
Fakultät Technik und Informatik Faculty of Engineering and Computer Science
Department Informatik Department of Computer Science

Bachelorarbeit

Hector Joseph Smith

Technical analysis of the Bitcoin
cryptocurrency

Bachelorarbeit eingereicht im Rahmen Bachelorprüfung

im Studiengang Bachelor European Computer Science
am Department Informatik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer : Dr. Klaus-Peter Kossakowski
Zweitgutachter : Prof. Dr. Philipp Jenke

Abgegeben am 04.12.2015

Hector Joseph Smith

Technical analysis of the Bitcoin cryptocurrency

 3
3

Hector Joseph Smith

Thema der Bachelorarbeit

Technische Analyse der Bitcoin Kryptowährung

Stichworte

Bitcoin, Kryptowährung

Kurzzusammenfassung

Das Bitcoin-Protokoll hat sich zum beliebtesten Zahlungssystem weltweit
entwickelt. Um den Anwendern zu helfen, dieses System besser zu verstehen,
stellt diese Arbeit eine detaillierte Beschreibung dar, wie dieses Protokoll
entwickelt wurde und wie es funktioniert. Dies schließt neben historischen
Informationen, anhand welcher Bitcoin entwickelt wurde, einer Einführung in
einige mathematische Operationen und Datenstrukturen, worauf Bitcoin basiert,
ein. Anschließend wird eine Beschreibung der verschiedenen Komponenten des
Protokolls, als auch eine technische Analyse, in Bezug auf technische und soziale
Fragen im Rahmen der Entwicklung und Nutzung von Bitcoin dargestellt. Diese
Analyse enthält auch einige mögliche Angriffe gegen Bitcoin, sowie sich diese
auch auf Benutzer_Innen auswirken. Es wird festgestellt, dass die behandelten
Themen keine ernstzunehmenden Bedrohungen für Bitcoin sind, welche aufgrund
der Maßnahmen entwickelt wurden um die Effektivität zu verringern.

Hector Joseph Smith

Title of the paper

Technical analysis of the Bitcoin cryptocurrency

Keywords

Bitcoin, Cryptocurrency

Abstract

The Bitcoin protocol has become the most popular cryptocurrency
currently in use. In order to help it's users better understand how Bitcoin
operates, this thesis provides a detailed description of how this protocol was
designed and how it functions. This includes historical information related to how
Bitcoin was developed, an introduction to some of the mathematical operations
and data structures it is based on, a description of the various components of the
protocol, and finally, a technical analysis is made on some of the technical and
social issues raised by the development and use of Bitcoin. During the analysis
some possible attacks against Bitcoin, and how each one affects users, are
discussed. It is determined that the discussed issues are not serious threats
against Bitcoin due to the measures in place designed to reduce their
effectiveness.

Table of Contents 4
4

Table of Contents

Table of Contents...4

Glossary...6

1 Introduction..7

1.1 Goal of the thesis..8

1.2 Target audience...8

1.3 Structure of the thesis...9

1.4 Thesis delimitations..10

2 Origins of Cryptocurrencies..11

2.1 What is a cryptocurrency?...11

2.2 Current cryptocurrencies...14

2.2.1 Bitcoin...15

2.2.2 Other implementations...16

2.3 The history of Bitcoin..20

2.4 What makes Bitcoin so Important...25

2.5 Related Research..26

3 Protocol Design..27

3.1 Underlying mathematics...27

3.1.1 Hashing algorithms...28

3.1.2 Public key cryptography..32

3.1.3 Proof of Work...34

3.1.4 Merkle Trees..36

3.2 Design concepts..38

3.2.1 Transactions..38

3.2.1.1. Regular Transactions..38

Table of Contents 5
5

3.2.1.2. Coinbase Transactions...41

3.2.1.3. Restrictions..42

3.2.2 Script..43

3.2.2.1. Script Templates..44

3.2.2.2. Hash Types...49

3.2.2.3. Signature Creation...52

3.2.3 Addresses...53

3.2.4 Blocks...55

3.2.5 Mining...60

3.3 The Bitcoin network..65

3.3.1 Block chain..65

3.3.2 Network communication...68

3.3.3 Bitcoin mining pools..70

4 Analysis..72

4.1 Technical Analysis...72

4.1.1 Address anonymity...73

4.1.2 Double spending...78

4.1.3 Botnet farming..81

4.1.4 Flooding..83

4.1.5 Software Errors...85

4.1.6 Comparison...86

4.2 Social Analysis..89

4.2.1 Bitcoin Economics...89

4.2.2 Bitcoin Legality...91

5 Conclusion..93

5.1 Was the goal reached?..94

5.2 Proposed improvements to Bitcoin..95

5.3 Future work...96

Table List..97

List of Figures...98

References...99

Glossary 6
6

Glossary

TERM MEANING

BTC Bitcoin currency unit. Serves the same purpose as “€” or “$”.

Satoshi Smallest fraction of a Bitcoin which can be sent with the

current protocol implementation. 1 satoshi=1.0×10−8BTC

Tx Abbreviation for transaction.

ASIC Application-Specific Integrated Circuit.

https://en.wikipedia.org/wiki/Application-
specific_integrated_circuit

Fiat
Currency

Term used to categorize 'traditional' currencies, such as US
Dollar, Euro, etc.

Table 1: Glossary Items

https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
https://en.wikipedia.org/wiki/Application-specific_integrated_circuit

Introduction 7
7

1 Introduction

I believe the topic of this thesis is of great importance in the modern
age. As advancements in computer science are made, new complex
technologies are developed and implemented faster than ever. One of these
advancements was the recent introduction of cryptocurrency systems. These
new currency systems have since become increasingly popular and
revolutionized the way individuals can conduct business in an online
environment.

Cryptocurrencies such as Bitcoin are unique as they provide a
distributed, secure and anonymous currency which does not require a central
financial institution to process transactions as is the case with traditional
currencies. And I believe it is important for the public to understand how
these systems function, thus providing them the power to make informed
decisions on whether or not to use them and even have the possibility to
propose improvements and new features.

Introduction 8
8

1.1 Goal of the thesis
The main goal of this thesis is to provide a detailed technical

description of what Bitcoin actually is and how it was designed to function, as
well as an analysis of the security and privacy granted to it’s users.

More specifically, my goal is to provide the reader with a resource
which will allow an understanding of what Bitcoin and all of it’s various
components are and how they all function together in order to create a
system which is stable and secure enough to be used as a currency. This will
include a broader overview of the complete system as well as an in-depth
technical analysis of each component and how they work together.

I will also aim to provide the reader with historical information about
some socio-economic aspects of Bitcoin such as how it generates value and
how it can be exchanged for goods and services, as well as some of the
social and legal impacts it's introduction and widespread use has caused.

1.2 Target audience
This thesis has been targeted at readers who have a general interest

or knowledge in computer systems and wish to learn more about how the
popular cryptocurrency Bitcoin operates on a more technical level. This does
not include readers interested in the social and economic impacts of the use
of Bitcoin. These topics will not be discussed in any detail during this thesis.

As the goal of this thesis is mainly technical, the reader is expected to
hold some knowledge regarding computer systems, security protocols and
network communication. However, a brief overview of some of the most
important topics, such as hashing algorithms and public key cryptography,
will be provided.

Introduction 9
9

1.3 Structure of the thesis
The structure of this thesis is divided into five main chapters,

1. Introduction

2. Origins of Cryptocurrencies

3. Protocol Design

4. Analysis

5. Conclusion

Each chapter will contain two or more subsections which will discuss
topics related to the main chapter separately. Some sub-chapters will also
require further segregation by creating a third level with more sections.

The first chapter includes topics related to the introduction of the
thesis, not the topic. Topics such as the goal of the thesis and the target
audience will be included here.

The second chapter, 'Origins of Cryptocurrencies' will introduce the
concept of a cryptocurrency, provide some information on the various
alternative implementations as well as some historical information related to
Bitcoin.

Chapter three is the main focus of the thesis, and as such, the longest.
This chapter will included topics related to how the protocol was designed
and how it functions.

Chapter number four is dedicated to the analysis portion of the thesis
and is divided into two sub-chapters. An analysis of some security issues and
theoretical attacks against the protocol will be included in the first sub-
chapter, with the second including a very brief social analysis, where some of
the economical and legal aspects of Bitcoin will be exposed.

The final chapter is devoted to the conclusion of the thesis. This will
include a review of what was discussed and an analysis on whether or not the
goal was reached.

As well as these five chapters, the thesis includes some unnumbered
sections devoted to the table of contents, glossary, table and figure lists and
the references.

Introduction 10
10

1.4 Thesis delimitations
As previously mentioned, legal, economic and social aspects of the

Bitcoin protocol will not be discussed in this thesis. While these topics are
important for the full understanding of the Bitcoin protocol and how it has
come to affect our society, they do not fit with the skill-set and knowledge of
the author and the technical focus of the thesis.

Other topics which will not be discussed include components of the
protocol such as contracts, wallets and alternate operating modes. While
these topics are important to the complete understanding of the Bitcoin
protocol, as the author has limited resources it was decided to remove these
topics in favour of increased focus on other aspects of the protocol which are
fundamental to its operation.

Origins of Cryptocurrencies 11
11

2 Origins of
Cryptocurrencies

The goal of this chapter is to provide the reader with a introduction to
the concept of a cryptocurrency as well as some historical information related
to how cryptocurrencies first appeared.

This chapter will also touch on the reasons why this thesis is dedicated
to discussing the Bitcoin cryptocurrency instead of one of the many other
variants and some related research the development of Bitcoin has launched.

2.1 What is a cryptocurrency?
With the incredible speed of developments in computer science, more

and more new technologies have emerged along with new concepts and new
terms. One such development is the concept of a “cryptocurrency”.

Cryptocurrencies such as Bitcoin represent a sub-set of a more broad
term, 'digital currencies'. To clarify the differences between these two terms,
a definition for each is provided:

Digital currency:

“Digital currency or digital money is an Internet-based medium of
exchange distinct from physical (such as banknotes and coins) that
exhibits properties similar to physical currencies, but allows for
instantaneous transactions and borderless transfer-of-ownership.”

[Wiki:DigitalCurrency]

Origins of Cryptocurrencies 12
12

Cryptocurrency:

“A cryptocurrency (or crypto currency) is a medium of exchange using
cryptography to secure the transactions and to control the creation of
new units.”

[Wiki:Cryptocurrency]

The main difference between these definitions is “… and to control the
creation of new units”. This means that as well as using cryptographic
algorithms to secure transactions, similar algorithms are also employed in
the process of generating new currency units. This is possible because a
crytocurrency is a complete, independent currency system which is not
based on other currencies and is not owned or controlled by any
governmental or banking entity. Therefore it is free to create new currency
units without conforming to the same regulations as banks.

A more complete definition of a cryptocurrency is this:

A cryptocurrency is an Internet-based medium of exchange which uses
cryptography to secure transactions and control the creation of new units. It
is distinct from physical currency (such as banknotes and coins) but exhibits
properties similar to physical currencies, allowing for instantaneous
transactions and borderless transfer-of-ownership.

Another similar term which may appear while researching this topic is
“virtual currency”. This is another sub-set of digital currencies, but contrary
to crytocurrencies, it is only used in virtual environments and can be created
or destroyed by the administrator of that specific virtual environment. Usually
it is also unique to the virtual environment where it was created, and can
only be legally exchanged for other currencies if the administrator allows it.
These types of currencies are often used in online games or online casinos.

While Bitcoin and other cryptocurrencies are completely independent
from other currencies, services such as Paypal do not have a unique
currency, and are instead based on fiat currencies. This type of services are
better defined as online payment services and are separate from
cryptocurrencies. While it is possible to purchase BTCs in exchange for fiat
currency, this does not increase the number of currency units available, it
only redistributes them among its various users. Bitcoin design does not
allow any entity to manually create new currency units without doing the
required computational work. Which in the case of Bitcoin is solving a proof-
of-work.

Origins of Cryptocurrencies 13
13

A common question people may have when they first hear about the
concept of a cryptocurrency is: “Is it really a currency?” This question is often
raised because cryptocurrencies appear to not have any intrinsic value
whatsoever. Currency units are generated when a computer expends a
certain amount of work to solve an arbitrary problem, and after these
currency units are generated, they do not posses any physical
representation. This is distinct to fiat currencies, which can be represented by
physical bank notes and coins, or can be exchanged for precious metals such
as diamonds or gold. This allows any client to exchange their bank notes for a
more 'real' representation of wealth.

The reason why cryptocurrencies such as the popular Bitcoin can be
categorized as currencies lies in the fact that they posses three important
characteristics: They are hard to earn, limited in supply and easy to verify.
[Economist, 2015]

A very simplified overview of how the Bitcoin protocol operates is
shown here:

1. Computers verify previous transactions and attempt to solve complex
mathematical problems in order to earn currency units as a reward.

2. The owner of the computer which solved the current puzzle is the
recipient of a special transaction where new value is created.

3. Users can transfer money to and from each other using their public
addresses. Usually each transaction will have a small fee associated
with it.

4. Users can exchange currency units for fiat currency at currency
exchange services.

5. Businesses can offer a public address where customers can deposit
currency units in exchange for goods and services.

Origins of Cryptocurrencies 14
14

2.2 Current cryptocurrencies
The story of digital online cash schemes, and later cryptocurrencies,

begins with David Lee Chaum and his 1982 paper which first discussed the
possibility of using cryptographic protocols to allow users to obtain and spend
currency anonymously. [Wiki:Chaum] A year later, in 1983, he published
another paper proposing a new protocol for digital cash. This new protocol
was named 'eCash' and was later realised when the DigiCash company was
founded in 1990 by David Chaum.

While David Chaum had already implemented services similar to a
cryptocurrency, these services are better categorized as 'Digital Currencies'.
The first concept of an actual cryptocurrency appeared in 1998 when Wei-Dai
published a description of “b-money”. Unlike previous proposals, b-money
can be summarized as an anonymous, distributed electronic cash system.
[Wei-Dai, 1998] The goal being to create a secure and private way to transfer
money from one person to another without relying on government or private
companies.

Shortly after Wei-Dai's article another concept of cryptocurrency was
presented by Nick Szabo in 1998 named “Bit-Gold” which introduced the idea
of users requiring to complete a proof-of-work while using the system.
[Szabo, 2008] Neither of these implementations received significant support,
but are considered precursors to the Bitcoin system. [Wiki:Szabo]

In 2008 an anonymous entity known only as “Satoshi Nakamoto”
released a white paper describing a new cryptocurrency named Bitcoin. This
was the first true decentralized cryptocurrency yet proposed and soon gained
much more support than any other previous proposals. [Nakamoto, 2008]

Satoshi's paper describing Bitcoin initiated what could be described as
a cryptocurrency gold rush of sorts. Since then, hundreds of new
cryptocurrency concepts and implementations have been presented. This
was helped, in part, by the open source nature of the Bitcoin system.
However, most did not add any real technological innovation and remained
very similar to the original description, only altering minor details such as
which cryptographic algorithms are used or the value generation rate.

In more recent history, a so called 2nd Generation of cryptocurrencies
began in 2014, with the development of new cryptocurrencies with new
functionality to achieve increased user privacy, and better usability.
Examples of such implementations are Monero, Ethereum or Nxt. While some
of these new developments are very important for the future of
cryptocurrencies, the main focus of this thesis is Bitcoin, and as such these
other implementations will not be discussed in detail.

Origins of Cryptocurrencies 15
15

2.2.1 Bitcoin
The history of Bitcoin itself began with Satoshi Nakamoto's paper in

2008 and became the first decentralized cryptocurrency. And while other
protocols and services, such as b-money and DigiCash, were already in
existence, Bitcoin attempted to be unique by creating a true decentralized
cryptocurrency without any ties to any form of fiat currency or material
wealth. This helped make Bitcoin unlike any previous implementation, as the
digital currencies available at the time were either based on fiat currencies or
were not completely decentralized.

The main reasons which allow Bitcoin to be categorized as a
decentralized cryptocurrency is the fact that, unlike the previous
implementations, Bitcoin does not have any central servers or administrators
of any kind. Instead it relies on every user to agree on a pre-determined set
of rules in order to verify the validity of a public transaction ledger. When
new transactions are made they are validated by the network of users and, if
the transaction is valid, it is added to the transaction ledger.

Origins of Cryptocurrencies 16
16

2.2.2 Other implementations
Since Bitcoin was first implemented, hundreds of alternative

implementations of the cryptocurrency concept have been presented over
the last few years. At the time or writing this thesis over 600 different
cryptocurrencies are available for trade. [Wiki:ListCryptocurrency]

In part, the cause of the vast number of cryptocurrencies available
today was the open source nature of the Bitcoin protocol and software. This
allows anyone with some understanding of programming to copy, modify and
release a new version of the Bitcoin software to create their own new
currency. However, similarly to fiat currency systems, a cryptocurrency
requires a large amount of users who trust the system in order to be
successful. This did not happen for the vast majority of the numerous other
available cryptocurrencies, leading to most of these having very limited
adoption.

The list of available implementations include some which were
designed specifically to appeal to a certain user base or to provide an
alternative to Bitcoin with small adjustments without necessarily adding
anything new to the original implementation. This category include
cryptocurrencies such as:

Litecoin

Litecoin is currently one of the largest cryptocurrencies available and
is nearly identical to the Bitcoin protocol. It was first made available on
October 7th 2011 by Charles Lee, a former Google employee. [Wiki:Litecoin]

There are three main differences between Litecoin and Bitcoin;

• While the Bitcoin protocol aims to generate a block every 10 minutes,
the value is reduced to 2.5 minutes in Litecoin. The goal being a faster
transaction confirmation time.

• While Bitcoin uses a hashcash proof-of-work scheme, based on the
hashing algorithm SHA-256, Litecoin uses scrypt in an attempt to
reduce the effectiveness of GPU and ASIC miners.

• The total number of currency units produced is approximately 4 times
larger, with Litecoin being capped at 84 million coins, instead of
Bitcoin's 25 million.

Origins of Cryptocurrencies 17
17

DogeCoin

DogeCoin is a Bitcoin derivative named after a popular internet meme.
It first appeared in December of 2013 when Jackson Palmer released it as a
“joke currency”. However, DogeCoin soon gained a large support base and
it's market capitalization reached $60 million by January 2014.
[Wiki:DogeCoin]

DogeCoin functions in a similar manner as the Bitcoin currency,
however, while Bitcoin is a deflationary currency, with less and less coins
being mined over time, DogeCoin does not have any limit on the number of
coins which can be mined. At the time of writing, over 100 billion coins are in
circulation and even more are being generated at a rate of approximately 5
billion a year.

PotCoin

The protocol implemented by PotCoin is quite similar to that of
Litecoin, but was developed with the aim of being the standard form of
payment for the legalized cannabis industry.

It was first release on January 21, 2014 through GitHub and within a
month was added to a cryptocurrency exchange where it was possible to
exchange Bitcoins for PotCoins. [Wiki:PotCoin]

Coinye

Coinye (formerly known as Coinye West) is a cryptocurrency based on
Bitcoin and named after the popular American hip hop artist Kanye West. It
was released on January 7th, 2014 but soon became defunct due to a
trademark infringement lawsuit by Kanye West's layers.

While the peer-to-peer network which supports the currency is still
operational, the block generation difficulty decreased dramatically between
January and May 2014, indicating that the computational power available on
the network decreased by roughly 99%. [Wiki:Coinye]

Origins of Cryptocurrencies 18
18

Other implementations have attempted to add new functionality to the
original concept.

Peercoin

Peercoin was inspired by Bitcoin and shares a large portion of it's
technical description and source code, but it is the first cryptocurrency to use
both a proof-of-work scheme combined with a proof-of-stake algorithm when
generating currency.

In simple terms, the proof-of-stake scheme rewards users based on the
number of coins they posses, thus reducing the risk of a 51% attack by
requiring an attacker to control a large amount of currency as well as
computing power.

This implementation attempts to solve a potential security issue which
may arise in Bitcoin as the block mining reward decreases. As fewer
machines attempt to mine blocks, the amount of combined computing power
on the network decreases, leading to a decrease in cost for an attacker to
gain control of 51% of the network. While this cost will likely remain very
high, this would theoretically allow that attacker to reverse his payments by
using a double spending attack.

Currently, peercoin is one of the largest cryptocurrency available and
can be exchanged for fiat currencies as well as some other cryptocurrencies
such as Bitcoin. [Wiki:PeerCoin]

Dash

Dash (formerly known as DarkCoin) is another cryptocurrency based
on Bitcoin which was released on January 18th 2014 and later renamed on
March 25th, 2015.

Unlike Bitcoin or some of the other cryptocurrency implementations,
Dash uses a hashing scheme known as X11 instead of the SHA and RIPEMD
algorithms used by Bitcoin. The X11 approach hashes the input data using 11
different hashing algorithms. The result of this is an increased performance
from CPU's when mining when compared with GPU's. [Wiki:Dash]

Another innovation brought by Dash is the use of a decentralized coin
mixing algorithm known as Darksend. In the current implementation,
transactions from various users are combined into one single transaction with
several outputs, thus greatly increasing the difficulty for directly tracing the
transactions and the flow of funds. This service is also provided by third
parties for Bitcoin users, but it is not the default behaviour.

Origins of Cryptocurrencies 19
19

Bytecoin (BCN)

The Bytecoin cryptocurrency is the first cryptocurrency to implement
the CryptoNote protocol. This protocol has since been implemented in other
cryptocurrencies such as Monero and DigitalNote.

The advantage in using CryptoNote lies in the fact that transactions
remain more private. While it still uses a public block chain similar to Bitcoin,
the flow of funds cannot be traced back in the same way it can with the
Bitcoin blockchain. With CryptoNote only the sender and recipient of a
transaction hold all the data relevant to the transaction.

Another significant change relative to Bitcoin is the way in which the
proof-of-work is calculated. While Bitcoin uses the SHA-256 hashing
algorithm, cryptocurrencies based on CryptoNote use a memory bound
function known as CryptoNight which cannot be easily pipelined and
implemented in ASIC devices. [Wiki:CryptoNote]

Origins of Cryptocurrencies 20
20

2.3 The history of Bitcoin
Table 2 contains several of the important events related to the Bitcoin

cryptocurrency, including some which lead to the first development of the
cryptocurrency.

DATE EVENT

xx.xx.1982
First paper discussing a secure digital cash protocol
was published by David Lee Chaum.

xx.xx.1983
David Chaum publishes a paper proposing the eCash
protocol. Which would allow users to perform secure
anonymous transactions.

xx.xx.1990
DigiCash founded by David Chaum implementing the
eCash protocol.

26.11.1998 Wei-Dai presents the concept of b-money.

01.08.2002

Adam Black publishes “hashcash”.

Hashcash is the proof-of-work algorithm which is
currently used in the Bitcoin system.

xx.xx.2007
Satoshi Nakamoto begins developing Bitcoin. The
exact date is unknown.

18.08.2008 “bitcoin.org” domain name registered.

31.10.2008

Bitcoin design paper published by “Satoshi
Nakamoto”.

At the time of writing, the real identity of Satoshi
Nakamoto remains unknown and it is unclear whether
it represents a single individual or a group of
individuals.

03.11.2008 Bitcoin project registered at “SourceForge.net”.

03.01.2009
Genesis Block created at 18:15:05 GMT.

The genesis block is the first block in the block chain

Origins of Cryptocurrencies 21
21

DATE EVENT

on top of which all other blocks are built. It is unique
because, unlike every other block in the block chain, it
does not reference the previous block.
[BtcWiki:Genisis]

09.01.2009 Bitcoin client v0.1 released.

12.01.2009
First Bitcoin transaction, in block 170. From “Satoshi”
to “Hal Finney”.

05.10.2009
Bitcoin exchange rate published by New Liberty
Standard. $1 = 1309.03 BTC

16.12.2009 Bitcoin client v0.2 released.

30.12.2009

First increase in difficulty.

Difficulty is a calculated value which represents the
average amount of effort required to solve the current
proof-of-work problem.

06.02.2010

Bitcoin market established.

Bitcoin market is a currency exchange service where
users can purchase and sell BTCs in exchange for fiat
currency.

22.05.2010
The user “laszlo” becomes the first user to buy pizza
with Bitcoins, paying 10,000 BTC for approximately
$25 worth of pizza.

07.07.2010 Bitcoin client v0.3 released.

17.07.2010

MtGox established.

MtGox is a Bitcoin exchange where BTCs could be
traded for various real world currencies such as US
Dollars or Euros. It later became the most widely used
Bitcoin exchange service.

01.10.2010 First public OpenCL miner software released.

Origins of Cryptocurrencies 22
22

DATE EVENT

OpenCL software uses the GPU cores to mine BTCs
instead of the traditional CPU cores. The inherent
higher parallelism capability of the GPU allowed for a
much higher mining speed.

06.10.2010
Bitcoin economy passed $1 million as the exchange
price reached $0.50 / BTC.

09.12.2010 Difficulty passed 10,000.

16.12.2010

Bitcoin Pooled Mining found their first block.

By mining Bitcoins in a pool, groups of individuals with
weaker machines can cooperate in order to accelerate
the mining process. Rewards are then split among the
participants according to a pre-defined criteria.

28.01.2011

Block number 105000 created.

At this time 5.25 million BTCs are currently in
circulation, which, due to the reward reduction
system, is approximately a quarter of the total
number of BTCs to ever be available.

09.02.2011
Bitcoin value reached parity with the US Dolar. $1 = 1
BTC

25.03.2011

10% difficulty reduction.

Difficulty reductions are rare, as the amount of
computational power available on the network rarely
decreases. This represents the largest reduction in
difficulty to date.

23.04.2011

Bitcoin value reached parity with the Euro and the
GBP.

The value of the Bitcoin currency passes $10 million.

30.04.2011 Difficulty passes 100.000.

08.06.2011 Bitcoin exchange rate reaches an all time high of

Origins of Cryptocurrencies 23
23

DATE EVENT

$31.91=1 BTC.

19.06.2011

MtGox database compromised, resulting in user
details of 60,000 users being leaked.

On the same day, an unidentified individual gained
access to an administrator account at MtGox and
issues sell orders on thousands of Bitcoins. Reducing
the exchange value of Bitcoins at MtGox from $17.51
to $0.01.

Trading was closed for 7 days at MtGox and the invalid
sell orders were reversed. However, BTCs were stolen
from some MtGox users due to the database breach.

24.06.2011 Block generation difficulty reaches 1,000,000.

23.08.2011

P2Pool mines it's first Bitcoin block.

P2Pool is the first Bitcoin mining pool based on peer-
to-peer technology.

01.03.2012
Largest ever Bitcoin theft due to a security breach at
the web host Linode, resulting in approximately
50,000 BTC being stolen.

28.10.2012

Halving day. The first date where the amount of BTCs
rewarded for completing a block is halved. BTC reward
dropped from 50 BTC to 25 BTC.

In order to avoid super inflation, Bitcoin will continue
to reduce the awarded BTCs to miners by 50% every
four years.

28.03.2013 Total Bitcoin market worth passes $1 billion.

01.04.2013 Bitcoin value reaches $100 / BTC.

29.10.2013
The first Bitcoin ATM is installed in Vancouver, Canada.
[Wired, 2013]

23.11.2013 Bitcoin market worth passes $10 billion for the first

Origins of Cryptocurrencies 24
24

DATE EVENT

time.

28.02.2014

MtGox files for bankruptcy.

Reports suggest that the bitcoin exchange closed
down and filed for bankruptcy after 744.000 BTCs
(valued at $350 million) were stolen. [BBC, 2014]

06.01.2015

Bitstamp suspends service after a security breach
resulted in 19.000 BTCs being stolen (valued at $5
million). [Reuters, 06.01.2015]

Bitstamp is currently one of the largest Bitcoin
exchange services, where users can exchange BTCs
for USD or Euros

Bitstamp later reopened with increased security and
claimed users would not loose money due to the
breach. [Reuters, 09.01.2015]

Table 2: Bitcoin History [BtcWiki:History] [Wiki:Bitcoin]

Origins of Cryptocurrencies 25
25

2.4 What makes Bitcoin so Important
The reasons why Bitcoin is so often regarded as an important

development in the area of cryptocurrencies comes down to two important
aspects. Firstly, the technical innovation it brought, and secondly, the
economic impact it had as it's user base rapidly surpassed any other previous
attempt at a digital currency.

Technical innovation

By being the first decentralized cryptocurrency, Bitcoin brought the
use of new technologies to the realm of digital currencies and
cryptocurrencies. Leading the way for other protocols to be built based on
Bitcoin.

Bitcoin has been at the source of the implementation of over 740 other
cryptocurrencies. Most are very similar to Bitcoin and did not bring any new
functionality of note, but a small number of them, such as Monero or Nxt,
have attempted to implement new technologies in their protocol in order to
provide new functionality and better privacy to their users. While still
following the same base concepts as Bitcoin.

As well as this, the open source nature of the Bitcoin project allows
users to view and modify the source code behind the currency, allowing the
Bitcoin protocol to evolve and improve over time based on proposals and
developments made by the community. This allows Bitcoin to react to
changes and new security threats as they are discovered.

Economic impact

As the number of users using the Bitcoin protocol rapidly increased, so
did the value of the currency. Since it's inception Bitcoin has consistently
been the most widely used cryptocurrency available. As of November 2015
Bitcoin has a market capitalization of around 4.3 billion Euros, with daily
transactions involving over 100 million Euros. [CoinMarket, 2015]

Other competing cryptocurrencies account for a much smaller share of
the total cryptocurrency market, with the second biggest cryptocurrency
having a market capitalization of only around 130 million Euros,
approximately 3% that of Bitcoin.

Origins of Cryptocurrencies 26
26

2.5 Related Research
As well as being at the source of the development of a large number of

alternate cryptocurrencies, Bitcoin has also introduced the concept of using a
public blockchain as a way to store data in a distributed network. This
concept has since been expanded beyond being solely used in the context of
a currency.

Some believe that blockchains will be, or should be, at the core of a re-
design of the internet, with email services, DNS servers and TLS/SSL
certificate authorities being based on this concept instead of central servers.

“Suppose you replaced the Internet’s centralized Domain Name
System with a blockchain for Internet names (like Namecoin) such
that every DNS request included some proof-of-work effort. Or you
used any blockchain (including Bitcoin’s) as a notary service. Or you
built a new blockchain for crowdfunding. Or you replaced a centralized
system which absolutely does need to be scrapped — that horrific
barrel of worms known as TLS/SSL Certificate Authorities — with a
blockchain-based solution powered at the browser level. … Or you
built a new distributed email service, with a blockchain for email
addresses, and every time you checked your email you contributed to
the network. Or a new distributed social network, with a blockchain
verifying identities, powered by code that ran every time its users
launched its app or visited its web page.”

[Evans, 2014]

Services such as Namecoin are already attempting to change the
structure of the Internet by implementing a distributed DNS service with a
similar structure to that of Bitcoin. To accomplish this, users can include data
in transactions which allows them to register domain names in exchange for
currency units (NMCs in this case). This helps prevent censorship as
registered domains cannot be removed from the DNS system as easily as
they can when the system is controlled by a single entity. [Wiki:Namecoin]

At the time of writing Namecoin users are limited to registering .bit
domains, but it would be possible to extend the system to allow registering
any type of domain.

Another use of the blockchain concept is being explored by several
companies with ties to the music industry. Companies such as Peertrack and
Ujo are attempting to change the way artists receive royalties for their work
by creating a public blockchain where users can purchase music directly from
the artist. [woolci, 2015]

Protocol Design 27
27

3 Protocol Design

The goal of this section is to provide the reader with a technical
description of the several components of the Bitcoin protocol and how they
function.

This section is divided in to three main sections, with the first one
being dedicated to explaining some of the base mathematical operations and
data structures used by the Bitcoin protocol. In the second section some of
the major design concepts of the protocol are shown and explained. The final
section introduces the topic of how the Bitcoin network is structured and how
some network operations are implemented.

3.1 Underlying mathematics
The Bitcoin protocol makes use of several lower level mathematical

operations and data structures the reader should have some knowledge
about before attempting to understand the actual protocol.

Some of the operations described here are widely used in other
protocols of various types as well as Bitcoin. But as these topics fall outside
the main focus of this thesis, a complete description will not be provided
here. However, these topics have been the focus of various other technical
papers which the reader can explore.

Protocol Design 28
28

3.1.1 Hashing algorithms
A hash function can be defined as method to map an arbitrary input to

a digital output of fixed size. [Wiki:HashFunction] This can be visualized in a
simple example:

hash(John)=70 F3

hash(Lisa)=15 A2

hash(James)=34 CD

hash(abc123)=B7 C2

Here, four input values (also known as keys) are 'digested' and a four
digit hexadecimal output value is returned. As hashing algorithms are
deterministic, the same input will always provide the same output. In this
example, whenever the key 'John' is digested, the value '70F3' is returned.

Hashing algorithms are widely used today in computer science for a
variety of purposes, as each purpose has varying requirements, a very large
number of hashing algorithms have been implemented to handle different
use cases and data types efficiently. It is also important to note that, in
general, the mathematical algorithm behind these systems is widely known,
as in several cases multiple users and systems need access to the exact
same algorithm.

Two common applications for hashing algorithms are given here:

Checksums

In order to ensure data has not been corrupted during certain
operations, such as data transfer, a method is needed to ensure that every
byte received is exactly the same as the bytes which were sent. In some
cases, a single flipped bit can corrupt an entire file, and there isn't always an
easy method to determine which bit was altered.

To solve this problem, checksum algorithms are used. In short, these
are hashing algorithms used to hash a certain amount of data, such as a file,
before and after an operation and verify that the calculated value remains
the same.

checksum=hash(data)

Protocol Design 29
29

Password storage

In numerous computer related services users are required to supply
authentication credentials in the form of a user-name and password. This
information needs to be stored somewhere to allow the server to determine if
the data a certain user has entered is valid or not. The naive approach would
be to simply store the user-name and password in a database and run a
simple comparison when a login request was received.

This approach has numerous issues. To solve them, cryptographic
hashing algorithms can be used to achieve the same results, but with a much
higher degree of security.

There are several ways to implement such a system, but a common
approach involves storing three values in the database, 1) the user-name for
the user. 2) A random field of a certain length, designated 'salt'. 3) The hash
value obtained when the users password is concatenated with the salt value
and hashed.

data=hash (password∥salt)

When a client machine sends a user-name and password in an attempt
to login, the server will retrieve the salt value stored for that user-name and
re-calculate the hash value using the provided password. If the calculated
hash matches the hash value stored in the database, the login attempt is
deemed successful, otherwise the provided user-name or the provided
password is incorrect.

if (hash(passworduser∥salt db)==hashdb){ login_success }

For the scope of this thesis, the type of hashing algorithms discussed
in this thesis fall under the category of 'Cryptographic Hashing Algorithms'.
These are a sub-category of hashing algorithms which also have the following
properties: [Wiki:CryptoHash]

One way / Non reversible

This means that the operation cannot be reversed. Hashing algorithms
with this property prevent an attacker from easily recover the original input
data based solely on the algorithm definition and the output hash data. In an
ideal algorithm, the only way to determine the input value which generated a
provided hash value would be to a 'brute-force' approach where every
possible input value would be hashed and compared to the provided value.
The computational requirements for this form of attack increase
exponentially as the number of possible output values increases.

Protocol Design 30
30

Collision resistance

Collisions occur when distinct input values generate an equal output
value.

hash(abcde)=71 BA

hash(12345)=71 BA

Given the fact that hashing algorithms can process virtually infinite
amounts of data and will always return a fixed length output, collisions are
unavoidable. But in several applications it is vital to reduce the probability of
collisions as much as possible. This is often done by increasing the output
length, thus increasing the number of possible hashes.

This will help ensure that it is virtually impossible to manufacture
distinct input values which generate equal hash values. For example, a
hashing algorithm with an output length of 256 bits will have

2256
=1.157×1077 possible unique output values.

Non-continuous

In some applications of hashing algorithms it is required for small
changes in the input value to also cause small changes in the output value.
This is useful when searching for similar data, for example when using
hashes to search for similar images. In these cases it is important for the
algorithm to be as continuous as possible. However, cryptographic hashing
algorithms must not be continuous, as this would decrease the complexity of
generating distinct keys with equal hash values. In these algorithms, the
smallest change will cause a drastically different hash value. This has been
named the avalanche effect.

hash(abcd)=E1 FF

hash(abcb)=01 5A

At the time of writing the standard cryptographic hashing algorithm is
the SHA-2 family published by the National Institute for Standards and
Technology in the United States of America. The family includes several
algorithms with various output lengths, including 128, 256 and 512 bits.
[Wiki:SHA]

For the purposes of this thesis, another hashing algorithm family is
also relevant, RIPEMD (RACE Integrity Primitives Evaluation Message Digest).
This algorithm was first developed by a group of researches in Belgium in
1996, and while the original algorithm had questionable security,

Protocol Design 31
31

development has continued and there are no known attacks against the
current version of the algorithms. [Wiki:RIPEMD]

Like the SHA family, RIPEMD comes with a variety of algorithms with
various lengths, including 128, 160 and 256 bits.

The Bitcoin protocol includes algorithms from both these families,
making use the SHA-256 and the RIPEMD-160 algorithms in different
circumstances.

In order to help prevent a single point of failure, some systems,
including Bitcoin, will chain hashing algorithms together so that the output
value from one algorithm will be used as the input for the next algorithm.
Like so: output=hashB (hashA (input))

When this system is implemented with two different algorithms, it
prevents the generated hashes being vulnerable if a method to reverse or
otherwise manipulate one of the algorithms is discovered. As both algorithms
would need to be broken to allow abuse.

This process can also be employed using the same algorithm. In some
circumstances the Bitcoin protocol uses this process with two rounds of SHA-
256. This specific implementation is sometimes referred to as double-SHA or
SHA².

Protocol Design 32
32

3.1.2 Public key cryptography
Public key cryptography is widely used in numerous computer systems

today in an attempt to ensure data confidentiality and integrity. Unlike
symmetric key cryptography, where the same key is used to encrypt and
decrypt the data, public key encryption algorithms generate a pair of
mathematically linked keys, where one can decrypt what the other encrypts.

These keys are generally known as public and private keys, where the
public key is usually only used to encrypt data and the corresponding private
key is used to decrypt it.

As their names suggest, the public key can be freely made available to
the public, while the private key should be kept secret and never shared with
any other parties.

For a public key cryptography scheme to be successful, the following
properties are required: [Jayanthi, 2015]

• It should be infeasible to calculate one key based on the other. For
example, it should not be possible to calculate the private key using
the public key.

• Both the private and public keys should be easy to generate.

• It should be easy to encrypt and decrypt data as long as the correct
keys are used. For example, it should be easy for Alice to encrypt a
message using Bob's public key, and it should also be easy for Bob to
decrypt this message using his private key.

• It should be infeasible for an attacker to recover the original plain-text
in spite of having access to the cypher-text and the public key used to
encrypt the data.

The reason why these properties are possible comes down to the
mathematics used to generate the keys and used to perform the encryption
and decryption. Several methods have been proposed one of most well
known is known as RSA (Ron Rivest, Adi Shamir and Leonard Adleman), first
published in 1977. [Wiki:RSA]

While different algorithms are based upon different mathematical
problems, the goal of these algorithms is to present a problem which is easy
to solve in one direction and extremely difficult to solve in the opposite
direction.

Taking the RSA algorithm for a concrete example. The mathematical
problem used by RSA is factorization, and assumes that it is very easy to
multiply two given numbers together, but without any other information, it is

Protocol Design 33
33

extremely difficult to, given a product, determine which two numbers were
multiplied together to calculate the given value.

The actual implementation is naturally more complex, but it is based
on this simple concept.

The properties achieved by algorithms such as RSA make public key
encryption algorithms very well suited for securing communication between
two individuals or machines and have been used for this purpose in countless
situations and applications.

But aside from securing communication between two parties, the
same concept can be used for other purposes, one of the most common
among them being cryptographic signatures (or Digital Signatures).

Digital signatures can provide two assurances simultaneously. On one
hand, they ensure that the signed data has not been altered since it was
signed. This includes accidental corruption as well as intentional changes. On
the other hand, signatures also ensure that the data was actually created by
the person who claimed to have created it. In other words, it provides a
method to prove the authenticity of the data.

The concept behind a cryptographic signature is relatively simple and
is based upon public key cryptography algorithms. But instead of following
the steps used to encrypt data for secure communication, the following steps
are followed instead:

1. The first step is to calculate the hash value for the data to signed. A
good cryptographic algorithm should be used to ensure the signature
cannot easily be manipulated in such a way to allow the data to be
altered without altering the hash value.

hashvalue=hash(input)

2. Once the hash value is calculated, it is encrypted using the private key
of the signer. This means that only the public key can decrypt the
data.

signature=encrypt private key(hash value)

3. The final step is to append the encrypted data to the original data.

final data=(data∥signature)

The recipient of the signed data only needs to separate the signature
from the actual data, decrypt the signature using the readily available public
key, and compare it with the hash value of the actual data. If the two values
match, the data is considered authentic.

Protocol Design 34
34

3.1.3 Proof of Work
The concept of proof-of-work problems was first introduced in 1993 by

Cynthia Dwork and Moni Naor [Dwork et al., 1993] in order to create a
method to reduce spam and denial of service attacks against servers. The
presented concept would achieve this by requiring client machines to solve a
complex problem and present the result before requesting any services from
the server. The server would then verify the given result, and if valid, it
proves the client performed the required work and the server can then
process the client's request.

In order for this method to be useful, a certain amount of effort
asymmetry is required, in other words, the task assigned to the client must
be relatively hard to execute, but the verification process must be a much
simpler task in order to avoid overloading the server during verification. To
create a system with this characteristic, hash algorithms are often used.

The Bitcoin network uses a proof of work algorithm known as hashcash
[Nakamoto, 2008] where the goal is to produce an input value which, when
hashed, generates a value smaller than the pre-determined target value,
usually designated by T . Due to the properties of hashing algorithms, the
only way to solve this task is by continuously generating random input
values, hashing them and verifying if the output fulfils the given
requirements. Meaning that the process is highly probabilistic, similar to a
lottery of sorts.

T=0500

hash(random data)=7420

...

hash(FNGiFUs)=0342

To verify if the presented solution is valid, other systems on the
network only need to run one hash calculation on the presented data and
verify if the output value is in fact smaller than the target.

if (hash(data)≤T){ valid }

As a simple example, assuming the hashing algorithm in use returns a
decimal value with 4 digits and the target has been set to 500. A valid hash
could be: 0342, while an invalid one could be: 7420. With this simple example
there are 10.000 possible hash values, with 500 of them being valid. The
same principle applies to the proof-of-work employed by the Bitcoin protocol,
the numbers involved are simply much larger.

Protocol Design 35
35

The general formula used to calculate the probability of a random
SHA-256 hash being accepted, given a certain target value T, is as follows:

Prob [H≤T]=
T

2256

Through simple mathematical operations, the previous formula can be
transformed into one which returns the average number of attempts needed
to achieve a valid hash.

1
Prob [H≤T]

=
2256

T

Using the previous example, the average number of attempts required

to find a valid hash can be calculated:
104

500
=20 . If it assumed that each

hash calculation takes 1 minute to compute, the current target value will
allow for a valid hash to be found, on average, every 20 minutes. The exact
same principle applies to the hashcash proof-of-work used in the Bitcoin
protocol.

Protocol Design 36
36

3.1.4 Merkle Trees
Merkle trees, also known as hash trees, were first developed by Ralph

Merkle in 1979 and allow an efficient and secure method to verify the
contents of large data structures.

Data in a merkle tree is organized as a binary tree so that each non-
leaf node has two children. Each non-leaf node will then contain the hash
value of the combined data of its two child nodes.

Figure 1: Merkle Tree Structure

In figure 1, all the leaf nodes (h11 , h12 ,h21 , h22) contain actual data,

while the others only contain the hash values of the two nodes below them.

In the cases where a node only has one child, it's data is duplicated in
order for the algorithm to function correctly.

Merkle trees can be used for several purposes as they provide
performance benefits in certain situations. One such situation is when trying
to determine if a certain node is already included in the tree. The time
complexity for searching a merkle tree is in the O(logn/logt) [Berman et al.,
2005], while other structures such as lists can have a complexity of O(n).

This type of data structure is also of great benefit is situations where
data integrity checks are required. Instead of calculating a hash value for a
large file, and using that to determine if the file is damaged, merkle trees
allow for a more efficient integrity check by splitting the file in to blocks and
building a tree based on those blocks. Each block can then be verified
individually for alterations. If a block is found to have been modified, only
that block will need to be replaced, instead of the entire file.

hash(h1∥h2)

hash(h11∥h12)

RootHash

h1

hash(h21∥h22)

h2

data

h11

data

h12

data

h21

data

h22

Protocol Design 37
37

This structure allows for reliable file downloads from unreliable
sources. As long as the root hash is obtained from a trusted source, the rest
of the hash tree can be downloaded from any other source. Any alteration in
one of the hashes will result in a distinct root hash. When the hash tree has
been successfully downloaded, the data blocks can be downloaded and
compared with the corresponding hashes.

This type of data structure is widely used in systems ranging from file
systems (IPFS, ZFS), to peer-to-peer networks (Bittorrent) and version control
software (Git) to ensure data integrity.

Protocol Design 38
38

3.2 Design concepts
The goal of this sub-section is to describe how some of the most

important concepts of the protocol are implemented and how these
components function.

These topics include data structures such as transactions and blocks,
the concept of Bitcoin mining as well as a introduction to how Bitcoins can be
claimed and spent with the use of scripts.

3.2.1 Transactions
In the Bitcoin system there are two types of transactions, coinbase

transactions and regular transactions. Both are based on the same
architecture and work in the same way, but are used for different purposes.
While regular transactions are used to transfer a certain amount of BTCs
between two users, coinbase transactions are used to generate new currency
and introduce it into the system.

3.2.1.1. Regular Transactions

Regular transactions are built upon previous transactions, creating a
chain. Each transaction will use the outputs of previous transactions as
inputs. Transactions in their raw form are only a collection of bytes, but can
be represented by this structure:

FIELD TYPE (SIZE) DESCRIPTION

nVersion
int

(4 bytes) Transaction version. Currently 1.

#vim
VarInt

(19 bytes)
Number of entries in the list of input
transactions.

vin[]
hash

uint256
(32 bytes)

Double SHA-256 hash of the previous
transaction. Used as the unique ID.

n uint
(4 bytes)

Index of the desired transaction output
within the transaction specified in the
hash field.

Protocol Design 39
39

FIELD TYPE (SIZE) DESCRIPTION

scriptSigLen
VarInt

(19 bytes) Length (in bytes) of the scriptSig field.

scriptSig
CScript

(Variable)
Response to the challenge script
provided in the previous transaction.

nSequence
unit

(4 bytes) Transaction input sequence number.

#vout
VarInt

(19 bytes)
Number of entries in the array of
output transactions.

vout[]

nValue
int64_t
(8 bytes)

Number of BTCs in transaction.
Measured in 10−8 units.

scriptPubkeyLen
VarInt

(19 bytes) Length of the scriptPubkey field.

scriptPubkey
CScript

(Variable)

Script specifying the conditions which
need to be satisfied in order to allow
spending the associated BTCs.

nLockTime
uint

(4 bytes)
Timestamp past which the transaction
can be placed in a block.

Table 3: Transaction data structure [Okupski, 2014]

Each transaction will include a list of inputs and outputs. The inputs of
one transaction are simply outputs from previous transactions. Thus creating
a chain of transactions where each one will depend on previous transactions.
This makes it more and more infeasible for any past transaction to be
modified as more and more transactions are stacked on to it, as all following
transactions would also have to be modified to ensure they remained valid.

Protocol Design 40
40

Figure 2: Simple Transaction Chain

vin[]

Each entry in the vin array represents an output from a previous
transaction. To uniquely identify the desired transaction, the (hash, n) pair is
used. The hash field is a unique identifier or ID which identifies a single
transaction, and n is the index of the output within that transaction.

In order to claim the Bitcoins in the chosen transaction, the scriptSig
field is required to contain a valid response to the scriptPubKey field in the
selected output.

vout[]

This array represents the outputs of the transaction. There must be at
least one output for each transaction.

The Bitcoin protocol does not allow for partial spending, meaning that
when a input transaction is claimed, the entire value is used. To determine
how many funds should be sent to each output, the nValue field is used. The

number of BTCs to transfer is set in increments of 10−8 , thus allowing for
very small amounts of currency to be transferred.

The purpose of the scriptPubKey field is to determine who can claim
the BTCs in each of the outputs of the transaction. This field is often also
called the recipient address.

input

output

input

output

input

output

input

output

Txa Txb

Txc Txd

Protocol Design 41
41

nLockTime

The nLockTime field exists to allow setting a timestamp or block
number after which the transaction will be locked and not allow further
modifications. The data is structured as follows:

VALUE DESCRIPTION

0 Transaction not locked.

<500,000,000 Block number after which the transaction is unlocked.

≥500,000,000 UNIX timestamp after which the transaction is unlocked.

Table 4: nLockTime Values [Okupski, 2014]

Another important aspect of transactions are transaction fees, where a
certain amount of the value being transferred is awarded to the miner who
generates the block containing the transaction. The amount of value set as a
transaction fee is defined by the user who created the transaction, with the
possibility of no fee being set. However, the miners creating the block can
choose which transactions are included in the blocks they create.

This means that transaction fees are an incentive to have your
transaction included in the generated block. It is envisioned that transaction
fees will be a more attractive form of earning Bitcoins as the block rewards
decrease over time.

3.2.1.2. Coinbase Transactions

While coinbase transactions use the same data structure as regular
transactions, some fields hold special values.

#vin

In the case of coinbase transactions, as new value is being created, no
input transactions are required, therefore, a single constant transaction is
used. Meaning #vin is always set to '1'.

vin[]

A single constant input transaction is provided, but it is not a previous
transaction. Instead, the transaction identifier pair is set to a predetermined

default value: (hash ,n)=(0, 232
−1)

Protocol Design 42
42

scriptSigLen

In the case of coinbase transactions, this field is often renamed to
coinbaseLen, but still stores the length of the next field.

scriptSig

This field is also renamed to coinbase and holds the block height
(number of blocks since the genesis block in the current block-chain) and
other arbitrary data used to help miners solve the proof-of-work.

nValue

The purpose of the nValue field remains the same, but the actual value
must correspond to the mining subsidy, determined by an algorithm which
starts at 50 BTCs per block and gets halved every 210.000 blocks. At the
time of writing this thesis, the mining subsidy is set at 25 BTCs per block and
will be reduced by half approximately every four years.

3.2.1.3. Restrictions

There are also several restrictions which must be observed, both for
regular transactions and coinbase transactions, which include:

• The total size of the transaction data must not exceed 10.000 bytes.

• The scriptSig data of each input transaction must not exceed 500
bytes. (This restriction may be updated to a maximum of 1650 bytes
in a future release of the Bitcoin client software.)

• Dust transactions are not allowed. A transaction is categorized as a
dust transaction when at least one output transaction spends over one
third of its value in transaction fees.

As well as the previous restrictions, coinbase transactions have a
special condition which only allow the value to be spend after 100 blocks.
[Btc:DevGuide] This temporarily prevents the miner from spending the
Bitcoins earned from a block which later becomes stale. A block is labelled as
stale when which is attached to a block-chain which is no longer the longest
chain available, and so the chain is abandoned.

Protocol Design 43
43

3.2.2 Script
Script is a stack-based turing-incomplete language which was

designed specially for use in the Bitcoin protocol. This essentially means that
it is a simple script language which does not allow for the computation of
complex problems, only the problems it was designed for.

The language is based upon a collection of OP_CODES which simply are
reserved words which control how the script will be interpreted. It is
customary for these reserved words to begin with OP_ and do not contain
spaces or lower-case letters. The functionality of most op-codes can be
determined by their name, but a full list of codes can be found on the Bitcoin
wikipedia page on scripts (https://en.bitcoin.it/wiki/script). The full details of
this script language will not be explored further in this thesis, but a brief
explanation of some of the opcodes may be provided.

In the Bitcoin protocol, scripts are used in the process of claiming
received Bitcoins and are included as part of transactions on the network.
Bitcoin uses these scripts for two main purposes, and as such can be divided
in to two groups, challenge scripts and response scripts.

The first type of scripts are included in each output of a transaction
and will include a challenge which the recipient will need to complete in order
to use those BTCs. It essentially determines under which conditions the BTCs
included in the transaction can be claimed. The second type of script,
response scripts, are included as an input to transactions and will contain the
solution or response to the challenge scripts included in the transaction they
are associated to. [Okupski, 2014]

In essence, including these small scripts in transactions allows users to
control who can claim and spend the BTCs being transferred. This feature is
required due to the lack of any centralized entity with the power to restrict
users from using BTCs belonging to other users. Instead, Bitcoin was
designed to leave that responsibility to other users on the network. It is up to
them to ensure that the person attempting to spend certain Bitcoins has the
right to do so, and ignore the transaction otherwise.

The use of scripts allows this system to achieve this goal by setting a
challenge that will be easy for the desired recipient to solve, while being
infeasibly complex for any other user to solve and still be easy for any other
user to verify the solution provided.

Protocol Design 44
44

While the Script language itself has enough functionality to allow users
to create very intricate conditions under which the associated Bitcoins can be
claimed, most of the functionality has been disabled to prevent exploits. Only
a small number of standard script templates are currently accepted by the
other nodes in the network. While this may seem like a severe limitation, the
available templates are sufficient to allow users to set adequate conditions
for claiming the associated Bitcoins.

3.2.2.1. Script Templates

At the time of writing this thesis there are only 5 script templates
which will be relayed by nodes in the network. An overview of each one will
be provided here:

NAME DESCRIPTION

PaytoPubkey
Obsolete template where the entire public key of the
recipient is included in the data.

PaytoPubkeyHash
Instead of the entire public key being included in the
script, it's hash value is calculated and used instead.

PaytoScriptHash
The hash value of the response script is included
instead of the actual script data.

Multisig

Script template where the recipient must prove the
ownership of more than one public key, or provide
the one or more scripts which produce the provided
hash values.

Nulldata
Template which does not included any restrictions.
Mainly used for including arbitrary data.

Table 5: Script Templates

Pay-to-Pubkey (P2PK)

With this form of transaction, the sender transfers funds directly to the
owner of a public key. This means that in order to claim the transferred
Bitcoins, the user most prove ownership of this public key, this is done by
providing a digital signature in the response script. [Okupski, 2014]

Protocol Design 45
45

This script template is still accepted, but is considered obsolete, as the
more recent Pay-to-PubkeyHash is more compact and considered more
secure. The main difference between the two is that while the P2PK script
includes the complete public key data of the recipient, the P2PKH utilizes a
hash of the public key, thus requiring a smaller number of bytes.
[BtcWiki:Script]

A simple example of a challenge script following this template could
be as follows:

scriptPubKey: <pubKey> OP_CHECKSIG

<pubKey> is the complete public key of the recipient and the opcode
OP_CHECKSIG instructs the interpreter that the signature contained in the
corresponding response script must be verified against the provided public
key. The corresponding response script simply includes a digital signature.

scriptSig: <sig>

<sig> represents the signature obtained after hashing the transaction
and encrypting the output data with the users private key. For response script
to be valid, the private key used should be the pair of the required public key.

Pay-to-PubkeyHash (P2PKH)

As an improvement to the original Pay-to-Pubkey script template, the
P2PKH type uses a hash of the public key instead of the complete key. By
doing this transactions can be made smaller or can allow for more complex
transactions while using the same number of bytes. As well as this,
transactions are more secure against any future break in the public key
algorithm used, as the hashing algorithm would also have to be broken to
allow an attacker to obtain the private key based solely on the transaction
data.

Various algorithms can be used to hash the public key data, as long as
it is made clear which algorithm was used, so that other users can use the
same algorithm. This is done with the use of specific opcodes for each
hashing algorithm. Some examples of such opcodes are:

• OP_SHA256

Data is hashed using the SHA-256 algorithm.

Protocol Design 46
46

• OP_HASH160

Two hash algorithms are used in sequece, firstly, the SHA-256
algorithm is used, then the output hash is hashed again using the
RIPEMD_160 algorithm.

• OP_HASH256

This opcode instructs the interpreter to use double SHA-256, in other
words, the data is hashed with SHA-256 and then the output is hashed
again using the same algorithm.

The following example is a challenge script based on this template:

scriptPubKey: OP_DUP OP_HASH160 <pubKeyHash> OP_EQUALVERIFY
OP_CHECKSIG

Where <pubKeyHash> is the hash of the public key of the recipient of
the transaction.

In this example, OP_DUP serves the purpose of duplicating the top item
on the stack, while OP_EQUALVERIFY performs a direct equality comparison
followed by a check to determine if the top item on the stack is TRUE.

The corresponding response script may look like this:

scriptSig: <sig> <pubKey>

<sig> corresponds to the signature used to prove the ownership of
<pubKey>.

Pay-to-ScriptHash (P2SH)

P2SH scripts are in some ways similar to the P2PKH scripts, but instead
of being used to send BTCs to the owner of a certain public key, Bitcoins are
instead sent to the owner of a specific script, also known as Pay-to-
ScriptHash addresses.

With this type of script the sender will typically generate a challenge
script of some form, and instead of attaching it to the transaction as would
be done in a P2PKH script, the hash value for the entire script is calculated
and attached to the transaction. For the transaction to be claimed, the
recipient will have to provide the same script as the sender used to generate
the hash value, as well as any data required for the script to be evaluated as
true. [BtcWiki:P2SH]

Protocol Design 47
47

 This method can ensure the same amount of security as P2PKH
scripts, as the provided script must also return true. This means that if the
OP_CHECKSIG opcode is used, the signature to verify the public key must also
be provided.

An example of what a challenge script of this type may look like is this:

scriptPubKey: OP_HASH160 <scriptHash> OP_EQUAL

Here, the script instructs the interpreter that the desired script has
been hashed using the SHA256 algorithm followed by a round of
RIPEMD_160. <scriptHash> represents the hash of the desired script and
OP_EQUAL instructs the interpreter that the when hashed, the script provided
in the response script must match the provided hash value.

The corresponding response script will follow this pattern:

scriptSig: <optionalData> {<serializedScript>}

Here the <serializedScript> is provided by the user redeeming the
transaction, as well as any additional data that may be required to ensure
that the script returns true when evaluated.

A more concrete example may be:

scriptSig: <signature> {<pubkey> OP_CHECKSIG}

This response script includes the sub-script (<pubkey> OP_CHECKSIG)
which when hashed returns the same value as the value provided in the
challenge script, as well as a digital signature (<signature>) which will be
used by OP_CHECKSIG to ensure the redeemer actually owns the public key
which was provided. If the hash of the sub-script does not match the hash
provided in the challenge script, or if the sub-script is invalid or returns false,
the transaction is rejected.

The use of this type of challenge script allows for the recipient to
develop complex logic for claiming the transaction without the sender
requiring prior knowledge of it. The recipient can simply provide the hash of
it's complex script to the sender in the form of an address.

Multisig

The multisig script type allows the sender to require the recipient to
prove ownership of an arbitrary number of public keys. To do so, the
challenge script will include a list of n public keys and a number m, which
represents the minimum number of public keys the redeemer must own. The
redeemer will then need to provide at least m signatures in the same order
as the provided public keys.

Protocol Design 48
48

Multisig scripts can either be based on P2PKH, where public keys are
provided, or based on P2SH, where hashes of scripts are provided instead.
For the first type, the number of signatures is limited to 1 ≤ m ≤ n ≤ 3. This
means that at most, there can request the redeemer to prove ownership of
three public keys. On the other hand. P2SH multisig scripts are only bound by
the maximum script size (currently 500 bytes) and the maximum size of the
serialized script (currently 520 bytes). This means that it is possible to create
higher requirements, such as 4-of-5 scripts, where the Bitcoins can only be
claimed when the recipient can provide four valid scripts out of the five script
hashes provided. [Okupski, 2014]

Multisig scripts are useful in situations where Bitcoins are owned by
more than one individual, and it is not desired to allow any single user full
access to the stored BTCs, instead requiring more than one individual to
approve the transfer for it to be accepted.

An example of the challenge script can be seen here:

scriptPubKey: m <pubKey 1> … <pubKey n> n OP_CHECKMULTISIG

The script begins with the minimum number of keys the recipient must
own (m) followed by an ordered list of the respective public keys. Following
the last public key, the total number of keys is given (n) and the opcode
OP_CHECKMULTISIG, which will instruct the interpreter to verify the signatures
provided in the response script to ensure that all the signatures provided are
valid, and at least (m) were given.

The corresponding response script may follow this pattern:

scriptSig: OP_0 <signature 1> … <signature m>

The opcode OP_0 does not provide any functionality to the script, but it
is required due to the stack based architecture of the interpreter, an extra
element is popped off the stack while running the script, meaning that the
response script must be padded with zero data.

The signatures are evaluated in order, meaning that they must appear
in the same order as the public keys in the corresponding challenge script.

Nulldata

Nulldata scripts are unique from the previous scripts as they do not
include any requirements in the challenge script and thus do not require any
data in the corresponding response script. The goal of these scripts is, unlike
the other scripts, not to transfer funds, instead, their purpose is to allow
users to include arbitrary data in the transaction.

Protocol Design 49
49

An example nulldata challenge script is as follows:

scriptPubKey: OP_RETURN [arbitrary_data]

The opcode OP_RETURN instructs the interpreter to simply return true
and evaluate the script as valid. The following data is then ignored by the
interpreter and does not need to follow the Script language. This means that
a user may use the [arbitrary_data] field to add a small amount (up to 40
bytes) of data. The goal of this will vary from case to case, but may include a
small message to the redeemer of the transaction or for anyone else
browsing the block-chain.

Transactions with this type of script also do not follow the dust rule,
allowing the number of BTCs being transferred to be set to 0. As this type of
script does not cost anything to create, there would be the possibility of users
attempting to flood the block-chain with useless transactions consisting only
of arbitrary data. To avoid this, only one output script of this type is allowed
per transaction.

As the script always evaluates as true, there is no need for a response
script, and can be left empty.

3.2.2.2. Hash Types

NAME DESCRIPTION

SIGHASH_ALL
With this type of script, the entire transaction
data is concatenated and hashed.

SIGHASH_SINGLE
The transaction data is hashed along with a
single output.

SIGHASH_NONE
None of the outputs are included in the hash
calculation.

SIGHASH_ANYONECANPAY
Modifier which also removes all other inputs from
the hash calculation.

Table 6: Hash Types

Transactions may include scripts which require the redeemer to prove
ownership of a give public key by providing a digital signature. This is an
effective way to ensure ownership of the corresponding private key as it is

Protocol Design 50
50

infeasible to generate a valid signature without the private key, and it is easy
for any user to verify any given signature.

These signatures are based on hashes of the data being signed, and as
with scripts, there is more than one type of signature which can be used.
Each type of signature will include different data in the hash calculation. A
brief description of the various types will be given here:

SIGHASH_ALL

This is the default behaviour, where the entire transaction is used to
generate the signature for the current input.

When using this type of hash, two temporary modifications are made
to the data before performing the hash calculation:

All of the opcodes are removed from the response script of the current
input transaction and a new length is calculated for the scriptSigLen field.

In order to avoid generating signatures which are dependent on
previous signatures, the response script field (scriptSig) of all other input
transactions are temporarily replaced with empty scripts before generating
the signature, essentially removing them from the signature calculation
process. [Okupski, 2014]

The original data is then restored before restarting the hashing
process for the next input transaction.

hashvalue vin[x]=hash(nVersion∥# vin∥∑
i=0

#vin

vin[i]∥# vout∥∑
j=0

#vout

vout [j]∥nLocktime)

SIGHASH_SINGLE

With this option, only one of the outputs is included when generating
the signature. However, all the other data in the transaction is included.

As with the previous signature type, some temporary changes are
required to ensure the signatures are not dependent on each other. In this
case, as well as removing the response scripts on other inputs, the
nSequence value for the current input is set to 0 and the #vout value is set to
the index of the current input + 1.

hash valuevin[x]=hash(nVersion∥# vin∥∑
i=0

#vin

vin[i]∥x+1∥vout[y]∥nLocktime)

Protocol Design 51
51

SIGHASH_NONE

This option does not include any of the outputs while generating the
signature, and as such, these can be changed by other parties. As the
previous option, all other data is included, and consequently cannot be
altered.

As removing all output data and removing the response script from the
other inputs, this type of script also sets the #vout field to 0.

hash valuevin[x]=hash(nVersion∥#vin∥∑
i=0

#vin

vin[i]∥0∥nLocktime)

SIGHASH_ANYONECANPAY

Unlike the previous types, SIGHASH_ANYONECANPAY is a modifier which
can be added along side one of the previous hash types. When used, the
hash will only include the current input in the signature, instead of the default
behaviour where all inputs are always included. The coverage of the
signature with regard to the outputs remains unaffected and is determined
by the behaviour defined by the selected signature type.

As well as the temporary changes applied by the main signature type
in use, this modifier also adds two more modifications. Setting the #vin value
to 1, and removing all other inputs, leaving only the current input data to be
hashed. [BtcWiki:Script]

hash valuevin[x]=hash(nVersion∥1∥vin[x]∥# vout∥∑
j=0

#vout

vout [j]∥nLocktime)

Protocol Design 52
52

3.2.2.3. Signature Creation

Once the signature type has been selected for the current transaction,
the actual signature data is calculated in three steps. Firstly, the signature
type is appended to the modified transaction data. Then, the data is
encrypted using the private key (see section 3.1.2 for more on public key
cryptography) and finally, the last byte of the signature type is appended to
the encrypted data, this is done so the recipient can easily determine which
data was included in the signature without needing to decrypt the data. The
validity of the signature can then be easily confirmed by any other user by
attempting to use the public key to decrypt the signature data.

signature=sign(datatransaction∥sigtype)∥sigtype [ilast byte]

The use of these scripts can lead to the appearance of some
interesting cases, such as transactions with scripts with invalid public keys
which cannot be claimed by anyone, thus removing Bitcoins from circulation,
or transactions without any restrictions which can be claimed by anyone.
However, some of these scripts are considered non-standard and will not be
propagated in the network.

Protocol Design 53
53

3.2.3 Addresses
Once challenge and response scripts are understood, understanding

addresses becomes easier, as addresses are based upon the public key
hashes used in the P2PKH scripts or script hashes used in P2SH scripts.

Addresses are case sensitive and exact, this means that a user must
take care when entering an address to ensure it is correct. Some of the
characters in the address are used as a checksum, which allow for a fast and
easy way to check if the address is valid. However, if the address happens to
be well formed, just not owned by anyone, or the owner no longer has access
to that address, the BTCs will be lost.

Here is an example of a Bitcoin address with a length of 34 characters:
[BtcWiki:Address]

3J98t1WpEZ73CNmQviecrnyiWrnqRhWNLy

To avoid visual ambiguity, the base-58 encoder will remove the
following characters: 'I', 'l', 'O', '0'. This helps prevent some errors
when addresses are manually introduced.

Due to the properties of the hashing algorithms used to generate
addresses, there is a virtually endless supply of unique addresses which can
be used. These addresses can be generated by anyone at any point in time,
with or without an internet connection. The hashing algorithms also ensure
that addresses do not contain any personal information, meaning they can be
shared freely without being directly tied to their owner or other addresses.

To generate an address, the following steps are required:

1. Get version number.

For PubKeyHash address 1 byte of 0 (0x00) is used, while for
ScriptHash addresses 1 byte of 5 (0x05) is used. These values later
get converted by the encoder to '1' and '3' respectively.

2. AddrHash

The AddrHash is a combination of the version number and the hash of
the public key or script, depending on the type of address. Two
hashing algorithms are used to generate the hash value, SHA-256
followed by RIPEMD-160.

AddrHash=RIPEMD160(SHA256 (script))

AddrHash=RIPEMD160(SHA256(pubkey))

As the final hash algorithm used is RIPEMD-160, the final hash length
will be 20 bytes.

Protocol Design 54
54

3. Checksum

In order to easily verify if there were any typos in an address, a
checksum is included in the address data. For this, the AddrHash is
hashed twice using the SHA-256 algorithm, with only the first 4 bytes
of the output being used.

checksum=SHA 256(SHA256(AddrHash))[0−4]

4. Bitcoin Address. The last step in generating the address is
concatenating the checksum to the AddrHash and performing the
base-58 encoding.

address=encode58(AddrHash∥checksum)

The final structure of the address will be as follows:

[version1byte∥hash20bytes∥checksum4 bytes]

This is known as the binary Bitcoin address and always has a length of
25 bytes. However, the encoder will convert this binary data in to human
readable characters, and the resulting string will be slightly longer, usually 34
characters.

When a user wishes to send BTCs to another user, this address can be
used in the scriptPubKey field.

The name address can cause some confusion for some users, as they
can be mistakenly confused with accounts numbers. This is not the case,
unlike accounts or account numbers, addresses are designed to only be used
once, after which they should be discarded. Not doing so can lead to several
problems, including a reduction in privacy. As the number of transactions a
single address is involved in increases, the easier it becomes to attempt to
associate that address with a single user.

Protocol Design 55
55

3.2.4 Blocks
A block can be seen as a container used to group various transactions

together.

Each block can be divided in to two large components, the header and
the payload. While the header has a constant size of 80 bytes, the payload
can vary from block to block depending on how many transactions are
included in the block, up to a limit of 1MB. In a similar fashion to transactions,
when the header is hashed, it is used as a unique identifier for a block,
known as the block ID.

An overview of the data structure of a Bitcoin block can be seen in
table 7.

FIELD NAME TYPE (SIZE) DESCRIPTION

Header

nVersion
int

(4 bytes)

Block version in use. Currently
this is set to 2. No other values
are allowed.

HashPrevBlock
uint256

(32 bytes)

Hash value of the header from
the previous block in the chain.
Calculated using SHA2.

HashMerkleRoot
uint256

(32 bytes)

Hash value from the root of the
merkle tree which contains all of
the transactions included in the
block.

nTime
uint

(4 bytes)
UNIX-timestamp of the block
creation time.

nBits
uint

(4 bytes)

Target value used to solve the
proof-of-work stored in a
compact format.

nNonce
uint

(4 bytes)
Random number used to allow
solving the proof-of-work.

Payload

#vtx
VarInt

(19 bytes)
Number of transaction entries in
the vtx[] field.

vtx[]
Transaction

(variable)
Array of all the transactions
included in the block.

Table 7: Block structure [Okupski, 2014]

Protocol Design 56
56

nVersion

There are currently only two block versions, 1 and 2. However, since
BIP0034 was introduced, only version 2 can be used. Any other values will
cause the block to be considered invalid and will not be propagated in the
network.

HashPrevBlock

As each block contains a reference to the previous block, in the form of
a hash value of the block header, blocks are chained together in a fixed
order. This is the basic structure of the block-chain.

Given two blocks A and B, where the HashPrevBlock field of Block B
contains the hash of the header of block A. It is proved that block B was
created after block A. As well as this, it is proved that any transaction
included in block A was created before block B. This ensures a level of
temporal consistency.

Figure 3: Block Chaining

To create the value used in the HashPrevBlock field, the SHA2

algorithm is used on all the data contained in the block header. Data stored
in the payload is not included, as it may later be removed to save space by
taking advantage of the Merkle Tree structure. The algorithm to calculate the
hash for a given block may look like this:

block ID=SHA2562(nVersion∥HashPrevBlock∥HashMerkleRoot∥nTime∥nBits∥nNonce)

nVersion

HashPrevBlock

HashMerkleRoot

nTime

nBits

nNonce

#vtx

vtx[]

nVersion

HashPrevBlock

HashMerkleRoot

nTime

nBits

nNonce

#vtx

vtx[]

SHA 256(SHA256())

Protocol Design 57
57

HashMerkleRoot

In order to save space as the number of transactions increases, and
consequently, the size of each block, a merkle tree structure (see section
3.1.4) was introduced in the Bitcoin protocol to allow old blocks to be
compacted by removing old transactions.

By including the root hash in the block header, transaction data can be
removed without altering the block ID (hash). This allows certain nodes to be
more lightweight and only download the actual transaction data when
needed.

Another advantage of this type of data structure is the ease of
maintaining integrity. Whenever data in one of the transactions is altered,
accidentally or intentionally, its hash will also be altered. This will then
immediately cause the root hash to be invalid. Thus, a single hash value is
enough to ensure the integrity of all the transactions contained in the block.

Figure 4: Merkle Tree Root Hash

nTime

This field contains an approximation of the block creation time stored
as a UNIX-timestamp. However, as the value is fixed at the start of the
process of generating the block, there will inevitably be a discrepancy
between the time stored here and the actual time when the block was
successfully mined and propagated through the network.

nVersion

HashPrevBlock

HashMerkleRoot

nTime

nBits

nNonce

#vtx

vtx[]

hash(Tx1∥Tx2)

hash(Tx3∥Tx4)

Tx1

Tx2

Tx3

Tx4

Protocol Design 58
58

nBits

The nBits field stores a compact representation of the target value
used to solve the proof of work (see section 3.1.3). While the actual target
value is 256 bits long, the value is compacted to only occupy 32 bits. This is
done using the following steps: [Moore, 2013]

1. Convert to base 256. Values in this base can be represented by two
HEX digits. For example, 1.00010→0308256

2. if the most significant digit is greater than 127 (0x7f) preppend 0
(0x00) to the original number. A possible example may be:

40.00010→9C 40256→00 9C 40

3. The first byte of the output will represent the number of digits in the
entire original value. If 0x00 was added in the previous step, this is

also included in the count. For example, len(00 9C 40256)=0x03

4. The final step is to append the three most significant digits to the digit
calculated in the previous step. The result will be a four digit
approximation of the original value. 9C 40256→03 00 9C 40

To recover the original 256 bit representation of the target value, the
following formula is used:

N=h1h2h3×28×(h0−3)

h0 , h1 , h2 and h3 represent the four components of the

compact value. For example, if the compact representation is 1d00ffff, the
value is split into groups of two HEX digits, with each pair being assigned to a
hi variable from left to right.

nNonce

The nNonce field only contains 4 random bytes used to add
randomness to the mining process. This allows miners to easily adjust one
field to completely change the resulting hash, with the goal of selecting a
value for the nNonce field which when along with all the other data in the
block header allows for a valid solution to the proof-of-work problem.

#vtx

The purpose of this field is to only show the number of values stored in
the vtx[] array, i.e. the number of transactions stored in the block.

Protocol Design 59
59

vtx[]

The main purpose of block in the Bitcoin protocol is to group
transactions together in to groups. And this is the field where all the
transactions included in the block are stored as an array.

The number of transactions in the array varies from block to block, as
well as the number of bytes this field requires. But the Bitcoin protocol
currently restricts the maximum size of blocks and any block over 1MB is
considered invalid. [BtcWiki:BlockSIze]

Protocol Design 60
60

3.2.5 Mining
Perhaps one of the most important aspect of blocks in the Bitcoin

protocol is the way they are generated. Every Bitcoin user has the option to
attempt to generate blocks, thus becoming a miner. Figure 5 shows how
various users 'compete' to create a new block using the various transactions
which have been created and waiting to be included in new blocks.

Figure 5: Block Mining

The process of solving a proof-of-work and generating a valid block is
called Bitcoin mining and is currently the only way new Bitcoins can be
generated and introduced in to circulation.

The incentive for becoming a miner is in the form of BTCs. Whenever a
valid block is created, the miner is awarded a sum of BTCs as well as
receiving the transaction fees from all the transactions included in the
generated block.

Tx

Miner1

Header

Tx

Tx

Tx

Tx

MinerX

Header

Tx

Tx

Tx Tx

PreviousBlock

Header

Tx

Tx

Tx

...

Protocol Design 61
61

Difficulty

To help avoid users dealing with the large numbers involved in the
proof-of-work problem on a regular basis, the Bitcoin protocol calculates a
smaller value to represent the current effort required to solve a proof-of-work.
This value is known as the difficulty.

In order to calculate the difficulty value, a constant value is used as
the largest target possible, resulting in the lowest difficulty. In Bitcoin this
value is known as the 'pool difficulty' or 'pdiff' and was set during the
implementation of the Bitcoin protocol as a 256 binary value where the first
32 bits are set to '0' and the remaining bits set to '1'. While this number is
smaller than the total number of possible hashes, the decimal representation
of this number is still 68 digits long. [BtcWiki:Difficulty] The formula used to
calculate the difficulty is as follows:

Difficulty=
pdiff
T

As the difficulty value decreases, the less effort is required to solve the
proof-of-work, with the lowest possible difficulty being '1', when the target is
equal to the maximum target 'pdiff'. On the other hand, the highest possible
difficulty is reached when the target value decreases to '1'. With a target
value this small, solving the proof-of-work would require generating random
data which when hashed returned exactly '0'.

To ensure the block generation time remains somewhat constant, the
target value is automatically adjusted by the network on regular intervals.
The goal being to keep the block generation time at around 10 minutes per
block. During the protocol implementation it was determined that
adjustments would occur every 2016 blocks. If the goal of 10 minutes per
block is kept, the time required to generate the 2016 blocks would be exactly
2 weeks.

This means that if more than two weeks have passed since the
previous adjustment, the difficulty is reduced to allow faster block creation,
otherwise the difficulty is increased in order to slow down block creation. The
formal formula governing this operation is described bellow. [Okupski, 2014]

T new=
tsum

14×24×60×60 s
×T

This formula will adjust the target value T based on the ratio between
the total amount of time which has passed since the last adjustment (tsum), in
seconds, and the number of seconds contained in two weeks.

Protocol Design 62
62

To calculate the tsum value, two blocks are taken, the previous block,
and the block 2015 blocks before it. The timestamps are then subtracted,
resulting in the number of seconds which have passed between these two
blocks.

In order to avoid the target value fluctuating huge amounts between
adjustments, the maximum change that can be made in each adjustment is a
factor of 4. To do this, two simple checks are implemented, if the tsum value is
above 8 weeks (4.838.400 seconds), the tsum value is set to 4.838.400
seconds. On the other hand, if the tsum value is lower than half a week
(302.400 seconds), the value is set to 302.400 seconds. [Moore, 2013]

Priority

When mining nodes collect transactions to include in each new block,
a calculation can be made to determine which transactions to include first,
i.e. to calculate the priority of each transaction.

To calculate the priority of a given transaction, the following formula is
used, where vin [i] represents the input transaction of index i .

Tx priority=
∑
i=0

vin

(valuevin [i]×agevin[i])

length

value : the amount of BTCs contained in the used input transaction
measured in satoshis.

age : the number of blocks created since the transaction was
included in the chain.

length : the size of the complete transaction data in bytes.

Protocol Design 63
63

Procedure

For a user to start attempting to start mining a block, the following
procedure is followed: [Okupski, 2014]

1. Collect transactions

The mining software will collect all broadcast transactions and select
the ones the miner wishes to include in the block. The first transaction
in the block will be the coinbase transaction, created by the miner
which claims and spends the block reward, as well as the transaction
fees for all other transactions included in the block.

2. Verify transactions

All the transactions to be included in the block will be verified. This
includes verifying that each input to a transaction includes a response
script that allows the user to claim those BTCs. If any of these checks
fail, the transaction is not included.

3. Select block chain

The miner will select the latest block on the longest known block-chain
to be the parent of the current block. Several block-chains can exist
concurrently, and each miner should select the chain with the most
number of blocks, or more precicely. the chain with the most expended
computational effort. The header of this block will then be hashed and
included in the header of the new block.

4. Solve proof-of-work

The final step is to solve the proof-of-work problem for the current
block (section 3.1.3). Once that is done, the block can be broadcast to
all other nodes and included in the block-chain.

If at any point during the process, another block is published, the
miner will first validate the received block and ensure that a) the proof-of-
work solution is valid, and b) that all the included transactions are also valid.
If these checks pass, the miner will restart the procedure and start mining a
new block.

In order for the proof-of-work to be solved, the miner has access to two
sources of 'randomness' in the block header. The first, and most obvious, is
the nNonce field. The sole purpose of this field is to allow miners to increment
the value and generate a completely new hash value each time they do.
However, in some cases, a miner may iterate over every possible 4 byte
value which can be stored in this field without obtaining a valid solution to
the problem. When this happens, the second source of 'randomness' used.

Protocol Design 64
64

This is the MerkleRootHash field and is used by altering the coinbase
transaction included in the block.

As discussed in section 3.3.1, a coinbase transaction is a special type
of transaction which assigns new BTCs to the creator of the block. In essence,
this is a transaction created by the miner assigning BTCs to himself. This
means that this is often the only transaction which the miner can alter during
the mining process without invalidating it.

A typical change which can be made to the content of the coinbase
transaction is to alter the data stored in the coinbase field (named
scriptSig in regular transactions). This will in turn change the hash of the
transaction, resulting in a cascading change in the merkle tree hashes going
all the way up to the root hash stored in the MerkleRootHash field. The
mining process can then continue by iterating over the possible values for
the nNonce field with the new coinbase transaction in place.

Protocol Design 65
65

3.3 The Bitcoin network
The Bitcoin protocol is built upon a decentralized network of nodes,

organized into a peer-to-peer structure. This means that there is no central
server to organize the nodes or to store data. Instead of having a central
agency to control the nodes and maintain security, the Bitcoin protocol relies
a set of pre-determined rules and protocols which all (or most) of the network
nodes abide by and enforce while exchanging transactions and blocks. As
long as most of the nodes on the network are honest, the whole system
remains operating as intended.

In this section, more information will be given on how architecture of
the network and how nodes find and communicate with each other.

As the popularity of the protocol has increased, some alternative
protocols for network communication have been implemented. For example,
some mining groups have designed their own network for sharing blocks at a
higher speed [Corallo, 2013], and some wallet software alternatives have
dedicated servers for storing transaction information [Git:electrum].
However, these aspects of the protocol will not be discussed in this thesis, as
they are not part of the original or default behaviour.

3.3.1 Block chain
Blocks are a central part to the Bitcoin protocol, and as each block

contains a reference to the block which came before it, a chain of blocks is
created leading all the way back to the genesis block. This data structure is
called the block chain.

The purpose of the block chain is to be a public ledger of all the
transactions performed on the Bitcoin network. This data structure is unique
from that employed by fiat currencies and allows any user to browse the
entire block chain and view any transaction ever performed.

However, as the process involved in creating a block is probabilistic by
nature it is possible for two miners to generate valid blocks at approximately
the same time. As each block is propagated through the network it is entirely
possible for a significant number of nodes to receive one block before the
other. This will result in a fork. [Okupski, 2014]

Protocol Design 66
66

Figure 6: Normal Block-Chain Fork

This happens because once a node receives the first block, it will reject
the second one. As the second block will have the same parent, and most
likely, include one or more of the same transactions. But, each node will still
keep the second block it receives as long as other verifications pass.

Forks of this nature are usually resolved as the next blocks are
generated. As miners continue to work on each branch, the first miner to
generate a successful block will propagate it through the network and thus
extend the chain it considers to be the longest. As other nodes receive this
block they drop any work on other chains, which become stale as no more
nodes attempt to extend them.

As forks become stale, the transactions included in them are re-added
to the transaction pool in order to be re-validated and added to a new block,
this ensures that all valid transactions are included in the longest block chain
and no data is lost due to forks.

Another form of fork can occur when different nodes are running
different versions of the client software. When new validation rules are
implemented, there will be a period of time where two versions of nodes are
running concurrently. One set of nodes will be using the old rules, while other
nodes will be using the new rules. It is entirely possible that the nodes
running with the updated rules accept a certain block as valid, while nodes
using the old rules consider the same block invalid. When this occurs, the
block chain will also fork.

Genisis
Block

Orphaned
Block

Main
Block

Protocol Design 67
67

Figure 7: Hard Block-Chain Fork

This type of fork is resolved as the number of nodes running the new
version increases. As the number of nodes running with the old rules
decreases, the amount of effort expended attempting to extend that branch
decreases and will eventually become stale. When planning updates to the
Bitcoin protocol, hard forks are a consequence which should be carefully
considered.

Block minedby
version X

Block minedby
versionY

Protocol Design 68
68

3.3.2 Network communication
As the various nodes are distributed on a peer-to-peer network without

any central entity, nodes need a method to discover new peers and
communicate with them.

To achieve this goal, when a Bitcoin client starts up, it will make use of
several hard-coded DNS seeds. The response from these servers will include
a collection of DNS A records (DNS A records → host addresses) of peers
which accept new incoming connections.

The DNS seeds are maintained by the Bitcoin community, and while
some of the stored addresses are updated manually and may point to nodes
which have since become inactive, others are added automatically by
scanning the network for nodes running on the default port (8333 or 18333
for the Bitcoin network and test network respectively).

As soon as a sucessful connection is made to a valid node, addresses
of other nodes can be shared between nodes using addr (address) messages.
This allows for a true decentralized network without relying exclusively on the
DNS seeds.

Once a node has been found communication begins with a version
message, which includes relevant information about the current node. The
reciever will then respond with it's own version message to complete the
communication setup.

More information on the structure of the version message can be
found on the Bitcoin developer reference [Dev:Version].

Once communication between two nodes has been successfully
established with the use of version messages, an initial sync is required. The
purpose of the sync is to download the current version of the block chain. As
various forks of the block chain can exist concurrently, the node attempting
the sync will attempt to request data from as many nodes as possible, and
consider the longest received chain to be the valid chain.

This synchronization is important and must be done before any new
transactions or blocks can be verified by the node.

Up until version 0.9.3 a simple method often named 'Blocks-first' was
used. However, in more recent versions this method has been replaced with
a newer method named 'Headers-first'. This new method allows for improved
parallelization as it splits the process of downloading a block in to
downloading the header and downloading the block data. This means that a

Protocol Design 69
69

node can download download the payload of one block while continuing to
download the headers for other blocks.

When a miner creates a new block it must be broadcast to other nodes
in order to be validated and included in the block chain. To achieve this, the
miner can use one of two methods.

1. Unsolicited block push

The miner sends the new block to all of the nodes it is currently
connected to. As all of these nodes do not have the fresh block, they
will accept it, and if it is deemed valid, add it to their block chain.

2. Standard block relay

With this method the miner acts as a standard relay node by sending a
inv message (inventory message) to all of the known nodes with a
reference to the fresh block. These nodes will then reply with a
message requesting the block.

In both cases, the receiving node will verify the block to ensure it is
valid before propagating it further in the network. If it is deemed invalid, the
block is simply ignored.

A similar method is used when broadcasting transactions. But in this
case, the sender will always use an inv message to send a reference to the
new transaction and cause other nodes to request the new transaction data.

Other nodes will then verify the received transaction data to ensure it
is valid or not. If it is deemed valid, it may continue to distribute the
transaction to other nodes. Some nodes may also include the transaction in a
memory pool with the purpose of attempting to include it in a future block.

Protocol Design 70
70

3.3.3 Bitcoin mining pools
As the difficulty of the proof-of-work problems increases with the

increase of computational power available on the network, it has become
more and more infeasible for home computers to mine blocks and earn
rewards. In order to address this, a method was devised to allow multiple
computers to work together to solve the proof-of-work problem. These
systems have been named mining pools.

The general principle behind this system is simple and similar to
lottery pools. The problem is divided among the participating nodes, and
when the problem is solved, earning the Bitcoin reward, the BTCs are
distributed among the participating nodes. In essence, each node is forfeiting
a portion of the reward in exchange for a higher probability of winning, or in
this case, solving the proof-of-work and mining a block.

In practice, several methods have been developed to implement this
idea, with different reward schemes and network communication structure.
While the Bitcoin protocol is decentralized, mining pools can implement other
network structures, allowing some to be peer-to-peer based and others to
rely on a central server to manage the various nodes. A simple example of a
mining pool with a central server is shown in Figure 8.

Figure 8: Mining Pool Structure

Mining
Server

Node

Node Node

Node

Bitcoin
Network

Protocol Design 71
71

The first step is to create a new target value (T pool) higher than the

current mining target. This means it is easier to generate hash values that
are below the pool target than values below the mining target.

1≤T network≤T pool≤2256

Now that a target value for the mining pool has been established, all
participating nodes will attempt to use the block header to generate a hash
value smaller than the T pool and propagate it in the mining pool. While this

value may not a valid solution for the proof-of-work, it shows the mining pool
that the node has expended a certain amount of effort, or a share of the
work. The incentive being a higher proportion of the reward is awarded to
nodes which have completed more shares.

Due to the probabilistic nature of the algorithms involved, eventually a
hash value will be generated which satisfies the pool target as well as the
current mining target. When this occurs, a valid block is generated and the
reward can be claimed and shared among the participating nodes.

So while each node does not actively attempt to solve the actual
proof-of-work problem, and instead works on an easier problem, it is probable
that one of the nodes will eventually generate a hash which solves both
problems simultaneously. It would be possible to have all nodes attempting to
solve the global proof-of-work, but when a solution was found, there would be
no fair method to distribute the rewards, as there is no measure of how much
effort each node has expended.

Mining Farms

Another solution to the increase of computing power available on the
network are Bitcoin farms. This approach is similar in the sense that several
computers work together to solve the proof-of-work problem, however, unlike
with mining pools, mining farms are generally owned by a single user or
entity. This means that any rewards earned do not need to be shared among
several users and evidence of expended effort is generally not necessary. The
result is that each node is attempting to solve the proof-of-work with the
T network value and the block can be published as soon as any of the

machines finds a solution.

A typical mining farm may include anywhere from two to several
thousand computers on a network working on generating the next block. In
several farms specialized hardware is employed to further increase the
hashing speed and thus improve the probability of generating a valid block.

Farms can also implement specialized software solutions to manage
the various machines. This is done to prevent multiple machines from using
exactly the same inputs to solve the proof-of-work.

Analysis 72
72

4 Analysis

While the previous section discussed the internal workings of the
protocol and give a more detailed look at how each of the components
operates, the goal of this section is to analyse the complete system for some
security and privacy issues and determine if these issues can be solved or if
they are a serious threat to the operation of the protocol.

This section is divided in to two main sections. Firstly, some of the
technical issues are analysed and discussed. With the second section being
dedicated to exposing some of the effects the Bitcoin protocol has had on
society in the form of legal and economic changes.

4.1 Technical Analysis
In this section some technical aspects of the Bitcoin protocol will be

discussed and analysed for possible issues in an attempt to determine if each
one is a major concern and if any possible counter measures are available.

The issues discussed in this section include the anonymity of Bitcoin
addresses with some information on services which aim to increase it further,
as well as some possible attacks which could be employed against the
network.

Analysis 73
73

4.1.1 Address anonymity
Bitcoin, as well as other similar services, are often advertised as an

anonymous currency. However, this claim may appear to be false at first
glance, as the entire history of every transaction ever made is freely
available to the public in the form of the block chain. So how can users have
any assurance that information about the transactions they make can be
kept private?

This confusion is raised when people attempt to compare
cryptocurrencies such as Bitcoin with more traditional banking services,
where each person has a unique bank account number. This account number
does not change and uniquely identifies each individual or organization. This
allows the bank to trace any transaction to the individual who created it, and
can share that information with any other entities. Having a public ledger of
transactions in this kind of system would destroy any user privacy.

Figure 9: Bank System vs. Bitcoin Network

Figure 9 is a simple comparison between the structure of the Bitcoin
network and that of a simple bank. In the bank system a unique ID is stored
for each user and a record of all the transactions which have been ever been
made with a clear connection to the users involved. On the other hand, the
Bitcoin protocol does not assign unique identifiers to any of it's users.

It may be counter intuitive, but Bitcoin users do not actually own any
currency. Moreover, BTCs are not transferred from one user to another.

Bitcoin
Network

Node Node

Node

Bank
System

User A
01001101

UserB
11100011

User A UserB

User A→X €→UserB
UserB→Y €→UserC

User A

Analysis 74
74

Instead, Bitcoins are locked in such a way as that only the desired recipient
can claim them. This feature is provided by the use of public key
cryptography, where anyone claiming the BTCs must prove ownership the
private key linked to the provided public key.

This means that users can, and should, create multiple key pairs (or
addresses) and do not use any address more than once. This technique
makes associating any address to a single user much more difficult, as each
address will only appear once in the entire block chain.

Static address

Some institutions accept Bitcoin donations or payments, and in this
case, it is much simpler to generate a single address and allow all users to
use it to transfer funds to this address instead of generating a new one for
each donation/payment.

Figure 10: Static Address

A simple example is shown in Figure 10, where User A uses their

private key to claim all the BTCs sent to addressX .

This can cause issues where the destination address is known to
belong to certain organization, so anyone inspecting the block chain can find
every transaction to ever use that address as an output. However, this is not

addressX

Tx1

Tx2

Tx3

Tx4

User A

privatekey X

Txx

Tx y

Txz

Analysis 75
75

a major concern for users who transfer funds to static addresses, as the
addresses used to send the funds should still be unique.

Exchange services

When users wish to exchange fiat currency, or another cryptocurrency,
for Bitcoins, they will usually resort to a currency exchange service. These
services allow users to buy and sell Bitcoins in exchange for other currencies
and are very important for the Bitcoin market.

However, they will often require users to provide personal information
which will allow the service to uniquely identify a single individual.

The exchange service will then have a direct link between an
individual and the address which received, or sent, the BTCs involved in the
exchange, giving any adversary with access to this information a good
starting point when attempting to trace the activities on a certain individual.

Figure 11: Bitcoin Exchange Server

Figure 11 shows a sample exchange service where User A and

UserB purchase Bitcoins in exchange for a certain amount of Euros. The

Exchange server then uses an address it controls to send the desired amount
of Bitcoins to the addresses provided by the users.

The server will then have a record of transactions which allows linking
each unique user to a certain address, thus reducing user privacy when using
Bitcoin.

User A→ x1€→ y1BTC→addressX 1

UserB→x2€→ y2BTC→addressX 2
addressexch

addressx 1

addressx 2

User A UserB

x1€ x2€

y1BTC
y2BTC

Bitcoin
Network

Exchange
Server

Analysis 76
76

Mixing services

To help increase privacy even further, services were created with the
goal of anonymizing transactions even further. These services have been
named mixing services and are used to help prevent any user from following
a certain amount of Bitcoins through the block chain.

Figure 12: Mixing Server

Figure 12 provides a simple abstract example of how a mixer service
operates. Without access to the data stored by the service, it is not possible
to determine if the transaction Txinput 2 made by User A was transferred to

UserB or UserC .

Several services of this kind are currently in operation, with each
implementing slightly different rules and protocols and each will charge
different amounts of BTCs for the service, usually in the form of a percentage
of the performed transactions. But the general principle stays the same.
Instead of transferring BTCs directly to the recipient, users will instead
transfer the funds to an address controlled by the mixer service. Once the
payment has been confirmed, the service can then join and split several
transactions over time and finally create a new transfer from another,
unrelated address, to the final recipient.

This works well because the origin of the transfer is irrelevant from the
recipients perspective, therefore it makes no difference if the payment is
made by the actual user receiving the goods or services of by another
random Bitcoin user. This process helps prevent any attacker drawing
conclusions on where any of the individual final payments actually came
from.

However, mixing services are not perfect, as some services will keep
records of the transactions made, allowing anyone with full access to the
service data the ability to track the transactions. This means that if the
service is hacked or cooperating with other entities the provided anonymity
may be compromised.

Mixer
ServiceUser A

UserC

Txinput 1

Txinput 2

Txinput 3

Txoutput1

Txoutput 2

Txoutput3

UserB

Analysis 77
77

Another issue with mixing services is that not all services operate in
the same way, with some services using more complex algorithms when
attempting to conceal links between transactions. This results in different
services providing different levels of privacy to their users.

A study by Malte Möser found that while two of the tested services
(Bitcoin Fog and Blockchain.org) did provide adequate privacy, with no
decernable link between the original and final transactions being found,
another mixing service by the name of BitLaundry did not adequately
obfuscate the connections between the input and output transactions. This
allowed the transactions to be traced even when using the mixing service.
[Möser, 2013]

Analysis 78
78

4.1.2 Double spending
Double spending describes the act of creating two or more valid

transactions claiming the same Bitcoins. This can be an issue with the
decentralized nature of Bitcoin as some nodes may receive one of the
transactions before the other, thus creating two different versions of events.
[BtcWiki:DoubleSpend]

Figure 13: Double Spending Transaction

Figure 13 shows a simple double spending attempt where two
transactions are created using the output of the same transaction. This is not
possible, as the protocol does not allow for partial spending. The entire value
of a transaction must be spent in a single transaction. In a real attack Txb
could be a valid transaction purchasing a good or service from a merchant,
while Txc could be another valid transaction sending the same BTCs to

another address controlled by the sender.

In a traditional banking service this problem is more easily solved, as
only one version of the transaction history can exist. This means each
transaction can be verified for double spending before being processed.

The Bitcoin protocol on the other hand allows for various different
block chains to be in existence at any given time, and it is possible for
different chains to have a different transaction history. As with other aspects
of the protocol, the responsibility of protecting the network against double
spending is placed on the various nodes on the network.

input

output

input

output

input

output

Txa Txb

Txc

Analysis 79
79

While various methods are available for performing a double spending
attack, a common attack method involves creating two distinct transactions
attempting to claim BTCs from the same previous transaction. Typically, the
recipient address of one will be a merchant, while the second address will be
controlled by the sender. To avoid this situation, the protocol requires that
once one of the transactions is included in a block, the second transaction
cannot be included in the same block or any subsequent blocks. This can be
easily enforeced as it is easy for the miner to verify if any of the input
transactions have already been claimed.

However, it is still theoretically possible for the transactions to be
included in different blocks, creating a fork, either naturally or by the
attacker. But this issue will be resolved when one of the forks becomes stale.

Figure 14: Double Spending Attack

Figure 14 shows a simple example how a double spending attack can
be attempted. In this case the attacker has successfully mined a new private
block chain with the transaction which would invalidate the payment
transaction. The rest of the network continues to work on a block chain which
includes the valid payment transaction. The attacker will continue generating
blocks on the modified chain until it is longer than the main block chain, then
releasing his version of the chain. As other nodes adopt the new chain, the
payment transaction will effectively be reversed.

Private
Block

Public
Block

ModifiedChain

Analysis 80
80

For services receiving payments in the form of Bitcoins, double
spending attacks can cause problems as the merchant will not be able to
spend the received BTCs if the received payment is later considered invalid.

While it not possible to reduce the risk of this form of attack down to
0%, there are some precautions a service can take to decrease the risk and
increase the attack cost. The most important precaution merchants should
implement is to delay accepting a transaction until several blocks have been
built on top of it. In this context, those blocks are often referred to as
confirmations. [Karame et al., 2012]

Each new confirmation decreases the probability of the transaction,
and all subsequent blocks, being discarded and replaced by another chain.
Typically, it is advised to wait for at least 6 confirmations before assuming the
payment is complete. As long as the majority of the network is controlled by
honest nodes, it becomes less and less likely an attacker could create a new
chain without the payment transaction to replace the current chain.

Another precaution merchants can employ is to restrict the client
software to only connect to well connected nodes, i.e. nodes which are
connected to a large number of other nodes, and reject incoming
connections. This will help prevent a malicious entity feeding blocks directly
to the merchants client software and ensure that any received blocks have
also been received and validated by a large portion of the network.

Analysis 81
81

4.1.3 Botnet farming
Due to the nature of the Bitcoin protocol there is a incentive to control

greater and greater computing power in order to have an increased hashing
rate. In other words, to be able to calculate more hash values in the same
span of time. There are several ways legitimate to achieve this, such as
mining pools or mining farms. However, another, more nefarious method has
also been used, botnets.

A botnet is a group of computers which have been infected by
malicious code and can be remotely controlled by an attacker. The type of
infection will dictate the amount of control the attacker has over the infected
machine, but in some cases machines can be used to mine Bitcoins without
the knowledge or consent of the owner. [Wiki:Botnet] This means an attacker
in control of botnet could mine large amounts of BTCs without having any
hardware or electricity expenses. [Bradbury, 2013] As well as this, a
sufficiently large botnet could have the power to perform double spending
attacks. However, this form of attack will only have any chance at success if
the attacker can consistently control over 50% of the computational power
on the network. Otherwise, honest nodes will generate legitimate blocks at a
higher rate, thus causing the 'fake' chain to eventually become stale.

While there is no security mechanism embedded in the Bitcoin
protocol to detect or prevent botnets from mining bitcoins, as the power of
legitimate mining pools and mining farms increases, the required computing
power required by the botnet in order to be effective also increases. This
reduces the incentive for botnets attempting to mine Bitcoins instead of
other, perhaps more lucrative, malicious activities.

Botnets have some inherent limitations when attempting to mine
bitcoins. Firstly, infected machines are not running 24 hours a day, with many
only being available for a few hours a day. Secondly, as other applications
may be running at the same time, the full potential of the infected machine
cannot be used for mining. As well as this, the malicious software will
generally only use the machines CPU to solve the proof-of-work problems,
instead of the more efficient GPU. These limitations severely increase the
number of machines needed to compete with legitimate mining pools or
farms.

Another issue botnets have is that a complex network architecture is
required in order to hide the operation from other users and the authorities.
As the simplest implementation is to have a central server to control all the
infected machines, each infected machine will require a method to find and

Analysis 82
82

connect to this central server, which may be in the form of a hard-coded IP
address or host-name. This means that when the malicious code is analysed,
this address can be found and efforts can be made to shut down the server,
thus disabling the botnet.

It is estimated that in 2013 the total network hash rate was over

1PH /s (1015 hash calculations a second) and the hash rate for the
largest known botnet at the time, ZeroAccess, with 1.9 million machines was
only 2.85TH /s . i.e. 0.285% of the total hash rate. [Bradbury, 2013] And as
of November 2015, the global hash rate is estimated at over 450 PH /s ,
decreasing the effectiveness of botnet farming even further.
[blockchain:hashrate]

Analysis 83
83

4.1.4 Flooding
A flood, or transaction flood, is a form of denial of service attack

directed at the Bitcoin network. The principle behind this attack is relatively
simple, create as many valid transactions as possible between two addresses
the attacker controls and broadcast them to the network. This will flood the
network will new unconfirmed transactions to be included in new blocks.

As the number of unconfirmed transactions in the memory pool
increases, the amount of time required for a new, legitimate, transaction to
be included in a block increases. This is caused by the size limit applied to
blocks and the constant rate at which blocks are created. This can result in
legitimate transactions requiring several hours to achieve a single
confirmation, i.e. being included in a block. [BtcWiki:Flood]

The Bitcoin protocol does include some measures to decrease the
incentive to perform this attack as much as possible. These measures
include:

Transaction fees

Mining nodes have the option to ignore transactions if they do not
include a transaction fee, meaning that for this attack to be most effective, a
transaction fee must be spent, creating a monetary cost for the attacker.

Transaction priority

As well as the monetary cost caused by the transaction fees, miners
also prioritize transactions based on the amount of time since the Bitcoins
included in the inputs were last spent. This results in a lower priority for
transactions which are repeatedly spending the same Bitcoins over and over.

This reduces the effect of the attack by allowing more legitimate
transactions to be included in blocks before the flood transactions.

As well as these protocol implementations, the incentive for this form
of attack is reduced further by not providing the attacker with any kind of
benefit, other than that, if successful, the attacker may be responsible for
temporarily incapacitating the Bitcoin network.

However, even with these measures, this form of attack has been
performed in the past, and is often referred to as a stress test, as it can be
used to determine how well the network can handle the increased traffic. One
notable example occurred in July 2015, when an unknown entity began a
decentralized flood attack causing thousands of unconfirmed transactions

Analysis 84
84

being distributed through the network. At one point as many as 80,000
unconfirmed transactions were waiting to be included in blocks.

In this instance, thousands of transactions were also created directed
at some charities and organizations with very small amounts of BTCs,
resulting in around 30BTCs being donated to various institutions. This is
unusual, as the attackers will often attempt to reduce the amount of BTCs
spent as much as possible.

The attack seems to have concluded in July and at this time the motive
is not known. Some speculate that it may be connected to the on-going
debate on the proposed increase in block size, this attack would then be an
effort to show the issues with limiting the block size to 1MB.
[BtcWiki:JulyFlood]

Analysis 85
85

4.1.5 Software Errors
As the Bitcoin protocol relies so heavily on software to generate

currency, ensure the network is operating as designed and correctly
transferring funds, software errors or bugs are a major concern. These may
be completely accidental, or intentional 'back-doors' implemented in the
code by malicious developers.

The open-source nature of Bitcoin protects users, to a certain extent,
against both types of software errors by allowing any developer to examine
the entire source-code and search for possible bugs or back-doors. However,
being open-source also allows any malicious developer to clone the Bitcoin
client and create a malicious version of the client which does have an error or
a back-door known to the developer. This could then allow the creator to
exploit machines running his version of the software.

While this will always be a threat to individual users, in order for it to
be a significant threat to entire network, any malicious version of the
software would need to be adopted by a large proportion of Bitcoin users.
This is unlikely as the official software solutions are free and easily obtainable
from the official sources and can also be compiled from the source-code.

On the other hand, numerous accidental errors have been discovered
in the Bitcoin client code, ranging from memory overflows to transaction
opcode exploits. [BtcWiki:Vulnerabilities] These bugs range in the effect they
could have on the network as a whole, as some allow for billions of Bitcoins
to be generated without performing the required work, while others are less
serious and only increase the effectiveness of potential DoS attacks.

However, whenever such bugs have been discovered, the code has
been promptly fixed by the developer community and rapidly distributed to a
large portion of the user base. And while many bugs have been discovered,
there is no evidence that any have been exploited on the Bitcoin network.

While the most dangerous security threats are located the code that
communicates with other nodes and validates transactions and blocks, other
serious vulnerabilities have been found in the wallet component. This part of
the software is used to aggregate all the addresses the user creates along
with the associated private keys needed to claim the received Bitcoins. This
makes it an attractive target for any malicious party.

One of the main threats this component has faced stemmed from the
lack of encryption in initial versions, this meant sensitive data was stored as
plain-text and greatly facilitated data theft. This has since been fixed by
adding an encryption option, but users may still need to opt-in to this feature.
[BtcWiki:Weaknesses]

Analysis 86
86

4.1.6 Comparison
Figure 15 shows a comparison of how each of the items explored in the

previous sections affects each type of Bitcoin user.

Figure 15: Technical Analysis Comparison

In this context miners are a subset of Bitcoin users who generate
blocks. Exchange services represent the various services which allow user to
exchange their Bitcoins for fiat currencies and vice versa. Merchants
represent users who sell goods or services in exchange for BTCs. And finally,
the user category represent everyday users who purchase goods and
services with Bitcoins.

While it is expected that everyday users of Bitcoin will fall into
different categories at different moments in time, for the purposes of this
comparison that is not considered. It is assumed that each user occupies a
single category and does not perform any actions associated with any other
category.

Possible
threat

Not a
threat

User
Threat Address

Anonymity
Double
Spending

Botnet
Farming

Flooding

Miner

Exchange
Service

Merchant

User

Software
Errors

Analysis 87
87

Address Anonymity is mainly an issue to Bitcoin users, as a lack of
anonymity could allow their purchasing habits and donations to be tracked by
third parties. But this issue can also pose a risk to other categories of users,
as an analysis of the block chain would allow an attacker to determine how
many funds are currently associated with a certain address, and if owner of
the address is known, it is possible to determine how many funds a miner,
merchant or exchange service has available. This would allow an attacker to
target a specific user or organization with a large amount of funds in order to
attempt a theft of some kind.

The double spending attack is a significant threat mainly to merchants
and exchange services and affects both in a similar way. This form of attack
introduces a risk of a merchant selling goods or services in the belief that
payment has been received, when in fact, it is later reversed.

This affects exchange services in a similar way when in the process of
exchanging Bitcoins to another currency. The service may believe the
Bitcoins are already in their possession and proceed with the payment. If the
attack is successful, the service would lose both the Bitcoins and the
currency that was traded for them.

However, the risk of this form of attack is mitigated by following the
recommended precautions. The effectiveness of the attack is also reduced by
the increase of computing power available on the network, as any attacker
would need to control a larger amount of computing power to compete with
honest nodes.

For the other categories of user, double spending is not such a
significant threat, as users and miners do not receive payments, meaning
that this form of attack is not applicable to them.

Botnet farms are a low risk issue for all types of user, with the highest
affected group being miners. This is only due to an increase in 'competition'
when mining Bitcoins, as a significant botnet would increase the network
hashrate, leading to an increase in difficulty and reducing the effectiveness of
the miner's machine and reducing profits. However, in reality, botnet farms
are not a significant threat in this context. This is, in a large part, due to the
inherent ineffectiveness of infected machines when farming bitcoins.

Of course there are other threats caused by botnets to the owners of
the infected machines, including the installation of other malicious software
or the theft of personal data and possibly Bitcoins. However, this form of
attack is directed against the computer user, not the Bitcoin protocol, so it is
not relevant in this context.

Analysis 88
88

While it does not produce any profit to the attacker, the most effective
form of attack discussed in this thesis is known as transaction flooding. This
form of attack affects all categories of Bitcoin users.

Miners are affected by an increase in the required memory to store the
pending transactions as well as an increase in the size of the blocks being
transferred within the network.

All other types of user are mostly affected by a slow down of the entire
system. Leading to an increase in transaction processing times and an
increased risk of transactions being simply lost. However, in most cases this
is merely an inconvenience and not a form of attack which causes significant
damage.

Finally, software errors are perhaps the most significant threat against
all users of the Bitcoin protocol. While there is no evidence that any bugs or
back-doors have been exploited in the Bitcoin network, several bugs have
been found (and corrected) since the creation of Bitcoin.

Depending on the nature of the particular bug, any category of user
may be affected in a variety of ways. Exchange services and merchants may
be severely affected if an exploit allows for altering payments after
confirmation. While other bugs, such as a vulnerability in the wallet software,
may be a bigger threat users and miners.

The active community of developers around Bitcoin have done a good
job in finding and correcting this kind of vulnerabilities before they can be
exploited by any malicious party. But it is possible that with a decrease in
interest in Bitcoin the security provided by the openness of the protocol will
also be reduced, as less developers will be actively inspecting and fixing the
code.

Analysis 89
89

4.2 Social Analysis
While the goal of this thesis is mainly a technical analysis, the

popularity of Bitcoin has caused some important socio-economic
repercussions in modern society.

This section is focussed on providing a short overview of some of the
changes and social issues raised by Bitcoin and how they have affected
society during the, relatively brief, history of Bitcoin. These issues are shown
'as is' merely as an effort to expose the reader to some of these issues, and
not to determine if they are positive or negative or to find possible solutions.

4.2.1 Bitcoin Economics
Bitcoin is still in the early stages of economic development, and as

such has not reached the popularity level of other services such as Paypal
with respect to paying for goods and services. This is largely due to often
being associated with illegal operations such as black markets and money
laundering, and more recently, Bitcoin is also being associated with funding
terrorism. [Fox, 2015]

While the number of users who have adopted the Bitcoin protocol is
still growing, the currency can experience a large amount of volatility and
large economic bubbles. This is easily demonstrated by the change in value
the currency has experienced in the last few years, rising from around
$200/BTC to over $1000/BTC over the course of a month in late 2013, and
since returning to around $300/BTC at the time of writing this thesis.

In some ways, Bitcoin is similar to a stock market, as large fluctuations
in value can be caused by changes in how the public perceives Bitcoin. With
value rising when the public have more trust in the system, and dropping
when that trust is broken.

Another cause of these large fluctuations is that the currency is still in
it's early stages, and some users still control very large amounts of currency.
This means that choices made by these users will have a large effect on the
overall currency. [Barker, 2014]

However, unlike fiat currencies, which can fluctuate in value as the
inflation rate is changed or as the regulatory body introduces new currency
into the system, Bitcoin does not allow for the arbitrary creation of new
currency. A fixed number of Bitcoins will be mined, after which no more
currency units can be generated, guaranteeing the scarcity of the currency.
Even monetary systems based on precious metals cannot provide this, as a
new stockpile of the resource may be found and reduce the it's value.

Analysis 90
90

Some economists expect that as the currency matures and it's
adoption rate increases, resulting in increased trust, the level of volatility will
decrease and the currency will stabilize. But other economists claim that
Bitcoin is based on an old idea which has been dismissed by current
economists and is no longer in use in today's society. As Bitcoins are in
limited supply, the deflationary nature of Bitcoin will always case large
fluctuations in price and not allow for any regulatory body to control these
fluctuations, leading to the currency to ultimately fail. [AP, 2013]

Analysis 91
91

4.2.2 Bitcoin Legality
Bitcoin has often been associated with illegal activities due to the

attractiveness of an anonymous currency to individuals or organizations
partaking in illegal activities. And while the vast majority of Bitcoin users only
using the system for legitimate activities, the privacy provided by Bitcoin has
caused it to be used in black markets around the world as well as money
laundering operations.

A notable example of this was a online site named Silk Road, which
provided users the ability to purchase illegal narcotics in exchange for
Bitcoins. The site has since been shut down by federal law enforcement.
[Orsini, 2013]

Bitcoin has become an attractive currency for laundering funds and
the trade of illegal goods due to the provided privacy and the lack of the
same level of regulation experienced in other currencies. However, even with
the anonymity provided by the Bitcoin protocol, as all transactions are
recorded in a public ledger, law enforcement agencies could use statistical
analysis tools to detect malicious activity and track down individual users.
[Brito, 2011]

Due to the decentralized nature of Bitcoin, no one country can control
and regulate the currency, causing government agencies tasked with
preventing money laundering or black market sales to be concerned about
this form of currency. This has lead to several different countries taking
different stances on the legality of trading in Bitcoins. Several countries have
introduced legal framework to attempt to regulate or restrict the the use of
the currency, while others allow an unregulated use of the currency and no
laws regarding Bitcoin have been put in place. A few countries, such as
Bangladesh and Thailand, have attempted to completely ban the use of
Bitcoin and consider any use of the system to be illegal. [Wiki:BtcLegality]
[CoinDesk:Legality]

Another issue government agencies face when attempting to regulate
the use of the Bitcoin currency is how to apply current tax laws to the new
currency.

As with other regulatory laws, taxation laws also vary dramatically
from nation to nation. With some countries not requiring users to declare
their Bitcoin holdings for tax purposes, and others, such as the United States,
where the Internal Revenue Service (IRS) has officially defined Bitcoin not a

Analysis 92
92

currency, but as an asset, and thus requires users to declare their Bitcoin
holdings and profits when paying taxes.

This legally means that each Bitcoin user in the United States must
declare and pay taxes on any Bitcoin transaction and Bitcoin miners will also
be required to pay a self-employment tax. However, many Bitcoin users are
not very concerned about this new law, as they expect it will not be possible
for the IRS to enforce such a law, and users will develop new methods in
which to use Bitcoins without informing the IRS of their profits. [Doherty,
2014]

Conclusion 93
93

5 Conclusion

During this thesis several aspects of the Bitcoin protocol have been
discussed, as well as some of the supporting protocols and data structures
needed for the successful operation of the protocol.

At the end of this thesis, it is concluded that Bitcoin has been a very
important development in the area of cryptocurrencies, being at the source
of hundreds of new cryptocurrencies, some with improved security and
privacy measures. And the open source nature of the Bitcoin protocol allows
for improvements to be proposed, implemented and verified by members of
the community. This ultimately results in a more secure and responsive
protocol which can be improved over time to respond to new threats and
social changes.

This thesis has approached some perceived vulnerabilities of the
Bitcoin protocol, and while not all threats were discussed, it was determined
that the protocol has sufficient security to remain in operation for the
foreseeable future, assuming the community around Bitcoin remains active.
And while it is not possible to determine how many people are actively using
Bitcoin on a regular basis due to the pseudo-anonymous nature of the
protocol, it is possible to determine the total number of transactions being
made. And this value has been steadily increasing since the implementation
of Bitcoin, which can be seen as an indication that the Bitcoin community is
still growing. [BTC:TransactionNumber]

So while it is impossible to predict how important Bitcoin will become
in the following years, it will always remain an important part of digital
currency history as the first decentralized cryptocurrency to achieve large
scale adoption and spawn hundreds of derivatives.

Conclusion 94
94

5.1 Was the goal reached?
The goal of this thesis was to provide the reader with a resource which

would allow a better understanding of what the Bitcoin protocol is and how it
functions, as well as the several components required for it to behave in a
secure and stable enough manner to be used as a currency.

This goal has mostly been achieved. Chapter 2 contains information
allowing the reader to understand what a cryptocurrency is, as well as
historical information related to how Bitcoin came in to existence. Following
this, chapter 3 contains a large amount of information which should help the
reader gain a better understanding of the Bitcoin protocol and how it's
several components operate, as well as including information on the lower
level protocols used by the Bitcoin protocol which the reader must
understand in order to fully understand the protocol. And lastly, chapter 4
provides the reader with an analysis of some of the perceived weaknesses of
the Bitcoin cryptocurrency and some theoretical attacks which may be used.

However, there were some topics related to the internal operation of
the Bitcoin protocol which were not discussed, as disclosed in the
introduction of the thesis, and more information could have been provided on
the technical operation of network communication protocols used. While
chapter 4 does include a sub-chapter related to network communication, this
topic is sufficiently large to become the topic of a single thesis and only the
most important information was provided.

The goal of the thesis also included discussing some of the social and
legal impacts the introduction and widespread use of Bitcoin has introduced,
and while this was discussed in section 4.2, this topic was not explored in any
detail. This is mostly due to the background of the author which does not
include any education in such topics. This decision was also influenced by the
technical nature of the other chapters in the thesis.

Conclusion 95
95

5.2 Proposed improvements to Bitcoin
Since the initial description and implementation of the Bitcoin protocol

several improvements have been suggested by several users of the system
and can be viewed on their github page (https://github.com/bitcoin/bips).
These proposed improvements are labelled BIPs (Bitcoin Improvement
Proposal) and many of them have already been implemented in the current
version of the code base.

The implementation of these improvements follow a pre-determined
workflow going from drafts to finally being implemented. But the fate of
these proposals ultimately rests with the consensus of the Bitcoin users. As
any implemented improvement will need to be supported by the economic
majority to be effective. [BtcWiki:EcoMajority] This means that the users
using Bitcoin to trade goods and services can vote on which improvements
get accepted or rejected.

Perhaps the most controversial improvement which is being currently
debated is the proposal to increase the block size from 1MB to a higher
value. This would allow more transactions to be included in each block, thus
allowing Bitcoin to increase in capacity as more users start using Bitcoin. In
the current state, the protocol can handle the number of transactions being
made quite well, with the exception of cases of flooding. But it is expected
that as the number of users, and subsequently transactions, increases, the
current block size will not be sufficient. This will lead to a longer delay for
valid transactions to be included in blocks, with some possibly not being
included at all.

On the other side of the debate, users argue that increasing the block
size too much will damage the decentralization of Bitcoin, by favouring
miners with more capable hardware. As doubling the block size will in
practice, double the amount of require data storage space available to
miners. As smaller miners are forced to quit mining, more and more of the
network CPU power is being controlled by fewer entities, leading to more
centralization.

The current proposal is a gradual block size increase which will see the
first increase to 8MB be made in early 2016. [Khaosan, 2015]

Conclusion 96
96

5.3 Future work
This thesis can be built upon in two main ways, either by providing a

more in-depth description and analysis of the network architecture and
communication protocols use in the Bitcoin system, as well as providing
information on the different modes of operation Bitcoin allows. Alternatively,
more information can be provided on the social, economic and legal aspects
of the Bitcoin protocol.

A technical description on the network component of Bitcoin could
include topics such as a description of all the various messages which the
nodes can use, a more detailed description of how the peer-to-peer network
is organized and how nodes intercommunicate. Information could also be
provided on the differences between the full node and simple payment
verification operation modes.

Other topics could include discussing the creation and use of contracts
in the Bitcoin context, as well as an overview of different wallet solutions.

On the social, legal and economic side of the thesis, many more
improvements could be made as many economists and lawyers find the
concept of cryptocurrencies to be a complex issue with many facets.

Table List 97
97

Table List

 Table 1: Glossary Items...6

 Table 2: Bitcoin History [BtcWiki:History] [Wiki:Bitcoin]................................24

 Table 3: Transaction data structure [Okupski, 2014].....................................39

 Table 4: nLockTime Values [Okupski, 2014]..41

 Table 5: Script Templates..44

 Table 6: Hash Types...49

 Table 7: Block structure [Okupski, 2014]..55

List of Figures 98
98

List of Figures

 Figure 1: Merkle Tree Structure...36

 Figure 2: Simple Transaction Chain...40

 Figure 3: Block Chaining..56

 Figure 4: Merkle Tree Root Hash..57

 Figure 5: Block Mining...60

 Figure 6: Normal Block-Chain Fork..66

 Figure 7: Hard Block-Chain Fork..67

 Figure 8: Mining Pool Structure...70

 Figure 9: Bank System vs. Bitcoin Network...73

 Figure 10: Static Address..74

 Figure 11: Bitcoin Exchange Server..75

 Figure 12: Mixing Server...76

 Figure 13: Double Spending Transaction...78

 Figure 14: Double Spending Attack...79

 Figure 15: Technical Analysis Comparison..86

References 99
99

References

[Wiki:DigitalCurrency] : Wikipedia, Digital Currency, 14.08.2015,
https://en.wikipedia.org/wiki/Digital_currency

[Wiki:Cryptocurrency] : Wikipedia, Cryptocurrency, 21.08.2015,
https://en.wikipedia.org/wiki/Cryptocurrency

[Economist, 2015] : The Economist, The Magic of Mining, 10.01.2015,
http://www.economist.com/news/business/21638124-minting-digital-currency-
has-become-big-ruthlessly-competitive-business-magic

[Wiki:Chaum] : Wikipedia, David Chaum, 03.11.2015,
https://en.wikipedia.org/wiki/David_Chaum

[Wei-Dai, 1998] : Wei-Dai, B-Money, 1998, http://www.weidai.com/bmoney.txt

[Szabo, 2008] : Nick Szabo, Bit-Gold, 2008,
http://unenumerated.blogspot.de/2005/12/bit-gold.html

[Wiki:Szabo] : Wikipedia, Nick Szabo, 30.07.2015,
https://en.wikipedia.org/wiki/Nick_Szabo

[Nakamoto, 2008] : Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash
System, 2008, www.bitcoin.org

[Wiki:ListCryptocurrency] : Wikipedia, List of Cryptocurrencies, 09.08.2015,
https://en.wikipedia.org/wiki/List_of_cryptocurrencies

[Wiki:Litecoin] : Wikipedia, Litecoin, 06.08.2015,
https://en.wikipedia.org/wiki/Litecoin

[Wiki:DogeCoin] : Wikipedia, Dogecoin, 25.08.2015,
https://en.wikipedia.org/wiki/Dogecoin

[Wiki:PotCoin] : Wikipedia, PotCoin, 19.05.2015,
https://en.wikipedia.org/wiki/PotCoin

References

[Wiki:Coinye] : Wikipedia, Coinye, 09.06.2015,
https://en.wikipedia.org/wiki/Coinye

[Wiki:PeerCoin] : Wikipedia, Peercoin, 27.07.2015,
https://en.wikipedia.org/wiki/Peercoin

[Wiki:Dash] : Wikipedia, Dash (Cryptocurrency), 08.07.2015,
https://en.wikipedia.org/wiki/Dash_%28cryptocurrency%29

[Wiki:CryptoNote] : Wikipedia, CryptoNote, 26.08.2015,
https://en.wikipedia.org/wiki/CryptoNote

[BtcWiki:Genisis] : Bitcoin.org, Genesis Block, 19.07.2015,
https://en.bitcoin.it/wiki/Genesis_block

[Wired, 2013] : Wired.com, Take a tour of Robocoin, the world's first bitcoin
ATM, 29.10.2013, http://www.wired.com/2013/10/bitcoin_atm_gallery/

[BBC, 2014] : BBC News, MtGox bitcoin exchange files for bankruptcy,
28.02.2014, http://www.bbc.com/news/technology-25233230

[Reuters, 06.01.2015] : Reuters.com, Bitcoin exchange Bitstamp suspends
service after security breach, 06.01.2015,
http://www.reuters.com/article/2015/01/06/us-bitstamp-cybersecurity-
idUSKBN0KF0UH20150106

[Reuters, 09.01.2015] : Reuters.com, Bitcoin exchange Bitstamp says to
resume trading on Friday, 09.01.2015,
http://www.reuters.com/article/2015/01/09/bitstamp-cybersecurity-
idUSL6N0UO1DC20150109

[BtcWiki:History] : Bitcoin.org, History, 2015, https://en.bitcoin.it/wiki/History

[Wiki:Bitcoin] : Wikipedia, Bitcoin, 22.08.2015,
https://en.wikipedia.org/wiki/Bitcoin

[CoinMarket, 2015] : coinmarketcap.com, Crypto-currency Market
Capitalizations, 09.11.2015, http://coinmarketcap.com/#EUR

[Evans, 2014] : Jon Evans, Enter the Blockchain: How Bitcoin Can Turn The
Cloud Inside Out, 22.04.2014, http://techcrunch.com/2014/03/22/enter-the-
blockchain-how-bitcoin-can-turn-the-cloud-inside-out/

[Wiki:Namecoin] : Wikipedia, Namecoin, 23.10.2015,
https://en.wikipedia.org/wiki/Namecoin

[woolci, 2015] : woolci, Which one you choose? PeerTracks or Ujo?,
12.09.2015, https://bitsharestalk.org/index.php?topic=18402.0

[Wiki:HashFunction] : Wikipedia, Hash Function, 07.08.2015,
https://en.wikipedia.org/wiki/Hash_function

References

[Wiki:CryptoHash] : Wikipedia, Cryptographic Hash Function, 28.08.2015,
https://en.wikipedia.org/wiki/Cryptographic_hash_function

[Wiki:SHA] : Wikipedia, Secure Hash Algorithm, 06.04.2015,
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm

[Wiki:RIPEMD] : Wikipedia, RIPEMD, 06.11.2014,
https://en.wikipedia.org/wiki/RIPEMD

[Jayanthi, 2015] : Jayanthi, Public Key Cryptography and PuTTYgen - Program
for Generating Private and Public Keys, 2015,
http://resources.infosecinstitute.com/public-key-cryptography-puttygen-
program-generating-private-public-keys/

[Wiki:RSA] : Wikipedia, RSA (Cryptosystem), 18.09.2015,
https://en.wikipedia.org/wiki/RSA_(cryptosystem)

[Dwork et al., 1993] : Cynthia Dwork, Moni Naor, Pricing via Processing or
Combating Junk Main, 1993,
http://www.wisdom.weizmann.ac.il/~naor/PAPERS/pvp.ps

[Berman et al., 2005] : Piotr Berman, Marek Karpinski, Yakov Nekrich, Optimal
trade-off for Merkle tree traversal, 28.10.2005,
http://www.sciencedirect.com/science/article/pii/S0304397506008693

[Okupski, 2014] : Krzysztof Okupski, Bitcoin Developer Reference,
15.12.2014,

[Btc:DevGuide] : bitcoin.org, Developer Guide, 25.10.2015,
https://bitcoin.org/en/developer-guide

[BtcWiki:Script] : bitcoin.org, Script, 25.09.2015,
https://en.bitcoin.it/wiki/Script

[BtcWiki:P2SH] : bitcoin.org, Pay to Script Hash, 27.05.2015,
https://en.bitcoin.it/wiki/Pay_to_script_hash

[BtcWiki:Address] : Bitcoin.org, Address, 31.08.2015,
https://en.bitcoin.it/wiki/Address

[Moore, 2013] : Chris Moore, StackExchange: How to calculate new bits
value, 2013, http://bitcoin.stackexchange.com/questions/2924/how-to-
calculate-new-bits-value

[BtcWiki:BlockSIze] : bitcoin.org, Block size limit controversy, 11.09.2015,
https://en.bitcoin.it/wiki/Block_size_limit_controversy

[BtcWiki:Difficulty] : bitcoin.org, Difficulty, 13.07.2015,
https://en.bitcoin.it/wiki/Difficulty

References

[Corallo, 2013] : Matt Corallo, [Bitcoin-development] [ANN] High-speed
Bitcoin Relay Network, 05.11.2013, https://www.mail-archive.com/bitcoin-
development@lists.sourceforge.net/msg03189.html

[Git:electrum] : spesmilo, electrum-server, 23.10.2015,
https://github.com/spesmilo/electrum-
server/tree/8acd8eef4995db28b5c46a2986ac1b5a9e0a25ba

[Dev:Version] : bitcoin.org, Developer Referece - Version, 21.10.2015,
https://bitcoin.org/en/developer-reference#version

[Möser, 2013] : Malte Möser, Anonymity of Bitcoin Transactions, 2013,

[BtcWiki:DoubleSpend] : bitcoin.org, Double Spending, 11.05.2015,
https://en.bitcoin.it/wiki/Double-spending

[Karame et al., 2012] : Ghassan O. Karame, Elli Androulaki, Srdjan Capkun,
Two Bitcoins at the Price of One? Double-Spending Attacks onFast Payments
in Bitcoin, 2012, http://eprint.iacr.org/2012/248.pdf

[Wiki:Botnet] : Wikipedia, Botnet, 6.11.2015,
https://en.wikipedia.org/wiki/Botnet

[Bradbury, 2013] : Danny Bradbury, Why ZeroAccess botnet stopped bitcoin
mining, 02.10.2013, http://www.coindesk.com/zeroaccess-botnet-stopped-
bitcoin-mining/

[blockchain:hashrate] : Blockchain.info, Hash Rate, 08.11.2015,
https://blockchain.info/charts/hash-rate

[BtcWiki:Flood] : bitcoin.org, Flood Attack, 08.07.2015,
https://en.bitcoin.it/wiki/Flood_attack

[BtcWiki:JulyFlood] : bitcoin.org, July 2015 Flood Attack, 15.07.2015,
https://en.bitcoin.it/wiki/July_2015_flood_attack

[BtcWiki:Vulnerabilities] : bitcoin.org, Common Vulnerabilities and Exposures,
17.08.2015, https://en.bitcoin.it/wiki/Common_Vulnerabilities_and_Exposures

[BtcWiki:Weaknesses] : bitcoin.org, Weaknesses, 08.07.2015,
https://en.bitcoin.it/wiki/Weaknesses

[Fox, 2015] : Fox News, ISIS Parks it's cash in Bitcoin, experts say,
25.11.2015, http://www.foxnews.com/tech/2015/11/25/isis-parks-its-cash-in-
bitcoin-experts-say.html?intcmp=hpbt3

[Barker, 2014] : Jonathan Todd Barker, Why is Bitcoin's Value so Volatile?,
27.05.2014, http://www.investopedia.com/articles/investing/052014/why-
bitcoins-value-so-volatile.asp

References

[AP, 2013] : USA Today, Bitcoin economics: Primer on volatile currency,
11.04.2013, http://www.usatoday.com/story/tech/2013/04/11/bitcoin-
economics/2073517/

[Orsini, 2013] : Lauren Orsini, Bitcoin and the black market: The ties that
bind, 08.10.2013, http://readwrite.com/2013/10/08/bitcoin-probably-gets-its-
value-from-illicit-use

[Brito, 2011] : Jerry Brito, Bitcoin, Silk Road and Lulzsec oh my!, 03.06.2011,
http://techliberation.com/2011/06/03/bitcoin-silk-road-and-lulzsec-oh-my/

[Wiki:BtcLegality] : Wikipedia, Legality of Bitcoin by Country, 09.11.2015,
https://en.wikipedia.org/wiki/Legality_of_bitcoin_by_country

[CoinDesk:Legality] : CoinDesk.com, Is Bitcoin Legal?, 19.08.2014,
http://www.coindesk.com/information/is-bitcoin-legal/

[Doherty, 2014] : Brian Doherty, Bitcoin and Taxes, 03.04.2014,
https://reason.com/archives/2014/04/03/bitcoin-and-taxes

[BTC:TransactionNumber] : blockchain.info, Number of Transactions per Day,
15.11.2015, https://blockchain.info/charts/n-transactions?
timespan=2year&showDataPoints=false&daysAverageString=1&show_heade
r=true&scale=0&address=

[BtcWiki:EcoMajority] : bitcoin.org, Economic Majority, 24.09.2015,
https://en.bitcoin.it/wiki/Economic_majority

[Khaosan, 2015] : Venzen Khaosan, Bitcoin XT Block Size Increase: What is
Proposed and how will it Affect the Bitcoin Price?, 23.06.2015,
https://www.cryptocoinsnews.com/bitcoin-xt-block-size-increase-proposed-
will-affect-bitcoin-price/

References

Versicherung über Selbstständigkeit

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde
Hilfe selbstständig verfasst und nur die angegebenen Hilfsmittel
benutzt habe.

Hamburg, den _______________ __________________________

	Table of Contents
	Glossary
	1 Introduction
	1.1 Goal of the thesis
	1.2 Target audience
	1.3 Structure of the thesis
	1.4 Thesis delimitations

	2 Origins of Cryptocurrencies
	2.1 What is a cryptocurrency?
	2.2 Current cryptocurrencies
	2.2.1 Bitcoin
	2.2.2 Other implementations

	2.3 The history of Bitcoin
	2.4 What makes Bitcoin so Important
	2.5 Related Research

	3 Protocol Design
	3.1 Underlying mathematics
	3.1.1 Hashing algorithms
	3.1.2 Public key cryptography
	3.1.3 Proof of Work
	3.1.4 Merkle Trees

	3.2 Design concepts
	3.2.1 Transactions
	3.2.1.1. Regular Transactions
	3.2.1.2. Coinbase Transactions
	3.2.1.3. Restrictions

	3.2.2 Script
	3.2.2.1. Script Templates
	3.2.2.2. Hash Types
	3.2.2.3. Signature Creation

	3.2.3 Addresses
	3.2.4 Blocks
	3.2.5 Mining

	3.3 The Bitcoin network
	3.3.1 Block chain
	3.3.2 Network communication
	3.3.3 Bitcoin mining pools

	4 Analysis
	4.1 Technical Analysis
	4.1.1 Address anonymity
	4.1.2 Double spending
	4.1.3 Botnet farming
	4.1.4 Flooding
	4.1.5 Software Errors
	4.1.6 Comparison

	4.2 Social Analysis
	4.2.1 Bitcoin Economics
	4.2.2 Bitcoin Legality

	5 Conclusion
	5.1 Was the goal reached?
	5.2 Proposed improvements to Bitcoin
	5.3 Future work

	Table List
	List of Figures
	References

