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Abstract

Inside this report a Fortran software to solve the potential flow equation in combination
with the von Karman plate equation is enhanced to account for time variable flow
conditions and enable automatic investigations of flutter instabilities. This program is
used to conduct a parameter study on which’s basis different trajectories are simulated.
These computations showed a delay in the decay behaviour of the panel motion after
crossing the stability boundary from the stable into the unstable regions. It was further
observed that the displacements depend on the difference in the dynamic pressure
above the critical values, on the initial excitation and on the time taken to travel along a
trajectory.
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1 Introduction

1.1 Motivation

The Aeroelasticity describes interactions between the aerodynamic forces of fluids
with the elastic and inertial forces of structures. These cooperating effects can
engage either in a stable or an unstable system. Within the former deflections are
damped until the equilibrium state is reached. For unstable systems different types
of instabilities can arise. These aeroelastic problems can be illustrated within a
triangle first introduced by Collar[1]. In Fig. 1.1 the shape is outlined by the three
interacting forces. The arising phenomena can be included so that each aeroelastic

effect is bordered by its creating forces.

Aerodynamic
forces

static divergence

Lift contribution rig;;:_l l:;}c;dy
static flight lgnt
mechanics

stability

flutter &

galloping
dyn. responses

buffeting

Elastic
forces

Inertial
forces

mechanic
oscillations

Figure 1.1: Collar’s triangle of forces[2]
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Flutter is such a phenomenon which is influenced by all three forces. It mainly arises
for thin plates, exposed to a supersonic flow. Therefore it primarily is important in
the design of space vehicles or supersonic aircrafts. As can be seen in figure 1.1 it is
induced by an interaction between all three forces. If these inter-cooperation leads
to an unstable system, the structure starts to oscillate with an increasing amplitude.
For thin panels non-linearities arise due to increasing deformations of the structure.
This effect acts as a damping factor and therefore limits the oscillation. In such a
case the amplitude is of finite magnitude and so a limit cycle oscillation is obtained.
Failure due to this effect is mainly a fatigue problem due to the finiteness of the
amplitude. In some cases flutter can cause immediate damage of mounting parts or
even the structure itself if the oscillation is very strong.

Panel flutter phenomena have been observed first on the German Aggregat 4 rockets
in World War II. On these missiles more than 60 failures occurred due to dynamic
instability of the skin[3]. The A4 was the first rocket to cross the border into space
and therefore the first object strongly influenced by the effects which lead to panel
flutter. With the increase of space vehicles within the space race from 1955 to 1972
the importance of panel flutter increased. Hence many investigations in these topic
have been made, which focus on a variety of influencing parameters. In these stud-
ies the turbulent boundary layer has been identified as a strongly stabilizing factor.
However the effect of this factor could not been investigated in detail using the
methods of these times. Due to reaching the limits of the available resources and
the decreasing intensity of the space race after the moonlanding in 1969, the inter-
est in panel flutter dropped. Because of modern possibilities such as Finite Element
Methods (FEM) and Computational Fluid Dynamics (CFD) the physical reality can
be modelled more accurately. Due to this improvements the more complicated pa-
rameters can be investigated and hence the interest in panel flutter has been picked
up again in the last years. CFD and FEM methods are even with today’s possibil-
ities very time and cost consuming. Therefore, in this work, a program based on
a code from Ventres, is extended to a software which enables fast computation of
panel flutter phenomena. This tool uses the full linearised potential flow theory with
a nonlinear structural model and thereby possesses an advantage in computational
speed. Therefore it can be used to estimate the structural responses for different
values of the influencing parameters and thereby help to plan more complex in-
vestigations. With reference to space flight, panel flutter is an important factor
for launch vehicles such as carrier rockets. During launch the spacecraft describes

a trajectory through different altitudes attaining different magnitudes of velocity.
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Thereby several parameters, for e.g. Mach number and dynamical pressure, change
with respect to time. This leads to an interest in the effects of this time variable
flow conditions on the flutter motion. Therefore the mentioned software shall be

tested to include these effects within its computations.

1.2 Structure of the work

The structure of this thesis is intended to represent the work which was carried out
to achieve the results presented in the following chapters. Therefore after a short
introduction into the subject of panel flutter and the motivation of this work the
conclusions gained by the literature study are pointed out. These are separated into
a section about the different types of panel flutter analyses, including their devel-
opment in time and a section about the outcome of past investigations in this field
of study to show the influence of the different parameters. This part is followed
by the theoretical foundations which shall evaluate the mathematics which are used
by the applied software to compute the obtained results. Therefore the aeroelas-
tic theory is described firstly, continued by the model which is used to simulate
the aerodynamic effects on the flutter solution. The fourth chapter then begins by
stating how these theories are implemented in the computer program. Further this
chapter describes the modifications for the time variable computation and the added
functionalities which are intended to improve the utility of this program to inves-
tigate panel flutter phenomenons. The following part gives the outcomes obtained
by these computations. Firstly the carried out convergence studies are presented
and afterwards the results for several varied parameters and conditions and their
conclusions are stated. In the last part of this chapter the outcomes of the time
variable computations are given and reviewed. The last chapter gives a discussion
about the results and methodology of this work as well as an outlook of subsequent

studies and further enhancements.
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The second chapter is intended to introduce the developments and outcomes of
previous studies about panel flutter to the reader. Therefore an overview about
the methods of investigation in this subject is given. Further the points of interest
within this subject and the outcomes of previous research to several parameters,

which have an effect on the flutter of the panel, are presented.

2.1 State of the art

Noticing the failures of the A4 rockets since 1950 investigations of panel flutter have
been carried out, among others by Hayes[4] and Miles[5]. Most of these early works
have been about a one-dimensional panel in a two-dimensional flow. Later studies,
for example of Eisley[6] and Hedgepeth[7], regarded two-dimensional plates. In these
analyses a linear structural theory was used to describe the plate, combined with
a quasi-steady aerodynamic theory. They can well predict the dynamic pressure at
which flutter arises and the frequency of the associated oscillation. But after passing
the, so obtained, flutter boundary the increasing amplitudes lead to increasing defor-
mations and therewith to non-linearites. However, the first type of analysis neglect
these nonlinearities of the structure. Hence they can not yield reliable information
about the evolution of the unstable oscillations after flutter arises. These approaches
yielded good results for Mach numbers greater than /2, but failed to agree with
experimental results of lower velocities. Such experiments have been carried out for
example on the Saturn-V by Sylvester and Baker[3], who were first to show the ex-
istence of flutter within a wind tunnel test. This was followed by Sylvester et. al.[§]
and by Lock and Fung[9], who showed the agreement in the higher Mach number

ranges and that the results differ for lower Mach numbers. These disagreements were
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assumed to be caused by the fact that the quasi-steady aerodynamics neglect the
unsteadiness or memory of the fluid. This arises from the fact that the experiments
and the earlier works mentioned first have shown that especially the region of Mach
numbers between one and the square root of two are critical for flutter. For these
lower Mach numbers the past motions of the structure and the fluid are of high im-
portance. Therefore to investigate these velocity regions the so called full linearised
inviscid potential aerodynamic theory was developed. Dowell[10] as well as Cun-
ningham and Nelson[11] combined this approach with the linear structural theory.
Dowell[12, 13] further used the full linearised theory together with a nonlinear struc-
tural theory to identify the flutter boundary for different Mach numbers and Aspect
ratios as well as to compute the frequencies and amplitudes of oscillations within
the unstable regions. An overview of the different theories is given in table 2.1 from
McNamara and Friedmann[14]. Muhlstein et al.[15] and Muhlstein[16] have shown
that the theoretical results still showed some discrepancies with the experiments for
Mach numbers smaller than /2. They further demonstrated that in this velocity
region the boundary layer is an important stabilizing factor which is not inculded

in the previous mentioned theoretical models.

Table 2.1: Overview of the theoretical models

Type Structural theory Aerodynamic theory Mach no.

1 Linear Piston theory V2< M, <5
2 Linear Linearized potential flow 1< My <5b

3 Nonlinear Piston theory V2< M, <5
4 Nonlinear Linearized potential flow 1< Mo<5

5 Nonlinear Euler/Navier-Stokes all

The general solution of the these analyses is to solve a system of the von-Karméan
plate equation in combination with a linearized potential flow equation. This is
achieved by expanding the structural deformation in its natural modes by using the
Galerkin method and determining the aerodynamic forces for these modal deforma-
tions!. Alternatives to this technique are to use finite element or finite difference
representations for the structure. The advantage of the modal expansion is that the
first modes are mostly the active ones. Therefore the number of needed modes to

describe the structural motion is much smaller than the number of elements needed

LAn exact description of the fundamentals is given in chapter 2
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for the finite element methods. Therefore the effort for the numerical integration is
highly reduced, which was, especially due to the performance of the computers of
the time of the mentioned works, an important factor. As mentioned in the intro-
duction the amount of works about panel flutter decreased because the best outcome
for the available resources of that time was reached. More recently the interest in
the topic was picked up again because today possibilities allow to represent the
physical effects, espacially the boundary layer, very reality conform. Hence works
appeared in the 21st century using modern techniques such as Computational Fluid
Dynamics (CFD) and Finite Element Methods (FEM). Bendiksen and Davis[17]
developed a coupled fluid structure solver based on Euler aerodynamic theory with
a finite difference method for the structure. This was expanded by Gordnier and
Visbal[18, 19] by using a Navier-Stokes code. Hashimoto et al.[20] used a related
approach by combining a finite volume method for the fluid with a finite element
method for the structure. Very recently Alder[21] compared different aerodynamic
theories. He showed that non-linearities of the flow, such as compression shocks, are
negligible. Thus, the more modern approaches and the modal expansion technique
agree quite well. However, it was observed that the boundary layer has a strong

influence within the low supersonic regions.

2.2 Parameter studies from the literature

2.2.1 Panel flutter investigations

Within the research about panel flutter, one point of interest is obviously to deter-
mine the point at which the flutter arises. Therefore the non-dimensional dynamic
pressure (in the following only referenced as dynamic pressure) at which the oscil-
lation of the plate starts to increase can be determined, as done for example by
Dowell[22]. This specific pressure is called ’critical dynamic pressure’. Further in-
vestigations were carried out by Sylvester et al.[8] and Hedgepeth[7] for the panel
thickness or by Cunningham and Nelson[11] and Cunningham[23] for the mass ratio.
If the critical value of one of these parameters is determined over a range of variables
a so called stability or flutter boundary is obtained. A typical flutter boundary is
shown in Fig. 2.1, which was introduced in reference [22] and presents the critical

dynamic pressure for each Mach number. Further interest has been to examine the
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Figure 2.1: Typical flutter boundary showing crit. dynamic pressure for specific
length to width ratio.[24]

characteristics of the flutter motion. Therefore the frequency and amplitude of the
oscillation can be identified. Further the shape of the plate motion can be obtained
either directly by examining the position of each point on the panel or by comparing
the magnitude of the oscillation of the different modes. For each panel configuration
and flow conditions a different plate motion arises. This leads to different deforma-
tions of the surface, which determine if the flutter of the panel leads to a failure of
the structure. Therefore a lot of effort has been made to analyse the influences of
various parameters. For a brief overview chosen effects of selected parameters are

discussed in the following subsections.

2.2.2 Influence of the Mach number

The influence of the Mach number has already appeared in the previous section. It
was said that for Mach numbers lower than /2 the piston theory approximation
is not valid. Therefore the velocity determines whether the memory of the fluid is
influencing the actual panel motion or not. The Mach number further defines the
duration of the capacity for remembering of the fluid. Dowell [13] showed that the

influence of the memory effect approaches zero for:

M

maxr — 2.1
S 71 (2.1)
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The motion of the panel itself is also influenced by the Mach number. The general
trend is that with an increasing Mach number the critical dynamic pressure increases.
This means that in the lower Mach number regions flutter is more likely to arise.
An exception to this tendency is the region around M = 1 which in the literature
is often referenced as 'transonic dip’ or ’transonic bucket’[25]. Figure 2.1 illustrates
this behavior, as well as the general trend. However, the Mach number is not only

a simple influencing factor in the matter of an exciting or damping parameter. It

15
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Figure 2.2: Influence of the mach number on the amplitude of the limit cycle of
the flutter oscillation.[22]

further classifies the kind of flutter. For Mach numbers from M = 1 to approximately
M = 1.4 a single mode is excited, whereas for higher Mach numbers higher modes
contribute to the panel motion [24]. Within the subsonic speed region mainly plate
divergence occurs instead of flutter. The Mach number has further an influence on
the amplitude of the oscillation. This effect is shown in Fig. 2.2. The slopes of
the curves for M > 1.2 decrease with rising Mach numbers. This shows that at a
higher velocity the amplitude of the resulting limit cycle oscillation increases slower

by increasing the dynamic pressure.

2.2.3 Length to width ratio

A factor which describes the influence of the panel geometry is the relation between

the length of the panel a (streamwise direction) to the panel width b (normal direc-
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tion). The effect of the length-to-width ratio is more consistent than the influence
of the Mach number. Dowell[25] showed that if the length of the panel is scaled up
relatively to the width, the flutter dynamical pressure is increased as well. This can
be seen in Fig. 2.1 by comparing the flutter boundary for a/b = 0 and a/b = 1.
Note that the former represents a two-dimensional plate. A similar relation appears
for the frequency of the flutter oscillation as for higher length to width ratios it is

increased and vice versa[26]. An interesting point was shown by Dowell[25]. He
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Figure 2.3: Influence of the mach number on the amplitude of the limit cycle of
the flutter oscillation.[25]

demonstrated that panels with different length-to-width ratios behave in the same
way if the dynamic pressure is increased. This is shown in Dig. 2.3. Compared
with Fig. 2.2, the curves for different length to width ratios possess nearly the same

slope, contrary to the curves of the different Mach numbers.

2.2.4 Support conditions

It is straight forward that the type of support influences the shape of the plate
motion. The boundary constraints define the rate of freedom of the deformation
at the plate edges and therefore the form of the oscillation. Further the support
conditions influence the characteristics of the flutter oscillation. Ventres[27]| showed
that the general flutter behavior is the same for clamped as well as for pinned

plates. However he calculated differences in the magnitude of the frequency and
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amplitude of the oscillation. The effect on the amplitude of the settling limit cycle
can be seen in Fig. 2.4. The curves of the clamped plates are shifted to the right
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Figure 2.4: Influence of the support on the amplitude of the limit cycle of the
flutter oscillation.[27]

compared to the curve for a pinned support. Further the illustration shows that
the slopes are completely identical for pinned and clamped supports. This indicates
an identical behavior for a change in dynamical pressure or in the length to width
ratio. Ventres observed the same nature by comparing the frequencies of various
plate geometries for pinned and clamped edge constraints. His results are illustrated
in Fig. 2.5. Again the curves show no difference in their slopes but are shifted again
for different boundary conditions. The clamped plates vibrate with an increased
frequency compared to their pinned equivalents. This effect, as well as the panel
response for lower dynamic pressures, account for the stiffening effects of the clamped

edge constraints.

2.3 Launch trajecotries

Launch vehicles fly along specific trajectories and therefore transit different atmo-
spheric layers. These layers exhibit different magnitudes of density and air pressure.
Further such vehicles are accelerated from zero velocity to very high supersonic

Mach numbers. For these reasons the structures of spacecrafts experience during
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Figure 2.5: Influence of the support on the frequency of the limit cycle
oscillation. [27]

their flight a changing influence of the different parameters with increasing time.
Pinson|[28] documented the launch trajectory of the Saturn V rocket which shows a
good qualitative agreement with today’s launch vehicles such as the Ariane V. The
change in dynamic pressure, Mach number and altitude of this trajectory are shown

in Fig. 2.6%2. The diagram shows the magnitude of these parameters from the start

10 1 4 570
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— — — - Mach number M A i
8- Altitude PR
r 13 £ 4
L 7 K] T 50
= L ] A
— B 1250 €
8 6 I /: é Ja0 =,
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c r 42 o 2
L ] a A
s LL 1 g 3% g
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L ] S
] g ]
L ] — 20
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% B 156 -0
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Figure 2.6: Mach number, dynamic pressure and altitude of a Saturn V
trajectory.[28]

2A detailed table of the data from the Saturn V Trajectory is given in A including a conversion
between dimensional and non-dimensional values.
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to a Mach number of nearly 8, which is reached after 160 seconds. As it can be
seen in the figure, the dynamic pressure increases to a maximum and then drops
to zero. Therefore later points in time are uncritical and hence not important for
flutter investigations. On the other side a very important point is that the critical
part (with reference to the dynamic pressure) of the launch are the first minutes
after the start. Regarding the curve of the Mach number, it is shown that the high
magnitudes of the pressure act when the rocket is flying at small supersonic speeds.
These velocity region has been identified, as mentioned earlier, as a critical range.
Therefore this part of the launch can be looked at as the most dangerous and thus

important to investigate.



3 Theoretical foundations

This chapter shall give an introduction to the equations used to model the physi-
cal foundations. Firstly, an evaluation of the aeroelastic models is given. This is

continued by a discussion of the aerodynamic foundations.

3.1 Aeroelastic theory

The aeroelastic model is used to describe the response and motion of the panel
interacting with the aerodynamic forces. It was already said in the introduction
in chapter 1 that a linear structural theory cannot provide information about the
oscillation after flutter arises. To describe the actual oscillation of the plate non-
linearities have to be included in the theoretical model. These arise mainly through
in-plane stresses which are caused by a change of the plate’s length due to large
out-of-plane bending. To point out the different influencing factors we will firstly
consider the nonlinear equation for a one-dimensional plate which is given by:
O*w 0w 0w

plY N Ap =0 3.1
9 guz T Mo TP (3.1)

This equation consists of four terms. The first one is described by the bending
stiffness. The in-plane stresses which are created by the non-linearities are included
in the second one. For a linear approximation this factor can be dropped. If the
non-linearities shall be taken into account, the in-plan stress can be evaluated for

instance for an elastic material by using Hooke’s Law and assuming

(CZ)Q <<1 (3.2)
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so that . )
Aa E
N, = E2%, — h/ (8w> dz (3.3)

a 2a / Ox
This shows that the stress increases with the deflection. Hence the nonlinearities are
a factor which reduce the plate oscillations. The third term is defined by the mass
of the plate. The last summand is an expression for the external loading, which

in this case results from the aerodynamic pressure. To consider three-dimensional

A2 Y

/ y FLOW

/ > X

Figure 3.1: Illustration of the problem modeled as a two-dimensional plate.

panels as shown in Fig. 3.1, the large deformation theory of von Karman can be

used. The two-dimensional plate equation is then given by

_ OPF 9w N OPF Pw 5 FF Pw m82w
©Oy? 0z 0x? Oy? 0xdy Oxdy ot?

ViE (0w 2_ Pw) (Pw (3.5)
Eh  \0zdy 0x? ) \ 0y? '

DViw —Ap (3.4)
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The in-plane stresses are included in the so called airy stress potential function F

in the following form:

_oF
O*F
O*F
Ny = ———
v 0xdy
if F' satisfies the in-plane equilibrium equations
ON, n ONgy _0
ox dy
(3.7)
ON,  ONy,
=0
dy + ox

the in-plane stresses can be evaluated further into strains and deformation of the
structure. As this is not a crucial factor for this work, this will not be considered
here but the reader can referred to the appendix of reference [24]. To obtain a
solution of equations (3.4) and (3.5) the modal expansion technique can be used.
Therefore the deformations w as well as the airy stress function F' can be expanded

in terms of the natural modes of the structure:

W = qulbm(l’)%(y) (3'8)

F = Z ar¢r<x7 y) (39)

For a pinned plate these modes are composed of two sinusoidal waves, one in the

direction of the plate length ), and one in the direction of the plate width 1,,:

Y = sin(F2) (3.10)
Yo = sin(=2) (3.11)
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The equations for a clamped plate is a little more complicated due to its boundary

conditions:
Y = cos((m - 1)7?2) - cos((m + 1)#2) (3.12)
T cos((n — 1)#%) — cos((n + 1)7T%) (3.13)

In equations (3.12) to (3.11) m and n represent the number of the mode in the
length or in the width direction and therefore determine the shape of the mode, for
e.g. half a sinusoidal cycle or a full sinusoidal cycle. The first four normal modes of

a pinned and a clamped plate are shown in table B.1.

These natural modes have to satisfy the same boundary conditions as w and so the

following restraints must hold with respect to mass:

/m¢m¢ndx =M, for m=n

(3.14)
/mwmwndx =0 for m#n
and with respect to stiffness:
AP, Py,
/D d;é d;é dr = w?M, for m=n
(3.15)
P d%n
/Ddx2 d$2 x=0 for m#n
For the non-linear in-plane stresses the equations
N, =N,y =0 on x=0,a
(3.16)

Ny=N,y =0 on x=0,0
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Table 3.1: Overview of the first four modes of pinned and clamped plates
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must hold as well as the out-of-plane boundary conditions

w =0

ow

%:0 on z=0,a (3.17)
(2:}:0 on z=0,b

for a clamped plate and for a pinned plate additional

ow

o (3.18)
3.18
oy

If all conditions are satisfied the following system of equations is obtained according
to the Galerkin method:

Z I K mn + G M + Qn = Z Z ArGm Lymn (3.19)

Z arArs - Z Z q1qulms (320)
r [ m

where

By, E// [ 0% Yy Oy Uy

| 0x0y 0x0y 022 Oy? ]gbsdxdy

(3.21)

(020, O%thn, 020y by, O Oy,
L = -
i // | 0y? 0a? + ox? Oy? 23$8y Jxdy Ynclrdy

Note that the terms included in equations (3.19) and (3.20) again represent some of

the influencing factors like the mass within

My = / / M tndzdy (3.22)

and the stiffness within

Ko = / / DV ndady (3.23)
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Further the in-plane stresses are included in:

Ay E//v;;?qbsdxdy (3.24)

The aerodynamic effects are represented by

0, = / / Ap,dady (3.25)

and will be evaluated in detail in chapter 3.2.

3.2 Aerodynamic theory

It was already mentioned that the external loadings are created by the aerodynamic
pressure. Therefore it is essential to evaluate the aerodynamic effects in a very
detailed way. The pressure can arise out of two reasons, either from a external
source, for e.g. a disturbance in the flow, or created by the motion of the plate itself.

Hence the total pressure is obtained by a superposition of those two pressures:
Ap = ApP + ApM (3.26)

Whereas the former has to be taken from experiments, the latter can be evaluated.
For the fully linearized potential flow theory the pressure can be evaluated starting

from the equation for a potential flow in the form, given by Garrick [2]:

1 D¢

Vi = —
¢ a?, Dt?

(3.27)

Performing a Galilean transformation, the equation which describes the flow field in

the full linearized, inviscid potential theory [13] is obtained as:

V2 — — | = + Us

1 {0 2
a2 |0t ox

2
5 ] =0 (3.28)
Satisfying the boundary condition
99
0z

0 0
_|Y v _ g 92
_ [8t+U°° ]w f (3.29)
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as well as an outward radiation conditions for z — oo. This equation, obtained
by the Galilean transformation, describes the velocity potential within a moving
coordinate system. To solve the partial differential equation (PDE) for the ve-
locity potential, this can be evaluated with respect to time employing a Laplace-
Transformation for ¢ and a Fourier-Transformation for the spatial variables x and y,
as it was performed in reference [13]. Therewith the PDE is transformed to an or-
dinary differential equation (ODE). Solving this ODE with respect to the potential

¢ and applying the inverse Laplace-Transformation with respect to ¢ yields:

t

¢ (v, 0,2 =0,t) = —ao/f*(’y, a,T) - exp|—itMaa(t — 7)] (330)

Joly/ a2 +42-a(t —7)|dr

of the velocity potential. This is substituted into the Bernoulli formula

0 0
p= —p[ai5 -+ Uaf] (3.31)

which relates the pressure p and the potential ¢. For the solution process in this work
only the inverse-transformations are not needed and hence not explicitly derived but
only shown for the sake of completeness. The motion depended pressure Ap™ can

be expressed [24] as

) ) /
ApM(z,t) = me;{]\H(ﬁ’ + Ulaﬂ +//A(x—£,t—7)
0 (3.32)

The simplest way to approximate the aerodynamic effects is to neglect the spatial-
and temporal memory of the fluid. Because only the second term accounts for this

memory it can easily be dropped to give the equation for the piston theory.

ApM (3.33)

_ peUL [Ow N 1 ow
M | 9r Uy Ot
As mentioned earlier this approximation is not valid for Mach numbers smaller
than /2, for this reason the potential flow theory uses the full equation (3.32),
including the second term and hence incorporating the memory effects. The gener-

alized aerodynamic forces, needed for the solution process used in the current work,
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can be obtained starting from the definition of the generalized motion dependent

pressure[24]:

Qunn = / / S wmd:cdy (3.34)

Substituting the modal expansion

= Z Z anwm (o y) (335)

into equation (3.34) and then performing the integrals over x and y before using a

Fourier Transform yields the generalized aerodynamic forces:

Qunps = 1 (5) S + Gn(5) D + [ 14 (7) (5 = )
0

(3.36)
+Gn (0) Lnnpg(s — 0)]do
where
IS
S = 17 [ 226 [ty (337
Do = 17 [ 0n(©(€) [ )i (m)ndy (3.38)
are the equivalent factors to piston theory and
B 1 +o00 +o00 . S *2a2
Hoon($) = ~gagza | [ G’ +9°%5
00 00 (3.39)
. PP *2 *29 o * *
exp|—ia s]Jll s+ 2 M]da dry
“+o00 400
1 a2
o) = =137z | [ G #9775
00 oo (3.40)

-exp|—ia’*s]J; l\ a2 + 7*2% M] da*dv*
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are the terms which contribute the momery effects and are called admittance func-
tions’. Where

1

1
Gy = [ ¥n(€) - expl—ia€dg [ ,(€) - explia*gldg
0
1

° (3.41)
: / Un(n) - expl—iy™n)dn / Yq(n) - expliy™n]dn

is only defined by geometric conditions. An important point to keep in mind is
that only these are the difference to the generalized forces of the piston theory and

account for the past deformations and velocities of the panel.



4 Computational Method

The following sections describe the computation process of the "Temporal Adapting
Integrator for Flutter Understanding’ in the following called "TAIFUN". In the first
part the computation steps, which are used to solve the equations given in chapter
3, are explained. Because the software is based on a code from Ventres[27], not each
computation step is described but the principal calculations and their interrelations
are evaluated, so that the reader gets an overview about the functionality of the
program and can understand the modifications for the time variable flow conditions
which are introduced in chapter 4.2. Further the possible input settings for the user
are described. The last section illustrates the integrated functions for automatic

solution analysis and investigations.

4.1 Numerical implementation

To determine the solution of the aeroelastic system given by Eq. (3.4) and (3.5) a
time integration method is applied to solve for the generalized coordinates. This
integration is accomplished by an explicit multi-step method known as the Adams-
Bashforth method. Therefore the system of equations (3.19) and (3.20) is solved.
Here the influence of the aerodynamic effects are contributed through their gener-
alized forces @), given by factor (3.25). For the linearized potential flow theory the
generalized forces are obtained by the modal expansion of the governing field equa-
tion of the velocity potential (3.28) as described in chapter 3.2. Therefore equation
(3.36) is solved. For constant flow conditions the solutions of the terms (3.37) to
(3.41) do not change from the first time step onwards. Hence they can be calculated
once and for all. The factors S and D have to be multiplied by the actual defor-

mation and velocity of the plate. As stated before, the integrals yield the memory
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Figure 4.1: Illustration of the computation scheme for constant flow conditions.

effects. Therefore the admittance functions are multiplied by the past deformations
q and velocities ¢. This is done for each past time step ds from the first (previous)
point of time s = 0 until s = $,,4, Which is estimated from equation (2.1). A point

which has to be kept in mind is that ds differs from dr with a conversion of the

ds = dr - \/5 (4.1)

The sum of all those products yields the generalized force for one specific mode.
If these and the other terms of (3.19) and (3.20) are determined, the system of

equations can be solved. An overview of the relations is given in Fig. 4.1. This

following form:

yields the deformations and velocities of the next time step. The actual deformations
and velocities are stored as the new previous values and the next computation step

begins.

4.2 Time variable trajectory computation

In chapter 2.3 it was shown that for launch trajectories some influencing parameters
change with respect to time. These variables have to be determined for every time
step. Therefore an input file containing a table with values of the time dependent
parameters for different points of time is read by the program. An example of
such a file is given in the appendix C. Because it is unlikely that the given time
points are conform with the chosen time step size, a linear interpolation between

the given values was added to the software. This is done at the beginning of each
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time step to ensure that all factors are calculated with the actual Mach number and
dynamic pressure. Therefore the current point of time is determined and compared
with the values from the trajectory file. The higher and lower values are taken as
nodes Py(xo,y0) and Py(x1,y;) between which the interpolation is carried out and

the actual value is obtained by the equation:

r — X9

y=1yo+ (1 — %) (4.2)

Tr1 — X

This is done for the Mach number M as well as for the non-dimensional dynamic
pressure \. Regarding equations 3.36 to 3.41 it can be seen that the factors S, D,
H, and I depend on the Mach number. Hence their calculation has to be carried out
for each time step and therefore is included in the computation loop of the program.
Including the admittance functions H and [ into the time variable computation
is a relatively complicated subject. On the one side, not only the Mach number
changes for the calculation but because of the conversion factor between s and 7
also the time step size ds of the admittance functions and the number of time steps
to reach s,,., is different for each point in time. On the other side, the admittance
functions express the ability of the past deformations and velocities to influence the
actual deformation. Each past motion experienced different flow conditions, which
means that each past state is 'remembered’ in the magnitude defined by the values
of the constellation of that time. Hence the values which are multiplied with the
deformation and velocity of a specific point of time have to be calculated again for
each next step because for every next computation loop the state lies back one time
step further. It follows that the influence of this specific state is different for each
time step until it has no influence anymore. Therefore an array is introduced which
assigns a value of ds, M, A, S;,. and 7 to each 'memory state’ Figure 4.2 illustrates
the process to determine the admittance functions for time variable computations.
So the admittance function of that time can be evaluated and therewith the influence
determined, which the state has on the coming plate motion. Further the admittance
function for each given point of time in the trajectory input file is calculated in
advance of the computation loop. This enables to interpolate between these reference
functions within the computation loop. To implement this, the program recalls the

saved value of 7 from the memory array for a specific past state and determines
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Figure 4.2: Illustration of the interpolation process of the admittance functions for
time variable flow conditions.

the lower and higher given points of time from the input trajectory. Then a double

Lagrangian interpolation of the form

L f(w) (4.3)

is applied to calculate the associated values of the admittance functions. The first
interpolation is carried out to obtain the compatible values of the reference admit-
tance functions. This is needed because at each time a different conversion factor
between s and 7 has to be used due to the change in dynamic pressure and altitude.
Therefore the needed value of the reference admittance functions for the accurate
point of time is interpolated between the available values from the pre-calculation.
Afterwards between these values the actual values of H and I are interpolated and
then multiplied by the associated past deformation or velocity. The two interpo-
lation steps can also be seen in Fig. 4.2, whereas the Fig. 4.3 shows the changes

compared to the computation with constant flow conditions.

4.3 Input options

To enable a user-friendly and fast execution of the program all settings and adjust-
ments can be written into an input file, which is handed over to the program as an
argument when the execution command is invoked. This file contains parameters

which can be set by the user and is parsed by the software directly after the start.



4 Computational Method 27

. . reference
coefficients admittance functions ‘ - — - computation loop

Tl R

actual
admittance functions

« past deformations
¢ and velocities

generalized

|

I

|

|

I

|

|

}

|

} aerodynamic forces
|

I

l

} \
|

I

|

|

I

|

, L, new deformations
von-Karman g and velocities
plate equation
s=0

Figure 4.3: Illustration of the computation process for time variable flow condi-
tions.

The program searches for all possible input instructions one after another. Thereby
it reads the statements line by line until the identifier of the actual searched param-
eter is found. The identifiers of the input statements have to be entered correctly.
A template of an input file including all identifiers for each possible statement with
explanations is given in appendix D. If the correct identifier was found, the program
splits the line including the statement after the last symbol of the identifier. Then
the tail is stored as the chosen value of the actual parameter. The entered value
can be separated by an equality sign or a colon and a chosen number of blanks. If
the value is entered correctly according to the type of the parameter (integer, real,
boolean, ...) it is stored and the software continues to scan the file for additional
occurrences of the same identifier. To enable fast input adjustments the program
uses the last (closest to the end of the file) appearance of a parameter. Thereby it
can distinguish if the identifier of a distinct parameter is used as an identification
mark or as a value of another input statement (i.e. as an iteration or adjustment
parameter). If the correct identifier was not found the program uses a standard
value as input and continues with the next parameter. To monitor the found input
values as well as the calculation process, a computation-log can be written into a
file and to the terminal. Herein the successfully received values of the inputs as well
as the not or incorrect given parameters with their instead used standard values are
stated. Further the actual progress of the computation steps is shown.

The software can calculate the flutter motion for a chosen number of points along
the plate length. Further via Eq. (3.35) the modal solution can be transformed in

an arbitrary set of x- and y-coordinates. This can be used to create a grid consisting
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of a chosen number of points in x- and y-direction which can be used to simulate
the motion of the plate surface. The results are plotted into a data file and can
be viewed by any post processing tool such as Tecplot or Gnuplot or copied to a
spreadsheet analysis. Because the size of the file containing the solutions increases
drastically if the grid for the surface deformations is plotted, this output can be
limited to a number of small periods with an up-scaled time step increment. These
solutions can be computed for various constellations of the parameters which effect
panel flutter. Therefore the values of the Mach number, Length-to-width ratio dy-
namic pressure and others' can be chosen by the user. The input of these variables
can be either in a non-dimensional form or using SI units. Further the calculation
mode can be switched between linear(according to type 1 and 2 of table 2.1) and
nonlinear (type 3 to 5) and the aerodynamic theory can be selected between the
linearized potential theory, the piston theory or no aerodynamic theory at all. To
simulate a perturbation in the flow the initial displacement and velocity of each

mode can be specified in the input file.

4.4 Automtic solution analysis

The software computes the solution by an integration in time and thus only solutions
for distinct points with a single specified set of parameter values can be calculated.
Therefore the stability boundary can only be identified by an iterative approach to
the critical value. For a faster and more user-friendly execution of this method an
automatic iteration mode as well as an automatic analysis mode was integrated in
the program code. Within the iteration mode a parameter can be selected, which
is iterated from a start value until a specified limit with a chosen increment. This
functionality enables easy investigations of the flutter behavior due to a change of a
specific parameter. The automatic analysis is intended to facilitate the identification
of the flutter boundary. This feature utilizes the fact that the damping behavior
of the aerolelastic system can be characterized by the increase or decay of an arbi-
trary excitation. Further the damping is proportional to the logarithmic decrement

of the structural oscillation. Due to this relations the software can automatically

LA list of all adjustable parameters can be taken from the template input file in appendix D.
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Figure 4.4: Tllustration of a damped (a), sustained (b) and excited (c) oscillation
after an initial excitation in the velocity of the first natural mode with
a magnitude of 0.0001.

distinguish between a damped, excited or sustained oscillations by computing the

log. decrement which is defined as:
A=lIn— (4.4)

Given values of an ’adjustment’ parameter which lead to an excited and a damped
oscillation, the software is able to iterate between these limits until the log. decre-
ment becomes zero and the critical value of the adjustment parameter is found. Fig.
4.4 presents a damped, excited and sustained oscillation. To compute a solution
of Eq. 4.4 the magnitudes of a time-series of amplitudes is required and thus the
program has to identify the extrema of the panel displacements. To accomplish this,
the file containing the solution is processed line by line and the maxima and minima
of the oscillation are determined. This can be done using two different methods. On
the one hand, by comparing the slopes and identifying the extreme values through
a change in the slope of the plate displacements (Fig. 4.5 a). To limit errors due to
numerical outliers the number of slopes which have to be in agreement at both sides
of an extreme value can be chosen. The second method is a direct comparison of
the actual magnitudes of the deformations (4.5 b). Thereby the software reads each
line of the solution file. If the actual deformation is greater or smaller (depending
on the position above or below x-axis) than the previous values it is stored as a
extrema. When the process crosses the x-axis the current extreme value is saved as
a maximum or a minimum. To prevent that each numerical outlier is recognized as

an extreme value the current value with the highest magnitude is compared with the
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Figure 4.5: Illustration of the two different methods used by the software to iden-
tify the amplitudes of the oscillation.

last saved minimum or maximum and only saved if its magnitude is higher then a
specific fraction of the previous. Which of the two variants yields the higher success
depends on the analysed oscillation. However, during the calculations of this work
the latter showed a slightly improved behaviour for oscillations which are more diffi-
cult to distinguish. If the amplitudes are determined three attempts of analysis are
carried out. The first probes if all local decrements (log. decrements between each
pair of maxima) are negative, positive or zero?. If this fails the second step is to
determine if the main fraction of all local decrements is negative, positive ore zero.
In the last try the global logarithmic decrement is computed and compared with
the growth (difference between the mean value of the first and second half of the
amplitudes) of the oscillation. The three different attempts have been introduced
because identifying the damping of the system may be complicated for example due
to interferences of more than one harmonic oscillation. Further higher harmonic
influences or numerical errors may cause local peaks which falsify the identified
damping behavior. Due to the three analysis steps and the possibilities of input
adjustments, the automatic analysis proved successful for the most of the constel-
lations of parameters. However for Mach numbers around M = 1.4 due to a raised
complexity of the results created by contributions of the higher modes the analysis
failed repeatedly. A more detailed discussion of these effects is deferred to chapter
5.3.1.

2The allowed deviation from zero can be set in the input file.



5 Results

In the following sections the obtained results are presented for the time variable
flow conditions as well as for the steady computations. Further the outcomes are
compared to the results from the literature and discussed. A temporal resolution
study is conducted in order to determine an appropriate time step size with respect
to different flutter cases. This is followed by presenting the results for time invariant
parameters and comparing these with the literature. The outcomes of the newly

integrated time variable computation are given in the third and last part.

5.1 Time convergence studies

In various previous investigations[19],[29] of panel flutter with coupled fluid structure
solvers it was shown that the time step size can have a strong impact on the results.
Therefore a time resolution study was made for four different parameter settings.
To account for low supersonic Mach numbers as well as for higher values the time
step size dr was varied from 0.01 to approx. 0.0002 for M = 1.2 and M = 1.8.
For both Mach numbers the time convergence was analysed for a two-dimensional
plate (a/b = 0) and a square plate (a/b = 1). The results of the resolution study
are presented in Fig. 5.1. The given values represent the flutter boundary of the
different parameters normalized to the smallest value of dr. It can be seen that
the higher Mach numbers are more influenced by the time step size than the results
at M = 1.2. Further the illustration shows that the two-dimensional plate is less
sensitive to the time resolution than the square plate. This leads to the conclusion
that more caution has to be made for higher Mach numbers and length to width
ratios. A reason for this behaviour could be that for higher values of these two

parameters the panel flutters with a much higher frequency and hence numerical
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Figure 5.1: Results for the temporal resolution study of the influence on the flutter
boundaries.

errors can have a greater influence. Further for these conditions the panel begins
to flutter at larger dynamic pressures. Due to the conversion between dr and ds
through equation (4.1) such high values of A lead to a coarser time step size of
the admittance functions. Another point which can be observed from Fig. 5.1 is
that the curves show a decrease of the identified flutter boundary for higher time
step sizes. Hence using a coarser temporal resolution would still be a conservative
approximation. In order to facilitate a quantitative judgement of the results a time
resolution index(TRI) is calculated accordingly to the Grid Convergence Index of a
Richardson-Extrapolation as described in Ref. [30]. This expresses the deviation of
a value to the result of the next finer time step and is computed by

Fle|r?
TRI; -1 = pr—

(5.1)

where r and p are the refinement ratio and the order of convergence. In this work
the former is set to 2 and the latter to 1.75. Fj is the so called factor of satisfactory.
Because this work focuses mainly on the investigation of the flutter boundaries a
conservative factor of Fy; = 3 is chosen for the RTI of the flutter boundary compu-
tations. The calculated values are shown in table 5.1. In the following sections the
solution is regarded as converged for a RTI value smaller than 3. Therefore dr is

set to 0.001 for Mach numbers between 1 and 1.3. For higher values of M a time
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Table 5.1: TRI values for the temporal resolution study of the flutter boundaries

M =18 M =12
TRI,, a—p 2=1 =0 @=]
0.01 — 0.005, % - - 0.2 73.04
0.005 — 0.0025, % 4845 5355 473 16.93
0.0025 - 0.00125,%  19.14 2441 297 830
0.00125 — 0.00063,%  7.68 995 111 353

0.00063 — 0.00031, % 3.38 4.66 0.74 2.11
0.00031 — 0.00016, % 1.83 1.18 0.18 1.74
0.00016 — 0.00008, % 0.81 0.89 0.14 0.50
0.00008 — 0.00004, % 0.66 0.65 0.11 0.29
0.00004 — 0.00002, % 0.01 0.22 0.02 0.04

step size of 0.0001 is applied.

Even if this work shall focus on determining whether a system is stable or not,
some post flutter investigations were carried out to understand the character of the
arising instabilities. Due to this another temporal resolution study was carried out
to examine the influence on the amplitude of the flutter oscillations. Therefore the
flutter solution for dynamical pressures 50% above the flutter boundary where com-
puted for the same set of parameters as above. The obtained amplitudes are shown

in Fig. 5.2 normalized to the amplitude of the finest time step size. The most
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Figure 5.2: Results for the temporal resolution studies of the influnce on the flutter
amplitudes.
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striking peculiarity on these results is that the curves start above the finest value
and then cross the zero error line before they converge to the smallest chosen value.
This indicates that for time step sizes above 0.0003 the oscillations computed by the
software possess oversized amplitudes whereas calculations with lower values of dr
yield to small amplitudes until converging for very fine time step sizes. Comparing
the results to the temporal resolution study on the flutter boundaries the same be-
haviour for higher Mach numbers and length to width ratios can be observed. For
the flutter amplitudes TRI values are calculated as well and presented in table 5.2.

Because the post flutter behaviour is investigated rather qualitatively than quanti-

Table 5.2: TRI values for the temporal resolution study of the flutter amplitudes

M =138 M =12
TRI,, a—g 4=1 =0 @=0
0.00125 — 0.00063, % - - 228 -43.18

0.00063 — 0.00031, % -8.75 -7.22 -2.07 -27.86
0.00031 — 0.00016, % -11.45 -5.35 -0.67 -18.94

0.00016 — 0.00008, % 3.63 -3.28 -0.38 7.31
0.00008 — 0.00004, % 2.59 1.62 -0.21 1.99
0.00004 — 0.00002, % 1.30 1.25 -0.15 0.40

tatively the factor of satisfactory is set to Fy = 1 and the RTI value representing a
converged solution is set to 10. Hence a continuous time step size of dr = 0.0001

was chosen for the post flutter computations.

5.2 Validation

For the purpose of validation the obtained stability boundaries are checked with
the results from the literature. Therefore the automatically identified flutter bound-
ary for a two-dimensional plate is compared with an application of the linearised
potential flow theory carried out by Dowell[12] and with results from more recent
investigations by Alder[21] based on Euler equations. Figure 5.3 shows the curves
of all three computations. It can be seen that the solutions are generally conform.
Comparing with the results of the earlier computation based on the linearized po-
tential flow theory the whole Mach number range agrees to a great satisfaction. The
obtained critical dynamic pressures for Mach numbers from 1 to 1.3 also conform

exactly with the Euler equations. The results furthermore reveal that the present
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Figure 5.3: Stability boundary of a simply supported two-dimensional panel at low
supersonic flow compared with results from Dowell[24] and Alder[21].

results better match the Euler computations compared to the results from Dow-
ell. This may be explained by the limited computer capacity which was available
for Dowell so that the stability curves are composed of fewer Mach numbers. It
is furthermore difficult to extract the results for low Mach numbers from the as-
sociated publications. Also the higher region from M = 1.6 to M = 2 presents
a good agreement. Only the Mach numbers from 1.4 to 1.6 show rather high de-
viations. As mentioned before, this region showed problems during the automatic
analysis and thus the presented curve is fitted through the values calculated by the
automatic identification. A detailed discussion of the complications in this region is
given later in this chapter. To account for three-dimensional panel geometries the
stability boundary of a squared panel is compared with the results from Dowell[12]
in Fig. 5.4. Also the curves for the three-dimensional plate show good agreement
to earlier flutter investigations based on the linearized potential flow theory. The
critical dynamic pressures for the Mach numbers between 1.25 and 1.6 have been

interpolated between the successfully computed values, too.
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Figure 5.4: Stability boundary of a simply supported three-dimensional panel at
low supersonic flow compared with results from the literature[12].

5.3 Results of the constant flow conditions

Several previous studies about panel flutter from the investigated literature stated
the low supersonic Mach number region as an especially critical zone. Further it
was shown in chapter 2.3 that the highest dynamic pressure acts in the very first
seconds of the launch of a spacecraft. For these reasons the stability investigations
of this region have been selected as the main focus within this work. Hence stability

boundaries have been computed for several sets of parameter variations.

5.3.1 Effects of the Mach number

Stability investigations

As shown in chapter 2.2.2 the Mach number has various effects on the stability as
well as on the characteristics of an arising futter motion. Caused by that, the first
subject of investigation was aimed to yield flutter boundaries for the Mach number
range from M = 1to M = 2. Because the investigated Mach number range is limited
to these values, in the following values of the Mach number from 1 to approximately
1.4 are referenced as low supersonic and the range M = 1.6 to M = 2 as high
supersonic. Values between these will be classified as moderate supersonic. In addi-

tion to the computations with a length to width ratio of 0 and 1, flutter boundaries
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have been calculated for a/b = 0.5714 and a/b = 1.75'. The four obtained stability

boundaries are presented in Fig. 5.5. It can be seen that all curves show generally
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Figure 5.5: Stability boundaries of simply supported panels with different length-
to-width ratios at low supersonic flow.

the same behaviour for a variation in Mach number. There exists a significant de-
crease of the critical dynamic pressure towards low supersonic Mach numbers. This
is observed for all aspect ratios considered in the present work. If the Mach number
is increased, the flutter boundary increases as well. However the curves increase in a
different way. The two-dimensional panel experiences a decrease in critical dynamic
pressure from M = 1.1 to M = 1.3 and then starts to climb slowly before it changes
abruptly to a steep increase from a Mach number of 1.4 to 1.5. The range of high
supersonic velocities then again exhibits a slight exponential growth. The curves for
three dimensional panels all show a rather gentle change from the slow increase for
low supersonic velocities to a steeper logarithmic increase for higher Mach numbers.
Furthermore it can be seen that the turning point of these climb phases appears

earlier with increasing length to width ratios.

Modal participation
From the literature study it is known that the Mach number not only shifts the crit-
ical dynamic pressure but additionally affects the flutter mode shape. This means

that a panel with a specific geometry exhibits a change in its flutter motion by pass-

Values are chosen for future comparisons to wind tunnel tests at the German Aerospace Center.
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Figure 5.6: Establishment of a higher mode by an excitation of the first natural
mode.

ing through different Mach number regions. Furthermore several previous chapters it
already appeared that flutter oscillations in the vicinity of M = 1.4 are significantly
more complex and the automatic analyses failed. This is caused by contributions
of the higher modes to the flutter motion which are excited very slowly, resulting
in very large transients. Thus, the oscillations does not show a pure increasing or
decaying pattern, but decreases first and then starts to grow again. This effect is
shown in Fig. 5.6. Because in these regions the dominant acting mode changes
rather abruptly the initial excitation would have to be adjusted for every iteration
step. To apply the automatic iteration this would abolish its benefit. Further the
oscillation itself is more complex and the identification of the maxima and minima
is more complicated. Due to this observed complications the participation of the
different modes and thus the shape of the panel deformations has been investigated
in more depth. The results are shown in Fig. 5.7 to 5.11. The lower instability
boundaries indicated by the dashed-dotted-lines in these illustrations have been ob-
tained by using different modes as initial conditions. Because in reality not a specific
mode is excited, identifying the stability boundary by using the finally arising mode
appeared to be the more reasonable and, besides, the faster method. The figures 5.7
to 5.11 show the different flutter modes arising for the examined panel geometries.
Figure 5.7 shows the critical dynamic pressures of a two-dimensional panel for a
Mach number range from 1 to 1.8. The shape of the flutter boundary is already
shown in figures 5.3 and 5.5. The curve is determined by an automatic identifica-
tion of the solution type and a successive adjustment of the dynamic pressure as
explained in section 4. The symbols illustrate the Mach numbers which have been
computed by a manual adjustment of the dynamic pressure to verify the algorithm

searching for the flutter boundary and to determine the shape of the flutter mode
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Figure 5.7: Stability boundary of a two-dimensional, simply supported panel with
arising flutter mode shapes.

which arises for values slightly above the critical dynamic pressure. As can be seen

for the values from M = 1to M = 1.4 a shape very similar to the first natural mode

of a plate was observed. For higher Mach numbers the shape changes to the one

which is shown on the right hand side of the dotted line. These two modes look like a

combination of mainly the first- and second natural modes as can be seen in Fig. 5.8.

These two detected flutter shapes are
typical shapes which are observed in
comparable panel flutter studies in
the literature. The first shape (I from
B) has also been identified among
others by Bendiksen and Davis[17]
and the second (II from B) for ex-
ample in Refs. [7] and [25].

In previous sections within this work
it was already stated that because
of interacting higher modes the pro-
gram sometimes fails to identify
whether an oscillation is damped or
excited. These problems occurred for
all three-dimensional plates (a/b =
0.5714,1,1.75). Therefore it is no

. . . 1
© natural mode
observdd mode
: f VI
: observed mode

2

natural mode

Figure 5.8: Observed mode shapes of the
two-dimensional panel com-
pared to the natural modes.
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wonder that the arising mode shapes of these panels are more complex than for
a two-dimensional plate. The observed mode shapes along the flutter boundaries of
the panels with the length-to-width ratios a/b = 0.5714, a/b = 1 and a/b = 1.75 from
Fig. 5.5 are presented in Figs. 5.9 to 5.11. Within the illustrations the same stabil-
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Figure 5.9: Stability boundary of a simply supported panel with a/b = 0.5714 with
arising flutter mode shapes.

ity boundaries as in Fig. 5.5 are presented, each in a distinct diagram. Furthermore
as presented similarly in Fig. 5.7 the different arising flutter shapes are shown and
the manuel computed values again marked with a square symbol. As already stated
each of these panels showed influences of higher modes for a specific range within the
moderate Mach numbers. These regions not only showed more participating modes,
but further yielded much smaller values of the critical dynamic pressures than the
interpolated curves predict. These deviating values are indicated with little Deltas
instead of the squares. Further a smaller stability boundary, obtained through the
interpolation between the deviant values, is suggested by the dash-dotted line. For
the panel with a length to width ratio of 0.5714 diverging critical dynamic pressure
occurred between M = 1.3 and M = 1.5. Within this range two more flutter shapes
can be observed. For Mach numbers of 1.3 and 1.35 a shape similar to the second
natural mode arises, whereas for M = 1.4 to M = 1.5 the shape looked like the
third natural mode. The high supersonic velocities exhibits the same mode than for
the two-dimensional panel. The squared plate exhibits even an enhanced range of
deviating values. Manually obtained critical dynamic pressures started already for

a Mach number of 1.25 to diverge from the estimated stability boundary and begin
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Figure 5.10: Stability boundary of a simply supported panel with a/b = 1 with
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Figure 5.11: Stability boundary of a simply supported panel with a/b = 1.75 with
arising flutter mode shapes.
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to agree with the automatic calculations for Mach numbers of M = 1.6 and higher.
Further the shape directly changes from the first mode alike to the one dominated
by the third natural mode. This was observed until M = 1.4. For higher velocities
also flutter shapes mainly influenced by the forth or fifth mode arise for the LCO.
Mach numbers from 1.6 onwards again show the well known mode obtained in many
other investigations. For the computations of the panel with a length-to-width ratio
of 1.75 only the fifth mode was observed within the range showing deviations from
the approximated flutter boundary.

However, during the literature study flutter boundaries alike the ones indicated by
the interpolated, dashed-dotted lines have not appeared in such manner in previous
investigations. Therefore it cannot be excluded that these effects are caused by nu-
merical inaccuracies. However the participation of higher modes in these regions has
long been known and appeared repeatedly within the literature. Even more recent
investigations as made by Davis and Bendiksen[31] who used Euler equations and
a FEM method instead of the linearised potential flow theory in combination with
the von-karman plate theory, observed these effects. They showed that for Mach
numbers as 1.4 and 1.5 higher modes establish according to Fig. 5.6.

Post critical flutter behaviour

In order to get a insight and a better understanding in the complex effects of the
previous stated regions, the flutter behaviour slightly above the critical dynamic
pressure has been subject to brief investigations in this work. Thereby the aris-
ing amplitudes of the LCOs (caused by an increasing dynamic pressure) have been
computed for three different Mach numbers, one from each velocity region(low-,
moderate- and high supersonic). The results are presented for a length-to-width
ratio of a/b = 0 in Fig. 5.12 a and a/b = 1 in Fig. 5.12 b. Amplitudes have been
obtained for dynamic pressures of 100% to 200% of the flutter boundary. When com-
paring the three curves it is very obvious that the Mach number strongly affects the
behavior of the flutter oscillation. Local amplitudes at a Mach number of 1.2 sud-
denly increase beyond the critical dynamic pressure, similar to a Hopf bifurcation.
For the higher Mach numbers this growth becomes slower and the slope approaches
a logarithmic growth. This indicates that the low supersonic region is not only
more critical to the onset of flutter but further has to be considered more carefully
for post-critical applications. Supplementary to the two-dimensional investigation
LCO-amplitudes have been calculated for a square plate (5.12 b). The results of

the three-dimensional computations show the same trend comparing M = 1.2 and
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Figure 5.12: LCO-amplitudes for M = 1.2,1.4,1.8 for simple supported panels
with length-to-width ratios of 0 (a) and 1 (b).

M = 1.8. The curve of the Mach number of 1.4 shows a more complex behaviour.
This behaviour is conform with the previous identified participation of higher modes
in the moderate supersonic velocity region. The curve representing this range shows
the same behaviour until a dynamic pressure of 140% of the flutter boundary is
reached. For higher values of X\ different oscillations interfere with each other and
various periodic extrema occur presented by points instead of a continuous line. This
outcome shows that the previous identified influences of the higher modes for Mach
numbers about 1.4 also appear in the post critical regions. Except for these effects
the observed general tendency is conform with the results of ref. [22] presented in
chapter 2.2.2. Due to the focus on the stability investigations of this work a deeper
investigation of the effects of the chaotic behaviour is omitted, while the reader is
referred to Refs. [32], [33] and [34].

5.3.2 Effects of the length-to-width ratio

Stability investigations

In the literature study it already appeared that the length-to-width ratio has a sta-
bilising effect on panel flutter. This influence is illustrated by Fig. 5.13. Herein
three different curves are shown, each representing a specific Mach number. The
general influence of the length-to-width ratio is the same for every Mach number. It
can be seen that the critical dynamic pressure shows an exponential growth for an
increase of a/b. Further the influence of the Mach number, already known from the

previous chapter, can be seen. An increase leads to an upwards shift of the curve.
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The slopes of the curves for the low- and high supersonic mach numbers are very
similar. The only difference is that the Mach number of 2 shows a faster growing
increase.

The instability boundary of M = 1.414 again exhibits a special behavior. The crit-
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Figure 5.13: Stability boundaries in dependency of the lengt-to-width ratio for
different Mach numbers.

ical dynamic pressure is, accordingly to the general trend, higher than for a Mach
number of 1.2. If the length-to-width ratio is increased, the two curves intersect
and the flutter boundary of M = 1.414 becomes lower than for the smaller Mach
number. This behavior changes again after another intersection at a/b = 2. From
this value onwards the higher Mach number yields higher values for the critical
pressure and the curve shows an exponential growth for an increase in length-to-
width ratio. This effect is only observed for the moderate range of supersonic Mach
numbers and is again caused by the participation of the higher modes. Comparing
figures 5.7 to 5.11 the same effect can be observed. For some Mach numbers the
critical dynamic pressure of the three-dimensional panels drops below the values of
the one-dimensional plate. The influence of other modes can also be seen by ex-
amining the flutter mode shapes. This is done for selected a/b values of the curve
which represents M = 1.414. The arising LCO shapes are indicated by the roman
numbers in fig. 5.13. For a length-to-width ratio of 1 the main acting mode is the
third natural mode. For a/b = 2 the flutter shape is very similar to the fifth natural
mode of a plate. For higher length-to-width ratios the typical shape of the high

supersonic region establishes and the slope of the curve changes to an exponential
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increase according to the general trend. This suggests that the higher modes only

participate in specific ranges of a/b and M.

Post-critical flutter behaviour

Similar to the Mach number effects, the influence of the length-to-width ratio on
the post flutter behavior has been subject of some further investigations. As already
stated in the literature study in chapter 2.2.3 a change in a/b creates a much weaker
influence on the solution than a variation of the Mach number. This can be seen

in figure 5.14. Herein the local LCO-amplitudes of panels with different length-to-
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Figure 5.14: LCO-amplitudes for a/b = 0,0.5714,1,1.75 of simple supported pan-
els at (a) low- and (b) high supersonic velocities for dyn. pressures

until /qerie = 2.

width ratios are presented. The picture on the left hand side shows the amplitudes
obtained with a Mach number of 1.2, the one on the right hand side represents the
high supersonic velocities at M = 1.8. Comparing these curves, it can be seen that
the higher values of a/b yield curves with smaller slopes. This means that panels
with larger length-to-width ratios exhibit a slower growth of their LCO-amplitude
if the dynamical pressure is increased. Nevertheless, compared to the influence of
the Mach number, the qualitative differences of the curves are very small. The
same observations can be made by comparing the amplitudes of the same panel
geometries in a supersonic flow at M = 1.8. This is shown in figure 5.14 b. The
obtained results represent that the length-to-width ratio heavily influences the local
LCO-amplitude but has no effect on the qualitative shape of the curves. In fact the
dynamic instability sets in at higher dynamical pressures for larger values of a/b,

which corresponds to the influence of the ratio of the panel length and width on the
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Figure 5.15: Comparison of stability boundaries for clamped and pinned panels
with different length-to-width ratios.

critical dynamic pressure. Although the curves are merely shifted towards larger

dynamic pressures, they but possess a comparable slope.

5.3.3 Effects of the boundary conditions

To compare flutter phenomena of pinned and clamped panels, similar stability in-
vestigations to the ones carried out for the pinned panels described in chapter 5.3.1
and 5.3.2 have been conducted with equivalent clamped plates. The outcome is pre-
sented and opposed with the results of the pinned panels in figure 5.15. A general
trend is obvious. The clamped panels yield flutter boundaries which show a good
qualitative agreement to their pinned counterparts. However, the main influence of
the clamped boundary conditions is that it shifts the stability boundary upwards.
Hence, the dynamic pressure at which flutter arises for a clamped panel is larger
than for an identical pinned panel. Regarding the curve of the panel with a length-
to-width ratio of 0.5714 it can be seen that changing the boundary conditions from
simply supported to a clamped panel raises the critical dynamic pressure above the
one of a pinned square panel.

Comparing the flutter boundaries over a range of several length-to-width ratios for
pinned and clamped plates a very similar influence can be observed. This is illus-

trated in figure 5.16. The curves of the flutter boundaries obtained by the compu-
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Figure 5.16: Comparison of stability boundaries over a range of different values of
a/b for clamped and pinned panels at different Mach numbers.

tations with clamped boundary conditions are shifted upwards in an equal manner
as discussed in the framework of a variation of the Mach number. The slopes of
the curves are again scarcely influenced. Here the instability boundary at a Mach
number of 1.414 as well intersects with the curve representing M = 1.2 and pos-
sesses lower critical dynamic pressures over a range of a/b = 0.75 to a/b = 2.25.
This shows that the clamped panels exhibit the same interferences of the higher
mode as it has been observed with simply supported boundary conditions. This
results have been verified by manual identifications of the flutter boundary and the
oscillation shapes, respectively to the computation of the pinned plates. Because
displaying similar curves to the ones shown in figures 5.7 to 5.11 would not yield
further insights such illustrations are omitted. However, in table 5.3 the dominant
modes observed in these investigations are presented and compared with the mode
shapes which have been discovered for simply supported panels. For an explanation
of the given mode shape numbers refer to appendix B. The observed mode shapes
represent mainly coincidence. Given identical conditions (M and a/b) generally the
same dominant modes arise for pinned and clamped plates. For some Mach num-
bers the clamped panels already change to the next higher mode whereas pinned
boundary conditions do not change until higher Mach numbers. Furthermore for the
clamped panels the interference of higher natural modes is observed up to higher

Mach numbers. The computations with clamped edges show such influences up to
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Table 5.3: Dominant mode shapes for pinned and clamped panels in the Mach
number range from 1.2 to 1.8.

M a/b=0.5714 a/b=1 a/b=1.75
pinned clamped pinned clamped pinned clamped

1.2 I I I I I I
1.3 II 11 11 III \Y \Y
1.4 I11 11 III 111 \Y \Y
1.5 VI 11 \Y III \Y \Y
1.6 VI \Y% VI \Y% VI A%
1.7 VI VI VI VI VI \Y
1.8 VI VI VI VI VI VI

Mach numbers of 1.6 and 1.7. The pinned panels yielded the typical shape (VI) for

these Mach numbers.

5.4 Results of the time variable flow conditions

In the following sections several computations are presented using the program fea-
ture which allows to vary the Mach number and the dynamic pressure with time.
Because no similar investigations were conducted in the literature a validation by
comparison is not possible. However the results are analysed and checked for agree-
ment with the expectations which arise from the physical foundations. Therefore
trajectories derived from the Saturn V rocket are used within the computations.
The process of deriving these trajectories is described in the first subsection. In the

following parts the different computations are presented.

5.4.1 Trajectory computations

The purpose of the temporal adjusting integration is to study the influence of chang-
ing flow conditions during flutter. Therefore the trajectories which are used as input
source for the Mach number and the dynamic pressure are derived from the Saturn
V trajectory presented in chapter 2.3. The values taken from Ref. [28] are converted
into a non-dimensional notation. This yields a trajectory defined by three param-
eters: the non-dimensional time 7, the Mach number M and the non-dimensional

dynamic pressure A. To identify the trajectories which are interesting for the sake of
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stability investigations, it is fertile to express the dynamic pressure in dependence
of the Mach number. This enables an easy examination of the dynamic pressure for
each Mach number. Regarding the equation to convert the dynamic pressure into

the non-dimensional dynamic pressure

kM?a3

A (5.2)

the isentropic exponent is set to constant. The pressure is dependent on the density
of the flow and thus corresponds to the actual altitude. The trajectory can be shifted
upwards or downwards by changing the structural ratio a®/ D defined by the length of
the panel a and the stiffness D. Hence by adjusting this ratio, the dynamic pressures
can be changed and the trajectory is shifted but still retains the qualitative relation
of the dynamic pressure and the Mach number from the Saturn V trajectory. This
method is used in this work to obtain the trajectories which shall be investigated.
It is important to note that by changing a and D not only the dynamic pressure,

but also the non-dimensional time 7 changes due to the conversion by

D
T:t-ﬂp i (5.3)

The chosen trajectories are presented in Fig. 5.17 and are numbered for the sake

of referencing with capital letters (referring to the type of trajectory) and numbers

(representing the length-to-width ratio). It can be seen that all trajectories cross
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Figure 5.17: Illustration of the computed trajectories shifted by a change in the
structural parameter a®/D.

the stability boundary. This was picked as the most interesting behavior because it
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represents a spacecraft which is exposed to stable as well as unstable regimes during
its flight. Because of that the points of interest chosen by the author are trajectories
which reproduce such situations. Therefore computations are carried out simulating
a start in the unstable region and then crossing the stability boundary and entering
the stable region. As it can be seen this setting is examined for several different
magnitudes of the dynamic pressure. Figure 5.17 only presents the trajectories of
the panels with length-to-width ratios of 0 and 1. The two other panels are omitted
because the main fraction of investigations is carried out for the squared panel.
Nevertheless selected trajectories (D and F) are computed for each panel geometry,
though these are similar to the corresponding trajectories for a/b =0 and a/b = 1.
For the one-dimensional panel it is even possible to start the trajectory within the
stable region, cross the unstable region and finally reenter the stable area again. The
precise reasons for each trajectory will be explained alongside with the outcome of

the computations in the following sections.

5.4.2 Trajectories traversing the stability boundary

The first question which arises when regarding the trajectories and the stability
boundary in figure 5.17 is how a panel behaves if it crosses the flutter boundary from
the unstable to the stable region. To obtain an answer computations are carried out
simulating such a situation for the different panel geometries (D of Fig. 5.17). The
resulting deformations for length-to-width ratios of 0 and 1.75 are presented in fig-
ures 5.18 and 5.19 over the range of crossed Mach numbers. This is done to facilitate
a direct comparison of the actual dynamic pressure, which the panel exhibits at a
specific Mach number and the critical dynamic pressure. Thus, the actual deflection
at a specific Mach number can be attributed to the relation of these pressures. The
values of the dynamic pressures A\, and A}, are presented on the right hand side
of the figures. The displacements are shown on the left hand side. Regarding the
figure illustrating the computation of the one-dimensional plate it can be seen that
the deflection of the panel (shown by the dotted line) growth very rapidly in the
beginning and then begins at a Mach number of approximately M = 1.2 to decrease
until the solution almost damps out completely towards M = 1.7. This behavior is
very conform with what is expected. It is straight forward that the deformations
increase within the unstable region and, after crossing the stability boundary, drop

to zero. However, the intersection of the actual dynamic pressure (solid line) with
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Figure 5.18: Computation of a trajectory crossing the stability line for a two-
dimensional panel.

the flutter boundary occurs at a Mach number slightly below 1.4 instead of 1.2. This

indicates that the motion of the panel begins to abate quite a while before dropping

*
crit®

below the critical pressure A Because of that steady computations have been car-
ried out for fixed points from the trajectory. The amplitudes of the LCO a, which
arise under circumstances of infinite time are presented by the small dashed line.
In the following the terms LCO and steady computations both reference the values
obtained by these computations for an infinite time span. Comparing these with the
actual deflection of the trajectory it can be seen that the motion of the plate follows
the LCO amplitude generally very well and that the pre-critical decrease is caused
by a drop of the LCO amplitude. The stationary amplitude of the Mach number
range of about 1.1 is reached very fast after the excitation. Then the maximum
deflections adapt to the LCO amplitudes until approximately. M = 1.35. After
this value a rapid drop in the arising amplitude of the LCO can be observed. The
deflections of the panel traversing the trajectory however drop much slower with a
significant ’delay’. This is a very interesting phenomenon and is probably caused by
the memory of the fluid defined by the admittance functions. This suggests that the
past deformations and velocities of the panel influence the adaptation to the steady
state. Furthermore the aerodynamic damping approaches zero towards the stability
boundary. Hence, the motion of the panel settles very slowly.

Regarding Fig. 5.19 which shows a similar trajectory for the panel with the length-

to-width ratio of 1.75 a related behavior can be observed. The panel motion as well
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Figure 5.19: Computation of a trajectory crossing the stability line for a panel
with a length-to-width ratio of 1.75.

shows a rapid increase until the magnitude of the LCO amplitude is reached. After
the amplitudes of the stationary computations begin to decrease. The deflections of
the panel traversing the trajectory follow again in a delayed fashion and hence still
possess considerable dimensions when the actual dynamic pressure drops below the
critical pressure. Thus both trajectories shown here possess generally the same char-
acteristics. Both calculations yield a delay with respect to the steady computations.
Comparing the fade away periods, the two-dimensional panel is decayed completely
after traveling through a Mach number range with a span greater than AM = 0.3.
The panel with a length-to-width ratio of 1.75 is completely faded away at a Mach
number approximately 0.175 larger than the one at which the stability boundary
is crossed. Regarding the trajectories the non-dimensional time span to fade away
is of a magnitude of 21.12 for the one-dimensional computation, whereas the panel
with a/b = 1.75 takes only A7 = 2.25 to die out completely. Considering all factors
but this structural parameter as constant, the actual (dimensional) time which is
taken to travel along the trajectory has to be equal. The different non-dimensional
time spans arise only during the conversion into non-dimensional units by making
use of equation 5.3 due to the different values of D/a. A further distinction of both
trajectories which is a possible reason for differences in the delay is the initial dy-
namic pressure. The two-dimensional panel starts with a magnitude of 1.9 times
the critical dynamic pressure whereas the panel with a/b = 1.75 only exhibits a

magnitude of A(7 = 0) = 1.5}

it This should mainly influence the initial growth,
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but could also be a cause for different delays. To evaluate the individual influence
of all mentioned conditions further investigations focusing each on one parameter

are presented in the following chapters.

5.4.3 Trajectories traversing the transonic dip

In chapter 5.4.1 it was already observed that for a one-dimensional case a trajectory
which crosses the transonic dip (GO from Fig. 5.17) can be computed. Thus, the
panel would cross the stability boundary in several instances. Such a trajectory is
shown in Fig. 5.20, which starts in the stable region and then crosses the stability
boundary accessing the unstable region before finally entering the stable area again.

Regarding the shown displacements, the outcome is again very conform with rational
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Figure 5.20: Displacements of a two-dimensional panel with a trajectory traversing
through the transonic dip.

expectations. The initial excitation decays while the panel resides in the stable
region. After crossing the flutter boundary for the first time at approximately M =
1.115, the panel displacements begin to increase until the reentry into the stable
region at a Mach number of 1.315. From this point onwards the deformations slowly
decrease until zero. This is a very reasonable behavior. However, comparing the
actual deformations of the panel to the arising amplitudes of the LCO, a rigorous
deviation can be observed. Herein the amplitudes of the steady computations are

presented on a separate axis due to the large difference. Comparing the maximum
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values of both, it can be seen that the actual deformations only reach a magnitude
which equals two percentage of the maximum amplitude attained by the steady
computations. This is a very dramatic difference and suggests that a spacecraft
flying along such a trajectory would only exhibit a very small fraction of the load
which would arise for infinite long computations. A very plausible reason for this
result is that for states close to the stability boundary the damping or excitation is
very small. Hence, the arising LCO takes a long times to settle. Furthermore, it has
appeared in the investigations presented in the previous chapters that some mode
shapes arise very slowly. For a spacecraft traversing this regions very rapidly the
oscillation is not given enough time to raise to high magnitudes before the panel is
already exposed to different conditions. This is a very important outcome for the

sake of the structural dimension of such vehicles.

5.4.4 Influence of the difference in the dynamic pressure

In chapter 5.4.3 it is observed that the displacements of the panel do not reach
significant magnitudes compared to the amplitudes of the LCO. The most forward
reason for this is stated as the small distance from the critical dynamic pressures.
To investigate this, computations have been carried out for trajectories with differ-
ent distances above the stability boundary for a squared panel (A1, B1 and C1 of
Fig. 5.17). These distances in the dynamic pressure (and the following mentioned
distances) all reference to the critical pressure at the Mach number of the first point

of the trajectory. Three of these are presented in Fig. 5.21. Regarding the first
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Figure 5.21: Trajecotries with different distances from the stability boundary.

illustration, which has been obtained for a start at only 10% above the critical dy-
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namic pressure, it can be seen that the displacement of the panel only reaches a
small fraction of the magnitude of the LCO amplitudes. Comparing again the max-
imum values, only 16.6% of the magnitude of the steady computations is obtained.
Due to the small distance the panel enters the stable region almost directly after
the start. Further the magnitude of the deflections of the LCO is very small. All
these circumstances can contribute to only attaining a small fraction of the steady
results. However, a similar outcome can be observed for the second case which rep-
resents a distance above the stability boundary of 25% in the dynamic pressure. Still
only around 35% of the LCO-amplitude is reached even if the time until crossing the
stability boundary is nearly doubled and hence the steady computations yield signif-
icant panel deformations. Comparing the previous described computation with the
third shown trajectory (5.21 c), much higher panel displacements can be observed.
For a start at a dynamic pressure of 50% above the critical value the deformations
reach approximately equal magnitudes to the amplitudes of the LCOs. Summariz-
ing the outcomes of the three computations it can be concluded that the size of the
deflections increases very fast with a growing distance above the stability boundary.
However, even if the trajectory with a difference of 10% above the critical pressure
corresponds to the trajectory traversing the transonic dip, the latter reaches a much
smaller fraction of the steady results. This is probably caused by the circumstance
that the initial excitement is already damped due to the start in the stable region.
Therefore the actual displacement when entering the unstable area is drastically re-
duced. However due to the phase within the region above the flutter boundary the
panel already possesses past deformations and velocities. These support the increase
of the displacement which can be observed in Fig. 5.20 after the stability boundary
is crossed. However, despite the effect created by the memory of the fluid only small
magnitudes are obtained. Regarding again Fig. 5.21 despite the differences in the
magnitude of the displacements all three computations show the same delay which
has been observed at the computations presented in chapter 5.4.2. This shows that

such a behavior is obtained irrespectively of the 'path’ of the trajectory.

5.4.5 Influence of the initial excitation

From the outcome of the previous chapters it is known that the flutter displacements
are heavily reduced by approaching towards the instability boundary. However, it

is obvious to assume that the reached magnitudes of the deformations depend on
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Figure 5.22: Computed trajectories with a distance of 25% and 50% above the
dynamical pressure with a variation in the initial excitation.

the initial excitation. The previous presented investigations are all excited with an
initial velocity of the first natural mode of the magnitude of 0.01. To examine the
influence of the initial conditions the trajectories B1 and C1 are computed with dif-
ferent magnitudes of the excitation (¢; = 1,0.1,0.01) and further computations with
an excitation of the second and third mode (¢, = 0.1, g3 = 0.1) are executed and
presented in Fig. 5.22. The outcomes confirm the influence of the initial conditions.
Especially for the trajectory closer to the flutter boundary (Fig. 5.22 a) the reached
amplitudes grow drastically with the magnitude of the excitation. The computation
with the initial condition of ¢; = 1 even reaches displacements comparable to the
LCO amplitudes of the steady computations. The panel excited with a magnitude
of 0.01 in the velocity of the first mode only exhibits deformations smaller than
0.05. Comparing the excitation in the velocity of the different natural modes it can
be seen that the deformations induced by the excitation of the second and third
mode are significantly smaller than for the first mode. This is assumed to be caused
because the dominant mode for the computations is the first mode and thus this
mode has to establish first before the amplitudes can rise to larger magnitudes. This
explanation is supported by the fact that the motion following from the excitation
of the third mode is smaller than for the second. The second mode changes faster
to the first mode than the third mode does. Therefore the oscillation can grow to
larger amplitudes. For all used initial conditions the dominant acting mode is the
first and the mode shape III (refer to appendix B) was observed. The outcome
of the trajectories starting at 50% above the critical dynamic pressure shows good

agreements. The smaller the magnitude of the excitation the smaller are the reached
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amplitudes of the deformations. However, the differences in the displacements are
much smaller than for the trajectory starting at 25% above the stability boundary.
As discussed in the previous chapter the damping and excitation of the oscillation
is larger for higher differences to the critical dynamic pressure and thus even small
excitations can reach large amplitudes in a shorter while. Similar to the compu-
tations starting at 25% above the critical dynamic pressure the magnitude of the

displacements decrease with higher numbers of the excited natural modes.

5.4.6 Influence of the travel time

To examine the delay in more depth this subsection focuses on the individual in-
fluence of the time needed to travel through the Mach number regions. This non-

dimensional time-span is defined as
T = Tend — Tstart (54)

and in the following will be called "travel time’ Investigations have been carried out
in which T is varied and all further elements are considered constant( Fig. 5.23).

Herein deformations of a panel flying along a trajectory according to the Saturn V,
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Figure 5.23: Saturn V trajectory fitted for a/b = 1 crossing the flutter boundary
with different travel times.

fitted for the panel with a/b = 1, are shown as well as the same trajectory with
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double and half travel time A7. For the sake of an easy comparability only the
amplitudes a are presented. The resulting curves very well demonstrate that the
travel time heavily influences the magnitude of the delay. Comparing each curve with
the amplitudes of the LCOs it is obvious that the smaller the travel time the closer
the amplitudes converge to the steady computations. This applies for the decay
phase as well as for the growth directly after the excitement. Even for the shortest
travel time this initial growth is fast enough to reach the highest magnitude of the
LCO amplitudes. This shows that even if the velocity of the spacecraft is increased
in a very fast way, the panel deflections are likely to assume large proportions. A
possible cause for this behavior is again the memory of the fluid which encourages
the initial growth but retards the decrease of the amplitudes. This investigations
confirm that the travel time influences the delay in the manner that an increase in
T leads to a adaption to the LCO within a smaller Mach number range. Regarding
the first introduced trajectories (Figs. 5.18 and 5.19) again the fact, that the three-
dimensional panel shows a less distinct delay despite the influence of the travel time,
may arise due to the geometry differences or caused by the fast drop of the LCO

amplitude of the two-dimensional panel.

5.4.7 Influence of the panel geometry

Further trajectories have been computed with a fixed time-span and identical initial
conditions in the manner that the computation is started for a point with quali-
tatively the same differences in the dynamic pressure and Mach number from the
critical values. Regarding the shown trajectories of the different panels (Figs. 5.7
5.11) all four curves possess an approximately similar slope for the Mach number
range from 1.6 to 2. Because of that, this region has been selected with the aim to
facilitate an preferably identical starting point for all panel geometries. Therefore
all trajectories are defined to cross the stability boundary at a Mach number of 1.8
starting at M = 1.6. Regarding equation 5.3 and because of the equal travel time
T, for all computations the plate length a and stiffness D have to be considered as
constant to enable an identical dimensional time ¢ as well. Hence, only the plate
width b is a variable factor which is changed to achieve the different length-to-width
ratios. To obtain a computation related as close to reality as possible, the time
to traverse this Mach number range is deduced from the Saturn V trajectory and

set to T" = 10. The chosen start conditions and resulting differences are presented
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in table 5.4. Note that the dynamic pressure of the trajectories is set to constant

Table 5.4: Initial values of the trajectories with identical travel time and distances

of the stability boundary in Mach number and dynamical pressure

a/b M AM A AN percentage dev.
0 1.6 0.2 498.83 94.83 23.47
0.5714 1.6 0.2 568.44 110.24 24.06
1 1.6 0.2 720.08 140.08 24.15
1.75 1.6 0.2 1246.58 228.58 22.45

to facilitate obtaining similar trajectory conditions. Therefore A has to match the

critical pressure at M = 1.8. It can be seen that the percentage deviation of the

dynamic pressure to the critical value is relatively conform. Thus, it can be assumed

that the parameters are equal (relatively, not quantitatively) for each panel. This

assumption proves to be true by regarding Figs. 5.24 a to d.
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of the four panels are presented and compared with the LCO-amplitudes from the
steady computations. It can be seen that the curves are very conform and scarcely
deviate from one another. All four show the typically observed behaviour of a fast
increase followed by a slow drop after the LCO deflections decrease. The curves
only differ slightly in their magnitude and due to some outlier of the amplitudes,
which are likely to be caused by the short travel time and complex oscillations in
this post-critical region. These results suggests that the panel geometry scarcely
influences the behavior of the trajectory. This outcome is reasonable. The influence
of the length-to-width ratio (presented in chapter 5.3.2) shows that the resulting
amplitudes for different panels exposed to flow conditions in a similar manner above
the stability boundary exhibit the same amplitudes. Hence, it is not surprising that
the shown computations yield very conform deformations. Furthermore it can be
concluded that a panel, even if exhibiting a higher pressure, shows the same reaction

crossing the stability boundary at comparable start conditions.

5.4.8 Trajectories affected by different participating modes

In chapter 5.3.1 it was observed that within the Mach number regions from 1.3 to
1.7 higher modes contribute to the flutter motion. To investigate trajectories ex-
hibiting these effects two computations have been carried out for the same panel
and travel time within this region (Traj. D1 and E1 from Fig. 5.17). The first
outcome (5.25) is obtained by computing trajectory D1, which enters the region of
the higher participating modes only slightly above the (manually identified) flutter

boundary. The resulting displacements correspond to the results of the computation

*
crit,0

of the trajectory starting at \g = 1.5\ (Fig. 5.21 ¢) and show further agree-
ment to the first two presented trajectory computations(Figs. 5.18 and 5.19). The
deflections of the panel traveling along the trajectory show a rapid increase until
reaching the LCO amplitude and then exhibit a delay to the dropping extreme de-
flections of the steady computations. The flutter boundary, obtained by including
the contributions of the higher modes (discussed in chapter 5.3.1), is presented as a
dashed-dotted line. Thus, the point at which the panel enters the region in which
higher modes contribute can be seen. However, the motion of the panel does not
show any influence and even drops to zero before crossing the lower stability bound-
ary. In the steady computations it was observed that the observed mode shapes in

this region establish very slowly. The dynamic pressures during the trajectory Ay.q;
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Figure 5.25: Trajectory crossing the stability boundary for a squared panel slightly

entering the region with higher participating modes.

assume values scarcely above the critical ones and therefore the oscillations observed

in these regions may not be able to settle. Regarding the actual dynamic pressure

of the second trajectory (Fig. 5.26) for the squared plate in contrast, the panel

travels through this regions with a dynamic pressure substantial above the flutter

boundary. These circumstances are reflected in the motion of the panel. For the
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Figure 5.26: Trajectory crossing the stability boundary for a squared panel enter-

ing the region with higher participating modes.
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trajectory with the higher dynamic pressures the deflection of the panel shows ana-
logue to the previous computation a fast increase and then a delayed decay. When
the actual Mach number reaches the ranges of the higher participating modes, the
observed motion changes to an oscillation with a higher frequency and exhibits the
shape mainly influenced by the third natural plate mode. This indicates that a
panel traversing the region of the more complicated mode participation shows an
influence of these higher modes in its flutter motion. However, these influences arise
only for a difference in the dynamic pressure of a magnitude for which the arising
mode shapes can settle fast enough. Comparing the delays of both trajectories, the
latter exhibits a faster growth after the excitation and even seems to adapt faster for
the decay phase of the first oscillation shape. The latter establishing oscillation on
the other hands shows a much larger delay. However, this comparison does not seem

very fertile due to the high differences in the panel motion of the two trajectories.



6 Summary and outlook

6.1 Summary

The current work focuses on two parts. On the one hand the influences of several
parameters on the flutter solution are regarded and on the other hand the effects of
time variable flow conditions are analysed. Therefore the first part of the present
work is a literature study about the influence of several parameters on the aeroelas-
tic characteristics of flat plates exposed to a low supersonic flow. This study reveals
that there is a lack of literature about the effects for Mach numbers smaller than
2. Furthermore it was realized that no detailed investigations were carried out with
flow conditions which vary in time. To examine the stated subjects of interest, a
code developed by Ventres[27] is enhanced to a temporal adjusting integrator to
account for flow conditions which change according to a chosen trajectory. Fur-
thermore, a feature is added to parse an input file for the influencing parameters
and computational settings. To facilitate easy and user-friendly investigations the
post-processing is improved and additional functionalities enabling automatic anal-
yses have been integrated. The validation by comparisons with examples from the
literature show good agreements for the stability boundaries as well as post-critical
flutter characteristics. A parameter study was conducted about the influencing pa-
rameters based on the literature study yielding the following conclusions:

The Mach number has a strong influence on the complete flutter behaviour. On
the one hand it effects the magnitude of stability boundary and very low critical
dynamic pressures have been observed for small supersonic Mach numbers from 1 to
circa 1.4. Further this parameter changes the shape of the flutter oscillation which
would arise for dynamic pressures above the stability boundary. Even the magni-

tude of the occuring panel displacements in the unstable regions depend heavily on
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the Mach number.

The length-to-width ratio mainly influences the critical values, at which flutter be-
gins to occur. It has been observed that an increase in the plate length strongly
raises the critical dynamic pressure. Computations of unstable systems show that
the length-to-width ratio has no significant influence on the deformations of the
panel after flutter arises.

A comparison of pinned and clamped panels shows that the stability boundary can
be significantly increased if the panel is completely constraint.

During all computations within the Mach number range of 1.3 and 1.8 and values
of the length-to-width ratio between 0 and 2 higher natural modes have been ob-
served contributing to the flutter solution. Because of these influences the stability
boundary was found to be reduced.

The newly integrated tool to compute time variable flow conditions is used to simu-
late flat panels flying along trajectories analogue to the flow conditions of a launch
of a Saturn V rocket. Several trajectories, summarized in Fig. 5.17, have been sim-
ulated and lead to the following outcome:

The computations of different trajectories show that the arising motion grows rapidly
towards the magnitude of infinite long computations with constant flow conditions.
After crossing the flutter boundary the panels show a delay in the decrease of the
plate motion.

The closer the trajectories approach the flutter boundary the smaller are the ob-
tained amplitudes and the danger of excitation of higher modes.

Investigations of identical panels and trajectories given different times to travel
through a specific range of Mach numbers show that the observed delay relies heav-
ily on the time taken to traverse a trajectory.

Further computations of panels with different length-to-width ratios following com-
parable trajectories show that the behaviour is very similar for different geometries.
A variation of the trajectory path and hence different dynamic pressures for an iden-
tical panel showed that the resulting plate motion and the arising delay is distinct

for each trajectory.
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6.2 Outlook

The obtained results yield numerous cause and possibilities for further investigations.
Firstly, not all parameters which have an influence on flutter of panels have been
part of this work. The presented software can for example be used to examine the
influence of the density ratio (of the fluid and the panel), the effects of cavities
or the influence of external stresses due to thermal differences. The results of this
study offer cause for further investigation on the one hand and verification on the
other hand. Especially the observed region of increased modal participation has to
be inspected by further investigations applying different theoretical techniques or
experiments. The complete range of investigations with time variable computations
has not been performed in a similar manner and has to be verified by experimental
techniques and further analyses. Additionally many more computations could be
carried out among others focusing on different types of trajectories, i.e. ’vertical’
traverses of the flutter boundary. Furthermore the software can be extended even

more especially for the post-critical investigations.
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A Saturn V trajectory

Table A.1: Time, non-dimensional time, Mach number, dynamic pressure, non-
dimensional dynamic pressure of the Saturn V trajectory.[28]

t[s] T M Payn [N/m?] A
0 0.00 0.00 0.0000 0.00
5 7.34 0.02 0.0001 0.10
10 14.69 0.04 0.0005 0.37
15 22.03 0.12 0.0010 0.78
20 29.38 0.16 0.0017 1.41
25 36.72 0.22 0.0028 2.26
30 44.06 0.26 0.0041 3.38
35 51.41 0.32 0.0060 4.92
40 58.75 0.40 0.0085 6.97
45 66.10 0.48 0.0119 9.74
50 73.44 0.58 0.0154 12.61
55 80.79 0.71 0.0189 15.52
60 88.13 0.84 0.0226 18.55
65 95.47 1.00 0.0260 21.32
70 102.82 1.18 0.0290 23.78
75 110.16 1.36 0.0314 25.73
80 117.51 1.60 0.0330 27.06
85 124.85 1.82 0.0334 27.37
90 132.19 2.06 0.0301 24.70
95 139.54 2.30 0.0261 21.42
100 146.88 2.54 0.0223 18.25
105 154.23 2.80 0.0184 15.05
110 161.57 3.10 0.0145 11.89
115 168.91 3.40 0.0107 8.75
120 176.26 3.74 0.0078 6.36
125 183.60 4.06 0.0056 457
130 190.95 4.44 0.0040 3.28
135 198.29 4.84 0.0028 2.30
140 205.64 5.26 0.0020 1.62
145 212.98 5.72 0.0012 0.98
150 220.32 6.20 0.0007 0.55
155 227.67 6.80 0.0003 0.23
160 235.01 7.56 0.0001 0.06

165 242.36 8.60 0.0000 0.00




B Observed mode shapes

Table B.1: Overview of the observed mode shapes.

No. Observed mode shape
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C Example trajectory file for the

"TAIFUN’ code

Saturn V trajectory

Fitted to cross the transonic

dip for a panel withe a/b=0

.19785979
.39571958
.59357937
.79143916
.98929894
.18715873

. 74230633
.22757453
.59681818
.38311946
.89266651
.50558806
.08656532
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92.38501852
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63611848
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5505712
06491992
58327571
24728325



D Example input file for the
"TAIFUN’ code

This is an example input file for the Taifun Software which
includes all possible input statements and additional

comments and explanations.

Output settings

The following statements include informations about the

generall settings of the output.

Gives the name of the folder in which the solution files

and logfiles are saved.

Output to shell = .true.
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Selects if the log of the input file parsing and the actual
progress is plotted to the shell.

Selects if the log of the input file parsing and the actual
progress is plotted to a text file.

Parameter definitions

In this section the parameters which are used for the
computations can be defined. It is possible to input non-

dimensional values or dimensioned values.

Non-Dimensional Values

Defines the Mach number. Attention: Values smaller than 1

can not be chosen.

Defines the length-to-width ratio of the panel. For a two-
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dimensional panel set a value close to zero but not equal

to zero.

Defines the ratio of the density of the fluid and the

structure.

Defines the number of modes which are included in the

computation.
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Defines the difference of the pressure above the panel and

the cavity below the panel.

Defines the non-dimensional time at which the computation

is stopped.
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Selects if the time step size s for the admittance fcn.

shall be defined manually.

Selects if the nr. of time steps for the admittance fcn.

shall be defined manually.

Delta s = 0.001
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Selects if the aerodynamics shall be modeld by the full
linearised potential theory (’potential’), pistion theory

(’piston’) or no theory (’none’).

Defines if the admittance functions shall be interpolated.
If ’Set delta s’ or ’Set nr. of time steps’ is set to true

this will automatically be done.

Selects if the admittance functions shall be interpolated by
a linear interpoaltaion (’linear’) or by using the Lagrange
interpolation (’polynomic’).

Interpolation degree =3
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Defines the degree of interpolation (nr. of used nodes) for

the Lagrange interpolation.

Selects if the original admittance functions shall be

replaced within the output file.

Dimonsioned Values

Selects if dimensioned values are used as input or non-

dimensional values.

Youngs modulus =4.739
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Gas constant = 287
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The following statements define the initial values of the
displacement and velocity of the modes in generalised

coordinates. These inputs define the initial excitation.

O O O O O O O O O O O O o o o o o o

Initial displ. (1)
Initial velocity (1) =
Initial displ. (2) =
Initial velocity (2) =
Initial displ. (3) =
Initial velocity (3) =
Initial displ. (4) =
Initial velocity (4) =
Initial displ. (5) =
Initial velocity (5) =
Initial displ. (6) =
Initial velocity (6) =
Initial displ. (7) =
Initial velocity (7) =
Initial displ. (8) =
Initial velocity (8) =
Initial displ. (9) =
Initial velocity (9) =
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Initial displ. (10) =0
Initial velocity (10) =0
Initial displ. (11) =0
Initial velocity (11) =0
Initial displ. (12) =0
Initial velocity (12) =0
Iteration

This section defines the settings of the automatic

iteration.

Selects the parameter which is iterated. Possible choices
are all numerical variables which can be defined in the
non-dimensional parameter or dimensioned parameter section.
The entered parameter has to match the identificator which
can be seen above. The value which is given in the

parameter definition is used as start value.
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Defines the increment of the iteration.

Selects if the values are multiplyed or added by the

iteration increment.

Solution analysis

The following statements adjust the settings of the

automatic analysis of the solution.

Selects the point of the plate which is to be analized.

The entered nr. corresponds to the column of the solution
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file starting at the first column presenting deformations

of the panel.

Selects if the amplitudes are determined by comparing the
slopes of the oscillation or for ’.false.’ by comparing the

actual values from the solution file.

Defines the nr of amplitudes which have to be stabel to

declare an oscillation as sustained.

Defines the nr of adjustment steps after which the automatic

identification of the crit. value is cancelled.

Defines the range in which the growth of the mean amplitude
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is regarded as stable.

Max. amp. fluctuation = 0.001

Defines the range in which the differences of the amplitudes

are regarded as stable.

Sets the non-dimensional time after which the program tries

to identify the state of the oscillation.

This value enables to exclude the first part of the solution

up to the entered non-dimensional time from the analysis.

Nr. of skipped amp. =0

Defines the nr. of amplitudes (beginning after the skipped

time period) which are excluded from the analysis.

Defines the minimum nr. of amplitude which is needed to

start the first analysis attempt. The first attempt compares
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all local log. decrements of the maxima.

Defines the minimum nr. of amplitude which is needed to
start the second analysis attempt. The second attempt
checks if the main nr. of local log. decrements is positiv,

negative or zero.

Defines the minimum nr. of amplitude which is needed to
start the second analysis attempt. The thrid attempt
compares the mean log. decrement with the growth between the

mean amplitude of the first and second half.

Defines the nr. of amplitudes after which the automatic

analysis is aborted.

Defines the increment nr. of time steps in which the program

tries to analyse the oscillation.
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Automatic identification of critical value

Selects if the automatic identification of the critical

value is carried out by the program.

Selects for which parameter the crit. value shall be
identified. Possible choices are all numerical parameters

from the parameter definition.

Defines the lower boundary value which borders the range

in which the crit. value is searched.

Defines the upper boundary value which borders the range

in which the crit. value is searched.

Defines the increment with which the upper range value is
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increased if the upper range value yields a excited

oscillation.

Selects if the solutions of the computed values shall be

kept after it is amalised.

Trajectory options

The following statements are used to adjust the computation

of the time variable flow conditiomns.

Selects if the parameters Mach number and dynamic pressure
shall be varied during the computation according to a

trajecotry file.
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Trajectory file = tconst_abl.traj

Defines the name of the file containing the trajectory as

a tabel.

Defines the line of the trajectory file at which the

programm starts to read in the values of the parameters.

Selects if the values of the variable parameters for the
actual time step shall be interpolatet by using the lagrange

interpolation (’.true.’) or by a linear interpolation.

Plot Options

In this section the possible output can be determined.
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Selects if the grid simulating the surface deformations

is plotted.

Selects if a header containing informations for Tecplot360

is plotted as first row of the solution files.
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Determines the numbers of points along the plate length for

which the panel deformations and velocities are computed.

Selects if the fractions of the participating modes is

plotted in the solution file.

Surface Deformations

Defines the increment in which the surface deformations

are plotted.

Defines the time point from which onwards the surface

deformations are plotted.
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Defines the points in x-directen and thus the resolution

of the grid.

Defines the points in y-directen and thus the resolution

of the grid.

Defines the factor by which the surface deformations are

scaled in the output file.

Start surface plot(1) =0
End surface plot(1) = 0.01
Start surface plot(2) = 10
End surface plot(2) = 10.1
Start surface plot(3) = 25
End surface plot(3) = 25.1
Start surface plot(4) = 50

End surface plot(4) = 50.1
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