

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Masterarbeit

Daniel Weschke

Entwicklung eines 3D-Strukturmodells aus Faserverbundwerkstoffen und strukturdynamische Berechnung einer Windenergieanlage

Fakultät Technik und Informatik Department Maschinenbau und Produktion Faculty of Engineering and Computer Science Department of Mechanical Engineering and Production Management

Daniel Weschke

Entwicklung eines 3D-Strukturmodells aus Faserverbundwerkstoffen und strukturdynamische Berechnung einer Windenergieanlage

Masterarbeit eingereicht im Rahmen der Masterprüfung

im Studiengang Berechnung und Simulation im Maschinenbau am Department Maschinenbau und Produktion der Fakultät Technik und Informatik der Hochschule für Angewandte Wissenschaften Hamburg

Erstprüfer: Professor Dr.-Ing. Thomas Grätsch Zweitprüfer: Professor Dr.-Ing. habil. Frank Ihlenburg

Abgabedatum: 05. August 2015

Zusammenfassung

Daniel Weschke

Thema der Masterarbeit

Entwicklung eines 3D-Strukturmodells aus Faserverbundwerkstoffen und strukturdynamische Berechnung einer Windenergieanlage

Stichworte

FEM, Strukturdynamik, Modellentwicklung, Faserverbundwerkstoff, Windenergieanlage

Kurzzusammenfassung

Ziel der Masterarbeit ist die Entwicklung eines 3D-Strukturmodells einer Windenergieanlage aus Faserverbundwerkstoffen mit finiten Elementen zur Durchführung von strukturdynamischen Analysen sowie zukünftige Berechnungen mit Fluid-Struktur-Interaktion.

Daniel Weschke

Master Thesis title

Development of a 3D structural model of fiber composites and structural dynamic analysis of a wind turbine

Keywords

FEM, structural dynamics, model development, composites, wind turbine

Abstract

Aim of the master thesis is the development of a 3D finite element structural model of a wind turbine to perform dynamic structural analysis and future analysis using fluid-structure-interaction.

Inhaltsverzeichnis

Abbildungsverzeichnis	vi
Tabellenverzeichnis	vi
Formelzeichen und Abkürzungen	7 iii
1 Einleitung	1
1.1 Forschungsprojekt	1
1.2 Windenergieanlage	2
1.3 Modellbildung	2
2 Theoretische Grundlagen	5
2.1 Numerische Strukturmechanik	5
2.1.1 Statische Analysen	6
2.1.2 Dynamische Analysen	15
2.2 Faserverbundwerkstoffe	22
2.2.1 Werkstoffgesetze	22
2.2.2 Mehrschichtentheorie	26
3 Modellentwicklung aus Faserverbundwerkstoffen	31
3.1 Forschungsanlage	31
3.1.1 Rotorblatt	32
3.1.2 Gondel und Spinner	33
3.1.3 Antrieb	34
3.1.4 Turm	34
3.1.5 Frequenzen und stationäres Verhalten der Forschungsanlage	35
3.2 Computermodell	36
3.2.1 Rotorblatt	38
3.3 Simulationsmodell	45
3.3.1 Materialparameter	45
3.3.2 Elemente	49
3.3.3 Randbedingungen	54
3.3.4 Analyseparameter	56
4 Strukturdynamische Untersuchung der Windenergieanlage	57
4.1 Modalanalyse	57

4.2 Statische Analyse	61
4.3 Transiente Analyse	. 63
5 Schlussbetrachtung	. 65
5.1 Zusammenfassung	. 65
5.2 Ausblick	. 65
Literatur	. 66
Anhang	. 68

Abbildungsverzeichnis

1	Modellinteraktionen	4
2	Kräfte an einem infinitesimalen Volumenelement	6
3	Formfunktion $N_3(\xi)$ des Achtknoten-Volumenelements	12
4	Computermodell der Windenergieanlage	36
5	Lagenaufbauten im Rotorblatt mit Hilfe von Sandias NuMAD-Programm	37
6	Computermodell – Rotorblatt	38
7	Sektionen im Rotorblatt	38
8	Vorbereitung für Längsschnitte im Computermodell	45
9	Lagenaufbauten im Rotorblatt mit gleichen Materialzusammensetzungen	47
10	Lagenaufbauten im Rotorblatt mit gleichen Materialzusammensetzungen im	
	Querschnitt bei 17 m	47
11	Dickenverlauf zu den Lagenaufbauten im Rotorblatt	48
12	Dickenverlauf einzelner Materialien zu den Lagenaufbauten im Rotorblatt	49
13	Kontaktelemente	50
14	Spannungsüberhöhung an der Rotorblattspitze	51
15	Längsfederelemente an der Rotorblattspitze	51
16	Konvergenzstudie zur maximalen Vergleichsspannung und der maximalen	
	Verformung infolge des Eigengewichts	52
17	Konvergenzstudie zur maximalen Vergleichsspannung und der maximalen	
	Verformung infolge einer Einzellast von 80 kN an der Blattspitze	52
18	Konvergenzstudie zur Eigenfrequenz der Windenergieanlage	53
19	Netz mit Elementkantenlängen von 150mm in den Rotorblättern und 400mm	
	in dem Turm und der Gondel	54
20	Statische Randbedingungen Eigengewicht	55
21	Statische Randbedingungen Einzellast mit und ohne Eigengewicht	56
22	Abweichung der Eigenfrequenzen bezüglich der NREL-Ergebnissen	58
23	Abweichung der Eigenfrequenzen bezüglich der NREL-Ergebnissen mit	
	Nennumdrehungsgeschwindigkeit	59
24	Die ersten zwölf Eigenformen der Windenergieanlage	60
25	Statische Analyse aufgrund Eigengewicht	61
26	Detail der statische Analyse aufgrund Eigengewicht	61
27	Statische Analyse aufgrund Einzellast an den Rotorblattspitzen	62
28	Detail der statische Analyse aufgrund Einzellast an den Rotorblattspitzen	62

29	Geometrisch nichtlineare statische Analyse	• •	 	 •		 •		•	•	•	•	 63

Tabellenverzeichnis

1	Grobschlägige ausgewählte Eigenschaften der NREL 5-MW Ausgangs-	
	Windenergieanlage	32
2	Rotorblatteigenschaften der NREL 5-MW Ausgangs-Windenergieanlage	32
3	Eigenschaften von Gondel und Nabe der NREL 5-MW Ausgangs-	
	Windenergieanlage	33
4	Eigenschaften vom Antrieb der NREL 5-MW Ausgangs-Windenergieanlage	34
5	Turmeigenschaften der NREL 5-MW Ausgangs-Windenergieanlage	35
6	Frequenzen der NREL 5-MW Ausgangs-Windenergieanlage	35
7	Materialien	46
8	Lagenaufbauten im Rotorblatt	48
9	Netzeigenschaften	53
10	Eigenfrequenzen der Windenergieanlage	57
11	Vergleich der Eigenfrequenzen mit der NREL-Ausgangs-WEA	58
12	Vergleich der Eigenfrequenzen mit der NREL-Ausgangs-WEA mit	
	Nennumdrehungsgeschwindigkeit	59
13	Statische Analyse	63
14	Konvergenzstudie zur maximalen Vergleichsspannung $\sigma_{ m Mises}$ und der	
	maximalen Verformung U infolge Eigengewichts	76
15	Konvergenzstudie zur maximalen Vergleichsspannung $\sigma_{ m Mises}$ und der	
	maximalen Verformung U infolge einer Einzellast von 80kN	77
16	Konvergenzstudie zur Eigenfrequenz der Windenergieanlage	77

Formelzeichen und Abkürzungen

Symbole

Α	mm ²	Fläche in der Ausgangskonfiguration
а	mm ²	Fläche in der Momentankonfiguration
В		Ableitungen der Formfunktionen
<u>b</u>	mm/s ²	Beschleunigung
С	MPa	Elastizitätsmatrix
<u>C</u>		rechter Cauchy-Green-Tensor
$\overline{\tilde{C}}$	MPa	Elastizitätstensor
$\overset{4}{D}$		Gesamtdämpfungsmatrix
$D^{(e)}$		Elementdämpfungsmatrix
$ ilde{D}$		Modale Dämpfungsmatrix
\mathcal{D}		Differentialoperatormatrix
d_k		Starrkörperbewegungsvektor
d	N s/m; N m s	Dämpfungskonstante
<u>E</u> G		Green-Lagrange-Verzerrungstensor
$\bar{\underline{E}}_{\mathrm{H}}$		Hencky-Verzerrungstensor
e		Einheitsvektor
<u>F</u>		Deformationsgradient
\overline{f}	Hz	Eigenfrequenz
f	N/mm ³	Volumenkräfte
$\underline{\underline{H}}$		Verschiebungsgradient
h	mm	Einzelschichtdicke
Ī		Einheitsmatrix
J		Jacobi-Matrix
J		Jacobi-Determinante
K		Gesamtsteifigkeitsmatrix
$K^{(e)}$		Elementsteifigkeitsmatrix
Ñ		Modale Steifigkeitsmatrix
L	mm	Länge
M	Ν	Linienmomente
M		Gesamtmassenmatrix
$M^{(e)}$		Elementmassenmatrix
$ ilde{M}$		Modale Massenmatrix
$m_{\rm ges}$		Gesamtmasse

m_{ik}^{eff}		Effektive Masse
N	N/mm	Linienkräfte
N		Formfunktionen
\underline{N}		Flächennormalenvektor in der Ausgangskonfiguration
<u>n</u>		Flächennormalenvektor in der Momentankonfiguration
<u>P</u>		Erster Piola-Kirchhoff-Spannungstensor
\overline{Q}		Transformationsmatrix
q	mm; 1	Modale Koordinaten
<u>R</u>		Rotationsmatrix
R		Reuter-Matrix
ŕ	Ν	Knotenlastvektor
ĩ		Modaler Knotenlastvektor
<u>S</u>		Zweiter PIOLA-KIRCHHOFF-Spannungstensor
S		Nachgiebigkeitsmatrix
Т	S	Simulationsdauer
t	S	Zeit
t	mm	Laminatdicke
<u>t</u>	MPa	Cauchy-Spannungsvektor
$\underline{\underline{U}}$		Strecktensor
<u>u</u>	mm; 1	Verschiebungsvektor
<u>i</u>	mm/s; 1/s	Geschwindigkeit
<u>"</u>	mm/s^2 ; $1/s^2$	Beschleunigung
$u_{\rm fe}$	mm; 1	FE-Verschiebung
û	mm; 1	Knotenverschiebungen
ù	mm/s; 1/s	Knotengeschwindigkeiten
î U	mm/s^2 ; $1/s^2$	Knotenbeschleunigungen
V	mm ³	Volumen in der Ausgangskonfiguration
v	mm ³	Volumen in der Momentankonfiguration
$V^{(e)}$	mm ³	Elementvolumen
w_{f}	MPa	Formänderungsenergiedichte
\underline{X}	mm; 1	Physikalische Koordinaten in der Ausgangskonfiguration $\underline{X} = \underline{x}(t = 0)$
<u>x</u>	mm; 1	Physikalische Koordinaten in der Momentankonfiguration
α		Newмark-Parameter zur Zeitintegration
α		Rayleigh-Parameter zur massenproportionale Dämpfung
β		RAYLEIGH-Parameter zur steifigkeitsproportionale Dämpfung

Γ_{ik}		Modaler Beteiligungsfaktor
γ		Abklingkonstante
γ		Abgeleiteter NEWMARK-Parameter zur Zeitintegration
Δt		Diskreter Zeitabschnitt
δ		NEWMARK-Parameter zur Zeitintegration
δ <u>u</u>	mm	Virtuelle Verrückung
$\delta W_{\rm a}$	Nmm	Virtuelle äußere Arbeit
$\delta W_{\rm i}$	Nmm	Virtuelle innere Arbeit
$\delta \underline{\underline{\varepsilon}}$		Virtuelle Verzerrungen
ε		Verzerrungsvektor
<u></u>		Verzerrungstensor
θ	0	Winkel
κ	1/mm	Krümmungen
λ		Eigenwert
ν		Querkontraktionszahl
ξ		Natürliche Koordinaten
ρ	t/mm ³	Dichte
σ	MPa	Spannungsvektor
₫	MPa	Cauchy-Spannungstensor
<u>τ</u>		Kirchhoff-Spannungstensor
Φ		Modale Matrix
ϕ	mm; 1	Eigenvektor
ω	1/s	Eigenkreisfrequenz

Mathematische Notation

- ∀ Für alle bzw. für jedes
- ∈ Ist Element von oder kurz: In / Aus
- ∧ Logisches *und*
- ∪ Vereinigungsmenge
- ∩ Durchschnittsmenge
- Ø Leere Menge
- $\nabla()$ Gradient
- $\nabla \cdot ()$ Divergenz
- · Skalarprodukt zweier Vektoren bzw. Tensoren 1. Stufe
- : Querkontraktion; ein Skalarprodukt zweier Tensoren 2. Stufe

Cⁿ Stetige Funktionen und n-fach stetig ableitbar

Abkürzungen

- CAD Rechnerunterstütztes Konstruieren
- FEM Finite Element Methode
- FSI Fluid-Struktur-Interaktion
- WEA Windenergieanlage
- VB Visual Basic

Namen und Bezeichnungen

- ANSYS Analysis System
- APDL ANSYS Parametric Design Language
- CATIA Computer Aided Three-Dimensional Interactive Application
- DU Delft University
- MATLAB Matrix Laboratory
- NACA National Advisory Committee for Aeronautics
- NREL National Renewable Energy Laboratory
- NuMAD Numerical Manufacturing And Design Tool
- SNL Sandia National Laboratories
- WindNumSim Struktur- und Akustikoptimierung einer Windenergieanlage mit Hilfe numerischer Simulation

1 Einleitung

Aufgrund steigender Industrialisierung und dem einhergehenden erhöhten Energieverbrauchs werden immer größere Anforderungen an die Energieproduktion gestellt. Im Falle von fossile Energieträger, wie Kohle, Öl und Erdgas, ist bekannt dass diese zum einen endlich und zum anderen bei der Energieproduktion umweltbeinflussende Abgase entstehen. Im Falle von Kernenergie zeigen hingegen wiederkehrende Unfälle die Risiken dieser Technologie. Auch ohne diesen Unfälle besteht das Problem der Endlagerung des radioaktiven Abfalls. Nach menschlichem Ermessen wird von den Endlagern aufgrund der Halbwertszeit immer eine Gefahr ausgehen. Die Alternative *Erneuerbare Energien* belastet zum einen nicht die Umwelt und ist unerschöpflich beziehungsweise erneuerbar. Zu der Kategorie der erneuerbaren Energie gehört die Windkraft als stärksten Vertreter, gefolgt von nachwachsende Rohstoffe (Biomasse und Hausmüll) und die Photovoltaik sowie die Wasserkraft und die Geothermie. In dieser Arbeit liegt das Interesse an die Windkraft oder genauer den Aufbau eines diskreten Modells einer Windenergieanlage. Der schematische Aufbau einer modernen Windenergieanlage ist auf der nächsten Seite in der Abbildung **??** dargestellt.

Hintergrund der Masterthesis ist das an der HAW Hamburg durchgeführte Forschungsprojekt "WindNumSim" zur Entwicklung und Anwendung eines neuartigen Simulationsmodells zur strukturellen und akustischen Optimierung einer Windenergieanlage mit Hilfe von Fluid-Struktur-Interaktionen.

Ziel dieser Masterthesis ist die Erstellung eines 3D-Strukturmodells einer Windenergieanlage (5MW NREL-Anlage), welches die Komponenten Rotorblatt, Turm, Spinner und Gondel beinhaltet sowie anschließender 3D FEM-Berechnung für ausgewählte Lastfälle. Die Bearbeitung umfasst die Erweiterung eines bestehenden parametrisierten Flächenmodells der Windenergieanlage mit dem Programm CATIA V5 sowie die Erstellung eines 3D-Strukturmodells der Windenergieanlage mit vollständigem Laminataufbau der Rotorblätter mit dem Programm ANSYS in der *Workbench*-Umgebung. Hierbei wird das 3D-Strukturmodell mit Schalenelementen vernetzt und anhand gegebener Literaturangaben validiert. Abschließend werden verschiedene strukturmechanische Analysen durchgeführt, wie zum Beispiel der Modalanalyse sowie der statischen und der dynamische Analyse. Die FEM-Berechnung wird ebenfalls mit dem Programm ANSYS durchgeführt.

Abbildung 1: Schematische Darstellung einer horizontalen Windenergieanlage [hau08]

1.1 Forschungsprojekt

Das Forschungsprojekt an der *Hochschule für Angewandte Wissenschaften Hamburg* zur Struktur- und Akustikoptimierung einer Windenergieanlage mit Hilfe numerischer Simulation (WindNumSim)¹ ist ein vom *Bundesministerium für Bildung und Forschung* im Rahmen der Förderlinie "IngenieurNachwuchs" 2012 im Programm "Forschung an Fachhochschulen" gefördertes Projekt. Projektpartner sind unter anderem die *Helmut Schmidt Universität Hamburg* sowie die Firmen Senvion SE² und FE-Design³.

Untersucht werden hierzu Simulationsmodelle mit Fluid-Struktur-Interaktion (FSI), die eine Kopplung der Windstömung und der Windenergieanlage ermöglicht. Hierbei werden Erkenntnisse zu den Rotorblätter erwartet, die ebenfalls Grundlage einer Strukturoptimierung der Rotorblätter sein soll. Der Fokus der Strukturoptimierung liegt insbesondere auf die Reduktion der Rotorblattmasse mit dem der Antriebsstrang entlastet wird, der wiederum eine Verbesserung des Wirkungsgrades der Anlage zur Folge hat. Weitere Ziele sind die optimale Blattwinkeleinstellung während des Turmdurchgangs und die Verbesserung der akustischen Eigenschaften der Anlage. Die letztgenannte Verbesserung soll den Schalldruckpegel während des Turmdurchgangs reduzieren und damit, neben der Reduzierung von Verlustenergien auch, eine Akzeptanzsteigerung der Umwelt zur Folge haben.

1.2 Windenergieanlage

Bei der Windenergieanlage (WEA) handelt es sich um eine von *National Renewable Energy Laboratory* (NREL)⁴ zusammengestellte küstenabgewandte Ausgangs-WEA, welche im Forschungsbericht *Definition of a 5-MW Reference Wind Turbine for Offshore System Development* [1] dokumentiert ist. Das NREL verwendet als Grundlage die öffentlich zugänglichen Informationen der Muster-WEAs von *Multibrid M5000* und *REpower 5M*. Aufgrund unzureichenden öffentlichen Informationen der Muster-WEAs, verwendet das NREL zusätzlich öffentlich zugängliche Eigenschaften der Konzeptmodelle von den Projekten *WindPACT, RECOFF* und *DOWEC*. Die WEA von NREL ist somit eine Zusammensetzung der einzelnen Modellen mit den repräsentativsten Spezifikationen und stellt eine Grundlage für das Forschen an einer einheitliche Anlage dar.

¹WindNumSim, URL: http://www.mp.haw-hamburg.de/pers/Graetsch/WindNumSim_main.htm

²Senvion SE ehemals bekannt als REpower Systems SE, URL: http://senvion.com/de/

³FE-Design ein von Dassault Systèmes übernommenes Unternehmen, URL http://www.fe-design.de

⁴National Renewable Energy Laboratory NREL, URL: http://www.nrel.gov/

Da die *REpower 5M* gegenüber der *Multibrid M5000* für das NREL eher konventionelle und erwartende Eigenschaften hat und die *DOWEC* sehr hohe Übereinstimmung mit der *REpower 5M* hat, ist die NREL Ausgangs-WEA hauptsächlich aus diesen beiden Arbeiten entstanden.

Neben der hiesigen Verwendung der Ausgangs-WEA von NREL, fand die WEA unter anderem für Projekte des U.S. DOE's Wind & Hydropower Technologies Programs und des European Union UpWind research programs sowie der International Energy Agency (IEA) Wind Annex XXIII Subtask 2 Offshore Code Comparision Collaboration (OC3) Anwendung.

1.3 Modellbildung

Die Modellbildung der WEA erfolgt in mehreren Schritten, wobei unterschiedliche Programme zum Einsatz kommen. Die Grundlage der dreidimensionalen Modellbildung bildet ein bereits vorbereitetes Geometrie- beziehungsweise Computermodell mit dem CAD-Programm *CATIA V5* von der Firma *Dassault Systèmes*⁵. Für das Simulationsmodell muss das Geometriemodell, insbesondere zur Abbildung von unterschiedlichen Materialparameter, modifiziert werden. Dazu werden hauptsächlich Unterprogramme (Makros) in der Programmiersprache Visual Basic (VB) eingesetzt. Die Simulation hingegen erfolgt mit dem FEM-Programm *ANSYS Mechanical* von der Firma *ANSYS*⁶ über die *ANSYS Workbench* in der 15. Version. Wobei unter anderem Materialparameter aus einem in der Skriptsprache APDL von ANSYS vorliegender Quelldatei entnommen werden. Die Abbildung 1 zeigt die groben Modellinteraktionen.

⁵Dassault Systèmes, URL: http://www.3ds.com/de/

⁶ANSYS,URL:http://www.ansys.com/de_de

Abbildung 2: Modellinteraktionen

2 Theoretische Grundlagen

In diesem Kapitel wird auf die mathematische Beschreibung zur numerischen Berechnung von physikalischen Problemen wie zum Beispiel der Windenergieanlage sowie auf ein spezielles Materialmodell von Faserverbundwerkstoffe oder Laminataufbauten eingegangen.

2.1 Numerische Strukturmechanik

Die Finite Element Methode (FEM) umfasst eine Vielzahl von Methodiken um physikalische Fragestellungen zu beantworten. So sind für strukturmechanische Probleme einer WEA beispielsweise die statische Durchbiegung der Rotorblätter aufgrund Eigengewicht und Windlasten als auch die Eigenformen zum Verständnis der Konstruktion und die Anlagenbelastung bei drehenden Rotorblätter von Interesse. Dazu wird in den nachfolgenden Abschnitten auf die Grundlagen der statischen und dynamischen Analyse eingegangen. Die Grundlagen dieser Darstellung sind die Literaturen [2], [3] und [4] sowie das ANSYS-Programmhandbuch.

Im Allgemeinen werden mit der FEM Differentialgleichungen beziehungsweise Systeme von Differentialgleichungen gelöst. Am Beispiel eines Biegebalkens ist es die Biegedifferentialgleichung und bei allgemeinen dynamischen Problemen eine Bewegungsdifferentialgleichung. Gewonnen werden diese Differentialgleichung durch Gleichgewichtsbetrachtungen eines beliebigen Festkörpers, der entweder statisch bestimmt oder statisch überbestimmt gelagert und mit äußeren Lasten beaufschlagt ist. Die FEM umfasst zur Lösung der Feldgröße drei grundlegende Schritte mit der die Differentialgleichung als FE-Gleichungssystem beschrieben wird; die Partitionierung wobei das Berechnungsgebiet in Elementen mit Knoten eingeteilt wird und das Gebiet als Summe der Elemente anzusehen ist, die Approximation bei der die gesuchte Verformung durch Polynome angenähert wird und die Elemente fortan in Abhängigkeit der Knotenverformung beschrieben sind und schließlich die Assemblierung die das globale "diskrete" Gleichgewicht (FE-Gleichungssystem) aufstellt mit der das Gebiet als Summe der beschriebenen Elemente anzusehen ist, wobei kinematische Bedingungen gleicher Verformungen zu berücksichtigen sind.

2.1.1 Statische Analysen

Mit dem Kräftegleichgewicht am infinitesimalen Element ergibt sich für ein beliebigen Körper v im allgemeinen dreidimensionalen Fall die klassische elliptische Differentialgleichung mit den Randbedingungen auf der Körperoberfläche ∂v – in differentielle Tensor-Formulierung –

> $\nabla \cdot \underline{\sigma} + \underline{f} = \underline{0} \quad \text{in } v,$ $\underline{u} = \underline{u}_0 \quad \text{auf } \partial v_1, \text{(Dirichlet'sche Randbedingungen)}$ $\underline{\sigma} \cdot \underline{n} = \underline{t} \quad \text{auf } \partial v_2, \text{(Neumann'sche Randbedingungen)}$ wobei $\partial v_1 \cup \partial v_2 = \partial v \text{ und } \partial v_1 \cap \partial v_2 = \emptyset$.

Die Summe der gleichgerichteten, auf das Volumen bezogenen, differentiellen Spannungen $\sigma_{ji,j}(\underline{x})$ stehen mit der ortsabhängigen Volumenkraft $f_i(\underline{x})$ der jeweiligen Richtung im Gleichgewicht, siehe dazu auch folgende Gleichgewichtsformulierung sowie Abbildung 2 rechts mit Darstellung der in *x* gerichteten Kräften.

$$\left(\sigma_{xx} + \frac{\partial \sigma_{xx}}{\partial x} dx - \sigma_{xx}\right) dy dz + \left(\tau_{yx} + \frac{\partial \tau_{yx}}{\partial y} dy - \tau_{yx}\right) dx dz + \left(\tau_{zx} + \frac{\partial \tau_{zx}}{\partial z} dz - \tau_{zx}\right) dx dy (+)$$

$$+ f_x dx dy dz = 0$$

$$\implies \sigma_{xx,x} + \tau_{yx,y} + \tau_{zx,z} + f_x = 0$$

Die Randbedingungen beschreiben dabei zum einen Verschiebungen $\underline{u}_0(\underline{x})$ auf einem Teil der Körperoberfläche ∂v_1 und zum anderen Belastungen in Form eines CAUCHY-Spannungsvektors $\underline{t}(\underline{x})$ bezüglich der Oberflächennormale \underline{n} auf den restlichen Teil der Körperoberfläche ∂v_2 . Zur näherungsweisen Verarbeitung der Differentialgleichung wird hier vorerst das Variationsprinzip mit dem sogenannte *Prinzip der virtuellen Verrückung* herangezogen, mit dem ein Ersatzgleichgewichtsgleichung formuliert wird.

Abbildung 3: Kräfte an einem infinitesimalen Volumenelement

Globales Gleichgewicht über schwache Formulierung des Randwertproblems

Auf Grundlage der Differentialgleichung (starke Formulierung) erfolgt die schwache Formulierung durch Multiplikation einer Testfunktion beziehungsweise hier mit einer virtuellen Verrückung $\delta \underline{u}$, welche die kinematischen oder wesentlichen Randbedingungen erfüllen muss ($\forall \delta \underline{u} \in C^1(v) \cap C(\overline{v})$ mit $\overline{v} = v \cup \partial v$, $\delta \underline{u} = \underline{u}_0$ auf ∂v_1) mit anschließender Integration über das Berechnungsgebiet v

$$\underbrace{\int_{v} (\underline{\underline{\sigma}} : \delta \underline{\underline{\varepsilon}}) \, \mathrm{d}v}_{\delta W_{i}} = \underbrace{\int_{v} (\underline{f} \cdot \delta \underline{\underline{u}}) \, \mathrm{d}v}_{\delta W_{a}} + \underbrace{\int_{\partial v_{2}} (\underline{t} \cdot \delta \underline{\underline{u}}) \, \mathrm{d}a}_{\delta W_{a}}$$

wobei $\int_{v} \nabla \cdot \underline{\sigma} \cdot \delta \underline{u} \, dv = \int_{a} (\underline{\sigma} \cdot \underline{n}) \cdot \delta \underline{u} \, da - \int_{v} \underline{\sigma} : (\nabla \delta \underline{u}) \, dv$ (Green'sche Integralsatz) sowie $\nabla \delta \underline{u} = \underline{\varepsilon} (\delta \underline{u}) = \delta \underline{\varepsilon}$. Es sei darauf hingewiesen, dass die Integration über das verformte Volumen v erfolgt, wobei die Integration für kleine Verformungen näherungsweise über das unverformte Volumen V erfolgt.

Kinematik

Die kinematische Beziehung der örtlich dreidimensionalen Dehnung ist für kleine Verformung als Verzerrungstensor gegeben

$$\underline{\underline{\varepsilon}} = \frac{1}{2} \left(\nabla \underline{u} + (\nabla \underline{u})^{\mathrm{T}} \right) \quad \text{bzw.} \quad \varepsilon_{ij} = \frac{1}{2} \left(u_{i,j} + u_{j,i} \right)$$

bzw. in Ingeniersnotation $\varepsilon_{6\times 1} = \mathcal{D}_{6\times 3} u_{3\times 1} \quad \text{da } \underline{\underline{\varepsilon}}^{\mathrm{T}} = \underline{\underline{\varepsilon}}$

oder ausführlich

$$\begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ 2\varepsilon_{23} \\ 2\varepsilon_{13} \\ 2\varepsilon_{12} \end{bmatrix} = \begin{bmatrix} \partial / \partial X_1 & 0 & 0 \\ 0 & \partial / \partial X_2 & 0 \\ 0 & 0 & \partial / \partial X_3 \\ 0 & \partial / \partial X_3 & \partial / \partial X_3 \\ \partial / \partial X_3 & 0 & \partial / \partial X_1 \\ \partial / \partial X_2 & \partial / \partial X_1 & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$

Hierin ist \mathcal{D} die Differentialoperatormatrix. Aufgrund der, in technischen Anwendungen, häufig kleinen vorhandenen Dehnungen, wird der lineare Verzerrungstensor auch als *technische Dehnung* bezeichnet. Für den geometrisch nichtlinearen Fall sind die Dehnungen allgemein von dem Verlauf der Verformung abhängig $\underline{\varepsilon} = \underline{\varepsilon}(\underline{u})$. Hierzu ist es notwendig die für geometrisch lineare Berechnung vorausgesetzten Annahmen

- Gleichgewicht am unverformten System,
- kleine Rotationen (sin $\vartheta \approx \tan \vartheta \approx \vartheta$, cos $\vartheta \approx 1$) und

- kleine Dehnungen

aufzuheben.

Mit den Green-Lagrange-Verzerrungstensor lassen sich Deformationen eines Körpers bei großen Rotationen im Ausgangszustand beschreiben [5]

$$\underline{\underline{E}}_{G} = \frac{1}{2} \left(\underline{\underline{F}}^{T} \underline{\underline{F}} - \underline{\underline{I}} \right) = \frac{1}{2} \left(\underline{\underline{C}} - \underline{\underline{I}} \right) \quad \text{mit} \quad \underline{\underline{C}} = \underline{\underline{F}}^{T} \underline{\underline{F}}$$

Hierin ist $\underline{\underline{F}}$ der Deformationsgradient, $\underline{\underline{C}}$ der rechte CAUCHY-GREEN-Tensor und $\underline{\underline{I}}$ die Einheitsmatrix. Der Deformationsgradient $\underline{\underline{F}}$ bildet ein materielles Linienelement des unverformten Ausgangszustand d \underline{X} auf ein materielles Linienelement des verformten Momentanzustand d \underline{x} ab. Die Komponenten des Deformationsgradienten sind durch das totale Differential

$$dx_i = \frac{\partial x_i}{\partial X_j} dX_j = F_{ij} dX_j \quad \text{mit} \quad F_{ij} = \frac{\partial x_i}{\partial X_j} \qquad \text{bzw.} \quad d\underline{x} = \nabla \underline{x} d\underline{X} = \underline{\underline{F}} d\underline{X} \quad \text{mit} \quad \underline{\underline{F}} = \nabla \underline{x}$$

gegeben. Neben der Transformation von Linienelemente und der Kenntnis des Deformationsgradienten erfolgt die Transformation von Flächenelemente nach der Formel von NANSON [6: S. 88]

$$d\underline{a} = \underline{n} da = J \underline{\underline{F}}^{-T} \underline{N} dA = J \underline{\underline{F}}^{-T} d\underline{A} \quad \text{mit} \quad J = \det \underline{\underline{F}}$$

Hierin ist \underline{n} der Flächennormalenvektor in der Momentankonfiguration und \underline{N} der Flächennormalenvektor in der Ausgangskonfiguration sowie J die JACOBI-Determinante des Deformationsgradienten. Für die Transformation der Volumenelemente gilt

$$dv = J dV$$

Mit der polaren Zerlegung des Deformationsgradienten in einen orthogonalen Rotationstensor $\underline{\underline{R}}$ (mit $\underline{\underline{R}}^{-1} = \underline{\underline{R}}$) und einen symmetrischen Strecktensor $\underline{\underline{U}}$ wird die Starrkörperrotation getrennt von der Streckung beschrieben. [6: S. 92]

$$\underline{\underline{F}} = \underline{\underline{R}}\underline{\underline{U}}$$

Liegt eine reine Starrkörperrotation vor ist $\underline{\underline{F}} = \underline{\underline{R}}$ und der GREEN-LAGRANGE-Verzerrungstensor

$$\underline{\underline{\underline{E}}}_{G} = \frac{1}{2} \left(\underline{\underline{\underline{R}}}^{T} \underline{\underline{\underline{R}}} - \underline{\underline{\underline{I}}} \right) = \underline{\underline{\underline{0}}}$$

Somit ruft eine reine Starrkörperrotation keine Dehnungen hervor.

Der GREEN-LAGRANGE-Verzerrungstensor lässt sich ebenfalls mit den Verschiebungen beziehungsweise dem Verschiebungsgradienten beschreiben. Die Deformation des Körpers ist durch den Verschiebungsvektor \underline{u} bestimmt

$$\underline{u} = \underline{x} - \underline{X}$$

Die Änderung des betrachteten materiellen Linienelements ist mit dem Deformationsgradienten entsprechend

$$d\underline{\boldsymbol{u}} = d\underline{\boldsymbol{x}} - d\underline{\boldsymbol{X}} = (\underline{\underline{F}} - \underline{\underline{I}}) d\underline{\boldsymbol{X}} = \underline{\underline{H}} d\underline{\boldsymbol{X}} \quad \text{mit} \quad \underline{\underline{H}} = \underline{\underline{F}} - \underline{\underline{I}} = \nabla \underline{\boldsymbol{u}} = \begin{bmatrix} \frac{\partial u_i}{\partial X_j} \end{bmatrix}$$

Hierin ist $\underline{\underline{H}}$ der Verschiebungsgradient. Wird für den Green-Lagrange-Verzerrungstensor der Deformationsgradienten durch den Verschiebungsgradient ersetzt nimmt der Verzerrungstensor folgende Form an

$$\underline{\underline{E}}_{G} = \frac{1}{2} \left(\underline{\underline{H}} + \underline{\underline{H}}^{T} + \underline{\underline{H}}^{T} \underline{\underline{H}} \right) \quad \text{bzw.} \quad E_{Gij} = \frac{1}{2} \left(\frac{\partial u_{i}}{\partial X_{j}} + \frac{\partial u_{j}}{\partial X_{i}} + \frac{\partial u_{k}}{\partial X_{j}} \frac{\partial u_{k}}{\partial X_{j}} \right)$$

Unter Vernachlässigung des quadratischen Terms entspricht der GREEN-LAGRANGE-Verzerrungstensor der linearen technischen Dehnung.

Der GREEN-LAGRANGE-Verzerrungstensor eignet sich für große Rotationen und kleine Streckungen, wie zum Beispiel für die Platten- und Schalentheorie. Für hingegen große Rotationen und große Streckungen sind die logarithmischen oder wahren Dehnungen beziehungsweise HENCKY-Dehnungen geeignet. [7, 8]

$$\underline{\underline{E}}_{\mathrm{H}} = \ln \underline{\underline{U}} = \frac{1}{2} \ln \underline{\underline{C}} = \frac{1}{2} \ln (\underline{\underline{F}}^{\mathrm{T}} \underline{\underline{F}}) \quad \text{mit} \quad \underline{\underline{C}} = \underline{\underline{F}}^{\mathrm{T}} \underline{\underline{F}} = \underline{\underline{U}}^{2}$$

Materialgesetz

Im linear elastischen Fall wird die Beziehung zwischen der Spannung und der Verzerrungen durch das klassische Hookesche Gesetz der linearen Elastizitätstheorie beschrieben

$$\underline{\underline{\sigma}} = \underline{C}_{4} : \underline{\underline{\varepsilon}} \qquad \text{bzw.} \quad \sigma_{ij} = C_{ijkl} \varepsilon_{kl}$$

bzw. in Ingeniersnotation $\sigma_{6\times 1} = C_{6\times 6} \varepsilon_{6\times 1} \qquad \text{da } \underline{\sigma}^{\mathrm{T}} = \underline{\sigma} \wedge \underline{\varepsilon}^{\mathrm{T}} = \underline{\varepsilon}$

oder Ausführlich

$\begin{bmatrix} \sigma_2 \\ \sigma_3 \\ \sigma_4 \\ \sigma_5 \\ \sigma_6 \end{bmatrix} = \begin{bmatrix} c_{21} & c_{22} & c_{23} & c_{24} & c_{25} & c_{26} \\ c_{31} & c_{32} & c_{33} & c_{34} & c_{35} & c_{36} \\ c_{41} & c_{42} & c_{43} & c_{44} & c_{45} & c_{46} \\ c_{51} & c_{52} & c_{53} & c_{54} & c_{55} & c_{56} \\ c_{61} & c_{62} & c_{63} & c_{64} & c_{65} & c_{66} \end{bmatrix} \begin{bmatrix} c_2 \\ c_3 \\ c_4 \\ c_5 \\ c_5 \\ c_5 \\ c_6 \end{bmatrix} \text{mit} \begin{bmatrix} \sigma_2 \\ \sigma_3 \\ \sigma_4 \\ \sigma_5 \\ \sigma_5 \\ \sigma_6 \end{bmatrix}$	=	$\sigma_{22} \\ \sigma_{33} \\ \sigma_{23} \\ \sigma_{13} \\ \sigma_{12}$,	ε ₂ ε ₃ ε ₄ ε ₅ ε ₆	=	
--	---	---	---	--	---	--

Im allgemeinem Fall entsprechen die enthaltene Richtungen der Dehnung nicht die enthaltene Richtung der Kraftkomponente. Es kann somit jede Spannungskomponente von jeder Dehnungskomponente abhängen, weshalb entgegen dem bekannteren eindimensionalen Fall $\sigma(x) = E\varepsilon(x)$ das Verhalten nicht mit einer einzigen Zahl oder Größe beschrieben wird. Damit ist die Elastizitätsbeziehung beziehungsweise der Elastizitätstensor C, der das Materialverhalten beschreibt, kein Skalar sondern ein Tensor vierter Stufe.

Mit dem Momentengleichgewicht am infinitesimalen Volumen zeigt sich, dass bei Abwesenheit von verteilten Momenten sowohl der Spannungstensor als auch der Verzerrungstensor symmetrisch sind und somit jeweils nur sechs unabhängige Komponenten haben. Es lässt sich ebenfalls zeigen dass der Elastizitätstensor höchstens $6^2 = 36$ Komponenten hat und dass mit Hilfe der Formänderungsenergiedichte

$$w_{\rm f} = \int \sigma_{ij} d\varepsilon_{ij} = C_{ijkl} \int \varepsilon_{kl} d\varepsilon_{ij} = \frac{1}{2} C_{ijkl} \varepsilon_{kl} \varepsilon_{ij} = \frac{1}{2} \sigma_{ij} \varepsilon_{ij} \quad \text{mit } \sigma_{ij} = C_{ijkl} \varepsilon_{kl} , \ i, j, k, l = 1, 2, 3$$

die Steifigkeitsmatrix symmetrisch ist und somit die unabhängigen Komponenten auf 21 reduzieren ($C_{ijkl} = C_{klij}$ beziehungsweise $C_{rs} = C_{sr}$ mit r, s = 1, 2, 3, 4, 5, 6).

Für den physikalisch nichtlinearen Fall sind die Spannungen allgemein von dem Verlauf der Verformung abhängig $\underline{\sigma} = \underline{\sigma}(\underline{u})$. Für eine genauere Darstellung von beispielsweise Plastizität oder hyperelastisches Materialverhalten wird auf [4] und [5] verwiesen.

Im Zuge der geometrischen Nichtlinearität beziehungsweise mit dem Bezug auf die Ausgangskonfiguration wird der erste Piola-Кікснноғғ-Spannungstensor

$$\underline{\underline{P}} = J \underline{\underline{\sigma}} \underline{\underline{F}}^{-T} = \underline{\underline{\tau}} \underline{\underline{F}}^{-T} \quad \text{mit} \quad \underline{\underline{\tau}} = J \underline{\underline{\sigma}}$$

eingeführt, wobei $\underline{\tau}$ der Кıкснноғғ-Spannungstensor ist. Da der erste Рюга-Кıкснноғғ-Spannungstensor nicht symmetrisch ist wird, durch die vollständigen Transformation des CAUCHY-Spannungstensor in die Ausgangskonfiguration, der zweite PIOLA-KIRCH-HOFF-Spannungstensor eingeführt

$$\underline{\underline{S}} = \underline{\underline{F}}^{-1} \underline{\underline{P}} = J \underline{\underline{F}}^{-1} \underline{\underline{\sigma}} \underline{\underline{F}}^{-T}$$

Der zweite PIOLA-KIRCHHOFF-Spannungstensor stellt das zu dem Green-Lagrange-Verzerrungstensor konjugierte Spannungsmaß dar. [7] Das entsprechende elastischen Materialgesetz lautet

$$\underline{\underline{\underline{S}}} = \underbrace{\underline{C}}_{\widetilde{4}} : \underline{\underline{\underline{E}}}_{\mathrm{G}}$$

Das FE-Gleichungssystem

Das Aufstellen des FE-Gleichungssystems beginnt mit der Vernetzung beziehungsweise der Partitionierung des Volumens

$$V \approx | | V^{(e)}$$

Hiermit entspricht das Gesamtvolumen die Vereinigung der diskreten Einzelvolumen oder Elementvolumen.

Die *Approximation*, mittels Ansatzfunktionen als Linearkombination von Formfunktionen mit Knotenverformungen als Koeffizienten, lautet

$$\boldsymbol{u}|_{V^{(e)}} \approx \boldsymbol{u}_{\mathrm{fe}}|_{V^{(e)}} = \boldsymbol{N}|_{V^{(e)}} \hat{\boldsymbol{u}} \quad \mathrm{mit} \ \forall \boldsymbol{u}_{\mathrm{fe}} \in C^{0}(V)$$

worin u_{fe} die FE-Verformung, N die Formfunktionen und \hat{u} die Knotenverformung sind. Werden für die Volumenvernetzung Hexaeder-Elemente (Würfel) mit trilinearen Formfunktionen verwendet (acht Knoten) nimmt die Matrixnotation folgende Darstellung an

$$\boldsymbol{u}_{3\times 1} = \boldsymbol{N}_{3\times 24}\,\boldsymbol{\hat{u}}_{24\times 1}$$

Die Formfunktion eines Elementknotens kann durch Multiplikation der zu diesem Knoten korrespondierenden (drei) eindimensionalen Formfunktionen (LAGRANGE-Polynome) entwickelt werden.[9] Dabei werden die Formfunktionen des jeweiligen Knotens N_i mit Hilfe der Interpolationseigenschaften

$$N_i(\underline{\xi}^i) = 1$$
, $i = 1, 2, ..., 8$
 $N_i(\xi^j) = 0$, $j \neq i$

hergeleitet, wobei mit $\underline{\xi}^i$ die Koordinate zum Knoten *i* gemeint ist. Die Abbildung 3 zeigt am Beispiel des dritten Knotens die entsprechende Formfunktion.

Abbildung 4: Formfunktion $N_3(\xi)$ des Achtknoten-Volumenelements

Die acht Formfunktionen des trilinearen Volumenelements, die in Abhängigkeit dem zum Element gewählten natürlichen Koordinaten $\underline{\xi}$ (mit $\xi_i = [-1,1]$) beschrieben sind, lauten

$$N_{1}(\underline{\xi}) = \frac{1}{8}(1-\xi_{1})(1-\xi_{2})(1-\xi_{3})$$

$$N_{2}(\underline{\xi}) = \frac{1}{8}(1+\xi_{1})(1-\xi_{2})(1-\xi_{3})$$

$$N_{3}(\underline{\xi}) = \frac{1}{8}(1+\xi_{1})(1+\xi_{2})(1-\xi_{3})$$

$$N_{4}(\underline{\xi}) = \frac{1}{8}(1-\xi_{1})(1+\xi_{2})(1-\xi_{3})$$

$$N_{5}(\underline{\xi}) = \frac{1}{8}(1-\xi_{1})(1-\xi_{2})(1+\xi_{3})$$

$$N_{6}(\underline{\xi}) = \frac{1}{8}(1+\xi_{1})(1-\xi_{2})(1+\xi_{3})$$

$$N_{7}(\underline{\xi}) = \frac{1}{8}(1+\xi_{1})(1+\xi_{2})(1+\xi_{3})$$

$$N_{8}(\underline{\xi}) = \frac{1}{8}(1-\xi_{1})(1+\xi_{2})(1+\xi_{3})$$

Für die Anordnung in die Matrix der Formfunktionen N werden die jeweilige Formfunktion zum Knoten N_i zuerst diagonal zu jeden Freiheitsgrad in eine Untermatrix N_i abgebildet. Anschließend werden diese Untermatrizen in Reihe für jeden Knoten angeordnet.

$$\boldsymbol{N}_{i}(\underline{\boldsymbol{\xi}}) = \begin{bmatrix} N_{i}(\underline{\boldsymbol{\xi}}) & 0 & 0\\ 0 & N_{i}(\underline{\boldsymbol{\xi}}) & 0\\ 0 & 0 & N_{i}(\underline{\boldsymbol{\xi}}) \end{bmatrix} \qquad \boldsymbol{N}(\underline{\boldsymbol{\xi}}) = \begin{bmatrix} \boldsymbol{N}_{1}(\underline{\boldsymbol{\xi}}) & \boldsymbol{N}_{2}(\underline{\boldsymbol{\xi}}) & \cdots & \boldsymbol{N}_{8}(\underline{\boldsymbol{\xi}}) \end{bmatrix}$$

Sollen die Formfunktionen mit natürlichen Koordinaten verwendet werden, muss für den Verzerrungstensor die Ableitungen nach den physikalischen globalen Koordinaten \underline{X}

und den natürlichen Elementkoordinaten $\underline{\xi}$ eine Transformation erfolgen. Es gilt als Transformationsbeziehung

$$\begin{bmatrix} \partial & \partial & \delta_1 \\ \partial & \partial & \delta_2 \\ \partial & & \partial & \xi_2 \\ \partial & & \partial & \xi_3 \end{bmatrix} = \begin{bmatrix} \partial & X_1 & \partial & X_2 & \partial & \delta_1 & \partial & X_3 & \partial & \delta_1 \\ \partial & & X_1 & \partial & \delta_2 & \partial & X_2 & \partial & \delta_2 & \partial & X_3 & \partial & \delta_2 \\ \partial & & & X_1 & \partial & \delta_3 & \partial & X_2 & \partial & \delta_3 & \partial & \delta_3 \end{bmatrix} \begin{bmatrix} \partial & \partial & X_1 & \partial & X_1 & \partial & X_1 \\ \partial & & \partial & X_2 & \partial & X_2 & \partial & X_3 & \partial & \delta_2 \\ \partial & & & & X_1 & \partial & & X_2 & \partial & X_3 & \partial & \delta_3 \end{bmatrix}$$
bzw. $\frac{\partial}{\partial & \underline{\xi}} = \underline{I}(\underline{\xi}) \frac{\partial}{\partial & \underline{X}}$

Hierin ist $\underline{J}(\underline{\xi})$ die Jacobi-Matrix. Mit der Inversen-Jacobi-Matrix wird die Transformationsbeziehung zur Ableitung von Funktion in natürliche Koordinaten nach den physikalischen Koordinaten beschrieben.

$$\begin{bmatrix} \partial/\partial X_1 \\ \partial/\partial X_2 \\ \partial/\partial X_3 \end{bmatrix} = \begin{bmatrix} \partial\xi_1/\partial X_1 & \partial\xi_2/\partial X_1 & \partial\xi_3/\partial X_1 \\ \partial\xi_1/\partial X_2 & \partial\xi_2/\partial X_2 & \partial\xi_3/\partial X_2 \\ \partial\xi_1/\partial X_3 & \partial\xi_2/\partial X_3 & \partial\xi_3/\partial X_3 \end{bmatrix} \begin{bmatrix} \partial/\partial \xi_1 \\ \partial/\partial \xi_2 \\ \partial/\partial \xi_3 \end{bmatrix} \quad \text{bzw.} \quad \frac{\partial}{\partial \underline{X}} = \underline{I}^{-1}(\underline{\xi}) \frac{\partial}{\partial \underline{\xi}}$$

Mit Hilfe der Jacobi-Determinante ist das Volumenelement dV in physikalischen Koordinaten in das Volumenelement in natürlichen Koordinaten zu transformieren.

$$\mathrm{d}V = |\underline{\underline{J}}(\underline{\xi})| \,\mathrm{d}\xi_1 \,\mathrm{d}\xi_2 \,\mathrm{d}\xi_3$$

Das Gebiet des Randwertproblem für kleine Verformungen (mit v = V) wird mit der *Assemblierung* als Summe aller Elementintegrale abgebildet.

$$\underbrace{\int_{V} \underbrace{\underline{\sigma}}_{V} : \delta \underline{\varepsilon} \, dV}_{\delta W_{i}} = \underbrace{\sum_{(e)} \int_{V(e)} \underbrace{\underline{\sigma}}_{V(e)} : \delta \underline{\varepsilon} \, dV}_{\delta W_{i}|_{V(e)}},$$

$$\underbrace{\int_{V} \underbrace{\underline{f}}_{V} : \delta \underline{u} \, dV}_{\delta V_{2}} : \underbrace{\int_{\delta W_{a}} \underbrace{f}_{V(e)} : \delta \underline{u} \, dV}_{\delta W_{a}|_{V(e)}} : \underbrace{\int_{\delta W_{a}} \underbrace{f}_{V(e)} : \delta \underline{u} \, dV}_{\delta W_{a}|_{V(e)}} :$$

Mit den Materialgesetz, der kinematischen Beziehung und der Assemblierung ergibt sich die virtuelle innere Arbeit zu

$$\sum_{(e)} \int_{V^{(e)}} \underline{\underline{\sigma}} : \delta \underline{\underline{\varepsilon}} \, \mathrm{d}V = \sum_{(e)} \int_{V^{(e)}} C \varepsilon \cdot \delta \varepsilon \, \mathrm{d}V = \sum_{(e)} \delta \hat{\boldsymbol{u}}^{\mathrm{T}} \int_{V^{(e)}} \underbrace{(\mathcal{D}N)^{\mathrm{T}}}_{B^{\mathrm{T}}} C \underbrace{(\mathcal{D}N)}_{B} \, \mathrm{d}V \hat{\boldsymbol{u}}$$
$$= \sum_{(e)} \delta \hat{\boldsymbol{u}}^{\mathrm{T}} K^{(e)} \hat{\boldsymbol{u}} \quad \text{mit } K^{(e)} = \int_{V^{(e)}} B^{\mathrm{T}} C B \, \mathrm{d}V$$
$$= \delta \hat{\boldsymbol{u}}^{\mathrm{T}} K \hat{\boldsymbol{u}} \quad \text{mit } K = \sum_{(e)} K^{(e)}$$

Hierin beschreibt B die Ableitungen der Formfunktionen in Bezug auf die Dehnungs-Verschiebungs-Beziehungen. Weiter sind $K^{(e)}$ die Elementsteifigkeitmatrix und K die Gesamtsteifigkeitsmatrix.

Die äußere virtuelle Arbeit wird entsprechend umgeformt

$$\sum_{(e)} \int_{V(e)} \underline{f} \cdot \delta \underline{u} \, \mathrm{d}V + \sum_{(e)} \int_{\partial V_2^{(e)}} \underline{t} \cdot \delta \underline{u} \, \mathrm{d}A = \sum_{(e)} \delta \hat{u}^{\mathrm{T}} \int_{V^{(e)}} N^{\mathrm{T}} \underline{f} \, \mathrm{d}V + \sum_{(e)} \delta \underline{\hat{u}}^{\mathrm{T}} \int_{\partial V_2^{(e)}} N^{\mathrm{T}} \underline{t} \, \mathrm{d}A$$
$$= \sum_{(e)} \delta \hat{u}^{\mathrm{T}} \hat{r}^{(e)} \quad \text{mit } \hat{r}^{(e)} = \int_{V^{(e)}} N^{\mathrm{T}} \underline{f} \, \mathrm{d}V + \int_{\partial V_2^{(e)}} N^{\mathrm{T}} \underline{t} \, \mathrm{d}A$$
$$= \delta \hat{u}^{\mathrm{T}} \hat{r} \quad \text{mit } \hat{r} = \sum_{(e)} \hat{r}^{(e)}$$

Hierin ist \hat{r} der Knotenlastvektor. Mit den beiden virtuellen Arbeitsaussagen lautet das globale Gleichgewicht

$$\delta \hat{\boldsymbol{u}}^{\mathrm{T}} \boldsymbol{K} \hat{\boldsymbol{u}} = \delta \hat{\boldsymbol{u}}^{\mathrm{T}} \hat{\boldsymbol{r}}$$

Abschließend wird die virtuelle Verschiebung ausgeklammert

$$\delta \hat{\boldsymbol{u}}^{\mathrm{T}} \boldsymbol{K} \hat{\boldsymbol{u}} = \delta \hat{\boldsymbol{u}}^{\mathrm{T}} \hat{\boldsymbol{r}} \quad \rightarrow \quad \delta \hat{\boldsymbol{u}}^{\mathrm{T}} (\boldsymbol{K} \hat{\boldsymbol{u}} - \hat{\boldsymbol{r}}) = 0$$

Aus dem Variationsargument, dass diese Gleichung für beliebige virtuelle Verschiebungen gelten soll, muss der Klammerausdruck zu Null werden und es folgt das lineare FE-Gleichungssystem.

$$K\hat{u} = \hat{r}$$

Gelöst wird das Gleichungssystem nach

 $\hat{\boldsymbol{u}} = \boldsymbol{K}^{-1} \hat{\boldsymbol{r}}$

– 16 –

wobei vorher das noch singuläre FE-Gleichungssystem mit den Lagerbedingung \hat{u}_0 sich zu einem eindeutig lösbaren System reduziert. Genauer wird zwischen unbekannten Verschiebungen \hat{u}_a und bekannten Verschiebungen $\hat{u}_b = \hat{u}_0$ unterschieden. Das Gleichungssystem lässt sich mit diesen Bezeichnungen wie folgt umschreiben

$$\begin{bmatrix} \boldsymbol{K}_{aa} & \boldsymbol{K}_{ab} \\ \boldsymbol{K}_{ab}^{T} & \boldsymbol{K}_{bb} \end{bmatrix} \begin{bmatrix} \boldsymbol{\hat{u}}_{a} \\ \boldsymbol{\hat{u}}_{b} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\hat{r}}_{a} \\ \boldsymbol{\hat{r}}_{b} \end{bmatrix}$$

Für die unbekannte Verschiebung gilt nun

$$\hat{\boldsymbol{u}}_{a} = \boldsymbol{K}_{aa}^{-1} \left(\hat{\boldsymbol{r}}_{a} - \boldsymbol{K}_{ab} \hat{\boldsymbol{u}}_{b} \right)$$

Dieses Gleichungssystem stellt das reduzierte Gleichungssystem dar.

Mit den ermittelten Verschiebungen können nun auch die unbekannten Knotenkräfte beziehungsweise Reaktionskräfte berechnet werden.

$$\hat{\boldsymbol{r}}_{b} = \boldsymbol{K}_{ab}^{T} \hat{\boldsymbol{u}}_{a} + \boldsymbol{K}_{bb} \hat{\boldsymbol{u}}_{b}$$

2.1.2 Dynamische Analysen

Im Gegensatz zu dem statischen Fall $\underline{u}(\underline{x})$ sind bei dynamischen zeitabhängigen Problemen $\underline{u}(\underline{x},t)$ – die Bewegungen beschreiben – Trägheitskräfte $\rho \underline{u}$ zu berücksichtigen. Diese Trägheitskräfte wirken entgegengesetzt zur angenommenen Bewegungsrichtung. Damit lautet die starke Form des Gleichgewicht oder der allgemeine dynamische Impulsbilanz für ein Materialpunkt

$$\nabla \cdot \underline{\underline{\sigma}} + \rho \underline{\underline{b}} = \rho \underline{\underline{u}} \qquad \forall \underline{x} \in v \land \forall t \in [0, T],$$

$$\underline{\underline{u}} = \underline{\underline{u}}_{0}, \qquad \forall \underline{x} \in \partial v_{1} \qquad \text{(Dirichlet'sche Randbedingungen)}$$

$$\underline{\underline{\sigma}} \cdot \underline{\underline{n}} = \underline{\underline{t}} \qquad \forall \underline{x} \in \partial v_{2} \land \forall t \in [0, T], \text{(Neumann'sche Randbedingungen)}$$

wobei $\partial v_{1} \cup \partial v_{2} = \partial v \text{ und } \partial v_{1} \cap \partial v_{2} = \emptyset.$

Hierin ist das Intervall [0, T] das betrachtete Zeitintervall.

Sind geschwindigkeitsabhängige Dämpfungskräfte zu simulieren, ist in der partiellen Differentialgleichung ein weiterer Dämpfungsterm $d\dot{u}$ zu berücksichtigen

$$\nabla \cdot \underline{\boldsymbol{\sigma}} + \rho \underline{\boldsymbol{b}} = \rho \underline{\boldsymbol{u}} + d \underline{\boldsymbol{u}} \quad \forall \underline{\boldsymbol{x}} \in \boldsymbol{v} \land \forall t \in [0, T]$$

Zu den Anfangsbedingungen gehören

$$\underline{u}(\underline{x},0) = \underline{u}_0$$
$$\underline{\dot{u}}(\underline{x},0) = \underline{\dot{u}}_0$$
$$\underline{\ddot{u}}(\underline{x},0) = \underline{\ddot{u}}_0$$

Da diese möglichen Anfangsbedingungen nicht unabhängig voneinander sind, werden nur zwei der drei Anfangsbedingungen je Materialpunkt vorgeschrieben. Die verbleibende Größe ergibt sich aus der Auswertung der partiellen Differentialgleichung zum Zeitpunkt t = 0.

Globales Gleichgewicht über schwache Formulierung des Randwertproblems Die Umformung in die schwache Formulierung erfolgt analog zum statischen Fall

$$\int_{v} \underbrace{\underline{\sigma}}_{v} : \delta \underbrace{\underline{\varepsilon}}_{\underline{\varepsilon}} dv + \int_{v} d \underbrace{\underline{u}}_{v} \cdot \delta \underline{u} dv + \int_{v} \rho \underbrace{\underline{u}}_{v} \cdot \delta \underline{u} dv = \int_{v} \rho \underline{\underline{b}}_{v} \cdot \delta \underline{u} dv + \int_{\partial v_{2}} \underbrace{\underline{t}}_{v} \cdot \delta \underline{u} da \quad \forall t \in [0, T]$$

Das FE-Gleichungssystem

Bis auf den zweiten und dritten Term der linken Seite der Bewegungsdifferentialgleichung sind für die Terme die Partitionierung, Approximation und Assemblierung mit $\rho \underline{b} = \underline{f}$ im statischen Fall für das Randwertproblem mit kleinen Verformungen gezeigt. Die Beschreibung für den zweiten und dritten Term der linken Seite erfolgt (mit v = V) analog

$$\int_{V} \rho \vec{\underline{u}} \cdot \delta \underline{u} \, \mathrm{d}V = \sum_{(e)} \int_{V^{(e)}} \rho \vec{\underline{u}} \cdot \delta \underline{u} \, \mathrm{d}V = \sum_{(e)} \delta \hat{u}^{\mathrm{T}} \rho \int_{V^{(e)}} N^{\mathrm{T}} N \, \mathrm{d}V \hat{\vec{u}}$$
$$= \sum_{(e)} \delta \hat{u}^{\mathrm{T}} M^{(e)} \hat{\vec{u}} \quad \text{mit } M^{(e)} = \rho \int_{V^{(e)}} N^{\mathrm{T}} N \, \mathrm{d}V$$
$$= \delta \hat{u}^{\mathrm{T}} M \hat{\vec{u}} \quad \text{mit } M = \sum_{(e)} M^{(e)}$$

sowie

$$\int_{V} d\mathbf{\underline{u}} \cdot \delta \mathbf{\underline{u}} \, dV = \sum_{(e)} \int_{V^{(e)}} d\mathbf{\underline{u}} \cdot \delta \mathbf{\underline{u}} \, dV = \sum_{(e)} \delta \mathbf{\hat{u}}^{\mathrm{T}} d \int_{V^{(e)}} \mathbf{N}^{\mathrm{T}} \mathbf{N} \, dV \, \mathbf{\hat{u}}$$
$$= \sum_{(e)} \delta \mathbf{\hat{u}}^{\mathrm{T}} \mathbf{D}^{(e)} \, \mathbf{\hat{u}} \quad \text{mit } \mathbf{D}^{(e)} = d \int_{V^{(e)}} \mathbf{N}^{\mathrm{T}} \mathbf{N} \, dV$$
$$= \delta \mathbf{\hat{u}}^{\mathrm{T}} \mathbf{D} \, \mathbf{\hat{u}} \quad \text{mit } \mathbf{D} = \sum_{(e)} \mathbf{D}^{(e)}$$

Mit dem gleichen Variationsargument resultiert das halbdiskrete Bewegungsgleichungssystem

$$\boldsymbol{M}\boldsymbol{\hat{\boldsymbol{u}}}(t) + \boldsymbol{D}\boldsymbol{\hat{\boldsymbol{u}}}(t) + \boldsymbol{K}\boldsymbol{\hat{\boldsymbol{u}}}(t) = \boldsymbol{\hat{\boldsymbol{r}}}(t)$$

Mit M als Massenmatrix, D als Dämpfungsmatrix und K als Steifigkeitsmatrix sowie \hat{r} als Lastvektor.

Dämpfung

Der allgemeine Dämpfungsansatz erfolgt, wie gezeigt, in gleicherweise wie die Steifigkeitsmatrix und Massenmatrix durch Überlagerung von Elementmatrizen. Dies entspricht dem konstruktiven Einbau von Dämpfer als diskrete Dämpferelemente, die mit der bekannten Dämpfungskonstante *d* berücksichtigt werden, und führt allgemeinen zu einer beliebigen Struktur der Dämpfungsmatrix. Sind hingegen Strukturdämpfung oder Umgebungseinflüsse wie zum Beispiel Reibung zwischen zwei Reibpartner zu berücksichtigen, werden diese zumeist als proportionale Dämpfung berücksichtigt. Mit Reibpartner sind Reibungsvorgängen zwischen zwei Festkörper oder zwischen Festkörper und Fluid gemeint.

Bei der Verwendung von proportionaler Dämpfung – auch als Bequemlichkeitshypothese oder Rayleigh-Dämpfung bekannt – wird die Dämpfungsmatrix als Linearkombination von Massenmatrix und Steifigkeitsmatrix beschrieben

$$\boldsymbol{D} = \boldsymbol{\alpha}\boldsymbol{M} + \boldsymbol{\beta}\boldsymbol{K}$$

Die massenproportionale Dämpfung αM wirkt besonders auf die unteren Eigenfrequenzen und kann als äußere Dämpfung interpretiert werden, wie beispielsweise die Dämpfung durch ein umgebendes Medium. Die steifigkeitsproportionale Dämpfung βK wirkt hingegen besonders auf die höheren Eigenfrequenzen und kann, aufgrund der Abhängigkeit mit der elastischen Verformung, als innere Dämpfung interpretiert werden. [10]

Eigenfrequenzanalyse

Wichtige Informationen zur Beurteilung des Schwingungsverhaltens einer Struktur sind Eigenfrequenzen und Eigenformen. Hierzu wird das sogenannten Eigenschwingungsproblem untersucht, wobei $\hat{r}(t) = 0$ gilt. Mit der Differentialgleichung für ungedämpfte freie Schwingung

$$M\ddot{\ddot{u}}+K\hat{u}=0$$

sowie das Einsetzen des harmonischen Lösungsansatzes

$$\hat{\boldsymbol{u}} = \boldsymbol{\phi} \mathbf{e}^{\mathrm{i}\omega t}$$
 mit $\mathrm{i} = \sqrt{-1}$

in die Differentialgleichung, liefert das (reelle) Eigenwertproblem

$$(-\lambda M + K)\phi = 0$$
 mit $\lambda = \omega^2$

wobei allgemein e^{i ωt} \neq 0 gilt. Für die nichttriviale Lösung folgt die charakteristische Gleichung

$$\det\left(\boldsymbol{K}-\boldsymbol{\lambda}\boldsymbol{M}\right)=0$$

Hierin sind λ_i die Eigenwerte und ω_i die Eigenkreisfrequenzen sowie $f_i = \frac{\omega_i}{2\pi}$ die Eigenfrequenzen und ϕ_i die Eigenvektoren beziehungsweise Eigenmoden. Jeder Eigenwert λ_i entspricht eine nichttriviale Lösung mit den Eigenvektor ϕ_i .

$$(\mathbf{K} - \lambda_i \mathbf{M}) \boldsymbol{\phi}_i = \mathbf{0}$$

Die Eigenvektoren sind bezüglich der Steifigkeitsmatrix und der Massenmatrix orthogonal und es gilt

$$\boldsymbol{\phi}_i^{\mathrm{I}} \boldsymbol{M} \boldsymbol{\phi}_j = 0 , \quad \boldsymbol{\phi}_i^{\mathrm{I}} \boldsymbol{M} \boldsymbol{\phi}_i = \tilde{m}_i ,$$

$$\boldsymbol{\phi}_i^{\mathrm{T}} \boldsymbol{K} \boldsymbol{\phi}_i = 0 , \quad \boldsymbol{\phi}_i^{\mathrm{T}} \boldsymbol{K} \boldsymbol{\phi}_i = \tilde{k}_i .$$

wobei \tilde{m}_i modale Massen und \tilde{k}_i modale Steifigkeiten sind. Beziehungsweise beschreibt die modale Matrix $\mathbf{\Phi} = [\phi_1 \ \phi_2 \ \cdots \ \phi_n]$, in der spaltenweise die Eigenvektoren angeordnet sind, die modale Transformation der Massenmatrix und Steifigkeitsmatrix in Diagonalmatrizen, der sogenannten modalen Massenmatrix sowie modalen Steifigkeitsmatrix.

$$\tilde{M} = \mathbf{\Phi}^{\mathrm{T}} M \mathbf{\Phi}$$
 und $\tilde{K} = \mathbf{\Phi}^{\mathrm{T}} K \mathbf{\Phi}$

Eingesetzt in das System von Differentialgleichung und Linksmultiplikation von Φ^T ergibt eine völlige Entkoppelung in einzelne unabhängige Differentialgleichungen

$$\tilde{\boldsymbol{M}}\boldsymbol{\ddot{q}} + \boldsymbol{\tilde{K}}\boldsymbol{q} = 0$$
 bzw. $\tilde{m}_i\boldsymbol{\ddot{q}}_i + \tilde{k}_iq_i = 0$, $i = 1,...,n$

Hierin verknüpft die Vektortransformation beziehungsweise Rücktransformation

$$\boldsymbol{q}(t) = \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\hat{u}}(t)$$
 bzw. $\boldsymbol{\hat{u}}(t) = \boldsymbol{\Phi} \boldsymbol{q}(t)$

die physikalischen Koordinaten $\hat{u}(t)$ mit den modalen Koordinaten q(t).

Ist hingegen eine Dämpfung zu berücksichtigen, kann unter bestimmten Bedingungen weiter mit den Eigenvektoren des ungedämpften Systems gerechnet werden und das System bleibt modal entkoppelt

$$\tilde{M}\ddot{q} + \tilde{D}\dot{q} + \tilde{K}q = 0$$
 bzw. $\tilde{m}_i\ddot{q}_i + \tilde{d}_i\dot{q}_i + \tilde{k}_iq_i = 0$, $i = 1, ..., n$

mit der modalen Dämpfungsmatrix

$$\tilde{\boldsymbol{D}} = \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{D} \boldsymbol{\Phi}$$
 bzw. $\tilde{d}_{i} = \boldsymbol{\phi}_{i}^{\mathrm{T}} \boldsymbol{D} \boldsymbol{\phi}_{i}$ \wedge $0 = \boldsymbol{\phi}_{i}^{\mathrm{T}} \boldsymbol{D} \boldsymbol{\phi}_{i}$

Für die modale Entkopplung muss beispielsweise die Dämpfung entweder direkt in den modalen Koordinaten eingegeben oder wie oben bereits angedeutet nach RAYLEIGH proportional zu der Massenmatrix und Steifigkeitsmatrix beschrieben werden. Die erste Variante gibt direkt eine diagonale Dämpfungsmatrix in den modalen Koordinaten vor. Die zweite Variante liefert eine diagonale Dämpfungsmatrix aus dem Wissen dass die Massenmatrix und Steifigkeitsmatrix diagonalisiert werden und damit auch die proportionale Überlagerung beider.

Im Falle einer beliebigen Dämpfungsmatrix führt die Differentialgleichung einer gedämpften freien Schwingung mit dem exponentiellen Lösungsansatzes

$$\hat{u} = \phi e^{\lambda i}$$

zu einem quadratischen Eigenwertproblem

$$(\lambda^2 M + \lambda D + K)\phi = 0$$

Als Lösung ergeben sich konjugiert komplexe Eigenwerte und komplexe Eigenvektoren, wobei die Eigenvektoren, entgegen der ungedämpften Schwingung, nicht orthogonal zu der Massenmatrix und Steifigkeitsmatrix sind. Sind von allen Eigenwerten die Realanteile negativ liegt eine gedämpfte Schwingung vor, wobei der Realteil des Eigenwertes die Abklingkonstante und der Imaginärteil des Eigenwertes die Eigenkreisfrequenz der Schwingung darstellt. Im Falle von positiven Realteilen ist das System instabil und die Amplituden nehmen über der Zeit immer größere Werte an.

Transiente Analyse

Neben der Volumendiskretisierung wird, für die Zeitintegration von transienten Feldgleichungen, das zu untersuchende Zeitintervall in diskrete Zeitabschnitte Δt unterteilt

$$[0,T] = \bigcup \Delta t \quad \text{mit } \Delta t = t_{n+1} - t_n$$

Für das halbdiskrete zeitlich abhängige FE-Gleichungssystem zum Zeitpunkt t_{n+1}

$$\boldsymbol{M}\boldsymbol{\hat{\boldsymbol{u}}}_{n+1} + \boldsymbol{D}\boldsymbol{\hat{\boldsymbol{u}}}_{n+1} + \boldsymbol{K}\boldsymbol{\hat{\boldsymbol{u}}}_{n+1} = \boldsymbol{\hat{r}}_{n+1}$$

erfolgt die Einschritt-Zeitintegration beispielsweise nach Newmark [11] mit aktualisierter Verschiebung und Geschwindigkeit

$$\hat{\boldsymbol{u}}_{n+1} = \hat{\boldsymbol{u}}_n + \left[(1-\delta)\hat{\boldsymbol{u}}_n + \delta\hat{\boldsymbol{u}}_{n+1} \right] \Delta t$$
$$\hat{\boldsymbol{u}}_{n+1} = \hat{\boldsymbol{u}}_n + \hat{\boldsymbol{u}}_n \Delta t + \left[\left(\frac{1}{2} - \alpha \right) \hat{\boldsymbol{u}}_n + \alpha \hat{\boldsymbol{u}}_{n+1} \right] \Delta t^2$$

worin α und δ Newmark-Parameter sowie $\hat{\vec{u}}_n$, $\hat{\vec{u}}_n$, $\hat{\vec{u}}_n$ die bekannten Knotenbeschleunigung, Knotengeschwindigkeit und Knotenverschiebung zum Zeitpunkt t_n sind. Die Umschreibung des Gleichungssystem erfolgt nach einsetzen zu

$$\begin{bmatrix} \frac{1}{\alpha \Delta t^2} \boldsymbol{M} + \frac{\delta}{\alpha \Delta t} \boldsymbol{D} + \boldsymbol{K} \end{bmatrix} \hat{\boldsymbol{u}}_{n+1} = \hat{\boldsymbol{r}}_{n+1} + \boldsymbol{M} \begin{bmatrix} \frac{1}{\alpha \Delta t^2} \hat{\boldsymbol{u}}_n + \frac{1}{\alpha \Delta t} \hat{\boldsymbol{u}}_n + \left(\frac{1}{2\alpha} - 1\right) \hat{\boldsymbol{u}}_n \end{bmatrix} + \boldsymbol{D} \begin{bmatrix} \frac{\delta}{\alpha \Delta t} \hat{\boldsymbol{u}}_n + \left(\frac{\delta}{\alpha} - 1\right) \hat{\boldsymbol{u}}_n + \frac{\Delta t}{2} \left(\frac{\delta}{\alpha} - 2\right) \hat{\boldsymbol{u}}_n \end{bmatrix}$$

Mit der jetzigen Kenntnis von \hat{u}_{n+1} können mit den folgenden Gleichungen $\dot{\hat{u}}_{n+1}$ und $\hat{\hat{u}}_{n+1}$ bestimmt werden

$$\hat{\boldsymbol{u}}_{n+1} = \frac{\delta}{\alpha \,\Delta t} \left(\boldsymbol{\hat{u}}_{n+1} - \boldsymbol{\hat{u}}_n \right) - \left(\frac{\delta}{\alpha} - 1 \right) \hat{\boldsymbol{u}}_n - \frac{\Delta t}{2} \left(\frac{\delta}{\alpha} - 2 \right) \hat{\boldsymbol{u}}_n$$
$$\hat{\boldsymbol{u}}_{n+1} = \frac{1}{\alpha \,\Delta t^2} \left(\boldsymbol{\hat{u}}_{n+1} - \boldsymbol{\hat{u}}_n \right) - \frac{1}{\alpha \,\Delta t} \hat{\boldsymbol{u}}_n - \left(\frac{1}{2\alpha} - 1 \right) \hat{\boldsymbol{u}}_n$$

Die Stabilität und Genauigkeit beziehungsweise die numerischen Dämpfung wird mit dem Newmark-Parameter δ beziehungsweise mit δ und α gesteuert

$$\delta \geq \frac{1}{2} \ , \quad \alpha \geq \frac{1}{4} \left(\frac{1}{2} + \delta \right)^2$$

Erfüllen die Newmark-Parameter die obigen Bedingungen ist das Verfahren unbedingt stabil.[12] Wird zusätzlich für die numerische Dämpfung der Newmark-Methode eine Abklingkonstante $\gamma \ge 0$ eingeführt, lassen sich die Newmark-Parameter in Abhängigkeit der Abklingkonstante beschreiben

$$\delta = \frac{1}{2} + \gamma , \quad \alpha = \frac{1}{4} (1 + \gamma)^2 , \quad \gamma \ge 0$$

Kann das halbdiskrete FE-Gleichungssystem modal entkoppelt werden

$$\tilde{M}\ddot{q} + \tilde{D}\dot{q} + \tilde{K}q = \tilde{r}$$
 bzw. $\tilde{m}_i\ddot{q}_i + \tilde{d}_i\dot{q}_i + \tilde{k}_iq_i = \tilde{r}_i$, $i = 1, ..., p \le n$

mit den in modalen Koordinaten beschriebenen Lasten

$$\tilde{\boldsymbol{r}}(t) = \boldsymbol{\Phi}^{\mathrm{T}} \hat{\boldsymbol{r}}(t)$$

kann die Methode der *modalen Superposition* genutzt werde. Vorerst werden mit der numerischen Zeitintegration nach NEWMARK die modalen Koordinaten bestimmt und anschließend diese in die physikalischen Koordinaten rücktransformiert.

$$\hat{\boldsymbol{u}}(t) = \boldsymbol{\Phi}\boldsymbol{q}(t) = \sum \boldsymbol{\phi}_i q_i(t)$$

In der Regel werden von den *n* Gleichungen die ersten *o* Eigenfrequenzen und Eigenformen berechnet und dabei die höheren Eigenmoden vernachlässigt. Bei strukturdynamische Probleme beschreiben zumeist die niedrigen Moden das Verhalten der Struktur. Aus diesem Grund werden von den *o* berechneten Moden oftmals die ersten *p* Eigenfrequenzen und Eigenformen mitgenommen. Der Vorteil der Berechnung des Gleichungssystems mit der modalen Superposition liegt zum einen an das entkoppelte Gleichungssystems und zum anderen an der unvollständigen Transformation ($\Phi_{n \times p}$, p < n) des Gleichungssystems. Somit werden gegenüber dem vollen Gleichungssystem, weniger Differentialgleichungen gelöst.

Zur genaueren Beschreibung von "in der Regel" und "oftmals", für die unvollständige Transformation beziehungsweise der gewählten Anzahl von Moden p < n, sollte auf eine Systemanregung von mindesten 85 bis 90 Prozent der Gesamtmasse m_{ges} je Raumrichtung geachtet werden.

$$\sum_{i=1}^{p} m_{ik}^{\text{eff}} \approx m_{\text{ges}}$$

Hierin ist m_{ik}^{eff} die *effektive Masse* zu der *i*-ten Mode und der *k*-ten Raumrichtung. Berechnet wird die effektive Masse mit der modalen Masse und den zugehörigen *modalen Beteiligungsfaktor* Γ_{ik} [13]

$$m_{ik}^{\text{eff}} = \tilde{m}_i \Gamma_{ik}^2$$

Der modale Beteiligungsfaktor Γ_{ik} gibt mit der folgenden Beziehung

$$\Gamma_{ik} = \frac{1}{\tilde{m}_i} \boldsymbol{\phi}_i \boldsymbol{M} \boldsymbol{d}_k$$

an, wie groß der Anteil einzelner Moden je Raumrichtung ist. Hierin beschreibt d_k die Starrkörperbewegung des Systems in die Richtung von k. Soll beispielsweise, für ein globales System mit den globalen Freiheitsgraden xyz, die x-Richtung beurteilt werden, nimmt der Vektor zur Beschreibung der Starrkörperbewegung folgenden Form an

$$\boldsymbol{d}_{k} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 & \cdots & 1 & 0 & 0 \end{bmatrix}^{\mathrm{T}}$$

2.2 Faserverbundwerkstoffe

Faserverbundwerkstoffe sind auf makroskopischer Ebene eine Kombination von mehreren Materialien. Ihr Vorteil liegt bei geeigneter Gestaltung darin, dass positive Eigenschaften der einzelnen Komponenten und mitunter auch Eigenschaften die nur in Kombinationen auftreten hervorgebracht werden. Unterschieden wird bei Faserverbundwerkstoffen zwischen Werkstoffe die aus einer Matrix mit eingebetteten Fasern und aus Laminate, die aus mehreren Schichten von Materialien verbunden sind, bestehen. Sowohl die Faserarchitektur als auch der Laminataufbau haben signifikanten Einfluss auf das makroskopische Werkstoffverhalten.

In den nachfolgenden Unterabschnitte wird gezeigt wie das Werkstoffverhalten von Faserverbundwerkstoffen beschrieben werden kann. Grundlage dieses Abschnittes bildet dabei das Werke *Leichtbau III* von Егмали; Kress [14].

2.2.1 Werkstoffgesetze

Das im Abschnitt zur Strukturmechanik 2.1.1 aufgezeigt Materialgesetzt mit 21 unabhängigen Elastizitätskonstanten, beschreibt ein anisotropes Materialgesetz. Weist das Material geometrische Symmetrieeigenschaften auf, wie es beispielsweise bei Laminat-
aufbauten der Fall ist, verringert sich die Anzahl von unabhängigen Materialparameter weiter.

Symmetrieeigenschaften

Bei der Existenz einer Symmetrieebene, reduziert sich die Anzahl von unabhängigen Elastizitätskonstanten auf dreizehn. Hierbei wird von monoklinem Materialverhalten gesprochen. Bei der Existenz von zwei aufeinander senkrecht stehende Symmetrieebenen, wobei dann auch eine dritte Symmetrieebene die ebenfalls senkrecht zu den anderen beiden Ebenen existiert, wird das Material durch neun unabhängigen Elastizitätskonstanten beschrieben. Es wird hierbei von einem orthotropen Material gesprochen. Sind nun weiter die Materialeigenschaften in einer Ebene richtungsunabhängig, wird von transversal isotropen Material gesprochen. Ein solches Material wird mit fünf unabhängigen Elastizitätskonstanten beschrieben. In guter Näherung sind unidirektional Faserverbundwerkstoffe transversal isotrop. Denn die Materialeigenschaften sind, senkrecht zu der Faserverstärkung, in allen Richtungen gleich.

Materialgesetze

Liegt einem durch drei Einheitsvektoren beschriebenes System eine Symmetrieebene, beispielsweise zu der dritten Richtung, vor

$$\underline{e}'_1 = \underline{e}_1$$
, $\underline{e}'_2 = \underline{e}_2$, $\underline{e}'_3 = -\underline{e}_3$, bzw. $Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ mit $Q_{ij} = \underline{e}'_i \cdot \underline{e}_j$

so gilt für die Verzerrungen

$$\begin{aligned} & \varepsilon_1' = \varepsilon_1 = \varepsilon_{11} , & \varepsilon_2' = \varepsilon_2 = \varepsilon_{22} , & \varepsilon_3' = \varepsilon_3 = \varepsilon_{33} , \\ & \varepsilon_4' = -\varepsilon_4 = -2\varepsilon_{23} , & \varepsilon_5' = -\varepsilon_5 = -2\varepsilon_{13} , & \varepsilon_6' = \varepsilon_6 = 2\varepsilon_{12} . \end{aligned}$$

mit der Transformationsbeziehung für Tensoren

$$\underline{\underline{\varepsilon}}' = \mathbf{Q}\underline{\underline{\varepsilon}}\mathbf{Q}^{\mathrm{T}} \quad \text{bzw.} \quad \varepsilon'_{kl} = q_{ki}q_{lj}\varepsilon_{ij}$$

Für die Formänderungsenergiedichte folgt

$$2w_{\rm f} = \begin{cases} C_{11}\varepsilon_{1}\varepsilon_{1} + C_{12}\varepsilon_{1}\varepsilon_{2} + C_{13}\varepsilon_{1}\varepsilon_{3} + C_{14}\varepsilon_{1}\varepsilon_{4} + C_{15}\varepsilon_{1}\varepsilon_{5} + C_{16}\varepsilon_{1}\varepsilon_{6} \\ + C_{21}\varepsilon_{2}\varepsilon_{1} + C_{22}\varepsilon_{2}\varepsilon_{2} + C_{23}\varepsilon_{2}\varepsilon_{3} + C_{24}\varepsilon_{2}\varepsilon_{4} + C_{25}\varepsilon_{2}\varepsilon_{5} + C_{26}\varepsilon_{2}\varepsilon_{6} \\ + C_{31}\varepsilon_{3}\varepsilon_{1} + C_{32}\varepsilon_{3}\varepsilon_{2} + C_{33}\varepsilon_{3}\varepsilon_{3} + C_{34}\varepsilon_{3}\varepsilon_{4} + C_{35}\varepsilon_{3}\varepsilon_{5} + C_{36}\varepsilon_{3}\varepsilon_{6} \\ + C_{41}\varepsilon_{4}\varepsilon_{1} + C_{42}\varepsilon_{4}\varepsilon_{2} + C_{43}\varepsilon_{4}\varepsilon_{3} + C_{44}\varepsilon_{4}\varepsilon_{4} + C_{45}\varepsilon_{4}\varepsilon_{5} + C_{46}\varepsilon_{4}\varepsilon_{6} \\ + C_{51}\varepsilon_{5}\varepsilon_{1} + C_{52}\varepsilon_{5}\varepsilon_{2} + C_{53}\varepsilon_{5}\varepsilon_{3} + C_{54}\varepsilon_{5}\varepsilon_{4} + C_{55}\varepsilon_{5}\varepsilon_{5} + C_{56}\varepsilon_{5}\varepsilon_{6} \\ + C_{61}\varepsilon_{6}\varepsilon_{1} + C_{62}\varepsilon_{6}\varepsilon_{2} + C_{63}\varepsilon_{6}\varepsilon_{3} + C_{64}\varepsilon_{6}\varepsilon_{4} + C_{65}\varepsilon_{6}\varepsilon_{5} + C_{66}\varepsilon_{6}\varepsilon_{6} \end{cases} \end{cases} \right]$$

$$= \begin{cases} C_{11}\varepsilon_{1}'\varepsilon_{1}' + C_{12}\varepsilon_{1}'\varepsilon_{2}' + C_{13}\varepsilon_{1}'\varepsilon_{3}' - C_{14}\varepsilon_{1}'\varepsilon_{4}' - C_{15}\varepsilon_{1}'\varepsilon_{5}' + C_{16}\varepsilon_{1}'\varepsilon_{6}' \\ + C_{21}\varepsilon_{2}'\varepsilon_{1}' + C_{22}\varepsilon_{2}'\varepsilon_{2}' + C_{23}\varepsilon_{2}'\varepsilon_{3}' - C_{24}\varepsilon_{2}'\varepsilon_{4}' - C_{25}\varepsilon_{2}'\varepsilon_{5}' + C_{26}\varepsilon_{2}'\varepsilon_{6}' \\ + C_{31}\varepsilon_{3}'\varepsilon_{1}' + C_{32}\varepsilon_{3}'\varepsilon_{2}' - C_{33}\varepsilon_{3}'\varepsilon_{3}' - C_{34}\varepsilon_{3}'\varepsilon_{4}' - C_{35}\varepsilon_{3}'\varepsilon_{5}' + C_{36}\varepsilon_{3}'\varepsilon_{6}' \\ - C_{41}\varepsilon_{4}'\varepsilon_{1}' - C_{42}\varepsilon_{4}'\varepsilon_{2}' - C_{43}\varepsilon_{4}'\varepsilon_{3}' + C_{44}\varepsilon_{4}'\varepsilon_{4}' + C_{45}\varepsilon_{4}'\varepsilon_{5}' - C_{46}\varepsilon_{4}'\varepsilon_{6}' \\ - C_{51}\varepsilon_{5}'\varepsilon_{1}' - C_{52}\varepsilon_{5}'\varepsilon_{2}' - C_{53}\varepsilon_{5}'\varepsilon_{3}' + C_{54}\varepsilon_{5}'\varepsilon_{4}' + C_{55}\varepsilon_{5}'\varepsilon_{5}' - C_{56}\varepsilon_{5}'\varepsilon_{6}' \\ + C_{61}\varepsilon_{6}'\varepsilon_{1}' + C_{62}\varepsilon_{6}'\varepsilon_{2}' + C_{63}\varepsilon_{6}'\varepsilon_{3}' - C_{64}\varepsilon_{6}'\varepsilon_{6}' + C_{66}\varepsilon_{6}'\varepsilon_{6}' \end{cases} \end{cases}$$

Aufgrund der Gleichheitsbedingung müssen die Elastizitätskonstanten mit verschiedenen Vorzeichen verschwinden. Dabei nimmt das Materialgesetz folgende Form an

$$\boldsymbol{C}_{\text{monoklin}} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & C_{16} \\ C_{12} & C_{22} & C_{23} & 0 & 0 & C_{26} \\ C_{13} & C_{23} & C_{33} & 0 & 0 & C_{36} \\ 0 & 0 & 0 & C_{44} & C_{45} & 0 \\ 0 & 0 & 0 & C_{45} & C_{55} & 0 \\ C_{16} & C_{26} & C_{36} & 0 & 0 & C_{66} \end{bmatrix}$$

Für orthotrope Materialien folgt analog

$$\boldsymbol{C}_{\text{orthotrop}} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{12} & C_{22} & C_{23} & 0 & 0 & 0 \\ C_{13} & C_{23} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{bmatrix}$$

Ist das orthotrope Material nun gegenüber einer beliebigen Drehung um eine Achse invariant, gelten folgende vier Beziehungen zwischen den elastischen Konstanten mit der x_1 -Achse als ausgezeichnete Hauptrichtung.

$$C_{33} = C_{22}$$
, $C_{13} = C_{12}$, $C_{66} = C_{55}$, $C_{11} = \frac{1}{2}(C_{22} - C_{23})$

Im isotropen Materialverhalten gelten hingegen folgende Beziehungen

$$C_{33} = C_{22} = C_{11}$$
, $C_{12} = C_{13} = C_{23}$, $C_{66} = C_{55} = C_{44} = \frac{1}{2}(C_{11} - C_{12})$

Steifigkeitsmatrix

Für die Beschreibung der Steifigkeitsmatrix C in Abhängigkeit von Elastizitäts- E und Schubmoduln G sowie von Poissonzahlen ν wird zunächst mit gedachter Steifigkeitsmessung die inverse Beziehung, die Nachgiebigkeit bestimmt.

 $\varepsilon = S\sigma$

Hierin ist $S = C^{-1}$ die Nachgiebigkeitsmatrix. Ausführlich nimmt die Beziehung für orthotrope Materialien folgende Gestalt an

$$\begin{bmatrix} \varepsilon_1\\ \varepsilon_2\\ \varepsilon_3\\ \varepsilon_4\\ \varepsilon_5\\ \varepsilon_6 \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & S_{13} & 0 & 0 & 0\\ S_{12} & S_{22} & S_{23} & 0 & 0 & 0\\ S_{13} & S_{23} & S_{33} & 0 & 0 & 0\\ 0 & 0 & 0 & S_{44} & 0 & 0\\ 0 & 0 & 0 & 0 & S_{55} & 0\\ 0 & 0 & 0 & 0 & 0 & S_{66} \end{bmatrix} \begin{bmatrix} \sigma_1\\ \sigma_2\\ \sigma_3\\ \sigma_4\\ \sigma_5\\ \sigma_6 \end{bmatrix}$$

Infolge des Zugversuchs, wobei die Längsrichtung der Probe mit der ersten Hauptrichtung identisch ist, besteht folgender einachsiger Spannungszustand

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma & 0 & 0 & 0 & 0 \end{bmatrix}^{\mathrm{T}}$$

Die Probe hingegen reagiert mit folgenden Dehnungszustand

$$\boldsymbol{\sigma} = \begin{bmatrix} \varepsilon_1 & \varepsilon_2 & \varepsilon_3 & 0 & 0 \end{bmatrix}^{\mathrm{T}}$$

Und es ergeben sich folgende Beziehungen

$$S_{11} = \frac{\varepsilon_1}{\sigma_1} = \frac{1}{E_1} , \quad S_{21} = \frac{\varepsilon_2}{\sigma_1} = \frac{\varepsilon_2}{\varepsilon_1} \frac{1}{E_1} = -\frac{\nu_{12}}{E_1} , \quad S_{31} = \frac{\varepsilon_3}{\sigma_1} = \frac{\varepsilon_3}{\varepsilon_1} \frac{1}{E_1} = -\frac{\nu_{13}}{E_1} , \quad \text{mit } \nu_{ij} = -\frac{\varepsilon_j}{\varepsilon_i}$$

Auf gleicher Weise erfolgen in der zweiten und dritten Hauptrichtungen analoge Beziehungen. Ebenso könne reine Schubspannungszustände simuliert werden. Das Resultat ist die folgende Nachgiebigkeitsmatrix

$$\boldsymbol{S}_{\text{orthotrop}} = \begin{bmatrix} \frac{1}{E_1} & -\frac{\nu_{21}}{E_2} & -\frac{\nu_{31}}{E_3} & 0 & 0 & 0\\ -\frac{\nu_{12}}{E_1} & \frac{1}{E_2} & -\frac{\nu_{32}}{E_3} & 0 & 0 & 0\\ -\frac{\nu_{13}}{E_1} & -\frac{\nu_{23}}{E_2} & \frac{1}{E_3} & 0 & 0 & 0\\ 0 & 0 & 0 & \frac{1}{G_{23}} & 0 & 0\\ 0 & 0 & 0 & 0 & \frac{1}{G_{13}} & 0\\ 0 & 0 & 0 & 0 & 0 & \frac{1}{G_{12}} \end{bmatrix}$$

Für transversal isotrope Werkstoffe beziehungsweise für unidirektional verstärkte Faserverbundwerkstoffe gelten noch folgende Beziehungen

$$E_2 = E_3 = (1 + \nu_{23})G_{23}$$
, $G_{12} = G_{13}$, $\nu_{12} = \nu_{13}$

2.2.2 Mehrschichtentheorie

Die wesentlichen Voraussetzung eines Laminats beziehungsweise der Theorie dünner laminierter Platten – auch *klassische Laminattheorie* oder *Mehrschichtentheorie* – gleichen denen der Theorie für dünne Platten. So ist die Dicke der Platte gegenüber den Querabmessungen gering und der senkrecht auf der Mittelfläche stehende ebene Querschnitt bleibt nach der Belastung weiterhin eben. Ebenso verschwinden Querschubdehnungen und es liegt der ebene Spannungszustand vor. Weiter besteht das Laminat aus mehreren ideal miteinander verklebten Einzelschichten, wobei die Einzelschichten aus beliebigen und unterschiedlichen Werkstoffen bestehen können. In makroskopischen Skalen verhält sich ein Laminat wie eine homogene Platte mit speziellen Steifigkeitseigenschaften.

Ebener Spannungszustand

Mit der dritten Richtung als Dickenrichtung und den Annahmen des ebenen Spannungszustandes verschwinden die Spannungen mit Bezug zur Dickenrichtung σ_3 , σ_4 und σ_5 . Das inverse Materialgesetz reduziert sich hierbei um die Spalten der vernachlässigten Spannungen

$$\begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_6 \end{bmatrix} = \begin{bmatrix} \frac{1}{E_1} & -\frac{\nu_{21}}{E_2} & 0 \\ -\frac{\nu_{12}}{E_1} & \frac{1}{E_2} & 0 \\ 0 & 0 & \frac{1}{G_{12}} \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_6 \end{bmatrix}$$

da die Dehnung in Dickenrichtung ε_3 unabhängig betrachtet werden kann.

$$\varepsilon_3 = -\left(\frac{\nu_{13}}{E_1}\sigma_1 + \frac{\nu_{23}}{E_2}\sigma_2\right)$$

Schließlich ergibt sich das reduzierte Materialgesetz zu

$$\begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_6 \end{bmatrix} = \frac{1}{1 - \nu_{12}\nu_{21}} \begin{bmatrix} E_1 & \nu_{21}E_1 & 0 \\ \nu_{12}E_2 & E_2 & 0 \\ 0 & 0 & G_{12}(1 - \nu_{12}\nu_{21}) \end{bmatrix} \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_6 \end{bmatrix}$$

Kinematik

Für die Beschreibung der Kinematik dünner Platten steht die Mittelfläche als Bezugsfläche. Wird die Platte belastet verschieben sie die Punkte der Mittelfläche im Allgemeinen sowohl in der Plattenebene u_0 und v_0 in den Richtungen x und y sowie normal dazu als Durchsenkung w_0 in Dickenrichtung z. Die Verschiebungsbeschreibung der gesamten Platte u und v in Abhängigkeit der Dicke ist somit die Bezugsverschiebung u_0 und v_0 minus der Dickenrichtung z multipliziert mit der entsprechenden partiellen Ableitung der Durchsenkung $w_{,x}$ und $w_{,y}$.

$$u = u_0 - zw_{,x}$$
$$v = v_0 - zw_{,y}$$

Mit den bekannten Zusammenhang von Dehnungen ε und Scherung γ zu Verschiebungen uund v

$$\varepsilon_{x} = u_{,x}$$
$$\varepsilon_{y} = u_{,y}$$
$$\gamma_{xy} = u_{,y} + v_{,x}$$

folgt die kinematische Beziehung

ε	=	$oldsymbol{arepsilon}^0$	+	$z \kappa^0$	bzw.							
$\begin{bmatrix} \varepsilon_{\rm x} \\ \varepsilon_{\rm y} \\ \gamma_{\rm xy} \end{bmatrix}$	=	$\begin{bmatrix} \varepsilon_{\rm x}^0 \\ \varepsilon_{\rm y}^0 \\ \gamma_{\rm xy}^0 \end{bmatrix}$	+ 2	$\begin{bmatrix} \kappa_{\rm x}^0 \\ \kappa_{\rm y}^0 \\ \kappa_{\rm xy}^0 \end{bmatrix}$	mit	$\begin{bmatrix} \varepsilon_{\rm x}^{\rm 0} \\ \varepsilon_{\rm y}^{\rm 0} \\ \gamma_{\rm xy}^{\rm 0} \end{bmatrix} =$	$\begin{bmatrix} u_{0,x} \\ v_{0,y} \\ u_{0,y} + v_{0,x} \end{bmatrix}$],	$\begin{bmatrix} \kappa_{\rm x}^0 \\ \kappa_{\rm y}^0 \\ \kappa_{\rm xy}^0 \end{bmatrix}$	= - <i>z</i>	$\begin{bmatrix} w_{0,\text{xx}} \\ w_{0,\text{yy}} \\ 2w_{0,\text{xy}} \end{bmatrix}$	

Hierin sind ε^0 und κ^0 die Dehnung und Krümmungen der Plattenmittelebene.

Zusammenhang zwischen Linienlasten und Plattenverformungen

Aufgrund den allgemein unterschiedlichen Steifigkeiten der einzelnen Schichten und der Annahme von linear verlaufende Dehnungen über die Plattendicke, ist der Span-

nungsverlauf unstetig und es wird zur Beschreibung des globalen Verhaltens anstelle von Spannungen und örtliche Dehnungen hingegen die Plattenverformung ε^0 und κ^0 der Plattentheorie mit auf der Bezugsfläche bezogenen Linienkräfte N und Linienmomente M benutzt.

Aus dem Integral der Spannungen über die Dicke t des Laminats folgen die Linienkräfte

$$\boldsymbol{N} = \int_{-\frac{t}{2}}^{\frac{t}{2}} \boldsymbol{\sigma} \, \mathrm{d} \boldsymbol{z} \qquad \text{mit } \boldsymbol{N} = \begin{bmatrix} N_{\mathrm{x}} \\ N_{\mathrm{y}} \\ N_{\mathrm{xy}} \end{bmatrix}, \ \boldsymbol{\sigma} = \begin{bmatrix} \sigma_{\mathrm{x}} \\ \sigma_{\mathrm{y}} \\ \sigma_{\mathrm{xy}} \end{bmatrix}$$

Aus dem Integral mit dem Abstand zur Mittelfläche gewichteten Spannungen über die Dicke des Laminats folgen die Linienmomente

$$\boldsymbol{M} = \int_{-\frac{t}{2}}^{\frac{t}{2}} \sigma z \, dz \qquad \text{mit } \boldsymbol{M} = \begin{bmatrix} M_{\text{x}} \\ M_{\text{y}} \\ M_{\text{xy}} \end{bmatrix}$$

Aufgrund den unterschiedlichen Schichten k, mit jeweiligen Dicken h_k , sind für die Linienlasten und Linienmomente über die einzelnen Schichten zu integrieren und anschließend über alle n Schichten zu summieren. Dabei ist die Summe aller Einzelschichtdicken h_k die Laminatdicke t

$$\sum_{k=1}^{n} h_k = t$$

Mit Bezug zur Dickenrichtung *z* wird die Unterseite der *k*-ten Schicht mit z_{k-1} und die Oberseite mit z_k bezeichnet. Die untere Oberfläche des Laminats ist somit $z_0 = -t/2$ und die obere $z_n = t/2$.

Mit dem Werkstoffgesetz und der kinematischen Beziehungen folgt für die Linienkräfte

$$N = \int_{-\frac{t}{2}}^{\frac{t}{2}} \sigma \, \mathrm{d}z = \sum_{k=1}^{n} \overline{C}_{k} \int_{z_{k-1}}^{z_{k}} \varepsilon \, \mathrm{d}z = \sum_{k=1}^{n} \overline{C}_{k} \int_{z_{k-1}}^{z_{k}} (\varepsilon^{0} + z \, \kappa^{0}) \, \mathrm{d}z = \sum_{k=1}^{n} \overline{C}_{k} \left[(z_{k} - z_{k-1}) \varepsilon^{0} + \frac{1}{2} (z_{k}^{2} - z_{k-1}^{2}) \kappa^{0} \right]$$

und die Linienmomente

4

4

$$M = \int_{-\frac{t}{2}}^{\frac{t}{2}} \sigma z \, dz = \sum_{k=1}^{n} \overline{C}_{k} \int_{z_{k-1}}^{z_{k}} \varepsilon z \, dz = \sum_{k=1}^{n} \overline{C}_{k} \int_{z_{k-1}}^{z_{k}} (\varepsilon^{0} + z \, \kappa^{0}) z \, dz = \sum_{k=1}^{n} \overline{C}_{k} \left[\frac{1}{2} (z_{k}^{2} - z_{k-1}^{2}) \varepsilon^{0} + \frac{1}{3} (z_{k}^{3} - z_{k-1}^{3}) \kappa^{0} \right]$$

Hierin ist $\overline{C} = Q^{-1}CRQ^{-1}R^{-1}$ mit der Transformationsmatrix Q und der REUTER-Matrix R

$$\boldsymbol{Q} = \begin{bmatrix} \cos^2 \vartheta & \sin^2 \vartheta & 2\sin \vartheta \cos \vartheta \\ \sin^2 \vartheta & \cos^2 \vartheta & -2\sin \vartheta \cos \vartheta \\ -\sin \vartheta \cos \vartheta \sin \vartheta \cos \vartheta \cos^2 \vartheta - \sin^2 \vartheta \end{bmatrix}, \quad \boldsymbol{R} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

die transformierte Steifigkeitsmatrix von den Materialhauptachsensystem 123 in das Bezugssystem xyz. Gedreht wird hierbei mit dem Winkel ϑ , die dritte Achse sowie die z-Achse sind stets gleichgerichtet. Als Resultat stehen zu den Elementen der transformierten Steifigkeitsmatrix folgende Beziehungen

$$\overline{C}_{11} = C_{11}\cos^4\vartheta + 2(C_{12} + 2C_{66})\sin^2\vartheta\cos^2\vartheta + C_{22}\sin^4\vartheta$$

$$\overline{C}_{22} = C_{11}\sin^4\vartheta + 2(C_{12} + 2C_{66})\sin^2\vartheta\cos^2\vartheta + C_{22}\cos^4\vartheta$$

$$\overline{C}_{12} = (C_{11} + C_{22} - 4C_{66})\sin^2\vartheta\cos^2\vartheta + C_{12}(\sin^4\vartheta + \cos^4\vartheta)$$

$$\overline{C}_{16} = (C_{11} - C_{12} - 2C_{66})\sin\vartheta\cos^3\vartheta + (C_{12} - C_{22} + 2C_{66})\sin^3\vartheta\cos\vartheta$$

$$\overline{C}_{26} = (C_{11} - C_{12} - 2C_{66})\sin^3\vartheta\cos\vartheta + (C_{12} - C_{22} + 2C_{66})\sin\vartheta\cos^3\vartheta$$

$$\overline{C}_{66} = (C_{11} + C_{22} - 2C_{12} - 2C_{66})\sin^2\vartheta\cos^2\vartheta + C_{66}(\sin^4\vartheta + \cos^4\vartheta)$$

Abschließend wird der Zusammenhang zwischen den Linienlasten und Plattenverformungen in folgender kompakten Form mit der *ABD*-Matrix ausgedrückt

$$\begin{bmatrix} N \\ M \end{bmatrix} = \begin{bmatrix} A & B \\ B & D \end{bmatrix} \begin{bmatrix} \varepsilon^0 \\ \kappa^0 \end{bmatrix}$$

oder Ausführlich

$$\begin{bmatrix} N_{\rm x} \\ N_{\rm y} \\ N_{\rm xy} \\ M_{\rm x} \\ M_{\rm y} \\ M_{\rm xy} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & A_{16} & B_{11} & B_{12} & B_{16} \\ A_{12} & A_{22} & A_{26} & B_{12} & B_{22} & B_{26} \\ A_{16} & A_{26} & A_{66} & B_{16} & B_{26} & B_{66} \\ B_{11} & B_{12} & B_{16} & D_{11} & D_{12} & D_{16} \\ B_{12} & B_{22} & B_{26} & D_{12} & D_{22} & D_{26} \\ B_{16} & B_{26} & B_{66} & D_{16} & D_{26} & D_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{\rm v}^{\rm x} \\ \varepsilon_{\rm v}^{\rm 0} \\ \varepsilon_$$

mit den Submatrizen

$$A = \sum_{k=1}^{n} \overline{C}_{k} (z_{k} - z_{k-1}) ,$$

$$B = \frac{1}{2} \sum_{k=1}^{n} \overline{C}_{k} (z_{k}^{2} - z_{k-1}^{2}) ,$$

$$D = \frac{1}{3} \sum_{k=1}^{n} \overline{C}_{k} (z_{k}^{3} - z_{k-1}^{3}) .$$

Jeder dieser Submatrizen ist symmetrisch. Damit ist auch die ABD-Matrix symmetrisch. Es ist ersichtlich, dass die Membransteifigkeiten A die Dehnungen der Mittelebene mit den Linienkräften, die Biegesteifigkeiten D die Krümmungen mit den Linienmomenten und die Kopplungssteifigkeiten B die Linienkräfte mit den Krümmungen sowie die Linienmomente mit den Dehnungen der Mittelebene verknüpfen. Für den Fall von symmetrischen Laminaten verschwinden die Kopplungssteifigkeiten B.

3 Modellentwicklung aus Faserverbundwerkstoffen

In diesem Kapitel werden auf die Eigenschaften der zu berechnende Forschungsanlage und der Verwandheit aus dem NREL-Bericht eingegangen. Dabei werden die Eigenschaften der NREL-Anlage und die berechneten Eigenfrequenzen und das stationäre Verhalten aus dem NREL-Bericht wiedergegeben. Weiter werden die konstruktiv zu modifizierenden Schritte des Computermodells gezeigt. Dies beinhaltet insbesondere die Abbildmöglichkeit von vorgegebenen Lagenaufbauten im Rotorblatt. Abschließend wird das Aufsetzen des Finite-Element-Modells wie Materialparameter und Elemente sowie für die unterschiedlichen Berechnungen entsprechende Randbedingungen und Analyseparameter dargestellt.

3.1 Forschungsanlage

Grundlegende Eigenschaften der Forschungsanlage sind aus dem NREL-Bericht [1] entnommen, die sich hauptsächlich an der Muster-WEA *REpower 5M* und dem Konzeptmodell aus dem Projekt *DOWEC* [15, 16] richten. So hat die Anlage eine Gesamthöhe von 153m mit 90m Nabenhöhe und einem Rotordurchmesser von 126m sowie eine Gesamtgewicht von etwa 700t. Weitere grobschlägig ausgewählten Eigenschaften der Windenergieanlage von NREL listet die Tabelle 1 auf.

Zu der Angabe des Massenschwerpunkts liegt der Koordinatenursprung in der Turmachse auf dem Grund. Dabei zeigt die *x*-Achse in Windrichtung und die *z*-Achse in Richtung des Gierlagers.

Nennleistung	5 MW
Rotorausrichtung	Aufwind (Luv-Läufer)
Ausstattung	3 Rotorblätter
Rotordurchmesser	126 m
Nabendurchmesser	3 m
Nabenhöhe	90 m
Überhang (Maß zw. Turmachse und Rotorebene)	5 m
Koordinaten zum Massenschwerpunkt	(-0,2; 0,0; 64,0)m
Einschaltwindgeschwindigkeit	3 m/s
Nennwindgeschwindigkeit	11,4m/s
Abschaltwindgeschwindigkeit	25 m/s
Einschaltumdrehungsgeschwindigkeit	6,9 min ⁻¹
Nennumdrehungsgeschwindigkeit	12,1 min ⁻¹
Nenngeschwindigkeit an der Blattspitze	80 m/s
Achsneigung der Rotorwelle	5°
Konuswinkel der Blätter	2,5°
Rotormasse (mit Nabe)	110,00t
Gondelmasse	240,00t
Turmmasse	347,46 t

Tabelle	1: Grobschlägige a	usgewählte	Eigenschaften	der NREL	5-MW	Ausgangs-
	Windenergiean	age [1]				

3.1.1 Rotorblatt

Das Rotorblatt hat eine Gesamtlänge von 61,5m mit ein Gewicht von 17,74t. Weitere von NREL ausgewählten Eigenschaften der Rotorblätter listet die Tabelle 2 auf.

 Tabelle 2: Rotorblatteigenschaften der NREL 5-MW Ausgangs-Windenergieanlage [1]

Länge (entlang der Rotorachse)	61,5m
Skalierungsfaktor der Masse	4,536%
Gesamtmasse	17,74t
Lage des Massenschwerpunkt (bzgl. Rotorachse)	20,475 m
Strukturdämpfung (über alle Moden)	0,477465%

NREL richtet sich bei den Rotorblätter an das DOWEC-Konzeptmodell. Somit versteht sich der, in der Tabelle 2 angegebene, Skalierungsfaktor darauf, die aus dem DOWEC-Konzeptmodell übernommene Massenverteilung auf die Gesamtmasse der Rotorblätter von der REpower 5M Muster-WEA zu skalieren.

NREL listet ebenfalls, in Abhängigkeit von dem Nabenradius, an 49 Stellen Informationen zu den Steifigkeiten und den Massenschwerpunkte auf. Das Masterprojekt *Entwicklung eines Abschnittes des NREL Rotorblattes mit anisotropen Material anhand gegebener Steifigkeitsdaten* [17] setzte sich bereits mit diesen Informationen auseinander und werden hier übernommen.

3.1.2 Gondel und Spinner

Die Höhe der Nabe, des Spinners und der Gondel über dem Grund ist bei 90m und das Maß zwischen Turmachse und der Rotorebene oder der Nabe ist 5m entgegen der Windrichtung. Bezogen auf der Gesamtturmhöhe liegt die Nabe 2,4m höher. Damit liegt das Gierlager bei einer Höhe von 87,6m über dem Grund. Mit der Achsneigung der Rotorwelle von 5° wird ein größerer Raum für die Rotorblattdurchbiegung geschaffen. Die Hubmasse von 56,78t ist in Übereinstimmung der Muster-WEA REpower 5M. Ebenso ist die Gondelmasse von 240t mit der Muster-WEA REpower 5M abgeglichen. Dabei entspricht der Gondelmassenschwerpunkt, von 1,9m bezogen der Turmachse oder Gierachse in Windrichtung und 1,75m über dem Gierlager, der DOWEC-Anlage. Die Tabelle 3 listet die von NREL ausgewählten Eigenschaften der Gondel und Nabe auf.

Tabelle 3: Eigenschaften von Gondel und Nabe der NREL 5-MW Ausgangs-
Windenergieanlage [1]

Höhe des Gierlagers über dem Grund	87,6 m
Nabenmasse	56,78kg
Gondelmasse	240,00t
Gondelmassenschwerpunkt	
Lage in Windrichtung bzgl. Gierachse	1,9m
Lage über dem Gierlager	1,75 m
Gondel-Gier-Aktor	
Äquivalente Translationsfederkonstante	9.028.320kNm/rad
Äquivalente Translationsdämpfungskonstante	19.160 kNms/rad

3.1.3 Antrieb

Die Nennumdrehungsgeschwindigkeit der WEA von 12,1 min⁻¹ orientiert sich an der REpower 5M Anlage. Die Tabelle 4 listet die von NREL ausgewählten Eigenschaften des Antriebes auf.

		TA TAT' 1 ' 1 [11
Ishalla 4. Higenschaften vom	Antrieb der NIKEL 5-MW	Allegange-Windenergieanlage	
Tabelle 4. Ligensenation vom	THUILD UCI INICLE 5 INIV	nusgangs windeneigieannage	11
<i>(</i>)			

Nennumdrehungsgeschwindigkeit	12,1 min ⁻¹		
Antriebswelle			
Äquivalente Torsionsfederkonstante	867.637 kNm/rad		
Äquivalente Torsionsdämpfungskonstante	6.215 kNms/rad		
Hochgeschwindigkeits-Rotornabenbremse			
Drehmoment im vollem Eingriff	28.116,2Nm		

3.1.4 Turm

Die Eigenschaften des Turm hängen stark von den Untergrund der Anlage ab. NREL entschied sich für die Turmeigenschaften eine küstenzugewandten Version der NREL 5-MW Ausgangs-WEA zu beschreiben.

Der Turm variiert über die Höhe linear in Durchmesser und Dicke. Dabei hat der Turm auf dem Grund ein Durchmesser von 6m mit einer Dicke von 27mm und an der Oberseite ein Durchmesser von 3,87m mit einer Dicke von 19mm. Für die Materialeigenschaften sind Angaben zu Stahl gegeben. Dabei wird das Materialverhalten mit dem Elastizitätsmodul von 210GPa und dem Schubmodul von 80,8GPa beschrieben. Die etwas erhöhte Dichte von 8,5t/m³ simuliert auf dem Turm nicht modellierte Komponenten, wie Flansche und Schrauben sowie Schweißnähte und Lackierung. Alle bisher genannten Eigenschaften sind aus dem Projekt DOWEC entnommen. Im Vergleich zu der DOWEC-Anlage hat die REpower 5M Anlage eine höhere Masse zur Turmoberseite. Aus diesem Grund wird die Dicke um 30% verstärkt. Die Tabelle 5 listet die von NREL ausgewählten Eigenschaften des Turms auf.

Länge über dem Grund	87,6 m
Gesamtmasse	347,46 t
Lage des Massenschwerpunkt (bzgl. Grund in Richtung Turmachse)	38,234 m
Strukturdämpfung (über alle Moden)	1%

Tabelle 5: Turmeigenschaften der NREL 5-MW Ausgangs-Windenergieanlage [1]

3.1.5 Frequenzen und stationäres Verhalten der Forschungsanlage

NREL berechnete mit zwei verschiedenen Programmen Eigenfrequenzen einer linearisierten Eigenwertanalyse ihrer küstenzugewandten Ausgangs-WEA. Benannt sind die beiden Modelle als FAST-Modell und ADAMS-Modell und beschreiben eine balkenähnliche Simulation. Das Ergebnis dieser Eigenfrequenzanalyse listet die Tabelle 6 auf.

Die, in der Tabelle 6, zu erkennende Eigenfrequenz-Abweichung zwischen den Modellen FAST und ADAMS, besonders zur zweiten Rotorblatt-Eigenfrequenz mit der asymmetrischen flatternden Eigenform, ist dahingehend begründet, dass das ADAMS-Modell gegenüber dem FAST-Modell Positionen zum Massenschwerpunk, Moden höherer Ordnung und Torsionsfreiheitsgrade im Turm berücksichtigt.

Freq.	Beschreibung der Eigenform	FAST	ADAMS
1	1. Turm – vor und zurück	0,3240	0,3195
2	1. Turm – von einer Seite zur anderen	0,3120	0,3164
3	1. Antriebswindung	0,6205	0,6094
4	1. Rotorblatt – asymmetrisch flatterndes Gieren	0,6664	0,6296
5	1. Rotorblatt – asymmetrisch flatterndes Nicken	0,6675	0,6686
6	1. Rotorblatt – gemeinschaftliches Flattern	0,6993	0,7019
7	1. Rotorblatt – asymmetrisch kantendes Nick	1,0793	1,0740
8	1. Rotorblatt – asymmetrisch kantendes Gieren	1,0898	1,0877
9	2. Rotorblatt – asymmetrisch flatterndes Gieren	1,9337	1,6507
10	2. Rotorblatt – asymmetrisch flatterndes Nick	1,9223	1,8558
11	2. Rotorblatt – gemeinschaftliches Flattern	2,0205	1,9601
12	2. Turm – vor und zurück	2,9003	2,8590
13	2. Turm – von einer Seite zur anderen	2,9361	2,9408
Werte	in Hz		

 Tabelle 6: Turmeigenschaften der NREL 5-MW Ausgangs-Windenergieanlage [1]

3.2 Computermodell

Die Forschungsanlage wird als Flächenmodell angenähert. Ein grundlegendes Computermodell ist durch die Arbeit *Entwicklung eines 3D-Geometriemodells und numerische Strömungssimulation einer Windenergieanlage* [18] von PRANGE entstanden und validiert. Das dabei verwendete CAD-Programm ist *CATIA V5* von der Firma *Dassault Systèmes*, mit dem die dreidimensionale Geometrieerzeugung erfolgte. Alle erforderliche Modifikationen zur Simulation werden ebenfalls mit dem CAD-Programm *CATIA V5* durchgeführt. Unter den Modifikationen fallen diverse Schnitte, die in das 3D-Flächenmodell hinzugefügt werden und damit die nötige Möglichkeit bieten Materialparameter vorgeben zu können. Die Abbildung 4 links zeigt das übernommene und rechts das durch den nachstehenden Modifikationen angepasste Computermodell.

Abbildung 5: Computermodell der Windenergieanlage

Für ein hinreichendes mechanisches Modell beziehungsweise FE-Modell sind Materialeigenschaften wie Steifigkeiten und Massen zuzuweisen. Dabei zeigten anfängliche Versuche im Forschungsprojekt WindNumSim, dass das Nachbilden der Steifigkeiten für die Rotorblätter mit den zur Verfügung stehenden Daten nicht trivial sind. Somit ist es beispielsweise unmöglich das Verhalten der WEA mit ausschließlich isotrope Werkstoffe nachzuempfinden. Erste Überlegungen die Steifigkeit für das Rotorblatt abzubilden wurden in einem vorangegangenen Masterprojekt [17] durchgeführt. Als Resultat wird eine Modellierung nach Sandia National Laboratories (SNL) [19] gewählt, welches ein in MATLAB geschriebenes Programm speziell zur Berechnung von Rotorblättern entwickelte. Dieses Programm – genannt NuMAD – erstellt ein in ANSYS Parametric Design Language (APDL) geschriebene Datei. Das Ergebnis der Rotorblattmodellierung welche die vorgegebenen Steifigkeiten nachbilden zeigt die Abbildung 5.

Abbildung 6: Lagenaufbauten im Rotorblatt mit Hilfe von Sandias NuMAD-Programm

In Abbildung 5 ist zusehen, dass das Modell aus vielen kleinen Einzelflächen besteht. Auf diesen Einzelflächen sind jeweils eigene Materialparameter in Form von unterschiedliche Lagenaufbauten mit unterschiedlichen Materialien verbunden. Die hauptsächliche Modifikation besteht darin, das CATIA-Modell um die dargestellten Einzelflächen zu erweitern, sodass diese in das vom Forschungsprojekt verwendete ANSYS-Workbench-Modell importiert und mit den Lagenaufbauten erweitert werden kann.

3.2.1 Rotorblatt

Die notwendigen Modifikationen zur Beschreibung der Materialeigenschaften finden ausschließlich für das Rotorblatt der Anlage statt. Die Abbildung 6 zeigt das in CATIA bereits modellierte Rotorblatt.

			1
	1	and the second se	1
			1
			1

Abbildung 7: Computermodell – Rotorblatt

Bei der Modellerweiterung für das Rotorblatt werden zuerst zusätzliche Sektionen beziehungsweise Querschnittsebenen in das CATIA-Modell geschnitten. Die Abbildung 7 zeigt die benötigten Sektionen.

Abbildung 8: Sektionen im Rotorblatt

Im Anschluss werden Punkte und Linien in Längsrichtung erzeugt. Die Linien werden in radialer Richtung extrudiert und wiederum mit dem CATIA-Modell geschnitten. Sämtliche Informationen zum Lagenaufbau werden aus der NuMAD-generierten ANSYS-Einlesedatei shell7.src des Masterprojekts [17] rausgeschrieben, in MATLAB als CATIA-Makro aufbereitet und anschließend in CATIA eingelesen und ausgeführt.

Sektionen und Punkte

Die Informationen zu den Sektionsebenen und den geometrischen Punkte für die Längsschnitte – beziehungsweise in ANSYS als *Keypoints* bezeichnet – sind in der Einlesedatei she117.src von Zeile 8.682 bis 16.406 zu finden. Ein Ausschnitt des Inhalts sind in den folgenden zwei Programmausdrücke dargestellt, wobei der Programmausdruck 1 den Beginn der *Keypoint*-Erzeugung darstellt.

Programmausdruck 1: APDL shell7.src: Beginn der Erstellung von Punkten und Ebenen

```
8682 ! DEFINE KEYPOINTS FOR SECTIONS AND CONNECT KEYPOINTS WITH LINES
8683
8684 local,1000,CART,0,0,0, -90,0,-90
8685
8686 csys,0
8687 ksel,none
```

```
        8688
        k,1,-1.64752,0.389762,0

        8689
        k,2,-1.65218,0.365811,0

        8690
        k,3,-1.66391,0.303277,0
```

Der Programmausdruck 2 zeigt den Wechsel zwischen den ersten beiden Sektionen.

Programmausdruck 2: APDL shell7.src: Weitere Erstellung von Punkten und Ebenen

```
k,195,-1.62342,0.474422,0
8882
          k,196,-1.64096,0.41326,0
8883
8884
       zSmoothe
8885
      csys,1000
      clocal,1001,CART,0,-0,0, -0,0,-0
8886
8887
8888 local, 12, CART, -0,0,0, 0,0,-0
8889
8890 csvs.0
     ksel.none
8891
        k,1001,-1.64752,0.389762,0.3
8892
          k,1002,-1.65218,0.365811,0.3
8893
```

Dieser Ablauf wird analog für alle 38 Sektionen wiederholt mit welche insgesamt 7.412 *Keypoints* erstellt werden.

Für das Importieren der Punkte in CATIA sind Zeilen die mit dem k-Befehl anfangen von Interesse. Der k-Befehl erstellt in ANSYS die gewünschten *Keypoints* und erwartet als Parameter die *Keypoint*-Bezeichnung als Zahl sowie die Koordinaten in den drei Raumrichtungen. Jene 7.412 Zeilen, mit dem k-Befehl, werden als Vorbereitung des CATIA-Makros in eine eigenständige Datei⁷ gespeichert und in MATLAB eingelesen. Die weiteren nicht benötigten Befehle, wie 10ca1, c10ca1, csys, erstellen und aktivieren weitere Koordinatensysteme. Der Befehl zSmoothe hingegen ist eine benutzerdefinierte Funktion und erstellt mit den erzeugten und selektierten *Keypoints* eine umhüllende Kurve (*Spline*) des jeweiligen Querschnitts. Mit dem Befehl kse1, none wird die jeweils gemachte Selektierung von *Keypoints* wieder aufgehoben.

Die Positionen der Sektionsebenen kann beispielsweise von der z-Koordinate der *Keypoints* abgelesen werden. Hierbei ist zu beachten dass die z-Koordinate im Bezug auf dem Zusammenbau der Anlage um 1,5m verschoben wird und im Folgenden den Abstand zur Rotornabe repräsentiert. Die im Programmausdruck 3 dargestellte MATLAB-Variable planeDistances listet die 18 zusätzlichen Ebenen mit der z-Korrektur im Bezug zum Nabenradius auf.

⁷Dateibezeichnung: keypoints.txt

Programmausdruck 3: MATLAB Create_CATIA_Makro.m: Position der Ebenen

15 planeDistances = [7000, 8333,3, 10500, 13500, 18500, 19950, 22000, 26100, ...1632250, 33500, 38500, 40450, 42500, 43500, 46500, 48650, 56166.7, 58900]; % in mm

Der Hauptteil zur Erzeugung von Ebenen in CATIA zeigt folgender Programmausdruck 4

Programmausdruck 4: VBScript Makro_open_file_and_create_elements.catvbs

```
22 Set hybridShapePlaneOffset1 = hybridShapeFactory1.AddNewPlaneOffset(reference1,
7000, False)
23 hybridShapePlaneOffset1.Name = "Ebene.1001"
24 hybridBody1.AppendHybridShape hybridShapePlaneOffset1
25 part1.InWorkObject = hybridShapePlaneOffset1
26 part1.Update
```

Dieser Programmausdruck wird für jede zusätzliche Ebene analog durchlaufen. Dabei wird, der in der ersten Zeile angegebene Abstand von 7000, mit den Werten aus der MATLAB-Variable planeDistances ersetzt. Die zweite Zeile benennt die Ebenen mit den Bezeichnungen von "Ebene. 1001" bis "Ebene. 1018". Mit den abschließenden Zeilen werden die Ebenen mit dem Modell verknüpft. Zuvor werden noch einige benötigte Variable zur Verfügung gestellt, mit dem das bisherige Computermodel aufgerufen und vorbereitet wird, die hier nicht weiter aufgezeigt werden. Zur Vollständigkeit beziehungsweise zur Reproduzierbarkeit ist das gesamte MATLAB-Skript, welches das CATIA-Makro erzeugt, im Anhang A.1 als Programmausdruck 16 angefügt.

Mit den zur Verfügung stehenden Ebenen kann das Computermodell geschnitten werden. Der Programmausdruck 5 zeigt den Teil, aus dem mit MATLAB generierten CATIA-Makro, welche die Trennung des Computermodells beschreibt.

Programmausdruck 5: VBScript Makro_open_file_and_create_elements.catvbs

```
159 Set hybridShapeAssemble2 = hybridShapes2.Item("Trennen.1001r")
160 Set reference1 = part1.CreateReferenceFromObject(hybridShapeAssemble2)
161 Set hybridShapePlaneOffset1 = hybridShapes1.Item("Ebene.1002")
162 Set reference2 = part1.CreateReferenceFromObject(hybridShapePlaneOffset1)
163
164 Set hybridShapeSplit1 = hybridShapeFactory1.AddNewHybridSplit(reference1,
       reference2, -1)
165 hybridShapeFactory1.GSMVisibility reference1, 0
166 hybridShapeSplit1.Name = "Trennen.1002"
167 hybridBody3.AppendHybridShape hybridShapeSplit1
168 part1.InWorkObject = hybridShapeSplit1
169 part1.Update
170 part1.Update
171 Set hybridShapeSplit1 = hybridShapeFactory1.AddNewHybridSplit(reference1,
       reference2, 1)
172 hybridShapeFactory1.GSMVisibility reference1, 0
```

```
173 hybridShapeSplit1.Name = "Trennen.1002r"
174 hybridBody3.AppendHybridShape hybridShapeSplit1
175 part1.InWorkObject = hybridShapeSplit1
176 part1.Update
177 part1.Update
```

Der Programmausdruck 5 beschreibt für jede Ebene jeweils zwei Trennvorgänge. Der erste Trennvorgang trennt die Oberfläche bis zur Ebene und der zweite Trennvorgang trennt Oberfläche ab der Ebene und stellt jeweils die restliche Fläche für nachfolgende Durchgänge dar. Anschließend werden die geschnittenen Abschnitte wieder zu einer Gesamtoberfläche zusammengesetzt, siehe dazu Programmausdruck 6.

Programmausdruck 6: VBScript Makro_open_file_and_create_elements.catvbs

```
499 Set hybridBody4 = hybridBodies1.Add()
500 hybridBody4.Name = "Gesamtoberfläche"
501 part1.Update
502 Set hybridShapeSplit1 = hybridShapes2.Item("Trennen.1001")
503 Set reference1 = part1.CreateReferenceFromObject(hybridShapeSplit1)
504
505 Set hybridShapeSplit1 = hybridShapes2.Item("Trennen.1002")
506 Set reference2 = part1.CreateReferenceFromObject(hybridShapeSplit1)
507 Set hybridShapeAssemble1 = hybridShapeFactory1.AddNewJoin(reference1, reference2)
508
509 Set hybridShapeSplit1 = hybridShapes2.Item("Trennen.1003")
510 Set reference3 = part1.CreateReferenceFromObject(hybridShapeSplit1)
511 hybridShapeAssemble1.AddElement reference3
```

Der Programmausdruck 6 verbindet zuerst die ersten beiden Teilflächen miteinander. Anschließend werden die restlichen Flächen nacheinander der bereits verbundenen Fläche hinzugefügt.

Längsschnitte

Mit der Tatsache dass durch der Einlesedatei shell7.src ebenfalls die kleinen Einzelflächen mit den zuvor definierten *Keypoints* erstellt werden, wird vorerst nachvollzogen welche *Keypoints* zur Flächenerzeugung verwendet wurden. Die Zeilen 18.977 bis 21.484 der Einlesedatei shell7.src beinhalten diese Informationen und beschreiben die Flächenerzeugung. Der Programmausdruck 7 stellt den Beginn der Flächenerzeugung mit der ersten Fläche dar.

Programmausdruck 7: APDL shell7.src: Informationen zu Einzelflächen

```
/UIS, MSGPOP, 3
18980
18981 *endif
18982
         asel, none
18983
         lsel,<mark>all</mark>
18984
         csys,0
18985
         a,1,9,1009,1001
18986
18987
             aatt,,,32,1001,2
         asel, none
18988
18989
         lsel,<mark>all</mark>
```

Notiert werden Zeilen mit dem a-Befehl, wie jene in Zeile 18.986; "a, 1,9, 1009, 1001", und in eine Textdatei⁸ zwischengespeichert. Die vier Parameter des a-Befehls definiert die Fläche durch Angabe der *Keypoint*-Bezeichner. Mit dieser Methode reduziert sich die benötigte Anzahl der *Keypoints* von insgesamt 37.192 auf 498, wenn auf duplizierte *Keypoints* sowie auf *Keypoints* geachtet wird, die sich auf den Ebenen befinden. Die Umsetzung mit MATLAB zeigt Programmausdruck 8.

Programmausdruck 8: MATLAB Create_CATIA_Makro.m: Keypoint-Aufbereitung

```
45 uniqueSectionKeypoints = unique(sectionKeypoints(:));
46 %
47 % KEYPOINTS AND SECTIONS
48 iskeypointInSection = (ismember(keypoints(:,1) , uniqueSectionKeypoints));
```

In uniqueSectionKeypoints wird jeder *Keypoint* einmalig hinterlegt und in iskeypointInSection wird überprüft dass die Punkte in den Ebenen liegen. Die gefundenen Punkte können mit dieser Selektierung in CATIA eingebaut werden. Der Programmausdruck 9 zeigt den Abschnitt des CATIA-Makros der die Punkteerzeugung durchführt.

Programmausdruck 9: VBScript Makro_open_file_and_create_elements.catvbs

In der ersten Zeile wird der Punkt mit Angabe der Koordinaten erzeugt. Die folgenden Zeilen verknüpft den Punkt mit dem Modell und wird in Abhängigkeit der jeweiligen Ebene benannt. Im nächsten Schritt werden auf Grundlage der Punkte oder *Keypoints* die Abschnittslinien erzeugt. Die zugehörigen Informationen dazu sind in der Einlesedatei

⁸Dateibezeichnung: sections.txt

shell7.src in den Zeilen 17.262 bis 17.750 zu finden, siehe im Programmausdruck 10 den Beginn der Linienerstellung.

Programmausdruck 10: APDL shell7.src: Informationen zu Einzelflächen

```
17262 ! Generate spanwise area-bounding lines with LAREA command
17263
17264 larea,9,1009,z_HP_area(1)
17265 larea,13,1013,z_HP_area(1)
```

Mit dem larea-Befehl werden Linien auf Flächen erstellt. Hierzu werden dem larea-Befehl die beiden Endpunkte der gewünschten Linie und die Bezugsfläche übergeben. Der Programmausdruck 11 zeigt den Abschnitt des CATIA-Makros der die entsprechende Linienerzeugung durchführt.

Programmausdruck 11: VBScript Makro_open_file_and_create_elements.catvbs

Im Programmausdruck 11 werden zuerst die entsprechenden Endpunkte selektiert, mit dem Modell verknüpft und in Abhängigkeit der Ebene benannt. Zusätzlich zu diesen Linien werden weitere Linien analog hinzugefügt, die sternförmig von den unterschiedlichen Längspositionen der Linien zum Zentrum führen. Diese werden bei der Linienextrusion als Führungslinie verwendet. Bevor die Linienextrusion durchgeführt wird, sind die einzelnen abschnittsweisen Längslinien zu jeweils zusammengesetzte Linien zu verbinden, siehe dazu Programmausdruck 12 und 13.

Programmausdruck 12: VBScript Makro_open_file_and_create_elements.catvbs

```
7310 Set hybridShapes7 = hybridBody7.HybridShapes
7311 Set hybridShapeLinePtPt1 = hybridShapes7.Item("Linie.10801")
7312 Set reference1 = part1.CreateReferenceFromObject(hybridShapeLinePtPt1)
7313
7314 Set hybridShapeLinePtPt1 = hybridShapes7.Item("Linie.10901")
7315 Set reference2 = part1.CreateReferenceFromObject(hybridShapeLinePtPt1)
7316 Set hybridShapeAssemble1 = hybridShapeFactory1.AddNewJoin(reference1, reference2)
7317
7318 Set hybridShapeLinePtPt1 = hybridShapes7.Item("Linie.11001")
```

```
7319 Set reference3 = part1.CreateReferenceFromObject(hybridShapeLinePtPt1)
7320 hybridShapeAssemble1.AddElement reference3
```

Der Programmausdruck 12 verbindet zuerst die ersten beiden Einzellinien miteinander. Anschließend werden die restlichen Längslinien nacheinander der bereits verbundenen Linie hinzugefügt.

Programmausdruck 13: VBScript Makro_open_file_and_create_elements.catvbs

```
7402 hybridShapeAssemble1.Name = "Verbindung.1101"
7403 hybridBody7.AppendHybridShape hybridShapeAssemble1
7404 part1.InWorkObject = hybridShapeAssemble1
7405 part1.Update
```

Der Programmausdruck 13 benennt den Linienverbund und verknüpft die Verbindung mit dem Modell. Schließlich können mit den Linienverbund und den Führungslinien einzelne Flächen erzeugt werden, die die Struktur in Längsrichtung durchdringen, siehe dazu Programmausdruck 14.

Programmausdruck 14: VBScript Makro_open_file_and_create_elements.catvbs

Im Programmausdruck 14 wird für die Linienextrusion die Führungslinie und der Linienzug ausgewählt. Anschließend wird die Extrusionslänge in beiden Richtungen vorgegeben. Hierbei wird darauf geachtet, dass das Modell, in Folge der Extrusion, über die gesamte Länge durchdrungen wird. In den letzten Zeilen wird die Extrusion benannt und mit dem Modell verknüpft. In ähnlicher Weise werden noch zwei weitere Flächen für die Längsversteifungen im Innern der Rotorblätter erstellt. Das Ergebnis der bisherigen Schritten ist in Abbildung 8 dargestellt.

Abbildung 9: Vorbereitung für Längsschnitte im Computermodell

Mit dem MATLAB-Programmausdruck 16 im Anhang kann das vollständige CATIA-Makro erzeugt und in CATIA mit dem übernommenen Computermodell ausgeführt werden. Als letzte Aufbereitung für das Rotorblatt werden die Längsflächen direkt in CATIA mit dem Rotorblatt geschnitten sowie überstehende Flächen der Längsversteifungen getrimmt.

An dieser Stelle sind alle Vorbereitungen für das Simulationsmodell vorgenommen. Die anderen Bauteile der WEA sind ausreichend modelliert beziehungsweise benötigen keine Modifikation für den Einbau von Materialparameter.

3.3 Simulationsmodell

In diesem Abschnitt wird der Aufbau des Simulationsmodells beschrieben. Dabei wird auf verwendete Elemente, Netzfeinheit und Randbedingungen sowie vorgegebene Analyseeinstellung eingegangen. Die Simulation erfolgt mit dem FEM-Programm *ANSYS* über die *Workbench*-Oberfläche in der 15. Version.

3.3.1 Materialparameter

In Übereinstimmung mit dem Masterprojekt [17] listet Tabelle 7 die im Simulationsmodell in Verwendung kommenden Materialien auf. Entnommen sind diese Informationen der ANSYS-Einlesedatei shell7.src von Zeile 77 bis 143.

Materialbezeichnung	Elastizitäts- und Schubmoduln		Querkontraktion	Dichte	
	$E_{\mathbf{x}}$	$E_{\rm y}$, $E_{\rm z}$	$G_{\rm xy}, G_{\rm yz}, G_{\rm zx}$	$\nu_{\mathrm{xy}}, \nu_{\mathrm{yz}}, \nu_{\mathrm{zx}}$	ρ
Carbon(UD)	114.500	8.390	5.990	0,27	1,220
E-LT-5500(UD)	41.800	14.000	2.630	0,28	1,920
FOAM	256			0,3	0,200
Gelcoat	3.440			0,3	1,235
Saertex(DB)	13.600	13.300	11.800	0,49	1,780
SNL(Triax)	27.700	13.650	7.200	0,39	1,850
Turm	210.000			0,3	8,500
Werte in:	MPa	MPa	MPa		t/m ³

Tabelle 7: Materialien

Die Tabelle 7 beschreibt sowohl orthotrope als auch isotrope Materialien. Für die isotropen Materialien sind keine Angaben zu Schubmoduln angegeben. Diese errechnen sich aus dem Elastizitätsmodul und der Querkontraktionszahl; $G = \frac{E}{2(1+\nu)}$. Die ersten sechs Materialien in der Tabelle 7 sind ausschließlich in den Rotorblätter als Bestandteil des Mehrschichtverbunds verbaut. Dabei variiert der Lagenaufbau je nach Position beziehungsweise von der jeweiligen Einzelfläche in der Materialzusammensetzung und Dicke.

Lagenaufbau | ANSYS Workbench Strukturbaum: 🎲 Geometrie Die Informationen der Lagenaufbauten, die die Zuordnung zu den Einzelflächen und die jeweiligen Dicken des Mehrschichtverbunds beschreiben sind in der ANSYS-Einlesedatei she117.src von Zeile 145 bis 8.677 zu finden. Ein Ausschnitt des Inhalts ist in den folgenden Programmausdruck 15 dargestellt.

Programmausdruck 15: APDL shell7.src: Definition der Lagenaufbauten

```
146
    ! 000000 HP CAP
147
148
   sectype,1,shell
149
       secdata,5e-05,4,0,,Gelcoat
       secdata,0.00282,5,0,,SNL(Triax)
150
       secdata,0.0517,5,0,,SNL(Triax)
151
       secdata,0.00282,5,0,,SNL(Triax)
152
    secoffset,bot
153
```

Der Befehl sectype definiert die Querschnittsinformationen des jeweiligen Lagenaufbaus. Die Parameter hierzu sind der eindeutige Bezeichner und der Querschnitttyps Schale. Anschließend sind mit dem Befehl secdata, zu den einzelnen Schichten, die Dicken, die Identifikationsnummer des Material sowie der Winkel der Schicht gegenüber dem gesamten Lagenaufbau angegeben. Der jeweils letzte Parameter ist optional als Lesehilfe und hat keine Auswirkung auf den Befehl. Der letzte Befehl secoffset definiert den Versatztyp. Für die Oberfläche des Rotorblatts ist der Versatztyp stets *unten*. Aufgrund der nach innen ausgerichteten Flächennormalen bedeutet "unten", dass der Lagenaufbau von der Oberfläche (unten) nach innen aufgebaut wird. Die Modellierung der Außenkontur, mit nach innen gerichteten Flächennormalen, entspricht zudem der zukünftigen Berechnungen mit der FSI. Für die Längsversteifungen ist der Versatztyp mittig.

Die Abbildungen 9 sowie 10 stellen und die Tabelle 8 listet die unterschiedlichen Varianten von Lagenaufbauten dar beziehungsweise auf.

Abbildung 10: Lagenaufbauten im Rotorblatt mit gleichen Materialzusammensetzungen

In Abbildung 9 visualisieren gleiche Farben der Einzelflächen gleiche Materialzusammensetzung der Lagenaufbauten. Hierbei ist die Unterseite des Rotorblatts analog zu der in Abbildung 9 dargestellten Oberseite aufgebaut, siehe dazu auch Abbildung 10.

Abbildung 11: Lagenaufbauten im Rotorblatt mit gleichen Materialzusammensetzungen im Querschnitt bei 17 m

Die Abbildung 10 zeigt den Querschnitt des Rotorblatts bei einen Nabenabstand von 17 Meter sowie die Unterteilung des Querschnitts in 14 Domänen über den Umfang. Bei einem Nabenabstand von 42,5 Meter und von 46,5 Meter verringert sich die Anzahl der Domänen über den Umfang auf zwölf beziehungsweise zehn. Ebenso sind die entsprechenden Dicken des Lagenaufbaus durch die innen liegenden Linien angedeutet. Mit den Abbildungen 9 und 10 ist zu erkennen, dass die Außenhaut mit den Längsversteifungen fünf verschiedene Arten von Lagenaufbauten definieren, diese sind mit den unterschiedlich gefärbten Konturlinien symbolisiert.

	Lagenaufbaunummer über den Umfang							
	1, 2, 7	3	4,6	5	←Oberseite			
Schicht	8, 13, 14	12	9, 11	10	←Unterseite			
1	Gelcoat	Gelcoat	Gelcoat	Gelcoat	Saertex(DB)			
2	SNL(Triax)	SNL(Triax)	SNL(Triax)	SNL(Triax)	FOAM			
3	SNL(Triax)	SNL(Triax)	SNL(Triax)	SNL(Triax)	Saertex(DB)			
4	SNL(Triax)	E-LT-5500(UD)	FOAM	Carbon(UD)				
5		FOAM	SNL(Triax)	SNL(Triax)	↑ Längsver-			
6		SNL(Triax)			steifungen			

Tabelle 8: Lagenaufbauten im Rotorblatt

Die Materialzusammensetzung der fünf zur Verwendung kommenden Arten von Lagenaufbauten ist in der Tabelle 8 aufgelistet. Alle Lagenaufbauten der Außenhaut besitzen anteilig gleiche Materialzusammensetzungen, in der Weise, dass die ersten drei Schichten aus Gelcoat und SNL(Triax) sowie die jeweils letzte Schicht, ebenfalls aus SNL(Triax), zueinander identisch sind. Das unterschiedliche Verhalten zueinander wird infolge der dazwischenliegenden zusätzlichen Schichten aus E-LT-5500(UD), FOAM und Carbon(UD) mit unterschiedlichen Dicken bestimmt. Die Längsversteifungen hingegen besitzen stets den gleichen Lagenaufbau, mit den Dicken {2;50;2} in mm und der Materialzusammensetzung {Saertex(DB); Foam; Saertex(DB)}. In der Abbildung 11 ist für das Rotorblatt der Dickenverlauf zu den Lagenaufbauten dargestellt.

Abbildung 12: Dickenverlauf zu den Lagenaufbauten im Rotorblatt

Vertikal ist entsprechend der Tabelle 8 und Abbildung 10 die Lagenaufbaunummer über den Umfang angegeben. Horizontal ist der Abstand von dem Lagenaufbau zu der Rotornabe angegeben. Es ist zu sehen, dass die Lagendicke mit dem zu erwartenden Momemtenverlauf übereinstimmt.

In der Abbildung 12 sind die Dickenverläufe differenziert zu den unterschiedlichen Materialien im Rotorblatt dargestellt.

Abbildung 13: Dickenverlauf einzelner Materialien zu den Lagenaufbauten im Rotorblatt

3.3.2 Elemente

Infolge der Flächenmodellierung der WEA ist das Simulationsmodell mit Schalenelemente modelliert. Auf ein Modell mit Volumenelementen wurde verzichtet, da anzunehmen ist, dass die Schalenelemente hier gleiche Ergebnisse liefern und andererseits die Rechenzeit erheblich reduzieren. Weiterhin würden für eine hinreichende Volumenmodellierung Informationen, insbesondere in Dickenrichtung beziehungsweise dem Innenaufbau der Anlage, fehlen, wobei viele Annahmen getroffen werden müssten. Es fanden bereits für die Flächenmodellierung unterschiedliche Interpolationen und Annahmen statt. So stehen für die Rotorblätter Modellinformationen nur in gewissen Abständen zur Verfügung.

Bei den Schalenelementen handelt es sich zum großen Teil um Viereckselemente und vereinzelt um Dreieckselemente, beide mit linearen Verschiebungsansätzen. Die ausreichende Netzfeinheit wird durch eine Konvergenzstudie belegt.

Kontakte | ANSYS Workbench Strukturbaum: To Kontakte/Verbindungen Die Kopplung von Rotorblatt zu Spinner, Spinner zu Gondel und Gondel zu Turm erfolgt mit Kontaktelementen. Dazu sind jeweils die stirnseitigen Flächen miteinander verbunden. Dies hat zur Folge, dass die Elemente an der Stelle der Kopplung einen Verbund eingehen. Dabei ist der *Kontaktkörper* stets die bodenabgewandte Struktur und der *Zielkörper* die bodenzugewandte Struktur. Eingebaute Kontaktpartner sind in Abbildung 13 dargestellt.

Abbildung 14: Kontaktelemente

Erste statische Rechnungen zeigten, dass in den Rotorblattspitzen Spannungsüberhöhungen auftreten, siehe dazu Abbildung 14. Die Geometrie der Rotorblattspitze ist relativ Komplex. Dies hat zur Folge, dass eine befriedigende Vernetzungsqualität erschwert erreicht wird.

Abbildung 15: Spannungsüberhöhung an der Rotorblattspitze

Auf der Grundlage dass zu der Rotorblattspitze wenig Informationen vorliegt und der Annahme dass die Rotorblattspitze eine erhöhte Versteifung ausweist, wurde das Simulationsmodel an der Rotorblattspitze versteift. Hierzu wurde flächendeckend die Oberseite der Rotorblattspitze mit der Unterseite durch *starre Hebelelemente* zusätzlich verbunden, siehe auch Abbildung 15.

Abbildung 16: Längsfederelemente an der Rotorblattspitze

Netz | ANSYS Workbench Strukturbaum: **Wetz** In der Abbildung 16 und 17 ist die Konvergenzanalyse zur maximalen Vergleichspannung σ_{Mises} und der maximalen Verformung U zu zwei statischen Analysen dargestellt, worin die Anlage zum einem dem Eigengewicht und zum anderem von Einzellasten an der Blattspitze ausgesetzt ist. Die Abbildung 18 zeigt hingegen die Konvergenzanalyse zu den Eigenfrequenzen der Anlage. Hierbei wurde zu der Netzwahl die globale Elementkantengröße zuerst von 1000mm bis auf 100mm herabgesetzt. Anschließend wurde die in ANSYS verfügbare Einstellung *Relevanz* immer weiter hoch gesetzt. Diese Funktion verfeinert das Netz mit internen ANSYS-Regeln. Einzelne Elemente erreichten dabei

Abbildung 17: Konvergenzstudie zur maximalen Vergleichsspannung $\sigma_{\text{Mises}} \rightarrow \text{und der}$ maximalen Verformung $U \rightarrow \text{infolge des Eigengewichts}$

Abbildung 18: Konvergenzstudie zur maximalen Vergleichsspannung $\sigma_{\text{Mises}} \rightarrow \text{und der}$ maximalen Verformung $U \rightarrow \text{infolge einer Einzellast von 80 kN}$ an der Blattspitze

Kantenlängen von 70mm. In den Abbildungen 16, 17 und 18 werden die Spannungsund Verformungswerten beziehungsweise die Eigenfrequenzwerten mit der Anzahl von Freiheitsgrade gegenübergestellt, dessen Intervall von etwa 40.000 bis 1.000.000 verläuft.

Wie sich in Abbildung 16 und 17 zeigt, ist sowohl für die Verformung als auch für die Spannung die Konvergenz erreicht.

Abbildung 19: Konvergenzstudie zur Eigenfrequenz der Windenergieanlage

In Abbildung 18 ist die Konvergenz zu den Eigenfrequenzen zu erkennen, die sich gegenüber der Konvergenz zur Spannung und Verformung deutlich früher einstellt.

Für die nachfolgenden Berechnungen wurde ein Netz mit über 650 Tausend Freiheitsgrade gewählt, siehe auch Abbildung 19. Dies entspricht eine durchschnittliche Elementkantenlänge im Rotorblatt von 150mm. Weitere netzbezogene Eigenschaften zu dem gewählten Netz sind in der Tabelle 9 aufgelistet.

Anzahl von Freiheitsgrade		651.187	
Anzahl von Elemente		145.924	
S	chalenelemente	114.130	SHELL181
K	Kontaktelemente	31.221	CONTA174 und TARGE170
F	flächenelemente	568	SURF154 für Lasteinleitung
V	Verbindungselemente	5	MPC184 und COMBIN14
Elementqualität in %		$93,\!00\pm0,\!04$	
Orthogonale Qualität in %		$98,\!51\pm0,\!02$	

Tabelle 9: Netzeigenschaften

Für die Lasteinleitung werden spezielle Flächenelemente (SURF154) verwendet, mit denen die Flächenlasten in äquivalente Knotenlasten umgerechnet wird. Diese Elemente leisten keinen Beitrag zur Systemsteifigkeit.

Abbildung 20: Netz mit Elementkantenlängen von 150mm in den Rotorblättern und 400mm in dem Turm und der Gondel

3.3.3 Randbedingungen

Im Folgenden werden für das Simulationsmodell die Randbedingungen wie äußere Lasten und Lagerungen für die Berechnung infolge von Eigengewicht, Einzellasten und der Modalanalyse dargestellt.

Eigengewicht

Die Randbedingung für die Berechnung infolge von Eigengewicht ist in Abbildung 20 dargestellt. Hierbei ist die Anlage zum Boden hin fixiert sowie insgesamt mit der Erdbeschleunigung von 9,8066 m/s² belastet.

Abbildung 21: Statische Randbedingungen Eigengewicht

Einzellasten

Die Randbedingung für die Berechnung infolge von Einzellasten ist in Abbildung 21 dargestellt. Hierbei ist die Anlage zum Boden hin fixiert sowie mit den Einzellasten von 80kN an den Rotorblattspitzen belastet. In Abbildung 21 rechts ist für die Berechnung mit Eigengewicht zusätzlich die Erdbeschleunigung von 9,8066m/s² dargestellt.

Abbildung 22: Statische Randbedingungen Einzellast ohne Eigengewicht links und mit Eigengewicht rechts

Modalanalyse

Die Randbedingung für die Modalanalyse ist in Abbildung **??** dargestellt. Hierbei ist die Anlage ausschließlich zum Boden hin fixiert. In Abbildung **??** rechts werden den Rotorblättern die stationäre Nennumdrehungsgeschwindigkeit von 12, 1 min⁻¹ zugewiesen.

Abbildung 23: Randbedingungen zur Modalanalyse, rechts mit Nennumdrehungsgeschwindigkeit von 9,8066m/s²

3.3.4 Analyseparameter

Für die Modalanalyse mit Rotationsgeschwindigkeit wird für den Löser entsprechend die Dämpfung und der Coriolis-Effekt aktiviert.

Für die geometrisch nichtlineare statische Analyse wird für den Löser entsprechend große Verformung aktiviert. Das lösen erfolgt hierbei in zehn Unterschritten.
4 Strukturdynamische Untersuchung der Windenergieanlage

Für den Abgleich mit der Ausarbeitung von NREL werden Eigenfrequenzen und Eigenformen verglichen. Dieser Abgleich soll ebenfalls als Verifikation des Simulationsmodells dienen.

4.1 Modalanalyse

Die Tabelle 10 listet die berechneten Eigenfrequenzen der Windenergieanlage mit und ohne der Nennumdrehungsgeschwindigkeit von 12, 1 min⁻¹ auf. Am Ende dieses Abschnittes werden in der Abbildung 24 die ersten zwölf Eigenformen der Windenergieanlage dargestellt.

Tabelle	10:	Eigenfred	uenzen	der	Winder	nergieanl	age
labollo	- 0.	Digennie	140112011	aci	· · · · · · · · · · · · · · · · · · ·	Grean	uge

Eigenfrequenz in Hz										
Oł	Ohne Nennumdrehungsgeschwindigkeit									
1	0,3215	6	0,8952	11	2,3438	16	3,727			
2	0,3221	7	0,9431	12	2,5321	17	3,7599			
3	0,6781	8	0,9616	13	2,5378	18	3,8063			
4	0,7056	9	1,653	14	2,6894	19	3,9425			
5	0,7474	10	2,0201	15	3,72	20	3,9427			
Mi	t Nennum	drehu	ngsgeschv	vindigk	eit					
1	0,3107	6	0,8921	11	2,6279	16	3,7621			
2	0,3221	7	0,9416	12	2,6506	17	3,7753			
3	0,5571	8	0,9607	13	2,7331	18	3,8804			
4	0,6392	9	1,6613	14	2,9994	19	3,9425			
5	0,6778	10	2,1081	15	3,7556	20	3,9427			

In der Tabelle 11 und 12 werden die berechneten Eigenfrequenzen der Anlage mit den Ergebnisses aus dem NREL-Bericht verglichen. Im Gegensatz zu der Tabelle 11, berücksichtigt die Tabelle 12 die Nennumdrehungsgeschwindigkeit.

Frequenz in Hz			Frequenz aus	Abweic	hung in % zu	
#	FAST	ADAMS	#	Simulation in Hz	FAST	ADAMS
1	0,324	0,3195	1	0,3215	0,77	-0,63
2	0,312	0,3164	2	0,3221	-3,24	-1,80
3	0,6205	0,6094	3	0,6781	-9,28	-11,27
4	0,6664	0,6296	4	0,7056	-5,88	-12,07
5	0,6675	0,6686	5	0,7474	-11,97	-11,79
6	0,6993	0,7019	6	0,8952	-28,01	-27,54
7	1,0793	1,074	7	0,9431	12,62	12,19
8	1,0898	1,0877	8	0,9616	11,76	11,59
9	1,9337	1,6507	9	1,653	14,52	-0,14
10	1,9223	1,8558	10	2,0201	-5,09	-8,85
11	2,0205	1,9601	11	2,3438	-16,00	-19,58
12	2,9003	2,859	13	2,5378	12,50	11,23
13	2,9361	2,9408	14	2,6894	8,40	8,55

 Tabelle 11: Vergleich der Eigenfrequenzen mit der NREL-Ausgangs-WEA

In Tabelle 11 ist eine gute Übereinstimmung der berechneten Eigenfrequenzen mit den Eigenfrequenzen aus dem NREL-Bericht zu erkennen. Im Mittel liegt eine Abweichung von zehn Prozent vor, siehe auch Abbildung 22.

Abbildung 24: Abweichung der Eigenfrequenzen bezüglich der NREL-Ergebnissen zu FAST II und ADAMS II

Frequenz in Hz			Frequenz aus	Abweic	hung in % zu	
#	FAST	ADAMS	#	Simulation in Hz	FAST	ADAMS
1	0,324	0,3195	1	0,3107	4,10	2,75
2	0,312	0,3164	2	0,3221	-3,24	-1,80
3	0,6205	0,6094	3	0,5571	10,22	8,58
4	0,6664	0,6296	4	0,6392	4,08	-1,52
5	0,6675	0,6686	5	0,6778	-1,54	-1,38
6	0,6993	0,7019	6	0,8921	-27,57	-27,10
7	1,0793	1,074	7	0,9416	12,76	12,33
8	1,0898	1,0877	8	0,9607	11,85	11,68
9	1,9337	1,6507	9	1,6613	14,09	-0,64
10	1,9223	1,8558	10	2,1081	-9,67	-13,60
11	2,0205	1,9601	11	2,6279	-30,06	-34,07
12	2,9003	2,859	13	2,6506	8,61	7,29
13	2,9361	2,9408	14	2,7331	6,91	7,06

 Tabelle 12: Vergleich der Eigenfrequenzen mit der NREL-Ausgangs-WEA mit Nennumdrehungsgeschwindigkeit

Auch in Tabelle 12 ist eine gute Übereinstimmung der berechneten Eigenfrequenzen mit den Eigenfrequenzen aus dem NREL-Bericht zu erkennen. Im Mittel liegt ebenfalls eine Abweichung von zehn Prozent vor, siehe auch Abbildung 23. Tendenziell ist die Abweichung mit Nennumdrehungsgeschwindigkeit um ein Prozent geringer und damit in besserer Übereinstimmung mit den Angaben des NREL-Berichts.

Abbildung 25: Abweichung der Eigenfrequenzen bezüglich der NREL-Ergebnissen zu FAST II und ADAMS III mit Nennumdrehungsgeschwindigkeit

Abbildung 26: Die ersten zwölf Eigenformen der Windenergieanlage

4.2 Statische Analyse

Eigengewicht

Die Abbildung 25 und 26 zeigen die Spannungsverläufe der statischen Analyse unter Eingengewicht mit einer Erdbeschleunigung von 9,8066m/s².

Abbildung 27: Statische Analyse aufgrund Eigengewicht mit einem Überhöhungsfaktor von 25

Abbildung 28: Detail zu der maximalen Spannung der statische Analyse aufgrund Eigengewicht

In der Abbildung 26 ist die maximale Spannung der Anlage dargestellt. Aufgrund des starken Spannungsgradienten ist von Randeffekten der Schalenelemente auszugehen. Im Mittel ist die gesamte Anlage unter 20 MPa belastet.

Einzellast

Die Abbildungen 27 und 28 zeigen die Spannungsverläufe der statischen Analyse aufgrund von Einzelkraftbelastungen von 80kN an den Rotorblattspitzen.

Abbildung 29: Statische Analyse aufgrund Einzellast von 80kN an den Rotorblattspitzen mit einem Überhöhungsfaktor von 2,6

In der Abbildung 28 ist die maximale Spannung der Anlage dargestellt. Für den Belastungsfall mit Einzellasten an den Rotorblattspitzen liegt die größte Spannung in den Längsversteifungen der Rotorblätter vor. Im Mittel ist die gesamte Anlage unter 30MPa belastet.

Abbildung 30: Detail zu der maximalen Spannung der statische Analyse aufgrund Einzellast von 80kN an den Rotorblattspitzen mit einem Überhöhungsfaktor von 2,6

Eine Gegenüberstellung der statischen Ergebnissen erfolgt in der Tabelle 13. Zusätzlich zu den gezeigten Belastungsfällen wurde eine kombinierte Belastung von Eigengewicht und Einzellasten durchgeführt. Ebenso wurde gegenüber den linearen Rechnungen eine geometrisch nichtlineare Analyse für den Belastungsfall mit Einzellasten an den Rotorblattspitzen durchgeführt, siehe dazu auch Abbildung 29.

Art der Rechnung	Verformung in mm	Spannung in MPa
Eigengewicht	446,84	53,520
Einzellast <i>F</i> = 80kN an Rotorblattspitze	3630,4	64,146
Einzellast und Eigengewicht	3797,5	74,295
Geometrisch Nichtlinear mit Einzellast	3571,7	65.547

Tabelle 13: Statische Analyse

Die Abweichung der nichtlinearen zu der linearen Analyse beträgt 5,9 Prozent bezüglich der maximalen Verformungen und 2,7 Prozent mit Bezug zu der maximalen Spannungen. Auch die Abbildung 29 zeigt das lineare Verhalten der geometrisch nichtlinearen Rechnung. Resultierend kann gesagt werden, dass mit integrierten Kräften, in der Größenordnung von 80kN, auf den jeweiligen Rotorblatt linear gerechnet werden kann.

Abbildung 31: Geometrisch nichtlineare statische Analyse

5 Schlussbetrachtung

5.1 Zusammenfassung

Diese Masterarbeit entstand in dem Forschungsprojekt WindNumSim an der Hochschule für Angewandte Wissenschaften Hamburg. Das im Laufe dieser Arbeit modifizierte Computermodell und erzeugte Simulationsmodell einer Windenergieanlage basiert auf den Daten des National Renewable Energy Laboratory (NREL) und der Masterarbeiten [18] sowie des Masterprojekts [17].

Die Modifizierung des Computermodells erfolgt mit dem CAD-Programm CATIA V5 und die Erstellung des Simulationsmodells mit FEM-Programm ANSYS 15. Mit Hilfe von Makros werden die gegebenen Koordinaten zu den Lagenaufbauten eingelesen und in das Computermodell eingebaut. Das Computermodell wird anhand den Daten geschnitten und anschließend wieder verbunden. Hierbei entstehen die benötigten Domänen für die spätere Zuweisung der Lageraufbauten im Simulationsmodell. Durch die Verwendung des Makros ist das Einlesen verschiedener Koordinaten zu einzelnen Domänen möglich. Für das Simulationsmodells wird zu jeder Domäne einzelne Dateien generiert, die anschließend in das Simulationsmodell eingebunden werden. Diese Dateien beinhalten zu den jeweiligen Lagenaufbauen die Materialzusammensetzung mit entsprechenden Informationen der Schichtdicken und der ersten Hauptausrichtung beziehungsweise der Faserrichtung.

Bei der Simulation der kompletten Windenergieanlage kommt es zu einer guten Übereinstimmung der Eigenfrequenzen mit den Balkenmodellen des NREL-Berichts. Ebenso kann je Rotorblatt bis zu einer integrierten Kraft von 100kN linear gerechnet werden. Die Abweichung zur geometrisch nichtlinearen Rechnung beträgt mit einer Kraft von 80kN weniger als 6 Prozent.

5.2 Ausblick

Das in der vorliegenden Masterarbeit entwickelte Strukturmodell bildet die Grundlage für das Forschungsprojekt WindNumSim zur Simulation des Strukturverhaltens mit der FEM. Zusammen mit einem entsprechenden Fluidmodell bildet die beiden Modelle hingegen die Grundlage der Analyse mit Fluid-Struktur-Interaktion (FSI). Hiermit können Windgeschwindigkeiten vorgegeben und als Belastung der Struktur übertragen werden, genannt *Einwege*-FSI. Die darauf folgende Verformung der Anlage hat wiederum Einfluss auf das Strömungsverhalten des Fluides und somit rückwirkend auf die Belastung der Anlage. In diesem Fall spricht man von einer Zweiwege-FSI.

Literatur

- JONKMAN, J. u. a.: Definition of a 5-MW Reference Wind Turbine for Offshore System Development. Forschungsbericht. Golden, Colorado: National Renewable Energy Laboratory, 2009.
- [2] BATHE, K.-J.: Finite-Elemente-Methoden : Matrizen und lineare Algebra, die Methode der finiten Elemente, Lösung von Gleichgewichtsbedingungen und Bewegungsgleichungen. 1. Aufl. Heidelberg : Springer-Verlag Berlin, 1986.
- [3] KLEIN, B.: FEM : Grundlagen und Anwendungen der Finite-Element-Methode im Maschinen- und Fahrzeugbau. 6. Aufl. Wiesbaden : Vieweg & Sohn Verlag, 2005.
- [4] BECKER, W.; GROSS, D.: *Mechanik elastischer Körper und Strukturen*. Berlin Heidelberg : Springer-Verlag, 2002.
- [5] Rösler, J. u. a.: *Mechanisches Verhalten der Werkstoffe*. 4. Aufl. Wiesbaden : Springer Vieweg, 2012.
- [6] Ogden, R. W.: *Non-Linear Elastic Deformations*. Chichester, England und New York : Ellis Horwood und Halsted Press/John Wiley & Sons, 2001.
- [7] WRIGGERS, P.: Nichtlineare Finite-Element-Methoden. Berlin Heidelberg : Springer-Verlag, 2001.
- [8] NASDALA, L.: *FEM Formelsammlung Statik und Dynamik* : *Hintergrunhdinformationen, Tipps und Tricks.* 2. Aufl. Wiesbaden : Springer Vieweg, 2012.
- [9] KUHL, D.: Finite Elemente I + II. Kassel : Universität Kassel, 2007.
- [10] STELZMANN, U. u. a.: FEM für Praktiker : Band II: Strukturdynamik. 5. Aufl. Renningen : expert verlag, 2008.
- [11] NEWMARK, N. M.: "A method of computation for structural dynamics". In: *Journal* of Engineering Mechanics Division 85.3 (1959), S. 67–94.
- [12] HUGHES, T. J. R.: *The Finite Element Method Linear Static and Dynamic Finite Element Analysis*. Englewood Cliffs, NJ : Prentice-Hall, Inc., 1987.
- [13] CLOUGH, R. W.; PENZIEN, J.: Dynamics of Structures. 3. Aufl. Berkeley : Computers & Structures, Inc., 2003, S. 626–627.
- [14] ERMANNI, P.; KRESS, G.: *Leichtbau III* : *Faserverbundstrukturen*. Zürich : Eidgenössische Technische Hochule Zürich, 2004.
- [15] KOOIJMAN, H. u. a.: Aero-elastic modelling of the DOWEC 6 MW pre-design in PHA-TAS. Forschungsbericht. Petten: Energy research Centre of the Netherlands, 2003.

- [16] LINDENBURG, C.: Aeroelastic Modelling of the LMH64-5 Blade. Forschungsbericht. Petten: Energy research Centre of the Netherlands, 2002.
- [17] LÜHE, K. u. a.: Entwicklung eines Abschnittes des NREL Rotorblattes mit anisotropen Material anhand gegebener Steifigkeitsdaten. Masterprojekt. Hamburg: Department für Maschinenbau und Produktion, Hochschule für Angewandte Wissenschaften Hamburg, 2015.
- [18] PRANGE, S.: Entwicklung eines 3D-Geometriemodells und numerische Strömungssimulation einer Windenergieanlage. Masterarbeit. Hamburg: Department für Maschinenbau und Produktion, Hochschule für Angewandte Wissenschaften Hamburg, 2014.
- [19] RESOR, B. R.: Definition of a 5MW/61.5m Wind Turbine Blade Reference Model.
 Forschungsbericht. Albuquerque, New Mexico 87185 und Livermore, California 94550: Sandia National Laboratories, 2013.

Anhang

Inhaltsangabe

A.1	Skripte	69
A.2	Konvergenztabellen	76
A.3	Erklärung zur selbständigen Bearbeitung	80

A.1 Skripte

In diesem Abschnitt sind Skripte dargestellt, welche Grundlage dieser Arbeit sind.

Programmausdruck 16: MATLAB Create_CATIA_Makro.m

```
1 clc, clear all
  3 % CONFIGURATION
    mirrowed = true;
plotPoints = false;
    beginAtSection = 7;
  6
' if mirrowed==true
9 catiaFileName = 'Rotorblatt-NREL1.CATPart';
10 else
11
12
      catiaFileName = 'Rotorblatt-NREL1_NichtGespiegelt.CATPart';
    end
13 catiaFile = strcat(pwd,'\',catiaFileName);
14 % 18 more planes
11 10 more planes
15 planeDistances = [7000, 8333.3, 10500, 13500, 18500, 19950, 22000, 26100, ...
16 32250, 33500, 38500, 40450, 42500, 43500, 46500, 48650, 56166.7, 58900]; % in mm
17 %
18 % KEYPOINTS
19 fid = fopen('keypointsTemp.txt');
20 j = 1;
21 while ~feof(fid)
     keypoints(j,:) = textscan(fid, '%s_%f_%f_%f_%f_%f',1,'headerlines',0,'Delimiter',',','EmptyValue',0);
j = j+1;
 23
24 end
    keypoints = keypoints(:,2:end);
keypoints = cell2mat(keypoints);
25
26
27
28
     % SECTIONS
    fid = fopen('sectionsTemp2.txt');
j = 1;
while ~feof(fid)
29
30
31
 32
       sectionKeypoints(j,:) = textscan(fid, '%s_%d_%d_%d_%d_%d',1,'headerlines',0,'Delimiter',',','EmptyValue',0);
     for i = 1:2
34
35
          fgets(fid);
      end
36 j = j+1;
37 end
    sectionKeypoints = sectionKeypoints(:,2:end);
sectionKeypoints(:,end) = [];
sectionKeypoints = cell2mat(sectionKeypoints);
38
39
40
41
       results(
     uniqueSectionKeypoints = unique(sectionKeypoints(:));
42
43
44
     % KEYPOINTS AND SECTIONS
45
     iskeypointInSection = (ismember(keypoints(:,1) , uniqueSectionKeypoints));
46
    j = 1;
for i=1:length(iskeypointInSection)
    if isequal(iskeypointInSection(i),true)
47
48
         keypointInSection(j,:) = keypoints(i,:);
j = j+1;
49
50
       end
51
52
     end
53
     keypointInSectionIDs = keypointInSection(:,1);
    keypointInSection[:,1];
keypointInSection = keypointInSection(:,2:end)*1000;
% 2866.7 entfernung Nabe - Spinnerkontaktflaeche zu Rotorblatt
zOffset = 2866.7 - 1366.7;
keypointInSection(:,3) = keypointInSection(:,3) + zOffset;
if mirrowed==true
54
55
56
57
58
59
       theta = 180;
      theta = 180;

R = [cosd(theta), 0, -sind(theta);

0, 1, 0;
60
61
       v, r, v,
sind(theta), O, cosd(theta)];
keypointInSection = keypointInSection*R;
62
63
64 else
65 ke
       keypointInSection(:,1) = -1*keypointInSection(:,1);
66
67
68
     end
     if plotPoints == true
     scatter3(keypointInSection(:,1), keypointInSection(:,2), keypointInSection(:,3));
69
       axis equal
74 j = 1;
75 while ~feof(fid)
76
       lines(j,:) = textscan(fid, '%s_%f_%f_%s',1, 'headerlines',0, 'Delimiter',',','EmptyValue',0);
```

```
77  j = j+1;
78 end
79 lines = lines(:,2:3);
  // Thes = Thes(:,:);
80 lines = cell2mat(lines);
81 combineLines{}
2 11001,11101,11201,11301,11401,11501,11601,11701,11801,11901,...
3 12001,12101,12201,12301,12401,12501,12601,12701,12801];
         combineLines {2} = [10802,10902,...
11002,11102,11202,11302,11402,11502,11602,11702,11802,11902,...
12002,12102,12202,12302,12402,12502,12602,12702,12802,...
   84
   85
   86
         12002, 12102, 12202, 12302, 12402, 12502, 12602, 12702, 12602, ...

12901, ...

13001, 13101, 13201, 13301, 13401, 13501, 13601, 13701];

combineLines {} = [10803, 10903, ...

11003, 11103, 11203, 11303, 11403, 11503, 11603, 11703, 11803, 11903, ...

12003, 12103, 12203, 12303, 12403, 12503, 12603, 12703, 12803, ...
   87
   88
   89
   90
   91
               12902,...
13002,13102];
   92
   93
         combineLines {4} = [10804,10904,...
11004,11104,11204,11304,11404,11504,11604,11704,11804,11904,...
12004,12104,12204,12304,12404,12504,12604,12704,12804,...
  94
   95
   96
               12903,...
13003,13103,
   97
98
         13003, 13103,...

13202, 13302, 13402, 13502, 13602, 13702];

combineLines {5} = [10805, 10905,...

11005, 11105, 11205, 11305, 11405, 11505, 11605, 11705, 11805, 11905,...

12005, 12105, 12205, 12305, 12405, 12505, 12605, 12705, 12805,...
  99
 100
 102
               12904...
               13004, 13104,...
13203, 13303, 13403, 13503, 13603, 13703];
 104
         13205, 13305, 13405, 13505, 13505, 13705, 1

combinet lines {6} = {10806, 10906, ...

11006, 11106, 11206, 11306, 11406, 11506, 11606, 11706, 11806, 11906, ...

12006, 12106, 12206, 12306, 12406, 12506, 12606, 12706, 12806, ...

12905, ...

13005, ...
 106
 107
 108
 109
111
112
               13204,13304,13404,13504,13604,13704];
          % already in model
% combineLines7 = [10807,10907,
 113
                11007, 11107, 11207, 11307, 11407, 11507, 11607, 11707, 11807, 11907, ...
12007, 12107, 12207, 12307, 12407, 12507, 12607, 12707, 12807, ...
 114
 115
          %
116
117
                12906,...
13006,13106,
          %
%
         % 13205,13305,13405,13505,13605,13705];
combineLines{8} = [10808,10908,...
11008,11108,11208,11308,11408,11508,11608,11708,11808,11908,...
12009,12108,12208,12308,12408,12508,12608,12708,12808,...
 118
 119
 120
121
122
               12907,...
13007,13107,...
13206,13306,13406,13506,13606,13706];
 123
 124
         combineLines {9} = [10809,10909,...
11009,11109,11209,11309,11409,11509,11609,11709,11809,11909,...
12009,12109,12209,12309,12409,12509,12609,12709,12809,...
 125
 126
127
               12908,...
13008,13108,
  128
         13006, 10100, ...

13207, 13307, 13407, 13507, 13607, 13707];

combineLines {10} = [10810, 10910, ...

11010, 11110, 11210, 11310, 11410, 11510, 11610, 11710, 11810, 11910, ...

12010, 12110, 12210, 12310, 12410, 12510, 12610, 12710, 12810, ...
 130
 131
 133
               12909,...
13009,13109,...
13208,13308,13408,13508,13608,13708];
 134
 136
          combineLines{11} = [10811,10911,...
11011,11111,11211,11311,11411,11511,11611,11711,11811,11911,...
 137
               12011, 12111, 12211, 12311, 12411, 12511, 12611, 12711, 12811, ...
 139
 140
               12910,...
13010,13110];
 141
          combineLines {12} = [10812,10912,...
11012,11112,11212,11312,11412,11512,11612,11712,11812,11912,...
12012,12112,12212,12312,12412,12512,12612,12712,12812,...
 142
 143
 144
 145
               12911,.

      145
      12911,...

      146
      13011,13111,13209,13309,13409,13509,13609,13709];

      147
      combineLines{13} = [10813,10913,...

      148
      11013,11113,11213,11313,11413,11513,11613,11713,11813,11913,...

      149
      12013,12113,12213,12313,12413,12513,12613,12713,12813];

 150 %
  151
          % hybridBodies
 152 % 1 Querschnittsebenen
153 % 2 variable temporary set; Flaechen (old), Abschnittstrennungen
154 % 3 Abschnittstrennungen
 155
         % 4 Gesamtoberflaeche
  156
         % 5 Spiegelung (old)
% 6 Punkte
 158
         % 7 Abschnittslinien
 159 fileID = fopen('Makro_open_file_and_create_elements.catvbs','w');
 10 % begin of file
160 % begin of file
161 fprintf(fileID,[...
162 'Language="VBSCRIPT"\r\n\r\n'...
```

163 'Sub_CATMain()\r\n'... SubLAIMain())r\n ... 'CATIA.RefreshDisplayu=uFalse\r\n\r\n'... 'SetupartDocument1u=uCATIA.Documents.Open("%s")\r\n'... 'Setuselection1u=upartDocument1.Selection\r\n'... 'Setupart1u=upartDocument1.Part\r\n'I, catiaFile); 164 165 166 167 168 169 % create planes
170 fprintf(fileID,[... 'SetLybridBodies1u=upart1.HybridBodies\r\n'...
'SetLybridBody1u=uhybridBodies1.Add()\r\n'...
'hybridBody1.Nameu=u"Querschnittsebenen"\r\n'...
'part1.Update\r\n\r\n'... 173 174 Set_hybridShapeFactory1_=_part1.HybridShapeFactory\r\n\r\n'... SetLhyDridShapeFactoryI==Dart1.HyDridShapeFactoryIr\n\r\n ...
'SetLoriginElements1==Dart1.OriginElements\r\n'...
'SetLhyDridShapePlaneExplicit1==originElements1.PlaneXY\r\n'...
'SetLreference1==Dart1.CreateReferenceFromObject(hyDridShapePlaneExplicit1)\r\n\r\n']);
numberOfPlanes = length(planeDistances);
'cen_i=1_empth(Dlanex) 176 177 179 for i=1:numberOfPlanes
 fprintf(fileID,[... 180 181 rint(fileL0,[... 'Set.hybridShapePlaneOffset1.=_'... 'hybridShapeFactory1.AddNewPlaneOffset(reference1,.%f,.False)\r\n'... 'hybridShapePlaneOffset1.Name_=_"Ebene.10%02d"\r\n'... 'hybridBody1.AppendHybridShape_hybridShapePlaneOffset1\r\n'... 'part1.LnWorkObject.=_hybridShapePlaneOffset1\r\n'... 'part1.Update\r\n\r\n'], planeDistances(i), i); 182 183 184 185 186 187 end % get whole surface 188 189 190 fprintf(fileID,...
191 'Set_hybridShapes1_=_hybridBody1.HybridShapes\r\n\r\n'); % cut on planes 192 fprintf(fileID,[.. 193 'Set_hybridBody3L=LhybridBodies1.Add()\r\n'...
'hybridBody3.NameL=L"Abschnittstrennungen"\r\n'...
'part1.Update\r\n']); 194 195 196 197 for i=1:numberOfPlanes
if i==1 198 fprintf(fileID,[... 199 Set_hybridBody2_=_hybridBodies1.Item("Flaechen")\r\n'... 200 'Set⊥hybridShapes2u=uhybridBody2.HybridShapes\r\n'... 'SetuhybridShapeAssemble2u=uhybridShapes2.Item("Verbindung.16")\r\n']); 201 202 elseif i==2 204 fprintf(fileID,[... /set.hybridBody2u=uhybridBodies1.Item("Abschnittstrennungen")\r\n'... 'SetuhybridShapes2u=uhybridBody2.HybridShapes\r\n'... 'SetuhybridShapeAssemble2u=uhybridShapes2.Item("Trennen.10%02dr")\r\n'],i-1); 206 208 else fprintf(fileID,'Set_hybridShapeAssemble2_=_hybridShapes2.Item("Trennen.10%02dr")\r\n',i-1); end fprintf(fileID,[... 'Set_reference1_=_part1.CreateReferenceFromObject(_hybridShapeAssemble2)\r\n'... 'Set_hybridShapePlaneOffset1_=_hybridShapes1.Item("Ebene.10%02d")\r\n'... 'Set_reference2_=_part1.CreateReferenceFromObject(_hybridShapePlaneOffset1)\r\n\r\n'... 'Set_hybridShapeSplit1_=_hybridShapeFactory1.AddNewHybridSplit(reference1,_reference2,_-1)\r\n'... 212 213 214 215 Set_nybridShapeSplitl=LnybridShapePactory1.Addnewmybri 'hybridShapeFactory1.GSMVisibility_reference1,_0\r\n'... 'hybridShapeSplit1.Name_=_TTrennen.10%02d"\r\n'... 'hybridBody3.AppendHybridShape_hybridShapeSplit1\r\n'... 'part1.InWorkObject==hybridShapeSplit1\r\n'... 216 218 219 part1.Update\r\n'...
part1.Update\r\n'],i,i); print(fileID,[... 'SetuhybridShapeSplit1_=uhybridShapeFactory1.AddNewHybridSplit(reference1,ureference2,u1)\r\n'... 222 223 Set_nybridShapeSplit[_=_nybridShapePactory1.Addnewmybri 'hybridShapeFactory1.GSMVisibility_reference1,_0\r\r'... 'hybridShapeSplit1.Name_=_Trennen.10%02dr"\r\n'... 'hybridBody3.AppendHybridShape_hybridShapeSplit1\r\n'... 'part1.InWorkObject==hybridShapeSplit1\r\n'... 224 225 226 227 228 part1.Update\r\n'.. 229 part1.Update\r\n\r\n'], i); end 230 231 232 % combine sections fprintf(fileID,[... Set_hybridBody4_=_hybridBodies1.Add()\r\n'... 233 'hybridBody4.Name_=_"Gesamtoberflaeche"\r\n'...
'part1.Update\r\n']);
for i=1:numberOfPlanes 234 236 238 239 `Setureference%du=upart1.CreateReferenceFromObject(hybridShapeSplit1)\r\n'],i,i);
if i==2 240 241 $fprintf(fileID, 'Set _hybridShapeAssemble1 _= _hybridShapeFactory1.AddNewJoin(reference1, _reference2) \ (n');$ elseif i>2 242 fprintf(fileID,'hybridShapeAssemble1.AddElement_reference%d\r\n',i); 243 end 244 fprintf(fileID,'\r\n'); 245 246 end

```
247 fprintf(fileID,[...
248 'Set_hybridShapeSplit1_=_hybridShapeS2.Item("Trennen.10%02dr")\r\n'..
249
          'Set_réference%d_=_part1.CreateReferenceFromObject(hybridShapeSplit1)\r\n'...
'hybridShapeAssemble1.AddElement_reference%d\r\n\r\n'...
          'hybridShapeAssemble1.SetConnex_1\r\n'...
'hybridShapeAssemble1.SetManifold_1\r\n'...
251
252
          'hybridShapeAssemble1.SetSimplify_0\r\n'...
'hybridShapeAssemble1.SetSuppressMode_0\r\n
254
          'hybridShapeAssemble1.SetDeviation_0.001000\r\n'...
'hybridShapeAssemble1.SetAngularToleranceMode_0\r\n'...
256
          'hybridShapeAssemble1.SetAngularTolerance_0.500000\r\n'...
'hybridShapeAssemble1.SetFederationPropagation_0\r\n'...
'hybridShapeAssemble1.Name_=_"Verbindung.1001"\r\n'...
'hybridBody4.AppendHybridShape_hybridShapeAssemble1\r\n'...
257
258
259
260
           part1.InWorkObject_=_hybridShapeAssemble1\r\n'...
part1.Update\r\n'...
261
262
          'part1.Update\r\n'], i, i+1, i+1);
mirrowed==true
263
264
      i f
         265
266
267
268
             'hybridShapeSymmetry1.VolumeRésult_=_False\r\n'...
'hybridBody4.AppendHybridShape_hybridShapeSymmetry1\r\n'...
269
270
271
272
              part1.InWorkObject_=_hybridShapeSymmetry1\r\n'.
part1.Update\r\n'...
              Set_hybridBody5_=_hybridBodies1.Item("Spiegelung")\r\n′...
selection1.Add_hybridBody5\r\n′...
273
274
275
276
              selection1.Add_hybridShapeAssemble1\r\n']);
      fprintf(fileID, '\r\n');
      % create Points
fprintf(fileID,[...
279
          Set_hybridBody6_=_hybridBodies1.Add()\r\n'...
'hybridBody6.Name_=_"Punkte"\r\n'...
280
281
282
           part1.Update\r\n'...
           Set_axisSystems1_=_part1.AxisSystems\r\n'...
283
          SetLaxIsSystem1==_axisSystem3.1("...
'SetLaxIsSystem1=_axisSystem3.1("...
'SetLaxIsSystem1=_axisSystem3.1("...
'SetLareference1==upart1.CreateReferenceFromObject(axisSystem1)\r\n\r\n']);
284
285
      for i=1:length(keypointInSectionIDs)
sectionID = int8(keypointInSectionIDs(i)/1000)+1;
if sectionID > beginAtSection
    fprintf(fileID,[...
286
287
288
289
                ′SetuhybridShapePointCoord1u=uhybridShapeFactory1.AddNewPointCoord(%f,u%f)\r\n′...
′hybridShapePointCoord1.RefAxisSystemu=ureference1\r\n′...
290
291
292
                 \label{eq:hybridBody6.AppendHybridShape_hybridShapePointCoord1\r\n'... hybridShapePointCoord1.Name\_=_"Unkt.1%05d"\r\n'...
293
294
                 part1.InWorkObject==hybridShapePointCoord1\r\n'.
                 part1.Update\r
295
296
297
                 \r \n'],keypointInSection(i,:),keypointInSectionIDs(i));
         end
298
      end
     myKeypoints = [ 0,0,2870; 0,0,42500; 0,0,46500; 0,0,63000];
if mirrowed == true
  myKeypoints = -myKeypoints;
end
299
300
301
302
      for i=1:length(myKeypoints(:,1))
303
         fprintf(fileID,[...

Set_hybridShapePointCoord1_=_hybridShapeFactory1.AddNewPointCoord(%f,_%f)\r\n'...
304
305
             'hybridShapePointCoord1.BelAxisSystem_sureFactory'.Nukrewiont
'hybridShapePointCoord1.RefAxisSystem_sureFactory'...
'hybridShapePointCoord1.Nameusu"Punkt.19%04d"\r\n'...
'part1.InWorkObjectusuhybridShapePointCoord1\r\n'...
306
307
308
309
310
              part1.Update\r\n\r\n'], myKeypoints(i,:), i);
311
      end
      % create Lines
fprintf(fileID,[..
312
     314
316
317
318
319
320
         j = 1;
end
321
         sectionID = newSectionID:
         if sectionID > beginAtSection
    fprintf(fileID,[...
324
325
326
                 327
                 Set_reference1_=_part1.CreateReferenceFromObject(hybridShapePointCoord1)\r\n'...
328
                'Set_hybridShapePointCoord2u=uhybridShapes6.Item("Punkt.1%05d")\r\n'...
'Setureference2u=upart1.CreateReferenceFromObject(hybridShapePointCoord2)\r\n'...
329
```

330 'SetuhybridShapeLinePtPt1u=uhybridShapeFactory1.AddNewLinePtPt(reference1,ureference2)\r\n'...

```
331
                                        'hybridBody7.AppendHybridShape_hybridShapeLinePtPt1\r\n'...
                                        //subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscriptions/subscript
332
334
                                        part1.Update\r\n\r\n'],lines(i,1),lines(i,2),sectionID,j);
                      end
             j = j+1;
end
336
337
              jump1 = beginAtSection*14;
jump2 = 28*14;
jump3 = jump2+3*12;
338
339
340
             jump2 = jump2 = jump2 + 0 + 12,
myLines(:,1) = keypointInSectionIDs([jump1+2:jump1+7,jump1+9:jump1+14]);
myLines(:,2) = ones(length(keypointInSectionIDs([2:7,9:14])),1)+90001;
myLines = [myLines;
[keypointInSectionIDs(jump2+2);
341
342
343
344
                                                          keypointInSectionIDS(jump2+2);
keypointInSectionIDs(jump3+2);
keypointInSectionIDs(jump3+2);
345
346
                                                          keypointInSectionIDS([end-7:end-5,end-3:end-1]);
keypointInSectionIDs(jump3+10);
keypointInSectionIDs(end);
keypointInSectionIDs(jump2+12)],...
347
348
349
350
                                                        [90002:
352
353
                                                          90004;
90003;
354
                                                           ones(length(keypointInSectionIDs([end-7:end-5, end-3:end-1])), 1)*90004;
                                                           90003;
356
357
                                                           90004
             90004;

90002]];

myLines(end+1,:) = [90001,90002];

myLines(end+1,:) = [90002,90003];

myLines(end+1,:) = [90003,90004];

constinuity = 0;
358
359
360
              sectionID = 0;
for i=1:length(myLines)
361
 362
                     newSectionID = int8(myLines(i,1)/1000)+1;
if newSectionID > sectionID
363
364
365
                       j = 1;
end
366
367
                      sectionID = newSectionID;
if sectionID > beginAtSection
    fprintf(fileID,[...
368
369
                                        'SetuhybridShapePointCoord1u=uhybridShapes6.Item("Punkt.1%05d")\r\n'...
'Setureference1u=upart1.CreateReferenceFromObject(hybridShapePointCoord1)\r\n'...
370
 371
                                        Set_hybridShapePointCoord2_=_hybridShapes6.Item("Punkt.1%05d")/r\n'...
'Set_yreference2_=_part1.CreateReferenceFromObject(hybridShapePointCoord2)\r\n'...
372
373
                                       SetLahybridShapeLinePtPt1u==uhybridShapeFactory1.AddNewLinePtPt(reference1,ureference2)\r\n'...
'hybridBody7.AppendHybridShape_uhybridShapeLinePtPt1\r\n'...
'hybridShapeLinePtPt1.Nameu=u"Linie.2%02d%02d"\r\n'...
'part1.InWorkObjectu=uhybridShapeLinePtPt1\r\n'...
374
375
376
377
378
                                        'part1.Update\r\n\r\n'],myLines(i,1),myLines(i,2),sectionID,j);
 379
                       end
              j = j+1;
end
380
381
382
               % combine lines
              fprintf(fileID,'Set_hybridShapes7_=_hybridBody7.HybridShapes\r\n');
383
384
              k = 1;
for i=1:length(combineLines)
385
386
                      if ~isempty(combineLines{i})
for j=1:length(combineLines{i})
387
388
389
                                     fprintf(fileID,'SetLhybridShapeLinePtPt1_=_hybridShapes7.Item("Linie.%d")\r\n',combineLines{i}(j);
fprintf(fileID,'SetLreference%d_=_part1.CreateReferenceFromObject(hybridShapeLinePtPt1)\r\n',j);
390
                                      if j==2
391
                                             j_____frintf(fileID,'SetUhybridShapeAssemble1u=uhybridShapeFactory1.AddNewJoin(reference1,ureference2)\r\n');
                                     elseif j>2
fprintf(fileID, 'hybridShapeAssemble1.AddElement_reference%d\r\n',j);
392
393
394
                                      end
395
                                      fprintf(fileID, '\r\n');
396
                               end
                               fprintf(fileID,[...
397
                                        introduction in the interpretation of t
 399
400
401
402
                                         hybridShapeAssemble1.SetDeviation_0.001000\r\n'..
                                         hybridShapeAssemble1.SetAngularToleranceMode\_0\r\n'
403
                                        hybridShapeAssemble1.SetAngularTolerance.0.500000/r\n'...
'hybridShapeAssemble1.SetFederationPropagation_0\r\n'...
'hybridShapeAssemble1.Name_=_"Verbindung.11%02d"\r\n'...
'hybridBody7.AppendHybridShape_hybridShapeAssemble1\r\n'...
404
405
406
407
                                        'part1.InWorkObject_=_hybridShapeAssemble1\r\n'..
'part1.Update\r\n'...
408
409
                                         part1.Update\r\n\r\n'], k);
410
411
                              k = k+1;
412
                      end
413 end
414 % sweep combined lines
415 for i=[1:3,6:7,10:12]
```

Set_hybridShapeExtrude1_=_hybridShapeFactory1.AddNewExtrude(reference2,∟150.000000,∟400.000000, ي hybridShapeDirection1)\r\n nybridshapeUirectioni)ir(n ... hybridShapeExtrude1.SymmetricalExtensionu=u0\r\n'... 'hybridBody4.AppendHybridShape.hybridShapeExtrude1\r\n'... 'hybridShapeExtrude1.Nameu=u"Extrudieren.10%02d"\r\n'... 'part1.InWorkObjectu=uhybridShapeExtrude1\r\n'... part1.Update\r\n\r\n'],i,i,i); end % Shear Web fprintf(fileID,[.. 'Set_hybridShapeLoft1_=_hybridShapeFactory1.AddNewLoft()\r\n'... 'hybridShapeLoft1.SectionCoupling_=_1\r\n'... 'hybridShapeLoft1.Relimitation_=_1\r\n'... 'hybridShapeLoft1.CanonicalDetection_=_2\r\n 'hybridShapeLoft1.CanonicalDetection==2\r\n'... 'Set=hybridShapeAssemble1==hybridShapes7.Item("Verbindung.1104")\r\n'... 'Set=reference1==part1.CreateReferenceFromObject(hybridShapeAssemble1)\r\n'... ′hybridShapeLoft1.AddSectionToLoft⊒reference1,̃u1,uNothing\r\n′... ′SetuhybridShapeAssemble2u=uhybridShapes7.Item("Verbindung.1109")\r\n′ 'Setureference2u=upart1.CreateReferenceFromObject(hybridShapeAssemble2)\r\n'... 'hybridShapeLoft1.AddSectionToLoftureference2,u1,uNothing\r\n'... 'hybridBody4.AppendHybridShapeJhybridShapeLoft1\r\n'... 'hybridShapeLoft1.Name⊒=u"Flaecheumit⊒Mehrfachschnitten.1001"\r\n'... myoridsmapeloft1.mamel_lifetementationifactionifaction(); part1.InWorkObjectu=uhybridShapeLoft1\r\n'... 'SetuhybridShapeLoft1u=uhybridShapeFactory1.AddNewLoft()\r\n'... 'hybridShapeLoft1.SectionCouplingu=u1\r\n'... nypriosnapeloft1.Section.coupling.=ul(r/n ... 'hybridShapeLoft1.Relimitation.=ul\r\n'... 'hybridShapeLoft1.CanonicalDetection.=.2\r\n'... 'SetLhybridShapeAssemble1u=uhybridShapes7.Item("Verbindung.1105")\r\n'... 'Setureference1u=upart1.CreateReferenceFromObject(hybridShapeAssemble1)\r\n'... ´hybridShapeLoft1.AddSectionToLoftureference1,u1,uNothing\r\n´... ´SetuhybridShapeAssemble2u=uhybridShapes7.Item("Verbindung.1108")\r\n´ SetLaybridShapeAsSemble2.=2.hybridShapeSylitem(verbindung.rhos)/rhf... 'SetLareference2.=2.part1.CreateReferenceFromObject(hybridShapeAssemble2)\r\n'... 'hybridShapeLoft1.AddSetionToLoftLareference2.21,JNothing\r\n'... 'hybridShapeLoft1.Name_=2"Flaeche_mit_Mehrfachschnitten.1002"\r\n'... 454 part1.InWorkObject_=_hybridShapeLoft1\r\n'...
part1.Update\r\n\r\n']); % extrapolate shear web
fprintf(fileID,[... Fint(fileD, [...
'Set_hybridShapes4_=_hybridBody4.HybridShapes\r\n\r\n'...
'Set_hybridShapes4_=_hybridBody4.HybridShapes\r\n\r\n'...
'Set_hybridShapeLoft1_=_hybridShapes4.Item("Flaeche_mit_Mehrfachschnitten.1001")\r\n'...
'Set_reference1_=_part1.CreateReferenceFromBRepName("BorderREdge:(BErg:(GSMLoft.88;_(Brg:(GSMLine.84)));_
None:(Limits1:();_Limits2:();_-1);_Cf11:());_WithPermanentBody;_WithoutBuildError;_
WithSelectingFeatureSupport;_MFBRepVersion_CXR15)",_hybridShapeLoft1)\r\n'...
'Set_reference2_=_part1.CreateReferenceFromObject(hybridShapeLoft1)\r\n'...
'Set_reference2_=_part1.CreateReferenceFromObject(hybridShapeLoft1)\r\n'...
'Set_reference2_=_part1.CreateReferenceFromObject(hybridShapeLoft1)\r\n'... SetLabybridShapeExtrapol1_=_hybridShapeFactory1.AddNewExtrapolLength(reference1, _reference2, _550.000000)\r\n'... 'hybridShapeExtrapol1.ContinuityType_=_0\r\n'... 'hybridShapeExtrapol1.BorderType_=_0\r\n'... 'hybridShapeExtrapol1.LimitType_=_0\r\n'... 'hybridShapeExtrapol1.SetAssemble_True\r\n'... 'hybridShapeExtrapol1.PropagationMode⊒=2\r\n'... 472 hybridShapeExtrapol1.ExtendEdgesMode_=_False\r\n'.. hybridShapeExtrapol1.ConstantLengthMode_=_False\r\n 'hybridBody4. AppendHybridShape_hybridShapeExtrapol1\r\n'... 'hybridShapeExtrapol1.Name_=u"Extrapol.1001"\r\n'... part1.InWorkObject_=_hybridShapeExtrapol1\r\n'... part1.Update\r\n'... part1.Update\r\n\r\n'... SetuhybridShapeLoft1u=uhybridShapes4.Item("FlaecheumituMehrfachschnitten.1002")\r\n'... hybridShapeExtrapol1.SetAssemble_True\r\n'... hybridShapeExtrapol1.PropagationMode_=_2\r\n'. 'hybridShapeExtrapol1.ExtendEdgesMode_=_False\r\n'... 'hybridShapeExtrapol1.ConstantLengthMode_=_False\r\n' 'hybridBody4.AppendHybridShape_hybridShapeExtrapol1\r\n'... 'hybridShapeExtrapol1.Name_=u"Extrapol.1002"\r\n'... $\verb|part1.InWork0bject_=_hybridShapeExtrapol1\r\n'\dots$ part1.Update\r\n'..

493 'part1.Update\r\n\r\n']);

```
494 % set "Querschnittsebenen, Abschnittstrennungen, Punkte, Abschnittslinuien"
495 % invisible
496 fprintf(fileID,[...
497 'selection1.Add_hybridBody1\r\n'...
499 'selection1.Add_hybridBody2\r\n'...
500 'selection1.Add_hybridBody7\r\n'...
501 'Set_visPropertySet1_=_visPropertySet1.Parent\r\n'...
502 'visPropertySet1_setShow_1\r\n'];
503 % end of file
504 fprintf(fileID,[...
505 'selection1.Clear\r\n'...
505 'selection1.Clear\r\n'...
506 fclose(fileID);
```

Zum Programmausdruck 16 haben die temporären Dateien die in den Programmausdrücken **??**, **??** und **??** dargestellte Form.

Programmausdruck 17: keypointsTemp.txt (7412 Zeilen): Geometrische Punkte

1 k,1,-1.64752,0.389762,0
2 k,2,-1.65218,0.365811,0
3 k,3,-1.66391,0.303277,0

Programmausdruck 18: sectionsTemp2.txt (976 Zeilen): Querschnitte

1 a,1,9,1009,1001
2 aatt,,,32,1001,2
3 a,9,13,1013,1009
4 aatt,,,32,1001,5
5 a,13,27,1027,1013
6 aatt,,,32,1001,7

Programmausdruck 19: sectionsTemp2.txt (451 Zeilen): Oberflächenlinien

- 1 larea,9,1009,z_HP_area(1)
- $_2$ larea,13,1013,z_HP_area(1)
- $_3$ larea,27,1027,z_HP_area(1)

A.2 Konvergenztabellen

In diesem Abschnitt sind zu den Konvergenzabbildungen 16 bis 18 die entsprechenden Wertepaare aufgelistet.

Elementkantenlänge	Polynomgrad	Freiheitsgrade	Verformung	Spannungen
<i>h</i> in mm	р	DOFs	U in mm	σ_{Mises} in MPa
1000	1	42931	433,96	88,829
900	1	46207	436,65	90,122
800	1	50305	434,68	94,243
700	1	55405	436,01	90,938
650	1	63265	437,19	61,016
600	1	70771	433,51	61,11
500	1	88747	445,16	57,126
400	1	121975	450,36	56,516
300	1	184651	451,29	58,804
250	1	252139	452,27	57,192
230	1	283135	452,5	56,287
175	1	462799	451,95	57,375
140	1	684931	452,66	57,249

Tabelle 14: Konvergenzstudie zur maximalen Vergleichsspannung $\sigma_{\rm Mises}$ und der maximalen
Verformung U infolge Eigengewichts

Elementkantenlänge <i>h</i> in mm	Polynomgrad p	Freiheitsgrade DOFs	Verformung U in mm	Spannungen $\sigma_{ m Mises}$ in MPa
1000	1	42931	3781,6	58,441
950	1	44533	3781,3	63,233
900	1	46207	3785,5	64,284
850	1	48601	3783,1	62,565
800	1	50305	3776,1	62,388
700	1	55405	3775,9	60,743
650	1	63265	3776,0	61,003
600	1	70771	3739,5	64,981
500	1	88747	3709,1	64,246
400	1	121975	3630,4	64,147
300	1	184651	3627,6	65,731
150	1	604939	3606,1	65,565
100	1	1287781	3604,3	65,232

Tabelle 15: Konvergenzstudie zur maximalen Vergleichsspannung σ_{Mises} und der maximalen
Verformung U infolge einer Einzellast von 80kN

 Tabelle 16: Konvergenzstudie zur Eigenfrequenz der Windenergieanlage

Freiheitsgrade	Eigenfrequenz in Hz						
DOFs	1	2	3	4	5		
46068	0,30733	0,3175	0,5776	0,7176	0,76171		
51222	0,32413	0,33697	0,60226	0,76984	0,78424		
60708	0,30752	0,31925	0,56549	0,72026	0,76245		
70230	0,30791	0,31929	0,56506	0,70673	0,76246		
95286	0,31058	0,31936	0,57807	0,68948	0,7682		
1,275e+05	0,31128	0,32009	0,57855	0,69275	0,76606		
1,8857e+05	0,31137	0,31954	0,57623	0,67513	0,77209		
3,0508e+05	0,31039	0,31954	0,56643	0,66774	0,76984		
6,5206e+05	0,30873	0,31883	0,55243	0,65053	0,76845		
2,4303e+06	0,30439	0,31488	0,52052	0,59589	0,77637		
2,7113e+06	0,30475	0,31505	0,52218	0,59827	0,78136		
Fortsetzung auf der nächsten Seite							

Freiheitsgrade	Eigenfreq	uenz in H	z		
DOFs	6	7	8	9	10
46068	0,8668	1,0764	1,1467	1,1774	1,6941
51222	0,86591	1,0849	1,1519	1,1831	1,7972
60708	0,86565	1,073	1,1497	1,1752	1,7012
70230	0,86525	1,07	1,1453	1,1726	1,7034
95286	0,86876	1,0788	1,1513	1,1807	1,7157
1,275e+05	0,86549	1,0767	1,1475	1,1767	1,7179
1,8857e+05	0,87339	1,0755	1,1363	1,1698	1,7247
3,0508e+05	0,87117	1,0723	1,1392	1,1684	1,7231
6,5206e+05	0,87062	1,0671	1,1311	1,165	1,7211
2,4303e+06	0,87926	1,0541	1,1229	1,1522	1,7222
2,7113e+06	0,88509	1,061	1,127	1,1612	1,7263
Freiheitsgrade	Eigenfreq	uenz in H	Z		
DOFs	11	12	13	14	15
46068	2,4639	2,5383	2,6972	2,8374	3,0329
51222	2,5021	2,5751	2,6956	2,8557	3,0508
60708	2,4664	2,5399	2,6952	2,836	3,042
70230	2,4576	2,5341	2,6886	2,8341	3,0476
95286	2,4585	2,541	2,6954	2,8358	3,0481
1,275e+05	2,4488	2,5402	2,6968	2,8373	3,054
1,8857e+05	2,4223	2,5447	2,7063	2,8482	3,0551
3,0508e+05	2,4188	2,5372	2,6974	2,8411	3,0528
6,5206e+05	2,4013	2,5261	2,6874	2,8331	3,0444
2,4303e+06	2,3513	2,5132	2,6714	2,8319	2,9965
2,7113e+06	2,3633	2,5191	2,6834	2,8389	2,9971
Fortsetzung auf der nächsten Seite					

Konvergenzstudie zur Eigenfrequenz – Fortsetzung

Freiheitsgrade	Eigenfree	Eigenfrequenz in Hz				
DOFs	16	17	18	19	20	
46068	3,3267	3,7732	4,1709	4,1714	4,2145	
51222	3,3817	3,7536	4,1378	4,1394	4,2416	
60708	3,3394	3,7241	4,0681	4,0694	4,2479	
70230	3,3255	3,716	4,0374	4,0379	4,2273	
95286	3,3148	3,703	3,9966	3,9966	4,247	
1,275e+05	3,3128	3,6949	3,9657	3,9665	4,2437	
1,8857e+05	3,2875	3,6835	3,9389	3,9402	4,1398	
3,0508e+05	3,2815	3,6746	3,9205	3,921	4,0976	
6,5206e+05	3,2661	3,6651	3,9054	3,9056	4,0464	
2,4303e+06	3,2217	3,6159	3,7518	3,8969	3,8972	
2,7113e+06	3,2276	3,6176	3,7598	3,8969	3,8972	

Konvergenzstudie zur Eigenfrequenz – Fortsetzung

A.3 Tabelle zu Eigenfrequenzen

In diesem Abschnitt sind in der Tabelle **??** weitere Ergebnisse zu der Modalanalyse aufgelistet. Die angegebenen Varianten entsprechen den Erklärungen in der Tabelle **??**.

 Tabelle 17: Varianten von Modalanalysen

Variante	Beschreibung
1	Boden Eingespannt
2	Boden Eingespannt mit Nennumdrehungsgeschwindigkeit
3	Boden Eingespannt mit Eigengewicht
4	Boden Eingespannt mit Einzellasten an der Rotorblattspitze
5	Boden Eingespannt mit Eigengewicht und Einzellasten
3	Boden Eingespannt mit Eigengewicht und Rotation
4	Boden Eingespannt mit Einzellasten und Rotation
5	Boden Eingespannt mit Eigengewicht, Einzellasten und Rotation

Anhang

Tabelle 18: Tabelle zu Eigenfrequenzen

	Variante							
#	1	2	3	4	5	6	7	8
1	0,3215	0,3106	0,3166	0,3217	0,3165	0,3061	0,2984	0,2938
2	0,3221	0,3220	0,3171	0,3224	0,3171	0,3171	0,3224	0,3172
3	0,6781	0,5571	0,6884	0,6844	0,6865	0,5066	0,4473	0,4285
4	0,7055	0,6392	0,7254	0,7242	0,7247	0,6337	0,4878	0,4972
5	0,7474	0,6778	0,7495	0,7529	0,7496	0,6741	0,5724	0,5670
6	0,8951	0,8921	0,9187	0,9162	0,9172	0,9157	0,9249	0,9261
7	0,9430	0,9416	0,9572	0,9537	0,9554	0,9559	0,9654	0,9676
8	0,9615	0,9606	0,9725	0,9749	0,9717	0,9705	0,9837	0,9806
9	1,6530	1,6613	1,6748	1,6735	1,6739	1,6769	1,6723	1,6667
10	2,0201	2,1081	2,0999	2,1036	2,0993	2,0825	2,0557	2,0547
11	2,3438	2,6279	2,3613	2,3540	2,3551	2,5310	2,3854	2,3880
12	2,5321	2,6506	2,5740	2,5695	2,5697	2,6381	2,6045	2,5943
13	2,5378	2,7331	2,5895	2,5932	2,5879	2,7471	2,6917	2,6673
14	2,6894	2,9994	2,6970	2,6976	2,6937	2,9424	2,7528	2,7504
15	3,7200	3,7556	3,7981	3,7711	3,7720	3,8700	3,9425	3,9350
16	3,7270	3,7621	3,8230	3,7976	3,7979	3,9058	3,9427	3,9352
17	3,7599	3,7753	3,8887	3,8727	3,8682	3,9351	4,4860	4,4101
18	3,8063	3,8804	3,9351	3,9425	3,9350	3,9352	5,1418	5,1259
19	3,9425	3,9425	3,9352	3,9427	3,9353	3,9622	5,2405	5,2414
20	3,9427	3,9427	4,9389	4,9418	4,9356	6,6476	6,6657	7,0851

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Erklärung zur selbstständigen Bearbeitung einer Abschlussarbeit

Gemäß der Allgemeinen Prüfungs- und Studienordnung ist zusammen mit der Abschlussarbeit eine schriftliche Erklärung abzugeben, in der der Studierende bestätigt, dass die Abschlussarbeit "– bei einer Gruppenarbeit die entsprechend gekennzeichneten Teile der Arbeit [(§ 18 Abs. 1 APSO-TI-BM bzw. § 21 Abs. 1 APSO-INGI)] – ohne fremde Hilfe selbständig verfasst und nur die angegebenen Quellen und Hilfsmittel benutzt wurden. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich zu machen."

Quelle: § 16 Abs. 5 APSO-TI-BM bzw. § 15 Abs. 6 APSO-INGI

Dieses Blatt, mit der folgenden Erklärung, ist nach Fertigstellung der Abschlussarbeit durch den Studierenden auszufüllen und jeweils mit Originalunterschrift als <u>letztes Blatt</u> in das Prüfungsexemplar der Abschlussarbeit einzubinden.

Eine unrichtig abgegebene Erklärung kann -auch nachträglich- zur Ungültigkeit des Studienabschlusses führen.

	Erklärung zur s	selbstständigen Bearbe	itung der Arbeit	
Hiermit versic	nere ich,			
Name:				
Vorname:				
dass ich die vo gekennzeichn	orliegende eten Teile der Arbeit –	 bzw. bei einer Gr mit dem Thema: 	uppenarbeit die entsprechend	
ohne fremde H benutzt habe. Angabe der Q	Hilfe selbständig verfass Wörtlich oder dem Sinn uellen kenntlich gemach	t und nur die angegeben nach aus anderen Werk ht.	en Quellen und Hilfsmittel en entnommene Stellen sind	unter
- die	e folgende Aussage ist bei	Gruppenarbeiten auszufülle	en und entfällt bei Einzelarbeiten -	
Die Kennzeich erfolgt durch:	nung der von mir erstel	Iten und verantworteten T	Feile der	ist
	Ort	Datum	Unterschrift im Original	