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Matthias Nitsche

Title of the paper
Continuous Clustering for a Daily News Summarization System

Keywords
Clustering, Cluster Analysis, Document Clustering, Vector Space Model, Partitional Clustering,

Hierarchical Clustering, Probabilistic Topic Modeling, Summarization, Text Mining, Data

Mining, Machine Learning, Unsupervised Learning, Information Retrieval

Abstract
Interpreting and summarizing textual content without the supervision of human experts is

an exploratory process involving NP-hard algorithms. Using techniques of text mining and

document clustering as an approach of unsupervised machine learning, grouping textual

content of online newspaper articles into coherent categories and real world events is subject

of this thesis. Additionally, building a functioning data pipeline for scraping and preprocessing

newspaper articles, feeding clustering algorithms, shows promising results. In short, the

presented feature selection and clustering strategies yield similar e�ects.
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1 Introduction

“Where there is matter, there is geometry.”

Johannes Kepler

Text mining and natural language processing have long been studied in the �eld of arti�cial

intelligence. Within the last decade, models that are computationally expensive, were reopened

for discussion. Machine learning aids in this task by approximating models for structured

and unstructured data. Recognizing patterns, retrieving information or classifying content of

interest for huge data sets, often scaled over thousands of machines. This process is called

knowledge discovery. By continuously clustering daily news articles to summarize them, the

task at hand is simple: Reducing noise which surrounds textual documents by presenting the

useful fraction of information. The useful fraction of information can be anything from topic

detection to summarization providing additional reasoning for humans. Mining documents,

preprocessing them into suitable representations and grouping their form to detect underlying

patterns that connect documents is the primary goal of this thesis.

It goes without saying that newspaper articles are created by humans. While automation and

easy retrieval can be of utmost importance, news are created by authors, journalists, generally

professional writers. The main purpose of text mining is to scale suitable algorithms to data

sets, that are too enormous to be comprehended by a single person. Without authors there is

no text, therefore the highest good at hand are the documents by the authors.

In the following we will examine the �eld of unsupervised learning with respect to cluster-

ing exempli�ed by a news clustering system. The objective is to build parts of an automatic

summarization system that scrapes newspapers, preprocesses the content and groups them

into clusters for summarization purposes.

We will soon see that assumptions from linear algebra and geometry will be of utmost im-

portance to understand text representation. Essentially it is all about smart counting. This
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1 Introduction

sentiment lines up with the quote by Johannes Keppler “Where there is matter, there is geome-

try.”

1.1 Machine Learning

Arti�cial intelligence is the �eld of study, asking the question: Are computers capable of

intelligent behavior? By intelligent it is referred to how an agent can be programmed to react

and act to an environment by maximizing the chances of success in a particular task. Machine

learning is a sub �eld of arti�cial intelligence. The distinction mainly lies in the training of

models that learn a good representation of data given a hypothesis.

A computer program is said to learn in the context of performing a task if its performance

with respect to some measure improves with experience. In the context of this thesis, machine

learning is closely related to pattern recognition - the act of teaching a program to react

to or recognize patterns. It can be split into three broader categories namely supervised

learning, unsupervised learning and reinforcement learning. Supervised learning is the machine

learning task of inferring a function from labeled training data. Those labels are typically

sorted into classes de�ned by expert human knowledge. Unsupervised learning is the task

of �nding patterns in unstructured data. That means, there is no prior knowledge involved

and the algorithms approximate solutions that show underlying patterns and connections.

Reinforcement learning is learning what to do - how to map situations to actions - so as to

maximize a numerical reward signal.

In this thesis we are mainly confronted with unsupervised learning. Unsupervised learning

is special, in the sense that we do not know what we want to �nd. Finding patterns can mean

anything and most often only human beings are capable of interpreting the quality of a result.

As such, unsupervised learning focuses on algorithms that approximate optimal solutions to

NP-Hard problems by an objective maximizing or minimizing cost function.

1.2 Structure of the thesis

In chapter 2, theoretical foundations and basics are examined. Helpful but not needed is prior

knowledge in linear algebra, statistics and algorithms.

In chapter 3, we introduce the news clustering system “News-Clusty”, a data pipeline, in

comparison to the Columbia Newsblaster system.

2



1 Introduction

In chapter 4, feature selection strategies for clustering algorithms are formally described.

In chapter 5, experiments and evaluation of di�erent clustering routines are presented.

In chapter 6, we will discuss results, problems and chances.

The �nal chapter 7 sums up the thesis, gives future directions and provides additional material

for reading.

3



2 Basics

“If I have seen further it is by standing on
the shoulders of giants.”

Isaac Newton

The goal of this section is to give some intuition and the necessary theoretical background

for the following chapters. The areas where clustering problems arise are huge. Clustering

provides solutions to problems like market segmentation, classi�cation, document organization

or indexing.

Firstly we will have a look at the de�nition of clustering and summarization. How they are

related and the variety of possibilities this imposes.

Secondly the vector space model (VSM) is introduced. It contains all information about how

to represent documents in a vectorized form. Of special interest are enhanced models which

reduce the dimensionality of documents by Singular Value Decomposition (SVD).

Thirdly traditional clustering algorithms from the hierarchical (Ward, Birch) and partitional (K-

Means, Expectation Maximization) family will be presented. Closely related are the generative

models. These methods can be used as a kind of clustering algorithm and are highly useful in

several steps of traditional clustering. They can be used as dimensionality reduction techniques

as well.

At last we will have a glance at how to measure the quality of clusters based on internal

measures (without ground truth labels) and external measures (with explicit labeling of the

ground truth).

The reader is assumed to have prior knowledge on linear algebra, statistics and linguistics.

This is by no means a complete reference, but should cover the topics fairly well.

2.1 Clustering and Summarization

Clustering, as de�ned by Aggarwal and Zhai (2012), is �nding groups of similar objects in

data sets, with a de�ned similarity function between objects. The granularity of the features

can vary:

4



2 Basics

• Sentence based - A document d is split into sentences, clustering reveals the most coherent

groups of sentences that are closely related.

• Collection of documents - A collection of documents d (corpus) is clustered by similarity

between all pairs of documents.

• Stream of documents - The same as clustering a corpus with the constraint that over time

the size of the corpus grows.

Document clustering on large corpora can be seen as a summarization of the underlying

concepts. The representation of documents as feature vectors is described with the vector space

model in the next section. Data clustering is a computationally expensive NP-hard problem.

That means there is currently no e�cient way to group objects in an optimal way. Therefore

heuristics are applied such that algorithms converge at a local maximum. Theoretically a local

maximum can vary vastly compared to a global maximum.

In this context a distinction has to be made between online and o�ine learning. Where we

have a continuous stream of documents it is often reasonable to run a clustering algorithm

continuously. This is called online learning. Most clustering algorithms need all documents at

once, as a batch, to generate clusters. This is referred to as o�ine learning. The property of an

algorithm that can partially cluster documents is desirable. In continuous clustering, several

things are much more di�cult compared to batch clustering. How can we assign or create

new clusters for unseen documents? How do we choose a good representative seed to start

o� from? Speci�cally to newspapers, how do we track that a topic is not fresh anymore? On

the contrary to this, batch algorithms can be used to cluster a full day of newspaper articles.

We then connect clusters, in this case events, with the day before and after. Then, clusterings

are groupings of events, that were written about, at the same time. Events of two days can

be merged, when the distance between both is low (minimum) e.g. the similarity is high

(maximum).

Automatic text summarization is the process of reducing textual content to the most

important concepts, in a readable, formatted form, to the user. Mani (2001) We have to dif-

ferentiate between summarization of single documents and a collection of documents. In

multi-summarization the problem lies in identifying topics across documents, �nding the

most relevant sentences, reducing and removing redundant/duplicate information. Moreover

syntactically it is often inappropriate to merge sentences of di�erent documents. The Columbia

5



2 Basics

Newsblaster and Google News are prime examples of summarization engines. Both continu-

ously scrape news, cluster them and summarize the content into cohesive summaries. This is

by no means an easy task and involves several components. These topics will be evaluated

later and will take a major part of this thesis. See McKeown et al. (2002); Schi�man et al. (2002).

The text summarization and clustering task is closely related. Clustering groups documents

that are closely related. These groups are used to do multi-document summarizations. The

following steps are applied to group documents into coherent groups. McKeown et al. (2002)

First Cluster documents that contain a high density of information, so summarizers can work

on groups of documents, instead of all documents or single ones.

Second Classify documents into categories in a semi supervised way to construct hierarchies

of relationships

Third Detect the latent topics across and within documents to create a meta concept of closely

related documents, helping to improve summarizations.

Fourth Removing outliers that will not highly contribute to textual summaries

Clustering itself can be seen as a summarization as well. Stefanowski and Weiss (2003)

de�ned a well versed graphical user interface called Carrot Search boosted by their Lingo3G

clustering algorithms
1
. One can see that the proposed clustering techniques can form well

de�ned topical browsers. The user can easily interact with the underlying data in a connected

and semantic way.

Supervision As opposed to unsupervised learning strategies such as clustering, supervised

learning classi�es some input based on a provided ground truth. That is, for an input x there

are labels y that describe the class they are in. Supervision can be done by explicitly classifying

the documents before the clustering. The input is then split into n classes. Then each class

can be individually clustered. Often however this is no option. We need to manually label all

documents. This can be time consuming and error prone. Often several labelers are needed to

cross validate human bias. With this in mind there are two options on how to label unseen or

new data:

• Use a supervised classi�cation algorithm to automatically label unlabeled data. A pre-

requisite is to have a labeled training set and to have a lot of data. To name a few

1

See http://search.carrotsearch.com/carrot2-webapp/search
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candidates: Multinomial/Gaussian Naive Bayes (MNB), Multivariate Logistic/Linear Re-

gression, Arti�cial Neural Networks (ANN), Support Vector Machines (SVM) or Random

Forests (RF). Bishop (2006)

• Use an unsupervised clustering algorithm to automatically label unlabeled data. This can

be done by �rst forming clusters and then merging the nearest clusters until k distinct

categories remain. Usually the merging criterion can be controlled by some threshold

and high variance documents are sorted out into an outlier cluster.

Unfortunately, clustering is not accurate enough at classifying documents into groups, reveal-

ing the ground truth. Opposed to this, supervised classi�cation with well de�ned testing sets,

perform extraordinary well on unseen documents. Clustering algorithms do not lead to very

good groupings based on hard distinct labeling. The problem ultimately lies in the text domain

itself. A lot of documents have di�erent proportions of classes. A document about politics can

equally have something to do with economics. This results in mixed clusters, where each clus-

ter represents proportions of di�erent classes. This is too fuzzy to classify by hard distinct labels.

A greater problem lies in the fact that no matter how well tuned a supervised classi�er or

an unsupervised clustering algorithm is, words change over time. A document about politics

in the 1980s might resemble di�erent word proportions today and so accuracy will diminish

over time. This time drift can happen much faster. Suppose you originally trained a classi�er

for putting an article into politics and economics. Where do you put stories on the �nancial

crisis 2008/2009? Lots of models try to overcome this gap by statistical assumptions, such as

LSA by Deerwester et al. (1990) depicted in section 2.2.4.1.

7
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2.2 Vector Space Model (VSM)

The vector space model, visualized in 2.1, is directly derived from the vector space subject to

linear algebra. If we talk about vector space we often refer to the euclidean vector space where

examples are in 2 or 3 dimensions. Linear algebra concerns itself with all dimension in Rn
. All

dimensions higher than 3 are hard to imagine. From the view of linear algebra the vector space

consists of linear combinations that are solved by Ax = b by some matrix decomposition step.

In the context of document clustering the vector spaces typically far exceed 3 dimensions up

to Rn
. For a proper introduction to linear algebra see Strang (2009).

Figure 2.1: "Vector space model"

The vector space model in the text domain has the meaning that each word is a component of

a vector resembling documents. If a document has 100 distinct words, the resulting document

vector is in 100th dimensional space. If a second document has 50 distinct words, independent

of the �rst document, both vectors are now in 150th dimensional space. That is, every new

word will be concatenated to the existing document sets.

2.2.1 Notation

Before moving on we have to denote some notations and de�nitions. A corpusC = {d1, d2..dm}
is de�ned as a collection of documents wherem = |C|. A document d = (w1, w2 ..wi) contains

words w where i = |d|. Note that each document is not a text but a sequence of words. Often

8



2 Basics

special stop words are �ltered out of these documents as well. A dictionaryD = {w1, w2 ..wn}
contains all the distinct words from each document where n = |D|. A coincidence matrixM is

M =


w1 w2 .. wn

d1 c11 c12 .. c1n
d2 c21 c22 .. c2n
.. .. .. .. ..
dm cm1 cm2 .. cmn



Table 2.1: "Document-term (m x n) matrix"

where rows are the documents d1..dm of a corpus and columns are the coincidence counts

w1, w2.., wn of the corpus’ dictionary. The next section 2.2.2 explains this in more detail. Often

the transpose MT
is taken into account as well, setting rows to columns and columns to rows.

Often the words are selected based on di�erent feature selection strategies as well, see section

4.2. A distance matrix Mdist is de�ned as

Mdist =


d1 d2 .. dm

d1 v11 v12 .. v1m
d2 .. v22 .. v2m
.. .. .. .. ..
dm .. .. .. vmm



Table 2.2: "Document-document (m x m) matrix"

where each document is compared to another document by a similarity measure. See section

2.2.3 for more information. v is any value that the distance function can incorporate.

2.2.2 Bag of words

The bag of words assumption says that a corpus can be represented as a count or word

coincidence matrix. That means m documents form a subspace in an m x n matrix where m

denotes the corpus size and n the dictionary of the words. Typically the assumption is binary,

that is an occurrence of word i in a document j is set to 1 else set to 0. Bag of words is also

another way of saying that words are exchangeable in order. That means the joint probability

of N following words is equal to any of its permutations p(w1..wN ) = p(wN ..w1), thus leading

to the assumption that the probability of a sequence of words can be viewed as a mixture over

words. Later we will see this applied to the expectation maximization algorithm.

9
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The bag of words model provides an easy view of a text document. We essentially say that a

document has no structural meaning, by dismissing position and collocations in a sentence.

(Jurafsky and Martin, 2000, chp. 20)

Words

Documents politics corruption policy

document1 1 (2) 1 (1) 0 (0)

document2 1 (4) 0 (0) 1 (2)

document3 1 (1) 1 (6) 0 (0)

Table 2.3: "Document-term (m x n) matrix"

Normally, we have a lower m and a much higher n, resulting in highly sparse vectors with a

lot of zero counts, which means that documents have no relation to each other. As stated before,

we assume that words are independent from each other. That means highly correlating words

like New and York are not accounted for. In this case they can actually refer to the verb new

and York as a city in Great Britain. A bigram e.g. (New, York) would capture the concept New

York. Bigrams, trigrams or generally ngrams are not taken into account. Ngrams transform a

sequence of words by n such that

f(n = 2, (w1, w2, w3) ∈ d)→ [(w1, w2), (w2, w3)] (2.1)

Adding ngrams to a document term matrix can greatly enhance similarity between two

documents. Keeping the dictionary and adding ngrams to the vector space results in 2n− 1

memory requirements. If the data is already extremely sparse, this will not help much, but

can increase the semantic e�ect on documents that share similar word combinations. There

are other, much more complex models e.g. noun phrases or named entities that can grasp this

intuition as well. From a statistical point of view, this is captured by collocations, stating

that certain word combinations occur more often than they would by chance. Therefore, it is

reasonable to assume, that collocations are found in other documents as well, strengthening

the connection between two documents.

The document term matrix can be enhanced by taking the count of the occurring words

instead of labeling it by occurrence. This is called the raw frequency and can be normalized in

a couple of ways by the term frequency (tf) model

f(t, d) = c (2.2)

10
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where c is the total count of term t occurring in document d. And a general term frequency

function that helps against long document bias by normalizing with the maximum frequency

of any occurring word in d.

tf(t, d) = 0.5 +
0.5 · f(t, d)

max(f(w, d) ∀w ∈ d)
(2.3)

The term frequency model can be further advanced by calculating the inverse document

frequency (idf).

idf(t, C) = log(
|C|

|∀d ∈ C : t ∈ d|
) (2.4)

Where |C| is the size of the corpus and we check for every document in the corpus if the term

occurs in the document. The intuition is: How often does a term occur in other documents. If

a term appears more often then it is a common word such as “the”, whereas “super-symmetry”

might be a rare word. It is therefore some measure of importance. Because idf and tf only

measure either importance across all documents or importance of one document, we need to

�nd words that are not rare and not common either. Generalizing the term frequency and

inverse document frequency we obtain the tf-idf :

tfidf(t, d,D) = tf(t, d) · idf(t,D) (2.5)

The tf-idf has a high score, if a term occurs often in a single document and less often in

other documents. This translates to the notion that a term represents the current document

better than other terms and are therefore highly discriminating words. There are other models

such as graph based or tree based approaches. For the purpose of this thesis these models are

left out. (Manning et al., 2008a, chp. 6)

One of the big problems with the vector space model is that feature in�ation or feature

explosion arises quickly. If documents have a high variance between other documents and the

connections between two documents are small the sparsity can go up to 100%. That means

that no document has overlapping words and each document only accounts for the words

that were originally in the document. Think of it another way, suppose one has 3 documents

in 3 dimensional space with each axis set to zero but one (1,0,0), (0,1,0), (0,0,1) we have an

independent basis. This means that all documents are orthogonal to each other, meeting at no

point except at the null point (0,0,0). It is therefore not really possible to derive any connections
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between those 3 points. Thus each document represents its own topic. These kind of problems

need a well thought out solution, which is presented in section 2.2.4.

2.2.3 Similarity and Distances

Partitional clustering algorithms commonly work through some objective distance or similarity

function between two objects. After lifting the documents into vector space, we are faced

with the problem of distance between two documents. Several measures were proposed

that can be easily interpreted by geometry or linear algebra. Our goal is to have an m×m
matrix for document× document distances. A document× terms matrix on the other hand

is highly relevant when clustering under the assumption of topical classi�cation. That is,

compare documents not to each other but to all the occurring words as topics. Latent Semantic

Analysis (LSA) is a method where words are projected to lower dimensions by Singular Value

Decomposition. This resembles partial categorization to topics of a document by the most

distinct words. Then a clustering can be done by documents that highly correlate to the same

topics. See 2.2.4.1 for more information.

The Cosine similarity is a measure of orientation, not the magnitude. The angles between

documents are compared and thus if the angle is 0 both documents are equal in size and word

occurrences. Given two documents d1 and d2 the classical cosine similarity is de�ned by

cosine(d1, d2) =
d1 · d2

||d1|| · ||d2||
(2.6)

If the documents are already de�ned unit vectors cosine similarity is just cos(d1, d2) = d1∗d2.

Often we would like to consider the geometrical distance between two points, taking the

magnitude of a vector into account as well.

The Euclidean distance (l2 norm) is the geometrical distance between two vectors in Rn
.

Again given two documents d1 and d2 it is de�ned by

euclidean(d1, d2) =

√√√√ M∑
i=1

(d1,i − di,2) (2.7)

This results in the fact that documents running into di�erent directions, e.g. have di�erent

angles, might as well be close. It is a geometric measure and accounts for magnitude rather

than direction of a vector.
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The Manha�an distance (l1 norm) is commonly known under the city block distance

measure. The system is divided up in equally squared brackets comparing dimensions in

sequential order and taking the absolute squared di�erence between two documents. Given

two documents d1 and d2 it is de�ned by

manhattan(d1, d2) =
M∑
i=1

|d1,i − d2,i| (2.8)

There are more distance functions such as the Jaccard coe�cient that works on intersections

of sets and the Chebyshev distance which is a maximizing greedy strategy of the Manhattan

distance. The underlying concepts of similarity should be clear though. Each coe�cient

works good on a particular set, however cosine and euclidean distances are the commonly used

choices.

Hierarchical algorithms use di�erent metrics. The goal here is not to �nd the closest points,

but to �nd the closest intersecting clusters. Hierarchical algorithms merge clusters based on

linkage strategies. Those merges are seen as a split in the resulting directed acyclic graph. We

will review them in section 2.3.2 as their functionality strays away from the vector space.

2.2.4 Enhancing the Vector Space Model

The vector space model comes with a variety of problems. First we have a high number of

dimensions. As we see later, this is particularly true for newspapers. Unlike the contents of

tweets by Twitter or RSS Feeds, the content of a newspaper article can be substantially larger

and range over a variety of topics. This can lead to poor clustering results. Several methods

have been proposed to tackle this high dimensionality problem. One of the most striking comes

from linear algebra and was initially proposed in Deerwester et al. (1990) called Latent Semantic

Analysis (LSA). It is based on Singular Value Decomposition (SVD). The Principal Component

Analysis (PCA) on the other hand uses SVD in a di�erent manner. Apart from these, there are

also much more elaborate techniques in the domain of topic modeling, see section 2.3.3.1.

2.2.4.1 Latent Semantic Analysis

Latent Semantic Analysis is a progress to reduce as much noise as possible from a given term

x document matrix to expose the so called latent variables. It is connected to topic modeling

but seems to be more relevant in the context of dimensionality reduction. Dimensionality

reduction is used for dealing with large sparse data to �nd the underlying, connecting, relations.

LSA is a truncated Singular Value Decomposition (SVD) on a term x document matrix. SVD is a
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matrix decomposition where an n x m matrix A is decomposed into three matrices U , Σ and

V T
. LSA is constrained by the number of dimensions k:

svd(A) = Um×mΣm×nV
T
n×n → lsa(A, k) = Um×kΣk×kV

T
k×n (2.9)

While in the original SVD we keep all components decomposing their respective singular

values, LSA only keeps k components reducing the dimensions from n words to k. Σ holds

the k best singular values in sorted order. V T
is a k x document matrix, where k are the

reduced topics from the words. While we can do LSA over documents, we can also use it for

summarizations of single documents.

Figure 2.2: "Singular Value Decomposition (SVD)"

The σ1 ≥ σ2..σk stands for k preceding singular values sorted by magnitude. LSA gives

us a mapping from the top k topics of the document to the most important sentences of

the document. In descending order, the document presents less information per sentence.

Thus taking the top k sentences to create summarization can lead to signi�cant results in a

summarization processor. See �gure 2.2 by Steinberger and Ježek (2004). The intuition behind

SVD is to expose as much variance as possible at the same time reducing noise from the data.

SVD is a natural progress to reduce highly sparse data projecting it to a lower dimensional

space. This corresponds to a notion of topic overlap between di�erent documents. Documents

that share a particular topic are more similar. This results in connections between documents

even if a lot of the words share no common meaning. E�ectively LSA tackles problems of

synonymy and polysemy. Synonymy means that several words often share the same meaning

such as “big” and “large”. While polysemy refers to the fact that one word can have several

meanings such as “bank” as a �nancial institution and “bank” as an object to sit on.
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2.2.4.2 Principal Component Analysis (PCA)

The Principal Component Analysis (PCA) is a multivariate technique separating out correlating

variables into principal components. PCA in general, is a dimensionality reduction technique,

reducing the number of features to a lesser set of features. The di�erence between PCA and LSA

is the input. PCA takes a co variance matrixA∗AT
which means that either onlyword×word

or document × document matrices are taken as input. This makes it perfect for reducing

dimensions after creating a cosine similarity matrix from the documents to visualize results.

Figure 2.3: "Principal Component Analysis (PCA)"

In �gure 2.3, by Richardson (2009), we �nd the n most likely components of a document

by decomposing an original document matrix X by factoring out P principal components.

The input is a co variance matrix n x n or m xm . These components capture the variance

throughout each document individually and reduce the dimensions down to a speci�ed k. The

factorization then tries to solve for a principal component that best resembles the original

data. In practice, PCA is a conversion of a document by term matrix, into a co variance matrix

followed by SVD. Principal components resemble the highest singular values up to k. Primarily

PCA can be described as a dimensionality reduction technique that resembles the original

structure well. It can be used for visualization, reducing down n+ 3 dimensions to 2D or 3D.

Richardson (2009)

2.3 Clustering algorithms

Clustering algorithms are the procedures describing how data can be automatically assigned to

groups by similarity metrics. They are unsupervised methods and can be combined by explicit

knowledge engineering. They come in shape of partitional models, that �atten the structure,

in hierarchical models that build tree like structures, spectral algorithms that are graph based

or density based algorithms. There is a �fth category, namely generative models and closely

related, probabilistic topic models. These models try to �nd the underlying latent variables by

generating the model that could have created the documents in the �rst place. First let us setup

a few de�nitions that all clustering algorithms incorporate.
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• Hard and Soft clustering - A clustering algorithm is hard if documents can only be

assigned to one distinct cluster. On the contrary they are soft (often called fuzzy/over-

lapping) if a document can have multiple assignments that resemble topical proportions

of the document.

• Exhaustive and non-exhaustive - A clustering is exhaustive, if every document has an

assignment after the run, whereas it is non-exhaustive, if documents might not have

any assignments at all (assigned to a null cluster).

• Cost functions - Most clustering algorithms incorporate some sort of cost function, that

needs to be minimized or maximized, after the algorithm completed. The clustering

can be rerun several times, �nding a maximum between di�erent runs by varying the

parameters. This should not be confused with the similarity measure between objects

during a clustering run.

• Local optimum/global optimum - A local optimum is reached, when the objective cost

functions between objects do not yield better results after several iterations, while not at

the best possible solution. This does not mean that the best state is found. Similarity

metrics between objects are inherently heuristic and have no view of a global optimum. A

global optimum can be approximated by objective cost functions rerunning the algorithm

several times. There is currently no known algorithm that can solve clustering in a

deterministic, globally optimized way.

2.3.1 Partitional clustering

Partitional clustering algorithms build up centroids which resemble typical cluster centers. After

documents are converted into vector space and some a similarity measure is applied, cluster

centers are incrementally created. We brie�y review two partitional clustering algorithms

namely K-Means and Expectation Maximization (EM). Literature in this area is rigorous, see

Aggarwal and Reddy (2013); Anastasiu et al. (2013); Manning et al. (2008b).

Figure 2.4 is a typical clustering result. The crosses denote unassigned single clusters. Note:

to display 2D models one has to use dimensionality reduction techniques reducing the feature

size. The original data set consisted of over 100k words, so this is a rather unfair approximation

of the original data set. The larger points correspond to cluster centers, while the smaller

points correspond to individual documents adhering to the cluster centers colors. The axis of

the plots do not play any signi�cant role, as they are scaled by the mean of the data. The axis

represent term frequencies of the documents and reduction by PCA.

16



2 Basics

Figure 2.4: "K-means visualization with applied dimensionality reduction"

Partitional clustering algorithms typically have linear running times and thus are often used

in practical real world applications. Often the amount of cluster centers is set as a hard threshold

assuming that the prior of total clusters is known. Most of the time we do not know how many

clusters will be in the �nal result so we need algorithms that can �nd an approximately optimal

clustering. In particular partitional algorithms can be globally approximated given a numerical

cost function f : D → R such that it maximizes f(di) ≥ f(dj),∀d ∈ D or minimizes

f(di) ≤ f(dj),∀d ∈ D. Often they are much easier to implement because constraints are

kept low and requirements are kept to a minimum. di, dj are all pairs of documents in a

collection of documents D. There are also online versions available which make it possible to

scale algorithms such as K-Means with map reduce on several processors. This is not true for

hierarchical algorithms that build up a hierarchy bottom-up or top-down. The di�erence is that

partitonal algorithms assign to cluster centers, while hierarchical algorithms build up pairs of

merges, resembling a merge tree. This makes it di�cult to scale hierarchical algorithms, as

they need a global picture of distances to be generated.
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2.3.1.1 K-Means

The K-Means clustering algorithm is a centroid based algorithm. Each document is assigned to

a cluster center in each iteration. In order to do this, k centroids are drawn as a initial cluster

centers from the documents. Then, inter distance similarity measures, typically l2norm, decide

if a document is closer to a certain centroid. Centroids will be moved to the new location in

vector space by averaging over the assigned documents. In the next iteration a document then

might be reconsidered for another cluster. K-Means typically forms clusters of equal sizes and

is a hard clustering algorithm Manning et al. (2008b).

Typically a K-Means algorithm will be run with respect to an objective cost function to be

optimized. Globally this can be used for choosing a suitable k for the underlying data. The

objective goal is to minimize the residual sum of squares of within cluster distances Manning

et al. (2008b):

RSSk =
∑

~yk∈wk

|~y − ~f(wk)|2 (2.10)

If we sum over all RSSk the total amount must be minimized. Formula 2.10 is a vectorized

form, where y is a prediction column and f(wk) is the prediction given the assignments

wk where f is an arbitrary of distance function. The algorithm converges either after not

improving above a threshold or by limiting the iterations by a parameter max iter after which

the algorithm stops. In the following case, both criteria are modeled, which resembles the

implementation by Pedregosa et al. (2011) in Sklearn.
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Algorithm 1 X is a document term matrix, µ is a matrix of centroid vectors, c a mapping

between X and µ

1: function Kmeans(X = x1, ..xm, k,maxiter)

2: µ← select k initial centroids fromX

3: c← init assignment matrix

4: cost←∞
5: for i← 1,maxiter do
6: c← argmin|~µ− ~X| . assign X to k nearest centroids

7: µ← average X over assigned µ by c

8: cost←
∑k

n=1RSSk

9: if cost lead to convergence then
10: Stop

11: end if
12: end for
13: return labels, centroids, cost
14: end function

The K-Means algorithm is straight forward but how do we choose the initial clusters? Several

strategies have been proposed. The most used is random sampling, where k random documents

are chosen as a centroid. The problem is, when all documents are skewed to one direction or

close together, K-Means converges at a local minimum, that sub optimally divides documents

into clusters. Another strategy has been proposed by Arthur and Vassilvitskii (2007) that

maximizes the inter cluster distance by spreading the clusters as far from each other as possible.

As the initial clusters are often picked randomly, K-Means is a non deterministic approach that

will most likely result in di�erent clusters after each run.

2.3.1.2 Expectation Maximization (EM)

The Expectation Maximization (EM) algorithm is a generalization of K-Means and a soft clus-

tering algorithm with fuzzy associations between clusters and documents. The underlying

methodology is that we would like to �nd a model that generated the given documents. The

way this works is �rst by assuming that the clusters are represented as random distributions

over terms. They can be assumed as a normal Gaussian distribution. Note: the kind of distri-

bution can vary, Gaussian distributions can tend to zero if no assignment was found and so

EM could assign no label at all. If that is not desired and a soft and exhaustive clustering is

preferred one can add additive smoothing, that other models like the Dirichlet model inherit.
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What we would like to know is: How does a data point x relate to the di�erent k Gaussian

distributions? Formally we need to estimate a model Θ that is maximized using a cost function

such as maximum likelihood estimation (MLE) given some data. The intuition is, by estimating

the likelihood of a given incomplete data set D, that is assumed to be normally distributed, we

want to maximize the connection between Θ and D.

Θ = argmax
N∑

n=1

log P (dn,Θ) (2.11)

Where P is the fractional probability that a document dn was generated by Θ. In the text

domain this means: for all words in each D can we generate assignments to distributions that

maximize Θ. The EM algorithm tries to maximize this function by assigning a probability

that a data point x is likely to be in the cluster c1..ck by calculating the joint probabilities of

occurring words, given a prior of cluster c1..ck. This is also called the expectation step. In the

second step each probability of a document d being part of a cluster c1..ck is weighted into

the average and variance of the de�ned clusters. The clusters are then recalculated using the

before mentioned assignments. This step is repeated until some kind of convergence criteria

has been met. The main intuition is, if we have a model Θ, how to compute the fractional

probabilities of a document d to be in a cluster k:

P (d|Θ) =
K∑
k=1

αk

∏
tm∈d

P (tm = 1|ck)

∏
tm 6∈d

(1− P (tm = 1|ck))

 (2.12)

In the maximization step we then need to compute the probability that a term tm has a high

probability to be in ck that is P (tm = 1|ck) and the prior αk that is the probability that any

document is in c1..ck given no evidence. In the expectation step, we compute rnk, that is the

soft assignment of a document dn to a cluster k. rnk is computed with the soft assignments of

the prior αk and P (tm = 1|ck).

The inherent problem remains: How do we chooseαk andP (tm = 1|ck)? αk andP (tm = 1|ck)

are needed to recompute the soft assignments. At the beginning assignments are assumed to

be randomly mixtured. It must not be randomly mixtured, as is the case with K-Means. It can

take several di�erent priors, such as the Dirichlet prior. After several iterations, documents

are weighted into the initial random selection until convergence. So to speak, the documents

contribute to the model over time, until no change has been seen to the iteration before. For

further information see Manning et al. (2008b). Later we will discuss the generative models in

more detail.
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2.3.2 Hierarchical / Agglomerative clustering

Hierarchical agglomerative clustering (HAC) algorithms build up hierarchies of clusters with

documents on their leaf nodes. There are two approaches available, by bottom-up, assuming all

documents to be clusters, agglomerating them upwards until a root node has been found. Or

by top-down, starting with all documents in a cluster, splitting them down until the leafs are

documents. Often we can constrain this process by limiting the cluster size as well. Then HAC

�rst clusters document to create a tree and then later cutting the tree by heuristics such as a

given cluster size k or by a distance threshold. It is a big discussion in the scienti�c community

if hierarchical clustering as opposed to partitional clustering algorithms give better results.

(Manning et al., 2008a, chp. 17)

HACs typically have higher run times due to the fact that most of them infer the count of

clusters and build up a hierarchy until convergence. The complexities in big O are usually in

O(N2) or O(N3). As seen below in �gure 2.5 hierarchical clusterings can be easily visualized

as dendograms. Dendograms show a history of the merges of di�erent clusters up to the root

nodes.

Figure 2.5: "Ward linkage dendogram"

On the y label there are decreasing distances. The x label presents the leaf nodes where, at

most, two documents are paired to each other. For instance “unsupervised clustering” occurs
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twice, so the distance between these two is 0. While at the same time “supervised clustering”

seems to be close. The merge, one hierarchy up, resembles a cluster where, three documents

resemble one bigger cluster. The distance at the y level is monotonically increasing bottom

up. Each successive merge must be at a higher distance than the merge before. By threshold,

distance density or a �xed cluster size k, we can form clusters at di�erent granularities. To

start hierarchical clustering, a distance matrix has to be created. The closest two documents

will be merged until no unassigned document remains. Keeping track of the merging processes

in each iteration can be seen as overlapping clustering centers.

A simple HAC scheme, as seen in 2 �rst �nds the maximizing next distance between two

documents that have not yet been merged. Then, these maximized document pairs d1 and d2

will be merged, resulting in a new higher level merge. The similarity in HACs are stated by

linkage criteria. The question then is: given two merges c1, c2 how can we compare them?

Algorithm 2 D is a document term matrix

1: function HAC(D = d1, ..dm)

2: C ← initialize m by m distance matrix over D

3: I ← list of length m I[m] = 1 . List of unmerged documents

4: H ← {} . History of merges

5: for k ← 1,m do
6: g ← {i 6= l ∧ I[i] = 1 ∧ I[l] = 1}
7: i, l← argmax {i, l : g}C[i][l] . Return maximized indices over C

8: H ← (i, l) . Keep track of merges

9: for j ← 1,m do . Update C with respect to all other clusters

10: C[i][j]← LinkageSim(C[i][l], C[l][j])

11: C[j][i]← LinkageSim(C[i][l], C[l][j])

12: end for
13: I[l]← 0 . Deactivate from active clusters

14: end for
15: return H,C
16: end function

2.3.2.1 Linkage strategies

In the following, we will explore some of these di�erent linkage clustering strategies. The

referred to distance function will be one of the conventional distances such as cosine or
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euclidean. In �gure 2.6 we can see 3 basic strategies. These strategies can be combined into

more complex ones like the Ward linkage.

Figure 2.6: "Single, complete and average linkage"

Single linkage takes two documents of the corresponding clusters c1, c2 that minimizes

the distance between these two. The objective function corresponds to:

∀d1 ∈ c1 ∧ ∀d2 ∈ c1 : min(distance(d1, d2)) (2.13)

In �gure 2.6 we can see that single linkage takes, geometrically, the two closest points of

c1, c2. It is single in a sense that no other documents are considered but the closest two.

Complete linkage takes two documents of the corresponding clusters c1, c2 that maximizes

the distance between these two. The objective function corresponds to:

∀d1 ∈ c1 ∧ ∀d2 ∈ c1 : max(distance(d1, d2)) (2.14)

In �gure 2.6 we can see that complete linkage takes, geometrically, the two farthest points

of c1, c2. It is complete in saying that it is not underestimated by taking the high variance into

account.
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Average linkage takes all documents of the two corresponding clusters c1, c2 and averages

them with all corresponding clusters. We take all documents into account and link them by

their average. The objective function is:

1

|c1| ∗ |c2|
∑
d1∈c1

∑
d2∈c2

distance(d1, d2) (2.15)

In �gure 2.6 we can see that average linkage takes the average of all documents in a cluster

and calculates the distance between both averages. There are other strategies such as centroid

based, Wards method and minimum energy based. All strategies have di�erent purposes and

have their place. Single linkage might be best suited for problems where the data points are

dense and not scattered throughout the vector space. Complete linkage might work well if

data is scattered widely in high maxima, approximating an ideal solution. Average linkage

would overestimate these cases by too many outliers. On the other hand, average linkage is

the best choice if documents are assumed to participate equally.

BIRCH (balanced iterative reducing and clustering using hierarchies) is a specialized version

of HACs. It scales well to large data sets and is an incremental algorithm. It operates in di�erent

phases and can be constrained by an optional cluster size k. One can provide parameters for

maximum nodes per cluster and minimum density threshold as to when a document should

be assigned to a cluster. See Zhang et al. (1996) for more information. As with the partitional

algorithms this was studied extensively by Aggarwal and Reddy (2013); Aggarwal and Zhai

(2012); Manning et al. (2008a). Top down approaches are not of special interest here. They are

primarily suitable for large scale topic browsers where linear time constraints play a role.

2.3.3 Generative Models

A generative model, is a model for randomly generating observable data values, typically given

some hidden parameters. It speci�es a joint probability distribution over observations and

label sequences. In the area of document clustering and text summarization, they play a role in

modeling documents by word distributions assigned to topics. The EM algorithm is a typical

scheme of a generative model, found in the partitional clustering section. In the text domain,

topic modeling plays an increasing role for identifying latent topics from a distribution of

documents and words. By Bayesian inference we can draw conditional probabilities from word

to document to topic proportions. Making sense of these quantities is part of probabilistic

topic modeling. As with the EM algorithm, we draw partial probabilities that a document

was generated by a mixture of topics. Several widely used methods, namely Latent Dirichlet

24



2 Basics

Allocation (LDA), Hierarchical Dirichlet Process (HDP) as well as the aforementioned Latent

Semantic Analysis (LSA) are found in the generative realm. Usually, generative models are too

expensive for large data sets. That is why most of the algorithms use variational inference

resulting in the possibility to use online algorithms. Bishop (2006)

2.3.3.1 Topic modeling

Probabilistic topic modeling is a generative approach where documents are assumed to be

mixtures of topics. A topic is a mixture of words describing probabilities, how much a word

constitutes to a topic. The underlying question then: Given a set of documents D and given

random topic mixturesZ = {z1..zk}, what wordsw1..wn of a particular document d constitutes

to which topic. Given a document d with words W = {w1..wn} and some mixtures over

words Z how often does a particular word from W occur in topic Z . Further, how common is

topic Z in the current document d. In the following we will brie�y discuss topic modeling and

its applications. See Blei (2012) for a good introduction. The very basic form of topic models

are drawn from multinomial mixtures over word proportions. We would like to know, given a

document d and some topics Z how likely is it that a speci�c topic z generated d?

p(d) =
∑
Z

p(z)
∏
w ∈ d

p(w|z) (2.16)

p(z) is the probability that a random document is part of that topic distribution and p(w|z)
is the conditional probability that given a word w evidenced by z, how likely is it to be drawn?

This tones down to Bayesian inference. We quickly see that in this process each document

is drawn with the priors p(z). Further each document gets hard assignments, a document is

matched with a probability for a topic z. Statistical learning via EM is required for all of these

algorithms by drawing probabilities that estimate the maximum likelihood that a document

d is assigned to a topic z. The topic proportions need to be learned and so each document

increments the parameter size to be estimated.

Bayesian inference In Bayesian inference one would like to know, given some evidence

how likely is it that some event happens? You would like to know given some event A,

evidenced by B, how probable is A? In order to do so we have to take the prior of P (A|B) that

is the probability that some event A without any evidence is likely, called P (A). Multiply it by
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the probability P (B|A) that is the reversed probability of P (A|B) dividing by the probability

of evidence B, P (B).

P (A|B) =
P (A) ∗ P (B|A)

P (B)
(2.17)

The de�nition of a prior or prior distribution is important. A prior is a raw distribution

over the outcomes of some event A, without any evidence B. It is knowledge that needs to

be observed. If no observations took place, we have to assume, beforehand, that the prior is

randomly distributed. The generative process, then weights in the words of each document

and approximates the prior distributions. In the context of topic modeling, priors are topic

distributions over words or documents.

Probabilistic Latent Semantic Indexing (pLSI)

Advancing on the above statement, Hofmann (2001) created the probabilistic Latent Semantic

Indexing (pLSI ).

p(d,wn) = p(d)
∑
Z

p(wn|z) p(z|d) (2.18)

pLSI takes into account that words contribute to a topic. Documents are sequences of words,

so a document can contain several topics as well. The assumption: A topic generated a speci�c

word, so a document was generated by several topics. This is done by drawing p(d) as before

with the additional probability p(wn|z) that a word wn of a document d, evidenced by z and

p(z|d) the most likely probability that a topic is drawn evidenced by d. Informally for each

word wn in a document d how likely was it generated by a topic z given a document d.

Algorithm 3 probabilistic Latent Semantic Indexing

1: Choose a document dm with p(d)

2: for wn ∈ dm do
3: zn ← multinomial from dm p(z|dm)

4: wn ← multinomial from zn p(w|zn)

5: end for

As seen in algorithm 3 the underlying problem is that topic distributions must be estimated

for each document dm and for each topic zn. This can be mitigated by using priors for topics

instead of parameter estimations by EM. For this reason Latent Dirichlet Allocation (LDA) was
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proposed by Blei et al. (2003) where a Dirichlet prior is assumed before hand. For completeness

the two models are brie�y described.

Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation created by Blei et al. (2003) is pLSI assuming a Dirichlet prior.

Dirichlet distributions are often used as prior distributions in Bayesian statistics. The Dirichlet

distribution is the conjugate prior of the categorical distribution and multinomial distribution.

Its probability density function returns the belief that the probabilities of k rival events are xi

given that each event has been observed αi − 1 times.

This fact comes in handy especially when assuming that LDA should generate k distinct topic

distributions over words that can be mapped to a topic distribution over documents. Blei (2012)

Alternatives to this are more complicated models like the Hierarchical Dirichlet Process (HDP)

by Teh et al. (2006) that can automatically infer the size of the topics or the Pachinko allocation

creating a hierarchy with directed acyclic graphs (DAGs). Li et al. (2007) The enhanced models

are non parametric, which means we do not estimate certain parameters, rather we assume

parameters be of some form.

Probabilistic topic models are a smart way of counting proportions between documents.

This is done by distributions that estimate probabilities over words to conclude topics. Topics

can be seen as soft assigned clusters.

2.3.4 Other Methods

In the literature there are a lot more strategies involved how clustering can be done. Often

they are particularly good in speci�c domains such as images. In the text domain however

they have high run times and are often not desirable in their output. They often lack good

strategies to work with high dimensionality. We brie�y note them here.

1. Spectral - these are graph based algorithms. Distances are based on graph partitioning

problems, where shortest paths, min cuts and graph partitions are used to de�ne clusters.

These problems are perfect for small document groups and are often used as sub cluster

procedures.

2. Density - these algorithms try to �nd documents that are within a certain distance to

each other. Often one needs to provide density thresholds or neighborhood graphs that

determine how two documents should be grouped. From a geometric point of view,

we would like to cluster documents that are within a certain distance radius. These

algorithms are locally aware in that they do not care about a global optimization.
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3. Grid - the vector space of the documents is split into equally sized grids. We then

compute the density of the grids and identify the maximizing grids. Then the problem to

cluster each document to a distinct cluster is based on graph traversal techniques. The

intuition is that we do not consider single points but rather the surrounding grids.

There are in depth studies on spectral, density and grid based algorithms in Aggarwal and

Reddy (2013).

2.4 Cluster evaluation

In order to comprehend, if a clustering result is reasonably good or bad, we need to evaluate

them. This can be done by purely mathematical formulas, that output numbers, a human

expert can interpret or by displaying intuitive results via plots, topic browsers or text. The

second category is highly subjective to the reviewer, while the �rst, at least, holds some ob-

jective criteria. Evaluation is a black art. Clustering itself has no real goal in terms of the

domain. The primary goal is to group similar and dissimilar data points. What similarity and

dissimilarity actually means is an open discussion. All results of evaluation metrics need to

be analyzed and interpreted, otherwise its numbers. High numbers can correspond to dense

clusters, low numbers can correspond to scattered clusters. The actual numbers only make

sense in comparisson to what the domain needs to be solved.

Formally we have two groups of measurements, the internal measures and the external

measures. Going ahead a bit for the sake of this thesis we will use purity, V-measure and

silhouette coe�cient for evaluation of clustering results.

2.4.1 Internal measures

Internal measures describe, how well a clustering result represents the original data. This is

achieved by mathematically evaluating the intra cluster distances between documents and their

assigned clusters and by calculating the dissimilarity between documents and other clusters.

What we will often �nd, is, that internal measures are not suitable in asking about the quality

of clusterings. Higher dimensionality might lead to much better clustering results in a few

cases, because the original data has a high variance. Internal measures on the other hand have

better scores if the dimensions are lower. Using LSA reducing the dimensions down to one will

lead to extra ordinary high scores. The results of internal measures are only comparable to

other clusterings of the same dimensions. As there are several measures that can be employed

28



2 Basics

for internal clustering evaluation, we will closely look at the silhouette coe�cient. There are

other measures as well, for completeness they are shortly reviewed.

The silhoue�e coe�cient by Rousseeuw (1987) is a measure for how dissimilar a document

d is to its own cluster Cd and how dissimilar a document d is to the closest neighboring cluster

in Cd 6∈C . Often denoted as a(d), it is the average dissimilarity from d to all other documents

in Cd and b(d) picks the minimum dissimilarity of d to all clusters Cd 6∈C . Then, the silhouette

coe�cient of a document d for a clustering C is de�ned as

s(d,C) =
b(d,Cd6∈C)− a(d,Cd)

max( b(d,Cd6∈C), a(d,Cd) )
(2.19)

The silhouette coe�cient is one, if the dissimilarity a is low and dissimilarity b is high,

meaning d is well clustered into Cd. Near to zero if both are fairly equal, which means d could

�t into the neighboring cluster almost as good as Cd. Finally -1 if the clustering went bad and

d is falsely assigned to Cd whereas it should have been assigned to its neighbor.

The Davies–Bouldin index by Davies and Bouldin (1979) is a measure of distance between

assigned intra cluster distances and inter cluster distances. That is, a clustering is best, if there

is low intra cluster distance and high inter cluster distance to all clusters. A smaller value

means better clustering.

The Dunn index by Dunn (1973) minimizes the distance between two clusters c1 and c2

with a variety of possible distance metrics such as average, maximum or euclidean and divides

it by the maximized intra cluster distances. Thus the Dunn index is like the Davies-Bouldin

index a measure of intra cluster compactness and inter cluster variance.

2.4.2 External measures

External measures describe how well a clustering performed provided with a ground truth of

the documents. We often refer to this as the golden standard, where human labelers assigned

concrete classes to documents. With newspaper articles, this is often the category of the

article, like politics or business. Clustering results are measured by their ratios of labels to

clusters and clusters to labels. The question that arises is: why use clustering for any kind

of grouping in the �rst place, if we already have class labels for the documents? This is ad-

dressed, by only labeling a few documents of the original data set and is called the training

set. While this tackles the issue of spending time for labeling, other problems arise. In clus-

tering for summarization our inherent goal is not to group documents that necessarily share
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a label. Maybe we are interested in groups of documents that share proportions of labels as well.

What we are mostly interested in are metrics that facilitate the notion of facts and prediction

accuracy. The problem with clustering is that we do not know what the clusters actually mean.

Before we can compare them to their respective labels, we need to know for each cluster

how documents were labeled. By counting all the occurrences we can infer if documents

were grouped into clusters with the same labels. If this is not the case then the labels either

were not accurate enough or were accurate but the structure of the documents could not

capture the assumptions. Generally, we would like a high true positive score, meaning most of

the documents that share the same label were in the same cluster. While, at the same time,

maintaining a low false positive score, meaning documents assigned to the wrong clusters.

Wrong however seems relative, if the clustering is soft.

Purity is a basic score and facilitates the rate between correctly predicted results in relation

to false results. Normally this concept is known as precision, but in clustering we have to

�gure out which cluster is dominated by which class label. Formally:

purity(σ, α) =
1

N

∑
k

maxj |σk ∩ αj | (2.20)

Whereσ = {d1, d2, ..dk} are the assigned cluster centers to documents andα = {c1, c2, ..cj}
are the class labels. (Manning et al., 2008a, chp. 16) It is the ratio between all correctly predicted

results, the examples that were assigned into the correct cluster true positives, as a ratio to

those that were falsely assigned to another cluster false positives. A high purity indicates, low

error ratio in the false positives. This only accounts for the false and true assignments. But

what is about labels that are partially assigned in all clusters? We have to account for the

variance how labels are spread, too. It is actually worse if we have 5 clusters and 5 labels, one

label being found in all 5 clusters. How can we account for that?

V-measure is an entropy based measure. It relies on the homogeneity score that measures, if

all of the clusters c1..ck contain documents, that are labeled with the same class and complete-

ness score that measures, if all documents that are members of a class, are elements of the same

cluster. Completeness and homogeneity run in opposite directions. Informally, if all points are

in a single, global cluster, then all classes are part of the same single cluster, thus generating

a high completeness score and a low homogeneity score. If each document is assigned to its

own cluster, having as many clusters as documents, the homogeneity score is very high and
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the completeness score extremely low. The V-measure then favors solutions, where classes

are assigned to a correct cluster (completeness), while keeping the classes distinct between

clusters (homogeneity) Rosenberg and Hirschberg (2007):

homogeneity = 1− H(C|K)

H(C)

completeness = 1− H(K|C)

H(K)

(2.21)

where H(C|K) is the conditional entropy of the classes given the cluster assignments

(similarly for completeness, change the conditional probability):

H(C|K) = −
|C|∑
c=1

|K|∑
k=1

nc,k
n
· log

(
nc,k
nk

)
(2.22)

and H(C) is the entropy of the classes:

H(C) = −
|C|∑
c=1

nc
n
· log

(nc
n

)
(2.23)

Rosenberg and Hirschberg (2007) then de�ne the V-measure as the harmonic mean of

homogeneity and completeness:

v = 2 · h · c
h+ c

(2.24)

The Adjusted Rand Index by Rand (1971) computes a similarity measure between two

clusterings by considering all pairs of samples and counting pairs that are assigned in the same

or di�erent clusters in the predicted and true clusterings. The adjusted score then weights in

an error rate that accounts for chance. This means, that all pairs could be randomly formed,

accounting for pure chance.

There are more models such as adjusted mutual information or F-measure. All these measures

have the underlying assumptions that an expert perfectly labeled the underlying topics of

a document. Often, these scores are skewed, revealing information about total failure or an

approximately good solution. As said before, documents can be partially assigned to di�erent

topics and thus all metrics measuring the performance by hard labels will fail in actually stating,

if the desired goal was found. What if we would like to have clusterings where certain topics
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such as sports and business have an overlap? In summarization we might want to consider

that sports can be about business decisions as well. Getting more diversi�ed summarizations

by �nding connections between di�erent labels can be desirable. Thus scoring too high on

the V-measure scale might indicate that there are no topic overlaps, while at the same time

clusterings obviously fail, if the score is near to zero.

2.5 Summary

In the following all the aforementioned concepts to retrieve accurate clustering results will be

used. In order to do so, we need to transform documents to vector space, enhance the vector

space representation by techniques such as LSA or PCA, tackling dimensionality in�ation, clus-

tering results by partitional and hierarchical algorithms such as K-Means or BIRCH and �nally

to measure results by internal and external valuations. Further, we will work with knowledge

bases such as WordNet to re�ne model selection capabilities and syntactical techniques such as

NER-tags or noun phrases. Clustering is often a multi level approach that re�nes the clustering

result by sucessively clustering smaller assigned groups of documents. On smaller clusters,

generative models such as LDA can be used to extract topics. In the next chapter 3 the data

pipeline is presented that feeds the concepts with documents.
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“Everything should be built top-down,
except the �rst time.”

Alan J. Perlis

This section explains a general data �ow and the necessary steps to get data from an external

source into a vectorized form. It will be held short, giving intuition about a general setup

and necessary preprocessing steps. The general point of reference will be the Columbia

Newsblaster system. For the source code, used throughout this thesis, see the News-Clusty

Github repository.

3.1 Pipeline

A data pipeline for text data has various modules of interest. Where do we get the textual

content from? How is it stored? How is it preprocessed? What intermediate representations

are useful? How do we handle the ongoing stream of input? In 3.1 we see a general overview

of the system.

Figure 3.1: "News-Clusty pipeline"
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The system that was developed for this thesis, which is an early version, is currently called

“News-Clusty”. Scraping, preprocessing and clustering are in place. There is a command line

interface to interact with scraping and preprocessing. Currently it is an open question how to

incorporate clustering schemes by a command line. The summarization and output generation

is yet another topic. The Columbia Newsblaster System by McKeown et al. (2001) is a very

good point of reference. The core components of the Columbia Newsblaster are scraping,

preprocessing, routing, clustering, summarizing and output generation. News-Clusty uses

most of these components. They are brie�y described in the following.

Scraping and Filtering is the process of retrieving documents of interest in its raw form

from websites, achieves and other sources. In the news domain, we talk about online newspa-

pers such as “The Guardian” or news feeds like Google news. The inherent goal is to persist

and preprocess found pages. It is crucial to identify correct pages by several heuristics:

1. encoding to UTF-8 if working in English.

2. language to English, as a lot of newspapers have several languages to o�er.

3. content-length has to be >= 500 chars to be relevant

4. irrelevant content like advertisement, not found pages, subscriptions etc.

The more information one can collect about the article, the better. Meta information like

authors, meta keywords, keywords, categories, publishing dates, tags and links can be used

later for more semantic strategies. Often, meta keywords can completely contain what articles

are about. These keywords can be reasonably used by looking up de�nitions on Wikipedia or

Google, enhancing the content of an article. Publishing dates can be used to capture freshness,

by penalizing articles that are several days old.

Preprocessing is the step, where raw content is send into a pipeline of �lters, until all noise

and unnecessary information is stripped. In News-Clusty everything is on the internet in form

of HTML pages. So a major task is to extract raw content from HTML to representative forms.

An alternative would be, to use the extensive APIs of most newspapers, often for a subscription

price each month.

In �gure 3.2, we work on two Elasticsearch indices. The preprocessing module reads articles

from the “articles” index, a continuous stream of documents and posts on the “prep” index.

In the preprocessing we take all the actions listed and save the intermediate result as its own

�eld. This is helpful later, when computing expensive operations, such as named-entity tags,
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noun-phrases or pos-tags. After processing the HTML, we take a second �lter step to make sure

that the conditions of the scraping steps still hold true. If not, the article is removed. Stripping

HTML is not the only necessary step. We need to clean documents from bad characters and

unuseful information we cannot work with e.g. images. If the need arises, spelling correction

can be applied as well, that is, if there is su�cient evidence that articles have a lot gross

misspellings or slang. Due to the central limit theorem, misspellings diminish, in light of a

greater population sample.

Figure 3.2: "Preprocessing"

In �gure 3.2 “Raw” is the parsed text from the HTML, while “CRaw” represents text that

contain no numbers, stop words, short words, punctuation and special characters. The tok-

enization is not a white space splitter, it is a fully trained statistical parser that detects sentences

and boundaries, as well as sentence tokens. The same goes for noun phrase extractors, pos-

taggers and NER-taggers. “CRaw” is used as a representation of the text, while “Raw” is used

to generate the before mentioned concepts.

The Clustering module does several transformations as displayed in �gure 3.3. Feature

selection is the process of picking features that are of most interest. This often happens

mathematically by tf-idf or by formulas describing information density of words. If desired,

resulting features can be enhanced by de�nitions and categories of Wikipedia or projected via

WordNet ontology’s, see section 4.3. Before the actual clustering algorithm is run, similarity

matrices and normalization to unit vectors is done. After this, documents can be clustered by

any kind of clustering algorithm. Outcomes are evaluated and redone, if desired evaluation

criteria were not met.
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Figure 3.3: "Clustering cycle"

The Summarization module would receive the clustered documents as input. In addition

meta information can be used here as well. The summarizer either gets single documents or a

collection of documents that are in the same cluster. If assignments are soft, possible cluster

overlaps can be taken into account. This component is currently missing and subject to further

research.

Output generation is a matter of visualizing the results of a summarization engine. For

instance a website with rendered HTML. Currently clustering results can be projected to lower

dimensions and to render 2D or 3D visualizations. Additionally the measures of clusterings

can be compared and examined.

The Routing engine detects if the input is a type of event. They are categorized into

“single-events”, “multi-events”, “person-centered” and “other”. A single event is about the

same topic e.g. the earthquake in Nepal 2015. Multi-events take place at di�erent times,

locations and with di�erent subjects but with the same content, like terrorist attacks in 5

countries. A person-centered view is often a biography like a pro�le of Barack Obama running

for president. This view makes it possible to make di�erent assumptions about how articles

should be summarized in case of the category of events that occurred. A router like this, could

bring in various performance gains and strengthen the quality of a summarization. Due to

time constraints, this was left out of News-Clusty.
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3.2 Python and Libraries

News-Clusty is entirely written in the programming language Python and a well versed collec-

tion of libraries.

Python is a dynamic, object oriented higher level programming language with a rich envi-

ronment for scienti�c computing. Python incorporates many di�erent styles and assumptions,

leading to a variety of programming paradigms between object oriented and functional pro-

gramming. From the Zen of Python: “Beautiful is better than ugly. Explicit is better than

implicit. Simple is better than complex.”. For a proper introduction to Python see Bird et al.

(2009).

The Persistence of articles is held in Elasticsearch. Elasticsearch is a document store that

can be easily distributed across hundreds of nodes. It is schemaless and can be dynamically

adjusted, if the need arises. Its primary use case is for search and anything related to huge

chunks of text. Redis on the other hand is used as a cache for di�erent feature selection strate-

gies. It is a key value store and commonly chosen for fast execution. The common strategy is

to �rst generate feature sets by querying Elasticsearch. Each successful feature selection on a

document will be persisted as a numerical feature vector into Redis. Multiple accesses to the

same documents will be read from Redis if available.

While databases have huge advantages by querying documents, there is an overhead when

accessing all �les at once. If, for a particular reason, a whole data set must be used, it is advised

to use some of the serialization tools, that output sparse matrix market formats or serializes to

raw text �les. Input and output on �le systems is faster, if you do not need to query the data.

This holds true, as long as a single node �le system is involved. Elasticsearch for instance has

its powers by leveraging clusters of servers (nodes).

The indices for Elasticsearch are scoped by the scraping date, 20150701/article/id = document

or 20150701/prep/id = document. This is particularly helpful for continuous processing,

day by day. The reason for choosing both, is that we get highly expressive power and fast

solutions for document queries and caching.

The Libraries used throughout News-Clusty are well-versed scienti�c data processing li-

braries. The library creators and maintainers should be mentioned and accredited for. News-

Clusty leverages linear algebra, feature selection strategies and clustering algorithms from

Scipy (especially numpy and sklearn) see Pedregosa et al. (2011). It uses natural language
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analysis tools from the nltk by Bird et al. (2009). Moreover named entitiy recognition by the

StanfordNLP group, noun phrase extraction by Conll, word ontologies by WordNet, knowledge

and dictionaries by Wikipedia. Additionally newspaper3k for scraping newspaper articles and

gensim build by uv rek and Sojka (2010) as high level abstractions for probabilistic topic models.

In the future it would be good to rely less on certain libraries where it makes sense, e.g. not

using newspaper3k for scraping or Scipy for clustering algorithms.
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“Coming up with features is di�cult,
time-consuming, requires expert
knowledge. "Applied machine learning" is
basically feature engineering.”

Andrew Ng

Considering the “right” features for clustering is a demanding and error prone process. In the

following we will describe feature selection strategies in the frame of the vector space model. It

breaks down to counting occurrences and cooccurrences of words and measuring distance by

mathematical functions. Taking all the words of a document, removing stop words, and putting

them into a feature vector sounds reasonable at �rst. This results in dimensionality in�ation

and extreme noise. Contrary to a document vector d = (w1, w2..wn), the feature vector

represents a document by concepts {c1, c2, ..cj}. It is a projection of the original document

d = (w1, w2..wn), to a general concept vector, resulting in fewer dimensions. This lifting is

best described as combining several words of a document, often occurring in the same sentence,

extracting a shared meaning. We hope to �nd fewer words, that share enough information

with the original word, that the following holds:

f : d = (w1, w2, ..wn)→ {c1, c2, ..cj} (4.1)

The function f transforms a sequence of words w1..wn of a document d to a set of concepts

c1..cj . The concepts can be derived in a lot of ways.

1. Pruning words of low and high signi�cance.

2. Using syntactic parsing to retrieve noun phrases, named entity tags or part of speech

tags.

3. Using ontologies of WordNet to derive a shared meaning of words.

4. Mapping documents to Wikipedia categories.
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5. Using kernel methods (constrained clustering), preselecting initial clusters in a semi-

supervised way.

In the end, feature selection is probably the most demanding task. Expert knowledge needs

to be applied and can change over time, called time drift. A computer handles documents in

vector space, by counting. A human however perceives content di�erently. For any su�ciently

advanced algorithm that works with a knowledge base it is still: Garbage in, garbage out.

More fancy algorithms will lead to better results, but better features will accelerate the accuracy.

In the following we will brie�y explain what semantics mean, especially in the domain of

newspapers. How feature selection generally works and how this can be enhanced by syntactic

parsing. Strategies using WordNet and Wikipedia are explained. In the experimental chapter

we will then present how all these mechanisms come together.

4.1 Semantics

Semantics is the study of meaning. Given some symbols, characters, words or phrases what is

their underlying meaning? The question is inherently hard and lots of literature focuses on

how computers can get better at this. Most of the concepts depicted, are taken from Jurafsky

and Martin (2000). Semantics can also be viewed from a statistical point of view. Given a lot of

phrases and words, can we infer their underlying structure that generated them? How can

statistical patterns reveal what was meant and to what degree?

In computational linguistics, we often speak of word-sense disambiguation (WSD). WSD is short

for identifying sense of a word, if a word can have several meanings, in a sentence or paragraph.

The sentence

“The bail out during the �nancial crisis of the Lehmann brothers bank, was much too late.”

makes it obvious that it is about �nancial institutions “bank” during the �nancial crisis,

political intervention by providing money “bail out” and a speci�c �nancial institution or entity

“Lehmann brothers”. How could we possibly discern such a sentence, so that we can reveal all

the before mentioned concepts? To successfully �nd such concepts, we have to identify what

parts of speech, e.g. nouns, verbs, adjectives etc., each word of a document has:

postag(d = [w1, w2, ..wn]) = [(w1, tag1), (w2, tag2), ..(wn, tagn)] (4.2)
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Part of speech tagging works by parsing a document sentence by sentence. Tagging each

word by identifying its position relative to other words and predicting what their tags look

like. (Jurafsky and Martin, 2000, chp. 5) For clustering we want to identify these semantic

�elds, a set of words grouped by meaning. We then analyze WSD through synonymy, polysemy,

hyponymy, hypernymy and meronymy. All of those concepts are important to taxonomies

and ontologies. A taxonomy is referred to as a simple hierarchical structure of parent-child

relationships, that change in granularity per hierarchy level. An ontology is much broader

and can have complex relations other than parent-child. In that sense, both taxonomies and

ontologies are structures, showing how to classify words in context to each other. Traversing

through these hierarchical structures is then a typical graph based problem.

Figure 4.1: "Semantic �elds, hierarchies"

Meronyms are “part-of” relations, hyponyms have a “type-of” relation to a higher concept,

called hypernyms. In �gure 4.1 we see that from a single concept “car” we can infer a semantic

�eld around it. We will see later how this works, a statistical concept around this is LSI and

probabilistic topic modeling. The symbolic way is to use knowledge bases such as WordNet and

Wikipedia.

In the text domain of newspaper articles a few problems arise. Analyzing a long book, a

long speech or journal articles from the scienti�c community, is easier compared to high

varying fragments from di�erent authors on di�erent topics. A long book, written by one

person, will use a speci�c language that is typical of that person. Speeches for a speci�c person,

contain similar concepts and often use the same language as well. In the scienti�c community,

rhetorical and anecdotal phrasing is uncommon. Facts, citation and correct formatting is of
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central importance.

This does not hold true for newspaper articles. Several di�culties arise: Topics about di�er-

ent events co-occurring in the world. Di�erent authors, with di�erent writing styles. Di�erent

newspapers, with di�erent directions of content presentation. Long and short articles. And this

does not take images, videos or comments into account. When dealing with a vast landscape

of di�erent topics, interpreting the connection between two documents becomes a somewhat

hard task. Often we then call such data sparse and highly variational, indicating that the

words span the whole vector space in each dimension. It is then nearly impossible to use

any mathematically objective function like euclidean or cosine similarity, which then poorly

re�ects the sense of similarity. Instead removing highly infrequent and very frequent terms

while avoiding the risk of losing the sense of the original document is vital.

In order to avoid these variance problems, we need to �nd a solution to WSD and then apply

a lifting from the original concept to a semantic �eld. Going back to �gure 4.1 we see that car

and motored vehicle might mean the same thing. Both are about cars, if we project the concept

car to motored vehicle the concept would connect both the documents containing car and

motored vehicle. This is not always what we want to achieve but it could drastically improve

similarity between documents that would miss each other by synonymy and polysemy.

4.2 Selection

As described before we want to tackle WSD and �nd ways to connect documents that share

common meaning but not a lot of common words. To do so we have several strategies at our

disposal. First, word pruning is presented, it is probably the most widely used technique for

lowering dimensions and removing insigni�cant words. Second, syntactic parsing is needed in

noun phrase extraction and named entity recognition.

One topic which was left out of this thesis are kernel based methods. Kernels are initial

cluster centers that approximate a solution before a clustering even begins. They can be

thought of as priors in Bayesian statistics. Thus we might be able to say that X documents

can be categorized by y di�erent classes, initializing kernels with a good representation of

10 preassigned clusters re�ecting these classes. Another way to use kernels is to constrain

distance functions by additional rules or heuristics. Either of these strategies are important to

retrieve better results in semi supervised clustering.
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4.2.1 Word pruning

Before pruning words, we have to convert the documents into a suitable VSM such as counting

vectors or tf-idf described in 2.2.2. The counting alone in its basic form is su�cient in telling

if a term has a high or low connection with all other documents. The tf-idf on the other

hand is a measure of importance and solely based on the resulting frequency per word. It is

possible to make signi�cant pruning on both representations. The tf-idf variant is preferred

as it normalizes frequencies. Higher or lower counts are weighted into a formula that better

represents the signi�cance of a term.

Either way we need to create a coincidence matrix M = count(C,D) where C is a corpus

and D is the dictionary of the corpus. Then we transform by M = tfidf(M) or leave it with

the term frequency.

PruningM is done by cutting o� the documents with a very low ratio of counts with respect

to all documents. The procedures work in the single day clustering case. For multiple days,

a caching on the pruned words needs to be implemented. This can be done by threshold, in

proportion to all terms by percentage, removing j terms. It can also be achieved by a hard

count, cutting of all terms that have no counts higher than that. This means, we remove

insigni�cant terms or terms that do not contribute to any connection. Semantically this means,

we cut o� words that have a high meaning in a single document and a very low in others.

Those words are redundant, or in other words they have no discriminant value to the clustering

process.

d = [0, 1, 5, 0, 4, 0, 1, 1, 2, 3]

ds = sort([0, 0, 0, 1, 1, 1, 2, 3, 4, 5])

percentcut(ms, 0.2) = [0, 1, 1, 1, 2, 3, 4, 5]

totalcut(ms, 1) = [2, 3, 4, 5]

(4.3)

Equation 4.3 exempli�es a single document d of a coincidence matrix with its words as a

count. The �rst word occurs 0 times in document d. The min cut on percentage 0.2 = 20%

cuts the �rst 2 samples or removes the �rst 6 in case of a total count. The parameter has to be

varied, depending on the outcome of a cost function. Further we can take o� the top j words

as well. The problem with the top words is, that they highly correlate with a lot of di�erent

documents, meaning a high correlation between a term and the corpus. Leaving them out
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erases a lot of connections, resulting in more discriminant features. This is what we want to

achieve, �nding the middle words, that are common in certain documents and uncommon in

others. During clustering, this will result in much more coherent clusters.

m = [0, 1, 5, 0, 4, 0, 1, 1, 2, 3]

ms = sort([0, 0, 0, 1, 1, 1, 2, 3, 4, 5])

maxcut(ms, 0.8) = [0, 0, 0, 1, 1, 1, 2, 3]

(4.4)

The max cut works with a ratio that selects from lowest to highest 80% except the last 20%.

Note that the samples are not onm dimensional vectors. For this to work we have to aggregate

the counts and then prune the most insigni�cant words. The great thing of this approach is,

that it can follow any feature selection strategy. By using word pruning on feature vectors,

the selection process can be re�ned. The �ne tuning is necessary in gaining percentages in

accuracy.

4.2.2 Syntactic parsing

Parsing, reduces symbols, to a parsed tree of following expressions. In English parsing, prob-

abilistic shift reduce parsers in combination with trained neural networks is state of the art.

See Zhu et al. (2013) for an extensive study. Valid words and characters are de�ned within

the rules of the English alphabet. In �gure 4.2 we can see a parse tree for an English sentence

parser. The parsing is syntactical based on English grammar. When it comes to parsing expres-

sions from English language to a meaningful representation for the computer, the problem

statement gets a lot more di�cult. Too many words, too many forms of sentences - statistics

in combination with structural parsers come to the rescue. Solely syntactic parsers that work

on symbols work well in a speci�c domain up to a certain parsing accuracy. Statistical models

remove these barriers by likelihoods and predictions, �nding answers across domains. The

most inherent problem is over �tting. Over �tting describes that a probabilistic parser works

well on a speci�c problem domain or data source, because it learned the domain well. Unseen

domains and data sets perform poorly, due to the missing knowledge. The problem becomes

more clear, in the domain of newspaper articles, where di�erent language styles and domains

are frequent. Statistical parsers like the Stanford parse, are very accurate in identifying valid

syntactic English expressions. In the following, we will look more closely at noun phrase

extraction and named entity recognition. They can be used as initial seeds for the feature space

of a corpus.
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Figure 4.2: "Syntactic parsing"

Figure 4.2 is displayed as a projective tree, where each word has exactly one (or none) incom-

ing and outgoing edge. The outgoing edge is referred to as head. Edges contain information

about the relation between both words. Each word has a part of speech tag described by many

corpuses. Current research projects, use Google’s ngrams over time by Goldberg and Orwant

(2013), with a 3 billion ngram corpus to infer the most likely structures. The parsing of English

grammatical structures is entirely dependent upon speci�cation of the rules. What part of

speech tagging system is used? How is the grammar de�ned? With the help of the Chomsky

hierarchy it was proven that most natural languages have context-sensitive (type-1) grammars,

though it is arguable that regular grammars will not be su�cient. Again, we are looking

at syntactical constructs, not semantics. See (Jurafsky and Martin, 2000; Jager and Rogers,

2012, chp. 16) for great introductions. In clustering this is not a huge problem, because the

granularity of the task is forgiving. A slightly false parse might still yield good feature results.

In context of question answering machines, false parses yield entirely di�erent answers.

Noun phrases

Noun phrases are often referred to as key phrases. Formally, a noun phrase is a phrase, with

a noun as its head word. A head is a word that determines the syntactic type of a phrase.

Generally a noun phrase is a part of a sentence that captures meaning of a sentence. Thus, they

are good samples to represent a document. However, noun phrases are rather bad samples

for clustering. They do not connect well to other documents due to their uniqueness. In the

WordNet section we will see how they are great for projecting to their respective hypernyms.

Noun phrase extraction is highly connected with part of speech tagging, where certain tag

patterns are used to �lter nouns or noun phrases. (Jurafsky and Martin, 2000, chp. 5, 12)
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Named entities

Named entity recognition is the task of information retrieval that extracts and classi�es

names of persons, organizations, locations, expressions of times, quantities, monetary values,

percentages, etc. (Jurafsky and Martin, 2000, chp. 22).

Figure 4.3: "Named entities"

As seen in �gure 4.3 we are interested in informative terms. Often occurring named entities

tend to give a direction what a document is about. If Google occurs in one document, it most

likely will have to do with a lot of other documents that are about Google. We would like

to favor documents that are connected by their respective named entities and give them a

higher weight in vector space. Named entities, like noun phrases are very discriminating. In

systems like the Columbia Newsblaster system, named entities would be used to determine if a

document is biographical, has large shifts in time (dates) or connecting documents based on

signi�cant organizations, peoples etc. McKeown et al. (2001)

4.3 External Knowledge

In order to enhance the syntactical selection models we can add a knowledge base such as

WordNet and Wikipedia. The data representation is often de�ned as a typical dictionary. For a

de�nition of a word, we can infer semantic �elds and additional text describing the words in

more detail. Moreover knowledge bases such as Wikipedia categorize/classify concepts into

ontologies. WordNet and Wikipedia are great in the sense that human authors around the

world add missing information and enhance the models frequently. The knowledge bases are

enhanced frequently by writing rules and reviewing processes.
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4.3.1 WordNet

WordNet is a lexical database of English. Lexical parts of speech such as nouns, verbs or

adjectives are grouped into synonyms (synsets). Each synset is linked by semantical and lexical

relations. In parts, WordNet resembles a thesaurus, grouping words based on meaning. With

its ontologies it deals with WSD. Further, words are interlinked by semantic relations. For

more information see Miller (1995); Fellbaum (1998).

WordNet is often used for lemmatization. Lemmatization is the process of removing the

in�ected forms of a given word to its lemma. A lemma is a dictionary entry or canonical form

of a word. The major di�erence to stemming is that WordNet is able to in�ect a canonical form

that depends on context sensitive pos tags.

lemmatize(”savings”, pos = ”noun”)→ ”saving”

lemmatize(”savings”, pos = ”verb”)→ ”save”

stem(”savings”)→ ”save”

stem(”save”)→ ”save”

(4.5)

In�ecting the canonical form with pos tags, enhances the precision of the in�ection, based

on the context where the words came from. Often this can result in di�erent in�ectional forms,

that would otherwise be equal. In comparison we can see that stemming treats “savings” and

“save” entirely the same. This is a basic strategy to in�ect a generalized version of a document,

to lower the dimensions. Further we can take the hypernyms of a document.

|d|∑
i=1

hypernymsfirst(di) (4.6)

We iterate over all words in d and take the �rst of the hypernyms of the words, projecting it

to a higher concept. WordNet sorts the hypernyms from most likely to less likely, taking the

�rst is a good approximation. Enhancing the above statement we scale this up to the depth d

going up the hypernyms of the WordNet ontologies.

closure(seq, d = 0) = empty

closure(seq, d > 0) =
∑

w∈seq
closure(hypernyms(w), d− 1) (4.7)
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At last, we can infer the most common meaning of a sentence by calculating the lowest

common hypernyms.

lowest_common_hypernyms(w1, w2) = hypernyms(w1) ∩ hypernyms(w2) (4.8)

For this, we compute, for each word in a document, the transitive closure with the above

statement not restricted by the �rst hypernym.

Algorithm 4WordNet closure with hypernyms

1: for sent ∈ closure(doc, d) do
2: for (w1, w2) ∈ sent : w1 6= w2 do
3: result← lowest_common_hypernyms(w1, w2)

4: end for
5: end for
6: return result

In the following we give an example to understand the notion of a lexical closure. Given a

document with one sentence, the dog and the cat. The transformation of this sentence stripped

by stop words results in

sents = [(”dog”, ”cat”)]

dog = synset(”dog”)

cat = synset(”cat”)

(4.9)

The closures by hypernyms for each word results in

clos1 = closure(hypernyms(dog), depth = 2)

= (”canine”, ”domestic_animal”, ”carnivore”, ”animal”)

clos2 = closure(hypernyms(cat), depth = 2)

= (”feline”, ”carnivore”)

(4.10)
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Then we compute the lowest common hypernyms that connect hypernyms of the word

closures.

lowest_common_hypernyms(clos1, clos2)→ ”carnivore” (4.11)

We then apply word pruning to get the mid vector words, sorting out extremes. It is also

possible to greatly enhance the above models with lexical chains, see Wei et al. (2015).

4.3.2 Wikipedia

Using Wikipedia in the feature selection process works analogous to the WordNet approach.

Wikipedia will be used as a holder for meta data and not for the content of the articles alone.

We use conceptual words that represent a document well, like noun phrases and named entities,

querying the Wikipedia knowledge base. Wikipedia has a lot of di�erent knowledge kinds,

like ontologies between de�nitions, that connect their relations similar to WordNet ontologies.

Each de�nition is categorized into distinct subgroups of relatedness by broader categories, like

politics or economics. Additionally all links referencing external de�nitions can be found in

the documents of a Wikipedia concept.

The basic concept is to use a noun phrase and �nd outlinks and categories from Wikipedia.

Categories of Wikipedia vary widely and are not normalized in any way. For classi�cation

purposes a scheme has to be found to classify documents. However using clustering to group

documents into similar events, a scheme was proposed by R. et al. (2010) and Hu et al. (2009).

In these approaches a document vector is mapped to categories and outlinks. However, using

noun phrases, one can �nd a good representation of a document, while at the same time

lowering the dimensionality of the data.

In another study by Hu et al. (2009), concepts and categories are mapped by relatedness. The

two approaches are exact-match and relatedness-match, where both take documents and map

their respective words to the Wikipedia ontologies. The exact-match is based on the fact that

Wikipedia contains concepts, describing a word, the relatedness-match is based on the article

content. For each concept a mapping to categories is build in order to represent documents as a

sum of Wikipedia categories. Through this dimensions are greatly decreased. The hypothesis is,

that a document composed of unique frequencies of categories can represent a document better.
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Advancing on this concept, a solution to the semantic problem of a document is proposed by

R. et al. (2010) using outlinks and categories of Wikipedia. The process is that each document

gets a set of concepts by Wikipedia, based on the document words. A set of outlink concepts

and a set of category labels. Each set is then weighted into an accumulated cosine similarity,

where parameters control the impact of each set.

In this thesis, no evidence was found, that mapping to category concepts, could greatly

enhance feature selection. This it not due to a missing e�ect but rather due to time constraints.

In chapter 7 we will brie�y reference the before mentioned steps. The strategies should be

investigated further.

50



5 Clustering experiments

“An algorithm must be seen to be
believed.”

Donald Knuth

In this section, we evaluate some strategies for clustering. At �rst, we will show, how a

single day of news events are clustered. Given the timeframe of this thesis, it was not possible

to elaborately test multiple days clustering. It is a notoriously di�cult topic that greatly relies

on the data and time. Originally it was intended to use a scraped data set over several month,

categorized by date, with as much meta data as possible. As this is at the barrier of legality, a

smaller standardized data set, namely the BBC data set by Greene and Cunningham (2006) was

used. In the original data set, it was possible to assume that the data was ordered and sorted

by day. Several thousand articles could then be easily clustered on a daily basis and enhanced

over the course of several months. Instead, we are focusing on how the BBC data set can be

clustered and evaluated. Multiple day clustering will be depicted, but not in any form evaluated.

The BBC data set had a few limitations in the sense that dates and meta data were not

provided. As such we treat the data as a a bulk of events occurring in the time frame of

2004-2005. Fortunately unlike real world data the articles are tagged with precise categorical

labels, so external evaluation measures were an option. There were limitations in time to �nd

a more adequate set of articles that were consecutively sorted by day in a broader category

such as “world news”.

The clustering was done in several steps, similar to the Columbia Newsblaster system.McKeown

et al. (2002) A hierarchical clustering approach by �rst clustering events into categories like pol-

itics, business or entertainment and second clustering the categories into distinct events. The

classi�cation in the �rst step guarantees some broader topical cohesion. In the BBC data set a

purity of up to 94% could be achieved on the test set. This is unusually high, but is probably due

to the normalized data set, that represents the classes exceptionally well. The real world data set

could go as high as 45% purity and less. The purity on the BBC data set varies broadly between
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79% and 94%. This variability results in overlapping topics, where the majority of documents in

a cluster are in the same class. Each of the resulting clusters resembling the underlying classes

are re clustered. In this second step, clusters represent news events on several topics per cluster.

Some �nal words on the measurement of the two steps. In the �rst step, it is easy to evaluate

how well documents were assigned to their respective classes. In the second step however,

evaluation is not that simple. At this point, we are interested in document similarity based

on content and not class labels. The results of the second clustering are informal and not

measured.

5.1 Single day clustering

Single day clustering is done by focusing on one speci�c date. The hypothesis is, as long as

there are no major news headlines, documents will have a high variance in vector space. Thus,

there will be more clusters. Major news headlines absorb almost all articles into single clusters.

That is expected, as news are often homogeneous in their topic selection. In the original data

set were clusters, that absorbed roughly 90% of the articles, in case of terrorist attacks or huge

world wide events. The problem arises, that articles not covering the event, were clustered

into that one cluster monolith as well.

In the following the two steps are re�ned. First we want to classify news events by classes, in

case of the BBC data set: politics, business, entertainment, tech and sports. For this it is possible

to use algorithms with a hard number of �nal clusters, to classify documents into the classes.

Alternatively one could use a supervised classi�er, which in practice, is much more accurate.

See Chase et al. (2013) for a real world example learning labels in comparison of K-Means

and a supervised classi�er. Second, the resulting clusters, now assigned by news category,

are clustered again. This time, the clustering algorithm has the constraint of automatically

detecting the cluster numbers. For this a hierarchical algorithm with soft thresholds was

chosen e.g. BIRCH and Ward linkage. The resulting clusters resemble news events, dealing

with a similar topic.

5.2 Implementation

The implementation of a more general clustering algorithm in the text domain can vary

drastically. A general scheme is given by algorithm 5.
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Algorithm 5 General clustering

1: function general_cluster(Xtrain, ytrain, κ, α, d)

2: Xnorm, ynorm = normalizetext(Xtrain, ytrain)

3: Xproject, yproject = project(Xnorm, ynorm)

4: Xtrans, ytrans = transform(Xproject, yproject)

5: Xlsi = lsa(Xtrans, topics = α)

6: Xdim = reduce_dimensions(Xlsi, dimensions = d)

7: Xsim = similarity(Xdim)

8: Xscaled = scale(Xsim)

9: model, centroids, labels, k = cluster(Xscaled, clusters = κ)

10: returnmodel, centroids, labels, k
11: end function

The general implementation 5 is separated into several steps. As input, the function gets

a training set Xtrain and a label set ytrain. κ is an optional parameter for the total amount

of cluster centers. α a parameter that sets a desired size of topics for models like LSA. And

a dimension d to reduce X to, for visualization purposes by e.g. PCA. In general we assume

that the data Xtrain is of any textual sort, the preprocessing needs to do the necessary steps

that �ts the function. Moreover it is of utmost importance to think in terms of vectorized code.

Any procedures gradually transform a document into the vector space. After this all rules by

linear algebra hold.

1. normalize takes Xtrain and ytrain to remove special characters, stop words, numbers.

Lower casing any words and removing non English characters or sentences.

2. project is any kind of projection strategy via WordNet, noun phrases or named entities,

lowering word sense disambiguation and dimensions. This step deals with the initial

seed of knowledge that is used throughout the algorithm.

3. transform takes in the projected data and transforms it via tf-idf , word pruning, as well

as ngram enhancement.

4. lsa is an optional step that transforms the resulting data to dense low dimensional

matrices, keeping as much variance as possible while reducing noise. In this case LSA

was used but LDA or HDP would be an option as well.

5. reduce_dimensions is an alternative step that reduces the dimension of the data to 2d or

3d plotting clusters. This is typically done by PCA.
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6. similarity transforms document x term vectors to document to document similarity by

cosine or euclidean distance measures.

7. scale is a second normalization step, scaling the data by variance and average.

8. cluster �nally takes the matrixXscaled and clusters based on a hard constrained clustering

number. If not supplied the clustering algorithm needs to predict a cluster number

automatically. This results in the actual cluster amount k. The resulting trained clustering

model. The centroids in case they are actively calculated e.g. by K-Means. And �nally

the labels, the assignment from a document to a corresponding cluster.

The implementation is a rough sketch of a real clustering scheme. In reality most of the

before mentioned steps can be parameterized or constrained by additional arguments. Either a

con�guration object is speci�ed or an extensive API used to create clustering scripts. The API

used was scikit− learn by Pedregosa et al. (2011) and is part of the huge scienti�c computing

libraries written in Python, such as numpy, scipy, pandas etc. From this, we can generalize a

clustering scheme for a single day.

Algorithm 6 Single day clustering

1: Xtrain, ytrain = get_data(timestamp)

2: model, centroids, labels, k = general_cluster(Xtrain, ytrain, κ, α)

3: Xassigned = get_assigned_documents(Xtrain, labels)

4: news_labels = []

5: for c ∈ Xassigned do
6: model′, centroids′, labels′, k′ = general_cluster(c, nil, α)

7: assign(news_labels,Xtrain, labels
′)

8: end for
9: return news_labels

The implementation 6 is a rough sketch of what the News-Clusty system does. First, get the

data by a timestamp e.g. “20150701”, cluster the data by a �xed κ and then use the resulting

cluster assignments Xassigned to group news events. Note that general_cluster in the second

run has a nil argument, because we do not want to constrain by cluster amount. The clustering

now depends entirely on the variation of the intermediate procedures of general_cluster and

is now an optimization problem.
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5.3 Evaluation

In the evaluation section, the before mentioned measuring strategies are used. Several di�erent

strategies are weighted against each other. It was found, that there are several di�erent ways

with a good performance in the categorical clustering approach. The second clustering is not of

utmost importance in the evaluation and depicted later. A major problem is, that several parts

of the proposed algorithm, rely on parameter estimation. To narrow down this combinatoric

explosion of parameters, several assumptions can be made.

1. Limiting the strategies to simple word tokens and their document titles except stop

words, noun phrases and NER tags as well as WordNet �rst hypernym and WordNet

lemmatization.

2. Transforming by tf-idf with a 80% maximum threshold and a hard count 3 for minimum

threshold, excluding ngrams.

3. topic modeling, whether LSA or LDA should be used or not. The topic size is manually

adjusted.

4. Setting the distance measure to cosine.

5. clustering algorithm constrains, such as density thresholds and maximum HAC depths.

Classi�cation is constrained by k = 5 for the categories of the BBC data set.

A comparison of the di�erent strategies with LSA enabled, for the classi�cation task, is

shown in table 5.3. Note that the purity, V-measure and silhouette coe�cient is averaged over 5

consecutive runs. Concluding from this, word tokens in combination with noun phrases lead

to the highest V-measure. While other strategies perform still well enough, the chance for the

best classi�cation by clustering stems from purely syntactic means, e.g. word tokens and noun

phrases. With WordNet lemmatization we have a highly e�ective approach. That is, from the

original 12000 feature dimensions we projected to 6000. Except for lemmatization, WordNet

approaches performed worse than the mentioned strategies. This is not generally the case as

can be seen in Wermter and Hung (2002) for an example on the Reuters Corpus with WordNet,

using a multinomial Naive-Bayes classi�er.

We can see in table 5.3, that the same measurement without LSA performs in almost all

instances, worse. Note, that LDA was explicitly excluded from the possible topic modeling

techniques as it promotes a poor pre clustering step. This is due to the fact that LDA maps

several topics to documents, resulting in documents having assignments to many topics. This

is a desired property for the second clustering run.
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Strategy v-measure purity silhouette

Word tokens 0.812 0.926 0.118

Syntactic 0.795 0.916 0.109

Word + noun tokens 0.826 0.934 0.118

WordNet hypernymsfirst 0.710 0.884 0.068

WordNet lemmatization 0.726 0.895 0.069

Table 5.1: Comparison of feature selection with LSA

Strategy v-measure purity silhouette

Word tokens 0.667 0.831 0.073

Syntactic 0.634 0.794 0.067

Word + noun tokens 0.666 0.831 0.074

WordNet hypernymsfirst 0.585 0.784 0.048

WordNet lemmatization 0.585 0.784 0.048

Table 5.2: Comparison of feature selection without LSA

The discrepancy between V-measure, purity and silhouette coe�cient is expected. V-measure

takes into account, that several clusters contain an amount of labels that are not dominant.

The higher the variance of spreading labels, even if their occurrence count is low, leads to a

penalty in V-measure. Purity on the other hand compares how many dominant labels are in one

cluster and penalizes for each non dominant label. It does not account for the variety of falsely

assigned labels. The silhouette coe�cient is extraordinary low, due to the high dimensionality.

It can not be taken in absolutes, but rather in relative terms, between di�erent strategies.

The higher the score, the higher the cohesion between topic segments. In total, the silhouette

coe�cient is better, when the purity and V-measure is relatively higher.

5.4 Experimental

While clustering for classi�cation is a very good �rst step to pre select documents into isolated

clusters, the requirements change in the second run. The results do not need to be constrained

by cluster amount. Selection of similar news events return smaller topical clusters. It is di�cult

to show, that a connection between di�erent documents can be made, when no information

about time is present. If a document about “taxes in the U.S.” occurred at a speci�c day and a

second document about “Obama raises taxes” at the next day, we could conclude, that it is a

current and related topic in the news. Without knowing when a document was published, it is

not possible to assume that two documents about taxes, are about the same event or piece of
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information. The second event could have happened 9 months later or earlier. The content

might be connected, but the events are not. There is no sense in trying to show how two

consecutive days would relate to each other. That is why, visual representations of topic and

word proportions in clusters will be shown, instead of timeline data. Two additional clusterings

with BIRCH and LDA are proposed.

First, let us demonstrate the generative model. In this instance LDA has shown promising

informal results. HDP would be an optimal choice due to the automatic topic amount detection,

but was left out as it was too complex to adapt. In �gure 5.4, we see a clustering by LDA over

the business cluster.



topics\words w1 w2 w3 w4 w5

t1 strong growth manufacturing bank economy
t2 city boeing year company industry
t3 year india germany market growth
t4 tobacco government court bn case
t5 sales car gm bmw year
t6 economy spending growth recession japan



Table 5.3: "Business topic proportions"

Typical words such as “growth”, “manufacturing” or “bank” resemble this. A second example

of a word to topic proportion can be seen in �gure 5.4 for political topics.
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topics\words w1 w2 w3 w4 w5

t1 election new blair minister tax
t2 government home law people police
t3 government defence uk guantanamo evidence
t4 million year education party marketing
t5 uk card community troops fraud
t6 access child parents years care



Table 5.4: "Political topic proportions"

As these word clouds have little value by measurement, they are easy to interpret. In reality,

both the political and business cluster had roughly 50 subclusters, only showing the �rst 6 and

their respective top 5 words. Note that a topic from LDA is not exactly the same as centroids

of a K-Means algorithm. LDA topics relate to centroids as the EM algorithm to K-Means.

Figure 5.1: "BIRCH clustering of a single day"

The second approach with the BIRCH algorithm, yielded some interesting results as well.

We can see in �gure 5.1, that there are a lot of clusters of di�erent sizes. In news events, we
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mainly want smaller coherent clusters. The centroids are the bigger points painted in a distinct

color. Smaller points are documents, assigned to a centroid in the same color. Further, the

scaling of the displayed points is normalized by average on a coincidence matrix projected

down by LSA and PCA.

The data at hand does not stem from the BBC data set, but from daily scraped newspapers.

The papers shall not be named due to legal reasons. One can see, that the resulting clusters are

small and well formed. Some cluster centers are bigger than others. In those cases, we can

recluster them to further enhance the variance of clusters. The structures resemble, that there

are news that are covered several times a day and some that are not. Singleton clusters are

presented as x, for one time events. Those outliers can be reclustered in a di�erent run and

would cover news like “other”.

Figure 5.2: "Mean Shift clustering of a single day"

Figure 5.2 is a clustering with the Mean Shift algorithm. It is a partitonal algorithm working

with density distributions, automatically inferring the size of clusters by threshold. The clusters

59



5 Clustering experiments

of the Mean Shift are smaller and the density threshold was carefully �ne tuned.

All visualizations were made of data containing roughly 350 documents from the category

world by two newspapers. Expecting at least 100 events covering di�erent news. The �nal

clustering visualizations are a result of several parameter estimations of the algorithms. All

visualizations were done with the help of a Python API called matplotlib by Hunter (2007).

5.5 Multiple days clustering

Multiple days clustering was of the greatest interest while starting this thesis. It came to an

understanding, that it is inherently di�cult to cluster and track documents over the course

of several weeks. The time ran out to actually cluster multiple days in a row. Also, due to

the problem of legality, the BBC data set came to the rescue. Multiple days clustering is an

advancement on the single day clustering. See section 7.3 for future work on this matter.
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“Simple models and a lot of data trump
more elaborate models based on less data.”

Peter Norvig

In this section, the results of this thesis are discussed. The implementation is evaluated.

What was problematic and what worked out well? What can we conclude by now?

6.1 Experiment Evaluation

Comparing all implementations from the clustering experiments, from chapter 5, we can

conclude, that the training set from the BBC is suited for clustering classi�cation. We cannot

conclude that it will generally work well. Classi�cation without a ground truth is not possible.

The ground truth was explicitly provided by the BBC data set for all documents. Thus, it was

easy to map documents to their respective labels and �gure out which label had majority in a

cluster. This can be mitigated by explicitly creating initial clusters for each class. In multiple

days clustering then, the ground truth of classes, would be the initial clusters. In that sense, it

is possible to use supervised algorithms as well.

It was also shown that LSA, helps improving all strategies by a signi�cant bit. It tackles prob-

lems of noise and insigni�cance. We can also conclude that all strategies performed reasonably

well, however that pure syntactical measures perform best. That is not to say, that this is the

best strategy for the second clustering. In classi�cation we need to be sure what each class is,

tackling noise with LSA seems more reasonable. News article clustering, works with extremely

sparse data, so smaller and more clusters with more noise are expected. On the other hand, pro-

viding a higher number of topics for LSA seems reasonable to diminish dimensionality in�ation.

In the experimental section, were some results to di�erent clusterings by topic models and

clustering algorithms. We could not draw any mathematical evaluation from the presented

images and tables. It is a rather formal conclusion. On the real data set we could see some
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promising results on the clustering, that were topically assigned over the course of some days.

At least in part, the multiple days clustering could be done. However there was not enough

evidence to measure the results. This can be studied further in future work.

6.2 Data Pipeline Evaluation

The data pipeline, from chapter 3, performed reasonably well for this task. In all of the latter

experiments with the BBC data set, a data frame was used, to ease the task. This however is

rudimentary and does not scale well. Using more sophisticated data persistence techniques

would be required to scale the system to much larger data sets. In the following, we mainly

answer, how the system performed in contrast to persistence and overall �exibility in enhancing

it.

How is the data stored?

There is reason to believe, that pure text �les are a better way to persist data. Hadoop Distributed

File System (HDFS) or more generally virtual distributed �le systems, simple matrix market

format �les or even CSV were used in the later approaches for the BBC data set. This, in

combination with a data frame library that abstracts �le handling to a linear combination,

accessible via columns and rows, greatly enhanced the work�ow. This can be improved by

working with multiple server nodes and by using newly founded concepts, like the resilient

distributed dataset (RDD) of Spark. It represents a fault-tolerant collection of elements that

can be processed in parallel with the map-reduce paradigm. The representation of documents

is reasonable for Elasticsearch. Concrete data, like noun phrases are better kept in the before

mentioned form. In that way we gain performance, while at the same time eliminating Redis

entirely.

How to enhance the data pipeline?

Each component of the data pipeline was separately build and modularized. The facade

glued the modules to each other. Dependencies to Redis or Elasticsearch are con�gured via

con�guration object. Adding new newspapers is done by creating a classes con�gured with

the correct scraping parameters. That is why, only engineers will be able to use the system.

By this, it is easy to adapt to new patterns. However it gives absolutely no direction. For this

project, it turned out to be good to decouple as much as possible. In this way, during later

stages, it was easier to enhance the system with more functionality. Moreover, investing in a
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text based clustering API with feature selection strategies, seems as a good next step to wrap

up the system.

On developing the data pipeline

Not accounting for the technical provisioning and clustering algorithms, the problem was

incredibly utopic to achieve in one thesis. The problem lies completely in the scraped data and

persistence. What articles to keep? What articles to cache and how? Building interfaces to a

persistence that can handle all kinds of weird text data. Even after several weeks of running

the system, more and more use cases came up that were not accounted for. In the natural

language community, especially pos taggers, could run for hours ending in timeouts, because

single textual elements were in Chinese. Appropriate interrupts and tracking those outliers

was important. Di�erent timestamp formats to correctly set them to an appropriate date for

the indices of Elasticsearch. Nonsense articles, like subscription pages and HTTP errors. Each

new newspaper source added additional complexity to the problem set. In the end, due to

possible copyright reasons of scraped data, we cannot actually show any content or liable

sources. Most newspapers have APIs to directly access the content. Most of them are paid

and do not legally enable you to persist articles for a period of time. The BBC dataset added a

second form of complexity that was manageable.

6.3 Conclusion

At last, we can conclude that the “News-Clusty” algorithmic scheme performs reasonably

well. It is a rather complex approach that takes a lot into account. The complexity is at least

quadratic due to the hierarchical algorithm by BIRCH and Ward linkage, in both steps. This is

not a problem with smaller data sets, but rises quickly with more samples. We also did not

take into account that we have to do a third clustering on the event clusters. Further splitting

clusters, that were falsely assigned, due to the shared global state to other events. We can

conclude that text document clustering works well for unlabeled classi�cation. Further that

statistical methods and projections to di�erent word ontologies have an impact on the overall

quality and dimensionality of the data.
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7 Outlook

“All models are wrong, but some are
useful.”

George E. P. Box

7.1 Summary

Summing up all the pieces, this thesis provided a starting point of building a robust news article

summarization system. The groundwork on di�erent clustering strategies were examined and

several techniques of transformation from documents, to words, to coincidence matrices to

statistical topical proportions were investigated. We heard a lot about feature selection and

semantics, as well as di�erent strategies on how to deal with word sense disambiguation. It was

concluded that most of the strategies perform well, but that the simplest of all models, namely

by using the word tokens of a document, were superior to other approaches. Furthermore, the

data pipeline “News-Clusty” was evaluated and depicted. Several steps are necessary to get

a vector of features from a real world document. Dealing with the noise and with the time

drift e�ects by statistical techniques such as LSA or LDA showed promising results. At last,

we have shown how the clustering algorithm works on the BBC data set and experimented,

without giving any evidence, how the system works on real world data.

7.2 Further Reading / Related Work

In this section it is important to distinguish between the data pipeline and the quality of

the algorithmic procedures. A generally well composed article about the di�erent current

approaches to clustering large and small documents is Anastasiu et al. (2013).

Several topic models were examined. There is more room to study the e�ects of LDA and

certainly HDP . For multi document summarization LDA can be used as a main approach, see

Arora and Ravindran (2008). The concepts of Hierarchical Dirichlet Process (HDP) can be found
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in Li et al. (2007); Teh et al. (2006). Further we could use Non-negative matrix factorization

(NMF) as a matrix decomposition technique. See Lee and Seung (1999) for a proper introduction.

While completely using unsupervised learning we could use arti�cial neural networks as

well. A promising approach is the shallow neural network word2vec, that learns a feature

representation using skip-gram models. See Goldberg and Levy (2014) for a good introduction

and uv rek and Sojka (2010) for a Python implementation.

Enhancing feature selection methods and more semantic relations promising work was

done by Zheng et al. (2009) using noun phrases for semantic clustering and Chen et al. (2010)

with WordNet and soft assignment clustering. Further we can investigate external knowledge

sources like Wikipedia, boosting feature selection. Some good approaches were found in Hu

et al. (2009) and R. et al. (2010).

The data pipeline is analogous to the Columbia Newsblaster System by McKeown et al.

(2002). The whole literature evolving on the system is a vantage point for further reading. Also

everything around the Google News aggregation system exempli�ed by Das et al. (2007).

At last, we have to mention the scalability issues. Working with algorithms across several

server nodes needs di�erent techniques. Algorithms need to be parallelized by techniques like

map reduce, see Dean and Ghemawat (2008). See parallel clustering approaches by Kim (2009).

7.3 Future Work

The future work should improve the data pipeline and the respective clustering components.

First scaling and enhancement for data sets. This includes adding more newspaper data. In

reality the classi�cation system for news categories needs to be normalized across all

newspapers. Finding ways of detecting the label of a document when downloading an

article.

Second adding a multi-document summarization system that works with the clustering.

Third a routing system that detects the kind of event by biographical, single and multi events.

Fourth scaling the clustering algorithms to several days by strategies mentioned in the

experimental multiple days section.
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Fi�h adding more feature selection strategies with WordNet, Wikipedia and word2vec.

Sixth using more advanced algorithms, especially topic modeling and semi supervised kernel

methods.

Seventh including external knowledge sources that work during the clustering methods as

well.

Eighth using state of the art distributed �le systems to ease the task of feature selection and

clustering

None of the above tasks is trivial. Each would greatly enhance the systems performance

and usability. In theory the accuracy can be enhanced by incorporating more reliable and

complex models to the clustering task. In total the system could be further prepared to run

on international data sets from o�cial conferences. A compact evaluation of the status quo

against other systems was currently not possible. The status of the system is still in alpha

stadium and thus not production ready.

Multiple days clustering

Time series clustering could not be tackled in this thesis. Beginning with basic introductions

see Warren Liao (2005); Rani and Sikka (2012); Azzopardi and Sta� (2012). A good starting

point for understanding topic models over time is Lee et al. (2013), analyzing blog posts.

Figure 7.1: "Multiple days clustering consecutive"
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The proposed model, seen in �gure 7.1, is by clustering consecutive days without any overlap.

After this, all cluster centers are consecutively merged and reassigned. The merging is based

on similarity thresholds. If the similarity is high enough or we �nd hard evidence, like a named

entity, cluster centers can be merged. Otherwise the clusters are kept separate. Going further

we can set hard thresholds, how old a cluster should be, before it is not being considered

anymore. Deciding when a merge, a reassignment or a new cluster emerges is the goal.

7.4 Final Words

We conclude this thesis with a quote of George E. P. Box, “All models are wrong, but some

are useful.”. I �nd this especially true for a domain, where text is seen as a system of linear

combinations. In this sense, thank you very much for reading.
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