is put into the roomSchedule
map.

• getRoomSchedule(): Returns a reference to the TreeMap attribute roomSchedule.
This method is implemented so that the event list is available within the package.

• addAvailableEntries(): Another private method intended to be used only within the
class. Iterates through the events in the TreeMap attribute roomSchedule and checks
the time gaps between events. If a time gap of 15 minutes or more is found, then an
event with its summary set to "available" is added covering the gap. The purpose here
is to indicate if the room is available between two events together with the availability
duration. This is also done if there is no ongoing event to cover the gap between the
current time and the next event to start. Additionally, as mentioned earlier, an event
indicating from what time on the room is available with an empty end time is added to
the end of the list as well. This method is implemented as a part of the class RoomInfo-
Collector so that the dependency on the GUI can be minimized. Available information
is fully indicated before the event list reaches the GUI, allowing the information to be
displayed without any alteration.

• collectRoomInfo(): Reads the ICS file associated with the given roomName. Uses
a FileHandler object for this purpose. Considering that this is a key method for the
functionality of the Java application, the functionality of this method is demonstrated
with a sequence diagram in Figure 4.19.

4. Realization 65

Figure 4.19.: Sequence diagram - collectRoomInfo()

4. Realization 66

As demonstrated in the sequence diagram, this method iterates through the ICS
file that is read and looks for the keyword BEGIN:VEVENT. Once found, it parses the
start date and time from the line with the keyword DTSTART. Afterwards it checks if
the event is occurring on that day. If the dates are found to be a match, the summary
and the end time of the event are parsed from the lines with the keywords SUMMARY
and DTEND correspondingly. Once the event block is read fully, all the event related
information is put into an array of strings. This array of strings contains the event status
in its index 0. For an ongoing event, this field is set to "tofinish" and for an event that
has not started, it is set to "tostart". Index 1 of the array contains the event summary
and the start - end times are placed in the indexes 2 and 3 respectively. Index 4, which
is the last index in the array, contains the remaining time of the event (remaining time
either event to start or to finish as indicated by the index 0). Once the mentioned array
of strings is set, it is placed into the TreeMap attribute roomSchedule with the key start
time converted into minutes in an integer form. After all the events are parsed, the
method addAvailableEntries is called to populate the list with available event entries
where applicable.

• scheduleToString(): Converts the TreeMap attribute roomSchedule into a table repre-
sentation with the format demonstrated in Table 4.3. The demonstrated headers are
not included in the string returned by this method. A new row is indicated by "\n"
where a new column is indicated by "\t" within the string. The purpose of providing
the demonstrated functionality is to add the ability to log event information shown in
the GUI to a file. This way, the system can be used as an API.

Room name Event summary Start time End time Remaining time
1360 AVAILABLE 12:10 01:15

E1b-PRP1/02 12:10 15:40 01:15
AVAILABLE 15:40 04:45

Table 4.3.: Example to an event list table representation returned from the method RoomIn-
foCollector.scheduleToString()

4. Realization 67

Controller

The main aim of the class Controller is to provide all the necessary event related informa-
tion of the rooms to the GUI. For this purpose it uses the classes DateHandler and Room-
InfoCollector. The reason for implementing this class is to minimize the number of classes
required from a top layer such as GUI. With the help of this class, the GUI needs just one
class from the package in order to collect all the necessary information. Minimizing the num-
ber of classes required from a top layer makes the top layer more compact, hence minimizing
the dependency on the top layer itself. The corresponding class diagram is demonstrated in
Figure 4.20.

Figure 4.20.: Class diagram - Controller

As can be seen in the class diagram, all attributes are set to be private. The reason is to
ensure that the getters are used from the top layer, making the code more readable. There
are a total of 7 attributes:

• labelMap: An attribute of type HashMap<String, String> with key value pairs of label
identifier and the label text. This attribute is used to store the label texts that are read
from the config file labels.

4. Realization 68

• rooms: A static final attribute of type array of strings. Contains the room identifiers that
are to be used for instantiating RoomInfoCollector objects pointing to ICS files with
names corresponding to the identifiers from this array.

• roomInfoCollectorMap: This attribute is of type HashMap<String, RoomInfoCollector>.
Keys of the map are the room names and the values are the corresponding RoomInfo-
Collector objects. The reason behind having this map implemented is to give the top
layer the ability to to access the event list of a room by passing the room identifier to
a Controller object. With the help of the HashMap, the Controller would not need to
iterate through an array or an ArrayList and can access the desired RoomInfoCollector
object by using the room identifier.

• updateTime: Another static final attribute. This attribute defines the time that the ICS
files are re-parsed by the RoomInfoCollector objects.

• dHandler: The DateHandler object is set to be a static and final attribute to the class
Controller. The reason behind this way of implementation is, as mentioned earlier, that
the DateHandler object has no chance of being altered during the program execution
since it has no attributes.

• fileHandler: An attribute of type FileHandler, which is used to collect labels from the
config file labels, as well as logging the information passed to the GUI into a file.

• imageHandler: This attribute of type ImageHandler is used to retrieve images from the
images directory and provide them to the GUI.

In order to ensure that the top layer has access to all the necessary information through
the Controller class, the following methods are implemented as wrappers to certain methods
provided by the classes DateHandler, ImageHandler and RoomInfoCollector :

• getCurrentTime(): A wrapper to the method DateHandler.getCurrentTime() that calls
the getCurrentTime method and returns the time string retrieved. This information is
required by the GUI for displaying the current time.

• getCurrentDate(): Another wrapper similar to the getCurrentTime that calls the Date-
Handler.getCurrentDate() and returns the retrieved date string. This method is imple-
mented so that the GUI class has access to current date through the Controller object.

• getImage(fileName : String): Calls the method ImageHandler.getImage with the ar-
gument fileName and returns the retrieved BufferedImage. Allows the GUI to have
access to a specific image from the images directory.

4. Realization 69

• getImages(): Similar to the method getImage. Instead of returning a single image
from the images directory, it calls ImageHandler.getImages() and returns the HashMap
retrieved, which contains all the images from the images directory.

• getRoomScheduleMap(roomKey : String): Calls the getRoomSchedule() of the object
RoomInfoCollector identified by the roomKey provided. Returns the TreeMap retrieved
from the mentioned function call.

In addition to the mentioned wrapper methods, the following methods are implemented to
fully provide the desired functionality to the Controller class:

• getLabelsFromFile(): This method is implemented to read the configuration file labels
and populate the attribute labelMap with the collected label texts. Uses the fileHandler
to retrieve the content of the mentioned configuration file. Iterates through the lines
and adds each line defining a label text into the labelMap with room identifiers as keys
and label texts as values.

• isUpdateTime(): Retrieves the current time by using the dHandler attribute and com-
pares it to the time defined in updateTime string. If the strings are a match, which
indicates that it is time for re-parsing the ICS files, it returns true. Otherwise false is re-
turned. This method is implemented so that the top layer has the ability to tell whether
it is time for an update or not by a function call.

• logRoomStatus(log : String): This method is implemented to log the room schedules
into a file by using the attribute fileHandler. It calls the FileHandler.writeFile method
with the arguments demonstrated in Listing 4.4.

1 "../logs/room_status.log"
2 "room\tsummary\t\t\tstart\tend\tremaining\n"+ log

Listing 4.4: Arguments for logging the room schedules

As can be seen in Listing 4.4, the first line defines the path for the log file and
with the passed string the schedule log is stored in the logs directory with the name
room_status.log. As mentioned earlier this log file has the structure demonstrated
in Table 4.3 and the headers are not included in the string created by the method
RoomInfoCollector.scheduleToString. Therefore, as can be seen in line 2, the headers
are added separated by a tab space in front of the table body passed to this method
as an argument. In order to give more room to the summary column, the separation is
set to be 3 tab spaces instead of 2.

4. Realization 70

• collectRoomInfo(): Reconstructs the roomInfoCollectorMap so that the ICS files are
re-parsed. Iterates through the static array of strings rooms, and instantiates a Room-
CollectorInfo object with a room identifier from the array. For each instantiated ob-
ject, the method collectRoomInfo is called, populating the scheduleMap of the object.
Once this procedure is successfully completed, each object is added to the roomIn-
foCollectorMap with the room identifier as the key. The corresponding functionality is
demonstrated with a sequence diagram in Figure 4.21.

Figure 4.21.: Sequence diagram - Controller.collectRoomInfo()

• wrapInHtml(text : String): This method is responsible for converting a given text into
a html code. For this purpose, new line character sequences within the given text are
replaced by
 [5]. The reason behind implementing this method roots from the fact
that JLabel texts can only be aligned by html code [24]. For this purpose the following
html code is used to align the text of a label to the center, which is demonstrated in
Listing 4.5. Any given string is wrapped with the demonstrated html code and returned
by this method.

<html ><d iv s t y l e ="text-align: center;"> < tex t−goes−in−here > </
html >

Listing 4.5: Html code for aligning texts in a JLabel

• getLabel(labelname : String): Allows the top layer to access a label defined in the
labels config file. This method retrieves the label text associated with the label identifier
(labelname : String) from the attribute labelMap. Afterwards, it calls the wrapInHtml
method so that the label text is converted into html before it is returned.

4. Realization 71

• getLabelNoHtml(labelname : String): Offers the same functionality as the method get-
Label, however it returns the raw label text retrieved from the config file labels associ-
ated with the given labelname.

• getLabels(labelnames : String): Similar to the methods getLabel and getLabelNoHtml,
this method allows the top layer to have access to the label texts defined in the config
file labels. Different from the aforementioned methods, it combines the label texts for
the label identifiers passed as an array of strings and wraps the combined labels with
html code. This method is implemented to allow displaying directions for a list of rooms
within a single JLabel (Figure 4.29).

• refreshRoomStatus(): The purpose of this method is to call the RoomInfoCollec-
tor.updateRemainingTime() for each object present in the roomInfoCollectorMap. As
an additional functionality, it also collects the schedule strings from the RoomInfoCol-
lector objects and puts them together to form the body of the schedule log table. As
the last step, the method logRoomStatus is called and the room schedule is logged.
This way it is ensured that with a single function call from the top layer, the remaining
times of each event within the RoomInfoCollector objects are updated together and the
changes are logged. The corresponding functionality is demonstrated with a sequence
diagram in Figure 4.22.

Figure 4.22.: Sequence diagram - refreshRoomStatus()

4. Realization 72

JImage & JComponentWithBackground

These classes are implemented to extend Java classes JLabel and JComponent respec-
tively for adding background image support. The corresponding class diagrams are demon-
strated in Figure 4.23.

Figure 4.23.: Class diagram - JImage & JComponentWithBackground

The aforementioned background image support is implemented by overriding the method
paintComponent from both of the parent classes JLabel and JComponent. Its implementa-
tion is demonstrated with a sequence diagram in Figure 4.24. Since the overriden methods
are exactly the same, to avoid redundancy only the method from the class JImage is demon-
strated.

Figure 4.24.: Sequence diagram - paintComponent(Graphics g)

StatusLabelHandler

As previously mentioned in Section 3.4.3, the class StatusLabelHandler is responsible for
controlling the availability (status) labels within a room area on the GUI. For this reason, each
room area requires an instance of this class. The room area that is controlled by an instance
of this class is specified by the room identifier passed as an argument to the constructor of
this class. As mentioned earlier, the purpose of implementing this class is to minimize the
size of the GUI class by packing the handling process of the status labels into a separate
class. This way, the dependency on the GUI class is also decreased.

4. Realization 73

In order to achieve the aforementioned requirements, the class is implemented as demon-
strated in Figure 4.25.

Figure 4.25.: Class diagram - StatusLabelHandler

As can be seen in the class diagram, all the attributes of this class are set to be private.
The reason behind setting the access levels this way is that the attributes are intended to be
used only within this class. Some of these attributes are also set to be static and final:

• labelConstants: As the attribute name suggests, this HashMap contains some con-
stants regarding the size of the labels, which differ from room to room. Room identifier
and two dimensional integer array are the key value pairs of this HashMap.

• maxLabelHeight, spacePerLabel: These constants define the label height, which is
the same for all status labels. The constant height of a label is defined by the attribute
maxLabelHeight and the space used by a label in total together with its border and the
space left for the next border is defined by the attribute spacePerLabel.

4. Realization 74

• regularFont, largerFont, largestFont: As the names suggest, these attributes define
the fonts with different sizes used for label texts as demonstrated in Figure 3.10.

• red, greenLarger, greenBig, blue: These attributes define the different borders as-
signed to the labels. As mentioned earlier, the different sizes of the labels can be seen
in Figure 3.10.

The other attributes of the class are as follows:

• labels: This attribute of type ArrayList<JLabel> contains all the labels that are dis-
played within the room area to which an instance of this class is assigned. Labels
inside the ArrayList are sorted in the same order from the TreeMap generated by
RoomInfoCollector object, which is assigned to the ICS file of the room. In order to
make the control mechanism of the labels easier, labels are not removed or resized
as mentioned in Section 3.4. In order to achieve the aforementioned requirement,
ArrayList initialization is implemented in a way that one large label for the top event
(index 0) and one big label for the available sign (last index) are added to the ArrayList
by default. Indexes in between are filled with regular sized labels up to the number that
the room area is capable of showing.

• roomKey: A string defining the area on the GUI that the given instance of this class is
associated with. Assigned room identifiers are the same as the ones from the Room-
InfoCollector.

• startWidth, startHeight, width: These attributes define the top left corner coordinates
(startWidht, startHeight) as well as the maximum width allowed for the labels to occupy.
These values are retrieved from the static and final attribute of labelConstants using
the given roomKey during the instantiation of the class.

• available: A boolean indicating whether there are events taking place in the room
assigned to the instance of this class. This attribute is used by the top layer with the
help of its getter and setter.

In order to offer full control over the status labels of a given room area on the GUI, the
following methods are implemented:

• addStopWatch(JLabel stopwatch): A method to add a stopwatch image to the top
label in the event list shown on the GUI. The label at the index 0 is retrieved from the
attribute labels of type ArrayList first. Afterwards, the label received with the stopwatch
image being its background - the argument stopwatch of type JLabel - is added to the
retrieved label.

4. Realization 75

• addLabel(available : boolean): This method is implemented to instantiate an object
of type JLabel as a room status indicator and add it to the attribute labels of type
ArrayList. The argument available defines whether the label to be added is the largest
label, which indicates that the room is available for the whole day. The first added label
is a large label for the top event and all the following labels are regular size unless
the argument available is set to true. The corresponding flow is demonstrated with a
sequence diagram in Figure 4.26.

Figure 4.26.: Sequence diagram - addLabel(available : boolean)

• createLabels(): Responsibility of this method is to add the default number of status
labels to the attribute labels as placeholders for the events. By calling the previously

4. Realization 76

mentioned method addLabel, first a larger status label is added to the index 0, followed
by a certain number of regular sized status labels and a big green status label with the
text "AVAILABLE" as the last element. The reason for this particular implementation is
to increase the ease of updating information on the GUI. This implementation allows
the status labels to be updated by just assigning of different borders or editing the
texts. Additionally, this way it is possible to transfer from the available state to an event
list (or vice versa) by just altering the visibility options of the JLabel objects.

• setBorder(label : JLabel, color : String, firstLabel : boolean): This method is imple-
mented to be used only within this class and it gives the ability to change the border of
a given JLabel according to the color string that is passed as an argument. With this
method being implemented, the top layer has the ability to indicate a color for a sta-
tus label by calling the protected method updateLabel. The necessity for this method
comes from the fact that blue status labels change color to red when they become the
top event. Additionally, since the status labels are added to the attribute labels of type
ArrayList as placeholders and altered according to the events, every time a top event
finishes and is removed from the list, the border colors need to be set again accord-
ingly. The boolean firstLabel is used to assign larger borders to the top events. A true
being passed indicates that the argument label displays the top event and therefore
requires a larger border.

• getAllLabels(): Returns a reference to the attribute labels. The reason for implement-
ing this method is to give access to the top layer for the status labels so that they can
be added to the frame, which is explained in detail later in the description of the class
PcpSI_GUI.

• isAvailable() - setAvailable(flag : boolean): These methods are implemented as the
getter and setter for the attribute available. The getter isAvailable() is used to tell the
top layer whether the instantiated object’s event list is empty or not and the setter
setAvailable(flag : boolean) is used to change the visibility of status labels according
to the flag that is passed as an argument.

• setVisibleForAllFrom(index : int, flag : boolean): This is a method that is implemented
for achieving the previously mentioned ease of transition of status labels. It makes
it possible to change the visibility option of a list of status labels starting from the
given index to the last element in the attribute labels excluding the big JLabel with
the text "AVAILABLE". This method is required especially when there are more events
registered than the number that can be displayed for a given room. In such situations,
all the labels that are not displayed on the GUI can be made invisible with a call to this
method.

• updateLabel(index : int, text : String, color : String): This method allows the top layer
to update the text together with the border color of a status label. By passing the index

4. Realization 77

of the status label, the given text and the border color are assigned to the label from
the attribute labels associated with the index. In order to assign the border color, this
method calls the previously mentioned private method setBorder. It checks if the given
index is less or equal to the maximum number of labels that can be displayed for the
room first. If the index is within the limits, then it is checked if the index is 0, which
means the status label to be updated belongs to the top event. Since the top event
label has a stopwatch at its left hand side, a certain amount of space before the text
needs to be added. Once the appropriate spacing is set depending on the given index,
the given text is wrapped with <html><pre> </html></pre> so that the placed spaces
are displayed properly [5]. After the text modification is completed, the text is assigned
to the label. This is followed by the call to the previously mentioned method setBorder
to update the border color of the label according to the color specified by the argument.
Since only the visible labels are updated, each label indicated by the index given as
the argument is set to visible. The described implementation is demonstrated by a
sequence diagram in Figure 4.27.

Figure 4.27.: Sequence diagram - updateLabel(index : int, text : String, color : String)

PcpSI_GUI

As its name suggests, the class PcpSI_GUI is the GUI, in other words the top layer that has
been previously mentioned several times. In order to give the ability of retrieving schedule

4. Realization 78

information and applying them to the status label handlers, this class uses an instance of the
Controller and one instance of the class StatusLabelHandler for each room of interest.

One of the challenges of implementing this class is providing the functionality of setting the
GUI window to full screen. For this purpose, the Java class GraphicsEnvironment is used.
This class has a method called getLocalGraphicsEnvironment, which returns an object of
type Java class GraphicsEnvironment. The method getScreenDevice of the returned object
is supposed to return the display with the index 0 according to the documentation [24]. By
calling the method setFullScreenWindow with the argument being the frame, the GUI is sup-
posed be set to full screen. However, the described functionality from the documentation is
found to be not working. For some reason, the object returned by the method getScreen-
Device does not point to the right display. For this reason, another method of the class
GraphicsEnvironment is used, which is called getScreenDevices. This method returns the
complete list of displays in the form of an array and allow accesses to the desired display by
a given index. It is discovered that by referencing the display at the index 0 and calling the
method setFullScreenWindow on that reference instead, the Java application can be set to
full screen successfully.

The corresponding class diagram including all the implemented methods together with the
attributes is demonstrated in Figure 4.28.

Figure 4.28.: Class diagram - PcpSI_GUI

4. Realization 79

As can be seen in the class diagram demonstrated in Figure 4.28, in order to implement
the required functionality, the following attributes are set:

• roomNames, roomPositions, otherRoomNames, otherRoomPositions: These four pri-
vate, static and final attributes are implemented in order to define room identifiers
(roomNames, otherRoomNames) and to set (x, y) coordinates of the corresponding
labels for the identifiers (roomPositions, otherRoomPositions). Since these identifiers
and corresponding positions are intended to be constant and required only once when
the GUI is instantiated, they are set to be static and final. The intention of only using
these attributes internally within this class is the reason why the access level is set to
be private.

• clock, date, leftDirections, rightDirections: These attributes of type JLabel are imple-
mented to have references to the displayed time, date and directions for rooms located
on the left and right side in respect to the elevators. Since the displayed date and
time need to be updated regularly and the displayed directions should adapt to the
changes made in the configuration file labels, these references are realized in attribute
form, instead of being local variables. Displayed time and date, as well as right and
left directions are demonstrated in Figure 4.29.

Figure 4.29.: Displayed JLabels clock, date and left, right directions

• controller: As previously mentioned, this class requires to use an instance of the Con-
troller class and this attribute is set to assign a reference to the mentioned object of
type Controller. Since it is intended to use this reference only within this class, access
level is set to private.

• statusLabelHandlers: This attribute of type HashMap<String, StatusLabelHandler> is
set to contain all the references to the objects of type StatusLabelHandler, which are in-
stantiated for each room of interest (for each identifier from the attribute roomNames).
In order to link a schedule information collected from the controller with a statusLabel-
Handler object, a HashMap is used. This map contains the same keys as the map

4. Realization 80

for the RoomInfoCollector objects located in the controller. In other words, a status-
LabelHandler for a given room is assigned the same key as the RoomInfoCollector of
that room. This way, by using one key to identify a room, this class can access both
schedule information and the status labels.

• roomLabels: Another attribute of type HashMap, also intended for internal use within
this class and set with the access level of private for that reason. A JLabel is created for
each room identifier and put into this map. This way, with the help of stored references
associated with a room identifier, this class can update the room labels according to
the configuration file labels. As previously mentioned, this is scheduled to take place at
the same time as the parsing of the new ICS files, in order to avoid using an additional
timer.

• frame: This is the attribute where a reference to the JFrame of the GUI is stored [24].
JFrame class creates a window in which the GUI is displayed. For the same reasons
as the previously mentioned private attributes, this attribute’s access level also is set
to private.

As demonstrated in the class diagram (Figure 4.28), excluding the constructor there are 5
methods implemented, with 4 of them intended to be used within this class:

• placeRoomsOnMap(): This method is responsible for initializing the labels for the
rooms of interest and placing them on the floor plan (map). The position coordinates
of the labels as well as the room identifiers are retrieved from the static attributes men-
tioned earlier roomPositions and roomNames respectively. Each instantiated label is
then added to the attribute roomLabels of type ArrayList with the corresponding room
identifier as the key.

• placeOtherRoomsOnMap(): Similar to the method placeRoomsOnMap, this method
repeats the exact procedure for all the rooms on the floor except for the rooms of
interest. The corresponding room identifiers as well as the label positions are retrieved
from the static attributes otherRoomPositions and otherRoomNames respectively.

• initialize(): As its name suggests, this method is responsible for initializing the GUI.
The frame (frame attribute) of the GUI is initialized first with its layout set to null so
that the components can be positioned by defining (x, y) coordinates instead of using
a grid layout [24]. Designing a GUI with a grid layout is a complex process, taking a
longer implementation time. The only advantage of this layout design is the resizability
option it offers for the GUI. However, since the GUI is intended to be used in full screen
mode, this advantage is not applicable and therefore in order to avoid complicating the
design process a decision is made not to use the grid layout.

4. Realization 81

As mentioned earlier, in order to add a background image to the GUI, the default
JComponent class is extended and the paintComponent method is overriden. As an
alternative, JFrame could have been extended with the overriden paint method. How-
ever the frame is the top level container and therefore its paint method actually just
calls the corresponding paint methods of its components. For this reason, it is a better
approach to leave the JFrame as it is and introduce an overriden paint method (in this
case paintComponent of JComponent) for a component to be added to the frame. In
order to do so, the background image (floor plan) is retrieved from the controller and
passed as an argument to the constructor of the JComponentWithBackground class.
As the next step the instantiated JComponentWithBackground is added to the frame
by calling the method setContentPane with the JComponentWithBackground object
passed as an argument. Once the frame with its component is fully established, all
the images including emergency exit signs and the first aid sign, left and right arrows,
red pointer that indicates where the elevators are, together with the department logo
are retrieved from the controller object. For each mentioned image a JImage object
is instantiated and added to the frame with appropriate size and position. The rest
of the initialization is completed by calling the previously mentioned methods place-
RoomsOnMap and placeOtherRoomsOnMap.

• updateLabelTexts(): Once called, this method iterates through the labels stored in the
attribute roomLabels, and by using the room identifier of each label, it retrieves the
corresponding texts from the controller object. Afterwards, the retrieved texts are set
to the labels. The purpose of this method is to introduce the new label texts from the
configuration file labels.

The only method of this class that has a protected access level and is implemented to be
called from outside of this class is the method update:

• update(): It is implemented to allow updating the time, date and status labels when
needed. Additionally, in order to update the label texts from the configuration file labels
as well, this method also calls the private method updateLabeLTexts when needed. To
decide upon the necessity of updating the label texts, the Controller.isUpdateTime() is
used. After this step the current time and date are retrieved from the controller and
set to the respective labels clock and date. Once the date and time on the GUI are
updated, it iterates through the roomNames. For each room identifier, the correspond-
ing references of the roomSchedule (Controller.getRoomScheduleMap(<room iden-
tifier>)) and the StatusLabelHandler (PcpSI_GUI.StatusLabelHandlerMap.get(<room
identifier>)) are retrieved. If the roomSchedule map is empty, the method sets the cor-
responding StatusLabelHandler to active. This way, the big green label with the text
"AVAILABLE" is displayed for the corresponding room. Otherwise, by iterating through

4. Realization 82

the events within the roomSchedule, certain tasks are done. In order to explain these
tasks in detail, it is necessary to first demonstrate how the label texts are formulated
for the following possible event options:

– Available: If an event is set to be available, there are two possible situations:
either the event has started or it is going to start at a later time, which is indicated
by the first element from the event information array (strings "tofinish" - "tostart"
respectively (Section 4.2.1 collectRoomInfo() method description)). If the event
is set to be available and has started already, it means that it is the top event and
the label text is set to be <remaining time> <event summary> (4th and 1st index
from the event information array respectively). If the event has not started yet,
that also means there are two possible situations: either the event has an end
time specified, which means it indicates an available time period between two
events, or it has no end time specified meaning that it is the last event of the day.
For the first option, the label text is formulated to be <event start time> - <event
end time> <summary> (2nd, 3rd and 1st index from the event information array
respectively). The other option requires a different formulation since there is no
end time specified: <event start time> <summary>. For all the events containing
the text available in their summary, the border color is set to green.

– Lecture or Lab: If the summary of an event does not contain the word "available",
similarly, there are two possible situations: either the event has started or it is
going to start at a later time. The first option means that the room is occupied
and therefore the border color needs to be set to red. Additionally it means that
the event is the top event and the label text needs to be set as it is for available:
<remaining time> <event summary>. For the other option, the border color is set
to blue and the label text is formulated as follows: <event start time> - <event end
time> <summary>

In order to set the label texts and the corresponding borders to the respective sta-
tus labels, the method StatusLabelHandler.updateLabel (Section 4.2.1 corresponding
method description) is used with the arguments being the formulated label text and
a string indicating the color of the border. The corresponding implementation of the
method update is demonstrated with a sequence diagram in Figure 4.30.

4. Realization 83

Figure 4.30.: Sequence diagram - update()

4. Realization 84

UpdateGuiTimerTask

As previously mentioned in Section 3.3.1, the purpose of this class is to provide 1 minute
periodic execution of the method PcpSI_GUI.update(). In order to fulfill this purpose, it ex-
tends the Java class TimerTask by overriding the method run. A private attribute gui is used
to store a reference to the instantiated object of type PcpSI_GUI. The instantiation of this
object and the assignment of the reference to the mentioned attribute take place inside the
constructor of the class. The method run just calls gui.update(). The corresponding imple-
mentation is demonstrated with a class diagram in Figure 4.31.

Figure 4.31.: Class diagram - UpdateGuiTimerTask

Main

This class is implemented to contain the main method of the Java application. It is re-
sponsible for instantiating the UpdateGuiTimerTask and scheduling it to be executed every
minute. For this purpose, first a Java Timer object is instantiated and its method scheduleAt-
FixedRate is used [24]. This method expects 3 arguments:

• Reference to a TimerTask object: a reference to the instantiated object of type Update-
GuiTimerTask is passed to ensure the implemented UpdateGuiTimerTask.run method
is executed periodically.

• Delay in milliseconds: used to delay the first execution of the TimerTask by the given
amount of milliseconds. The idea here is to sync the execution of the TimerTask with
the system clock so that the minute and the remaining times of events displayed on
the GUI match the system clock, which is automatically obtained from the wireless
network by the Raspberry Pi. For this purpose, this delay is set to be the milliseconds
remaining to a whole minute at the execution time. This is achieved by calling the
System.currentTimeMillis() method first, which returns the current time in milliseconds.
Dividing this value by 1000 and casting to integer converts the current time to seconds.
The obtained amount of seconds equals to the total number of seconds in the current
time (hour :minute:second); in other words: hour*24*60 + minute*60 + second. Since
the first two terms in the demonstrated addition are both multiplied by 60, by taking the
modulus 60 of the total seconds, the second in the current time is obtained in integer

4. Realization 85

form. After this step, the delay is set by subtracting the obtained value from 60 and
multiplying it by 1000 (conversion back to milliseconds), to ensure the TimerTask is
executed exactly when the system clock minute changes.

• Period in milliseconds: As previously mentioned, the desired period of execution is one
minute, hence this argument is set to 1*60*1000.

Described flow of the main method is demonstrated by a sequence diagram in Figure
4.32.

Figure 4.32.: Sequence diagram - main

4.2.2. Test Cases

In order to test the functionality of the Java GUI fully, testing the following scenarios is
sufficient:

• Displaying events from the ICS files at start up

• Refreshing remaining times of the delayed events

• Updating the event lists on a new day

• Room status transitions

– Available to occupied

– Occupied to available

– After the last event on the list finishes transition to available

4. Realization 86

For the sake of simplicity and to demonstrate readable texts in the images, screen shots
of the GUI focus on the area with room 1360 and the time when the screen shot is taken.

Start up

This test case focuses on whether the events are displayed correctly at the start up of the
Java GUI. For this purpose, the date 17.11.2015 is selected and the event schedule of room
1360 is taken into consideration. The events scheduled for 17.11.2015 from the ICS file of
room 1360 are demonstrated in Listing 4.6.

BEGIN:VEVENT
SUMMARY:BMT3-MSP1/01
DTSTART;TZID=Europe/Berlin:20151117T081000
DTEND;TZID=Europe/Berlin:20151117T112500
END:VEVENT

BEGIN:VEVENT
SUMMARY:E1b-PRP1/02
DTSTART;TZID=Europe/Berlin:20151117T121000
DTEND;TZID=Europe/Berlin:20151117T154000
END:VEVENT

BEGIN:VEVENT
SUMMARY:IE3-EL2 tutorial
DTSTART;TZID=Europe/Berlin:20151117T160000
DTEND;TZID=Europe/Berlin:20151117T173000
END:VEVENT

Listing 4.6: ICS file contents of the room 1360 for 17.11.2015

As can be seen in Listing 4.6 there are 3 events scheduled: BMT3-MSP1/01 from 08:10 to
11:25, E1b-PRP1/02 from 12:10 to 15:40, and IE3-EL2 tutorial from 16:00 to 17:30. Starting
the Java GUI with the system date set to 17.11.2015, it is seen that the program is able to
display the event list correctly at start up, including the right remaining times together with
the populated available events where applicable (Figure 4.33).

As demonstrated in the screen shot, not all the events from the ICS file are displayed. The
reason here is the limit set for this particular room on the number of events it can display
at a given time. As can be seen, a 5th row cannot fit into the area drawn for the room

4. Realization 87

and therefore it is set to be invisible, however it is indeed in the list of events, which is
demonstrated in Figure Figure 4.36.

Figure 4.33.: Event list of room 1360 for 17.11.2015

Remaining time updates

In order to test the remaining time updates, the same date, hence the same events from
the Listing startupeventlist are used. After starting the Java GUI and waiting for about a
minute, the expected change in the remaining time of the top event is shown on the GUI,
which is demonstrated in Figure 4.34.

Figure 4.34.: Remaining time change of the top event

4. Realization 88

As can be seen, the remaining time is correctly updated with respect to the current time
displayed.

Day transitions and new event lists

The purpose of this test case is to check if the event lists are updated at the end of the
day according to the new day. In order to complete this test, first the system time is set to
23:59 and after waiting for 3 minutes (updates take place at 00:02), the new event lists are
checked. The corresponding screen shots are demonstrated in Figure 4.35.

Figure 4.35.: Event list transition at the end of a day

As can be seen in Figure 4.35, after midnight, exactly at 00:02, the event list gets updated
according to the new day.

Top event transitions

As mentioned earlier there a are couple of cases to be covered within the top event tran-
sitions. The transition of the top event from available to occupied is considered first. It is
expected that the top event is replaced by the event below and all other events move up by
one. As described earlier, this is not a move per se, it is just a reassignment of label texts
to the stationary labels. Additionally, the border color of the top event should change from
green to red. The corresponding screen shot is demonstrated in Figure 4.36.

4. Realization 89

Figure 4.36.: Top event transition - available to occupied

As can be seen, transitions from available to occupied for the top events function as ex-
pected. A similar behavior is expected when the top event changes from occupied to avail-
able. Events should move up by one as described before. However, for this case the border
color should change from red to green. Screen shot of the corresponding change is demon-
strated in Figure 4.37 and this behavior also seems to function as expected.

Figure 4.37.: Top event transition - occupied to available

Last transition that is tested occurs when the last event in the event list finishes. At this
point, the big available sign is expected to be displayed. This is done by changing the visibility

4. Realization 90

property of the labels. All the status labels are set to invisible and the large available sign to
visible. The functionality of the corresponding transition is demonstrated in Figure 4.38.

Figure 4.38.: Last event finishes - transition to available

Execution time

In order to test the final system’s computation capability as well as the computation weight
of the application in more advanced systems, the Java GUI is executed on 4 different systems
with the following processors:

• ARM1176JZF-S single core 700Mhz (Raspberry Pi model B revision 1)

• ARM Cortex-A7 quad core 900Mhz (Raspberry Pi model B revision 2)

• Pentium 4 single core 2.86Ghz

• I7 dual core 1.76Ghz

On all the systems, the method PcpSI_GUI.update() is tested. As previously mentioned in
the method’s description in Section 4.2.1, it can either ask for an update on the schedule lists,
meaning the ICS files are accessed, or it can just retrieve the refreshed schedule lists from
the earlier parsed ICS files. Both scenarios are executed 100 times on all the devices and the
mean value of the execution time is calculated. The corresponding results are demonstrated
in Table 4.4.

4. Realization 91

no file access [ms] file access [ms]
ARM1176JZF-S single core 700Mhz 37.3 2342
ARM Cortex-A7 quad core 900Mhz 10.4 662.3
Pentium 4 single core 2.86Ghz 2.4 276
i7 dual core 1.76Ghz 0.82 13.7

Table 4.4.: Execution time of PcpSI_GUI.update() on different systems

The demonstrated results indicate that the method PcpSI_GUI.update(), which is executed
periodically every minute, is going to be keeping the CPU busy for about 10ms 1439 times
a day (24 * 60 - 1) and about 662.3ms once a day. This shows that the system is going
to be idle most of the time meaning very little power consumption. Comparing values from
the table to each other also proves that the Raspberry Pi model B revision 2 is capable of
running the developed GUI application PcpSI with a good enough performance.

4.3. Bash Script PcpSI

In order to ensure that the system has the ability to start the Java GUI application natively,
the compilation and execution process of the Java source code is automated by a bash script
called PcpSI. This script is created and placed in the project directory as well as under the
directory /usr/bin/ so that it is accessible as a native executable within the system. This way,
regardless of the directory where a shell is started, by executing the command PcpSI, the
Java GUI can be started. This is useful especially if the application is desired to be started
via ssh.

An optional argument to the bash script is defined to be -c. If the script is called with this
argument, then it recompiles the Java code and executes, otherwise the earlier compiled
version is executed. The idea here is to allow a faster execution of the application if no
recompilation is required.

The first thing done by the script is navigating to the directory classes where the Java
source code is located. Then it checks the existence of the previously mentioned argument -
c. If the argument is present, it compiles the Java code by calling the Java compiler javac with
the argument Main.java. Once the compilation is completed, the created Java executable is
executed by the command DISPLAY=:0 java Main. In order to make sure the GUI always
starts on the native display of the system, the display environment variable is set to 0. The
purpose here is to make sure the application can also be started via the ssh.

4. Realization 92

4.4. Final GUI View

The final result of the GUI is demonstrated in Figure 4.39.

Figure 4.39.: Final view of the GUI

5. Conclusion

As demonstrated throughout this thesis, a self-maintained system with a resource aware
concept is developed successfully on a low cost system using a Raspberry Pi. The system
offers very low power consumption together with more than enough computation power. Ad-
ditionally, with the analysis that is made, including the design and implementation process,
the Raspberry Pi model B revision 2 is proven to be the best fit for the required task.

In order to make the most of the Raspberry Pi, all the useful features offered by its operat-
ing system are used:

• Preinstalled Python and Java compilers

• Cron command scheduling

• Ssh server

• Command-line based wireless network utility tool wpa_supplicant

Considering the initial requirements mentioned in Section 1.1, the automated process of
establishing Internet access is realized with the help of a Python script using the preinstalled
tool wpa_supplicant, which is periodically executed by cron command scheduling. Acquiring
internet access this way also allows the system to download ICS files for the rooms of interest
from a remote location, which is again executed with the help of a Python script registered as
a cron job to be executed periodically. With the help of the preinstalled tool wpa_supplicant
together with the cron command scheduling, the implemented Python scripts finalize the
back-end of the system.

Additional to the system’s back-end, a front-end is developed to fulfill the requirements of
displaying the schedule information of the rooms of interest on a display in a user friendly
manner. In order to do so a Java GUI application is implemented with the capability of parsing
the ICS files downloaded by the back-end. Being able to retrieve the necessary information
from the ICS files, Java GUI offers the full functionality of displaying the retrieved schedules
in a user friendly fashion as required.

5. Conclusion 94

In order to minimize the necessity of maintenance even further, a wrapper in the form of a
Python script is implemented to restart the Java application in case it crashes. With the help
of this wrapper being scheduled to start at the start up of the Raspbian OS, the system is
allowed to work without any necessity for any form of a user input starting from the point it is
powered on and connected to a display in the range of the "HAW.1X" wireless network.

The aim of having a resource aware concept with minimal power consumption and cost,
together with self-maintenance capabilities is successfully achieved. However, having all the
requirements fulfilled does not mean there is no room for improvement or further develop-
ment.

5.1. Possible Improvements & Further Development

As previously demonstrated in Table 4.4, the parsing of the ICS files take a fair amount of
time considering how little the system requires to assess and display the collected informa-
tion. With the current implementation, regardless of a given ICS file offering new information
or not, it is parsed every day at 00:02. However, this can be changed with a small addition to
the application when desired. Each event block within the ICS file contains a keyword Stand
followed by a date, which indicates the version of the ICS file. If there are changes made to
a given file, the registered date (Stand) is updated accordingly. With this information in hand,
a further development could be made that checks the revision date of the ICS file before
parsing it. By adding an additional attribute to the RoomInfoCollector class where the last
parsed revision date is stored, the class can tell whether the ICS file issued to be parsed has
any new information compared to the one parsed earlier. If the revision date is different, then
it can parse the new ICS file and overwrite the attribute containing the revision date with the
date from the new file.

The aforementioned functionality is not implemented due to time constraints. However,
since the system is idle most of the time and considering it offers enough computation power,
this improvement is not a necessity. Worst case scenario, the method PcpSI_GUI.update()
takes about 660-670ms while parsing the files and goes back into the idle state waiting for the
next timer interrupt. The timer interrupt being 1 minute periodic allows the system to stay in
the idle state long enough and significantly decreases the importance of this implementation.
A possible reason for this improvement can be, however, to decrease the required computa-
tion power even further for running the application on a less capable system if required at a
later point.

5. Conclusion 95

5.1.1. API Option

A more significant improvement for the system would be to allow remote system access to
the information displayed on its GUI. At the moment, the system generates a log file located
in logs directory with the name room_status.log, which is updated every minute with the
schedule information displayed on the GUI (Listing 5.1).

room summary start end remaining
1303a -
1303b E6-SEP/01 08:10 11:25 00:42

AVAILABLE 11:25 00:42

1360 E3-OPP/03 08:10 11:25 00:42
AVAILABLE 11:25 12:10 00:42
IE3-SSL1/01 12:10 15:55 01:27
E1a/b-W-PRP1/PR1 15:55 19:25 05:12
AVAILABLE 19:25 08:42

1301a AVAILABLE 12:10 01:27
E2a-ETP2/01 12:10 15:40 01:27
AVAILABLE 15:40 04:57

1301b IE7-CJ2 08:10 11:25 00:42
AVAILABLE 11:25 00:42

1365 E4-SSP2/06 08:10 11:25 00:42
AVAILABLE 11:25 12:10 00:42
E6-SEP/02 12:10 15:25 01:27
AVAILABLE 15:25 04:42

1381 AVAILABLE 12:10 01:27
B-EE3-MSP/02 12:10 15:55 01:27
B-EE1-PR1 Tutorium 15:55 17:25 05:12
AVAILABLE 17:25 06:42

Listing 5.1: Content example to the log file room_status.log

Since there is ssh access allowed to the system, this log file is accessible throughout the
local area network. With this in mind, the schedule information generated by this system
can be displayed anywhere within the range of the HAW.1X network. In other words, the
system can be used as an API providing the schedule information of the PC Pool rooms in
text format, which can be parsed to be displayed in a different form elsewhere. An example

5. Conclusion 96

would be a display at the entrance of the building showing the floor plan including room
schedules. Sub systems like the PC Pool Status Indicator (PcpSI) can be developed for
each floor displaying the schedule information on a display in front of the elevators and set to
forward the displayed information to a parent system located at the entrance of the building.
The parent system could have a touch screen interface displaying each floor on a different
page and could allow navigation between pages via user input.

5.1.2. Webpage

Additionally, in a similar fashion to the mentioned log file, the system can be further devel-
oped to generate an html file to be displayed on a web page. Theoretically, the web page
can also be run on the system by a web server. However, the accesses to the server should
be kept at a minimum level due to the limited computation power offered by the system. This
way, the schedule information can be made available to other systems within the HAW.1X
network.

References

[1] ADAFRUIT: Power Usage. https://learn.adafruit.com/embedded-linux-board-
comparison/power-usage Accessed: 02/12/2015,

[2] ADAFRUIT: Raspberry Pi 2, Model B. https://www.adafruit.com/pdfs/raspberrypi2modelb.pdf
Accessed: 28/11/2015,

[3] BENCHOFF, Brian: Hands On With The Intel Edison.
http://hackaday.com/2014/09/10/hands-on-with-the-intel-edison/ Accessed:
02/12/2015,

[4] DEBIAN WIKI: Fonts. https://wiki.debian.org/Fonts Accessed: 05/12/2015,

[5] DUCKETT, Jon: HTML and CSS: Design and Build Websites. John Wiley & Sons, 2011.
– ISBN 9781118206911

[6] ELINUX.ORG: CI20 Hardware. http://elinux.org/CI20_Hardware Accessed: 02/12/2015,

[7] ELINUX.ORG: RPi Easy SD Card Setup. http://elinux.org/RPi_Easy_SD_Card_Setup
Accessed: 01/12/2015,

[8] ELINUX.ORG: RPi raspi-config. http://elinux.org/RPi_raspi-config Accessed:
03/12/2015,

[9] ELINUX.ORG: RPi USB Wi-Fi Adapter. http://elinux.org/RPi_USB_Wi-Fi_Adapters Ac-
cessed: 18/01/2016,

[10] ELINUX.ORG: RPiconfig. http://elinux.org/RPiconfig Accessed: 21/01/2016,

[11] GENTOO WIKI: Sysbench. https://wiki.gentoo.org/wiki/Sysbench Accessed:
23/01/2016,

[12] GILLMOR, Daniel K. ; SISSEL, Jordan: Ubuntu Manuals - xdotool.
http://manpages.ubuntu.com/manpages/raring/man1/xdotool.1.html Accessed:
05/12/2015,

[13] HAMBLEY, Allan R.: Electrical Engineering Principles and Applications. 4. Pearson
Education, Inc, 2007. – ISBN 9780132066921

References 98

[14] HAMINGTON, Suzie: The Illustrated Dictionary of Computer Science. Lotus Press, 2004.
– ISBN 9788189093242

[15] HARRINGTON, William: Learning Raspbian. Packt Publishing Ltd, 2015. – ISBN
9781784390181

[16] HUNT, David: Raspberry Pi 2 Benchmarked. http://www.davidhunt.ie/raspberry-pi-2-
benchmarked/ Accessed: 10/01/2016,

[17] KIRKLAND, James ; CARMICHAEL, David ; TINKER, Christopher L. ; TINKER, Gregory L.:
Linux Troubleshooting for System Administrators and Power Users. Prentice Hall Pro-
fessional, 2006. – ISBN 9780132797399

[18] LB-LINK: LB-LINK BL-LW05-5R1 Product Description.
http://p.globalsources.com/IMAGES/PDT/SPEC/146/K1072982146.pdf Accessed:
30/11/2015,

[19] MALINEN, Jouni: Linux WPA/WPA2/IEEE 802.1X Supplicant.
http://w1.fi/wpa_supplicant/ Accessed: 15/12/2015,

[20] MARTELLI, Alex: Python in a Nutshell. 2. O’Reilly Media, Inc., 2006. – ISBN
9781449379100

[21] MONK, Simon: Raspberry Pi Cookbook. O’Reilly Media, Inc, 2013. – ISBN
9781449365295

[22] OBJECT MANAGEMENT GROUP: Unified Modeling Language (UML) Resource Page.
http://www.uml.org Accessed: 26/01/2016,

[23] OPENSSL SOFTWARE FOUNDATION: OpenSSL SHA.
https://www.openssl.org/docs/manmaster/crypto/sha.html Accessed: 01/12/2015,

[24] ORACLE: Java 8 Oracle Documentation. https://docs.oracle.com/javase/8/docs/api/index.html
Accessed: 09/12/2015,

[25] ORACLE: Java Platform, Standard Edition 8 Names and Versions.
http://www.oracle.com/technetwork/java/javase/jdk8-naming-2157130.html Accessed:
10/12/2015,

[26] PETRELEY, Nicholas ; BACON, Jono: Linux Desktop Hacks. O’Reilly Media, Inc., 2005.
– ISBN 9783897214200

[27] PROCACCIANTI, Giuseppe ; VETRO, Antonio ; ARDITO, Luca ; MORISIO, Maurizio: Pro-
filing Power Consumption on Desktop Computer Systems. In: ICT-GLOW’11 Proceed-
ings of the First international conference on Information and communication on technol-
ogy for the fight against global warming (2011), S. 110–123

References 99

[28] RASPBERRY PI FOUNDATION: FAQ - Power. https://www.raspberrypi.org/help/faqs/#power
Accessed: 09/01/2016,

[29] RASPBERRY PI FOUNDATION: SSH (SECURE SHELL).
https://www.raspberrypi.org/documentation/remote-access/ssh/ Accessed:
10/12/2015,

[30] SAILER, Thomas: Linux USB Utilities - lsusb.
http://linuxcommand.org/man_pages/lsusb8.html Accessed: 05/12/2015,

[31] UPTON, Liz: Five Million Sold. https://www.raspberrypi.org/blog/five-million-sold/ Ac-
cessed: 22/01/2016,

[32] VACCA, John R.: Guide to Wireless Network Security. Springer Science & Business
Media, 2006. – ISBN 9780387298450

[33] XORG FOUNDATION: Advanced Topics FAQ. http://www.x.org/wiki/AdvancedTopicsFAQ/
Accessed: 05/12/2015,

A. RT5370 Wireless Adapter lsusb -v
Output

This stdout of the linux command lsusb -v is only showing the part containing information
regarding the wireless adapter RT5370. The information about the wireless adapter relevant
for the system is shown in line 26 with the keyword MaxPower. As can be seen, the maximum
current draw set for RT5370 is 450mA.

1 Bus 001 Device 004: ID 148f:5370 Ralink Technology, Corp. RT5370
Wireless Adapter

2 Device Descriptor:
3 bLength 18
4 bDescriptorType 1
5 bcdUSB 2.00
6 bDeviceClass 0 (Defined at Interface level)
7 bDeviceSubClass 0
8 bDeviceProtocol 0
9 bMaxPacketSize0 64

10 idVendor 0x148f Ralink Technology, Corp.
11 idProduct 0x5370 RT5370 Wireless Adapter
12 bcdDevice 1.01
13 iManufacturer 1
14 iProduct 2
15 iSerial 3
16 bNumConfigurations 1
17 Configuration Descriptor:
18 bLength 9
19 bDescriptorType 2
20 wTotalLength 67
21 bNumInterfaces 1
22 bConfigurationValue 1
23 iConfiguration 0
24 bmAttributes 0x80
25 (Bus Powered)
26 MaxPower 450mA
27 Interface Descriptor:

A. RT5370 Wireless Adapter lsusb -v Output 101

28 bLength 9
29 bDescriptorType 4
30 bInterfaceNumber 0
31 bAlternateSetting 0
32 bNumEndpoints 7
33 bInterfaceClass 255 Vendor Specific Class
34 bInterfaceSubClass 255 Vendor Specific Subclass
35 bInterfaceProtocol 255 Vendor Specific Protocol
36 iInterface 5
37 Endpoint Descriptor:
38 bLength 7
39 bDescriptorType 5
40 bEndpointAddress 0x81 EP 1 IN
41 bmAttributes 2
42 Transfer Type Bulk
43 Synch Type None
44 Usage Type Data
45 wMaxPacketSize 0x0200 1x 512 bytes
46 bInterval 0
47 Endpoint Descriptor:
48 bLength 7
49 bDescriptorType 5
50 bEndpointAddress 0x01 EP 1 OUT
51 bmAttributes 2
52 Transfer Type Bulk
53 Synch Type None
54 Usage Type Data
55 wMaxPacketSize 0x0200 1x 512 bytes
56 bInterval 0
57 Endpoint Descriptor:
58 bLength 7
59 bDescriptorType 5
60 bEndpointAddress 0x02 EP 2 OUT
61 bmAttributes 2
62 Transfer Type Bulk
63 Synch Type None
64 Usage Type Data
65 wMaxPacketSize 0x0200 1x 512 bytes
66 bInterval 0
67 Endpoint Descriptor:
68 bLength 7
69 bDescriptorType 5
70 bEndpointAddress 0x03 EP 3 OUT
71 bmAttributes 2

A. RT5370 Wireless Adapter lsusb -v Output 102

72 Transfer Type Bulk
73 Synch Type None
74 Usage Type Data
75 wMaxPacketSize 0x0200 1x 512 bytes
76 bInterval 0
77 Endpoint Descriptor:
78 bLength 7
79 bDescriptorType 5
80 bEndpointAddress 0x04 EP 4 OUT
81 bmAttributes 2
82 Transfer Type Bulk
83 Synch Type None
84 Usage Type Data
85 wMaxPacketSize 0x0200 1x 512 bytes
86 bInterval 0
87 Endpoint Descriptor:
88 bLength 7
89 bDescriptorType 5
90 bEndpointAddress 0x05 EP 5 OUT
91 bmAttributes 2
92 Transfer Type Bulk
93 Synch Type None
94 Usage Type Data
95 wMaxPacketSize 0x0200 1x 512 bytes
96 bInterval 0
97 Endpoint Descriptor:
98 bLength 7
99 bDescriptorType 5

100 bEndpointAddress 0x06 EP 6 OUT
101 bmAttributes 2
102 Transfer Type Bulk
103 Synch Type None
104 Usage Type Data
105 wMaxPacketSize 0x0200 1x 512 bytes
106 bInterval 0

B. The Default Crontab of Raspbian OS

The default version of the crontab from Raspbian OS:

Edit this file to introduce tasks to be run by cron.
#
Each task to run has to be defined through a single line
indicating with different fields when the task will be run
and what command to run for the task
#
To define the time you can provide concrete values for
minute (m), hour (h), day of month (dom), month (mon),
and day of week (dow) or use ’*’ in these fields (for ’any’).#
Notice that tasks will be started based on the cron’s system
daemon’s notion of time and timezones.
#
Output of the crontab jobs (including errors) is sent through
email to the user the crontab file belongs to (unless redirected

).
#
For example, you can run a backup of all your user accounts
at 5 a.m every week with:
0 5 * * 1 tar -zcf /var/backups/home.tgz /home/
#
For more information see the manual pages of crontab(5) and cron

(8)
#
m h dom mon dow command

C. Configuration File labels

The default version of the labels configuration file:

1301a=1301a
1301b=1301b
1303a=1303a
1303b=1303b
1360=1360
1365=1365
1381=1381
1380=1380:\nStudierenden Arbeitsraum\nAnsprechpartner: Herr Prof.

Dr. Dierks
1381a=1381a:\nProf. Dr. Thomas Klinker\nProf. Dr. Aining Li
1382=1382: Kopierstation Farbdrucker
1383=1383:\nBSc Stephanie Boehning\nDipl.-Ing. Michael Sparenborg
1384=1384:\nDipl.-Ing. Krystian Forsztega\nDipl.-Ing. Jerzy Janusz
1385=1385:\nPC-Pool Server
1386=1386:\nStudierenden Arbeitsraum\nAnsprechpartner: Herr Prof.

Dr. Dierks
1387=1387:\nServer - Testraum
1388=1388:\nOrientierungseinheit (OE)\nDepartments: Inf. &

Elektrotechnik - Informatik
1362=1362:\nFAUST - Projekt\nTeststreckenraum
1302=1302:\nWerkstatt
1302a=1302a:\nBeratung

The corresponding effect of the default labels configuration file on the GUI background can
be found on the next page (Figure C.1).

C. Configuration File labels 105

Figure C.1.: Resulting labels defined by the default labels configuration file

D. DVD Contents

This Bachelor Thesis contains an appendix of source codes, hardware documentation
and a clone of the final Rasbian operating system on a DVD. This Appendix is deposited
with Prof. Dr. rer. nat. Henning Dierks.

Declaration

I declare within the meaning of section 25(4) of the Ex-amination and Study Regulations of
the International De-gree Course Information Engineering that: this Bachelor report has
been completed by myself inde-pendently without outside help and only the defined sources
and study aids were used. Sections that reflect the thoughts or works of others are made
known through the definition of sources.

Hamburg, February 15, 2016
City, Date sign

	List of Tables
	List of Figures
	Listings
	1 Introduction
	1.1 Requirements

	2 Analysis
	2.1 Hardware
	2.1.1 Raspberry Pi Model B Revision 2
	2.1.2 WLAN Dongle - RT5370 Chipset

	2.2 Software
	2.2.1 Operating System - Raspbian GNU/Linux 8
	2.2.2 Java GUI
	2.2.3 Python Scripts
	2.2.4 ICS File Format

	3 Design
	3.1 Raspbian Installation & Setup
	3.1.1 SD Card Partitioning and OS Image Installation
	3.1.2 Configuration
	3.1.3 WLAN Dongle Setup

	3.2 Project Directory
	3.3 Python Scripts
	3.3.1 Establish WiFi Connection
	3.3.2 Download ICS Files
	3.3.3 Keep a Process Running
	3.3.4 Hide Mouse

	3.4 Java GUI
	3.4.1 Layout Design
	3.4.2 GUI Update Timer Task
	3.4.3 OOP View

	4 Realization
	4.1 Python Scripts
	4.1.1 Common Methods
	4.1.2 establishWifiConnection
	4.1.3 downloadIcsFiles
	4.1.4 keepRunning
	4.1.5 hideMouse

	4.2 Java GUI
	4.2.1 Detailed View of Classes
	4.2.2 Test Cases

	4.3 Bash Script PcpSI
	4.4 Final GUI View

	5 Conclusion
	5.1 Possible Improvements & Further Development
	5.1.1 API Option
	5.1.2 Webpage

	References
	Appendix A RT5370 Wireless Adapter lsusb -v Output
	Appendix B The Default Crontab of Raspbian OS
	Appendix C Configuration File labels
	Appendix D DVD Contents

