
Bachelor Thesis
Sven Freiberg

Procedural Generation of Content in Video Games

Fakultät Technik und Informatik
Studiendepartment Informatik

Faculty of Engineering and Computer Science
Department of Computer Science

P R O C E D U R A L G E N E R AT I O N O F C O N T E N T I N V I D E O G A M E S

sven freiberg

Bachelor Thesis handed in as part of the final examination

course of studies Applied Computer Science

Department Computer Science

Faculty Engineering and Computer Science

Hamburg University of Applied Science

Supervisor Prof. Dr. Philipp Jenke

2nd Referee Prof. Dr. Axel Schmolitzky

Handed in on March 3rd, 2016

Bachelor Thesis eingereicht im Rahmen der Bachelorprüfung

Studiengang Angewandte Informatik

Department Informatik

Fakultät Technik und Informatik

Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer Prof. Dr. Philipp Jenke

Zweitgutachter Prof. Dr. Axel Schmolitzky

Eingereicht am 03. März, 2016

A B S T R A C T

In the context of video games Procedrual Content Generation (PCG)
has shown interesting, useful and impressive capabilities to aid de-
velopers and designers bring their vision to life. In this thesis I will
take a look at some examples of video games and how they made
used of PCG. I also discuss how PCG can be defined and what mis-
conceptions there might be. After this I will introduce a concept for a
modular PCG workflow. The concept will be implemented as a Unity
plugin called Velvet. This plugin will then be used to create a set of
example applications showing what the system is capable of.

Keywords:

procedural content generation, software architecture, modular design,
game development

Z U S A M M E N FA S S U N G

Procedrual Content Generation (PCG) (prozedurale Generierung von
Inhalten) im Kontext von Videospielen zeigt interessante und ein-
drucksvolle Fähigkeiten um Entwicklern und Designern zu helfen
ihre Vision zum Leben zu erwecken. In dieser Thesis werde ich einen
Blick darauf werfen, wie sich Spiele PCG in der Vergangenheit zu
Nutze gemacht haben. Es wird diskutiert, welche Defintion sich für
den Begriff der Procedrual Content Generation (PCG) eignent und
welchen Missverständnissen man begegnen kann. Danach wird ein
Konzept vorgestellt, dass die Arbeit mit PCG in einer modularen Art
und Weise strukturiert. Danach folgt die Beschreibung von Velvet,
eine prototypische Implementierung des Konzepts, umgesetzt als Plu-
gin für die Unity Engine. Es werden weiterhin Beispielanwendungen
präsentiert, welche die Arbeitsweise und Möglichkeiten des Plugins
veranschaulichen.

Stichworte:

prozedurale generierung, software architektur, modulares design,
spieleentwicklung

iv

If we have learned one thing from the history of invention and discovery,
it is that, in the long run, and often in the short one,

the most daring prophecies seem laughably conservative.

— Arthur C. Clarke [8]

A C K N O W L E D G M E N T S

I want to really thank my family, especially my father Jürgen Freiberg,
who helped me focus on the bigger picture and enabled me to gain
back motivation when it was really needed.
I also want to thank Prof. Dr. Philipp Jenke for being an open, inter-
ested and understanding supervisor, helping and giving advise even
beyond the topic of this thesis.

v

C O N T E N T S

i introduction 1

1 setup 3

1.1 Overview . 3

1.2 Termini: Procedural, Content and Generation 3

1.2.1 Procedural . 4

1.2.2 Content . 5

1.2.3 Generation . 5

1.2.4 Summary . 6

1.3 Motivation . 6

1.3.1 Creativity . 7

1.3.2 Business interest 7

1.4 Goals . 8

1.4.1 Modularity . 8

1.4.2 Chainability . 9

1.4.3 Nestability . 9

1.4.4 Integration with Unity 9

1.4.5 User interface . 9

1.4.6 Parametrization 10

1.5 Challenges . 10

2 a brief history of pcg 11

2.1 Prologue . 11

2.2 Looking at some examples 11

2.2.1 Rogue . 11

2.2.2 Elite . 13

2.2.3 Diablo . 15

2.2.4 .kkrieger . 15

2.2.5 Dwarf Fortress 16

2.2.6 Left 4 Dead . 16

2.2.7 Spore . 17

2.2.8 Minecraft . 18

3 common techniques 19

3.1 Prologue . 19

3.2 Making Noise . 19

3.3 L-Systems . 21

3.4 Superellipsoids, Superquadrics and the Superformula . 22

3.5 Bézier Curves . 23

4 applications of pcg 25

4.1 Prologue . 25

4.2 Vegetation . 25

4.3 Buildings and Cities . 25

4.4 Narrative . 26

vii

viii contents

4.5 Animation . 26

4.6 Music . 27

4.7 Tools . 27

ii velvet : a modular pcg concept 29

5 concept 31

5.1 Prologue . 31

5.2 Architecture . 32

5.2.1 Module types . 32

5.2.2 Chain link . 33

5.2.3 Chain . 33

5.2.4 Processing Order 34

6 implementing the unity plugin velvet 35

6.1 Prologue . 35

6.1.1 Unity . 35

6.1.2 Entity-Component System 36

6.1.3 Entities in Unity 37

6.1.4 Scene Graph . 38

6.1.5 Library . 38

6.1.6 Unity Util . 38

6.1.7 Reflection . 39

6.2 Overview of Velvet . 40

6.3 Core . 41

6.3.1 Chain Link . 41

6.3.2 Chain Head . 42

6.3.3 Variable Bindings 43

6.3.4 Randomizations 44

6.3.5 Serialization . 45

6.4 Editor Extension . 46

6.4.1 Custom Property Drawer 47

6.4.2 Custom Editor 48

6.4.3 Custom Window 48

6.4.4 UI Architecture 49

7 examples 53

7.1 Prologue . 53

7.2 Supercylinders . 53

7.2.1 Modules . 53

7.2.2 Generation process 55

7.2.3 Results . 55

7.3 Block World Terrain . 56

7.3.1 Modules . 56

7.3.2 Generation Process 57

7.3.3 Results . 57

7.4 Vortex Tunnels . 58

7.4.1 Modules . 58

7.4.2 Generation Process 59

contents ix

7.4.3 Results . 59

iii closing words 61

8 evaluation 63

8.1 Prologue . 63

8.2 Developing modules . 63

8.3 Development of Velvet 63

8.4 Controlling the generation process 64

8.5 User interface . 64

8.6 Performance . 65

9 conclusion 67

9.1 Prologue . 67

9.2 Summary . 67

9.3 Further work . 67

9.3.1 Different chain implementations 67

9.3.2 Modularization 68

iv appendix 69

a appendix 71

a.1 Life . 71

a.2 Fibonacci like series . 73

a.2.1 Basic Algorithm 73

a.2.2 Generating the data 74

b references 75

bibliography 77

Part I

I N T R O D U C T I O N

This introductory chapter will give you a brief overview of
the contents of this thesis and discusses what Procedrual
Content Generation (PCG) is and how it can be defined.
This is followed by a short motivation why I think PCG is
interesting and what my goals with this thesis are.

1
S E T U P

1.1 overview

In this thesis, I take a look at Procedrual Content Generation (PCG),
what this term means and how it has been and is being used in the
context of video games. I will first argue for the use of PCG from the
point of creativity as well as buisiness interests. After that I am going
give an overview of the goals I’ve set to archive in this thesis. The fol-
lowing part will be a brief look into the history of pcg in video games.
Succeeding this will be a look into some techniques found in PCG and
recent research. The two subsequent chapters will be concerned with
the concept for a modular workflow for PCG and a prove of concept
implementation in the form of a Unity plugin called Velvet. The last
two chapters will be the evaluation of my concept and the prototype
as well as the conclusions I have come to while writing this thesis.

1.2 termini : procedural , content and generation

Before I will make some notes on why I think it is well worth your
time, incorporating PCG in your workflow, let me first try to define,
what the termini procedural, content and generation mean in the con-
text of this thesis. In the publication Design metaphors for procedural
content generation in games [24], the authors define PCG as:

“the algorithmical creation of game content with limited
or indirect user input”

This definition in turn has been attributed to the article What is pro-
cedural content generation?: Mario on the borderline [51], in which Julian
Togelius et al. looked at what might and might not be considered
PCG. The difficulties on how to come to terms with a definition, is in
my opinion well summarized in the introduction:

“PCG has been attempted by too many people with too
many different perspectives for this to happen. A graph-
ics researcher, a game designer in the industry and an aca-
demic working on artificial intelligence techniques would
be unlikely to agree even on what “content” is, and much
less which generation techniques to consider interesting.”
[51]

3

4 setup

1.2.1 Procedural

The Merriam-Webster dictionary defines procedural as “of or relating
to procedure” [31] and in turn procedure as “a series of actions that are
done in a certain way or order” [32]. I think it is reasonable to argue
that the procedural part of PCG communicates the intent to describe
the way something is created, as a sequence of steps, which when fed
the same set of parameters, will yield the same result. To get such a
set if instructions or steps, any designer or developer concerned with
the creation of some part of the game, has to do some introspection
on how exactly she proceeds when working on a certain task. The
alternative would be to have a more exploratory workflow, where the
designer or developer comes up with a basic set of intrustions and
works her way towards the vision.

1.2.1.1 Randomness

Procedural does in no way imply that it has anything to do with
randomness. Although randomly generated values used to initialize
the procedural part of PCG are vital for giving it a certain dynamic
and unpredictability 1 as well as exploratory feel, randomness is not
a necessity for PCG to function. No Man’s Sky is a good example
of the interplay between deterministic behavior and randomness 2. It
aims to have its universe completely procedurally generated on the
fly and not “stored on the disk [...] not stored in the cloud [...] its just
generated there and then on the fly. When you fly away we just throw
that data away” [15]. In an interview with GameSpot, Sean Murray
founder of Hello Games said:

“The way the universe is create in No Man’s Sky, the way
everything is created is this term that we use; procedural
[...] We’re [...] really picky about that, we say it’s not ran-
dom. [...] ’Cause random to me is this [...] chaotic kind
of mess, potentially. But procedural is [...] mathematical
formulas”. [15]

He then goes on to explain how deterministic behavior is used to
create the universe in No Man’s Sky:

1 In the human sense, not in a machine sense. The argument could be made, that
with enough information about the state of the game and the entropy of the Pseudo-
Random Number Generator (PRNG), every outcome of a procedure seeded with a
value generated by a PRNG could be predicted.

2 At the time of writing this thesis, No Man’s Sky has not yet been released, so the
conclusion are soly based on press releases and interviews.

1.2 termini : procedural , content and generation 5

“When you put in the same inputs, which is just: I am
here, this point in the world, you will always get the same
output. Which is the mountain in that exact same position
or the rock that’s on top of that mountain, down to the [...]
blade of grass. It will always be in the exact same place. If
another player comes along and they [...] input the same
inputs, they will get the same outputs.” [15]

But this behavior is not unique to No Man’s Sky. Lots of other games
use a similar system. See Elite in section 2.2.2 or .kkrieger in section
2.2.4 for further example applications of Procedrual Content Genera-
tion (PCG) with focus on predictability and recreatability.

1.2.2 Content

The first types of content one might think are of particular interest
when it comes to PCG might be traditionally, levels or dungeons, an-
imations or textures. I would go so far as to include all pieces of in-
formation 3 to be found in a specific game. This might be partially in
context of the mechanics and the game feel. So lets imagine an exam-
ple where a game would generate characters participating in its story
with a different set of traits, which in turn would alter the interaction
of said characters, therefor creating a unique story. I would argue that
all parts involved in this process, the traits making up the characters
and the story unfolding depending on the characters interaction are
eligible to be considered content. So in consequence, there are in my
opinion no real boundaries to be set on the topic of what is to be
considered content or not. Limiting the meaning of the term, could
also limit what people consider worth creating and therefor might
lose us interesting content to be encountered in research, games and
commercial tools to come.

1.2.3 Generation

The generative part of PCG is where the knowledge on how to create
something (the procedural part), gets executed to produce the de-
sired type of content. That means you have to put into place a system
which is capable of being fed a certain set of instructions, preferably
parametrizable so that it will produce a certain result. This is also the
part which describes how the process of creating something is started
and where the result is stored.

3 Even generated code.

6 setup

1.2.3.1 Parameter

An emphasis should be made on the part of being parametrizable.
The versatility of Procedrual Content Generation (PCG) comes from
its ability to produce a slight or not so slight alteration on the set of
instructions it is based on. If you do not allow the procedural part to
be parametrizable, this will still in my opinion be PCG, but may be
applicable for tackling a subset of interesting problems. One of such
sub-problems might be compressing data, in order to save disk or
memory space, with the cost of increased computational effort. See
the section 2.2.4 about .kkrieger for an example of texture compres-
sion with the help of PCG.

1.2.3.2 Starting the process

To procedurally generate some content, this process has to start some-
where. Be it an actual human or a machine, pressing a button or call-
ing a function. If the processes should be controlled by a developer or
designer, she would need a user interface containing at least a start
button. An interesting concept is to allow for some sort of feedback
loop, where previously generated content could evokes some reaction
by actors 4 in a game which in turn yields data capable of being fed
into the Procedrual Content Generation (PCG) itself. Therefor if the
game would hypothetically be completely simulated, a specific set of
start parameters, or a seed, could be used to control the whole dy-
namic of the game. This can be in my opinion be very well visualized
through a game proposed by John H. Conway in 1970 [17] called Life

(see appendix A.1).

1.2.4 Summary

So in summary, my definition of Procedrual Content Generation
(PCG) in the context of video games is:

Using a parametrizable sequence of instructions, yielding the
same result when given the same input, to create content which
is considered to be an integral part of a specific video game.

1.3 motivation

A huge part of the time and effort spent developing a game is the
conception and production of assets used to give the game a cer-
tain audio-visual style. Integrating those carefully crafted assets be
it whole levels, single models, music clips, sound effects or textures
is crucial and sometimes complex undertaking.

4 Player, AI and environment alike.

1.3 motivation 7

This gets quite apparent, when reading different literature mention-
ing the creative and technical effort needed to get a vision from an
idea to integral part of a game. In the book The Game Asset Pipeline
the author states:

“Just managing the creation of content and getting that
content into the right place at the right time is an enor-
mous challenge. Hundreds of development hours are lost
dealing with asset and pipeline issues, so the need for a
working system is immense.” [6]

Eric Lengyel description of a game asset pipeline from his book:

“The asset pipeline takes care of obtaining the data from
the tools used for their creation, and then optimizes, splits
or merges, converts, and outputs the final data that can be
used by the game engine.” [26]

1.3.1 Creativity

Seeing how the life-cycle of a game asset is rather long, it is imag-
inable that feedback processes are also long. I think Procedrual Con-
tent Generation (PCG) could proof a valuable piece in the endeavor of
crafting game assets. On the one hand providing a tool for the devel-
opers and designers to automate small, repetitive tasks. On the other
hand, it may open up a more exploratory way of approaching design
through working together with an algorithm to create content.

1.3.2 Business interest

In the previous paragraph, I talked about the effect PCG could have
on the workflow for designers and developers. In the article Guest
Editorial: Procedural Content Generation in Games the authors state:

“In many contemporary game productions, creating all
this game content requires a significantly larger effort and
expense than the actual programming of the game.” [52]

If you look at it from a financial point of view, it might be interesting
to explore the use of Procedrual Content Generation (PCG) for the
goal of cutting time. This might free up human resources, to be used
in other areas or simply save money and shorten development cycles.

8 setup

1.4 goals

With this thesis, I want to take a look at how PCG has been, and is
being used in the context of video games. Furthermore I would like
to propose a concept and prototypical implementation for a modu-
lar procedural generation workflow. This will be realized partly as
portable dynamically linked library implemented in C# as well as a
prototypical implementation of a Unity plugin called Velvet. While
developing this plugin, I will take a look at how to build a basic user
interface to control the generative part of PCG as well as how to cre-
ate a parametrizable system for procedural part. The focus of Velvet

should be:

1.4.1 Modularity

One of the first contacts I had with the concept of modularity was
the promotion of composition over inheritance in the “Gang of Four”
[16] book about design patterns. While the focus of the authors was
mainly the design at the level of code, I would like to also take a look
at a conceptual or workflow level. Especially the concept of breaking
down the procedural part of Procedrual Content Generation (PCG)
modules. One early publication on how to decompose a system into
modules in the context of software development can be found in the
paper “On the Criteria To Be Used in Decomposing Systems into Modules”
[37]. There the authors state two advantages of modular program-
ming:

(1) allow one module to be written with little knowledge of the code
in another module, and

(2) allow modules to be reassembled and replaced without reassem-
bly of the whole system.

These two principles are almost exactly the vision I had in mind for
the concept. So with this thesis, I want to discuss a design for a sys-
tem which adheres to those two principles. Although I would like to
strive for the change from little to no knowledge of code in another
module. It should be possible for someone to develop a module and
not having to worry that another module having side effects. The two
points mention earlier, are in my opinion a very good guideline when
it comes to modular design.

1.4 goals 9

But I think a very important fact is revealed in the conclusion of
the aforementioned paper “On the Criteria To Be Used in Decomposing
Systems into Modules”:

“[...] it is almost always incorrect to begin the decomposi-
tion of a system into modules on the basis of a flowchart.
We propose instead that one begins with a list of difficult
design decisions or design decisions which are likely to
change. Each module is then designed to hide such a deci-
sion from the others. Since, in most cases, design decisions
transcend time of execution [...]” [37]

My interpretation of what this conclusion tries to communicate, is the
importance of modules being part of the overall design; concerned
with solving a specific sub-problem. A module has to be just indepen-
dent enough to not be a static part of a flow chart, bearing the risk of
introducing side effects, or sharing of information between modules,
leading to inter-dependencies and therefor undermining point 2 in
the list above.

1.4.2 Chainability

Modules should take an input and provide an output of the same
data type. This allows for any type of module processing the same
data type to be assembled in a sequential order.

1.4.3 Nestability

It should be possible to nest one or more modules in order to archive a
tree like data structure, holding the information about the procedural
part of PCG.

1.4.4 Integration with Unity

The concept should be integrated into the eco-system of the Unity
engine and its tools.

1.4.5 User interface

When working in Unity it should be possible for a developer or de-
signer to interact with a user interface specifically tailored to what
ever generation she might want to do.

10 setup

1.4.6 Parametrization

When creating a chained and nested structure of modules, it should
be possible for a developer or designer to pick certain parameters of
any module in any arbitrary depth within the tree structure and bind
it on the top level. This would greatly increase the ability to control
the generation part of PCG.

1.5 challenges

When designing the architecture and developing Velvet, I expect to
come across a set of challenges, which would be amongst others:

• Abstracting the work done to process the modules so that the
user can focus on writing the code needed to create her vision.

• Creating a system allowing me to cater to designers (visual in-
terface) and developers (code interface) alike.

• Which value does the system bring to its user?

2
A B R I E F H I S T O RY O F P C G

2.1 prologue

In the past games often used Procedrual Content Generation (PCG)
to generate parts of the level. This might have been motivated by the
memory limitations encountered while developing games in the 1970

and 1980. But it certainly was not the only reason as we will see in
the following descriptions. In this part I want to discuss some of the
games which in my opinion are relevant in the context of PCG and
show a broad application of it. This is not an exhaustive list and as of
2016 there are certainly a lot of games making use of PCG in one way
or another. But I will limit this discussion to eight of them.

2.2 looking at some examples

2.2.1 Rogue

At the start of this list is Rogue (see figure 2.1). Arguably one of the
most influential games when it comes to not only procedural dun-
geon generation1, but also a whole slew of game mechanics 2 today
referred to as rouge-like (see 2.2.1.1). First developed by Michael Toy
and Glenn R. Wichman around 1980 [59], Rogue is what today might
be considered a dungeon crawling game. The story was not really the
focus, but it had a to offer a considerable amount of depth when it
comes to the use of items such as armor or weapons to combat the
26 different enemy types [53]. To beat the game the player has to ex- One enemy for each

character in the
English alphabet.

plore the dungeon all the way down to the last level. Each layer or
level is procedurally generated, initialized by a random set of parame-
ters for every new character. Each level in turn is composed of rooms,
connected by corridors. This unique combination of game mechanics
and procedural level generation led to the growing of a rich fan base,
which is still active today 3.

1 Some suggest [42] that the game called Beneath Apple Manor (BAM) preceded
Rogues effort of procedurally generating dungeons by 2 years. Curiously BAM
never got the some level of attention Rogue received.

2 Including but not limited to turn based movement and actions, and permanent death
of a character.

3 http://web.archive.org/web/20160120145301/http://www.roguebasin.com/

index.php?title=Main_Page

11

http://web.archive.org/web/20160120145301/http://www.roguebasin.com/index.php?title=Main_Page
http://web.archive.org/web/20160120145301/http://www.roguebasin.com/index.php?title=Main_Page

12 a brief history of pcg

Glenn R. Wichman, the co-author of the original ver-
sion states in his essay A Brief History of "Rogue":

Figure 2.1: Creative artistic ren-
dering of the appear-
ance of Rogue

“Version 4.2 of BSD UNIX
included Rogue – sud-
denly, the game was avail-
able on university comput-
ers all over the world. At
the time, there was no
other game like it. Over
the next 3 years, Rogue be-
came the undisputed most
popular game on college
campuses.” [59]

He attributes the initial success to the rather unusual approach of not
having the game developer decide what the level would be like, but
instead “[...], the program itself should "build the dungeon", giving
you a new adventure every time you played, and making it possible
for even the creators to be surprised by the game” [59].

2.2.1.1 Rogue-like

This has originally been a description for a game true to the origi-
nal style and rule-set envisioned by Rogue. Namely the procedural
dungeon generation, permanent death of a character, as well as the
turn based movement and combat. In recent years games developer
and media alike adapted the term for games featuring one or more
of its core mechanics. An example of a game described as rogue-like,
despite having very little in common with the original, would be the
game FTL4. It plays in a sci-fy setting and features pausable ship to
ship combat and crew management as well as permanent death.

4 It is has been tagged as Rogue-like on a major digital marketplace called Steam [55].

2.2 looking at some examples 13

2.2.2 Elite

Another great milestone not only for its use PCG, but also for its rev-
olutionary visual style is Elite

5. It used wire-frame 3D graphics 6

with hidden line removal 7 to present the player with a vast virtual
universe to explore. The game-play is based on a sophisticated flying
system, which includes docking to space stations, scooping fuel from
stars or traveling between solar system via hyper-drive. The player is
able to earn credits via hauling goods and trading, head hunting pi-
rates or flying missions for different factions. I previously (see 2.1)
talked about games making an effort towards Procedrual Content
Generation (PCG) due to memory limitations. Elite certainly was one
of them. In the book Backroom Boys: The Secret Return of the British Bof-
fin the author describes the ambitious struggle of the developer to
build a vast and compelling universe for the player.

“Their first idea had been to furnish the machine with
the details of (say) 10 solar systems they’d lovingly hand-
crafted in advance: elegant stars, advantageously dis-
tributed, orbited by nice planets in salubrious locations,
inhabited by contrasting aliens with varied governments
and interesting commodities to trade. But it quickly be-
came clear that the wodge of data involved was going to
make an impossible demand on memory.” [47]

How impossible this demand really was, has been stated by David
Braben in an interview [3] with GameSpot:

“We wanted a huge world, but we had 22K of memory–
which is probably even less than a single Frontier icon
today.”

2.2.2.1 Generating the universe

With that amount of information the developers of Elite wanted to
use in any given solar system, they needed a technique, allowing
them to get a predictable result when generating a system, base on as
little input information as possible. To archive this David Braben and
Ian Bell developed a system based on the Fibonacci series. Starting
with the first two digits in the series, all subsequent digits can be
predicted and are consistently recreatable. To conquer the habit of
the numbers Fibonacci series two grow in size very fast, they simple
dropped all digits in the generated numbers, except the last one.

5 https://web.archive.org/web/20100127094607/http://frontier.co.uk/games/

elite

6 Only the edges of a 3D model are rendered.
7 The edges in a wire-frame model, covered by surfaces facing the viewer are not

rendered.

https://web.archive.org/web/20100127094607/http://frontier.co.uk/games/elite
https://web.archive.org/web/20100127094607/http://frontier.co.uk/games/elite

14 a brief history of pcg

So if we would start with [1, 2], generating 6 additional numbers,
the resulting sequence would be [1, 2, 3, 5, 8, 3, 1, 4]. I provided an sim-
ple implementation in then appendix A.1. This simple yet beautiful
system, allowed Braben and Bell to reduce the size of input informa-
tion they needed to encode any given solar system, to to only two
integers [47].

Figure 2.2: Distrubtion of each number from 0 - 9

Analyzing the behavior of this function (see listing A.2) by creating
100 lists each with 12 numbers (two initial and 10 subsequent) on
the basis of the permutation of a and b, where 0 ≤ a ≤ 9 and 0 ≤
b ≤ 9, this number generating function appears to have a uniform
distribution of occurrence for each number i ∈ [0, 9] (see figure 2.2).
This uniformity lead to a very noisy generation, which is why the
256 system featured in Elite were - although initially procedurally
generated - hand picked and reviewed, to make sure they adhered to
the standards 8 set by the publisher.

8 "One of the first galaxies we tried had a system called Arse. We couldn’t use the
whole galaxy. We just threw it away!" [47]

2.2 looking at some examples 15

2.2.3 Diablo

Aside being well acclaimed for its tense atmosphere and sound de-
sign, Diablo

9 might be one of the most successful rogue-like (see
2.2.1.1) games of contemporary history. Diablo got initially released
in 1996 and lead the player to Tristram, a plagued town haunted by
the devil himself. The goal of the game is to descent through all dun-
geon levels; ultimately entering hell, to fight Diablo in person. The
PCG nature of Diablo has since then been part of its franchise.

To get a slightly different play-through for each character, the de-
velopers wanted diverse dungeons. The map generation system, im-
plemented in Diablo turned out to be a mix of static and generated
content. Prefabricated rooms or parts of rooms 10 and procedurally
generated ones, as well as an entry and an exit to a dungeon level.
Controlled by a seed value, these parts then got assembled to build a
coherent dungeon for the player to explore. On his way down towards
hell, one could encounter a variaty of items, ranging from weapons
to scrolls and armor. These items where also procedurally generated.
Picking for example a rarity, type of weapon and its stats, the algo-
rithm then figured out a name describing the assembled parts by
picking words associated with each characteristic.

2.2.4 .kkrieger

In the introduction (see 1.2.3.1) I briefly mentioned, that some games
used PCG to decrease their memory footprint. An interesting ex-
ample of this was shown by the award winning German group of
demo-makers called Farbrausch

11. In 2003, they released a game
called .kkrieger [50] under their subdivision named .theprodukkt.
Through the clever use of procedural texture generation at runtime
based on a custom format, they were able to reduce the size of the
application to only 96kB 12.

9 http://web.archive.org/web/20160224123017/http://us.blizzard.com/en-us/

games/legacy/

10 Important for placing quest items.
11 http://web.archive.org/web/20160113194346/http://www.farbrausch.de/

12 Quote from the read-me of .kkrieger “A kilobyte is, historically, defined to be 1024
(2^10) bytes, not 1000. Thus .kkrieger is a game in 96k even though it’s actually 98304
bytes.”

http://web.archive.org/web/20160224123017/http://us.blizzard.com/en-us/games/legacy/
http://web.archive.org/web/20160224123017/http://us.blizzard.com/en-us/games/legacy/
http://web.archive.org/web/20160113194346/http://www.farbrausch.de/

16 a brief history of pcg

2.2.5 Dwarf Fortress

A procedurally generated and incredibly detailed simulation of differ-
ent fantastical civilizations, among which the player takes the role of
the overseer for a dwarfen society, can be found in Dwarf Fortress

13.
Still under development, the game first appeared in 2006 in the form
of an alpha version. The PCG in Dwarf Fortress is structured into
layers, splitting responsibilities and promoting emergent game-play.
Emergence 14 can lead to fascinating results in complex systems, such
as software and has also been subject to research, trying to providing
a way to identify which parts of a system are more likely to cause
emergent properties [49]. At the beginning of a session the player can
specify a few parameters and let the game generate a tile based map.
Each tile has details on e.g, its elevation, temperature, vegetation, sav-
agery 15 or its alignment to either good a evil.

The game then simulates the evolution of the map. Rivers will
spring, mountains erode, volcanoes may spew lava and civilizations
may be brought to life. Each will be tested against the parameters
specified and a set of internal rules, to make sure the map is suffi-
ciently playable. Should the test fail, the progress is rejected [60] and
the algorithm will try another approach. After the map generation,
the game will then create a fictional history, based on the generated
map its native civilizations. Over a previously specified range of in-
game years civilizations will grow, fight each other, or starve to death
leaving behind abandoned towns and fortresses.

2.2.6 Left 4 Dead

In the online multiplayer game Left 4 Dead
16 released in 2008, you

take on the role of one of four survivors in a post-apocalyptic world
overrun by zombies. The goal of each level is for the survivors to
reach the exit. On the way to the exit, the players will have to fend
of different kinds of zombies. One of the key features of the game is
what is called the Director AI. It is responsible for procedurally gen-
erate unique narrative structure for each play-through of a level. By
monitoring the states of the survivors, the AI then sets spawn points
for zombies and places items, to modulate the flow of the game.

13 http://www.bay12games.com/dwarves/ (visited Feb. 2, 2016)
14 The concept of finding properties in a system which are not associated with any

component of said system.
15 Inidicating how ’wild’ a tile is.
16 http://web.archive.org/web/20160223063915/http://www.l4d.com/blog/

http://www.bay12games.com/dwarves/
http://web.archive.org/web/20160223063915/http://www.l4d.com/blog/

2.2 looking at some examples 17

2.2.7 Spore

Also released in 2008, Spore
17 is a game where you manage and

evolve a species from the beginnings, a single cell organism, through
to a space faring civilization. Over the time you gain evolution points
which can be spent to evolve certain traits of your species, giving it
two more legs, a set of horns or changing its eating habits from carni-
vore to herbivore. When designing your creature the game procedu-
rally generates a set of animations, like walking, fighting or dancing
and generates a set of texture to give the creature a unique look [11].

In later stages it is also possible for the player to create buildings
and vehicles, which will also be animated and textured by the system.
Instead of using a flat landscape, the player is placed on a procedu-
rally generated spherical planet [9]. Those planets are then spread in a
generated galaxy by using a specially engineered technique based on
pseudo-random sequence [61]. Not only the behavior and animation
of the creature gets procedurally generated, the background music is
also depending on the parts your creature is build of. In an interview
the executive producer Lucy Bradshaw describes the system:

“One of our original visions . . . was to do procedural mu-
sic, [which we achieved with help from electronic musi-
cian Brian Eno]. So, as you create your creature in the edi-
tor, if you’re putting on a more aggressive part, the music
starts to turn a little more ominous. If you’re putting on
a more socializing part, it turns a little more perky and
happy. And that happens throughout the game, in fact.”
[33]

17 https://web.archive.org/web/20160227170036/http://www.spore.com/getSpore

https://web.archive.org/web/20160227170036/http://www.spore.com/getSpore

18 a brief history of pcg

2.2.8 Minecraft

Certainly one of most well known games featuring PCG is Minecraft

18. First released as purchasable alpha build in 2009 and having its full
release in 2011, Minecraft is a open-world sandbox game featuring
a voxel 19 based environment. Starting the game, the player is asked
to either provide a seed or let the game choose one randomly. This
seed is then used to create the blocks used to form the game world.
The landscape comes in different bioms, each with their own unique
set of blocks. A block could be for example a piece of dirt, sand, stone
or a flower. It not only is very popular with gamers, but also makes
frequent appearance in scientific publications as well. From analyzing
the player behavior in the game and correlating motives in real life
[5], using it as a basis for researching Massively Multi-user Virtual
Environments (MMVE) [12] to enabling “children and adults to co-design
within an environment regardless of their location” with KidCraft [57].

18 http://web.archive.org/web/20160215173801/https://minecraft.net/

19 A Voxel represents a value on a regular grid in three-dimensional space; contrasting
a Pixel as value on a two-dimensional regular grid.

http://web.archive.org/web/20160215173801/https://minecraft.net/

3
C O M M O N T E C H N I Q U E S

3.1 prologue

In this chapter we look at some techniques frequently used when
working with PCG.

3.2 making noise

In computer graphics, noise is commonly associated with image pro-
cessing techniques or the procedural generation of textures. The term
noise basically describes a function, often based on statistical meth-
ods. The simplest noise is generated by using a PRNG with uniform
probability for all its possible values independent of their position.

(a) White Noise

(b) Colored Per-
lin Noise

Figure 3.1: Noise Textures

When interpreting the values as
heights and coloring them from
black when maximal to white when
minimal and projecting it to a tex-
ture, it generates the look typi-
cal for the so called White Noise
(see figure 3.1a). Every value or
pixel in this texture is indepen-
dent from its neighbor. Some of
these functions are design to rep-
resent a noise space, which in the
case of textures would be two-
dimensional. So the function is ca-
pable of producing values depend-
ing on the two-dimensional coordi-
nate provided to it. When trying to
create a landscape for example, it
would be beneficial to have a more
smooth transition from pixel to pixel.

19

20 common techniques

coherent noise One such type of noise would be Perlin Noise
named after Ken Perlin, who proposed this algorithm in his 1985

paper An Image Synthesizer [38]. Values in Perlin Noise are coherent;
every pixel has a relation to its neighbor. This allows for parts of the
noise space to form recognizable structures. The range of the values
v produced by the noise function is commonly 0 ≤ v ≤ 1.

superposition To get more control over the structures produced
in Perlin Noise, we might use superposition. When superimposing
noise, or signals, the amplitudes of the different sources get added
together. For example we could use a set of three octaves (see figure
3.2a). An octave is the same function but with increased frequency
and decreased amplitude. Taking the first octave for generating a
rough outline of the terrain. Then adding the second and third oc-
tave to give the graph more details.

(a) Three octaves of
sine noise.

(b) Superposition
of three sine
octaves.

Figure 3.2: Superposition of Noise

Figure 3.1b shows an example where I interpreted the noise values
produced by Perlin Noise as a height h, coloring them black to blue
for water in the range of 0 ≤ h ≤ 0.4 and green to yellow for flat
lands in the range of 0.4 ≤ h ≤ 0.8. Finally gray for mountains when
0.8 ≤ h ≤ 0.95 with white as the mountain top when 0.95 ≤ h ≤
1.0, yielding a natural looking textures of what could be seen as a
landscape. This approach is used in the terrain generation example
(see section 7.3).

3.3 l-systems 21

3.3 l-systems

In 1968, Aristid Lindenmayer wrote about Mathematical models for
cellular interaction in development [27], to help describe the complex
behavior of cells in plants. In the paper, she presents a formal sys-
tem today known as Lindenmayer-System (L-System). It uses a set of
rules, describing how objects should be rewritten after a generation.
Originally Lindemayer used her system to model the growth of red
alga, Callithamnion roseum Harvey. A simple example of her system
would be a set of rules rewriting two variables.

Variables L R

Start L

Rules (L→ LR), (R→ L)

Table 3.1: Simple L-System rule set

When creating a new generation every L gets rewritten as LR and
every R gets rewritten as L. When applying five generations of rewrit-
ing we get:

generation state

0 L

1 LR

2 LRL

3 LRLLR

4 LRLLRLRL

Table 3.2: Five L-System generations

If you allow for parametrization in a L-System, it may be referred to
as parametric L-System. Contemporary research shows further inter-
esting uses. In L-system based interactive and lightweight web3D tree mod-
eling [43] Hang Qi et al. presents a 3D Virtual Reality web-application,
which allows the user to interactively model a modified version of a
parametric L-System to describe the generation of trees. A similar con-
cept to the rewriting of an L-System are shape-grammars. They are
often used in the procedural generation of buildings (see section 4.3).

22 common techniques

3.4 superellipsoids , superquadrics and the superfor-
mula

Superellipses are geometric figures in a Cartesian coordinateSuperllipses are also
known as Lamé

Curve.
system formulated by Gabriel Lamé. The shapes can range

(a) 3; 14;
6; 21;

(b) 8; -12;
52; 4;

(c) 10; -6;
6; -1;

(d) 21; 9;
5; 16;

Figure 3.3: Supershapes (m; n1;
n2; n3; / a = b = 1)

from a rectangle with rounded
edges, a rhombus to a four-armed
star with concave sides. In the
2003 publication A generic geomet-
ric transformation that unifies a wide
range of natural and abstract shapes
[18] author Johan Gielis described a
generalization of Superellipses (see
figure 3.4) capable of producing
Supershapes (see figure1

3.3). The
shapes generated by his so called
Superformula are based on his as-
sumptions that “many geometri-
cal forms, both in nature and cul-
ture, can be interpreted as modi-

fied circles” [18]. Superellipses and Supershapes both exist primar-
ily in two-dimensional space. If you elevate Superellipses into three-
dimensional space, you get what is commonly called a Superquadrics.
There has been some research on using the wide variety of shapes
produced by the Superformula to produce three-dimensional mod-
els, showing promising shapes [19]. The upcoming game No Man’s
Sky features the Superformula [25] to procedurally generate shapes
to populate its universe with flora and fauna derived from a single
seed value. Supershapes will also be featured in one of the examples
in the form of Supercylinders (see 7.2).

r (ϕ) =

(
| cos(mϕ

4)
a |n2 + | sin(mϕ

4)
b |n3

)− 1
n1

Figure 3.4: Superformula in polar coordiantes

1 Shapes were rendered with a tool I developed available at http://web.archive.org/
web/20160206142844/https://github.com/BlurryRoots/js13k-2015/releases/

tag/1.0.1

http://web.archive.org/web/20160206142844/https://github.com/BlurryRoots/js13k-2015/releases/tag/1.0.1
http://web.archive.org/web/20160206142844/https://github.com/BlurryRoots/js13k-2015/releases/tag/1.0.1
http://web.archive.org/web/20160206142844/https://github.com/BlurryRoots/js13k-2015/releases/tag/1.0.1

3.5 bézier curves 23

3.5 bézier curves

Named after Pierre Bézier, a french engineer using curves based on
the Bernstein polynomial to design car frames for Renault in 1962, a
Bézier Curve (see figure 3.5) consists of two nodes P0 and P1, poten-
tially augmented with a set of control point.

P0

C0

C1

P1

Figure 3.5: Concpet of a Cubic Bézier curve

If present, control points 2 are used to give the curve between the
two nodes its curvature. This is done via linear interpolation between
all points. If we would use no control points, the curve would just
consist of two nodes, which would result in a straight line, sometimes
called a Linear Bézier Curve. Obtaining a position on this curve is done
via linear interpolation. The position R can be obtained by specifying
a normalized fraction t between P0 and P1 in the interval 0 ≤ t ≤ 1.
The result can be calculated via R(t) = P0 + t(P1− P0) which can also
be simplified to R(t) = t(1− t)P0 + tP1. For example, when specifying
t = 0.5 we will get the point R which has the same distance to P0 and
to P1; right in the center between the two points. By using one control
point, we get what is called a Quadratic Bézier Curve. When using two
control points C0 and C1, we get what is commonly known as a Cubic
Bézier Curve, which is used in the Supercylinder example (see section
7.2). The position R(t) can be calculated as shown in figure 3.6.

R(t) = (1− t)3P0 + 3(1− t)2tC0 + 3(1− t)t2C1 + t3P1

Figure 3.6: Simplified Cubic Bézier Curve

2 Sometimes called handles.

4
A P P L I C AT I O N S O F P C G

4.1 prologue

Not only game developers are interested in the problems and capa-
bilities which accompanies Procedrual Content Generation (PCG). In
this chapter I want to take a look at some examples from current
research and some commercial applications using PCG. Rather than
exhaustively listing all current research, I picked a set of references I
considered interesting in the context of PCG in video games and for
the topics discussed in this thesis.

4.2 vegetation

Traditionally based on recursive models, like fractals [35] and rewrit-
ing systems like the L-System [41], procedural generation of vegeta-
tion, especially trees, has been studied considerably. More recent ap-
proaches, discuss algorithms capable of taking things like free space
and and available light into account when growing a tree or shrub
[36]. There is also some research in systems capable of analyzing al-
ready existing models of trees and “allows developmental stages to
be generated from a single input and supports animating growth be-
tween these states” [39]. It is even shown how environmental factors
like wind can be used to shape such developmental stages of growth
[40].

4.3 buildings and cities

Current research has shown interesting applications of PCG tech-
niques to generate urban environment, cities and buildings. Citigen 1,
proposed in a 2007 paper [22] by George Kelly et. al. and later devel-
oped in more detail in his thesis [21] focuses on a tree step generation
process. In the first iteration a rough street network is created, fol-
lowed by a more detailed iteration to create subsection road network
and lastly the generation of the buildings populating the spots be-
tween the streets. Generating buildings based on a modified version
of L-Systems called shape grammars - using geometric shapes instead
of variables - has also shown promising results [58]. Approaching
the generation of buildings by reinterpreting a 2D city map with a
straight skeleton algorithm has also been examined [48].

1 http://web.archive.org/web/20150428035052/http://www.citygen.net/

25

http://web.archive.org/web/20150428035052/http://www.citygen.net/

26 applications of pcg

Using a combination of modular building parts procedurally as-
sembled at runtime and alternatively baked into a new model, if the
number of instance would be to high [20] has been presented by the
development team behind the second title in the Mirrors Edge series
as an effective approach to generate city landscapes.

4.4 narrative

Procedurally generating stories, interaction of characters or even nar-
rative puzzles in games have been subject to research. In a 2012 publi-
cation [13] the authors describe a system called Puzzle-Dice capable of
generating puzzles in the style of adventure games, where the player
has to interact with objects or characters to progress the story. Proce-
durally generating whole stories with believable characters by using
roles and constraints [7], as well as working together with an algo-
rithm to write stories [44] have also been subject to recent studies.

4.5 animation

Procedurally generated animations are used for example by particle
systems to visualize smoke or fire in real-time or animate cloth and
hair. It is also possible to animate whole characters. Giving for exam-
ple, a biped character “life-like, responsive, and non-repetitive” [23]
animation has been also subject to research in the field of procedural
generated animations. One prominent example would be the creature
generator in Spore (see section 2.2.7), where procedural animation
was used to bring user created characters to life. But not only in the
context of video games are procedural animations showing promis-
ing applications. Film studios have created solutions for animating
large numbers of digital actors. Engineers from Walt Disney Anima-
tion Studios published a paper describing their technology [4] used
in the recently released movie Big Hero 6. Another example would be
the crowd-related visual effects technology used in the film Lord of
the Rings: Return of the King called MASSIVE. This software is capable
of, based on pre-recorded animation clips, procedurally animating
thousands of independent actors. These approaches and technologies
used in film, might also be interesting for the use in video games.

4.6 music 27

4.6 music

Music in video games is an essential part of storytelling and often
conveys the mood of a character or setting. Using procedurally gen-
erated music to underline a certain mood has been examined by a
publication [46] from 2014. In it the authors describe a game which
uses procedural music to foreshadow story events. In many video
games, it is also important to keep the player engaged and not have
her loose immersion by repetitive looping music. I a 2012 publication
[2] the authors take a look at techniques to introduce variance into
game music.

4.7 tools

One notable software would be Houdini, which tries to combine
many already existing Procedrual Content Generation (PCG) tech-
niques into one software. These techniques include procedural mod-
eling, as well as animation, particles and physics. Developers of Hou-
dini also published a paper [62] about the role of procedural genera-
tion in the visual effects pipeline in game development and describ-
ing the concepts behind the PCG system used in Houdini.

Part II

V E LV E T: A M O D U L A R P C G C O N C E P T

In this chapter, I will present a design to a modular work-
flow for PCG. Starting with a short introduction on where
I got the inspiration for the concept and what problems I
tried to address, I proceed with a description of the core
parts of the design. To evaluate the capabilities of the pro-
posed design, I will describe a prototypical implementa-
tion in form of a Unity plugin.

5
C O N C E P T

5.1 prologue

The inspiration for this concept has mainly been drawn from a blog
post titled Procedural Content Generation: Thinking With Modules [14]
by developers at Dejobaan Games. In this article the authors present
the way they structured their Procedrual Content Generation (PCG)
code base for the AaaaaAAaaaAAAaaAAAAaAAAAA!!! 1 series. They
highlight a major problem, when working with the premise of creat-
ing a sufficiently expressive algorithm, to aid them in their endeavor
to procedurally generate content for their game.

“It’s really easy to create an algorithm that generates a
simple level – but as we made things more complex, im-
plementation became disproportionately more difficult.”
[14]

To solve this problem, they tried to break apart the different elements
of their procedural generation process into different modules; each
with their own decoupled responsibility.

“In the three years we’ve been working on Ugly Baby, we
haven’t solved all of these problems, but we’ve had some
success when combining simple, modular concepts to pro-
duce complex results.” [14]

With this motivation, I want to present my approach to a modular
PCG system. Additionally I will focus on the ability to build compos-
ite structures with these modules. Furthermore I want to find a way
to parameterize modules as well as the composite structures. The sys-
tem will be build as plugin for the Unity Engine (see chapter 6).

1 See company page for further details http://web.archive.org/web/

20160115155547/http://www.dejobaan.com/

31

http://web.archive.org/web/20160115155547/http://www.dejobaan.com/
http://web.archive.org/web/20160115155547/http://www.dejobaan.com/

32 concept

5.2 architecture

Every part of the blueprint for your procedural generation is con-
tained within a module. A set of modules can be arranged sequen-
tially called a chain. Chains themselves are to be considered a module,
so they too can be a part in another chain. In the end, this system pro-
duces a graph data structure, in particular a tree of modules. Each
module implements a common function to yield its result. This de-
sign is also known as the composite design pattern (see figure 5.1). The
motivation to use this pattern is its transparency. While traversing

Component

+ operation()

Leaf

+ operation()

Composite

+ operation()
+ add()
+ remove()
+ getChild()

1

0..*

parent

child

Figure 5.1: UML class diagram for the composite design pattern

the tree to process all its nodes, the part responsible for starting the
processing, does not need knowledge of the particular type of node it
processes. A leaf node simply produces a direct result, while a com-
posite node would have to start a new traversal process to eventually
yield its result. The tree of modules can be traversed and therefor
processed with different strategies (see section 5.2.4). Each module
should manage a certain task. While developing the system I found
several categories with a specific set of responsibilities which will be
described in section 5.2.1.

5.2.1 Module types

generator A generator module is responsible for generating any
unit of information used in the system to eventually assemble a piece
of content. This could be for example a the generating a noise tex-
ture, create/load a sound effect, creating set of vertices, to later be
combined into a model or simply instantiate a set of pre-designed
models.

collector A special type of generator is called a collector. A col-
lector module is responsible for taking a set of units of information,
e.g. a set of game objects and creates a new unit of information with

5.2 architecture 33

them, e.g. a root game object containing all the previous generated
game objects.

selector Selector modules are responsible for taking units of in-
formation and select a subset of this information according to the
parameters provided by the user. This might be a sub-model of a
composite model, a vertex, a certain texture or an instrument in a
modular piece of music.

manipulator The job of a manipulator module should be the
transformation of units of information provided to the module. This
might be the translation of a vertex, the rotation of a model, the recol-
oring of a texture, or pitching of a sound effect.

5.2.2 Chain link

The chain element is defined as a generic interface (see figure 5.2).

«interface»
IChainLink<TData>

+Process(input: TData): TData

Figure 5.2: UML IChainLink

The motivation for generically
typing the input and output
value of the process function
is to allow basically any type
of data to be processed by
a module implementing the
IChainLink interface. Although
generic, the only type being pro-
cessed in this thesis is a list of Unity game objects.

5.2.3 Chain

The Chain is used to link elements together. A chain itself imple-
ments the IChainLink interface. The link method adds a new element

«interface»
IChainLink<TData>

+Process(input: TData): TData

Chain<TData>
+Elements: List<IChainLink<TData> >
+Link(module: IChainLink<TData>): Chain<TData>

implements with
TData: List<TData>

Figure 5.3: UML Chain

to the chain. The process
method, will either produce a
direct result or call the process
method of each child module
contained by this node. While
processing, the results from the
previous module gets fed into
the next module. The method
can be called with a start value
which will be provided to the
process method of the first
element.

34 concept

5.2.4 Processing Order

Each chains can be configured to process its modules in two ways.

Pre Processes its own modules first

and funnels results into nested modules.

Post Processes nested modules first

and funnels results into own modules.

Table 5.1: Options for processing order enumeration type

6
I M P L E M E N T I N G T H E U N I T Y P L U G I N V E LV E T

6.1 prologue

Beginning with a few words on working with the Unity Engine and
how it is structured. This will be followed by short introduction on
what Entity-Component System (ECS) are. After this, I will proceed
with describing the usage and inner workings of the prototypical plu-
gin implementation of the concept described in the previous chapter
called Velvet.

6.1.1 Unity

First released in 2005, Unity1 gained a lot of traction and is by today
one of the leading technologies when it comes to game development.
It provides a complete set of tools for developing interactive 3D as
well as 2D application. Unity bundles a custom written engine with
a useful set of tools for managing assets and streamlining the build
process. It also comes with a powerful visual editor. You can extend
the basics of the game engine as well as the editor tools, asset pipeline
or even the build process used to package your application. Currently
there are 23 target platforms supported by Unity.

components When working with Unitys game engine, most of
your code directly relating to Unity functionality is maintained in
components. This is because the engines architecture is based on the
concept of an Entity-Component System (ECS) (see section 6.1.2).

When creating a component, you inherit from a base class called
MonoBehaviour 2. Classes inheriting from MonoBehaviour can be asso-
ciated with a game object and presented in the inspector window (see
section 6.4) of the visual editor. When compiling the scripts, Unity
looks for the presence of a set of methods with specific signatures. To,
for example, execute code when a component is create, you would
implement the method void Awake(). If you would want to calcu-
late values each frame you would implement a method called void

Update().

1 http://web.archive.org/web/20160223065954/https://unity3d.com/
2 Unity uses the Mono framework to run its scripts; a re-implementation of .NETs

compiler and runtime.

35

36 implementing the unity plugin velvet

convention vs . configuration In many cases Unity prefers
convention over configuration. If you want to develop editor exten-
sions for example, you would have to create a directory called Editor
within the project directory. When scanning the project Unity would
then recreate the Visual Studio/Monodevelop solution file to include
a separate project for the editor extension featuring all source files
within the Editor directory.

6.1.2 Entity-Component System

As early as 2002 Scot Bilas, the leading engineer at Gas Powered
Games gave a talk titled A Data-Driven Game Object System 3 at GDC
San Jose. In his talk he presents their technology used to create Dun-
geon Siege, which is based on the concept of dissolving game objects
into components to allow game designers to reassemble them at will
with no software engineer required. He may be considered the first
person presenting the concept of an Entity-Component System (ECS).
In 2007 Adam Martin published a series of blog posts [28] presenting
his thoughts on data driven engine design discussing how data in
game engines should be structured and maintained in the context of
Massive Online Multiplayer (MMO) game development.

Academic publications on the concept of this architecture have also
been starting to appear shortly there after. For example the 2012 pub-
lished Gear2D: an extensible component-based game engine [10]. Today
there are a multitude of approaches and names like: Entity System,
Entity-Component System (ECS) (which will be the preferred name in
this thesis) or Component-based entity systems. These names all try
to describe the idea of a data driven architecture seperating the data
from its processing. Coming from a background of object oriented
programming, we are used to the idea of having an object taking care
of its own data and functionality. ECSs split objects into three parts.

entity An entity is nothing more than an ID. This ID is very
similar to an ID in a relational database. Actually the analogies
to relational databases are pretty much how entities in an Entity-
Component System (ECS) can be understood.

“Programming *well* with Entity Systems is very close
to programming with a Relational Database. It would not
be unreasonable to call ES’s a form of “Relation Oriented
Programming”.” [28]

3 http://web.archive.org/web/20160127013253/http://scottbilas.com/games/

dungeon-siege/

http://web.archive.org/web/20160127013253/http://scottbilas.com/games/dungeon-siege/
http://web.archive.org/web/20160127013253/http://scottbilas.com/games/dungeon-siege/

6.1 prologue 37

component To give an Entity any meaning, it can be associated
with data. This data or component could be anything, from the cur-
rent position of the Entity within the 3D world, player attributes like
health, strength or agility, or the mesh data used to render a character
onto the screen. Components can be added, removed or manipulated
during runtime.

system The last part of an ECS is the System. A System has knowl-
edge on how to process a specific component. So for example, if you
would like to have a basic physics system, you would need a position
component, and a physics component (containing e.g. mass and veloc-
ity), which could then be processed by a movement system, changing
the position of an entity according to its components data. Due to the
distributed nature of ECSs it is vital to use some sort of event system,
to assure the communication between systems. In the physics exam-
ple, such an event would be for example, the input system registering
the button for throttle, in turn notifying the physics system to apply
a given force to an object, resulting in a new velocity vector depend-
ing on the objects mass. Alternatively you could reference systems or
components directly, which would create strong coupling.

6.1.3 Entities in Unity

Unity has come up with its own approach to the idea of an ECS. On
interesting difference is the missing separation of data and its pro-
cessing. Components inheriting from MonoBehaviour can implement
methods which will be called every frame or in a fixed amount of
time, so data contained in the component can be updated.

Figure 6.1: Entity in Unity called GameObject

An entity in Unity is a class called GameObject and represents the
basic object within a scene, combining an ID and has one fixed compo-
nent; the Transform. A purpose of a Transform is to hold the position,
rotation and scale for the game object within the 3D world of Unity
(see figure 6.1). Once an entity has been instantiated, further compo-
nents can be associated with it.

38 implementing the unity plugin velvet

6.1.4 Scene Graph

Additionally to Unitys approach to structuring game data through an
Entity-Component System (ECS) architecture, game objects are also
arranged in a scene graph. A scene graph is a tree structure used to
express dependencies between game objects. This is especially handy
if you want to construct complex objects comprised of multiple sub-
objects. Each sub-object is manipulated relative to its parent object,
which enables independent manipulation of sub-objects, but also al-
lows for a coherent manipulation of all child objects when its parent
object is manipulated. For example, if we were to construct an island
full of trees, bushes and gold chests, each of the aforementioned ob-
jects could be modeled as separate game object. The island would be
the parent object, harboring all the trees and bushes, as well as the
chests. If the position of the island would be changed in the game
world, all its attached child objects would move and transform rela-
tive to the manipulation of its parent. This helps managing complex
interactions between different transforms of game objects.

6.1.5 Library

The basic of the concept is implemented as a separate library called
UnityUtil.Runtime.Procedural, as part of a collection of libraries called
Unity Util (see section 6.1.6). Velvet only uses one class and one
interface from UnityUtil.Runtime.Procedural. This is the base interface
for chain links (see section 5.2.2) and an implementation of a chain
(see section 5.2.3) based on a simple list. During the development of
the plugin I found several other interesting designs for chains which
I will discuss in the conclusion (see section 9.3.1).

6.1.6 Unity Util

In this set of libraries I collect useful code 4 commonly shared be-
tween most of the projects I do in Unity. One major part is the class
BlurryBehaviour, which extends Unitys MonoBehaviour (see section
6.1.1) and makes sure all magic methods are available by offering the
class extending it the possibility of overriding virtual functions with
slightly different names, but a more consistent naming scheme. Ev-
ery method called by Unity - for example when a frame starts and
the component can update its values - begins with On. So for exam-
ple the Update() function normally implemented in a MonoBehaviour

is called OnUpdate() in a BlurryBehaviour.

4 Source code available at https://github.com/BlurryRoots/UnityUtil.

https://github.com/BlurryRoots/UnityUtil

6.1 prologue 39

6.1.7 Reflection

The plugin makes use of a technique called reflection. In the publica-
tion A tutorial on behavioral reflection and its implementation the authors
define reflection as:

“[...] ability for a program to observe or change its own
code as well as all aspects of its programming language
(syntax, semantics, or implementation), even at runtime
[...]” [29]

It is used by factories (see figure 6.8), to obtain information about
types available at runtime and instantiate objects of these types dy-
namically. This approach has the advantage of not having to manip-
ulate the code which produces objects, when a new type which is
interesting to the factory is introduced by a user. This will be further
elaborated in section 6.3.4.

40 implementing the unity plugin velvet

6.2 overview of velvet

Figure 6.2: Structure of Velvet

Due to the concept of convention
over configuration applied by Unity,
Velvet is split into two main parts.
The core (see section 6.3) part in-
cludes the adaptation of the chain
and chain links to Unitys compo-
nent system. It also implements a
variable binding system (see section
6.3.3), featuring custom variable ran-
domization (see section 6.3.4). The
second part is the editor extension
(see section 6.4) and is comprised
of a set of scripts extending Unitys editor to use custom written
modules from within the visual editor instead of plain code. It is
loosely based on the architectural design pattern called Model-View-
Controller (MVC) (see 6.4.4).

6.3 core 41

6.3 core

«interface»
IVariableRandomization

+GetValue(rng: IRandomNumberGenerator): object

VariableBinding
+GetField(): FieldInfo
+name: string
+target: Object
+viewName: string
+randomize: bool

ChainLink
+Process(input: List<GameObject>): List<GameObject>

«interface»
ISerializationCallbackReceiver

+OnBeforeSerialize(): void
+OnAfterSerialize(): void

«interface»
IChainLink<TData>

+Process(input: TData): TData

BlurryBehaviour
#OnActivate(enabled: bool): void
#OnValueChanged(): void
#OnUpdate(): void
#...

ChainHead
+AddCustomVariable(name: string, target: UnityEngine.Object, viewName: string) : void
+ClearBindings(): void
+GetVariableBindings(): IEnumerator<VariableBinding>
-ProcessChildChainHeads (input: List<GameObject>): List<GameObject>
-ProcessOwnChain (input: List<GameObject>): List<GameObject>
+order: ProcessingOrder
+repeatTimes: int

0..n

1

0..n

1

extends

implements

implements with
TData: List<GameObject>

extends

Figure 6.3: UML of ChainLink and ChainHead

6.3.1 Chain Link

The class ChainLink (see section 6.3) extends BlurryBehaviour and
implements the IChainLink interface specifying the generic data type
to be a list of game objects. It serves as the base for every custom
module used in a chain.

42 implementing the unity plugin velvet

6.3.2 Chain Head

The core module is called ChainHead (see figure 6.3). It in-
herits from ChainLink, making it possible to have a chain
head part of a chain. Additionally ChainHead implements Unity
ISerializationCallbackReceiver interface for properly serializing
all data. The head is responsible for managing all modules contained
within its chain, as well as managing all custom variable bindings
(see section 6.3.4).

Figure 6.4: Inspector view of a chain head

To create a chain, a game object must be created and associated
with a chain head component. Every custom module component at-
tached to this game object will then be taken into consideration, when
the chain head is instructed to process its chain. This can either be the
user pressing the Process button or invoking the process function by
code. In the architecture overview, I mentioned the goal of not only
having modules in a sequencial order, but also in a tree-like structure.
To archive this, I made use of the already available scene graph struc-
ture in Unity. A game object associated with a chain head can have
child game objects. These child objects can then in turn, have their
own chain head component as well as several custom modules.

When the user presses the Process button, the chain head will first
check in which order the child chain heads and the modules of its
own chain should be processed. This is done via a simple enumer-
ation type called ProcessingOrder, presented to the user in a drop
down menu (see section 5.2.4). After this, the chain head initiating
the process, queries its object hierarchy for all game objects which
are direct descendants and have a chain head component associated
with them. The game objects will be kept in the same order as they ap-
pear in the scene graph (see figure 6.5). These heads will then be told

Figure 6.5: Hirarchy overview of a chain generating trees

to process their chains one after another. If one of these chain heads
happen to have child objects, these children would be processed ac-
cording to the strategy configured in their ProcessingOrder.

6.3 core 43

With this approach, all chain head components get processed via
a depth-first strategy. Changing the position of a game object associ-
ated with a chain head component within the hierarchy will thereby
change the result.

6.3.3 Variable Bindings

To allow developers and designers to use the created chain as one
unit, it would be very handy to have all necessary variables in one
place. This can be archived through binding variables. A binding is
created via the chain head editor. When clicking the button Add new
binding, the developer is presented with an input mask (see section
6.6). Here she can specify which game object should be selected. Once
a game object is selected, a list of attached modules will be shown. Af-
ter selecting a module, the user will be able to select a public variable
of the selected module to be bound. After typing in a descriptive
name, the binding can be confirmed.

Figure 6.6: Window with mask to add new binding

From now on, every time the user views the inspector view for
this chain head component, it will display the created binding. The
toggle button, deactivates or activates the randomization (see section
6.3.4) of the bound variable. If a binding should not be necessary any
more, it is possible to delete it via the Clear button, or dispose of all
bindings via the button Clear all bindings. To make binding variables
possible, I developed a set of editor extensions coupled with runtime
type reflection5. The first step is initiated by the user via the interface
by dragging a game object associated with a chain head and modules
into the game object field presented by the New binding window (see
figure 6.6).

When a game object is dropped into the according field, it is ex-
amined to determine if it is actually associated with a chain head
component. If this is the case the algorithm then asks the chain head
to retrieve all modules, associated with its game object. This list is
then rearranged to be visualized as drop down menu. After the user
selects a module, it gets examined via reflection for any publicly avail-
able field. All fields get collected into a list and presented to the user
in yet another drop down menu.

5 Reflection is the ability of a program to inspect or manipulate its runtime meta
information, such as types.

44 implementing the unity plugin velvet

After having selected a field to be bound, the user is then asked to
specify a descriptive name to be displayed when the binding is com-
pleted. You can now create the binding by clicking the Confirm button.
When confirmed, the editor window then asks the chain head which
requested the binding to be made to save a new VariableBinding.
This value object contains all information necessary for the chain head
to save, serialize and visualize the binding. Serialization turned out
to be a bit cumbersome when working with a custom data structure
decoupled from Unitys object system. See section 6.3.5 for more infor-
mation on serialization. Additionally after creating the binding, the
system tries to determine how the bound variable might be random-
ized.

6.3.4 Randomizations

By specifying a binding, a designer should basically be able to build a
coherent structure, or blueprint for her creation. To have random vari-
ations within this blueprint and therefor allowing for a diverse set of
results, custom variable bindings can be initialized by custom value
randomization. After a binding has been created, it can be random-
ized, by clicking the button Randomize. When editing the randomiza-
tion options a window is shown, presenting the options available to
the designer (see figure 6.7). The randomization system is based on
specific implementations for each data type, the developer wishes to
be randomized.

Figure 6.7: Randomization options for an integer value

As discussed previously all publicly available fields on a module
can be bound. So if a developer writes a custom module using a data
type currently not supported, she has to also provide an implemen-
tation of a interface IVariabelRandomization. This implementation
will then be used by the binding system to describe the process of ini-
tializing a bound variable with random values. The type of variable
which can be randomized with the implementation has to be specified
via a class level attribute called CustomRandomizer. Randomizations
get created when a new binding is set up. To instantiate a randomiza-
tion depending on the type of variable ought to be bound, the factory
method pattern is used (see figure 6.8).

6.3 core 45

«attribute»
CustomRandomization
+type: Type

ColorRandomization

FloatRandomization

IntegerRandomization

Vector3Randomization

caller

«interface»
IVariableRandomization

+GetValue(rng: IRandomNumberGenerator): object

RandomizationFactory
+CreateFromBinding (v: VariableBinding): IVariableRandomization

inspects type

produces

Figure 6.8: Factory pattern for creating randomizations

When asking the RandomizationFactory to create a randomization,
it will use reflection to search the namespace Velvet.Randomizations
for classes implementing the IVariabelRandomization and holding
attribute CustomRandomizer. It then examines the type of the bound
variable provided and looks for a randomization responsible for this
type. This allows custom randomizations to be written without the
need to manually extend the factory method.

6.3.5 Serialization

Serialization is the process of taking runtime data and converting
it to a different representation to be stored on hard-drive or trans-
mitted over the network. To be able to save the chains including all
randomization options, it is necessary to do some manually serializa-
tion. Normally Unity does a pretty good job of serializing all relevant
data from components, game objects, prefabs or assets you create or
import. There is however a problem when it comes to serializing Uni-
tys standard types like a Vector3 or a Color. To serialize a class or
struct in a convenient way, it has to have a class level attribute called
Serializable, provided by the .NET framework. Unfortunatly most
of Unitys standard types do not contain this attribute. In order to
circumvent that problem, I created helper classes which have this at-
tribute and mirror all public fields of its target class to serialize all nec-
essary information. For example the Color value type has fields for
red, green, blue and alpha. These fields are also provided by the class
ColorSerializable. When Unity is about to serialize its data all chain
heads get notified via the implemented method OnBeforeSerialize()

provided by the ISerializationCallbackReceiver (see figure 6.3)
interface. It then serializes each randomization into a binary
format6, converting it to string and storing it into a list of
VariableRandomizationSerializable.

6 The binary format used here is base64.

46 implementing the unity plugin velvet

This list is a private field and marked with an attribute provided
by Unity called SerializeField. Normally only public fields get se-
rialized by Unitys built-in serializer. If a less visible field is marked
with the SerializeField the built-in serializer will include this field
in the serialization and deserialization process. When Unity is about
to deserialize its data, the chain heads will also get notified via a
second method called OnAfterDeserialize(), also provided by the
serialization callback interface. In this method each element in the
list of VariableRandomizationSerializable will be deserialized and
stored in its runtime representation.

6.4 editor extension

The second part is the extension of Unitys visual editor, enabling
the user to add, remove and control modules within a chain and
create bindings to variables from modules within a chain. All code
extending Unitys editor has to be contained in a directory named
Editor. When scanning the project directories Unity will then collect
these scripts and create a separate project from the normal source
code. Unity allows developers to redefine to some extend how data
associated with your application is present, created or manipulated.
The basic structure of Unitys interface are windows (see figure 6.9).

Figure 6.9: Numbered Window overview of Unitys standard interface

A window is a resizable canvas which can be placed freely within
the main application window of Unity. It can be tapped, horizontally
stacked or vertically aligned.

6.4 editor extension 47

windows shown in figure 6 .9 :

inspector (1) The Inspector Window displays the currently se-
lected game object and its associated components.

scene (2) In the Scene Window the user can move through the
currently loaded scene, create, select and manipulate game objects
them.

game (3) The Game Window shows the game from the perspec-
tive of the currently active camera of the scene.

console (4) The Console Window shows errors, warnings and
log outputs to help debug your game.

hierarchy (5) Displays all objects contained in the current scene,
the Hierarchy Window allows the developer to create, select and ma-
nipulate game objects directly though a textual representation of the
scene view.

project (6) In the Project Window, all directories and game assets
are displayed, can be created, renamed, moved or deleted.

6.4.1 Custom Property Drawer

When creating a custom component, a developer is able to tell Unity
how this component should look in the inspector view. The simplest
way would be to create a custom property drawer. As far as Unity
is concerned, a property is any public field on a component (not to
be confused with C# properties!). When loading a component Unity
looks for publicly available field and tries to draw a representation
for it. Every built-in simple type 7 provided by the basic .NET frame-
work and most of Unitys core library types can be drawn by the
default PropertyDrawer. If you need more than customized ways of
displaying public fields you would have to implement a custom edi-
tor.

7 See http://web.archive.org/web/20160219110405/https://msdn.microsoft.com/

en-us/library/s1ax56ch.aspx for more on simple types.

http://web.archive.org/web/20160219110405/https://msdn.microsoft.com/en-us/library/s1ax56ch.aspx
http://web.archive.org/web/20160219110405/https://msdn.microsoft.com/en-us/library/s1ax56ch.aspx

48 implementing the unity plugin velvet

6.4.2 Custom Editor

When creating a complex component, which should be presented in
a special way, developers can create a custom inspector editor. This
editor is responsible for rendering a component when viewed though
the inspector window (see section 6.9). To create such an editor, de-
velopers can extend a base class called Editor. To tell Unity how this
editor should be used, the class level attribute CustomEditor has to
be applied, which expects the class type of a component for which
the custom editor is responsible for. You can now override a function
called OnInspectorGUI, which gets called whenever Unity wants to re-
draw parts of its interface. For interface elements like labels, buttons,
dropdown menus or checkboxes Unity provides a couple of static
classes exposing functions to draw a certain element. If a developer
wants to present text box with an editable floating point number, she
could used the following function:

value = EditorGUILayout.IntField ("value", value); �
The functions provided by EditoGUILayout will be positioned by

Unity dynamically when drawing the interface in contrast to just
EditoGUI. This is very handy if you have interface elements which
might change their dimensions depending on the value they currently
have.

6.4.3 Custom Window

Being the corner stone of Unitys visual editor, developers can also
create their own custom editor windows. This is used in Velvet for
the window to add new bindings, as well as the window to edit a
variable randomization. To create a custom window, a class has to
inherit from EditorWindow. It then can override a method called OnGUI

which will be called when Unity is about to redraw its interface. To
open a window, a generic factory method provided by Unity called
GetWindow has to be called.

6.4 editor extension 49

6.4.4 UI Architecture

The design for the user interface extension part of the plugin is based
on the idea of separating presentation and logic. One architectural
pattern often used in such a case is the MVC pattern, on which I
loosely based this architecture (see figure 6.10).

«interface»
IEnumerable<TData>

+GetEnumerator(): IEnumerator<TData>

ChainHeadModel
-bindings: IEnumerator<VariableBinding>

BindingListModel
+HasEnumerator(): bool
-bindings: IEnumerator<VariableBinding>

VariableBindingView
#UpdateAndDrawValue(value: object): object

BindingListView
+OnAddBinding: event
+OnClearAllBindings: event
+OnEditBinding: event
+OnRemoveBinding: event

«interface»
IView

+Draw(): void

ChainHeadView
+OnProcess: event
+OnAddBinding: event
+OnClearAllBindings: event
+OnEditBinding: event
+OnRemoveBinding: event

Editor
+OnInspectorGUI(): void
+...

ChainHeadEditor
-OnProcess(): void
-OnAddBinding(): void
-OnEditBinding(v: VariableBinding): void
-OnRemoveBinding(v: VariableBinding): void
-OnClearAllBindings(): void
-OnAddCustomVariable(module: Object, name: string, target: Object, alias: string): void

implements with
TData: VariableBinding

implements

0..n

implements
implements

extends

Figure 6.10: Architecture overview

A model is responsible for storing data, while the view is con-
cerned with how the data should be presented to the user. The con-
troller is where the interaction logic is implemented. Instead of hav-
ing a dedicated controller, the basis for managing views and models
will be the classes inheriting from Editor or EdiorWindow.

chain head editor The ChainHeadEditor is the central part for
interacting with a chain head component through the inspector win-
dow of the unity interface. It inherits from Unitys Editor base class
and overrides OnInspectorGUI().

50 implementing the unity plugin velvet

Specifying the class level attribute CustomEditor with the type of
ChainHead, it instructs Unity to use ChainHeadEditor when rendering
a chain head component instead of the standard view.

chain head view When the chain head editor is asked to draw,
it uses a view called ChainHeadView. This class knows how to dis-
play a ChainHead and has several events to which ChainHeadEditor

can subscribe. This would be for example when the Process button
is pressed. The chain head view in turn splits the rendering of its
different areas into multiple sub-views.

binding list view After showing the variables for processing
order and repeat times as well as rendering the Process button, the
chain head view instructs BindingListView to show the list of cur-
rently bound variables. The binding list view first shows the button
to add a new binding as well as a button to clear all bindings. If
there is at least one binding, the binding list creates a view for the
variable and repeats until all variables have been drawn. This is done
via the help of the iterator pattern. C# has a build in interface called
IEnumerator which is used by the foreach loop. Such an enumerator
or iterator can be obtained via the method GetEnumerator which is
part of the IEnumerable interface.

variable binding view Each binding gets drawn by a view ex-
tending VariableBindingView (see figure 6.11).

...
UpdateAndDrawValue(value)
...

caller

«interface»
IView

+Draw(): void

VariableBindingView

#UpdateAndDrawValue(value: object): object

Vector3BindingView

IntegerBindingView

GameObjectBindingView

FloatBindingView

ColorBindingView

VariableBindingViewFactory
+CreateFromVariable(v: VariableBinding): VariableBindingView

implements

produces

Figure 6.11: Specializations to draw different types of variables

This is because in order to draw a floating point number you
have to use different parts of Unitys editor api than for example for
drawing a color value or a string. By implementing the protected ab-
stract method UpdateAndDrawValue each specialization can make use
of whatever api is needed to get the value displayed and retrieve a
new value in case it has been changed via the user interface.

6.4 editor extension 51

The method then gets internally called when the public draw
method is invoked. This design is based on the template method pat-
tern.

ChainHeadEditor
-OnAddBinding(): void
-OnAddCustomVariable(module: Object, name: string, target: Object, alias: string): void
-...

«interface»
IView

+Draw(): void

AddVariableBindingView
+OnAddCustomVariable: event

EditorWindow
+OnGUI(): void
+...

AddVariableBindingEditor
+OnAddCustomVariable: event

notifiesasks to show

notifies

calls

implements

extends

Figure 6.12: UML for adding a new binding

adding a binding Variable bindings are created through a cus-
tom editor window (see figure 6.12). This window is created by the
chain head editor when the user presses the Add new binding button.
This click invokes the event handler method OnAddBinding which in-
structs the AddViariableBindingEditor to show its view (see figure
6.6). When all options are specified and the user presses the Confirm
button, the chain head editor is notified. It in turn will then instruct
the chain head to save a new binding.

EditVariableBindingView
+OnToggleRandomization: event

«interface»
IView

+Draw(): void

EditorWindow
+OnGUI(): void
+...

EditVariableBindingEditor
+OnToggleRandomizeVariable: event

ChainHeadEditor
-OnEditBinding(v: VariableBinding): void
-OnToggleRandomizeVariable (v: VariableBinding, state: bool): void
-...

implements

calls

notifies

extends

notifiesasks to show

Figure 6.13: UML for editing a binding

editing a binding After a binding has been created, it is possi-
ble to configure its randomization options (see figure 6.7) by pressing
the Randomize button. The structure and flow is modeled after the
same concept applied to add a new binding. The chain head editor
tells the EditVariableBindingEditor to show its window.

52 implementing the unity plugin velvet

The edit variable binding editor, will then use its view to display
the randomization and notifies the chain head editor in case a value
has been changed. To visualize the custom randomization used for a
specific data type, I created a extendable system; again based on the
factory method pattern.

VariableBinding
+name: string
+target: Object
+viewName: string
+randomize: bool

«attribute»
CustomRandomizationView
+type: Type

ColorRandomizationView

FloatRandomizationView

IntegerRandomizationView

Vector3RandomizationView

«interface»
IVariableRandomization

+GetValue(rng: IRandomNumberGenerator): object

caller

«interface»
IView

+Draw(): void

VariableRandomizationViewFactory
+Create (IVariableRandomization variable): IView

inspects type

produces

Figure 6.14: Factory of randomization views

randomization view To display a custom randomization in
the randomization option window (see figure 6.7), a similar sys-
tem to the binding factory and binding view factory is applied
here too. When a randomization is about to be displayed it exam-
ines the type of randomization and searches for a class holding a
CustomRandomizationView attribute specifying that type of random-
ization.

7
E X A M P L E S

7.1 prologue

To test drive the plugin, I created two examples using Velvet. The
first one uses Bézier Curves and the Superformula to create organic
looking cylindrical shapes. The following example creates a block
world based on Perlin noise. And the third shows the re-use of some
components of the two examples before to create curved and twisted
tunnels.

7.2 supercylinders

In this examples I made use of the Superformula to create polygons
and a Bézier spline to describe a curve on which I want to position
said polygons. After placing the polygons I went through all vertices
and build a mesh based on a cylinder; hence the name Supercylinders.
I split the responsibility into three modules.

7.2.1 Modules

polygon generator Generating a flat polygon on the basis of
the Superformula is done via the SupershapePolygonGenerator. It
can be parameterized with the radius in Unity units, the amount of
vertices used to describe the polygon and the five parameters used by
the Superformula (see figure 3.4). It produces a set of game objects
holding a mesh with vertices representing a Supershape polygon.

position along bézier path mutator This module takes a
set of game objects and positions them along a Bézier curve. After
setting the positions the game objects get also rotates them so their
forward vector faces the tangent of the curve point. It can be param-
eterized by setting the positions of P0 and point P1 as well as the
control points of the Bézier Curve. Additionally I added an editor
extension for this module to show custom gizmos 1 in the scene view.

1 A gizmo is an visual aid like the position handle to help manipulate objects in the
scene view.

53

54 examples

With this gizmos it is possible to control the two points and their
respective control points of the curve. You can also preview how the
points along the curve will be position via gizmos showing the nor-
mal in red and tangent in yellow (see figure 7.1).

Figure 7.1: Bézier curve gizmos

mesh generation Generating the complete model from poly-
gons is the responsibility of this module (see figure 7.2). It fetches
the vertices of the mesh associated with a game object and creates
triangles on the assumption that the resulting shape is cylindrical in
nature. This is done by first creating quads2 between every set of two
adjacent vertices of polygon Pi and Pi+1.

Figure 7.2: Shaded wireframe view of cylindric mesh

The quad can then be split into two triangles respectively. After
triangulating the walls of the cylinder the generator also triangulates
the front polygon P0 and back polygon Pi+n−1 so the cylinder is closed
off. The algorithm used here just takes the first vertex V0 of the poly-
gon P and triangulates with two vertices Vk and Vk+1 where k ≥ 1
and is incremented by 2 while k ≤ (|V| − 1). I used this approach,
due to its simple implementation, but it will unfortunately lead to
strange results when having concave or star-shaped polygons.

2 A quad is a polygon with four vertices. It is sometimes used as the base element of
surfaces of complex polygons instead of triangles.

7.2 supercylinders 55

7.2.2 Generation process

Figure 7.3: Supercylinder gener-
ation tree

To control the generation process
I created a nested structure. The
polygon_generator object contains a
chain head an the polygon generator
module. I separated this module in its
own chain so I can repeatedly gener-

ate polygons to control the amount of resolution I get in the cylinder.
Containing the polygon_generator object supercylinder_generator
holds a chain head the Bézier curve module and the mesh generator
module. By setting the process order to post, I make sure the child
object is processed first. In this case this will first produce the desired
amount of polygons, which will then be passed to the Bézier module
and finally to the mesh generator module. The figure 7.4 shows four
examples of Supercylinders I created using this chain.

7.2.3 Results

(a) 2; 1; 4; 8; (b) 4; 2; 9; 6;

(c) 3; 3; 14; 2; (d) 9; 9; 8; 9;

Figure 7.4: Supercylinders based on Supershapes (m; n1; n2; n3; a = b = 1)

56 examples

7.3 block world terrain

In this example, voxels in the shape of cubes get placed on the basis
of an height map. This height map is produced by sampling a Perlin
noise function multiple times as described in section 3.2.

7.3.1 Modules

prefab instance generator This generator module is respon-
sible for instantiating game objects on the basis of a prefab. A prefab
is like a recipes, used by Unity to remember how a game object with
a specific set of components should be created. In this case it would
be the voxel. A voxel is just a game object containing a cube mesh
component and a mesh renderer component.

terrain generator The terrain generator takes a set of game
objects and arranges them on the basis of a height map. It will also
color each game object on the basis of its height on the height map.
This is done through the use of a noise texture generated by a Perlin
noise function provided by Unity. When the texture is generated, it
then will be traversed and its values, which range from 0 to 1 get
interpreted as heights. Each height range gets assigned a color cor-
responding to water (blue), flat land (yellow and green), mountains
(gray) and mountain tops (white).

reparent collector This module takes a set of game objects
and attaches them to a newly created parent game object. This al-
lows for a easier handling of composite structures so the scene graph
doesn’t get cluttered.

7.3 block world terrain 57

7.3.2 Generation Process

All modules are contained within on chain. The first module gener-
ates all voxel needed to form the terrain. These generated voxels will
then be modified by the second module which applies a height off-
set and color depending on the generated height map. The reparent
module will then take the modified voxels and attaches them to a
common parent, so the map can be handles as one object.

7.3.3 Results

(a) (b)

(c) (d)

Figure 7.5: Generated voxel landscapes

58 examples

7.4 vortex tunnels

To examine the reusability of modules, this examples also makes use
of the Prefab Module, Bézier Path Module and Reparent Module to
generate curved and twisted vortex-like tunnel structures.

7.4.1 Modules

prefab instance generator See Block World example (sec-
tion 7.3.1).

scale mutator Changes the scale factor of a game object to the
scale defined in the parameters of this module.

color mutator Changes the color of a game object to the color
specified in this modules parameters.

circular placement mutator This module takes its input
game objects and arranges them on a circular path. It is possible to
specify the radius of the circle used to create the path.

reparent collector See Block World example (section 7.3.1).

position along bézier path mutator See Supercylinder ex-
ample (section 7.2.1).

partial rotation mutator With this module, all input game
objects get rotate a certain angle. This angle depends on the param-
eters Start Angle and End Angle, as well as the game objects position
in the input list. So if the start is at 0◦ and the end at 360◦ a game
object in at index 1 in a list of 3 objects would have the rotation 180◦.
It is also possible to specify if the rotation should happen in the game
objects local space or in global space and which angle should be used
to rotate around.

Figure 7.6: Vortex generator bindings

7.4 vortex tunnels 59

7.4.2 Generation Process

Figure 7.7: Vortex generation tree

The generation of this shape
is managed by several nested
chains. First a set of objects
defined by a prefab are gen-
erated by generate_and_place.
They then get handed down to
scaler to changed the scale fac-
tor and color_rows to re-color
the objects. The instances then get handed up to collect, placed
on a circular path and re-parented to form a group. The object
circular_object_generator acts as a separator to allow the gener-
ation of as many circularly placed object groups as needed. After this
stacker has modules to place the groups along a Bézier curve and ro-
tated them described in section 7.4.1, as well as yet again re-parented
to form a single object. Finally vortex_generate acts as a hub object
and holds all bindings to the important parameters of the modules
within the tree (see figure 7.6).

7.4.3 Results

(a) Tunnel of Cubes (b) Tunnel of Spheres

(c) Tunnel of Cubes (d) Tunnel of Suzannes

Figure 7.8: Vortex Tunnels along a Bézier Curve

Part III

C L O S I N G W O R D S

Following the concept and its prototypical implementa-
tion, this chapter will be about taking a look on how well
the goals set in the introduction of this thesis have been
met. I will then give a short summary of what has been
discussed in this thesis and what further work could be
done on the basis of this work.

8
E VA L U AT I O N

8.1 prologue

In this chapter I will take a look at how well I met my goals set out
in the introduction of this thesis. I will also try to give an impression
on what advantages and disadvantages the proposed concept and in
turn the prototypical implementation has.

8.2 developing modules

The goals described in section 1.4.1 state the importance of not having
inter-dependencies and information sharing between modules. After
implementing the prototype and developing a set of modules to pro-
duce the examples presented in section 7, it turned out to be very
hard to really have no assumptions or knowledge about the informa-
tion in the input certain modules will receive. In the Supercylinder
(see 7.2) example, I developed a module concerned with construction
a mesh from a set of vertices representing flat Supershape planes. In
it I had to assume the shapes come in a circular polygon without
holes. I guess it is necessary to have certain requirements on the in-
formation fed to a module for it to really be able to solve a specific
problem. Chainability, as stated in the goals section (see 1.4.2) as well
as nestability (see 1.4.3) have been archived through the design of the
plugin based on the composite pattern in combination with Unitys
scene graph.

8.3 development of velvet

Another goal set out in the beginning of this thesis, was the integra-
tion of the module workflow into the Unity eco-system. This has been
realized by developing the plugin Velvet which adapts the library to
Unitys ECS and makes use of the scene graph already available in
Unity. To allow for a more convenient use of the generation system, I
also created a set of editor extension within Velvet allowing design-
ers to bind variables of modules, allowing for the parametrization
(see 1.4.6) of a chain.

63

64 evaluation

8.4 controlling the generation process

Structuring the generation process through the use of Unitys scene
graph proves to be valuable when creating a hierarchy of responsi-
bilities. This approach also allows for an easy way of saving chains
through the use of prefabs. Because all modules are components at-
tached to a game object, this game object can just be linked as a pre-
fab, enabling the user to use it as a predefined chain in more than
one place. Changes made in the prefab object will then be applied
to all instances. Being able to tell a chain head how many times it
should be processed, as well as defining the order of execution of
its own chain and child modules helped building a flexible system.
Initializing bound variables with random values through the use of
custom variable randomizations has also proven very valuable to get
variety on the content created through the use of a chain. There are
however certain limitations on controlling the flow of the generation.
It is for example not possible to hold state. If a chain head is invoked
multiple times, it has no knowledge how many times it has been
process before. This might be conquered by implementing a custom
set of selector modules. Although practical and functional, the use of
game objects and components to represent the generation tree feels a
bit cumbersome. I think the use of a node based editor would have
greatly benefited the user experience.

8.5 user interface

Initially I though of a node editor as the basis for handling the cre-
ation of chains. Comparable to Blenders 1 node editor (see figure
8.1) the user would have connect modules and build up a generation
graph that way.

Figure 8.1: Blender 2.67 Node Editor

1 Blender is an free and open source 3D modeling, rendering and animation tool.
http://web.archive.org/web/20160222121343/https://www.blender.org/

http://web.archive.org/web/20160222121343/https://www.blender.org/

8.6 performance 65

Due to a multitude of challenges, like the integration of node visu-
alizations into the Unity editor or the concept of having input from
more than on module being fed into another module led me to aban-
don this approach. There are however interesting commercial Plug-
ins in Unitys asset store, featuring node based editing 2, which could
come in handy for future work. However in place of the node editor,
I created a UI system which made use of the basic editor elements al-
ready in place: the inspector view and custom editor windows. Com-
bined with the scene graph, this approach turned out to work very
well. With a reasonable amount of work, basically any type of module
of any type of data can be displayed in the inspector view by writing
custom editor scripts for the modules and extending the view system
of Velvet for the visualization of bindings and randomizations. Al-
though I think the system to create bindings is functional, the fact
that a user has to drag and drop the game object into the new bind-
ing window feels a bit cumbersome. It also bears the risk of having
a binding to a module which is not necessary in the same process
tree as the head to which it should be bound. I think this might have
been better implemented as a tree view offering the user a selection
of modules which are actually contained within the object tree.

8.6 performance

Due to the fact, that the primary data type used in the prototype is a
list of game objects, the base unit of information used by chains has
to be contained within a game object. This might lead to an substan-
tial amount of game objects being instantiated, which could impact
memory and computational resources. It might be interesting to use
a more varied set of types to use in the generic chain link system to
see if there are advantages to CPU processing time or memory con-
sumption.

2 https://www.assetstore.unity3d.com/en/#!/content/29435 (visited 28.02.2016)

https://www.assetstore.unity3d.com/en/#!/content/29435

9
C O N C L U S I O N

9.1 prologue

Summarizing what has been discussed in this thesis as well as giving
an outlook of what future work might be done with Velvet will be
the topic of this chapter.

9.2 summary

In this thesis I looked at some examples of how Procedrual Content
Generation (PCG) has been used in video games and also what re-
cent research has found in some specific areas of PCG. I also exam-
ined a set of techniques and examples of areas of application. This
is followed by the presentation of a modular workflow concept for
procedurally generating content and the description of Velvet, a pro-
totypical plugin implementation for Unity. To show the how to work
with Velvet a set of examples have been discussed.

9.3 further work

9.3.1 Different chain implementations

Currently chains can only process their modules in one go. When
trying out different combinations of modules, it would have been in-
teresting for a chain to process its modules over time. This would
have allowed for deferred generation, or possibly even procedural an-
imation. In generation trees where nested chains could work concur-
rently, a chain type featuring asynchronous processing might increase
performance.

67

68 conclusion

9.3.2 Modularization

I think it might be interesting to investigate further into the topic of
modularization in the context of procedural generation. Evaluating
how beneficial the splitting of work in a complex generation system
is and what value it might bring to the developer or designer. Maybe
there are specific scenarios where modularization is very fitting, like
for example the generation of worlds or levels described in the sec-
tion about Dwarf Fortress (see section 2.2.5). There might however
be tasks which do not lend themselves very well to separation. Nev-
ertheless, in my opinion, separating parts of a system into smaller
modules could benefit the way one approaches procedural genera-
tion, by not thinking of a system as one unchangeable recipe, but as
a set of responsibilities; potentially exchangeable without loosing the
overall concept.

Part IV

A P P E N D I X

A
A P P E N D I X

a.1 life

The rules for Life, though up by mathematician John Horton Conway,
are based on a celluar automaton. A concept developed by John von
Neuman and published in 1966 [34]. Figure A.1 shows four snapshots
over 2644 generations of Life

1.

(a) Generation 0 (b) Generation 6

(c) Generation 42 (d) Generatio 2644

Figure A.1: Snapshots over 2644 generations of “life”

The board is made up of cells, which in turn can have 3 different
states making up a generation (see table A.1).

1 Screenshots from a javascript implementation [56] by Pedro Verruma http://web.

archive.org/web/20160109155314/http://pmav.eu/

71

http://web.archive.org/web/20160109155314/http://pmav.eu/
http://web.archive.org/web/20160109155314/http://pmav.eu/

72 appendix

The game is played according to three simple rules[17]:

state colour meaning

Untouched Grey Has never been alive in any genration before.

Alive Blue Is alive in the current generation.

Dead Green Has been alive in a generation before the current one.

Table A.1: States of a generation in Life

survivals Every counter with two or three neighboring counters
survives for the next generation.

deaths Each counter with four or more neighbors dies (is removed)
from overpopulation. Every counter with one neighbor or none
dies from isolation.

births Each empty cell adjacent to exactly three neighbors–no more,
no fewer–is a birth cell. A counter is placed on it at the next
move.

Although simple, Conway later (originally in 1982) published [1]
proof for the existence of a universal constructor 2. Later research [45]
on Life lead to the conclusion of computational universality equal to
a Turing Machine. In his publication On computable numbers, with an
application to the Entscheidungsproblem Turing states:

“It is possible to invent a single machine which can be
used to compute any computable sequence. “ [54]

The Turing machine a mathematical concept named after its inventor
Alan Turing, showing the fundamental capabilities and limitations of
a computation device.

2 A non-trivial self-reproducing machine [30].

A.2 fibonacci like series 73

a.2 fibonacci like series

Below are the listings used to generate the statistics mentioned in
section 2.2.2.1.

a.2.1 Basic Algorithm

splits off the last digit of any given number n

def get_last_digit (n):
_k, r = divmod (n, 10)

return r

generates a list of numbers in a fibonacci fashioned series

in the form [a, b, (a, b), (b + (a + b)), ...], except each

entry correspons only to the last digit of its original number

def generate_elite_fibo_list (a, b, length):

x = get_last_digit (a)

y = get_last_digit (b)

z = 0

r = [x, y]

for i in range (0, length):

z = get_last_digit (x + y)

r.append (z)

x = y

y = z

return r

Listing A.1: Fibonacci like series used in Elite

74 appendix

a.2.2 Generating the data

import elite_fibonacci as efib

generates a list of fibo lists

def generate_samples (al, bl):

n = 10

samples = []

for a in range (0, al):

for b in range (0, bl):

l = efib.generate_elite_fibo_list (a, b, n)

samples.append (l)

return samples

def get_stats ():

samples = generate_samples (10, 10)

occurences = dict ()

for i in range (0, 10):

occurences[i] = 0

for sample in samples:

for number in sample:

occurences[number] = occurences[number] + 1

total = float (sum (occurences.values ()))

percentages = dict ()

for number in occurences:

percentages[number] = float (occurences[number]) / total

return occurences, percentages

Listing A.2: Statistic utilty for elite fibonacci

B
R E F E R E N C E S

Here you’ll find references to the figures, tables, listings and
acronyms used throughout the thesis.

L I S T O F F I G U R E S

Figure 2.1 Creative artistic rendering of how Rogue
looked on an IBM PC (by Michael Toy, Kenneth
C.R.C. Arnold, Jo licensed under CC BY-SA 3.0) 12

Figure 2.2 Distrubtion of each number from 0 - 9 14

Figure 3.1 Noise Textures 19

Figure 3.2 Superposition of Noise 20

Figure 3.3 Supershapes generated with the Superformula 22

Figure 3.4 Superformula in polar coordinates 22

Figure 3.5 Concpet of a Cubic Bézier curve (Based on
public domain work of Marian Sigler) 23

Figure 3.6 Cubic Bézier Curve 23

Figure 5.1 Composite design pattern 32

Figure 5.2 UML IChainLink 33

Figure 5.3 UML Chain . 33

Figure 6.1 Unity game object 37

Figure 6.2 Velvet structure 40

Figure 6.3 UML of ChainLink and ChainHead 41

Figure 6.4 Inspector view of a chain head 42

Figure 6.5 Tree strucutre 42

Figure 6.6 Add binding view 43

Figure 6.7 Randomization options 44

Figure 6.8 Randomization factory 45

Figure 6.9 Unity interface 46

Figure 6.10 Architecture overview 49

Figure 6.11 Variable binding view 50

Figure 6.12 UML for adding a new binding 51

Figure 6.13 UML for editing a binding 51

Figure 6.14 Randomization views 52

Figure 7.1 Bézier curve gizmos 54

Figure 7.2 Shaded wireframe 54

Figure 7.3 Supercylinder generation tree 55

Figure 7.4 Supercylinders 55

75

Figure 7.5 Generated voxel landscapes 57

Figure 7.6 Vortex generator bindings 58

Figure 7.7 Vortex generation tree 59

Figure 7.8 Vortex Tunnels 59

Figure 8.1 Blender 2.67 Node Editor 64

Figure A.1 Life . 71

L I S T O F TA B L E S

Table 3.1 Simple L-System rule set 21

Table 3.2 Five L-System generations 21

Table 5.1 Processing order 34

Table A.1 Life states . 72

L I S T I N G S

Listing A.1 Fibonacci like series used in Elite 73

Listing A.2 Statistic utilty for elite fibonacci 74

A C R O N Y M S

PCG Procedrual Content Generation

MASSIVE Multiple Agent Simulation System in Virtual Environment

PRNG Pseudo-Random Number Generator

BAM Beneath Apple Manor

ECS Entity-Component System

L-System Lindenmayer-System

MVC Model-View-Controller

MMO Massive Online Multiplayer

MMVE Massively Multi-user Virtual Environments

76

B I B L I O G R A P H Y

[1] Elwyn R Berlekamp, John H Conway, and Richard K Guy. Win-
ning ways for your mathematical plays, volume 4. AMC, 10:12,
2003. (Cited on page 72.)

[2] Axel Berndt, Raimund Dachselt, and Rainer Groh. A survey
of variation techniques for repetitive games music. In Proceed-
ings of the 7th Audio Mostly Conference: A Conference on Interac-
tion with Sound, AM ’12, pages 61–67, New York, NY, USA, 2012.
ACM. ISBN 978-1-4503-1569-2. doi: 10.1145/2371456.2371466.
URL http://doi.acm.org/10.1145/2371456.2371466. (Cited on
page 27.)

[3] Emma Boyes. Q & a: David braben - from elite
to today, 2006. URL http://web.archive.org/web/

20140322152829/http://www.gamespot.com/articles/

qanda-david-braben-from-elite-to-today/1100-6162140/.
(Cited on page 13.)

[4] Dong Joo Byun, Henrik Falt, Ben Frost, Mir Ali, Eric Daniels, Pe-
ter De Mund, and Michael Kaschalk. Procedural animation tech-
nology behind microbots in big hero 6. In ACM SIGGRAPH 2015
Talks, SIGGRAPH ’15, pages 40:1–40:1, New York, NY, USA, 2015.
ACM. ISBN 978-1-4503-3636-9. doi: 10.1145/2775280.2792533.
URL http://doi.acm.org/10.1145/2775280.2792533. (Cited on
page 26.)

[5] Alessandro Canossa. Give me a reason to dig: Qualitative associ-
ations between player behavior in minecraft and life motives. In
Proceedings of the International Conference on the Foundations of Dig-
ital Games, FDG ’12, pages 282–283, New York, NY, USA, 2012.
ACM. ISBN 978-1-4503-1333-9. doi: 10.1145/2282338.2282400.
URL http://doi.acm.org/10.1145/2282338.2282400. (Cited on
page 18.)

[6] B. Carter. The Game Asset Pipeline. Charles River Me-
dia Game Development. Charles River Media, 2004. ISBN
9781584503422. URL https://books.google.de/books?id=

Sr2HKC46ImcC. (Cited on page 7.)

[7] Sherol Chen, Adam M. Smith, Arnav Jhala, Noah Wardrip-Fruin,
and Michael Mateas. Rolemodel: Towards a formal model of
dramatic roles for story generation. In Proceedings of the Intel-
ligent Narrative Technologies III Workshop, INT3 ’10, pages 17:1–
17:8, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0022-

77

http://doi.acm.org/10.1145/2371456.2371466
http://web.archive.org/web/20140322152829/http://www.gamespot.com/articles/qanda-david-braben-from-elite-to-today/1100-6162140/
http://web.archive.org/web/20140322152829/http://www.gamespot.com/articles/qanda-david-braben-from-elite-to-today/1100-6162140/
http://web.archive.org/web/20140322152829/http://www.gamespot.com/articles/qanda-david-braben-from-elite-to-today/1100-6162140/
http://doi.acm.org/10.1145/2775280.2792533
http://doi.acm.org/10.1145/2282338.2282400
https://books.google.de/books?id=Sr2HKC46ImcC
https://books.google.de/books?id=Sr2HKC46ImcC

78 bibliography

3. doi: 10.1145/1822309.1822326. URL http://doi.acm.org/10.

1145/1822309.1822326. (Cited on page 26.)

[8] Arthur Charles Clarke. The exploration of space. Harper, 1959.
(Cited on page v.)

[9] Kate Compton, James Grieve, Ed Goldman, Ocean Quigley,
Christian Stratton, Eric Todd, and Andrew Willmott. Creating
spherical worlds. In ACM SIGGRAPH 2007 Sketches, SIGGRAPH
’07, New York, NY, USA, 2007. ACM. doi: 10.1145/1278780.
1278879. URL http://doi.acm.org/10.1145/1278780.1278879.
(Cited on page 17.)

[10] Leonardo G. de Freitas, Luiggi Monteiro Reffatti, Igor Rafael
de Sousa, Anderson C. Cardoso, Carla Denise Castanho, Rodrigo
Bonifácio, and Guilherme N. Ramos. Gear2d: An extensible
component-based game engine. In Proceedings of the International
Conference on the Foundations of Digital Games, FDG ’12, pages
81–88, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1333-
9. doi: 10.1145/2282338.2282357. URL http://doi.acm.org/10.

1145/2282338.2282357. (Cited on page 36.)

[11] David (grue) DeBry, Henry Goffin, Chris Hecker, Ocean Quigley,
Shalin Shodhan, and Andrew Willmott. Player-driven procedu-
ral texturing. In ACM SIGGRAPH 2007 Sketches, SIGGRAPH ’07,
New York, NY, USA, 2007. ACM. doi: 10.1145/1278780.1278878.
URL http://doi.acm.org/10.1145/1278780.1278878. (Cited on
page 17.)

[12] Herman Arnold Engelbrecht and Gregor Schiele. Koekepan:
Minecraft as a research platform. In Proceedings of Annual Work-
shop on Network and Systems Support for Games, NetGames ’13,
pages 16:1–16:3, Piscataway, NJ, USA, 2013. IEEE Press. ISBN
978-1-4799-2961-0. URL http://dl.acm.org/citation.cfm?id=

2664633.2664652. (Cited on page 18.)

[13] Clara Fernández-Vara and Alec Thomson. Procedural genera-
tion of narrative puzzles in adventure games: The puzzle-dice
system. In Proceedings of the The Third Workshop on Procedural Con-
tent Generation in Games, PCG’12, pages 12:1–12:6, New York, NY,
USA, 2012. ACM. ISBN 978-1-4503-1447-3. doi: 10.1145/2538528.
2538538. URL http://doi.acm.org/10.1145/2538528.2538538.
(Cited on page 26.)

[14] Dejobaan Games. Procedural content generation: Thinking
with modules, 2012. URL http://web.archive.org/web/

20150820154248/http://www.gamasutra.com/view/feature/

174311/procedural_content_generation_.php. (Cited on
page 31.)

http://doi.acm.org/10.1145/1822309.1822326
http://doi.acm.org/10.1145/1822309.1822326
http://doi.acm.org/10.1145/1278780.1278879
http://doi.acm.org/10.1145/2282338.2282357
http://doi.acm.org/10.1145/2282338.2282357
http://doi.acm.org/10.1145/1278780.1278878
http://dl.acm.org/citation.cfm?id=2664633.2664652
http://dl.acm.org/citation.cfm?id=2664633.2664652
http://doi.acm.org/10.1145/2538528.2538538
http://web.archive.org/web/20150820154248/http://www.gamasutra.com/view/feature/174311/procedural_content_generation_.php
http://web.archive.org/web/20150820154248/http://www.gamasutra.com/view/feature/174311/procedural_content_generation_.php
http://web.archive.org/web/20150820154248/http://www.gamasutra.com/view/feature/174311/procedural_content_generation_.php

bibliography 79

[15] GameSpot. How does no man’s sky actually work? - re-
ality check, 2014. URL https://www.youtube.com/watch?v=

ZVl1Hmth3HE. (Cited on pages 4 and 5.)

[16] Erich Gamma, Richard Helm, Ralph Johnson, and John M.
Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley Professional, 1 edition,
1994. ISBN 0201633612. URL http://www.amazon.com/

Design-Patterns-Elements-Reusable-Object-Oriented/dp/

0201633612/ref=ntt_at_ep_dpi_1. (Cited on page 8.)

[17] Martin Gardner. Mathematical games the fantastic com-
binations of john conway’s new solitaire game "life", 2009.
URL http://web.archive.org/web/20090603015231/http:

//ddi.cs.uni-potsdam.de/HyFISCH/Produzieren/lis_

projekt/proj_gamelife/ConwayScientificAmerican.htm.
(Cited on pages 6 and 72.)

[18] Johan Gielis. A generic geometric transformation that unifies a
wide range of natural and abstract shapes. American journal of
botany, 90(3):333–338, 2003. (Cited on page 22.)

[19] Johan Gielis, Bert Beirinckx, and Edwin Bastiaens. Su-
perquadrics with rational and irrational symmetry. In Proceed-
ings of the Eighth ACM Symposium on Solid Modeling and Applica-
tions, SM ’03, pages 262–265, New York, NY, USA, 2003. ACM.
ISBN 1-58113-706-0. doi: 10.1145/781606.781647. URL http:

//doi.acm.org/10.1145/781606.781647. (Cited on page 22.)

[20] Daniel Johansson and Jan Schmid. Building the city of glass
in mirror’s edge™. In ACM SIGGRAPH 2015 Talks,
SIGGRAPH ’15, pages 65:1–65:1, New York, NY, USA, 2015.
ACM. ISBN 978-1-4503-3636-9. doi: 10.1145/2775280.2775282.
URL http://doi.acm.org/10.1145/2775280.2775282. (Cited on
page 26.)

[21] G KELLY and H McCABE. An interactive system for procedu-
ral city generation. Institute of Technology Blanchardstown, 2008.
(Cited on page 25.)

[22] George Kelly and Hugh McCabe. Citygen: An interactive system
for procedural city generation. In Fifth International Conference on
Game Design and Technology, pages 8–16, 2007. (Cited on page 25.)

[23] Ben Kenwright. Generating responsive life-like biped charac-
ters. In Proceedings of the The Third Workshop on Procedural Con-
tent Generation in Games, PCG’12, pages 1:1–1:8, New York, NY,
USA, 2012. ACM. ISBN 978-1-4503-1447-3. doi: 10.1145/2538528.
2538529. URL http://doi.acm.org/10.1145/2538528.2538529.
(Cited on page 26.)

https://www.youtube.com/watch?v=ZVl1Hmth3HE
https://www.youtube.com/watch?v=ZVl1Hmth3HE
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
http://web.archive.org/web/20090603015231/http://ddi.cs.uni-potsdam.de/HyFISCH/Produzieren/lis_projekt/proj_gamelife/ConwayScientificAmerican.htm
http://web.archive.org/web/20090603015231/http://ddi.cs.uni-potsdam.de/HyFISCH/Produzieren/lis_projekt/proj_gamelife/ConwayScientificAmerican.htm
http://web.archive.org/web/20090603015231/http://ddi.cs.uni-potsdam.de/HyFISCH/Produzieren/lis_projekt/proj_gamelife/ConwayScientificAmerican.htm
http://doi.acm.org/10.1145/781606.781647
http://doi.acm.org/10.1145/781606.781647
http://doi.acm.org/10.1145/2775280.2775282
http://doi.acm.org/10.1145/2538528.2538529

80 bibliography

[24] Rilla Khaled, Mark J. Nelson, and Pippin Barr. Design metaphors
for procedural content generation in games. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI
’13, pages 1509–1518, New York, NY, USA, 2013. ACM. ISBN
978-1-4503-1899-0. doi: 10.1145/2470654.2466201. URL http://

doi.acm.org/10.1145/2470654.2466201. (Cited on page 3.)

[25] Raffi Khatchadourian. World without end, 2015.
URL http://web.archive.org/web/20160206152806/

http://www.newyorker.com/magazine/2015/05/18/

world-without-end-raffi-khatchadourian. (Cited on page 22.)

[26] E. Lengyel. Game Engine Gems 2. EBL-Schweitzer. CRC Press,
2011. ISBN 9781439869772. URL https://books.google.de/

books?id=ujfOBQAAQBAJ. (Cited on page 7.)

[27] Aristid Lindenmayer. Mathematical models for cellular
interactions in development i. filaments with one-sided
inputs. Journal of Theoretical Biology, 18(3):280 – 299,
1968. ISSN 0022-5193. doi: http://dx.doi.org/10.1016/
0022-5193(68)90079-9. URL http://www.sciencedirect.com/

science/article/pii/0022519368900799. (Cited on page 21.)

[28] T machine aka Adam Martin. Entity sys-
tems are the future of mmog development, 2007.
URL http://web.archive.org/web/20160128043231/

http://t-machine.org/index.php/2007/09/03/

entity-systems-are-the-future-of-mmog-development-part-1/.
(Cited on page 36.)

[29] Jacques Malenfant, Marco Jacques, and Franois Nicolas Demers.
A tutorial on behavioral reflection and its implementation. In
Proceedings of the Reflection, volume 96, pages 1–20, 1996. (Cited
on page 39.)

[30] Genaro Juarez Martinez. Introduction to rule 110, 2004.
URL http://web.archive.org/web/20160118113708/http:

//uncomp.uwe.ac.uk/genaro/Papers/Papers_on_CA_files/

introRule110/node10.html. (Cited on page 72.)

[31] Merriam-Webster. Dictionary definition of procedural, 2016.
URL https://web.archive.org/web/20160114163401/http://

www.merriam-webster.com/dictionary/procedural. (Cited on
page 4.)

[32] Merriam-Webster. Dictionary definition of procedure, 2016.
URL http://web.archive.org/web/20160114164249/http:

//www.merriam-webster.com/dictionary/procedure. (Cited on
page 4.)

http://doi.acm.org/10.1145/2470654.2466201
http://doi.acm.org/10.1145/2470654.2466201
http://web.archive.org/web/20160206152806/http://www.newyorker.com/magazine/2015/05/18/world-without-end-raffi-khatchadourian
http://web.archive.org/web/20160206152806/http://www.newyorker.com/magazine/2015/05/18/world-without-end-raffi-khatchadourian
http://web.archive.org/web/20160206152806/http://www.newyorker.com/magazine/2015/05/18/world-without-end-raffi-khatchadourian
https://books.google.de/books?id=ujfOBQAAQBAJ
https://books.google.de/books?id=ujfOBQAAQBAJ
http://www.sciencedirect.com/science/article/pii/0022519368900799
http://www.sciencedirect.com/science/article/pii/0022519368900799
http://web.archive.org/web/20160128043231/http://t-machine.org/index.php/2007/09/03/entity-systems-are-the-future-of-mmog-development-part-1/
http://web.archive.org/web/20160128043231/http://t-machine.org/index.php/2007/09/03/entity-systems-are-the-future-of-mmog-development-part-1/
http://web.archive.org/web/20160128043231/http://t-machine.org/index.php/2007/09/03/entity-systems-are-the-future-of-mmog-development-part-1/
http://web.archive.org/web/20160118113708/http://uncomp.uwe.ac.uk/genaro/Papers/Papers_on_CA_files/introRule110/node10.html
http://web.archive.org/web/20160118113708/http://uncomp.uwe.ac.uk/genaro/Papers/Papers_on_CA_files/introRule110/node10.html
http://web.archive.org/web/20160118113708/http://uncomp.uwe.ac.uk/genaro/Papers/Papers_on_CA_files/introRule110/node10.html
https://web.archive.org/web/20160114163401/http://www.merriam-webster.com/dictionary/procedural
https://web.archive.org/web/20160114163401/http://www.merriam-webster.com/dictionary/procedural
http://web.archive.org/web/20160114164249/http://www.merriam-webster.com/dictionary/procedure
http://web.archive.org/web/20160114164249/http://www.merriam-webster.com/dictionary/procedure

bibliography 81

[33] Erica Naone. Creating creatures, 2008. URL https://www.

technologyreview.com/s/410281/creating-creatures/. (Cited
on page 17.)

[34] John Von Neumann. Theory of Self-Reproducing Automata. Uni-
versity of Illinois Press, Champaign, IL, USA, 1966. (Cited on
page 71.)

[35] Peter E. Oppenheimer. Real time design and animation of fractal
plants and trees. SIGGRAPH Comput. Graph., 20(4):55–64, August
1986. ISSN 0097-8930. doi: 10.1145/15886.15892. URL http:

//doi.acm.org/10.1145/15886.15892. (Cited on page 25.)

[36] Wojciech Palubicki, Kipp Horel, Steven Longay, Adam Runions,
Brendan Lane, Radomír Měch, and Przemyslaw Prusinkiewicz.
Self-organizing tree models for image synthesis. ACM Trans.
Graph., 28(3):58:1–58:10, July 2009. ISSN 0730-0301. doi: 10.1145/
1531326.1531364. URL http://doi.acm.org/10.1145/1531326.

1531364. (Cited on page 25.)

[37] D. L. Parnas. On the criteria to be used in decomposing systems
into modules. Commun. ACM, 15(12):1053–1058, December 1972.
ISSN 0001-0782. doi: 10.1145/361598.361623. URL http://doi.

acm.org/10.1145/361598.361623. (Cited on pages 8 and 9.)

[38] Ken Perlin. An image synthesizer. SIGGRAPH Comput. Graph.,
19(3):287–296, July 1985. ISSN 0097-8930. doi: 10.1145/325165.
325247. URL http://doi.acm.org/10.1145/325165.325247.
(Cited on page 20.)

[39] Sören Pirk, Till Niese, Oliver Deussen, and Boris Neubert. Cap-
turing and animating the morphogenesis of polygonal tree mod-
els. ACM Trans. Graph., 31(6):169:1–169:10, November 2012. ISSN
0730-0301. doi: 10.1145/2366145.2366188. URL http://doi.acm.

org/10.1145/2366145.2366188. (Cited on page 25.)

[40] Sören Pirk, Till Niese, Torsten Hädrich, Bedrich Benes, and
Oliver Deussen. Windy trees: Computing stress response for de-
velopmental tree models. ACM Trans. Graph., 33(6):204:1–204:11,
November 2014. ISSN 0730-0301. doi: 10.1145/2661229.2661252.
URL http://doi.acm.org/10.1145/2661229.2661252. (Cited on
page 25.)

[41] P. Prusinkiewicz and Aristid Lindenmayer. The Algorithmic
Beauty of Plants. Springer-Verlag New York, Inc., New York, NY,
USA, 1990. ISBN 0-387-97297-8. (Cited on page 25.)

[42] Psittacine. Beneath apple manor, 2007. URL https:

//web.archive.org/web/20110715125304/http://psittacine.

com/beneath-apple-manor/. (Cited on page 11.)

https://www.technologyreview.com/s/410281/creating-creatures/
https://www.technologyreview.com/s/410281/creating-creatures/
http://doi.acm.org/10.1145/15886.15892
http://doi.acm.org/10.1145/15886.15892
http://doi.acm.org/10.1145/1531326.1531364
http://doi.acm.org/10.1145/1531326.1531364
http://doi.acm.org/10.1145/361598.361623
http://doi.acm.org/10.1145/361598.361623
http://doi.acm.org/10.1145/325165.325247
http://doi.acm.org/10.1145/2366145.2366188
http://doi.acm.org/10.1145/2366145.2366188
http://doi.acm.org/10.1145/2661229.2661252
https://web.archive.org/web/20110715125304/http://psittacine.com/beneath-apple-manor/
https://web.archive.org/web/20110715125304/http://psittacine.com/beneath-apple-manor/
https://web.archive.org/web/20110715125304/http://psittacine.com/beneath-apple-manor/

82 bibliography

[43] Hang Qi, Ruichao Qiu, and Jinyuan Jia. L-system based in-
teractive and lightweight web3d tree modeling. In Proceedings
of the 10th International Conference on Virtual Reality Continuum
and Its Applications in Industry, VRCAI ’11, pages 589–592, New
York, NY, USA, 2011. ACM. ISBN 978-1-4503-1060-4. doi:
10.1145/2087756.2087871. URL http://doi.acm.org/10.1145/

2087756.2087871. (Cited on page 21.)

[44] Aaron A. Reed. Sharing authoring with algorithms: Procedu-
ral generation of satellite sentences in text-based interactive sto-
ries. In Proceedings of the The Third Workshop on Procedural Con-
tent Generation in Games, PCG’12, pages 14:1–14:4, New York, NY,
USA, 2012. ACM. ISBN 978-1-4503-1447-3. doi: 10.1145/2538528.
2538540. URL http://doi.acm.org/10.1145/2538528.2538540.
(Cited on page 26.)

[45] Paul Rendell. A turing machine in conway’s game life, 2001.
URL http://web.archive.org/web/20160114200316/http:

//www.cs.unibo.it/~babaoglu/courses/cas00-01/papers/

Cellular_Automata/Turing-Machine-Life.pdf. (Cited on
page 72.)

[46] Marco Scirea, Yun-Gyung Cheong, Mark J. Nelson, and Byung-
Chull Bae. Evaluating musical foreshadowing of videogame
narrative experiences. In Proceedings of the 9th Audio Mostly:
A Conference on Interaction With Sound, AM ’14, pages 8:1–8:7,
New York, NY, USA, 2014. ACM. ISBN 978-1-4503-3032-9. doi:
10.1145/2636879.2636889. URL http://doi.acm.org/10.1145/

2636879.2636889. (Cited on page 27.)

[47] F. Spufford. Backroom Boys: The Secret Return of the British Boffin.
Faber & Faber, 2003. ISBN 9780571214969. URL https://books.

google.de/books?id=efp2QgAACAAJ. (Cited on pages 13 and 14.)

[48] Kenichi Sugihara. Automatic generation of 3-d building models
by straight skeleton. In SIGGRAPH Asia 2011 Sketches, SA ’11,
pages 24:1–24:1, New York, NY, USA, 2011. ACM. ISBN 978-
1-4503-1138-0. doi: 10.1145/2077378.2077408. URL http://doi.

acm.org/10.1145/2077378.2077408. (Cited on page 25.)

[49] Claudia Szabo and Yong Meng Teo. Post-mortem analysis of
emergent behavior in complex simulation models. In Proceedings
of the 1st ACM SIGSIM Conference on Principles of Advanced Dis-
crete Simulation, SIGSIM PADS ’13, pages 241–252, New York, NY,
USA, 2013. ACM. ISBN 978-1-4503-1920-1. doi: 10.1145/2486092.
2486123. URL http://doi.acm.org/10.1145/2486092.2486123.
(Cited on page 16.)

http://doi.acm.org/10.1145/2087756.2087871
http://doi.acm.org/10.1145/2087756.2087871
http://doi.acm.org/10.1145/2538528.2538540
http://web.archive.org/web/20160114200316/http://www.cs.unibo.it/~babaoglu/courses/cas00-01/papers/Cellular_Automata/Turing-Machine-Life.pdf
http://web.archive.org/web/20160114200316/http://www.cs.unibo.it/~babaoglu/courses/cas00-01/papers/Cellular_Automata/Turing-Machine-Life.pdf
http://web.archive.org/web/20160114200316/http://www.cs.unibo.it/~babaoglu/courses/cas00-01/papers/Cellular_Automata/Turing-Machine-Life.pdf
http://doi.acm.org/10.1145/2636879.2636889
http://doi.acm.org/10.1145/2636879.2636889
https://books.google.de/books?id=efp2QgAACAAJ
https://books.google.de/books?id=efp2QgAACAAJ
http://doi.acm.org/10.1145/2077378.2077408
http://doi.acm.org/10.1145/2077378.2077408
http://doi.acm.org/10.1145/2486092.2486123

bibliography 83

[50] .theprodukkt. Website of .kkrieger, 2011. URL
http://web.archive.org/web/20110717024227/http:

//www.theprodukkt.com/kkrieger. (Cited on page 15.)

[51] Julian Togelius, Emil Kastbjerg, David Schedl, and Georgios N.
Yannakakis. What is procedural content generation?: Mario on
the borderline. In Proceedings of the 2Nd International Workshop
on Procedural Content Generation in Games, PCGames ’11, pages
3:1–3:6, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0872-
4. doi: 10.1145/2000919.2000922. URL http://doi.acm.org/10.

1145/2000919.2000922. (Cited on page 3.)

[52] Julian Togelius, Jim Whitehead, and Rafael Bidarra. Guest ed-
itorial: Procedural content generation in games. IEEE TRANS-
ACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN
GAMES, 2011. (Cited on page 7.)

[53] Michael C. Toy and Kenneth C. R. C. Arnold. A guide to the
dungeons of doom, 2003. URL http://web.archive.org/web/

20030803003006/http://home.wanadoo.nl/loche/rogue/guide.

txt. (Cited on page 11.)

[54] A. M. Turing. On computable numbers, with an application to
the entscheidungsproblem. a correction. Proceedings of the London
Mathematical Society, s2-43(1):544–546, 1938. doi: 10.1112/plms/
s2-43.6.544. URL http://plms.oxfordjournals.org/content/

s2-43/1/544.short. (Cited on page 72.)

[55] Valve. Store page for ’ftl: Faster than light’, 2014.
URL http://web.archive.org/web/20160216173733/http:

//store.steampowered.com/app/212680/. (Cited on page 12.)

[56] Pedro Verruma. Conway’s game of life, 2009. URL
http://web.archive.org/web/20150318020910/http:

//pmav.eu/stuff/javascript-game-of-life-v3.1.1/. (Cited
on page 71.)

[57] Greg Walsh, Craig Donahue, and Emily E. Rhodes. Kidcraft: Co-
design within a game environment. In Proceedings of the 33rd
Annual ACM Conference Extended Abstracts on Human Factors in
Computing Systems, CHI EA ’15, pages 1205–1210, New York, NY,
USA, 2015. ACM. ISBN 978-1-4503-3146-3. doi: 10.1145/2702613.
2732921. URL http://doi.acm.org/10.1145/2702613.2732921.
(Cited on page 18.)

[58] T. Watzl. Procedural modeling of buildings based on patterns in
the form of Shape-Grammar. 2015. (Cited on page 25.)

[59] Glenn R. Wichman. A brief history of "rogue", 1997.
URL http://web.archive.org/web/20071217204920/http:

http://web.archive.org/web/20110717024227/http://www.theprodukkt.com/kkrieger
http://web.archive.org/web/20110717024227/http://www.theprodukkt.com/kkrieger
http://doi.acm.org/10.1145/2000919.2000922
http://doi.acm.org/10.1145/2000919.2000922
http://web.archive.org/web/20030803003006/http://home.wanadoo.nl/loche/rogue/guide.txt
http://web.archive.org/web/20030803003006/http://home.wanadoo.nl/loche/rogue/guide.txt
http://web.archive.org/web/20030803003006/http://home.wanadoo.nl/loche/rogue/guide.txt
http://plms.oxfordjournals.org/content/s2-43/1/544.short
http://plms.oxfordjournals.org/content/s2-43/1/544.short
http://web.archive.org/web/20160216173733/http://store.steampowered.com/app/212680/
http://web.archive.org/web/20160216173733/http://store.steampowered.com/app/212680/
http://web.archive.org/web/20150318020910/http://pmav.eu/stuff/javascript-game-of-life-v3.1.1/
http://web.archive.org/web/20150318020910/http://pmav.eu/stuff/javascript-game-of-life-v3.1.1/
http://doi.acm.org/10.1145/2702613.2732921
http://web.archive.org/web/20071217204920/http://www.wichman.org/roguehistory.html
http://web.archive.org/web/20071217204920/http://www.wichman.org/roguehistory.html
http://web.archive.org/web/20071217204920/http://www.wichman.org/roguehistory.html

84 bibliography

//www.wichman.org/roguehistory.html. (Cited on pages 11

and 12.)

[60] Dwarf Fortress Wiki. World generation, 2014. URL
http://web.archive.org/web/20160205101531/http:

//dwarffortresswiki.org/index.php/World_generation.
(Cited on page 16.)

[61] Andrew Willmott. Fast object distribution. In ACM SIGGRAPH
2007 Sketches, SIGGRAPH ’07, New York, NY, USA, 2007. ACM.
doi: 10.1145/1278780.1278877. URL http://doi.acm.org/10.

1145/1278780.1278877. (Cited on page 17.)

[62] Ken Xu and Damian Campeanuy. Houdini engine: Evolution
towards a procedural pipeline. In Proceedings of the Fourth Sym-
posium on Digital Production, DigiPro ’14, pages 13–18, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-3044-2. doi:
10.1145/2633374.2633378. URL http://doi.acm.org/10.1145/

2633374.2633378. (Cited on page 27.)

http://web.archive.org/web/20071217204920/http://www.wichman.org/roguehistory.html
http://web.archive.org/web/20071217204920/http://www.wichman.org/roguehistory.html
http://web.archive.org/web/20071217204920/http://www.wichman.org/roguehistory.html
http://web.archive.org/web/20160205101531/http://dwarffortresswiki.org/index.php/World_generation
http://web.archive.org/web/20160205101531/http://dwarffortresswiki.org/index.php/World_generation
http://doi.acm.org/10.1145/1278780.1278877
http://doi.acm.org/10.1145/1278780.1278877
http://doi.acm.org/10.1145/2633374.2633378
http://doi.acm.org/10.1145/2633374.2633378

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”. classicthesis is available for both LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

Happy users of classicthesis usually send a real postcard to the
author, a collection of postcards received so far is featured at:

http://postcards.miede.de/

Final Version as of March 2, 2016 (classicthesis version 4.2).

https://bitbucket.org/amiede/classicthesis/
http://postcards.miede.de/

D E C L A R AT I O N

I hereby declare to have worked on this thesis on my own and to have
marked sources appropriately.

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde
Hilfe selbständig verfasst und nur die angegebenen Quellen und Hil-
fsmittel benutzt habe.

Hamburg, March 2016

Sven Freiberg

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	Introduction
	1 Setup
	1.1 Overview
	1.2 Termini: Procedural, Content and Generation
	1.2.1 Procedural
	1.2.2 Content
	1.2.3 Generation
	1.2.4 Summary

	1.3 Motivation
	1.3.1 Creativity
	1.3.2 Business interest

	1.4 Goals
	1.4.1 Modularity
	1.4.2 Chainability
	1.4.3 Nestability
	1.4.4 Integration with Unity
	1.4.5 User interface
	1.4.6 Parametrization

	1.5 Challenges

	2 A brief history of PCG
	2.1 Prologue
	2.2 Looking at some examples
	2.2.1 Rogue
	2.2.2 Elite
	2.2.3 Diablo
	2.2.4 .kkrieger
	2.2.5 Dwarf Fortress
	2.2.6 Left 4 Dead
	2.2.7 Spore
	2.2.8 Minecraft

	3 Common Techniques
	3.1 Prologue
	3.2 Making Noise
	3.3 L-Systems
	3.4 Superellipsoids, Superquadrics and the Superformula
	3.5 Bézier Curves

	4 Applications of PCG
	4.1 Prologue
	4.2 Vegetation
	4.3 Buildings and Cities
	4.4 Narrative
	4.5 Animation
	4.6 Music
	4.7 Tools

	Velvet: A modular PCG concept
	5 Concept
	5.1 Prologue
	5.2 Architecture
	5.2.1 Module types
	5.2.2 Chain link
	5.2.3 Chain
	5.2.4 Processing Order

	6 Implementing the Unity Plugin Velvet
	6.1 Prologue
	6.1.1 Unity
	6.1.2 Entity-Component System
	6.1.3 Entities in Unity
	6.1.4 Scene Graph
	6.1.5 Library
	6.1.6 Unity Util
	6.1.7 Reflection

	6.2 Overview of Velvet
	6.3 Core
	6.3.1 Chain Link
	6.3.2 Chain Head
	6.3.3 Variable Bindings
	6.3.4 Randomizations
	6.3.5 Serialization

	6.4 Editor Extension
	6.4.1 Custom Property Drawer
	6.4.2 Custom Editor
	6.4.3 Custom Window
	6.4.4 UI Architecture

	7 Examples
	7.1 Prologue
	7.2 Supercylinders
	7.2.1 Modules
	7.2.2 Generation process
	7.2.3 Results

	7.3 Block World Terrain
	7.3.1 Modules
	7.3.2 Generation Process
	7.3.3 Results

	7.4 Vortex Tunnels
	7.4.1 Modules
	7.4.2 Generation Process
	7.4.3 Results

	Closing Words
	8 Evaluation
	8.1 Prologue
	8.2 Developing modules
	8.3 Development of Velvet
	8.4 Controlling the generation process
	8.5 User interface
	8.6 Performance

	9 Conclusion
	9.1 Prologue
	9.2 Summary
	9.3 Further work
	9.3.1 Different chain implementations
	9.3.2 Modularization

	Appendix
	A Appendix
	A.1 Life
	A.2 Fibonacci like series
	A.2.1 Basic Algorithm
	A.2.2 Generating the data

	B References
	List of Figures
	List of Tables
	Listings
	Acronyms

	Bibliography
	Colophon
	Declaration

