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Kurzzusammenfassung
Das Transmission Control Protocol (TCP) bildet die Basis der meisten Anwendungen im Inter-
net. Viele Protokolle benötigen den von TCP bereitgestellten, zuverlässigen Datentransport.
Im Internet der Dinge dominiert das Transportprotokoll UDP, da den eingesetzen Computern
meist nur geringe Hardwareressourcen zur Verfügung stehen. Das Betriebssystem RIOT ist für
den Einsatz im Internet der Dinge konzipiert. Es entsteht derzeit ein neuer, modularer Netz-
werkstack für RIOT, der alle gänigen Netwerkprotokolle unterstützen soll, somit auch TCP. Im
Rahmen dieser Bachelorarbeit wird die Eignung von TCP für das Internet der Dinge untersucht
werden. Desweiteren wurde TCP für den neuen Netzwerkstacks von RIOT implementiert sowie
verbreitete TCP Erweiterungen auf ihre Eignung im Internet der Dinge diskutiert.
Simon Brummer

Title of the paper
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Abstract
The Transmission Control Protocol (TCP) is the basis for most applications on the Internet.
Many protocols depend on the reliable data transport o�ered by TCP. The Internet of Things
is dominated by UDP as transport protocol due to the lack of resources of the computers in
use. The RIOT operating system is designed for the Internet of Things. Currently there is a
new modular network stack developed for RIOT. It should support most common network
protocols including TCP. In this bachelor thesis, TCP is evaluated for its suitability for the
Internet of Things. Additionally TCP is implemented for the new RIOT network stack and
common TCP Extensions are reviewed for their applicability in the Internet of Things.
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1 Introduction

The Internet of Things arrives more and more in our daily lives, leading to a signi�cant para-
digmatic change in network technology. We see a trend to connect more and more embedded
devices to the Internet, sharing information among people, as well as other machines. This
enables developers from all over the world to create new applications and optimize existing
technologies. Embedded systems range from mobile phones, health monitor devices, home
automation and industrial automation, smart metering to environmental monitoring systems.

The Internet core protocols IP, UDP and TCP are the building blocks for interconnecting the
classical infrastructure and new mobile embedded devices. Existing networks were characteri-
zed by nodes with high processing power, stationary power supply, fast, reliable, often wired
network connections. Most of the core networking protocols were designed with the classical
infrastructure in mind, but with the rise of low-power embedded devices, network protocols
need to operate in a di�erent environment. Unreliable, battery-powered, non-stationary no-
des with low-power wireless communication and low processing power are common in IoT
scenarios.

The RIOT operating system is aimed for class 1 constrained devices [BEK14, p.8]. It provides
extensive network capabilities to connect embedded devices on the Internet. Currently the RIOT
network stack is reimplemented to be more generic and modular compared to the previous
implementation.

In this thesis, the transport protocol TCP is analyzed and implemented for the new RIOT
network stack with respect to the demands of current IoT technology. Furthermore, common
TCP extensions will be reviewed for suitability in IoT-Scenarios.

1.1 Motivation

The new RIOT network stack was released without TCP support, limiting the applicability of
RIOT. However, TCP is the most common transport protocol on the Internet today. By supplying
a basic TCP implementation, a large numbers of protocols which rely on TCP can be ported
and used in IoT scenarios. A TCP implementation allows reliable communication between

1



1 Introduction

IoT nodes and general purpose computers on an application level, facilitating interconnection
between applications in general.

1.2 Organization

Background information on common IoT technologies and RIOT-OS is the topic of Chapter 2.
This Chapter covers protocols typical for IoT scenarios, like 6LoWPAN, and common network
architectures for embedded devices. Additionally, this chapter provides a short overview of the
RIOT operating system, especially the architecture and technical details of the new generic
network stack (gnrc).

Chapter 3 explains the basic mechanisms of the transmission control protocol. This inclu-
des the TCP core concepts and applications, header content, connection establishment and
termination, data transfer and receive window management. This chapter conveys a solid
understanding of the TCP core concepts and how they interact with each other.

Over the years, the basic TCP standard has been extended and improved to adapt develop-
ments in computer networks. In Chapter 4, selective acknowledgment options and congestion
control mechanisms will be explained and analyzed for their usability in IoT scenarios. These
extensions are a common part of every mature TCP implementation.

In chapter 5, µIP and lwIP, two TCP/IP stacks designed and deployed on embedded devices
are analyzed. Their basic characteristics are compared and displayed.

Chapter 6 focuses on the concepts of the new TCP implementation for RIOT. In this chapter,
design goals for the TCP implementation are de�ned, as well as means to achieve them. The
design goals reach from the avoidance of dynamic memory allocation to seamless integration
into the gnrc network stack.

The topic of Chapter 7 is the TCP implementation for RIOT. This chapter covers important
aspects of the TCP implementation in relation to the design goals de�ned in of Chapter 6.

Testing and veri�cation is an important topic in every protocol implementation. Chapter
8 covers testing methodology and devised test scenarios for the TCP implementation. The
measured results are explained in detail.

The �nal chapter summarizes the thesis. Conclusions are drawn about TCP in the context
of the Internet of Things and future goals for improvement of the TCP implementation are
formulated.

2



2 Background information on the IoT and
RIOT-OS

The �rst section in this chapter gives a de�nition and an overview of the wireless embedded
Internet. It includes specialized architectures designed for IoT usage, di�erences between
the traditional and embedded network stacks and an overview of 802.15.4 and 6LoWPAN as
common protocols for embedded scenarios. The second section introduces the RIOT operating
system in general, and the core principles behind the new network stack named “gnrc“.

2.1 Wireless embedded Internet

The Internet of Things is a widely used term to encompass all embedded devices that are
Internet-connected and IP-enabled. Often, those devices are controlled and monitored by
external services. The wireless embedded Internet is a subset of the IoT. It consists mostly of
constrained, often battery powered devices connected by low-power, low-bandwidth wireless
networks to the Internet. The core technology behind network interconnection is IPv6 [DH98].
IPv6 features extended addressing capabilities, simpli�ed IP headers and improved support
for extensions and options, as well as protocols for neighbor discovery [NNSS07] and address
auto-con�guration [TNJ07]. Optional IPv6 features like IPSec to support authentication and
encryption on a network layer or a MTU of 1280 bytes are demanding for embedded devices.
This led to the idea of adaptation protocols like 6LoWPAN [MKHC07], to adapt IPv6 and
linked protocols (e.g. neighbor discovery) for usage in constrained devices. These adaptation
protocols are usually part of embedded IP stacks and require specialized network architectures
for wireless nodes.

2.1.1 The 6LoWPAN architecture

According to Zack Shelby and Carsten Borman, “the Wireless Embedded Internet is created
by connecting islands of wireless embedded devices, each island being a stub network on the
Internet. A stub network is a network which IP packets are sent from or destined to, but which

3



2 Background information on the IoT and RIOT-OS

Figure 1: 6LoWPAN architectures, see [SB09, p.14]

does not act as a transmitter to other networks“ [SB09, p.13]. The 6LoWPAN architecture
consists of LoWPANs that share a common IPv6-pre�x. Interconnection between a 6LoWPAN
and other networks is achieved via edge routers. Figure 1 shows three common network
topologies for 6LoWPAN.

Three di�erent types of LoWPAN networks are de�ned:

• An ad hoc LoWPAN, that is not connected to other networks and operates autonomously.

• A simple LoWPAN, connected to other IP-Networks via one edge router.

• An extended LoWPAN, connected via multiple edge routers to a common backbone link.

The role of edge routers is important in those topologies. They are the gateways between
a LoWPAN and other networks. Edge routers handle routing, adaptation between IPv6 and
6LoWPAN on incoming and outgoing tra�c, neighbor discovery for the LoWPAN and other
network management features. The nodes in a LoWPAN are hosts, edge routers or nodes routing
between other nodes. The nodal network interfaces in a 6LoWPAN share a common IPv6-
pre�x, which is advertised by edge routers and routers through the LoWPAN or is con�gured
in advance on each node. An edge router maintains a list of registered nodes, reachable via its
own network interface within the LoWPAN.

4



2 Background information on the IoT and RIOT-OS

A node joins a 6LoWPAN by sending a Router Solicitation message to receive the IPv6-
pre�x of this LoWPAN, if not statically con�gured. After receiving the pre�x, a unique global
IPv6-address is built. The node registers this address at the edge router of this LoWPAN. The
edge router now has the information needed for routing decisions in and out of the LoWPAN
and information needed for the 6LoWPAN neighbor discovery. Additionally, edge routers
handle header compression and decompression on network traversal. The list of nodes must be
refreshed on a regular basis because registered addresses expire after a con�gurable amount of
time. A rather long expiration time reduces power consumption of a node, a short expiration
time allows fast changing network structures. These operations are part of the specialized
neighbour discovery mechanism for 6LoWPAN [SCNB12]. LoWPAN nodes are free to move
inside and between multiple LoWPAN networks and they can be part of multiple LoWPAN at
the same time. Communication between a LoWPAN node and an external IP node happens in
an end-to-end manner just as between normal IP nodes.

For example, a node moving between two simple LoWPANs tries to refresh the address entry
at its edge router, where the node registered itself previously. By leaving the radio range of the
LoWPAN where the node was registered, the old edge router is unreachable. The node reacts
by sending a new Router Solicitation message to attain a new IPv6-pre�x. On reception of the
IPv6-pre�x, the node builds a new address and registers at the corresponding edge router of
the reachable LoWPAN.

The previously registered edge router entry expires after some time, removing old routing
and neighbor discovery information from the LoWPAN. The node moved successfully between
the two LoWPANs.

In an extended LoWPAN, multiple edge routers are part of the same LoWPAN, propagating
the same IPv6-pre�x. The edge routers are connected via a shared backbone link. A node
moving between edge routers still needs to register at the edge router it can reach but the node
can keep its IPv6-address. The messaging between edge routers related to neighbor discovery
is o�oaded onto the backbone link, reducing the messaging overhead. The extended LoWPAN
architecture enables a single LoWPAN to span over large areas.

A LoWPAN can operate without a connection to other external networks as well. This is
called ad hoc LoWPAN. Only one node needs to act as a simpli�ed edge router. This node must
generate a unique local unicast address and it needs to supply neighbor discovery registration
functionality. It works like a simple LoWPAN without the link to other external IP-based
networks.

5



2 Background information on the IoT and RIOT-OS

Figure 2: Di�erences between traditional and embedded IP-Stack, see [SB09, p. 16]

2.1.2 Embedded IP stack

The traditional inter-network stack has grown over the last decades. It supports a large amount
of existing technologies and resource demanding network standards. These stacks are designed
for general purpose operating systems, o�ering more features than needed in an Internet of
Things context. Therefore, the goal behind the development of embedded IP-stacks is the focus
on the essential protocols necessary for network operation.

Figure 2 shows common di�erences between traditional and embedded IP-stacks in a simpli-
�ed version of the OSI model. The embedded IP-stack is a reduced version of the traditional
stack. Most embedded nodes only have one network interface except edge routers. Therefore
only one technology below the link-layer needs to be supported. The 6LoWPAN adaptation
layer is situated between link- and network layer. 6LoWPAN is necessary to enable IPv6 opera-
tion over lossy low-power link-layer technologies like IEEE 802.15.4. On the network layer IPv6
and ICMPv6 are usually supplied, superseding IPv4 usage in general. On the transport layer,
UDP is favored over TCP due to the inherent complexity of TCP. It is common for applications
to use binary protocols instead of human readable standards to minimize the amount of data
that needs to be transmitted.

Edge routers play an important role in enabling connectivity between traditional and em-
bedded network stacks. They ensure traversal between di�erent link-layer technologies and
routing, therefore they need to handle multiple network interfaces and technologies present in

6



2 Background information on the IoT and RIOT-OS

Frequency range (MHz) Region Channel numbers Bit rate (kbits/s)
868 Europe 0 20

902-928 US 1-10 40
2400-2483.5 Worldwide 11-24 250

Table 1: Frequency ranges and channels for IEEE 802.15.4, see [SB09, Appendix B.1].

traditional and embedded stacks up to the network layer. Edge routers handle the conversion
between full IPv6 and the 6LoWPAN format for in- and outgoing tra�c. 6LoWPAN features
stateless and stateful header compression algorithms. IPv6- and UDP headers, for example can
be compressed by 6LoWPAN by omitting information known to every node in the 6LoWPAN.
Nodes inside the LoWPAN are able to restore these compressed headers. For packets with
destinations outside the LoWPAN, an edge router must translate compressed IPv6 headers to
normal IPv6 headers before routing them to another network.

2.1.3 IEEE 802.15.4

The IEEE 802.15.4 standards are speci�ed by the IEEE for low-power wireless radio techniques.
IEEE 802.15.4 speci�es the physical and media access control-layers and is the foundation
6LoWPAN is build upon.

The latest version of the standard IEEE 802.15.4-2011 [Soc11] features access control via
CSMA/CA, optional acknowledgments for retransmission of distorted data, as well as 128-bit
AES encryption on the link-layer. “Addressing modes utilizing 64-bit and 16-bit addresses are
provided with uni and broadcast capabilities. The payload of a physical frame can be up to 127
bytes in size, with 72-116 bytes of payload after link-layer framing, depending on a number of
addressing and security options“[SB09, Appendix B.1].

IEEE 802.15.4 supports star and point-to-point network topologies. The MAC-layer operates
either in a beacon-less or a beacon-enabled mode. The beacon-less mode uses CSMA/CA, the
beacon-enabled mode uses TDMA/TISCH for media access.

Table 1 shows that IEEE 802.15.4 radios are divided into two regional and a worldwide
frequency range, they di�er in available channels and bit rate.

According to [SSZV07], the average packet loss of IEEE 802.15.4 depends heavily on the
number of nodes, the transmitted message length and current radio interference in the used
ISM band. In terms of reliability, the usage of acknowledgments on the link-layer improves
reliability but makes packet round trip times hard to estimate.

7
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2.1.4 6LoWPAN

The purpose of the IP protocol is to interconnect networks, independent of the underlying
network technologies. The link-layer technologies often di�er between traversed networks,
therefore each type of network needs an “IP-over-X“ speci�cation to de�ne how IP is converted
onto the underlying link-layer. Those speci�cations di�er in complexity, e.g. IPv6-over-Ethernet
[Cra98] is rather simple, because IPv6 is closely aligned with Ethernet. Other standards, like
PPP [Sim94] require more work to map services that are needed for IPv6 operation onto a
lower layer. This complexity can amount to an independent adaptation layer, like 6LoWPAN
adapting IPv6 to IEEE 802.15.4.

6LoWPAN handles IPv6-packet fragmentation, header compression, multicasting and rou-
ting in mesh-networks. Fragmentation and reassembly is necessary because IPv6 demands
a maximum transmission unit (MTU) of 1280 bytes. This means the layer below IPv6 must
be able to transmit a 1280 bytes payload within one packet. On the other hand, IEEE 802.15.4
transmits only 127 bytes frames on a physical layer. To solve this contradiction, 6LoWPAN
handles fragmentation and reassembly to map IPv6-datagrams onto IEEE 802.15.4 frames.

Another issue, related to the small frame size of IEEE 802.15.4 is header compression.
Every uncompressed frame contains an IEEE 802.15.4 header, a 6LoWPAN dispatch byte,
uncompressed IPv6 header �elds and a transport protocol header, depending on the protocol
in use. The header sizes often vary depending on used options and consume a considerable
amount of the available frame size per packet. 6LoWPAN header compression decreases the
amount of transmitted data by compressing the IPv6 header and the transport protocol header if
possible. Header compression is currently standardized for IPv6 and UDP [HT11]. An IP header
can be compressed by omitting information already known by every node of a 6LoWPAN,
the “Version“ �eld in IPv6 header for example, can be omitted. The version �eld value will
always be 6 because only IPv6 is supported by 6LoWPAN. Transport protocols like UDP can
be compressed by reducing the available space for port numbering. UDP header compression
assumes the source and destination port numbers between 61616 (0xF0B0) and 61631 (0xF0BF).
If a port in this range is used for each port number, only the four least signi�cant bits need to
be transmitted. The uncompressed port number can be restored by adding 616161.

IPv6 demands a multicast mechanism [Dee89] for the neighbor discovery mechanics [NNSS07].
Multicast is assumed to be provided by the link layer. IEEE 802.15.4 itself does not de�ne mul-
ticast capabilities like e.g. Ethernet does. The inherent problems associated with multicast
in mobile devices are explained in detail in [SWF10]. To cope with the lack of multicast on
IEEE 802.15.4, neighbor discovery has been optimized for 6LoWPAN usage [SCNB12]. The
edge routers node registration table is used for neighbor discovery instead of multicast, avoi-

8



2 Background information on the IoT and RIOT-OS

OS Min RAM Min ROM C Support C++ Support Multi-Threading MCU w/o MMU Modularity Real-Time
Contiki <2kB <30 kB Partial No Partial Yes Partial Partial
Tiny OS <1kB <4kB No No Partial Yes No No
Linux ~1MB ~1MB Yes Yes Yes No Partial Partial
RIOT ~1,5kB ~5kB Yes Yes Yes Yes Yes Yes

Table 2: Characteristics comparison between Contiki, Tiny OS, Linux and RIOT, see [BHG+13]

ding the need for multicast usage during neighbor discovery inside a 6LoWPAN entirely. In
6LoWPAN networks without optimized neighbor discovery, the mesh-under routing protocols
of 6LoWPAN can be used to mimic a multicast mechanism on the link-layer.

“6LoWPAN supports Mesh-Under routing protocols that provide multicasting capabilities.
One simple, but rather ine�cient way to provide multicasting is �ooding: a node that wants
to emit a multicast just sends it using the radio broadcast provided by IEEE 802.15.4; nodes
that receive such a broadcast simply echo the multicast unless they have seen (and echoed) it
before“ [SB09, p. 60].

Multicasting and broadcasting in wireless networks is energy intensive, therefore multicas-
ting should be avoided inside the LoWPAN entirely.

2.2 RIOT operating system

“The friendly Operating System for the Internet of Things“ (RIOT) is specialized for usage in
IoT scenarios. It is distributed under the LGPLv2.1 License. By using this License, RIOT is free
and open software, usable by and distributable to everyone. The license allows RIOT to be
linked together with proprietary software and enforces that RIOT is modi�able by the end
users1.

The design objectives of RIOT-OS include real-time and multithreading capabilities, energy-
e�ciency and a small memory footprint, as well as a uniform API independent from the
underlying hardware. RIOT features a scalable modular micro kernel architecture to mini-
mize the dependencies between the operating systems core and other system components.
Programs for RIOT are either written in C or in C++, enabling the usage of existing libraries
e.g. microCoAP2 implementing CoAP[SHB14] or the C++ Actor Framework (CAF)3[CHS14].
Con�guration and usage of speci�c modules is achieved at compile time.

1https://github.com/RIOT-OS/RIOT/wiki/LGPL-compliancy-guide
2https://github.com/1248/microcoap
3https://github.com/actor-framework
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2 Background information on the IoT and RIOT-OS

Table 2 shows a feature comparison between Conkiti4, Tiny OS5, Linux6 and RIOT7. These
operating systems are common in the Internet of Things. The most notable features of RIOT
are the real-time capabilities and multithreading support.

The multithreading capabilities enable RIOT developers to write modular, event-driven
software. Synchronization between threads is usually achieved by the kernels message passing
API although more traditional synchronization methods like semaphores or mutexes exist. The
amount of threads is limited by the amount of available memory and by the chosen stack-size
for each thread.

As a real-time operating system, "RIOT enforces constant periods for kernel tasks (e.g.
scheduler run, inter-process communication, timer operations).“ [BHG+13]. Real-time systems
are de�ned as systems that guarantee a response within speci�ed time constrains. A prerequisite
for real-time capabilities is a constant runtime for kernel speci�c tasks. This restricts the kernel
facilities to the exclusive use of static memory allocation. Applications and external libraries
may allocate memory dynamically, although this is discouraged. To ensure foreseeable runtime
behavior, an applications memory footprint must be known at compilation time.

Another special feature of RIOT is its tick-less, priority based scheduler. Unlike most opera-
ting systems, RIOT does not simulate concurrent execution by switching threads based on a
timer that expires periodically. Instead, context switches occur on an interrupt, a voluntary
context switch (e.g. calling the sleep-function or waiting for the reception of a message) or as
implicit context switch (functions that unblock a higher prioritized thread, e.g. the expiration
of a timer).

RIOT supports various CPU architectures and prototyping boards. To get an impression on
hardware used in the IoT, Atmel’s SAM R21 Xplained Pro Evaluation Kit8 for example, is build
around a Cortex-M0 32-bit microcontroller with 256 kB ROM and 32 kB RAM. RIOT supports
the SAM R21 and other popular platforms like Arduino and the STM discovery boards.

The network stack “gnrc“ is an essential part in the current major release RIOT-2015.099.
The previous network stack was considered too monolithic and too hard to maintain by the
RIOT community. The old stack was developed concurrently by multiple people without a
uniform concept. The lack of uni�ed interfaces between the layers made modularity, testability
and extensibility hard to achieve. Additionally, most layers supplied their own bu�ers. This

4http://contiki-os.org
5http://tinyos.net
6http://www.linux.com
7http://riot-os.org
8http://www.atmel.com/tools/ATSAMR21-XPRO.aspx
9https://github.com/RIOT-OS/RIOT/releases/tag/2015.09
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2 Background information on the IoT and RIOT-OS

Figure 3: Typical network stack con�guration, see [PLW+15]

increased the memory footprint and created the need for extensive copying between network
layers, thus reducing overall performance. These drawbacks motivated the development of the
“gnrc“ network stack to supersede the existing one.

The design goals of the generic network stack include a low memory footprint, full-featured
protocols, modular architecture, support for multiple network interfaces, parallel data handling
and customization during compilation time.

By relying on the RIOT multithreading support, the communication between layers is
achieved by IPC-mechanisms instead of �xed, interwoven function-calls. Every functional
unit like UDP runs as a thread on RIOT, that communicates via message passing with the
other modules. This approach leads to a less rigid network stack, allowing new modules to be
integrated at every level of the network stack. The modular approach simpli�es testing as well.
Stub-layers can be written easily to verify inputs and outputs of a desired module, leading
to more stable software in the long run. On the other hand, by relying on IPC accompanied
by context-switches, function-calls and context-restorations, the modular approach su�ers
a performance penalty compared to simple function-calls. However, performance is not the
dominating issue because network nodes in an IoT tend to communicate as little as possible, to
save energy.

Figure 3 shows an example of a possible network stack con�guration, each box is a module
running in its own thread. Communication between modules is achieved by the netapi10, an

10http://riot-os.org/api/netapi_8h.html
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IPC-based API for communication between network modules. This example includes three
network interfaces. The network stacks architecture separates device drivers and the layers of
the network stack making modules reusable. The interface with an integrated device driver
does not use the RIOT IPv6 implementation and communicates with the UDP layer directly. The
second interface uses native IPv6 on the network interface, common in edge routers. The third
interface communicates via IPv6 and the 6LoWPAN module which is typical for all 6LoWPAN
nodes.

The generic network stack avoids repeated copying between layers by utilizing of a central
packet bu�er. “Outgoing data is copied from the user application (socket) into a central bu�er
and once into a networks interface’s device bu�er by the device driver. The same is true for
received data, which is copied on arrival from a network interface into the central bu�er and
once more when handed over to an application.“ [PLW+15]. The central bu�er is accessible
from all network modules via an API called pktbuf11.

The bu�er provides memory for user data and header information. Packets inside the bu�er
are stored in a deduplication scheme, eliminating duplicate copies of whole packets or packet
parts. To send a packet to another network module, only a pointer to the packet must be sent to
another layer, instead of copying the whole packet between multiple bu�ers of di�erent layers.
By provision of the pktbuf API, the actual bu�er implementation as well as allocated bu�er
sizes can be exchanged easily, e.g. the user could decide at compile time, to use a statically
allocated bu�er or a dynamically allocated bu�er.

Additionally, the generic network stack features an API called netreg12. It serves as a central
directory. During initialization, modules register in netreg with their thread ID and the kind of
information they are interested in called “NETTYPE“. A module responsible for IPv6 registers
with its thread ID and type “NETTYPE_IPV6“. An UDP module, for example passing a packet
down the network stack, would use netreg to lookup the threads interested in type “NETTY-
PE_IPV6“. The UDP module uses netapi, to send a pointer to the packet allocated in pktbuf to
every thread registered in netreg on type “NETTYPE_IPV6“.

These three new APIs are the building blocks for every layer of the new RIOT network stack,
TCP is no exception. The next chapter covers the concepts behind TCP.

11http://riot-os.org/api/pktbuf_8h.html
12http://riot-os.org/api/netreg_8h.html
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3 TCP overview

The transmission control protocol is the most widespread transport protocol on the Internet.
Most standards requiring reliable data transport build on top of TCP. Widespread protocols like
HTTP, FTP or SSH rely on TCP just to name a few. Basic TCP is speci�ed in RFC 793 [Pos81]
and has been extended numerous times. It provides a reliable, full-duplex, connection-oriented,
ordered, error-corrected delivery of byte streams between two applications. Any byte stream
can be transmitted via TCP without any restrictions. Interpretation of transmitted data is the
task of an application and beyond the scope of TCP.

The basic TCP standard is rather complex. Its speci�cation covers 85 pages without its
various extensions. Full-featured operating systems supply TCP implementations. It is an
indispensable protocol in today’s computer networks.

3.1 TCP core concepts

TCP operations rely on a few basic concepts, namely basic data transfer, reliability, �ow control,
multiplexing and connection handling. Each concept covers an important aspect of TCP and is
explained in this section.

Basic data transfer in TCP is speci�ed as a full-duplex connection that is able to “transfer a
continuous stream of octets in each direction between its users by packaging some number of
octets into segments for transmission through the internet system“ [Pos81, p.4]. The user hands
over data to transmit, TCP decides on its own when to block and forward data, independent
of the user. TCP provides a push function to cause TCP to deliver data as fast as possible. By
pushing data from the sender to the receiver, TCP tries to forward and deliver data as fast as
possible, up to the sequence number the push occurred. The receiver might not be aware of
the exact push point.

Reliability is achieved by using sequence numbers and acknowledgments. In TCP each byte
of data is assigned a sequence number. The sequence number of the �rst byte in a segment is
called segment sequence number. A segment carries an acknowledgement number as well. It is

13



3 TCP overview

the expected sequence number of the next transmitted segment in reverse direction. Segments
that carry data are put into a retransmission queue and a timer is started. If a segment is received
acknowledging a segment sent before, the acknowledged segment will be removed from the
retransmission queue. If the timer expires, the associated segment is considered lost and will
be retransmitted. A received acknowledgement does not guarantee that the acknowledged data
has been delivered directly to the application. It just guarantees that the data was delivered to
the peers TCP layer and the application can consume it.

Flow control is accomplished by the “window“. It is used to control the amount of data
exchanged between the peers. With every acknowledgement a host sends its current window
indicating the amount of bytes it is currently willing to accept. The window size is connected to
the currently available bu�er size, usually multiple times the maximum segment size (MSS). The
MSS of each host is normally exchanged during connection establishment. This is necessary
because TCP has no prede�ned limit for its payload size per packet.

Multiplexing between applications and the TCP Module is achieved by using port numbers.
Every connection is identi�ed by a pair of two port numbers, called source and destination.
The source of a local application, is the destination of its peer. For example, a web browsers
source is 24532 (randomly chosen) and its destination is a HTTP-server with port number
80. From the HTTP-server’s point of view, the source port is 80 and the destination port is
24532. An IP-Address identi�es a connection between two hosts, a port number between two
applications, both combined identify a TCP connection uniquely.

Connection handling is necessary for the reliability and �ow control mechanics mentioned
above. They rely on initial exchange and maintenance of status information between both
hosts. The status information includes sequence and acknowledgement numbers, window
sizes, MSS, control �ags and various TCP options. The information exchanged is stored in a
data structure named transmission control block, short TCB. “When two processes wish to
communicate, their TCP’s must �rst establish a connection (initialize the status information
on each side). When their communication is complete, the connection is terminated or closed
to free the resources for other uses“ [Pos81, p. 5]. Connection establishment is achieved by a
handshake mechanism, speci�ed later in this document.
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Figure 4: TCP header, see [Pos81, p. 15]

3.2 Header format

The TCP header stores control information needed for TCP operation. Its size ranges from 20
bytes, without any options to a maximum of 60 bytes limited by the 4 bit sized “o�set“- �eld.
This leads to a maximum of 40 bytes for options per segment. A TCP header enforces a 32-bit
alignment, padding bytes are added after the option �elds. Figure 4 shows the TCP header as
de�ned in [Pos81, p. 15]. The header consist of:

Source Port and Destination Port: 16 bit each. The combination of both ports is used for
multiplexing.

Sequence Number: 32 bit. If the SYN control bit is not set, the sequence number is the
number of the �rst byte in this segments payload. If SYN bit is set, the sequence number is the
senders initial sequence number (ISN).

Acknowledgment Number: 32 bit. If the ACK control bit is set, this �eld contains the value
of the sequence number that the sender of the segment is expecting to receive next. Once a
connection is established, an acknowledgement number is always sent.
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O�set: 4 bit. Size of the TCP header expressed as the number of 32 bit words. It ranges from
5 (20 byte) to 15 (60 byte) depending on options in use.

Reserved: 6 bit. Reserved for future use. Must be zero in a TCP-implementation. The explicit
congestion noti�cation extension [RFB01] for example, uses the reserved �eld to extend the
control bit �eld.

Control Bits: 6 bit. Contains TCP control �ags.

URG: If URG is set, the Urgent Pointer �eld is signi�cant.

ACK: If ACK is set, the Acknowledgment Number is signi�cant, meaning this segment ack-
nowledges earlier received bytes.

PSH: If PSH is set, the push function is used.

RST: If RST is set, the connection should be reset.

SYN: If SYN is set, the contents of the Sequence Number Field is the initial sequence number.
This Flag is used for synchronization during connection establishment.

FIN: If FIN is set, the sender has nothing more to send. FIN indicates that the sender wants to
close the connection.

Window: 16 bit. Contains the number of bytes the sender is currently willing to accept
from the receiver. Originally limited to 65535 bytes, a larger receive window size can be
communicated with the “Window Scaling“ option [JBB92, p.8].

Checksum: 16 bit. Checksum to detect transmission errors. The calculation algorithm is
speci�ed in RFC 1071 [BBP88].

Urgent Pointer: 16 bit. Contains the o�set from the sequence number until urgent data
begins. This �eld is only interpreted if the URG control bit is set.

Options: variable (0 to 320 bit). The Option �eld can contain various options, built by the
following scheme: The �rst byte is the type of an option, the second byte is the total length
of an option in bytes, the following bytes are an options value. Some options consist only of
the type �eld, they have no value. The “End of List“-option, for example consists only of a
type-�eld with value 0. The MSS-option has a type �eld with value 2, a length �eld with value
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4 and two bytes for the actual value of the maximum segment size. RFC 793 de�nes only the
options End-of-List, No-Operation and Maximum Segment Size [Pos81, p.18]. TCP-Extensions
like SACK [MMFR96] introduce additional options. The option-�eld must be aligned to a 32-bit
boundary. If the option-�eld is not aligned, the remaining bytes must be �lled with a padding
composed of zeroes.

3.3 Transmission control block and sequence numbers

During TCP operation a connection state has to be stored. Both peers must store and maintain
variables, organized in a data structure called transmission control block (TCB). The TCB
contains variables to divide the sequence number space into di�erent areas. In TCP a sequence
number is assigned to every sent byte. A segments sequence number is associated with the �rst
payload byte in a segment. The segments last payload byte sequence number is the sequence
number plus payload size minus one. A whole packet can be acknowledged by sending an
acknowledgement with an acknowledgement number bigger than the sequence number of the
segments last payload byte. This mechanism enables simple duplicate detection, as well as the
detection of missing packets. For each sent segment a retransmission timer is started. If a sent
packet was not acknowledged before its retransmission timer expires, it would be assumed
lost and the segment needs to be retransmitted.

Each host keeps track of used sequence numbers and received acknowledgement numbers
in a connections TCB, the TCB de�nes a connections state directly. The stored variables inside
the TCB divide the sequence number space into send sequence space and receive sequence
space. Both sequence number spaces are further explained in this section.

The send sequence space state is maintained by the following variables: SND_UNA (Send
Unacknowledged), SND_NXT (Send Next) and SND_WND (Send Window). Figure 5 shows
the division of the send sequence space by those variables. Sequence numbers less or equal
than SND_UNA have been successfully transmitted and acknowledged by the receivers side.
Fully acknowledged segments must be removed from the retransmission queue. Sequence
numbers less or equal than SND_NXT and greater than SND_UNA have been sent, but not yet
acknowledged by the peer. It is unknown whether they were received or not, they have to
remain in the retransmission queue. Sequence numbers greater than SND_NXT and smaller
than SND_UNA + SND_WND can be sent to the peer. Sequence numbers bigger or equal than
SND_UNA + SND_WND are outside the peers receive window, they are currently not permitted
to be sent. For details, see [Pos81, p.55]. SND_UNA and SND_WND are updated with each
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Figure 5: Division of the send sequence space, see [Pos81, p.20]

received acknowledgement if the ACK-Flag in the TCP header is set. SND_NXT is advanced
after each transmission by the size of the sent data.

The receive sequence space is the counterpart to the send sequence space. Each peer must
maintain both number spaces. For receiver sequence space maintenance, the TCB stores the
following variables: RCV_NXT (Receive Next) and RCV_WND (Receive Window). Figure 6
shows the receive sequence space division. Sequence numbers smaller than RCV_NXT have
been received and acknowledged by the receiver. Sequence numbers between RCV_NXT and
RCV_NXT + RCV_WND - 1 are within the receive window and are processed further. After
successful segment reception with a sequence number equal to RCV_NXT, RCV_NXT is advan-
ced by the size of the received payload. The next segment sent acknowledges the sequence
numbers up to the current value RCV_NXT. The acknowledgement is either piggybacked on
the next segment that contains a payload or it is a pure ACK, meaning that this segment’s
only purpose is to acknowledge received data. If a received segments sequence number is
within the receive window and the sequence number is not equal to RCV_NXT, a previous sent
segment would probably be lost during transmission. As soon as the missing segment arrives,
both segments can be acknowledged with a single acknowledgement. This is called cumulative
ACK.

Additionally the transmission control block contains information about pointers to send
and receive bu�ers, variables for urgent pointer handling, initial send and receive sequence
numbers, pointers to the retransmission queue and to the current segment itself. Those contents
should be mentioned, however, they are beyond scope of this thesis.
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Figure 6: Division of the receive sequence space, see [Pos81, p.20]

3.4 TCP state machine

As a connection-oriented transport protocol, TCP needs to establish and terminate connections.
The di�erent states a TCP connection can pass through, are de�ned in the TCP �nite state
machine (FSM). Figure 7 shows a simpli�ed version of this state machine. The simpli�ed version
illustrates only state changes in response to reactions, error conditions and error responses
are omitted. A detailed description on the TCP FSM can be found in the “Event Processing“
section of the TCP speci�cation [Pos81, p.52].

Translations between the machine’s states are triggered by three di�erent kinds of events. A
translation causing event can either be a function call from an application, a received packet
from the peer or an expired timer. The FSM states are described below the descriptions originate
from RFC793 [Pos81, p.21 - p.22]:

LISTEN - represents waiting for a connection request from any remote TCP and port.

SYN-SENT - represents waiting for a matching connection request after having sent a connec-
tion request.

SYN-RECEIVED - represents waiting for a con�rming connection request acknowledgement
after having both received and sent a connection request.

ESTABLISHED - represents an open connection, data received can be delivered to the user.
The normal state for the data transfer phase of the connection.

FIN-WAIT-1 - represents waiting for a connection termination request from the remote TCP,
or an acknowledgement of the connection termination request previously sent.
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Figure 7: TCP state machine, see [Pos81, p.23]
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FIN-WAIT-2 - represents waiting for a connection termination request from the remote TCP.

CLOSE-WAIT - represents waiting for a connection termination request from the local user.

CLOSING - represents waiting for a connection termination request acknowledgement from
the remote TCP.

LAST-ACK - represents waiting for an acknowledgement of the connection termination
request previously sent to the remote TCP (which includes an acknowledgement of its
connection termination request).

TIME-WAIT - represents waiting for enough time to pass to be sure the remote TCP received
the acknowledgement of its connection termination request.

CLOSED - represents no connection state at all.

3.5 Connection establishment

First of all, for a reliable connection a session must be established. TCP connection establishment
follows a 3-Way-Handshake. The handshake procedure ensures that both peers can contact
each other, their sequence number spaces are synchronized and parameters necessary for TCP
operation are exchanged.

Figure 8 shows the 3-Way-Handshake between a client and a server. An alternative simulta-
neous open procedure, where both peers perform an active open at the same time, is a special
case of connection establishment and will not be further explained in this thesis.

To establish a connection, a server must perform a passive open, specifying a port number
to wait for incoming connection requests. A client connects to the server by an active open
call. The client allocates a TCB, generates an initial sequence number (ISN) and a source port
number, before a SYN-packet is sent to the peer. The packet contains a set SYN-�ag, the ISN of
the client as sequence number and the client’s local port as source port, the server’s port as
destination port. Additionally, the maximum segment size of the client should be transmitted
too (via MSS-option).

After receiving the SYN-packet from the client, a server can accept the connection. The
server needs to create a TCB, the TCB must be �lled with the received SYN-packet information.
The server needs to create its own ISN, in order to send it to the client. The server sends
a packet to the peer, with SYN-and ACK-�ags set. It contains the server’s ISN as sequence
number and the server’s maximum segment size. Additionally this packet acknowledges the
clients ISN by sending the clients ISN+1 as acknowledgement number.
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Figure 8: 3-Way-Handshake with state changes

After reception of the SYN+ACK-packet from the server, the client �lls its TCB with the
received information. From the client’s point of view, the response from the server proves that
the peer can be reached and is ready for a connection. The client acknowledges the server’s
ISN by sending a packet with an ACK-�ag, its current sequence number and the server’s ISN+1
as acknowledgement number. From the client’s point of view the connection is established.

By receiving the acknowledgement from the client, the server assumes an established
connection with the peer. The server’s connection translates into the state “ESTABLISHED“.

In cases of errors, non-veri�able sequence and acknowledgement numbers, absence of
replies, either timers or transmissions of reset packets (RST-Flag set) are used to reset the host’s
state machines back to closed state. A more detailed description on the 3-Way-Handshakes
sequence of events is in the TCP speci�cation [Pos81, p.52].

3.6 Connection termination

Just as the TCP connection establishment, the connection termination follows a strict sequence
as well. Both host applications need to close the connection independently by a close operation.
The connection termination process is rather complex, due to the ability of TCP to send and
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Figure 9: Connection termination sequence with state changes

receive data simultaneously. The connection termination di�ers from a simple reset. A normal
connection termination closes a connection gracefully, a reset on the other hand is a forceful
way to terminate a connection. A reset should only be used in case of errors or unexpected
behavior.

A close operation indicates that the application has nothing more to send, but it is still able
to receive and acknowledge data. Both peers must close their connection by sending a FIN-�ag
carrying packet and acknowledge the reception of the peers FIN-packet, to ensure every bit of
data has been transmitted correctly. A host that acknowledges the last FIN-packet must wait
two times the maximum segment lifetime (MSL) before translating into the closed state.

RFC 793 recommends a MSL of 2 minutes [Pos81, p.28]. By current network standards this
is an unnecessarily long time. Current implementations should deploy a shorter MSL. This
process ensures that the last ACK-packet was received by the peer. If not, the FIN-packet would
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be retransmitted before MSL timer expiration. With the translation into the CLOSED state,
previously allocated resources, e.g. the TCB, are returned.

Figure 9 shows the �ow sequence and state changes of a regular connection termination.
The simultaneous connection termination as special case is beyond the scope of this thesis.
In this example, the client ends the connection �rst, the procedure would be the same if the
server starts the termination process.

3.7 Data transfer

In this section the TCP core service of data transmission is covered. For data transmission,
the peers are required to establish a connection �rst. An application on the client’s side sends
data by calling the send function with the data to send. The client’s TCP forms MSS sized
segments for transmission. The client’s TCP can send as much segments as long as they �t
into the server’s announced receive window. The amount of bytes that are currently allowed
for transmission is the result of SND_UNA + SND_WND - SND_NXT. SND_NXT is advanced
with every outgoing segment by the segment’s payload length. Retransmitted packets have
no e�ect on SND_NXT. Every outgoing payload or SYN/FIN-�ag carrying segment is placed
in the retransmission queue with its own timer. The timer expires shortly after the networks
round trip time to ensure immediate retransmission.

With reception of a segment, the server’s TCP layer checks if the carried sequence number
is inside the propagated receive window. If the segment is acceptable and its sequence number
matches RCV_NXT, the segment’s payload is copied into the receive bu�er and an acknow-
ledgement segment is formed. The server application can now consume received data with
the read function call. The acknowledgement segment can be piggybacked onto an outgoing
segment or can be a pure acknowledgement. Either way the segment carries the value of
RCV_NXT as acknowledgement number and the current receive window size. The receive
window depends on currently available bu�er sizes and is used for �ow control to limit the
amount of data the client can transmit to the server. The current window size it the amount of
data, the server is prepared to accept.

With the reception of the acknowledgement, the client validates the transmitted sequence
number. If the the received acknowledgement was piggybacked on a payload carrying segment,
the payload is copied into the receive bu�er and an acknowledgement is formed. By receiving a
valid acknowledgement the value of SND_UNA is set to the received acknowledgement number
and SND_WND is updated with the received window. Every segment inside the retransmission
queue, that has been acknowledged, has to be removed from the queue. A packet will be
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acknowledged when the sequence number of the last payload byte is less than SND_UNA or
the received acknowledgement number. Both have the same value at this point.

The time between the transmission of a segment and reception of the segment’s acknowled-
gement is named round trip time (RTT). The RTT is the basis for the retransmission timeout
(RTO) calculations. If the timer of a segment in the retransmit queue expires, the segment is
considered lost. The segment needs to be retransmitted and its timer is restarted. The RTO
calculation scheme from the TCP speci�cation was updated in RFC 6298[PACS11] based on
van Jacobson’s work in [Jac88]. When a subsequent RTT measurement is made, a host must
update the round trip time variance (σRTT ) and the smoothed round trip time (SRTT ):

σRTT = (1− β) · σRTT + β · |SRTT −RTT |

SRTT = (1− α) · SRTT + α ·RTT

The factors α and β balance the in�uence of the new measurement on σRTT and SRTT .
According to RFC 6298[PACS11],α should be 1

8 and β should be 1
4 . Finally, the RTO is calculated

with the following formula:

RTO = SRTT + k · σRTT

The RTO is the smoothed round trip time plus the round trip time variance. The in�uence
of σRTT is balanced by k (suggested value: 4).

The interaction between send and receive number spaces between two applications is
visualized in �gures 10 and 11. In this example a client requests a �le from a server. The client’s
request measures 80 bytes in size, the requested �le measures 300 bytes. The client application
initiates the transmission by calling the send function with the 80 bytes long request. The
server TCP receives this request and the server application accepts the data from the TCP
by calling the read-function. The server’s application processes the request and opens the
requested �le and calls the send-function with the requested �le content. A reply is sent by
the server’s TCP acknowledging the client’s request and containing the �rst 200 bytes of the
requested �le. The remaining 100 bytes are sent as a separate segment from the server, the
client acknowledges the reception of each packet with an acknowledgement.

After the connection establishment phase the client’s TCB contains the following variables:
SND_UNA= 1, SND_NXT = 1, SND_WND= 100, RCV_NXT = 1001, RCV_WND= 300. The server’s
synchronized variables mirror the client TCB: SND_UNA = 1001, SND_NXT = 1001, SND_WND

= 300, RCV_NXT = 1, RCV_WND = 100.
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Figure 10: Data transfer example, clients send and servers receive sequence numbers

For simplicity this example assumes constant send- and receive window sizes. Another
simpli�cation is the absence of packet loss. A packet could be lost due to routing errors or
network congestion.

Figure 10 shows the client’s send sequence space and the server’s receive sequence space.
After sending the �le request, the client’s SND_NXT is advanced by the size of the sent
payload (80 byte). This leaves 20 bytes left for further use inside the send window. The
server’s �rst reply contains 200 bytes payload and acknowledges the reception of the initial
request. After receiving the acknowledgement, the client advances SND_UNA to the received
acknowledgement number. In this scenario all data sent by the client has been acknowledged,
the full send window of 100 bytes is available for further use.
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Figure 11: Data transfer example, clients receive and servers send sequence numbers

Figure 11 displays the server’s send sequence space and the client’s receive sequence space.
After reception of the request from the client, the server advances SND_NXT by 80 bytes and
replies with a segment containing payload of 200 bytes in size, leaving 100 bytes left inside
the server’s send window. The requested �le’s second part covers 100 bytes. It �ts exactly
into the remaining send window. The server advances SND_NXT by 100 and sends a second
segment with 100 bytes payload reducing the usable send window to zero. At this point the
server cannot send more data as long as already sent data has not been acknowledged.

By reception of the �rst segment, the client advances RCV_NXT by the payload size of
the received segment (200 bytes). The client sends an acknowledgement for the received
200 bytes. As soon as the server receives the acknowledgement, SND_UNA is advanced to
the received acknowledgement number. This increases the usable send window to 200 bytes.
After reception of the second segment, the client advances RCV_NXT further and sends an
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acknowledgement. The server receives the second acknowledgement, advances SND_UNA
to the received acknowledgement number value, increasing the usable send window to 300
bytes. From the server’s point of view all data has been acknowledged, the transmission was
successful.

3.8 Window management

The transmitted window is the TCP mechanism for �ow control. The window transmitted with
every packet, is the source’s receive window and will be the destination’s send window after
reception. It is assumed that the communicated window is related to the source’s available
receive bu�er.

A large window encourages the transmission of a large amount of data. By announcing a
large window, more segments can be sent before the sending TCP has to wait for incoming
acknowledgments. The maximum segment size is the upper boundary for a segment’s payload
size. In modern TCP implementations a MSS is announced during connection establishment, the
allocated receive bu�er and the propagated windows are typically multiples of the transmitted
MSS. The MSS size should be aligned with the networks MTU. The MTU can be determined
dynamically with MTU path discovery [MDM96], otherwise the IPv6 default MTU (1280 byte)
can be used. A common TCP MSS is 1220 bytes, based on the IPv6 MTU (1280 bytes) - the IPv6
header size (40 bytes) - the TCP header size (20 bytes without options).

A small window leads to the transmission of fewer segments, limiting the TCP throughput
in general. The smaller the window, the fewer packets can be sent before the destination’s
receive window is exhausted, forcing the sender to wait for incoming acknowledgments and
consumption of bu�ered data by the receiver.

TCP lacks a lower boundary for window size. There is no option to communicate a minimal
segment size between the peers. However, TCP tries to �ll segments before transmission. The
receiver can stop transmission by announcing a zero window. This is called window closing.
Even with a closed window, the receiving TCP must send an acknowledgement with the next
expected sequence number and the currently available window size on incoming segments.
The sending TCP must be able to transmit a packet with zero or one byte payload, even if the
send window is zero. This so-called probe segment, must be transmitted on a regular basis
until the receiver announces a non-zero window. This mechanism is essential to guarantee
that the window re-opening is reported reliably.

The size of the sliding window has a serious in�uence on TCP performance. An increase in
TCP performance is achieved by avoiding the transmission of small segments. Basic TCP has a
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tendency to announce smaller windows in situations where the receiver is under heavy load.
This leads to more transmitted packets, decreasing the receiver- and network performance
further. This phenomenon is called “Silly Window Syndrome“. Additional information on
window management, the cause and e�ects of the silly window syndrome can be found in RFC
1122 [Bra89, p.89-90].

The silly window syndrome can be avoided by not announcing small windows on the
receiver’s side and not sending small segments on the sender’s side. The receiver should not
allow the propagation of a small window. Instead the window should be closed entirely until a
reasonable window can be propagated. The receive window can be re-opened as soon as the
receive bu�er is able to store at least one MSS sized segment.

On the other hand, the sender should avoid sending small segments. An algorithm addressing
this speci�c problem is Nagle’s Algorithm speci�ed in RFC 896 [Nag84]. Nagle’s Algorithm
tries to send MSS-sized packets, if possible. Its core concept is simple:

1. If the amount of outgoing data and the receive window are bigger or equal than the
receivers MSS, send a segment with MSS sized payload. This always leads to reasonable
sized segments.

2. If data has been sent and is still unacknowledged, outgoing data will be stored and accu-
mulated, until all previously transmitted data has been acknowledged or the accumulated
data is bigger or equal to the receiver’s MSS. This accumulation enables TCP to send
fewer, larger segments instead of more smaller segments. Additionally it adjusts the rate
of outgoing segments to network load conditions by awaiting the acknowledgments.

TCP �ow control and error handling are important issues but the basic TCP standard is very
vague in this topics. The important topic of network congestion handling is not covered in
TCP. These subjects have been addressed by various TCP-extensions. The extensions “Selective
Acknowledgment Options“ and congestion control mechanisms are covered in the next chapter
of this thesis.
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Since the basic version of TCP was introduced in 1981, TCP has been extended multiple times
to cope with the excessive growth of computer networks and paradigm shifts in network
technology. With the advent of the wireless embedded Internet, new types of computer net-
works are on the rise. Those networks di�er from established wired networks considerably.
Nodes in the IoT are often battery powered with low computing-power and they are connected
spontaneously over unreliable wireless network interfaces.

In this section, selective acknowledgment options and congestion control mechanisms are
presented and evaluated for their suitability for the Internet of Things.

4.1 Selective acknowledgment options

The loss of a single packet in TCP often leads to unnecessary retransmissions. If a single
segment inside a series of segments is lost, received segments can only be acknowledged up
to the sequence number of the missing packet. Received unacknowledged packets, cannot
be acknowledged until the missing segment is retransmitted and delivered successfully. The-
se received unacknowledged segments are often retransmitted unnecessarily, because their
retransmit-timers expire, due to the delay caused by the retransmission of the single lost
segment. This behavior becomes more problematic with decreasing reliability of the involved
link-layer technologies, leading to more packet losses and unnecessary retransmissions, decre-
asing performance further. Basic TCP has no way to communicate that a segment was lost and
the following segments were received and do not need to be retransmitted.

The selective acknowledgement options, in short SACK, address this speci�c problem.
SACK is standardized in RFC 2018 [MMFR96]. The underlying idea is to send an option with
every acknowledgement, specifying the ranges of received sequence numbers that cannot be
acknowledged currently. With this information a sender can deduce which segments need to
be retransmitted, and which segments were received but cannot be acknowledged yet. The
received segments remain at the sender’s retransmit-queue until they have been acknowledged
cumulatively. However, they are marked as received, stopping their retransmission-timers
until the lost segment has been retransmitted. With the retransmission of the lost segment,
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Figure 12: SACK option format, see [MMFR96, p.3]

the mark on the received segments should be removed and their retransmission-timers should
continue.

Selective acknowledgments introduce two new options into TCP. The �rst option is called
SACK-permitted. This option is sent during the 3-Way-Handshake. The SACK-permitted option
is only allowed in packets where the SYN-Flag is set. This option is used to communicate that
SACK can be used after successful connection establishment. The option itself consists of two
�elds, the Kind-�eld with value 4 and the Length-�eld with value 2. For SACK usage, both
peers must send a SACK-permit on connection establishment.

The second option is the actual SACK option. A SACK option exists only in segments with
an ACK-Flag set. It enables the receiver to communicate multiple received sequence number
ranges. Each coherent received sequence number range starts with the �rst received sequence
number called left edge and ends with the last sequence number named right edge, in the
received number space. Each sequence number consumes 4 bytes, the kind and �eld option
occupy 1 byte each, leading to a total memory consumption of 8 ·n+2 bytes in the TCP option
�eld. The options �eld can carry up to 40 bytes leading to a maximum of four distinct sequence
number ranges. Figure 12 shows the SACK option format as de�ned in RFC 2018.

Let us clarify SACK operation with three examples. We assume a scenario with four packets
sent in a burst, each segment is carrying a payload of 100 bytes. The �rst segment carries the
sequence number 100.

In the �rst example the third and fourth packets are lost. The reception of segment one
and two leads to an acknowledgement, acknowledging the reception of both segments. The
sent acknowledgement segment contains 300 as acknowledgement number. It carries no SACK
option, because no segment has been received out of order.

For the second example the loss of the �rst two packets is assumed, packet three and four
were received. The reception of packet three and four leads to an acknowledgement although
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there is no new data that can be acknowledged. This segment contains 100 as acknowledgement
number and a SACK option with one received coherent number space, stretching over the two
received packets. The left edge is 300 (sequence number of the third segment) and the right
edge is 500 (sequence number of the fourth segment + segment’s size).

In the last example we assume a loss of the �rst and the third packet. In this case, the received
segments trigger the formation of an acknowledgement. This acknowledgement contains the
acknowledgment number 100, because no data can be acknowledged. Additionally this ACK
contains a SACK option as well. The SACK option contains two separate number spaces. One
number space spanning over the contents of the second segment with the left edge of 200 and
the right edge of 300. The second number space spans over the fourth segment’s number space,
the left edge is 400, the right edge is 500.

Selective acknowledgment options in the IoT could be adequate countermeasures to
the inherent unreliability of wireless technologies like IEEE 802.15.4 based standards. By
using SACK, lost packets can be identi�ed precisely, preventing already received packets to be
retransmitted needlessly. This minimizes the amount of segments that need to be transmitted
over the network. Every unsent packet does not need to be forwarded by other nodes either.
With the mesh-networking context in mind, SACK can help to reduce the power-consumption
of every node that routes a received segment and of both end nodes.

The most important disadvantage of SACK for constrained nodes is an increased memory
requirement on the receiver’s side. In a simple memory e�cient TCP implementation, a
receiving node could restrict packet reception to one segment via its announced window,
minimizing memory footprint and leading to poor performance in general. The usage of
SACK implies that the receiver is able to receive multiple segments and store received out-
of-order segments, increasing packet and receive bu�ers. Those out-of-order segments can
be acknowledged accumulatively, after the successful reception of the missing segments. The
amount of additional memory needed to store out-of-order segments, depends on the receivers
communicated maximum segment size. As discussed in the window management section, the
receive window size should be MSS multiple times. A SACK implementation should be able to
store as much data as advertised in the propagated window.

Additionally in the IoT, small receive window sizes of only one or two segments are common.
In such scenarios SACK deployment is nearly useless because the reception of out-of-order
segments is unlikely. With the low usefulness of SACK in the IoT, SACK is rarely deployed,
and SACK needs to be implemented on both hosts for SACK operations.

32



4 TCP extensions and the Internet of Things

Another disadvantage of SACK is the in�ation of the TCP header information. A TCP
header without any options measures 20 bytes, with SACK the header measures up to 54 bytes
(20 + 8 · 4 Segments+ 2 = 54) in the worst case. This decreases the ratio between header
size and payload considerably, especially in IoT scenarios where small payloads are common.

In a nutshell, using SACK seems to be not useful on restricted nodes. E�cient SACK operation
leads to increased memory requirements, that might be too heavy for constrained nodes.

4.2 Congestion control

The main cause for packet loss in networks with wired links is network congestion. Routers
drop packets in case of overload, leading to missing segments. By dropping packets, the
retransmit mechanism sends additional segments increasing the congestion problem further.
The detection of network congestion enables TCP to adjust the transmission rate to the current
network capability. In modern TCP implementations, the detection and handling of network
congestion is achieved by four intertwined algorithms named slow start (4.2.1), congestion
avoidance (4.2.2), fast retransmit (4.2.3) and fast recovery (4.2.4). The algorithms were originally
introduced by Van Jacobson in RFC 2001 [Ste97], the RFC was updated by RFC 5681 [APB09].

4.2.1 Slow start

The original TCP standard covers window management only as a �ow control mechanism,
there are no restrictions on initial transmission rates. Each host is allowed to send data as fast as
possible after the connection establishment. The slow start algorithm increases the transmission
rate exponentially by de�ning an upper bound for the amount of data to transmit currently.
The algorithm maintains a congestion window at the TCB, the congestion window is initialized
with a value based on the received MSS. Each time a sent segment has been acknowledged
successfully, the congestion window is increased by the minimum of the receiver’s MSS and
the number of acknowledged bytes. The sender is only allowed to send data up to the minimum
of the propagated window and the congestion window. For the following example of slow
start, we assume a MSS of 100 bytes, the check against the receive window size is omitted for
simplicity.

The sender begins by sending 100 bytes sized segment and waits for the reception of an
acknowledgement for this segment. On reception of the acknowledgement, the congestion
window is increased by MSS, measuring 200 bytes in total. The sender is now allowed to send a
burst of two 100 bytes sized segments. With the acknowledgement reception of each segment,
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the congestion window has been increased by 100 bytes each time. Now the congestion window
allows a transmission of 400 bytes in a packet burst.

4.2.2 Congestion avoidance

By interpreting packet loss as a sign of network congestion, the expiration of retransmit-timers
or the reception of multiple acknowledgments for the same segment (called duplicate ACK), are
signs of packet loss and therefore of network congestion. The congestion avoidance algorithm
o�ers a linear increase in transmission rate in contrast to slow starts exponential increase.
Congestion avoidance introduces a “slow start threshold“-variable into the TCB. This variable
stores a threshold value to di�erentiate between usage of slow start and congestion avoidance,
balancing the data transfer growth.

In case of network congestion, detected by expiration of a retransmit-timer, the threshold
is set to the maximum between the amount of data currently traveling through the network
divided by two, and the sender’s MSS times two [APB09, p.7]. Additionally the congestion
window is set to the MSS value, ensuring usage of slow start for transmission rate increase. On
reception of duplicate acknowledgments the network might be congested. However, data �ow
between peers is still possible, the current congestion window will not be reduced.

With every incoming acknowledgement, the congestion window is compared to the current
threshold value. If the congestion window is less than the threshold, the connection uses
the slow start to increase the data �ow fast. Otherwise, the congestion window is increased
by MSS2

congestion window . This formula o�ers an adaptive, linear growth in transmission rate to
approach the network’s available bandwidth while avoiding network congestion.

4.2.3 Fast retransmit

Network congestion is indicated by the expiration of a retransmit timer or the reception
of duplicate acknowledgments. The fast retransmit algorithm is the major source of these
duplicate acknowledgments. In case of packet loss caused by network congestion, the receiver
might receive the segments following the dropped segment. These segments are received
as out-of-order segments. On reception of an out-of-order segment, the receiver must send
an acknowledgement immediately. This acknowledgement cannot acknowledge new data,
therefore this is a duplicate ACK for already acknowledged data.

Although from the sender’s perspective, the reception of a duplicate ACK is a strong indicator
of packet loss. However, there is still the possibility that other network problems caused the
duplicate acknowledgments. To be sure that a speci�c segment was dropped and needs to be
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retransmitted, at least three duplicate ACKs with the same acknowledgement number must be
received by the sender. With reception of the third duplicate acknowledgement, the sender
retransmits the lost segment resetting the segment’s retransmit-timer. Fast retransmit is only
suitable to recover from single losses in a burst of packets.

4.2.4 Fast recovery

The fast recovery algorithm ensures that after a retransmission caused by the fast retransmit
algorithm, congestion avoidance is performed instead of slow start. By receiving multiple
duplicate ACKs, the peer must have performed fast retransmit. Fast retransmit is only triggered
on receiving segments, therefore data �ow between the peers is still possible despite current
network congestion. By performing slow start, the transmission rate would drop immediately
because slow start restarts with one MSS-sized segment. As long as there is still data �owing,
congestion avoidance can be performed, avoiding the transmission rate drop on slow starts
initialization.

The fast recovery algorithm is implemented as follows. With reception of the third duplicate
acknowledgement, the slow start threshold is set to maximum between the amount of data
currently traveling through the network divided by two, and the senders MSS times two. After
retransmission of the lost segment, the congestion window is increased by MSS times three
plus the threshold value. This in�ates the congestion window by the number of segments that
caused the duplicate acknowledgments. With reception of each additional duplicate ACK, the
congestion window is increased by MSS to re�ect that a segment has left the network.

With the �rst acknowledgment that acknowledges new data, the congestion window value
is set to threshold size, leaving the connection always in congestion avoidance mode.

4.2.5 Congestion control in the IoT

The four intertwined congestion control algorithms can be useful in an IoT context, although
the basic assumption behind these algorithms does not hold. In wireless networks packet loss is
not only caused by network congestion. Packets may also be corrupted due to distorted signals,
for example. If the lost packets are part of a series of transmitted packets, fast retransmit can
shorten the delay for the lost packet to be retransmitted considerably.

Problematic for congestion control are small window sizes, common in memory saving
TCP implementations. The congestion window speci�es the maximum amount of data that
can be transmitted as a burst of packets. Before packaging data to send, the amount of data
that should be transmitted is calculated as the minimum of congestion window and send
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window. Especially in the Internet of Things small send windows are common. The congestion
control algorithms change the congestion window, but if the receiver announces small window
sizes, the send window is usually less than the congestion window. The sender is able to send
the amount of data up to the send window, which is less than the congestion window. In
such a scenario, it makes no di�erence whether the sender performs slow start or congestion
avoidance.

Furthermore, some congestion control algorithms lead to increased memory requirements
to function properly. The four algorithms itself are memory saving, but fast recovery and fast
retransmit rely upon the reception of at least three duplicate acknowledgments. To send three
duplicate acknowledgments, three out-of-order segments must be received and stored, as well
as the missing segment on reception. With a common maximum segment size of 1220, oriented
on the IPv6 MTU, this leads to minimal receive bu�er requirements of nearly 5 kilobytes.

On the other hand, a modi�ed fast retransmit algorithm could increase transmission rates
in IoT scenarios. We assume a constrained node that is able so send a burst of two segments.
On these nodes slow start, congestion avoidance and fast recovery are useless. Normal fast
retransmit would not be triggered, because only one out-of-order segment can be received by
the peer. A simple solution is the transmission of three acknowledgments on reception of an
out-of-order segment. This modi�cation causes fast retransmit to send the missing segment
immediately, but in cases of packet reordering unnecessary retransmissions occur.

In summary, fast retransmit can increase TCP performance in IoT scenarios. The other
algorithms require TCP implementations that are able to send bursts of multiple segments to
have any signi�cant e�ect. Such nodes are not the norm in IoT networks due to the increased
memory requirements caused by segment bu�ering.
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This section covers the characteristics of two network stacks designed for embedded devices
called µIP and lwIP with respect to their TCP implementations.

5.1 µIP

Micro IP13 (µIP) is a popular TCP/IP stack developed by Adam Dunkels. The µIP stack was
initialized by the “Networked Embedded Systems Group“ of the Swedish Institute of Computer
Science (SICS) and is licensed under the BSD license. The target platforms for µIP are 8 and
16-bit microcontrollers with at least 5 kB RAM and approximately 30 kB ROM. Micro IP is
deployed with Contiki and the Arduino Ethernet shield, it can be used as a stand alone version
as well. Originally, µIP o�ered only IPv4 support, a collaboration of Cisco, Atmel and SICS
extended µIP to be fully IPv6 compliant.

The TCP/IP implementation supplies a global bu�er to store incoming packets. The bu�er
size depends on a con�gurable maximum packet size. The Micro IP packet bu�er can store a
single packet at a time. An incoming packet needs to be processed by an application before the
next packet arrives or the following packet is discarded on arrival. Micro IP o�ers a di�erent
network API than the de facto standard BSD sockets, increasing the e�ort to port existing
network applications. Additionally, µIP relies on an event driven application design. In case of
incoming packets an event is sent to the application. The application is expected to process
received data immediately instead of bu�ering data until it is consumed. Protocols like UDP
can be removed from µIP via Macros in the con�guration �le, reducing code size signi�cantly.

The TCP implementation of µIP features a few speci�c characteristics, developers need to
keep in mind. For example µIP omits a retransmission bu�er. To reduce the amount of memory
required for µIP usage, outgoing data is not bu�ered. In case of a retransmission, an application
must be able to recreate the exact packet that was transmitted before. From µIP’s point of
view there is no di�erence between a �rst time transmission and a retransmit. Therefore the

13https://github.com/adamdunkels/uip
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network stack and an application are not clearly separated, applications need to implement
callback functions to work properly.

The window management strategy of µIP is simple. The prede�ned MSS equals the receive
bu�er size. The MSS is announced with the MSS option on connection establishment. The
announced window is not changed in any way. There is no window closing or reopening
mechanism. It is just assumed, that an incoming packet is processed before the next arrives,
eliminating the need for window maintenance.

The unmodi�ed version of µIP sends only one packet at a time and waits for an acknowled-
gement, until the next packet can be sent. A known issue with this approach is the delayed
ACK functionality deployed by most full featured TCP implementations. Delayed ACK reduces
the amount of sent acknowledgments by waiting for multiple incoming packets. As soon
as multiple packets were received, a single acknowledgement is sent to acknowledge them
collectively. By sending a single packet at a time µIP performance su�ers because either a
retransmission timeout occurs or the acknowledgment from the peer is delayed.

5.2 lwIP

Lightweight IP14 (lwIP) is another TCP/IP stack with a focus on embedded devices. Like
µIP, lwIP has been initiated by Adam Dunkels at the SICS. Currently it is developed by an
international team as an open source project. Detailed information on the architecture of lwIP
can be found in [Dun01]. Lightweight IP targets 8- and 16-bit microcontroller platforms with
at least 10 kB RAM and approximately 40 kB ROM. The lwIP TCP implementation focuses
more on feature completeness, transmission performance and portability than µIP, leading
to increased memory requirements. Compared to µIP, lwIP decouples applications from the
network stack. Developers do not have to implement several callback functions to use lwIP. If
lwIP is deployed with an operating system like FreeRTOS, applications do not have to comply to
an event driven design anymore. Additionally, lwIP o�ers multiple APIs to access the network
stack including a BSD socket API as a wrapper for its netconn API. This improves portability
between platforms. The usage of netconn and BSD socket API requires RTOS functionality, the
raw API can be used in an application without an operating system, requiring the application
to implement several callback functions.

The TCP implementation of lwIP features basic TCP functionality as well as TCP extensions
suitable for embedded devices. The lwIP implementation supports transmission of multiple
segments before expecting an acknowledgement, bu�ering of incoming and outgoing data

14http://savannah.nongnu.org/projects/lwip/
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and handling of received out-of-bounds segments. Delayed acknowledgment functionality and
the congestion control algorithm’s slow start, congestion avoidance, fast retransmit and fast
recovery are implemented. The silly window syndrome is avoided by announcing a window of
at least MSS size, outgoing data is queued until a reasonable window size is announced from
the peer. The lightweight IP stack is not feature complete, urgent pointer functionality, SACK
and window scale options are not implemented in lwIP.

The next chapter covers the concepts and design goals behind the RIOT-OS gnrc TCP
implementation. The design and implementation are inspired by the design of µIP and lwIP.
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This chapter covers the speci�c design goals for the gnrc TCP implementation and the software
architecture in general. The design goals arise from the speci�c context RIOT is used in. Each
design goal is explained in detail as well as methods to accomplish them.

6.1 Design goals for an embedded TCP implementation

Memory e�iciency over network throughput: On constrained devices the amount of
available memory is the most limited resource. Normally IoT applications are not designed to
transmit large amounts of data. Therefore memory e�ciency is favored to high transmission
rates.

Static memory allocation only: To preserve the real-time capabilities and to enforce a
deterministic memory consumption during runtime, dynamic memory allocation is not allowed
in the RIOT core facilities. As a part of the generic network stack, TCP is restricted to use static
memory allocation exclusively.

Optional TCP support: The modular design of the generic network stack enables users
to customize the entire network stack at compilation time. Modules that are not used by an
application, should not be compiled and linked into the binary to minimize application size.
Following this philosophy, the TCP support must be optional and should only be included if
requested.

Optimized feature set: TCP, especially with its TCP extensions, is a complex and resource
demanding protocol. The gnrc TCP implementation provides an optimized feature set optimized
for the IoT. This reduces code complexity and memory consumption.

Interconnectivity with other TCP implementations: The purpose of TCP is to supply
reliable exchange of data between applications regardless of the underlying operating system.
Gnrc TCP must be standard compliant to ensure interoperability between nodes running RIOT
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and nodes running other operating systems. The new RIOT TCP implementation must be able
to handle connections with TCP implementations that o�er a much larger feature set.

Integration into the new RIOT socket API: The rewrite of the RIOT network stack intro-
duced a new socket API named “conn“15. By being an essential part of the network Stack, TCP
has to be integrated into the RIOT socket API.

6.2 So�ware architectural overview

The functional TCP speci�cation in RFC 793 [Pos81] describes the TCP FSM behavior in the
event processing section starting from page 52 to 79. The di�erent events which can occur on
a TCP connection are grouped into three categories.

1. Function calls from user space applications.

2. Reception of a packet from the peer.

3. Expiration of a timer associated with a timer event.

Figure 13 contains an architectural overview of the gnrc TCP implementation. The central
module of gnrc TCP is the �nite state machine (FSM) of a connection, implemented as a set
of c-functions. The FSM controls a connections behavior by responding to speci�c events. A
FSM changing event can be triggered by a user calling a function from the gnrc TCP API for
example. Other sources for FSM changing events are expired timers or the reception of packets.
Figure 13 shows modules that can access a connections FSM and message exchange between
the FSM and these modules.

Events that correspond with function calls from user space are triggered by an application,
calling functions from the gnrc TCP API. The caller blocks until the called function has been
�nished. A function, called to open a connection would block until the connection has been
established or the timer for the user space function calls has expired. In the latter case, the
connection will be closed. To notify the waiting application thread, the FSM sends messages to
the blocked thread in case of an important event. A thread calling the send function e.g. would
be noti�ed that send data has been acknowledged. On noti�cation reception the calling thread
can exit the called function.

The TCP connection handling thread is a part of the gnrc network stack. It passes packets
down the network stack, to lower layers and receives incoming TCP packets from the lower
15http://riot-os.org/api/group__net__conn__tcp.html
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Figure 13: Architecture of the gnrc TCP implementation

layers. On packet reception, this thread performs veri�cation and de-multiplexing by searching
for the transmission control block (TCB) associated with the received packet. As soon as
a �tting TCB has been found, the TCP handling thread calls this connection’s FSM with a
received packet event.

The transmission of a segment can a reaction to an occuring event during TCP operation. In
this case a packet is allocated inside the packet bu�er and a message is sent from the FSM to the
TCP handling thread containing a pointer to the allocated packet. This message is processed
and passed down the network stack for further processing and transmission.

The third category of TCP events are based on the expiration of speci�c timers. By calling a
TCP API function, a timer is started. If this timer expires, it is assumed that the TCP connection
is interrupted, triggering the according FSM event to close the connection. This timeout
indicates that a connection has been aborted, because the peer is not responding anymore. It
prevents the calling thread to be blocked forever in case of connection loss. A retransmission
timer is started when a payload or SYN/FIN-�ag carrying segment is sent to the peer. On
timer expiration, a message is sent to the TCP handling thread triggering the FSM event to
send the segment again. The time-wait timer expiration is a normal part of TCP connection
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termination. As soon as this timer expires, the connection is considered closed. Retransmission
and time-wait timer can be combined into a single timer. Timer related events occur from
threads in user space and from the TCP handling thread.

To summarize the software architecture section, FSM changing events can occur concurrently
from application threads and from the TCP handling thread. To prevent unde�ned behavior
and race conditions, the entire FSM is a critical section. Every manipulation on a connection’s
state must occur inside the FSM exclusively. For synchronization purposes each connection
stores a mutex inside its TCB. The mutex of a connection must be acquired on FSM entry and
released on exit of the FSM function.

6.3 Reducing memory requirements

The memory consumption of TCP depends mostly on the announced receive window. TCP
performance can be improved by announcing a large receive window allowing the peer to send
more segments before the window has to be closed. The increased transmission rate comes at
the price of larger memory requirements. The receiving node must be able to store the received
data until it is consumed by the application. A larger window leads to larger receive bu�ers.

The gnrc network stack supports only IPv6 as networking protocol. IPv6 requires a MTU of
1280 byte. Subtracting the �xed TCP and IPv6 header sizes from the MTU, 1220 bytes are left for
the maximum segment size. By announcing a MSS of 1220 bytes on connection establishment,
TCP should never receive a payload larger than 1220 bytes per segment.

A full-featured TCP implementation would announce a window, multiple times the MSS
in size. This allows multiple connection related packets to travel through the network before
the window is full. The gnrc TCP implementation announces con�gurable receive window
size, the default con�guration announces a receive window of MSS size (1220 byte). This limits
throughput to a single, MSS sized packet traversing the network before an acknowledgement
is expected. This window size limitation reduces the size of the necessary receive bu�er to a
maximum segment size of 1220 bytes per connection.

Another way to reduce gnrc TCP memory requirements is omitting the send bu�er. TCP
normally supplies a send bu�er per connection. This bu�er is �lled with data an application
wants to send. After copying the data into the send bu�er, the send function can return and
the TCP handling subsystem can transmit the copied data later. The entire send bu�er can be
omitted by direct transmission. Instead of copying data for later transmission, it can be directly
segmentized and sent from data containing bu�er the user supplied. Omitting the send bu�er
has a drawback. The connection is prune to transmission errors. On connection abort, a TCP
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implementation with a send bu�er can presume normal operation. A TCP implementation
without send bu�er blocks the application thread until the user function call timeout occurs.

The gnrc TCP sending strategy is simple. Only one packet is transmitted at a time. The next
segment will be sent as soon as the previously sent packet has been fully acknowledged. This
strategy reduces the memory requirements signi�cantly. By sending only one segment at a
time, the segment needs to be stored in the packet bu�er and in the retransmission queue.
By implementing deduplication in the central packet bu�er, the memory requirements are
reduced further. Each object stored in the packet bu�er, keeps track of its current users. The
user counter is decremented with every thread releasing the packet. As soon as the user
counter reaches zero, the packet is removed from the bu�er. After processing and transmission
of a packet, the user counter for a packet is normally zero, the packet is removed from the
packet bu�er. Packets containing payload or control �ags like SYN and FIN must be persistent
for a possible retransmission. By adding an additional retransmission user, these packets are
persistent inside the packet bu�er after their initial transmission. The retransmission user
releases fully acknowledged packets on acknowledgement reception. After releasing the packet
the user counter reaches zero and the packet is removed from the packet bu�er. This simple
mechanism removes the need to copy transmitted segments in a separate retransmission queue.
For the retransmission mechanism a timer structure and a pointer to the segment inside the
packet bu�er are needed. Both are stored inside the TCB of each connection.

6.4 Static memory allocation

As a operating system with real-time capabilities, the RIOT core facilities must use static
memory allocation exclusively. This is a prerequisite to hold real-time guarantees, and a
general rule the gnrc TCP implementation must comply to. Additionally, by forbidding dynamic
memory allocation the memory consumption behaves deterministic during runtime.

The data structures holding a TCP connection state are normally stored in the TCB, which
is part of a socket. In the BSD socket implementation the “socket“-function creates a socket
and returns a �le descriptor to the newly created socket. This mechanism relies on dynamic
memory allocation because sockets are allocated at runtime.

RIOT currently has no concept of �le descriptors and dynamic memory allocation is forbidden
for RIOT core facilities. This makes an exact reimplementation of the BSD socket API hard to
achieve. Additionally, the TCP handling thread must be able to search all existing transmission
control blocks for de-multiplexing purposes. Central access to all active transmission control
blocks must be provided.
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To address this problem a linked list is used. Each TCB contains a pointer to the next TCB. An
initialization function inserting a new TCB into the linked list is supplied. After list assembly,
the TCP handling thread can search for a speci�c TCB by iterating over the list. By using
a linked list to connect transmission control blocks, allocated on thread’s stacks, dynamic
memory allocation can be avoided entirely. The TCB data structures are allocated either in
an application’s static section or in a thread’s stack. The location a TCB is allocated must be
valid as long as the connections exists. Before connection establishment the TCB has to be
initialized, after connection closing the TCB must be destroyed with the appropriate function
supplied by the gnrc TCP API. The linked TCB list could span across multiple thread’s stacks
and can only be assembled because RIOT uses a single memory layout instead of protecting
the thread stack against access outside of a thread’s context.

Each gnrc TCP API function expects a pointer to the TCB, to specify the connection the
operation should applied on. This is similar to the BSD socket interface, but BSD sockets expect
a �le descriptor instead of a TCB pointer.

6.5 Optional TCP support

The most important characteristic of the gnrc network stack is its modularity. As part of the
build process each application speci�es modules that are used by the application. Modules that
are not used should not be compiled and are not started on system initialization.

The TCP module must be optional. Applications using TCP must specify TCP usage in the
projects make �le by adding “USEMODULE += gnrc_tcp“. This triggers auto initialization of
the TCP handling thread during the RIOT initialization phase as well as the compilation of all
TCP related functions.

6.6 Optimized feature set

TCP is a complex protocol which has been extended many times. Most extensions improve
data throughput at the cost of memory consumption. However, the most important design goal
of this TCP implementation is the reduction of memory requirements. The features gnrc TCP
provides must be analyzed carefully, reducing the feature set to the bare minimum necessary
for TCP operation. Options like SACK are not designed for an IoT context, not supporting
them will reduce code complexity considerably.

In the gnrc TCP implementation the only implemented option is MSS to limit the segment’s
size a RIOT node can receive. Options like push and urgent and the fast retransmit extension
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are omitted, too. A future version of TCP might implement them. The urgent function allows
prioritized data inside a TCP stream, allowing the communication of prioritized data without
the need to open a second connection. With the current transmission strategy, implemen-
ting fast retransmit is pointless. Fast retransmit relies on the transmission of at least four
segments at a time, the �rst version of gnrc TCP sends only one segment before expecting an
acknowledgement.

6.7 Interconnectivity with other TCP implementations

The purpose of transport protocols is the interconnection of applications across operating
systems. The gnrc TCP implementation must be compliant with the TCP implementations of
other operating systems, testing against other operating systems TCP implementations must
be an integral part of the gnrc TCP testing procedure. Although gnrc TCP provides only an
optimized feature set, it must be able to exchange data with full-featured TCP implementations.
Options unknown to gnrc TCP must not lead to unde�ned behavior.

6.8 Integration into the new RIOT socket API

With the generic network stack a new API is introduced into RIOT. The “application connection“
API (conn) features a uni�ed interface to the gnrc network stack similar to BSD sockets. In the
current version, all TCP speci�c functionality is de�ned as unimplemented function prototypes.
Like UDP, the gnrc TCP implementation must comply to this prede�ned interface, to be
integrated seamlessly into the “conn“ API.

This chapter covered the major design goals for a TCP implementation tailored to the IoT and
described ways to achieve them. The next chapter covers core aspects of the implementation,
based on the previously de�ned design goals.

46



7 Implementation

This chapter covers important aspects of the gnrc TCP implementation in detail. In these code
listings debug information and minor details were removed to focus on the core functionality.
Every code listing contains a comment referencing the original source code �le in the RIOT
source tree, where the code listing is taken from.

7.1 Generic TCP API

When the gnrc TCP development started, the API for interfacing with the gnrc network stack
was not �nalized. The current TCP implementation had to supply its own temporary API.
Future versions of gnrc TCP have to be integrated into the conn API and its BSD socket API
wrapper, the current API is deprecated and should be removed. Code listing 1 contains an
overview of the functions currently used to interface with gnrc TCP.

1 / ∗ F i l e : s y s / i n c l u d e / n e t / gn r c / t c p . h ∗ /
2 in t8_ t g n r c _ t c p _ t c b _ i n i t ( g n r c _ t c p _ t c b _ t ∗ t c b ) ;
3
4 in t8_ t g n r c _ t c p _ t c b _ d e s t r o y ( g n r c _ t c p _ t c b _ t ∗ t c b ) ;
5
6 in t8_ t gnrc_ tcp_open ( g n r c _ t c p _ t c b _ t ∗ t cb , uint16_t l o c a l _ p o r t ,
7 uint8_t ∗ peer_addr , s i z e _ t p e e r _ a d d r _ l e n ,
8 uint16_t p e e r _ p o r t , uint8_t o p t i o n s ) ;
9

10 s s i z e _ t g n r c _ t c p _ s e n d ( g n r c _ t c p _ t c b _ t ∗ t cb , uint8_t ∗ b u f f e r ,
11 s i z e _ t l e n g t h ) ;
12
13 s s i z e _ t g n r c _ t c p _ r e c v ( g n r c _ t c p _ t c b _ t ∗ t cb , void ∗ b u f f e r ,
14 s i z e _ t l e n g t h ) ;
15
16 in t8_ t g n r c _ t c p _ c l o s e ( g n r c _ t c p _ t c b _ t ∗ t c b ) ;

Code listing 1: Temporary gnrc TCP API
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The function gnrc_tcp_tcb_init() initializes a TCB and adds it to the linked TCB list. A TCB is
removed from the TCB list by calling gnrc_tcp_tcb_destroy(). A TCB must be initialized before
the TCB is used, otherwise the runtime behavior is unpredictable.

A connection is initiated by calling gnrc_tcp_open(). The option parameter determines
whether a connection is active or passive. If the option AI_PASSIVE is set, the connection is
passive, waiting for an incoming connection. In case of a passive connection, a port to listen
on must be speci�ed. An active connection needs to supply an IP-address and port number to
connect to. In both operation modes the function returns after connection establishment or
after occurrence of a user space timeout.

The gnrc_tcp_send() function transfers data to the peer. This function expects a connection’s
TCB, a bu�er that contains the data to send and the amount of bytes that should be transmitted.
This function blocks until the speci�ed data has been transmitted and acknowledged, or the
user space timeout expired.

The gnrc_tcp_recv() function, reads the requested amount of data from the receive bu�er
into the supplied bu�er. Like most TCP API functions this function blocks as well, until the
requested data has been received and copied or until the user space timeout expires.

The last API function is gnrc_tcp_close(). This function triggers the connection termination
sequence. It blocks until a connection is closed or until the user space timeout timer occurs.
Both outcomes lead to a closed connection.

This API does not conform to the widespread BSD socket API and is temporary. The �nal
version of the gnrc TCP interface should be integrated into the conn API seamlessly and
support the BSD socket wrapper to facilitate portability between platforms.

7.2 TCB

Code listing 2 covers the gnrc TCP transmission control block. The TCB contains a connection
state, address and port number information, variables for sliding window maintenance, the
receive bu�er, variables for the retransmission mechanism, a pointer to the next TCB and data
structures for synchronization and messaging.

In common TCP implementations the port and address information is stored inside the socket
data structure because UDP uses them as well. In gnrc TCP, address and port information used
for multiplexing are stored inside the TCB. With the integration of gnrc TCP into the conn API,
these variables will be removed from the TCB, they will be stored in the RIOT socket imple-
mentation. By containing a receive bu�er per connection, the TCB is a large data structure. The
receive bu�er size can be adjusted by changing the macros in sys/include/net/gnrc/tcp/con�g.h.
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The receive bu�er size depends on the MSS and the number of MSS-sized payloads the bu�er
should be able to store.

1 / ∗ F i l e : s y s / i n c l u d e / n e t / gn r c / t c p / t c b . h ∗ /
2 typedef s t ruc t _ _ a t t r i b u t e _ _ ( ( packed ) ) t c b {
3 g n r c _ t c p _ f s m _ s t a t e _ t s t a t e ;
4
5 uint8_t ∗ p e e r _ a d d r ;
6 s i z e _ t p e e r _ a d d r _ l e n ;
7 uint16_t p e e r _ p o r t ;
8 uint16_t l o c l _ p o r t ;
9 uint8_t o p t i o n s ;

10
11 uint32_t snd_una ;
12 uint32_t snd_nxt ;
13 uint16_t snd_wnd ;
14 uint32_t snd_wl1 ;
15 uint32_t snd_wl2 ;
16 uint32_t i s s ;
17 uint32_t r c v _ n x t ;
18 uint16_t rcv_wnd ;
19 uint32_t i r s ;
20 uint16_t mss ;
21
22 uint8_t buf [ GNRC_TCP_RCV_BUF_SIZE ] ;
23 r i n g b u f f e r _ t r c v _ b u f ;
24
25 g n r c _ p k t s n i p _ t ∗ p k t _ r e t r a n s m i t ;
26 x t i m e r _ t t i m e r _ t i m e o u t ;
27 msg_t msg_t imeout ;
28
29 k e r n e l _ p i d _ t owner ;
30 s t ruc t t c b ∗ next ;
31 mutex_t mtx ;
32 msg_t msg_queue [ TCB_MSG_QUEUE_SIZE ] ;
33 } g n r c _ t c p _ t c b _ t ;

Code listing 2: Transmission control block

Bu�er size adjustments in�uence the announced receive window directly. The receive bu�er
is implemented as a ring bu�er using the RIOT ringbu�er library. TCP needs to bu�er incoming
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data until it is consumed by an application. Copying received data into a separate receive bu�er
is a simple solution, but it increases the memory requirements signi�cantly. To reduce gnrc
TCP memory requirements, a future version could store received payload inside the global
packet bu�er until an application consumes the received data directly from the packet bu�er.

The retransmission mechanism of gnrc TCP is lightweight. By allowing only a single packet
to be transmitted at a time, only one segment needs to be stored. The TCB stores a pointer
to the pre-allocated segment inside the global packet bu�er. Additionally a timer and a mes-
sage structure are necessary to notify the TCP handling thread that a segment needs to be
retransmitted. With the introduction of an adaptive retransmission strategy, the TCB has to be
extended to store variables for RTT calculation.

Additionally the TCB contains a pointer to another TCB to be a node in a linked list (see
6.4). The remaining variables are used for message passing and synchronization purposes.

7.3 FSM synchronization

The access to the FSM of a connection must be synchronized, di�erent events could be triggered
from multiple threads at the same time, therefore the FSM is a critical section. The FSM is
locked exclusively by using a mutex per connection, stored inside the TCB. On entry of the
FSM function the mutex must be locked, on exit the mutex must be released. The TCP FSM is
a complex function, spanning nearly 400 lines of code with multiple exit points. Releasing the
mutex before each return statement in the FSM function is error prone and should be avoided.
Code listing 3 covers an easy solution to address this problem by implementing a procedural
version of the monitor object pattern common in object oriented programming (OOP).

In OOP, access to the methods of an object can be synchronized by implementing the monitor
object pattern. A method’s core functionality is encapsulated in a private method. Additionally,
a public method is added. This method can be called by multiple threads at the same time. On
entry of the public method, a mutex must be acquired before the internal private function is
called. After return from the internal function, the previously locked mutex is released. This
design pattern ensures reliable synchronization, separated from the method’s internal function.
This pattern can be added to existing code with minimal e�ort.

By encapsulating the FSM functionality in the static function _fsm_unprotected(), this func-
tion is protected from external access. Static functions can be called from c-code inside the
same �le exclusively. The function _fsm() is declared externally in the according header �le.
After including the FSM header �le, this function can be called externally. When entering the
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_fsm() function, the mutex of this connection is locked. After locking, the critical section is
entered. The critical section covers the entire _fsm_unprotected() function.

1 / ∗ F i l e : s y s / n e t / gn r c / t r a n s p o r t _ l a y e r / g n r c _ t c p _ f sm . c ∗ /
2 s t a t i c in t32_ t _ f s m _ u n p r o t e c t e d ( g n r c _ t c p _ t c b _ t ∗ t cb ,
3 g n r c _ t c p _ f s m _ e v e n t _ t even t )
4 {
5 / ∗ . . . FSM c o r e f u n c t i o n r e s i d e s h e r e . . . ∗ /
6 return 0 ;
7 }
8
9 in t32_ t _fsm ( g n r c _ t c p _ t c b _ t ∗ t cb , g n r c _ t c p _ f s m _ e v e n t _ t even t )

10 {
11 in t32_ t r e s u l t ;
12
13 mutex_ lock (& tcb−>mtx ) ;
14 r e s u l t = _ f s m _ u n p r o t e c t e d ( tcb , e ven t ) ;
15 mutex_unlock (& tcb−>mtx ) ;
16
17 return r e s u l t ;
18 }

Code listing 3: FSM function protected by procedural monitor object pattern

By leaving the function, the mutex is unlocked automatically. The next pending thread can
enter the critical section.

7.4 TCP connection handling

All TCP connections are processed in a single thread. By running a RIOT project with the
module GNRC_TCP set, the RIOT auto-initialization function starts the connection handling
thread on startup. Code listing 4 shows the event loop of the connection handling thread. It
uses the core facilities of the gnrc network stack and integrates seamlessly into the message
passing based communication between network layers.

After initializing the variables the TCP handling thread registers itself in the network registry
“netreg“. Every time a TCP related message is sent, the TCP handling thread receives a message
containing a message type and a pointer to a packet inside the packet bu�er. If a message
with type GNRC_NETAPI_MSG_TYPE_RCV is received, the packet was sent from the lower
network layer to the TCP layer. The receive function is called with the pointer to the packet
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in response. If the received message type is GNRC_NETAPI_MSG_TYPE_SND, the application
layer will have sent a packet to the TCP thread before, to pass the message down the network
stack.

1 / ∗ F i l e : s y s / n e t / gn r c / t r a n s p o r t _ l a y e r / g n r c _ t c p _ e v e n t l o o p . c ∗ /
2 void ∗ _ e v e n t _ l o o p ( _ _ a t t r i b u t e _ _ ( ( unused ) ) void ∗ arg )
3 {
4 g n r c _ n e t r e g _ e n t r y _ t e n t r y ;
5 e n t r y . demux_ctx = GNRC_NETREG_DEMUX_CTX_ALL ;
6 e n t r y . p i d = _ t c p _ p i d ;
7 g n r c _ n e t r e g _ r e g i s t e r ( GNRC_NETTYPE_TCP , &e n t r y ) ;
8
9 while ( 1 ) {

10 m s g _ r e c e i v e (&msg ) ;
11 switch ( msg . type ) {
12 case GNRC_NETAPI_MSG_TYPE_RCV :
13 _ r e c e i v e ( ( g n r c _ p k t s n i p _ t ∗ ) msg . c o n t e n t . p t r ) ;
14 break ;
15
16 case GNRC_NETAPI_MSG_TYPE_SND :
17 _send ( ( g n r c _ p k t s n i p _ t ∗ ) msg . c o n t e n t . p t r ) ;
18 break ;
19
20 case MSG_TYPE_RETRANSMISSION :
21 _fsm ( ( g n r c _ t c p _ t c b _ t ∗ ) msg . c o n t e n t . p t r , TIMEOUT_RETRANSMIT ,
22 NULL , NULL , 0 ) ;
23 break ;
24
25 case MSG_TYPE_TIMEWAIT :
26 _fsm ( ( g n r c _ t c p _ t c b _ t ∗ ) msg . c o n t e n t . p t r , TIMEOUT_TIMEWAIT ,
27 NULL , NULL , 0 ) ;
28 break ;
29 }
30 }
31 return NULL ;
32 }

Code listing 4: Event loop of the TCP connection handling thread

In addition to the netapi message passing scheme, the event loop processes messages sent on
timer expiration. An expired retransmission timer sends a message withMSG_TYPE_RETRANSMISSION
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and a pointer to the connections TCB to the TCP handling thread. On reception of the message,
the FSM can be called directly with the a�ected TCB. The same mechanics apply on reception of
a message with type MSG_TYPE_TIMEWAIT. This message-based network processing scheme
is deployed in every independent layer of the gnrc network stack. By relaying purely on IPC
mechanisms, the network layers are independent from each other. New layers can be integrated
easily without changing other layers. Code listing 5 covers the _receive() function called by
the event loop on packet reception.

1 / ∗ F i l e : s y s / n e t / gn r c / t r a n s p o r t _ l a y e r / g n r c _ t c p _ e v e n t l o o p . c ∗ /
2 s t a t i c in t8_ t _ r e c e i v e ( g n r c _ p k t s n i p _ t ∗ pkt )
3 {
4 / ∗ Get I P and TCP Header ∗ /
5 LL_SEARCH_SCALAR ( pkt , ip6 , type , GNRC_NETTYPE_IPV6 ) ;
6 a s s e r t ( i p 6 != NULL ) ;
7 LL_SEARCH_SCALAR ( pkt , tcp , type , GNRC_NETTYPE_TCP ) ;
8 a s s e r t ( t c p != NULL ) ;
9

10 / ∗ E x t r a c t c o n t r o l b i t s ∗ /
11 c t l = b y t e o r d e r _ n t o h s ( ( ( t c p _ h d r _ t ∗ ) tcp−>d a t a )−> o f f _ c t l ) ;
12
13 / ∗ V a l i d a t e O f f s e t ∗ /
14 i f ( GET_OFFSET ( c t l ) < OPTION_OFFSET_BASE ) {
15 g n r c _ p k t b u f _ r e l e a s e ( pkt ) ;
16 return −ERANGE ;
17 }
18
19 hdr = ( t c p _ h d r _ t ∗ ) tcp−>d a t a ;
20
21 / ∗ V a l i d a t e Checksum ∗ /
22 i f ( b y t e o r d e r _ n t o h s ( hdr−>checksum )
23 != _ pk t_ ca l c_c s um ( tcp , ip6 , pkt )
24 ) {
25 g n r c _ p k t b u f _ r e l e a s e ( pkt ) ;
26 return −EINVAL ;
27 }
28
29 / ∗ De−mu l t i p l e x c o n n e c t i o n ∗ /
30 syn = ( ( c t l & MSK_SYN_ACK ) == MSK_SYN ) ? t r u e : f a l s e ;
31 s r c = b y t e o r d e r _ n t o h s ( hdr−>s r c _ p o r t ) ;
32 d s t = b y t e o r d e r _ n t o h s ( hdr−>d s t _ p o r t ) ;

53



7 Implementation

33
34 / ∗ I t e r a t e o v e r TCB l i s t t o f i n d t h e c o n n e c t i o n s TCB ∗ /
35 t c b = _ h e a d _ l i s t _ t c b ;
36 while ( t c b ) {
37 / ∗ I f SYN i s s e t and a TCB i s wa i t i n g f o r a c o n n e c t i o n ∗ /
38 i f ( syn && tcb−> l o c l _ p o r t == d s t && tcb−> s t a t e == LISTEN ) {
39 _fsm ( tcb , RCVD_PKT , pkt , NULL , 0 ) ;
40 break ;
41 }
42 / ∗ I f p o r t numbers match and SYN i s no t s e t ∗ /
43 i f ( ! syn && tcb−> l o c l _ p o r t == d s t && tcb−>p e e r _ p o r t == s r c ) {
44 _fsm ( tcb , RCVD_PKT , pkt , NULL , 0 ) ;
45 break ;
46 }
47 t c b = tcb−>next ;
48 }
49 / ∗ No f i t t i n g TCB has been found . Re spond wi th r e s e t ∗ /
50 i f ( t c b == NULL ) {
51 i f ( ( c t l & MSK_RST ) != MSK_RST ) {
52 _ p k t _ b u i l d _ r e s e t _ f r o m _ p k t (& r s t , pkt ) ;
53 g n r c _ n e t a p i _ s e n d ( _ t c p _ p i d , r s t ) ;
54 }
55 return −ENOTCONN ;
56 }
57 g n r c _ p k t b u f _ r e l e a s e ( pkt ) ;
58 return 0 ;
59 }

Code listing 5: Receive function of the TCP thread

At the beginning, the function searches for the IP and TCP headers inside the received packet.
Both are necessary for later checksum calculation and veri�cation. As soon as the TCP header
was found, the “o�set“-�eld from the TCP header is extracted and veri�ed. A TCP header with an
o�set less than 5 is faulty and discarded. After o�set veri�cation, the checksum is calculated and
compared to the received checksum for transmission error detection. If the calculated checksum
matches the received checksum, the received packet will be de-multiplexed, otherwise the
packet is discarded.

During de-multiplexing, the TCP handling thread iterates over the TCB list until a TCB
associated with the received packet is found. If the received packet contains a SYN-�ag and
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an application is listening on the destination port of the received packet, that TCB can accept
the connection. If the SYN �ag is not set and the port numbers of the received packet match
with the port numbers stored in a TCB, the packet belongs to a connection speci�ed with
this TCB. This connections FSM will be called with the RCVD_PKT event and a pointer to the
received packet. In case of unsuccessful de-multiplexing, a packet with the RST-�ag set is sent
to the peer in response. Further veri�cation of the sequence and acknowledgement numbers
are applied inside the FSM.

7.5 Sequence number processing

Sequence number validation veri�es that a received sequence number falls into the recei-
ve window. The receive window is de�ned as interval between RCV_NXT and RCV_NXT +

RCV_WND. A received sequence number is acceptable if the following equation is ful�lled:

RCV_NXT ≤ seqno. < RCV_NXT + RCV_WND

In the natural number space N0, the veri�cation can be achieved with normal comparison
operators. However, sequence numbers are represented as unsigned 32-bit integers forming a
subset of N0. In general the amount of transmitted data in a TCP stream is not limited. The
number of transmitted bytes could exceed the limited sequence number space, ranging from 0

to 232 − 1, therefore arithmetical operations on sequence numbers are calculated modulo 232

implicitly.
As a result of this restricted number space, normal comparison operators can not be used. A

calculation of RCV_NXT + RCV_WND could over�ow, comparisons with < and > can lead to
false results. This problem is addressed by introducing over�ow tolerant comparison operators.
The operators are de�ned by the following relations:

(x < y) <=> ((x− y) < 0)

(x > y) <=> ((x− y) > 0)

Code listing number 6 contains over�ow tolerant comparison operators. Every comparison
between sequence numbers should use these macros.
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1 / ∗ F i l e : s y s / n e t / gn r c / t r a n s p o r t _ l a y e r / g n r c _ t c p _ p k t . c ∗ /
2 #define LSS_32_BIT ( x , y ) ( ( ( in t32_ t ) ( x ) ) − ( ( in t32_ t ) ( y ) ) < 0 )
3 #define LEQ_32_BIT ( x , y ) ( ( ( in t32_ t ) ( x ) ) − ( ( in t32_ t ) ( y ) ) <= 0 )
4 #define GRT_32_BIT ( x , y ) ( ! LEQ_32_BIT ( x , y ) )
5 #define GEQ_32_BIT ( x , y ) ( ! LSS_32_BOT ( x , y ) )

Code listing 6: Over�ow tolerant comparison operators

7.6 Current implementation status

The gnrc TCP development has progressed to a functional prototype. The prototype can be
tested and veri�ed, although the implementation still lacks some functionality necessary for
widespread deployment. The missing features can be divided into two categories. The �rst
category is mandatory features for TCP operation. The second category is optional features,
improving TCP performance, usability and the integration into gnrc network stack.

The mandatory features cover:

• Zero window probing to detect a reopening of a closed window.

• An adaptive retransmission scheme based on RTO calculations, see[PACS11].

• Testing and veri�cation on multiple hardware platforms.

Optional features:

• Piggybagging payload data onto outgoing acknowledgments.

• Integration into conn API.

• Integration into BSD socket wrapper based on the conn API.

• Integration into the interactive RIOT shell.

The next chapter covers the testing and veri�cation procedure of gnrc TCP. The test setup
and di�erent test scenarios are described in detail and the measured results are visualized and
explained.
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The purpose of a transport protocol is reliable data exchange between applications, independent
of the underlying operating system. Therefore the TCP test and veri�cation procedure must
verify base functionality and interoperability between nodes running RIOT-OS and nodes
running other operating systems.

8.1 Test methodology

For testing and veri�cation purposes a test application was developed. The test application
follows the speci�c sequence of events:

1. A connection is established between a client and a server.

2. The client requests a prede�ned amount of data from the server.

3. The server reads the request and sends the requested data to the client.

4. After successful data reception, client and server close the connection simultaneously.

The test application client and server were implemented as RIOT applications using gnrc
TCP and on Linux. The developed test applications allow three di�erent test scenarios:

1. Scenario: Communication between a RIOT server and a RIOT client.

2. Scenario: Communication between a RIOT server and a Linux client.

3. Scenario: Communication between a Linux server and a RIOT client.

In each scenario, the client application requests 4031 bytes from the server. The gnrc TCP
implementation uses a 1220 byte MSS, the RIOT server must split the data stream into multiple
segments and the receiving RIOT client is forced to close and reopen its receive window
multiple times. The test procedure covers basic TCP operation between two hosts with absence
of packet loss. The server component addressed by fc00::1 always listens on port 2000, the
client connects to [fc00::1]:2000 from fc00::2 with a randomly generated port. The behavior in
case of packet loss is not covered by this test scenario.
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8.2 Test environment

The gnrc TCP implementation has been developed and tested under Arch Linux. RIOT features
executable and linking format (ELF) as compilation target. ELF can be executed on most Unix-
like platforms like Linux or FreeBSD. By running as a normal process in a Linux environment,
common c development tools and compiler features can be used for debugging and testing
purposes. Furthermore, Linux features virtual tap devices. Tap devices are virtual network
interfaces used to connect local processes. A tap device behaves like a normal layer 2 Ethernet
device, multiple tap interfaces can be connected to form a virtual network.

The client and server test applications were implemented as RIOT and Linux versions to
cover “the three“ di�erent test scenarios. Each application is executed as ELF binary running
under Linux, the applications are connected by tap devices. The packet sni�er “wireshark“16,
version 2.0.1, is used for capturing the network tra�c as well as veri�cation of the transmitted
data segments. The tests were executed under Arch Linux, version 4.3.3-3-ARCH. Tap devices
do not feature packet loss simulation, this setup is not feasible to simulate a lossy environment
and behavior under real world conditions.

8.3 Scenario 1: RIOT as server and RIOT as client

The TCP relevant measurement results for RIOT to RIOT communication are listed in Table
3. The connection is established by performing the 3-Way-Handshake (No. 7 to 9). The client
sends SYN-Flag carrying segment (No. 7). The server answers with a SYN+ACK carrying packet
(No. 8). The client acknowledges the reception of the server’s packet with an ACK (No. 9).

After connection establishment, the client requests 4031 bytes from the server (No. 10). This
request covers 20 bytes in size. Packet No. 11 acknowledges the request reception by sending
an acknowledgement with an updated window of 1200 byte. The server application consumes
the received data and sends an additional acknowledgement, reopening the window to its
original size of 1220 bytes (No. 12).

The �rst segment of the requested data is sent to the client (No. 13). The payload size is 1220
bytes, �lling the clients receive window entirely. On segment reception, the client responds
with an acknowledgement closing the receive window (No. 14). After consumption of the
accepted payload, the client reopens the window (No. 15). This procedure repeats until the
requested data has been transmitted (No. 16 - No. 24).

16https://www.wireshark.org/
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No Source Destination Protocol Length Info
7 fc00::2 fc00::1 TCP 78 48730 > 2000 [SYN] Seq=0 Win=1220 Len=0 MSS=1220
8 fc00::1 fc00::2 TCP 78 2000 > 48730 [SYN, ACK] Seq=0 Ack=1 Win=1220 Len=0 MSS=1220
9 fc00::2 fc00::1 TCP 74 48730 > 2000 [ACK] Seq=1 Ack=1 Win=1220 Len=0
10 fc00::2 fc00::1 TCP 94 48730 > 2000 [ACK] Seq=1 Ack=1 Win=1220 Len=20
11 fc00::1 fc00::2 TCP 74 2000 > 48730 [ACK] Seq=1 Ack=21 Win=1200 Len=0
12 fc00::1 fc00::2 TCP 74 [TCP Window Update] 2000 > 48730 [ACK] Seq=1 Ack=21 Win=1220 Len=0
13 fc00::1 fc00::2 TCP 1294 [TCP Window Full] 2000 > 48730 [ACK] Seq=1 Ack=21 Win=1220 Len=1220
14 fc00::2 fc00::1 TCP 74 [TCP ZeroWindow] 48730 > 2000 [ACK] Seq=21 Ack=1221 Win=0 Len=0
15 fc00::2 fc00::1 TCP 74 [TCP Window Update] 48730 > 2000 [ACK] Seq=21 Ack=1221 Win=1220 Len=0
16 fc00::1 fc00::2 TCP 1294 [TCP Window Full] 2000 > 48730 [ACK] Seq=1221 Ack=21 Win=1220 Len=1220
17 fc00::2 fc00::1 TCP 74 [TCP ZeroWindow] 48730 > 2000 [ACK] Seq=21 Ack=2441 Win=0 Len=0
18 fc00::2 fc00::1 TCP 74 [TCP Window Update] 48730 > 2000 [ACK] Seq=21 Ack=2441 Win=1220 Len=0
19 fc00::1 fc00::2 TCP 1294 [TCP Window Full] 2000 > 48730 [ACK] Seq=2441 Ack=21 Win=1220 Len=1220
20 fc00::2 fc00::1 TCP 74 [TCP ZeroWindow] 48730 > 2000 [ACK] Seq=21 Ack=3661 Win=0 Len=0
21 fc00::2 fc00::1 TCP 74 [TCP Window Update] 48730 > 2000 [ACK] Seq=21 Ack=3661 Win=1220 Len=0
22 fc00::1 fc00::2 TCP 445 2000 > 48730 [ACK] Seq=3661 Ack=21 Win=1220 Len=371
23 fc00::2 fc00::1 TCP 74 48730 > 2000 [ACK] Seq=21 Ack=4032 Win=849 Len=0
24 fc00::2 fc00::1 TCP 74 [TCP Window Update] 48730 > 2000 [ACK] Seq=21 Ack=4032 Win=1220 Len=0
25 fc00::2 fc00::1 TCP 74 48730 > 2000 [FIN, ACK] Seq=21 Ack=4032 Win=1220 Len=0
26 fc00::1 fc00::2 TCP 74 2000 > 48730 [ACK] Seq=4032 Ack=22 Win=1220 Len=0
27 fc00::1 fc00::2 TCP 74 2000 > 48730 [FIN, ACK] Seq=4032 Ack=22 Win=1220 Len=0
28 fc00::2 fc00::1 TCP 74 48730 > 2000 [ACK] Seq=22 Ack=4033 Win=1220 Len=0

Table 3: Network measurement results between a RIOT server and a RIOT client

The connection termination phase stretches from packet no. 25 to no. 28. The client sends a
FIN+ACK packet to the server (No. 25), the server acknowledges it (No. 26) and sends its own
FIN+ACK packet (No. 27). Finally the server’s termination request is acknowledged by the
peer (No. 28).

8.4 Scenario 2: RIOT as server and Linux as client

In this scenario the RIOT application acts as server and the Linux application as client. Table 4
contains the measured network tra�c.

The connection is initiated by the client sending a SYN packet (No. 4). The Linux client
announces a large window of 28800 bytes and a maximum segment size of 1440 bytes. Advanced
features like SACK are supported by the full-featured TCP implementation of Linux, a SACK
permit option is sent on connection establishment. The RIOT server acknowledges the received
SYN with a SYN+ACK packet (No. 5). By not receiving a SACK permit option the client
concludes that SACK is not implemented by the peer, SACK will not be used in this connection.
The client acknowledges the received SYN+ACK (No. 6), the connection is established.

The client requests data from the server (No. 7), the RIOT server acknowledges the request
(No.8) and updates the window after data consumption (No. 9). The transmission of the
requested 4031 bytes from the RIOT server to the Linux client is straight forward. The server
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No Source Destination Protocol Length Info
4 fc00::2 fc00::1 TCP 94 43316 > 2000 [SYN] Seq=0 Win=28800 Len=0 MSS=1440 SACK_PERM=1
5 fc00::1 fc00::2 TCP 78 2000 > 43316 [SYN, ACK] Seq=0 Ack=1 Win=1220 Len=0 MSS=1220
6 fc00::2 fc00::1 TCP 74 43316 > 2000 [ACK] Seq=1 Ack=1 Win=28800 Len=0
7 fc00::2 fc00::1 TCP 94 43316 > 2000 [PSH, ACK] Seq=1 Ack=1 Win=28800 Len=20
8 fc00::1 fc00::2 TCP 74 2000 > 43316 [ACK] Seq=1 Ack=21 Win=1200 Len=0
9 fc00::1 fc00::2 TCP 74 [TCP Window Update] 2000 > 43316 [ACK] Seq=1 Ack=21 Win=1220 Len=0
10 fc00::1 fc00::2 TCP 1294 2000 > 43316 [ACK] Seq=1 Ack=21 Win=1220 Len=1220
11 fc00::2 fc00::1 TCP 74 43316 > 2000 [ACK] Seq=21 Ack=1221 Win=30500 Len=0
12 fc00::1 fc00::2 TCP 1294 2000 > 43316 [ACK] Seq=1221 Ack=21 Win=1220 Len=1220
13 fc00::2 fc00::1 TCP 74 43316 > 2000 [ACK] Seq=21 Ack=2441 Win=34160 Len=0
14 fc00::1 fc00::2 TCP 1294 2000 > 43316 [ACK] Seq=2441 Ack=21 Win=1220 Len=1220
15 fc00::2 fc00::1 TCP 74 43316 > 2000 [ACK] Seq=21 Ack=3661 Win=36600 Len=0
16 fc00::1 fc00::2 TCP 445 2000 > 43316 [ACK] Seq=3661 Ack=21 Win=1220 Len=371
17 fc00::2 fc00::1 TCP 74 43316 > 2000 [ACK] Seq=21 Ack=4032 Win=39040 Len=0
18 fc00::2 fc00::1 TCP 74 43316 > 2000 [FIN, ACK] Seq=21 Ack=4032 Win=39040 Len=0
19 fc00::1 fc00::2 TCP 74 2000 > 43316 [ACK] Seq=4032 Ack=22 Win=1220 Len=0
20 fc00::1 fc00::2 TCP 74 2000 > 43316 [FIN, ACK] Seq=4032 Ack=22 Win=1220 Len=0
21 fc00::2 fc00::1 TCP 74 43316 > 2000 [ACK] Seq=22 Ack=4033 Win=39040 Len=0

Table 4: Network measurement results between a RIOT server and a Linux client

sends a segment, waits for the clients acknowledgement and sends the next segment until the
payload has been transmitted (No. 10 to No. 17). The client’s window is large enough to store
the requested payload without closing the window. In theory the server could send multiple and
larger segments at one time, because the client announced a MSS of 1440 bytes on connection
establishment. Currently the gnrc TCP implementation sends only one segment with 1220
bytes payload at most, to prevent over�ows in static packet bu�er of the gnrc network stack.

The connection termination is similar to the previous test scenario (No. 18 to No. 21).

8.5 Scenario 3: Linux as server and RIOT as client

In the third test scenario, the server is Linux based and the RIOT application is the client. Table
5 contains the captured network tra�c. The connection establishment phase (No. 5 to No. 7)
and transmission of the client’s request (No. 8 to No. 9) are similar to the other test cases.

The Linux server transmits the requested payload split into multiple 610 bytes segments (No.
10 to 21). Each received segment is acknowledged by the RIOT based client. After receiving two
610 segments, the client’s receive bu�er is �lled (No. 11), closing the receive window (No. 13)
until the received data is consumed. After reopening the window (No. 14), the server continues
the transmission.

The connection termination is similar to the other test cases with one exception. The FIN
packet sent from the Linux server (No. 25) carries payload. This causes the client to acknowledge
the data and the FIN-�ag in one acknowledgment (No. 26). After consumption of the received
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No Source Destination Protocol Length Info
5 fc00::2 fc00::1 TCP 78 5354 > 2000 [SYN] Seq=0 Win=1220 Len=0 MSS=1220
6 fc00::1 fc00::2 TCP 78 2000 > 5354 [SYN, ACK] Seq=0 Ack=1 Win=28800 Len=0 MSS=1440
7 fc00::2 fc00::1 TCP 74 5354 > 2000 [ACK] Seq=1 Ack=1 Win=1220 Len=0
8 fc00::2 fc00::1 TCP 94 5354 > 2000 [ACK] Seq=1 Ack=1 Win=1220 Len=20
9 fc00::1 fc00::2 TCP 74 2000 > 5354 [ACK] Seq=1 Ack=21 Win=28800 Len=0
10 fc00::1 fc00::2 TCP 684 2000 > 5354 [ACK] Seq=1 Ack=21 Win=28800 Len=610
11 fc00::1 fc00::2 TCP 684 [TCP Window Full] 2000 > 5354 [PSH, ACK] Seq=611 Ack=21 Win=28800 Len=610
12 fc00::2 fc00::1 TCP 74 5354 > 2000 [ACK] Seq=21 Ack=611 Win=610 Len=0
13 fc00::2 fc00::1 TCP 74 [TCP ZeroWindow] 5354 > 2000 [ACK] Seq=21 Ack=1221 Win=0 Len=0
14 fc00::2 fc00::1 TCP 74 [TCP Window Update] 5354 > 2000 [ACK] Seq=21 Ack=1221 Win=1220 Len=0
15 fc00::1 fc00::2 TCP 684 2000 > 5354 [ACK] Seq=1221 Ack=21 Win=28800 Len=610
16 fc00::1 fc00::2 TCP 684 [TCP Window Full] 2000 > 5354 [PSH, ACK] Seq=1831 Ack=21 Win=28800 Len=610
17 fc00::2 fc00::1 TCP 74 5354 > 2000 [ACK] Seq=21 Ack=1831 Win=610 Len=0
18 fc00::2 fc00::1 TCP 74 [TCP ZeroWindow] 5354 > 2000 [ACK] Seq=21 Ack=2441 Win=0 Len=0
19 fc00::2 fc00::1 TCP 74 [TCP Window Update] 5354 > 2000 [ACK] Seq=21 Ack=2441 Win=1220 Len=0
20 fc00::1 fc00::2 TCP 684 2000 > 5354 [ACK] Seq=2441 Ack=21 Win=28800 Len=610
21 fc00::1 fc00::2 TCP 684 [TCP Window Full] 2000 > 5354 [PSH, ACK] Seq=3051 Ack=21 Win=28800 Len=610
22 fc00::2 fc00::1 TCP 74 5354 > 2000 [ACK] Seq=21 Ack=3051 Win=610 Len=0
23 fc00::2 fc00::1 TCP 74 [TCP ZeroWindow] 5354 > 2000 [ACK] Seq=21 Ack=3661 Win=0 Len=0
24 fc00::2 fc00::1 TCP 74 [TCP Window Update] 5354 > 2000 [ACK] Seq=21 Ack=3661 Win=1220 Len=0
25 fc00::1 fc00::2 TCP 445 2000 > 5354 [FIN, PSH, ACK] Seq=3661 Ack=21 Win=28800 Len=371
26 fc00::2 fc00::1 TCP 74 5354 > 2000 [ACK] Seq=21 Ack=4033 Win=849 Len=0
27 fc00::2 fc00::1 TCP 74 [TCP Window Update] 5354 > 2000 [ACK] Seq=21 Ack=4033 Win=1220 Len=0
28 fc00::2 fc00::1 TCP 74 5354 > 2000 [FIN, ACK] Seq=21 Ack=4033 Win=1220 Len=0
29 fc00::1 fc00::2 TCP 74 2000 > 5354 [ACK] Seq=4033 Ack=22 Win=28800 Len=0

Table 5: Network measurement results between a RIOT server and a Linux client

data, the client sends an unnecessary window update (No. 27). The window update has no
e�ect, because the server has nothing left to send after sending a FIN-�ag. This is not an error,
it is just unnecessary.

8.6 Memory usage of gnrc TCP

This section covers the memory usage of gnrc TCP. The server component of the test application
was compiled for the ARM Cortex-m0+ CPU architecture and analyzed with cosy17 a tool
for analyzing memory usage and distribution in ELF binaries. Table 6 contains the measured
memory requirements. The ELF binary was compiled and analyzed with and without compiler
optimization (optimization levels O1, O2, O3 and Os). The default optimization level of the
RIOT build process is Os (optimization for space usage).

17https://github.com/haukepetersen/cosy
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ROM (.text) RAM (.data + .bss)
Cortex-m0+ 13964 bytes 1030 bytes
Cortex-m0+ optimized(-O1) 8112 bytes 1030 bytes
Cortex-m0+ optimized(-O2) 7968 bytes 1030 bytes
Cortex-m0+ optimized(-O3) 8064 bytes 1030 bytes
Cortex-m0+ optimized(-Os) 6930 bytes 1030 bytes

Table 6: Memory usage of gnrc TCP

The numbers in table 6 cover the basic memory requirements of the gnrc TCP module.
Additionally, each connection requires a TCB measuring 1394 bytes in size. A space usage
optimized application with a single TCP connection, requires additional ROM of 6930 bytes
and RAM of 2424 bytes (1030 bytes + 1394 bytes) for TCP operation. The TCB size is constant
regardless of the selected optimization level. A detailed analysis of memory usage at runtime
and measuring data transfer rates is beyond the scope of this thesis.
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The increasing interconnection between embedded devices, desktop computers, mobile devices
and network services requires re-implementations of widespread network protocols tailored
to di�erent device classes. The task of implementing protocols that have been extended and
optimized for fast data transfer rather than for a low memory footprint can be di�cult. In
general, protocols and their extensions must be analyzed with respect to the �eld of application.
TCP implementations used in the IoT should supply a reasonable feature selection to minimize
system requirements while providing enough functionality to communicate with full-featured
TCP implementations (see chapter 5).

In this thesis, the TCP extension SACK and the intervened algorithms slow start (4.2.1),
congestion avoidance (4.2.2), fast retransmit (4.2.3) and fast recovery (4.2.4) have been studied
with focus on their applicability in an IoT environment (4.2.5). SACK seems to be unsuitable
for the IoT (4.1). It increases memory requirements and message size in general. Slow start,
congestion avoidance and fast recovery are designed for TCP implementations that send
multiple segments in a burst. This is an uncommon behavior in the IoT. The deployment of
fast retransmit can lead to a faster retransmission of lost segments and increase throughput in
general. As part of this thesis, TCP has been implemented as contribution to the gnrc network
stack of RIOT-OS.

The TCP implementation for gnrc is a functional prototype with some missing features. The
�rst measurements of RIOT-to-RIOT and RIOT-to-Linux communication are promising, but
there is still room for improvement in terms of memory e�ciency and data transmission rates.

9.1 Field of application

By o�ering reliable data transport, TCP is the basis for many applications. TCP in RIOT might
be the basis for a network based interactive shell. Currently, RIOT o�ers a shell accessible via a
serial interface. By deploying a network-based shell, nodes could be controlled from anywhere
removing the need to have direct access to the device. Another application could be an update
mechanism, a feature missing in most operating systems deployed in the IoT. This is especially
important because network access if often the only accessible interface to deployed embedded
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devices. Additionally, TCP-dependent protocols can be implemented easily. For instance, a
simple HTTP server delivering a static website could be implemented with ease. Or nodes
could access information from the web extracting information needed for device operation.

9.2 Future work

The gnrc TCP implementation is still an early prototype, missing features like zero window
probing and an adaptive retransmission scheme must be added before gnrc TCP can be deployed.
Additionally, TCP must be integrated into the conn API. The testing and veri�cation procedures
need to be extended to scenarios with lossy networks and real hardware. In the future, gnrc
TCP should be analyzed and compared to other TCP implementations like lwIP or µIP in terms
of performance, memory requirements and feature completeness.

In the long run, e�orts to reduce memory consumption should be taken. By removing the
separate receive bu�er of a connection, memory requirements could be reduced signi�cantly.
Extensions like fast retransmit or a transmission policy allowing concurrent network traversal
of multiple segments could improve transmission rates.

To summarized this thesis, the gnrc TCP implementation has the potential to become one of
the cornerstones for new developments and applications in the RIOT-OS ecosystem.
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Abbreviations

6LoWPAN IPv6 over low-power wireless area networks

AES Advanced encryption Standard

API Application Programming Interface

BSD Berkeley Software Distribution

CAF C++ Actor Framework

CPU Central Processing Unit

CSMA/CA Carrier sense multiple access with collision avoidance

ELF Executable and Linking Format

FSM Finite State Machine

FTP File Transfer Protocol

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

IEEE Institute of Electrical and Electronics Engineers

IoT Internet of Things

IP Internet Protocol

IPC Inter-process communication

ISN Explicit Congestion Noti�cation

ISN Initial Sequence Number

LGPLv2.1 GNU Lesser General Public License, Version 2.1
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Abbreviations

LoWPAN Low-power wireless area network

MSL Maximum Segment Lifetime

MSS Maximum Segment Size

MTU Maximum transmission unit

OOP Object Oriented Programming

OSI Open Systems Interconnection

PPP Point-to-Point Protocol

RAM Random-Access Memory

RFC Requests For Comment

RIOT-OS Real-time Internet of Things Operating System

ROM Read Only Memory

RTT Round Trip Time

SACK Selective Acknowledgments

SICS Swedish Institute of Computer Science

SSH Secure Shell

TCB Transmission Control Block

TCP Transmission Control Protocol

UDP User Datagram Protocol
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