
Bachelorarbeit
Ngoc Huyen Nguyen

An application-oriented comparison of two NoSQL database
systems: MongoDB and VoltDB

Fakultät Technik und Informatik
Studiendepartment Informatik

Faculty of Engineering and Computer Science
Department of Computer Science

Ngoc Huyen Nguyen

An application-oriented comparison of two NoSQL database
systems: MongoDB and VoltDB

Bachelorarbeit eingereicht im Rahmen der BachelorprÃ¼fung

im Studiengang Bachelor of Science Angewandte Informatik

am Department Informatik

der Fakultät Technik und Informatik

der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Olaf Zukunft

Zweitgutachter: Prof. Dr. Wolfgang Gerken

Eingereicht am: 8. August 2016

Ngoc Huyen Nguyen

Thema der Arbeit
An application-oriented comparison of two NoSQL database systems: MongoDB and VoltDB

Stichworte
Big Data, NoSQL, SQL, application-oriented comparison, MongodB, VoltdB

Kurzzusammenfassung
Diese Bachelorarbeit stellt ein anwendung-orientierter Vergleich zwischen MongoDB, ein

NoSQL Vertreter, und VoltDB, ein NewSQL Vertreter, an. Es gibt zwei Testszenarien: ecommerce

und social network. Die Tests werden nach de�nierten Kriterien und Testszenarien aufgebaut

und dient dazu, die Leistung jeder Testdatenbank in jedem Testszenario zu evaluieren.

Ngoc Huyen Nguyen

Title of the paper
An application-oriented comparison of two NoSQL database systems: MongoDB and VoltDB

Keywords
Big Data, NoSQL, SQL, application-oriented comparison, MongodB, VoltdB

Abstract
This thesis conducts an application-oriented comparison of two databases MongoDB, a NoSQL

representative, and VoltDB, a NewSQL representative. There are two test scenarios: ecommerce

and social network. The test queries are tailored by de�ned test criteria and test scenario to

investigate the performance of each database in each test scenario.

Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Goals . 1

2 Basics 2
2.1 Big Data . 2

2.1.1 De�nition . 2

2.1.2 Current status . 3

2.2 A general comparison between SQL and NoSQL 3

2.2.1 Transaction and consistency models 3

2.2.2 Data schema . 5

2.2.3 Data query and data types . 9

2.2.4 Scalability . 10

2.3 NewSQL . 11

2.3.1 Summary . 11

3 Analysis 12
3.1 MongoDB as NoSQL Representative . 12

3.2 VoltDB as NewSQL Representative . 12

3.3 MongoDB vs VoltDB . 13

3.3.1 General Comparison . 13

4 Evaluation in real life application specific scenarios 15
4.1 Goals . 15

4.2 Equivalences in structure between MongoDB and VoltDB 16

4.3 Test scenarios . 16

4.3.1 E-Commerce . 16

4.3.2 Social Network . 19

4.4 Evaluation criteria . 21

4.4.1 Data model . 21

4.4.2 Performance . 21

4.4.3 Functionality . 21

4.4.4 Transaction . 21

4.4.5 Security . 22

4.4.6 Distribution . 22

iv

Contents

4.5 Evaluation tests . 22

4.5.1 E-Commerce . 22

4.5.2 Social Network . 32

4.6 Test results . 41

4.6.1 Ecommerce . 41

4.6.2 Social network . 48

5 Conclusion 53

v

Listings

4.1 Replication lag . 50

vi

1 Introduction

1.1 Motivation

Big Data has become common over the years. With the exponential growth of data every year,

storing data in standalone systems is no longer possible. Databases should be able to deploy in

a cluster to spread the workloads, increase overall performance and availability.

Every year, there are more and more database products coming to the market. They be-

long either to SQL or NoSQL database group. Since their appearance, NoSQL databases has

dominated in handling Big Data. Traditional SQL databases, which lack horizontal scaling

support, can not compete with NoSQL in providing a system with high availability and fast

performance.

1.2 Goals

MongoDB, as one of the most popular NoSQL database, has been frequently updated with new

features. One of them is the ability to join tables, which reduces the distance between SQL and

NoSQL databases.

The introduction of NewSQL creates another horizon for SQL databases. Keeping the

relational data model and ACID transaction support, which ensures data consistency and system

durability, there is possibility to scale the whole system horizontally. New features which

support distributing environment, such as single-partitioned transaction, are also introduced

in the NewSQL database. One prominent representative of this group is VoltDB. Claimed as a

hybrid solution that can ful�ll the needs for data consistency, reliability in SQL databases and

data sharding, higher performance and availability in NoSQL databases

The goal of this thesis is to put both databases in scenarios, which are typical either for

NoSQL or SQL databases in order to investigate how close they are to replace the databases

in the other group, their strength and their weakness, which one is more suitable for which

scenario.

1

2 Basics

2.1 Big Data

2.1.1 Definition

Big Data is a term used to indicate large and complex data sets that require special technologies

to store and process.

In the last few decades, data has grown exponentially and shown no signs to stop. According

to IDC’s report Gantz und Reinsel (2010) in 2011, the digital universe set a record in 2010 by

growing by 62% to nearly 800,000 petabytes. It was also predicted that the digital universe

would be 44 times as big as it was in 2009, which was approximately 35 zetabytes.

Although storing a large amount of data for analytic and predictive purposes has existed for

a long time, the �rst document that has ever used this term is a paper written by the scientists

in NASA in 1997 Cox und Ellsworth (1997).

In February 2001, Doug Laney, an analyst of Meta Group, used three features to summarize

Big Data in his paper Laney (2001). Those features are the 3Vs:

Velocity Data can be accessed and streamed in a short time, ideally near real-time. The

latency of read and write operations should be as short as possible.

Volume This involves very large datasets, ranging from tens of terabytes to hundreds of

petabytes.

Variety Data can exist in various formats - from structured, semi-structured to unstructured

data likes video, pictures, texts, emails,..

Since then the "3Vs" has been used by anyone who attempts to describe "Big Data". Other

companies and individuals sometimes have additional features to de�ne big data. For example,

Oracle de�nes another fourth "V" beside the predi�ned "3Vs" as Value to indicate the intrinsic

value that can be derived from data.

2

2 Basics

2.1.2 Current status

Nowadays Big Data has become more and more popular and has been applied in many di�erent

�elds - from business, healthcare, climate science to social medias.

In business, data acquisition and analysis is essential to gain more insights which can boost

business performance. Companies can tap into social media sources like Facebook, Twitter to

conduct sentimental analysis, mine comments, compliments and complaints from the customers

about their products or to understand current trends. Based on these analyses, changes will

then be made to improve performance. Big Data can also be used for fraud detection. Fraud

detections used to be carried out every few months when it’s already too late to diminish the

damage. By using big data analytics to detect fraudulent behaviors in enormous datasets from

multiple sources, insurance companies can now detect fraud in real time.

Big Data has gradually changed health care’s horizon. One example is Google Flu Trends,

which attempts to predict �u outbreaks based on the numbers of key search term. According

to BBC in 2014 Wall (2014), analysis of mobile phone data helped predict the spread of Ebola

virus by coming up with detailed maps of population movements. In a report by Mc Kinsey

Institute in 2013 Basel Kayyali und Kuiken (2013), it is estimated to save up to $450 billion in

health-care spending in the USA by using Big Data applications on a large scale.

According to Gunelius (2014), "�ve exabytes of content were created between the birth of the

world and 2003. In 2013, 5 exabytes of content were created each day. " With the data explosion

in social medias "Every minute: Facebook users share nearly 2.5 million pieces of content, Twitter
users tweet nearly 300,000 times. Instagram users post nearly 220,000 new photos. YouTube users
upload 72 hours of new video content. Apple users download nearly 50,000 apps. Email users send
over 200 million messages." - Susan Gunelius the needs of systems and mechanisms that can

handle such enormous amount of data has also grown stronger than ever.

Big Data is not a new concept. In fact, it has existed for decades. However, with the data

explosion of the Internet era together with the introduction of many new technologies every

year, it is guaranteed that Big Data will become more and more popular in the future.

2.2 A general comparison between SQL and NoSQL

2.2.1 Transaction and consistency models

While SQL databases all support transactions, most NoSQL database don’t have this feature or

only support transactions partly.

The two most common consistency models among databases are ACID and BASE:

ACID

Traditional relational databases place great emphasis on keeping the data consistent. They

achieve this by implementing ACID transactions. ACID stands for Atomicity, Consistenty,

Isolation, Durability:

3

2 Basics

Atomicity The transaction can either be carried out completely or not at all. If one part of

the transaction fails, the whole transaction fails and the database stays unchanged.

Consistency Any transaction will bring the database from one valid state to another valid

state. That means no violation of prede�ned rules, e.g., constraints, is allowed.

Isolation Transactions are independent of each other. Transactions which are executed

together or serially will result in the same state of the system.

Durability After a transaction is committed, the resulting state of the system will remain so

even in case of system failure, power loss or other types of system breakdowns.

BASE

Though ACID principle ensures the consistency of data at all times, there are cases then

it is pessimistic and has negative impact on performance aspects of the whole system, like

scalability and �exibility. BASE, on the other hand, is optimistic and more relaxed on the

consistency front.

BASE is the abbreviation for:

Basic avalability The database is accessible most of the time. This availability can be

achieved through partial failure support. For example, for a system that is scaled out on many

servers, when one of them fails, only the users on this server get a�ected. The rest of the

system stays alive and functions properly.

So� state The system always stays in a "soft" state. Even when there are no new inputs, the

system can still undergo changes due to "eventual consistency".

Eventual consistency The system continues to receive inputs and will "eventually" be

consistent when there are no new inputs. The system doesn’t force or check consistency after

each transaction. Transactions can be conducted immediately or postponed till later.

CAP Theorem

CAP Theorem, also called Brewer Theorem, was presented by Eric Brewer in 2002 at the ACM

Symposium on the Principles of Distributed Computing. The theorem focuses on describing

the three necessary requirements for successful design and implementation of distributed

computer systems. CAP stands for:

Consistency Updating one copy of the data on one node will result in updating all copies of

the data.

4

2 Basics

Availability Every node of the system should always respond to received queries unless it

dies.

Partition Tolerance The whole system continues to operate even if partitions or the net-

works between partitions fail.

According to CAP Theorem, it is impossible to meet all three requirements of the theorem.

Figure 2.1 shows the CAP Theorem Diagram:

Figure 2.1: CAP Theorem Diagram [bigdatanerd (2011)]

In a recently revised version in 2012 Brewer (2012), Brewer stated that this understanding is

actually misleading. "The modern CAP goal should be to maximize combinations of consistency
and availability that make sense for the speci�c application. Such an approach incorporates plans
for operation during a partition and for recovery afterward, thus helping designers think about
CAP beyond its historically perceived limitations." - Eric Brewer

2.2.2 Data schema

Data schema de�nes how the data is stored in the database. A schema usually contains

information about primary keys, indexes, �eld types, relationships between data.

5

2 Basics

Relational Database

In SQL databases, data is essentially stored in groups of tables. Tables consist of columns and

rows and represent either entities or relations between entities. Normalizing is usually utilized

to prevents data duplicates and data inconsistency. Multiple tables can be accessed by "joining"

them in a single query. It is impossible to add data before de�ning the table schema. Figure 2.2

shows a typical relational database model for a car database.

Figure 2.2: A typical relational database model [Bain (2009)]

Schemafree Database

While with traditional SQL databases the data schema always has to be prede�ned, NoSQL

databases come with �exible schema design and basically belong to one of these four categories:

Key-value databases Key-value databases store data as pairs keys and values. Data can be

unstructured and can only be queried by the keys. The most popular representative of this type

is Redis. Amazon also uses its own key-value database - DynamodB - to store shopping carts.

Key-value databases are most suitable for storing and looking up simple and large datasets at

high speed. Figure 2.3 show the key-value database model of a car database.

Graph databases Although NoSQL databases excels in storing and sharding large amounts

of data, they usually lack the ability to model relationships between datasets. One solution for

this problem is graph databases.

Over the years, data has been connected through joins between tables in relational databases.

However, there is a limit to how much joins can be utilized to show relationships in the real

world. Often the queries can get too complicated making the lookups ine�cient. Moreover, it

is not possible to include attributes of relationships in joins. One of the notable representatives

of graph databases is Neo4J. The main points here are nodes and edges. The nodes are entities

which can assume many roles and participate in any number of relationships. The edges

represent relationships between nodes and can have attributes. These attributes help specify

the relationships. Graph databases has been proved to be extremely helpful, especially for

6

2 Basics

Figure 2.3: A key-value database model [Bain (2009)]

consumer and campaign surveys, fraud detection and social network applications. By using this

kind of database, it is, for example, feasible to identify the groups of products usually purchased

together by the same customers. Campaigners can also use feeds from social networks to

determine the opinions of di�erent target groups and hence will be able to implement correct

strategies. Facebook, Google and Twitter all have their own built-in graph technologies, which

have equipped their own social networks with many new possibilities. One of them is "Graph

search". Human thinking is inherently visual. Graphs are, in fact, used everywhere, not only

limited to scienti�c and academic �elds, but also in daily lives to visualize data, which makes

them easier for human beings to comprehend.Thinking in graphs is a natural way to connect

data and expand possibilities, which can be useful in making decisions. Figure 2.4 shows a

small social network graph. With the aid of "Graph Search" one can, in this case, determine all

the sushi restaurants that one’s friend likes.

Document databases Document-oriented databases store data as collections of documents

in JSON �les. Each record together with its associated data are treated and stored as a single

document in the database. This reduces the needs for joins and complex operations to access

the data. Documents are schema-free and contain pairs of key-value as attributes. The values

can be in any formats: number, string, date or even document. This �exibility enables storing

unstructured data, which is particularly useful nowadays, when collecting big datasets from

many sources in various formats is a common thing. By storing documents in collections,

data of a speci�c themes, e.g. student information, blog posts,.., can be store, search for and

retrieved more e�ciently.

The �exibility and robustness in querying data can also be achieved here. The data can be

7

2 Basics

Figure 2.4: A graph database model [Eifrem und Rathle (2013)]

queried using both the keys and values like with relation databases. The parameters that can

be passed to the queries are also various: from string, number, arrays of speci�c values to

ranges of values.

Examples of NoSQL document databases include CouchDB, MongoDB, which is used within

the context of this thesis for testing purposes and RavenDB. CouchDB and RavesDb both use

JSON datas store documents while MongoDB uses BSON (Binary JSON) that enables binary

serialization. Figure 2.5 shows an example of document database.

Figure 2.5: Example of a document database [Basel Kayyali und Kuiken (2013)]

Column-oriented databases Column-oriented databases use column families and rows to

store data. At �rst sight, column databases appear very similar to relational databases. They

both contains columns and rows in tables. The main di�erence lies at the column families. A

column family is a group of related data which is often accessed together and can be described

as a container of rows. Each row is identi�ed by an unique key and has multiple columns. In

column databases, rows don’t have to contain the same columns. Only the column families

must be de�ned upfront, the columns can be added later to any row and occupy zero bytes

8

2 Basics

if they don’t have any information in themselves, which is a very e�cient way to spare disk

spaces. It is possible to have multiple versions of the same data due to the introduction of

timestamps. The data with the most recent timestamp is considered the latest and will be read

�rst in a query. A column family is how the database store data on the disk. All data in a single

column family is stored together at the same location.

Column databases are restricted on how the data can be retrieved. Data can’t be queried by

column or value, only by row key. Joins are also not supported due to the fact that it requires

an overview of the whole database, which is possibly divided to many nodes in a cluster, to

locate the needed datasets.

Column family databases are meant for storing and processing large batches of data on a large

number of machines, which is impossible for relational databases. Changes are �rst written

into a commit log before being implemented. This helps determine the changes needed to

apply after a system failure. Examples of this database type are Google’s BigTable, Cassandra,

Hbase. Figure 2.6 shows how the customer and address information can be stored in a column

database.

Figure 2.6: A column family database model [Microsoft]

2.2.3 Data query and data types

While traditional RDBMS SQL as a common language to query data, various NoSQL databases

have di�erent ways to query data.

Though slightly di�erent in their syntaxes, all traditional databases use the same SQL queries,

e.g. INSERT, UPDATE, DELETE, to modify data. On the contrary, how a NoSQL database

queries the data relies heavily on what kind of database it is. Figure 2.7 shows how inserting

a new book into a book database di�ers between SQL and NoSQL document database. The

di�erence is comprehensibile. While the SQL database use common SQL to insert a new row of

data, the NoSQL document database insert the new book record as a document which contains

pairs of key-value as attributes.

Since NoSQL databases are schema less, there are no limits on what kind of data can be

added to the database. Various types of data can be added directly to the databases without

9

2 Basics

Figure 2.7: Inserting a book into a book database in SQL and NoSQL document databases.

having to comply with consistency rules. They can range from strings, numbers, documents to

media �les. The handling of di�erent types of data is de�ned later in the application logic layer.

This approach helps increase the performance of the database but requires more programming

in the application logic.

With relation databases being very strict on data consistency, only the data types de�ned in

the schema are allowed. This limit, on the other hand, helps reduce the need to handle data

speci�cally in the application.

2.2.4 Scalability

Scalability has become more and more important through years. With the daily lives and

business world now are powered by the Internet and new technologies - cloud, mobile, social

media - most of the applications have turned Internet-based with millions of concurrent users.

A system now has to be highly responsive, always available, is able to handle semi structured

and unstructured data and can adopt new technologies quickly and easily. To meet these

requirements scaling systems is unavoidable.

There are basically two strategies to scale a system: vertically and horizontally. There are also

cases where these two strategies are combined.

Scale up A system can be scaled vertically by upgrading its hardwares, e.g. more powerful

CPU, more RAMs, to boost the performance. This is a typical solution to scale up systems that

use relational databases. The system will then be able to handle additional increased workloads.

However there is a point where it is no longer feasible to improve the system through this way.

It is either due to the limitations of the hardwares or the high expenses of such large servers.

Scale out One of the attractive features of NoSQL databases is their ability to be available

all the time, which is crucial for web based applications that always has to deal with thousands

of requests from clients. High availability and high performance are often achieved through

scaling out the system, which simply means adding more servers to the network. This way,

the system can decrease the workloads on each single node in the network. The data will then

be divided into smaller units and spread among multiple servers.

Scaling out relation databases are not easy due to the complication of partitioning data. In

10

2 Basics

relational databases, joins are often required to retrieve data, which is not always possible

when the tables needed are stored on di�erent servers.

Data partitioning and sharding Data partitioning is required to spread data among mul-

tiple nodes. Using the right strategy to partition data can help enhance the availability and

speed of the whole system and vice versa.

Vertical partitioning means dividing a table in multiple tables with fewer columns. Each of

these new tables is stored on a single node. This is not always helpful, especially when the

original table has billions of rows. Each of the resulting tables, in this case, can still be too

large for a single node to handle.

Horizontal partitioning or Sharding divides a table in rows and store these rows on di�erent

nodes. This method reduces the burden on individual servers. Each server knows the entire

table’s structure, but only contains small sets of rows.

2.3 NewSQL

Despite their growing popularities over the past few decades, NoSQL databases still cannot

totally replace traditional SQL databases."A realization that distributed databases have to make a
choice between maintaining strict consistency (ensuring ACID Date und Darwen (1997) updates)
and being highly available (tolerating outages) produced an impetus a few years ago to create a
new breed of clustered databases." Doshi u. a. (2013) While SQL databases provide reliability

and data consistency through ACID transactions, NoSQL databases opt for high availability

and speed. They settle for eventual consistency instead of constant consistency. Applications

utilizing NoSQL databases often have to take on the responsibility of correctness and recovery

in case of system or power failures.

The introduction of NewSQL databases to the market in recent years presents more choices

for consumers. For organizations that have to deal with the explosion of daily data volumes,

NewSQL pose an appealing alternative. While maintaining the relational structure, SQL as

data query language together with ACID properties, this hybrid type of databases also delivers

high performance and capacity through scalability.

2.3.1 Summary

The introduction of NoSQL databases doesn’t mean the demise of traditional relational databases.

Indeed, they should be considered more as an alternative of relational databases. Depends on

the purposes of the applications, suitable type of databases can be chosen. When availability

and speed are required, one can not go wrong with NoSQL databases. On the other hand,

relational databases are probably the best choice when data consistency matters most. Other

factors like the programming skills of the database designers, expenses, hardware capabilities

should also be taken into consideration.

11

3 Analysis

This document, as introduced before, serves to present the main di�erences between the

two databases MongoDB and VoltDB, spanning from comparing general features to real-time

performance evaluation.

This chapter is dedicated to show an overview of both of the databases in an attempt to

explain the reason behind the choices of MongoDB and VoltDB as test databases. It is then

concluded by a tabular comparison of general features of the two databases.

3.1 MongoDB as NoSQL Representative

The �rst candidate for the evaluation tests is MongoDB. MongodB database belongs to the

document-oriented databases category with its �rst version written in C++ and released in

2009. Aboutorabi u. a. (2015) Data is stored as documents in BSON �les. Documents are not

required to have the same schema. This feature enables partitioning data in several datasets

and storing them on di�erent servers for performance purposes. "MongoDB database focuses on
four characteristics of �exibility, strength, speed and ease of use." Aboutorabi u. a. (2015). Besides,

there are a number of drivers supporting di�erent programming languages.

The reason why MongoDB is selected for the tests is because of its wide popularity. Many

projects are based on this database including the Guardian news, Forbes business magazine,

the New York Times, ebay, Global Financial Services Company, McAfee, Adobe,.. Di�erent

projects chose MongoDB for di�erent reasons, depending on their needs. Some chose it due to

the document schema being suitable for storing their contents. Other chose it for its scalability

and support for distributed systems.

3.2 VoltDB as NewSQL Representative

One of the worth-mentioning representative of NewSQL databases and also a candidate for

this evaluation is VoltDB. "It’s the latest database designed by Michael Stonebraker, the database
pioneer best known for Ingres, PostgreSQL, Illustra, Streambase, and more recently, Vertica. But
interestingly, in this go-around, Stonebraker declared that he has thrown "all previous database
architecture out the window" and "started over with a complete rewrite".Stonebraker u. a. (2007)"
Bernstein (2014)

According to the o�cial website, VoltDB claims to be an in-memory database, which in-

creases the speed of processing data considerably, and to support SQL, ACID, stored procedures

and interestingly HADOOP also. With these promising features, it would be interesting to see

how VoltDB performs against a NoSQL representative like MongoDB.

12

3 Analysis

3.3 MongoDB vs VoltDB

3.3.1 General Comparison

The table 3.1 shows a theoretical and general comparison between MongoDB and VoltDB.

The comparison criteria are various, ranging from basic features such as database model, data

schema, query languages, programming languages and APIs supported to extensional ones

like partitioning and map-redude support.

Feature Description MongoDB VoltDB
Database type The type of database NoSQL document

database

NewSQL in-

memory datbase

Implementation

language

The language use to de-

velop the database

C++ Java

Data schema Is a data schema required? no yes

Database model How a database stores

data

Document-

oriented

Relational

Query language The language used to

query datas

MongoDB database

query language

SQL

Programming lan-

guages supported

Programming languages

supported by the database

C

C++

C#

Java

Javascript

Perl

PHP

Python

Ruby

Scala

Erlang (not o�-

cially supported)

C#

C++

Erlang

Go

Java (packaged

with VoltDB)

Javascript

PHP

Python

Ruby

APIs and drivers

supported

Java API

JDBC

RESTful

HTTP API

Java API

JDBC

RESTful

HTTP/JSON API

Operating systems

supported

Operating systems on

which the database can

be installed and run

Linux

Mac OSX

Windows

Linux

Mac OSX

CentOS

Red Hat

Partitioning Partitioning method Sharding Sharding

Replication Replication method Master-slave Master-slave

Map-Reduce Does the database support

Map-Reduce?

yes yes

13

3 Analysis

Consistency Consistency model of the

database

BASE ACID

Transaction Does the database support

transactions?

no yes

Indexes Does the database suport

indexes?

yes yes

Stored procedures Does the database support

stored procedures?

no yes

Multi-users Are multiple users possi-

ble?

yes yes

Web interface Does the databse possess

a web interface?

yes yes

Real time analytics Are real time analytics

supported?

yes yes

Cloud platforms

supported

The cloud platforms sup-

ported by the database

Amazon EC2

DigitalOcean

dotCloud

Joyent Cloud

Modulus

Rackspace Cloud

Red Hat OpenShift

VMWare Cloud

Foundry

Microsoft Azure

IBM SoftLayer

Amazon EC2

IBM Softlayer

Microsoft Azure

HP Helion

Google Compute

Engine

Open Stack

Microsoft Server

2012

VMWare Vcloud

IBM BlueMix

Red Hat OpenShift

Pivotal Cloud

Foundry

Online backup Is online backup possible? yes yes

Logging Does the database possess

logging functionatlity

yes yes

Text search Can the database perform

text-search?

yes no

Durability Is the database able to pre-

serve the commited data

in case of system failure?

yes yes

Table 3.1: MongoDB and VoltDB in comparison

14

4 Evaluation in real life application specific
scenarios

4.1 Goals

The introduction of the NewSQL databases presents the possibility of consistent ACID transac-

tions from traditional relational databases together with scale-out support, one of the most

attractive features of NoSQL databases, which increases availability and performance of sys-

tems. This raises the question if NewSQL databases, in this case VoltDB, can eventually be

considered an alternative for NoSQL databases. This thesis attempts to detect the di�erences

in their performance in di�erent test scenarios and uncover the best uses for each database.

The test scenarios presented in the context of this thesis are E-Commerce and Social Net-

works.

SQL databases are often the top choice for online stores due to ACID transactions, which

ensures data consistency, and relations between tables, which enables joins and makes it

possible to perform complex queries involving multiple tables (e.g. retrieving all products

that customer A purchased this year together with their delivery status). Due to this fact, it is

interesting to see how MongoDB-a NoSQL database, come up against a relational database like

VoltDB in its own �eld.

In the case of Social Networks, it is crucial to have a fast to respond, highly available database

system. It is usually horizontally scalable and supports map-reduce to aggregate through large

amounts of data in order to deliver fast answers. In the past, traditional databases had di�culty

in partitioning data to scale the system horizontally. This reduces the system performance

tremendously and it is easy to overload the whole system. With the appearance of NewSQL

databases, VoltDB in this situation, it now seems possible to have both transactions and

sharding ability at the same time. Since NoSQL has dominated in Social Network applications

for years, it is time to investigate if the new kind of SQL databases come up to the task and

is �nally able to compete with NoSQL databases, in this case MongoDB, in Social Network

territory.

Because the two databases are very di�erent in their structure nature, it is crucial to test

them in their own best circumstances in order to evaluate them fairly correctly. That means

for relational model, the tables should ensure third normalization. The structures of both

databases should be as close as possible to ensure correct evaluation.

For both of the databases, Java API driver is used to connect, send queries and collect results.

The reason of using the same kind of API driver is to avoid unnecessary overhead in processing

the data which can slow down the test runs and make the results incorrect.

15

4 Evaluation in real life application speci�c scenarios

4.2 Equivalences in structure between MongoDB and VoltDB

In order to model the test scenarios in MongoDB and VoltDB precisely without giving any of

them advantages or disadvantages over the other, a conversion between their data structures

should be taken into consideration.

Table 4.1 [MongoDoc] shows their basic equivalences..

SQL MongoDB
database database

table collection

row BSON document

column �eld

index index

joins embedded documents

linking (e.g. ids)

primary key primary key

primary key can

be chosen from

unique columns or

column combina-

tions

_id as default primary key

aggregation aggregation pipeline

Table 4.1: SQL and MongoDB - basic equivalences

4.3 Test scenarios

4.3.1 E-Commerce

The test scenario is based on the concept of a real-life online store. The test make no attempts

to cover all aspects of an online store, but only parts of it. The parts covered are: products,

products categories, users and reviews of the products. The whole test is performed on a single

node. The tests range from basic performance operations, such as inserting, retrieving and

deleting data to other aspects which are important to an online store like transactions and

joining multiple tables. Most of the tests are performed on a database storing 1000 products

and 2000 reviews, except for the INSERT and DELETE performance tests.

Related works

In the past years, there are many related works which compares SQL and NoSQL databases in

an ecommerce scenario, which usually include MongoDB, . Some of them are: Aboutorabi u. a.

(2015), Parker u. a. (2013), Boicea u. a. (2012), Li und Manoharan (2013). Table 4.2 summarizes

of these works.

16

4 Evaluation in real life application speci�c scenarios

Work Summary
Performance evaluation
of SQL and MongoDB
databases for big e-
commerce data - S.

H. Aboutorabi and

M. Rezapour and M.

Moradi and N. Ghadiri

The paper Aboutorabi u. a. (2015) focuses on testing MongoDB

against traditional SQL databases, which is SQL Server in this

case, for the ecommerce purpose. The experiment uses a typical

E-Commerce schema, containing entities like customer, product,

product category, order, shipper and supplier, and includes per-

forming basic operations, such as INSERT, UPDATE, SELECT

and DELETE on both databases, followed by aggregate and non-

aggregate function queries. According to the results, MongoDB

performs better for the most part, except for some aggregate

functions.

Comparing NoSQL
MongoDB to an SQL DB
- Parker, Zachary and

Poe, Scott and Vrbsky,

Susan V.

The authors of the paper Parker u. a. (2013) also come to the same

conclusions after conducting a test experiment on MongoDB

and SQL Server to observe their performance in the case of a

modest-sized structured database. The results of MongoDB come

out mostly equally or even better than its counterpart, excluding

aggregate functions.

MongoDB vs Oracle –
Database Comparison -

A. Boicea and F. Rad-

ulescu and L. I. Agapin

In Boicea u. a. (2012), MongoDB is compared with Oracle SQl

database on various fronts: theoretical features, syntaxes, restric-

tions, integrity model, distribution, query and insertion bench-

marks. It is concluded that MongoDB is easy to use, �exible with

storing di�erent data structures, faster and supports map-reduce

well while Oracle is slower albeit strictly consistent, has relations

and joins, which enables complex queries.

17

4 Evaluation in real life application speci�c scenarios

A performance compar-
ison of SQL and NoSQL
databases - Y. Li and S.

Manoharan

The paper Li und Manoharan (2013) aims at investigating the

performance of various SQL and NoSQL databases in the key-

value store aspect. The participants are: MongoDB, RavenDN,

CouchDB, Cassandara, Hypertable, Couchbase and Microsoft SLQ

Server Express. Fundamental operations:read, write, delete and

instantiate are performed on key-value store implementations

on the chosen databases and evaluated. Additional operations,

which are also taken into consideration, are iterating through

keys and iterating through values. The results show that not all

NoSQL representatives perform better than their SQL counter-

part. RavenDB and CouchDB are slow on read, write and delete

operations. Cassandra doesn’t perform well on read operations,

is however good when it comes to delete and write operations. Of

all the NoSQL databases presented, MongoDB and Couchbase are

the fastest two overall. Couchbase doesn’t, however, support iter-

ating through keys and values. When iterations are not required

in the applications, Couchbase comes out as top choice. Other-

wise, MongoDB proves to be a well-rounded solution, coming

second in performance after Couchbase.

Table 4.2: Related works

Test data

Since the test scenario aims at online stores, there’s no better test sample than Amazon, one of

the leading E-Commerce company. Founded in Seattle, Washington, United States in 1994 as

an online bookstore, the internet-based retailer then diversi�ed the products they sold and has

since opened branches in other countries. In 2015, Amazon was evaluated as the most valuable

retailer in the United States by its market capitalization, surpassing Walmart’s.

The dataset used for this test is a snapshot of Amazon database provided by University

Stanford J. McAuley 2015. It contains 142.8 million products reviews from May 1996 till July

2014. This dataset provides not only reviews but also metadata of products. The following

product categories: books, movies and video games are used. Figures 4.3.1 and 4.3.1 shows

how sample metadata and a sample review look.

18

4 Evaluation in real life application speci�c scenarios

Metadata sample

{

"asin": "0000031852",

"title": "Girls Ballet Tutu Zebra Hot Pink",

"price": 3.17,

"imUrl": "http://ecx.images-amazon.com/images/I/51fAmVkTbyL._SY300_.jpg",

"related": "also_bought": ["B00JHONN1S", "B002BZX8Z6"],

"also_viewed": ["B002BZX8Z6", "B00JHONN1S",],

"bought_together": ["B002BZX8Z6"] ,

"salesRank": "Toys & Games": 211836,

"brand": "Coxlures",

"categories": [["Sports & Outdoors", "Other Sports", "Dance"]]

}

Review sample

{

"reviewerID": "A2SUAM1J3GNN3B",

"asin": "0000013714",

"reviewerName": "J. McDonald",

"helpful": [2, 3],

"reviewText": "I bought this for my husband who plays the piano. He is having

a wonderful time playing these old hymns. The music is at times hard to read

because we think the book was published for singing from more than playing

from. Great purchase though!",

"overall": 5.0,

"summary": "Heavenly Highway Hymns",

"unixReviewTime": 1252800000,

"reviewTime": "09 13, 2009"

}

4.3.2 Social Network

According to Wikipedia, "A social network is a social structure made up of a set of social actors
(such as individuals or organizations), sets of dyadic ties, and other social interactions between
actors." - Wikipedia

Social networks are not only a tool for maitaining personal relationships but also help with

networking for business purposes. Some examples of popular social networks are Facebook

(with more than one billion users), Twitter, LinkedIn (which o�ers opportunities in business

and professional networking).

The reason this scenario is chosen for testing in the scope of this thesis is because of the

popularity of social networks in daily lives globally. Besides, it also provides the opportunity

to evaluate the test databases in a distributing environment, which is very di�erent from a

standalone system in the ecommerce scenario and thus require di�erent tests tailored for this

19

4 Evaluation in real life application speci�c scenarios

environment. Social network di�erentiate from each other in scales and purposes. Small social

networks operate nationally and therefore require less capacity. Large social networks, like

Facebook and Twitter, usually operate on global scales, have an enormous amount of users and

have multiple data centers in di�erent locations to provide capacity, speed and high availability.

Related works

Related works, which are used as references for designing the test queries in the social network

scenario, are listed in table 4.3.

Work Summary
Benchmark: Post-
greSQL, MongoDB,
Neo4j, OrientDB and
ArangoDB - ArangoDB

In ArangoDB, basic operations and social network related queries

(e.g. get friends of friends, get shortest path) are tested on several

SQL and NoSQL databases: MongoDB, ArangoDB, PostgreSQL,

OrientDB and Neo4J (one of the leading graph databases), using

data of user pro�les and friendships from a snapshot of the social

network Pokec provided by Standford University.

MySQL vs. MongoDB:
The Pros and ConsWhen
Building a Social Net-
work - Gen

The article Gen gives a short comparision of MongoDB and

MySQL in a social network environment. Even though MongoDB

is faster at retrieving data, MySQL has the advantage of being

able to handle relations, which are essential in social networks.

The lack of supporting relations in MongoDB can cause data

duplication and data inconsistency. Therefore, MySQL, according

to the author, is a better choice.

Analysis of data man-
agement and query han-
dling in social networks
using NoSQL databases -

A. B. Mathew and S. D.

Madhu Kumar

Representatives of our types of NoSQL (document, key-value,

column family, graph): Hadoop/HBase, Cassandra, MongoDB,

CouchDB, DynamoDB, Riak, Voldemort, Neo4J, FlockDB, Info-

Grid, AllegroGraph and OrientDB, which are used in well-known

social networks, such as Facebook, LinkedIn, Twitter, MySpace,

Foursquare, Flickr and Friendfeed, are tested in the paper Mathew

und Kumar (2015) in many aspects, ranging from scalability, con-

currency control, consistency in storage, availability during par-

titioning, durability, implementation language to transactions.

Features like fast query processing and data storage are given

primary importance. The test results in Neo4J performs better

than other NoSQL databases during insert and read operations.

It is also shown that graph databases play an important part in

social networks.

Benchmarking Graph
Databases - ISTC

In the benchmark in the articlevISTC, VoltDB competes again

Neo4J, MySQL and Vertica in graph management and analyt-

ics. Two queries, PageRank and Shortest Paths, are tested on

each system. It is shown in the results that relational databases

outperform or match Neo4J in most cases.

20

4 Evaluation in real life application speci�c scenarios

Table 4.3: Related works

Test data

The data used for this test scenario comes from Standford University and is a snapshot of

Facebook data Standford. This dataset consists of circles of friends (friend lists) on Facebook.

It also provides pro�les of users in the circles.

4.4 Evaluation criteria

Before conducting the comparison tests of MongoDB and VoltDB, it is necessary to de�ne the

criteria, upon which each database is evaluated. These general criteria are also needed for

designing the suitable tests for each scenario. Because of the di�erent nature and requirements

in the two chosen test scenarios, for each comparison criterion, the tests are designed di�erently

for each scenario.

4.4.1 Data model

This comparison show how MongoDB and VoltDB di�erentiate from each other in their data

modeling while interpreting the same test scenario.

4.4.2 Performance

The performance tests cover the CRUD operations, namely CREATE, READ, UPDATE and

DELETE, in each database in the same scenario. Queries that are related to the test scenario

are also tested and measured.

4.4.3 Functionality

The di�erences in functionality between MongoDB and VoltDB are shown here. Depending on

the test scenario, suitable functionalities are chosen to be tested. They can be decisive factors

to determine which database is best suited for which scenario.

4.4.4 Transaction

ACID transactions are one prominent feature in SQL databases. Due to the fact that this thesis

compares a NoSQL and a SQL database, it can be interesting to see the performance di�erences

when the same query is performed both as transaction and non-transaction.

21

4 Evaluation in real life application speci�c scenarios

4.4.5 Security

Security is an important matter when multi-users are allowed. In both scenarios, multiple users

are present at any given time. Maintaining controls and restrictions on users are therefore

signi�cant. Only users with given roles are authenticated to access certain data and resources.

Failing this can lead to leaks of crucial information. It is hence imperative to evaluate each

database’s ability to secure the data in di�erent scenarios.

4.4.6 Distribution

One of the attractive points of NoSQL databases is the ability to scale horizontally across a

cluster of nodes. The data can be partitioned and distributed to multiple nodes, which reduces

the burdens on a single node and also raises performance of the whole system. MongoDB

and VoltDB both support partitioning and therefore can be tested in a cluster environment.

Features to be tested include replication and single-partitioned procedure.

4.5 Evaluation tests

4.5.1 E-Commerce

The test scenario is based on the idea of a real-life online store. The test make no attempts

to cover all aspects of an online store, but only parts of it. The parts covered are: products,

products categories, users and reviews of the products. Tests are performed on a single node.

Test system
The testing virtual machine has the following system con�guration:

• Processors: 4 Cores

• Memory: 16GB

• Hard disk: 80GB

• Operating system: Ubuntu 14.04

Testing databases are:

• MongoDB 3.2

• VoltDB 6.5

Data model

VoltDB
Due to the fact that VoltDB is a SQL database, a schema has to be created before data can be

inserted into the database. Figure 4.1 shows a data model for VoltDB in the ecommerce test

scenario. There are four tables in total: product, review, user and category. The table "product"

22

4 Evaluation in real life application speci�c scenarios

is comprised of basic information about a product like productId, title, categoryId, price and

imageURL. The table "user" contains only userId and userName and serves only as a lookup

source for the table "review". The table "category" is linked to the table "product" by the foreign

key "categoryId".

MongoDB

Figure 4.1: VoltDB schema

Although a schema is not needed for MongoDB, it is still necessary to decide how the data

should be stored in the database. Ideally the structure of the database should come as close as

possible to the structure of VoltDB’s database for the comparison. A collection is created for

each of the table in �gure 4.1 respectively.

Performance

In the scope of this performance test, CRUD operations are performed includes: INSERT,

SELECT, UPDATE, DELETE. These operations are performed only on the table product. Each

of these operations are performed three times. INSERT and DELETE operations are performed

on three di�erent scales of data: 10, 100 and 1000 data records. Both SELECT and UPDATE are

performed on 1000 product scale. The average time after three test runs is used as the �nal

result. Table 4.4 shows the queries used for this test.

Testcase Query MongoDB VoltDB
INSERT Insert 10, 100, 1000 products Single- write

Bulkwrite

AdHoc SQL

Stored procedure

SELECT Return the products, whose

prices are higher than $10.00 and

smaller than $30.00 (performed

on 1000 products).

Aggregation frame-

work

Map-Reduce

AdHoc SQL

Stored procedure

23

4 Evaluation in real life application speci�c scenarios

UPDATE Reduce the prices of products,

whose prices are higher than

$10.00, by $5.00 (performed on

1000 products).

Aggregation frame-

work

Map-Reduce

AdHoc SQL

Stored procedure

DELETE Delete 10, 100, 1000 products Single-delete

Bulkdelete

AdHoc SQL

Stored procedure

Table 4.4: Performance test queries

Functionality

Joins over mutiple tables
Joining tables are an important factor in relation databases. By linking tables by their ids, it is

made possible to retrieve and return related information from multiple tables.

Due to the lack of a relational data model, it is usually not easy for NoSQL databases

to perform complex queries like SQL databases. Depending on the database, there can be

workarounds to overcome this problem. In case of MongoDB, the solution is either embedded

documents or references. Using embedded documents means the extra information is stored

as a sub document in the main document. There is possibly redundant and duplicate data.

Using references is more similar to the relations between tables in relational databases. An

id of a document in a foreign collection is used as referencing id. If additional information

is required from this foreign document, it is looked up by its id. This handling of references,

however, is not conducted by the database as in the case of SQL databases. The retrieval of

referencing ids and the lookup of respective documents needs to be implemented explicitly

in the application programming. This can increase the complexity of the application and has

bad impact on performance by making multiple round-trips to the database to retrieve all the

required information. Since version 3.2 of MongoDB MongoDBBlog, left join can be included

in an aggregate framework by using the $lookup operator, which simpli�es the lookups for

references much and reduces the needs of handling references in application code.

Test case Query MongoDB VoltDB
JOIN

WITHOUT

AGGREGATION

Return all product re-

views from a speci�c user

together with products’

names given the name of

the user.

Application

handling

Aggregation

framework

AdHoc SQL

Stored procedure

Return all product re-

views of a speci�c prod-

uct together with the cus-

tomers’ names given the

name of the product.

Application

handling

Aggregation

framework

AdHoc SQL

Stored procedure

24

4 Evaluation in real life application speci�c scenarios

Table 4.5: Join without aggregation queries

Table 4.5 shows the test queries. In MongoDB, each query is performed and measured twice.

In the �rst run, the joins are handled directly in the application code. In the second run, the joins

are performed by using the operator $lookup in an aggregate pipeline. In VoltDB, the queries

are also performed twice, the �rst time as AdHoc SQL, and the second time as stored procedures.

Aggregation
Aggregation operations process data by grouping and performing a variety of operations on

them to return a single value as result. Aggregation is often combined with joins.

Aggregation possibilities in MongoDB are: aggregate pipeline, map-reduce and single

purpose aggregate functions. The idea behind aggregate pipeline is that of a data processing

pipeline. Documents undergo multi-stage transformation and result in a single return value

at the end of the pipeline. The stages are native operations and can be added if desired. The

aggregate pipeline can also be used on sharded data. Starting from version 3.2, there is a new

possibility of performing left equi-join in MongoDB by using the operator $lookup as a stage in

an aggregate pipeline. This approach enables performing joins in the database and combining

it with other processing in a single query. It results in less complex codes and less round-trips

to the database, which helps boosting overall performance. Further information is available at

Morgan (2015). Both cases: joins in application code and joins in aggregate pipeline are carried

out.

Aggregation in VoltDB are usual SQL aggregate operations,such as SUM, GROUP BY, LIMIT,

AVG. The queries are passed as AdHoc SQL and stored procedures.

Test case Query MongoDB VoltDB
JOIN

WITH

AGGREGATION

Return the average rat-

ing and the number of re-

views of a speci�c prod-

uct, given the product

name.

Application

handling

Aggregation

framework

AdHoc SQL

Stored procedure

Return top 20 books with

the most reviews.

Application

handling

Aggregation

framework

AdHoc SQL

Stored procedure

Count the number of prod-

ucts in the category Book
whose prices are between

$25.00 and $50.00.

Application

handling

Aggregation

framework

AdHoc SQL

Stored procedure

Table 4.6: Join with aggregation queries

25

4 Evaluation in real life application speci�c scenarios

Just as in the case of joins without aggregate functions, the queries are performed in Mon-

goDB both by handling joins in the application as well as inserting the $lookup stage into

an aggregate pipeline. In VoltDB, the queries are carried out as AdHoc SQL and as stored

procedures. Table 4.6 shows the test queries.

Indexes
Using indexes is to trade space for speed. By using indexes, a small portion of the dataset

is stored in an easy to traverse form. Index stores ordered values of a speci�c �eld or set of

�elds. This ordering of values makes range-based search and equality match easier and more

e�ciently. Indexes are either unique or non-unique. In MongoDB, indexes are applied on

collection level and can be used for any �eld or sub-�eld of a document. An index for the �eld

_id is automatically created. In VoltDB indexes are speci�ed in constraints and are created on

columns of a table or expressions based on the table.

Test case Query MongoDB VoltDB
Non-unique single

index

Create a non-unique in-

dex on the �eld price in ta-

ble product. Perform this

query: Return 50 products

priced between $25 and

$50.

�nd query AdHoc SQL

Unique compound

index

Create a unique index

based on the �elds prod-
uct_id, customer_id and

review_time in table re-
view. Get the product_id
of a random product. Per-

form this query: Return

all reviews of a speci�c

product, sorted by the re-

view time in descending

order, given the prod-
uct_id.

�nd query AdHoc SQL

Table 4.7: Index test queries

An ecommerce database contains thousands to millions data records. In able to perform

search queries e�ciently, indexes should be applied to limit the number of search results and

shorten the search time. Hence it makes sense to test indexes in ecommerce scenario. The tests

measure the perfomance of the databases when using indexes and are performed as described

in table 4.7. Normal �nd query is used to retrieve data in MongoDB since no joins are required

and it is also more accurate to evaluate the e�ect of indexes on search queries without the

performance boost of aggregation framework.

26

4 Evaluation in real life application speci�c scenarios

Text search
In a real life ecommerce scenario, it is quite common that customers search for products based

on their names. Because of that, it is helpful to have e�ective and e�cient text search in the

database.

Dedicated text search is a functionality featured in MongoDB. With text search, �nding

data records based on a string �eld can be faster. In order to perform text search queries,

text indexes are needed. Each collection should only contain one text index. This index can,

however, involves a single �eld or multiple �elds. Operator $text is then used to perform text

searches on collections with text indexes. Text search can search for records containing any

terms in a given list, look for exact matches and exclude records containing speci�c terms

from the results. Text search can’t, however, �nd records based on wildcard terms. There are

workarounds for this problem though.

On the contrary, there is no specialized text search in VoltDB. Searching for string terms

can still be performed using SQL terms, such as LIKE for wildcard matches, IN for items in a

list, equal sign for exact matches.

Test case Query MongoDB VoltDB

Text search

Search for records con-

taining the term "java".

(Exact Match)

�nd query AdHoc SQL

Search for records based

on the wildcard "ava".

(Wildcard)

�nd query AdHoc SQL

Search for records con-

taining any of the follow-

ing terms: "java", "co�ee",

"house" Terms in a list

�nd query AdHoc SQL

Search for records con-

taining the term "java", ex-

cept for records also con-

taining the term "co�ee".

Excluding term

�nd query AdHoc SQL

Table 4.8: Text search test queries

Table 4.8 shows the queries designed for text search test and the methods used in each

database. Normal �nd query is used to retrieve data in MongoDB since no joins are required.

The decisive factors here are the time measurements and the resulting sets of records.

Transaction

Transactions, which have ACID properties, ensure data consistency but can sometimes take

longer to process than performing each operation separately and sequentially. To investigate

27

4 Evaluation in real life application speci�c scenarios

the possible time di�erences in performance between transactional and non-transactional

queries, a read-only transaction can be performed as described in table 4.9. The reason why

a read-only transaction is chosen for testing is due to the fact that in real life online stores,

reading from database are performed more frequently than writing.

MongoDB doesn’t support ACID transactions and therefore performs each of the operations

separately. Despite the lack of ACID transaction support, the write operation in MongoDB is

atomic, but only on the level of a single document. When a single write operation modi�es

multiple documents, even if one document is already modi�ed, it is likely that another process

may interfere with the rest of the modi�cations. One way to prevent this is to use operator

$isolated to keep other processes from interleaving once the �rst document is modi�ed. This

way the user only see the changes once all modi�cations are made. The above mentioned

query is tested in MongoDB using aggregate framework due to its complexity, which involves

many operations, such as: grouping document, joining collections, sorting and limiting the

results. It is also necessary to evaluate the built-in framework in MongoDB, which is capable

of joins, against traditional SQL transactions in term of performance and the results delivered.

Since the test involves multiple joins, aggregation framework is used.

In VoltDB, it is possible to perform either each operation separately or the whole transaction

as a stored procedure. Both cases are tested here to determine the time di�erence between

transactions and non-transactions.

Test case Query MongoDB VoltDB
Transaction Deliver 20 products in

book category which have

an average rating of 5.0

and are sorted by price in

ascending order

Aggregation

framework

Stored procedure

Table 4.9: Transaction test query

Security

Multi-user and data consistency
In a real-life online shop, many users can log in and access the database at the same time.

Therefore, a multi-user test is mandatory to determine if the data stay consistent when there

are many users access the database at the same time. The test case is conducted as described

in table 4.11.

Role-based access control
In general, roles are created and assigned to groups of users to grant privileges. By assigning

roles to an user, an user can has access to resources (e.g. databases, collections,clusters) or per-

missions to perform speci�c actions (e.g. stored procedures). By default, VoltDB and MongoDB

grants clients access to all databases without checking authentication. This feature needs to be

switched on manually. Except for admin users, normal users should only be granted limited

28

4 Evaluation in real life application speci�c scenarios

access so that roles and users are kept under control and unwanted modi�cations of data can

be avoided.

Other than user-de�ned roles, there are also roles prede�ned by the database. "MongoDB pro-
vides built-in roles that provide the di�erent levels of access commonly needed in a database sys-
tem. Built-in database user roles and database administration roles roles exist in each database."
MongoDoc The admin database also contains additional roles: Cluster Administration Roles,

Backup and Restoration Roles, All-Database Roles. Other built-in roles are: Superuser roles,

which grant any user full privileges on all resources, and internal role. In VoltDB, when

security is enabled, there are two roles prede�ned: user and admin. "Administrator has ADMIN
permissions: access to all functions including interactive SQL queries, DDL, system procedures,
and user-de�ned procedures. User has SQL and ALLPROC pemissions: access to ad hoc SQL and
all default and user-de�ned stored procedures." VoltDBDoc The test for the built-in roles is

described in table 4.11.

If the built-in roles don’t satisfy the needs, customized roles are also possible. Both MongoDB

and VoltDB support user-de�ned roles. According to MongoDoc, in MongoDB, a new role

can be de�ned by having their privileges explicitly listed or by inheriting from other roles.

Only a role created in admin database can be granted privileges on admin database, other

databases, cluster resource and is able to inherit from roles in other databases and also from

those admin database. A role created outside admin database only has access to its database.

VoltDB o�ers the CREATE ROLE statement to create and grant a new role access to procedures

and functions. The created roles can be speci�ed in CREATE PROCEDURE statements to

determine which roles are allowed to call which procedure. The WITH clause in a CREATE

ROLE statement speci�es permissions. Generic permissions are denied by default and need to

be de�ned explicitly using CREATE ROLE statements. Permissions are accumulative, which

mean when an user is assigned many roles, he has all permissions de�ned in these roles.

Generic permissions include:

Permission Description
DEFAULTPROCREAD Read-only default procedures

(SELECT)

DEFAULTPROC All default procedures(SELECT,

INSERT, UPDATE, DELETE, UP-

SERT)

SQLREAD Read-only AdHoc SQL

SQL All Ad-hoc SQL and default pro-

cedures

ALLPROC All user-de�ned procedures

ADMIN Full access to all system proce-

dures, user-de�ned and default

procedures, DDL statement and

AdHoc SQL

Table 4.10: Permissions for user-de�ned roles in VoltDB [VoltDBDoc]

29

4 Evaluation in real life application speci�c scenarios

The test on user-de�ned roles is described in table 4.11.

One feature, which is only possible in VoltDB, is granting roles access rights to transactions,

also known as stored procedures in VoltDB. If the transaction test proves that transactions are

faster than non-transactional queries, VoltDB’s ability to grant permission to stored procedures

should be taken into consideration while determining the most suitable database for ecommerce.

Test case Query MongoDB VoltDB
Multi-user User A logs in and looks for a

product P, whose price is higher

than $25.00, its number of

reviews and its average rating.

Admin User logs in and

apply a $5.00 reduction to

products whose prices are

higher than $25.00.

User B logs in to write a

product review for the product

P.

User A refreshes the view

(sending the same request

to the database again). The

information of the product

P, including its price and its

number of reviews should

already be changed.

update and insert
queries combined

with aggregation

framework

AdHoc SQL

30

4 Evaluation in real life application speci�c scenarios

Role based

access control

Enable access control.

Create an admin user with

full privileges on all resources.

Log in as admin user, cre-

ate a new user and grant this

user read-only permission on all

databases.

Log in as the newly cre-

ated user. Attempt to query for

25 products in the table product.
The query should be performed

successfully. Attempt to create a

new review in the table review.

The action should be denied due

to lack of permission.

Log in again as admin. Grant

the above mentioned user

read-write permission on table

review.

Log in as the normal user.

Try creating a new review in the

table review. The action should

succeed.

�nd query AdHoc SQL

31

4 Evaluation in real life application speci�c scenarios

Enable access control.

Create an admin user with

full privileges on all resources.

Log in as admin user, cre-

ate a new role permitted to

perform the following actions:

SELECT on the table product
and INSERT, SELECT on the

table customer.

Log in as the newly created user.

Query for a random product.

Attempt to change the price of

that product. The query should

fail. Make another attempt

to create a new customer in

the table customer. The action

should succeed. Try deleting

this newly created customer,

permission should be denied.

update, �nd and in-
sert queries

AdHoc SQL

Table 4.11: Security test cases

4.5.2 Social Network

The Social Network test scenario aims at evaluating the databases’ ability to handle common

situations and interactions in a typical social network environment.

Test system
The tests are conducted in a cluster, consisting of di�erent virtual machines. A cluster consists

of one con�g server and two shards for MongoDB and a cluster with two shards for VoltDB

are used for most test cases instead of replication test. For MongoDB, three virtual machines

are used. For VoltDB only two are used since a con�g server is not required. The speci�c test

systems for replication test are discussed later.

All the virtual machines have the same system con�gurations:

• Processors: 4 Cores

• Memory: 16GB

• Hard disk: 80GB

• Operating system: Ubuntu 14.04

32

4 Evaluation in real life application speci�c scenarios

Testing databases are:

• MongoDB 3.2

• VoltDB 6.5

Data model

Social networks are often depicted as large graphs with users as nodes and connections between

users as edges. There are graph databases such as Neo4J which specilizes in storing data in

graphs and performing graph-related queries like �nd friends of friends by traversing along

edges or �nd shortest path between two given nodes. Since both MongoDB and VoltDB are not

graph databases, data model is thus very important. An intelligent model of a social network

makes conducting graph-related queries more e�ectively and e�ciently and vice versa. In

MongoDB, an user pro�les are stored as documents containng the following information: user

id, user name, age, location, highschool(optional since not all users have this feature) and

friends. Instead of having their friendships stored in a di�erent collection, users have the user

ids of their friends stored in a friends array in their pro�les as references to look up the pro�les

of these friends. As MongoDB is not a relational database and doesn’t perform joining tables

well, it is more e�cient to store the friendships this way. Besides, it also helps lower storage

cost since no separate collection for friendships are needed. There is only one collection user
in the database. Figure 4.2 shows an example of how an user pro�le is stored in MongoDB.

Figure 4.2: A document in MongoDB

For VoltDB, there are three tables: user, friendship and post. Table user stores user pro�les

while table friendship and post contain the friendships among users and user posts respectively.

Figure 4.3 shows how the tables are modeled in VoltDB.

33

4 Evaluation in real life application speci�c scenarios

Figure 4.3: VoltDB schema

Performance

Social networks center around connections among people. The connections can be friend-

ship, business. Either way, the focus on relationships among people leads to certain queries

performed more often on a daily basis.

While the ecommerce tests are conducted on a single system, the social network tests evalu-

ate performance of a database in a cluster environment. Partitioning method of test database

is thus important. Depending how data is partitioned in a database system, the performance of

processing queries can be a�ected. For example, if related information is on the same node,

the retrieval of data is faster and vice versa. In this test scenario, all the performance tests

focus on the two test databases’ ability to scale horizontally and process sharded data in a cluster.

Sharding in MongoDB
Sharding is supported in MongoDB through a sharded cluster, which is composed of:

• Shards: data storing units.

• Query routers: also known as mongos instance, are media between client applications

and shards, whose jobs are directing requests from clients to appropriate shards and

return the results to client applications. One cluster can have more than one query

routers.

• Con�g servers contain metadata of the clusters, which are used by query routers to �nd

target shards for operations.

Figure 4.4 shows an overview of a sharded cluster in MongoDB.

Sharding in MongoDB is on collection level. Data of a collection is partitioned by a shard key.

Shard keys are indexed �elds existing in every document in the collection. Shard key values

are divided into groups, also known as chunks and distributed evenly across the shards.

34

4 Evaluation in real life application speci�c scenarios

There are two partitioning methods for dividing shard key values into chunks: range based
partitioning and hash based partitioning. Range based partitioning divides shard key values

into ranges. Two shard keys with close values are likely to end up on the same shards. De�ning

ranges of shard key values can be done by using tag aware sharding. The advantage of this

method is the possibility of data localization, which boosts speed and performance. The main

disadvantage is the unevenly divided ranges, resulting in uneven distribution of workloads

in the cluster. Hash based partitioning is more of a random method. The hash values of the

shard keys are computed and used to create chunks. Two shard keys with close values are

unlikely to be on the same shards. This approach ensures an even distribution of data across

shards. However, because the distribution is random, a range query on shard key may result

in having to query every shard to retrieve all the information. More details can be found on

MongoDBDoc (2016).

Figure 4.4: A sharded cluster [MongoDBDoc (2016)]

Sharding in VoltDB
In VoltDB, the partitioning is handled automatically based on a partitioning column chosen

by the user. The values of the partitioning column are then hashed and associated to parti-

tions. It is possible to have all partitions of a table on the same node as well as on di�erent

nodes. VoltDB partitions not only the data but also the processing of that data. This enables

parallelism and provides improvements in performance. The partitioning can be speci�ed in

the schema �le and loaded together with table de�nitions before inserting data into the database.

Testing
All the performances tests are performed for each partitioning method. In MongoDB, they are,

as mentioned above, range based partitioning and hash partitioning. In VoltDB, it is partitioning

a table based on a partitioning column.

35

4 Evaluation in real life application speci�c scenarios

Not all possible operations are tested here, only the main sensible ones that �ts into a social

network scenario. Table 4.12 shows the queries of each test case and the methods used in each

database to perform them. Although �nding the shortest path from one node to another node

is often performed in graphs, it does not only just depend on the database performance but

also on the algorithms used. Moreover, �nding the shortest path is not a supported feature in

MongoDB and VoltDB and therefore is not tested here.

Test case Query MongoDB VoltDB
Single read Return 1365 user pro�les �nd query AdHoc SELECT

Single write Insert 1365 user pro�les Bulkwrite AdHoc INSERT

Count members of

an age group

Return the number of

users whose age between

25 and 35

count query AdHoc SELECT

Friends of friends Return friends of friends

(only IDs). This test is

performed on 333 users

due to performance limi-

tations of the test system

Aggregate Frame-

work

AdHoc SELECT

Friends of friends

with pro�les

Return friends of friends

(pro�les included). This

test is performed on 333

users due to performance

limitations of the test sys-

tem

Aggregate Frame-

work

AdHoc SELECT

Mutual friends Return user pro�les of mu-

tual friends of two given

users

Aggregate Frame-

work

AdHoc SELECT

Get friends in the

same location

Return all friends of an

user living in the same lo-

cation

Aggregate Frame-

work

AdHoc SELECT

Table 4.12: Social network performance test queries

The decisive factor which is taken into consideration is the time needed in milliseconds to

ful�ll each of the above tasks and the complexity of designing each query in each database.

Functionality

Aggregation
As data in a social network is sharded and stored on nodes of a cluster, aggregation methods

are usually used to query data separately on di�erent nodes. The result sets from all nodes are

then grouped together to form a �nal result.

36

4 Evaluation in real life application speci�c scenarios

In MongoDB, there are two ways of aggregation in a distributing environment: aggregation
pipeline and Map-Reduce. An aggregation pipeline operates on sharded collections and is a form

of data processing pipelines. There are multiple stages in a pipeline. Documents are inserted

into the pipeline as input and go through several �lters and transformations, which result in

an aggregated result. Map-Reduce is the usual way databases use to process and aggregate data

in a distributing system. MongoDB also provides this method. Basically, Map-Reduce includes

two main parts: a map phase to process the data and a reduce phase to combine the results of

the map phase. Like other aggregation methods, Map-Reduce can �lter input documents as

well as sort and limit the results. Additionally, there is an optional �nalize stage to alter the

result the last time before showing the �nal result. Map-Reduce operates on sharded collections

and can produce result as a sharded collection.

VoltDB also supports Map-Reduce to process data in a cluster. In fact, it is made possible

by integrating VoltDB with Hadoop. Hadoop is an open source framework which can be used

to manage and manipulate Big Data. Not only is Map-Reduce already included, but there is

also a built-in distributed �le system (HDFS) in Hadoop to handle distributing data. Hadoop
can handle terabytes, even petabytes of data. "This is possible because Hadoop separates the
physical storage of data from the application interface for reading and writing." The export of

data to Hadoop in VoltDB can be automated. Con�guring this is simple and doesn’t require

programming. Users specify tables in the schema as sources for export. Any data written to

the speci�ed tables at runtime is automatically transported to the VoltDB export connector,

which sends the updates to the Hadoop destination. One advantage of this approach is that

the whole process is automated, the users don’t need to know the details of the destinations,

to which the data is exported. Unfortunately, this method is not tested in the scope of this

thesis due to the fact that the export functionality to Hadoop is not available in the community

edition of VoltDB. Therefore, the queries are performed using normal SQL.

Testcase Query MongoDB VoltDB
Aggregation Return all users who used to

study or is studying at the same

high school together with their

number of friends given the

name of the school .

Aggregation frame-

work

Map-Reduce

AdHoc SQL

Table 4.13: Aggregation test

The query described above in table 4.13 is used to evaluate the end result and the time

di�erence between aggregation methods in MongoDB and VoltDB.

Indexes and text search
Indexes help boost the speed of data processing. Indexing an attribute reduces the needed time

to traverse through the values of that attribute and therefore makes the searches faster. It is

very common to search for users or organizations on social networks based on their names.

Therefore the text search functionality can be quite useful to get exact or partly correct matches.

37

4 Evaluation in real life application speci�c scenarios

Because usual types of indexes and text search were tested in the ecommerce scenario and

there is not much di�erence between the two scenarios in applying these features, another

type of indexes which may be useful in social networks is discussed and tested here is partial
index. Partial index features in MongoDB and indexes only documents which ful�ll speci�ed

requirements. Since not all the users in a social networks have the features listed in their

pro�les, it makes sense not to use some indexes on all the documents but only on a selected

set. This type of index helps lower storage and performance cost since not all documents in

the database are indexed.

Table 4.14 shows the query designed for the partial index test.

Testcase Query MongoDB VoltDB
Partial

index

Create a partial index on users

with the feature high_school. Re-

turn all the users studying at a

speci�c school given the school

name.

�nd query AdHoc SELECT

Table 4.14: Partial index test

Transaction

While most transactions in ecommerce database systems are read-only transactions, for social

networks, write operations are almost as important as read operations. An example is Facebook.

Everyday, there are millions of posts created and read by the users. This requires databases

that can perform both read and write operations equally well in a cluster containing multiple

nodes. Therefore, it makes sense to compare performance of non-transactional read-write

queries and that of transactional read-write queries in cluster environment. Table 4.15 shows

the content of the read-write transaction test and the methods used in each database.

Testcase Query MongoDB VoltDB
Transaction As an user write a post and pub-

lish it (which means the post is

saved to the database). After pub-

lishing the above post, the page

is refreshed and all the posts to-

gether with the new post are

shown.

�nd query AdHoc SELECT

Stored Procedure

Table 4.15: Transaction test

Each database has to perform two operations for this test: writing the new post to the database
and returning all posts. The test is performed in MongoDB as non-transactional separate queries

and in VoltDB as non-transactional separate queries as well as one single transactional query

(stored procedures).

38

4 Evaluation in real life application speci�c scenarios

Distribution

Replication
Replication provides high availability and redundancy. By having the same contents on more

than one node, the whole system becomes more tolerant of individual node failures due to

power outages as well as natural disasters and also o�ers data localization by having multiple

copies of the same contents in di�erent locations, which increases the processing speed when

a local client connects to the local database. Since social networks handle millions of requests

and big datasets every day, replica are needed to share the workload, secure the data and help

provide high availability for the network. Because of this reason, replication is choosen as one

of the factor to be tested in the social network scenario.

In MongoDB, replication exists in form of replica sets, whose example can be seen in �gure 4.5.

A replica set contains a primary node and several secondary nodes. The primary node receive

all read/write operations and records all data changes in an operational log. The secondary
nodes read this operational log and applies the changes to their data to match the primary node
’s state. If the primary node is unavailable, a secondary node can elect itself to become the new

primary node. An arbiter can also be added to the replica set. An arbiter holds no data and

its only function is to maintain the quorum in the votings. It always stays an arbiter while a

primary node can becomes secondary node and a secondary node can turn into a primary node

through election. There are two forms of replications supported by VoltDB: one way (passive)

Figure 4.5: A replica set [MongoDoc]

and two-way (cross datacenter). In passive database replication, the replication occurs only one

way, from the master database to the replica database. To keep the data consistent between the

master and the replica databases, the replica database is read-only, all the modi�cations have

39

4 Evaluation in real life application speci�c scenarios

to be performed on the master database. The �gure 4.6 shows how this type of replication

works. On the contrary, in cross datacenter replication, the copying of data happens in both

ways. There is no master database here, all databases with the same content are treated equally.

Users can perform read/write operations on either database. The changes are then applied to

the others.

Figure 4.6: Passive database replication [VoltDBDoc]

Figure 4.7: Cross datacenter replication [VoltDBDoc]

The test case, which is described in table 2.1 is basic and is performed for each replication

method in each test database. The test system in MongoDB consists of a con�g server and one

shard. This shard is a replica set with one primary node and one secondary node. The data

inserted into the primary should be automatically transfered to the secondary node. The test

40

4 Evaluation in real life application speci�c scenarios

Test case Query MongoDB VoltDB

Replication

Insert 1365 user pro�les

to the primary database

and check if the changes

are re�ected in replicated

databases.

Replica set

Passive replication

Cross datacenter

Table 4.16: Replication test

Test case Query MongoDB VoltDB
Range-based sharding Partitioning column

Single-partitioned

procedure

Count the number of users

whose ages are between

25 and 35 years old in a given

location.

�nd query Stored procedure

Table 4.17: Single-partitioned procedure test

system for replication test in VoltDB contains two single node clusters, one of which is the

primary database, the other acts as a replica.

Single-partitioned procedure

In VoltDB, an user-de�ned stored procedure can be designed to be routed to and performed

only in a speci�c partition by activating single-partitioning function during creation of the

procedure. It should be taken into consideration that all required data has to be on the same

partition. Since all data needed reside on the same partition, the search is much more e�ective.

Table 4.17 shows the test query, the sharding method and the reading method of each database.

In this test, since the shard keylocation is used, range-based sharding is utilized in MongoDB

to shard the data. The query is then routed directly to the shard containing only data in this

location. Single-partitioned procedure associates a query with a speci�c partition based on

the value of the location. Both databases have in this test the advantages of knowing which

partition to reach. The time the databases needed to complete the query is measured.

4.6 Test results

4.6.1 Ecommerce

Performance test

Table 4.18 below shows the results of the performance benchmark of MongoDB and VoltDB in

ecommerce scenario. All the time measured are in milliseconds.

41

4 Evaluation in real life application speci�c scenarios

Testcase MongoDB VoltDB
AdHoc SQL Store procedure

Single-write Bulk-write

INSERT

10 records 399 ms 38 ms 371 ms 369 ms

100 records 2742 ms 79 ms 2749 ms 2656 ms

1000 records 28664 ms 195 ms 29046 ms 28666 ms

(Rows returned/time) (Rows returned/time)

SELECT

Return all products

whose prices are between

$25.00 and $50.00

500 rows/7 ms 500 rows/147 ms 500 rows/171 ms

(Rows returned/time) (Rows returned/time)

UPDATE

Apply a reduction of

$5.00 for all the product

whose prices higher

than $10.00

545 rows/42 ms 545 rows/24 ms 545 rows/26 ms

Single-delete Bulk-delete Single-delete Bulk-delete

DELETE

10 records 184 ms 19 ms 240 ms 20 ms

100 records 1868 ms 21 ms 2285 ms ms 20 ms

1000 records 18581 ms 32 ms 21479 ms ms 22 ms

Table 4.18: Performance test results

With write operations (INSERT), bulk insertion in MongoDB is shown to outperform single

insertion in MongoDB and VoltDB (using AdHoc SQL and stored procedures). The rest,

including single insertion in MongoDB and single insertion in VoltDB (using AdHoc SQL and

stored procedures), perform roughly equally. This gives MongoDB an advantage if big data sets

need to be inserted, especially during high tra�c times. Since this is an ecommerce scenario,

insertions are much less frequent than read operations, unless the ecommerce shop mentioned

is as large as Amazon, in which insertion of reviews and new users happen often. Even so,

compared to social networks, insertions are still less often and can be scheduled to optimize

performance (e.g. inserting new products at low tra�c times).

With SELECT query, MongoDB comes �rst using query. Both VoltDB AdHoc SQL and stored

procedure take much longer to return the matches. However, VoltDB with both AdHoc SQL

and stored procedure are twice as fast as MongoDB in updating existing data. Both databases

perform equally in deleting the whole database. VoltDB, however, takes longer than MongoDB

to delete single data records for all three scales of data.

Taking all observations and the test scenario into consideration, MongoDB is in the leading

position. For ecommerce, the most important factor out of four CRUD operations is reading

data (SELECT). It is the main action performed by customers. INSERT, UPDATE and DELETE

operations are less common and if these operations are for product data, they can be scheduled

to be performed when the system has less workloads.

Functionality

Joins and aggregation

42

4 Evaluation in real life application speci�c scenarios

Test case MongoDB VoltDB

Application
Aggregation
framework

AdHoc SQL Stored procedure

JOIN

WITHOUT

AGGREGATION

Return all product reviews

from a speci�c user together

with products’ names given

the name of the user

4 rows/309 ms 4 rows/4 ms 4 rows/24 ms 4 rows/61 ms

Return all product reviews of

a speci�c product together

with the customers’ names

given the name of the product

5 rows/ 267 ms 5 rows/3 ms 5 rows/28 ms 5 rows/26 ms

JOIN

WITH

AGGREGATION

Return the average rating

and the number of reviews

of a speci�c product,

given the product name

1 record((8 reviews/

4.5 average)/ 88 ms

1 record((8 reviews/

4.5 average)/ 2ms

1 record((8 reviews/

4.5 average)/ 21 ms

1 record((8 reviews/

4.5 average)/ 25 ms

Return top 20 books with

the most reviews

20 rows/17303 ms 20 rows/2ms 20 rows/45ms 20 rows/43ms

Count the number of products

in the category {Book}

whose prices are

between $25.00 and $50.00

1 row (count = 51)/

77 ms

1 row (count = 51)/

2ms

1 row (count = 51)/

24ms

1 row (count = 51)/

19ms

Table 4.19: Join test results

According to table 4.19, aggregation framework is the fastest way to perform queries in-

volving joining tables. Coming second are AdHoc SQL and Stored procedure. The slowest is

shown to be explicit handling of joins in application codes. Before version 3.2 of MongoDB,

left joins were not possible in MongoDB and handling joins in application codes was the only

solution. With joins now available in aggregation framework, performance can be largely

improved. However, the downside of this approach is the complexity of designing phases of an

aggregate pipeline. Identifying phases needed for the queries are harder and not as intuitive as

with traditional SQL. Also, one side of a join is �xed with the collection calling the aggregate

method. With VoltDB, it is easier to de�ne the joins of tables and it is also possible to have

nested joins, though the performance can not compete with that of aggregation framework in

MongoDB.

Indexes
Table 4.20 presents the results of index tests. Both of the test databases are capable of creating

unique as well as non-unique indexes, single as well as compound indexes. As presented here,

MongoDB is the one that shows the clearest signs of bene�ting from the performance boost of

indexes in both queries. Querying in VoltDB with Adhoc SQL as well as with stored procedures

when indexes are used shows inconsistency in performance. The reason for it maybe because

the sample data consisting of 1000 products is not big enough for the indexes in VoltDB to be

e�ective. Nevertheless, even without indexes, MongoDB still shows better performance than

VoltDB. And since the purpose of indexes is to boost performance of the database, MongoDB

is the one to demonstrate the impact of indexes.

Text search
Below in table 4.21 are the results of text search tests.

43

4 Evaluation in real life application speci�c scenarios

Test case Query MongoDB VoltDB

Text search

Search for records con-

taining the term "java".

(Exact Match)

3 rows/8 ms 0 row/ 32 ms

Search for records based

on the wildcard "ava".

(Wildcard)

0 row/ 6 ms 210 rows/ 38 ms

Search for records con-

taining any of the follow-

ing terms: "java", "co�ee",

"house" (Terms in a list)

16 rows/8 ms 34 rows/87 ms

Search for records con-

taining the term "java", ex-

cept for records also con-

taining the term "co�ee".

(Excluding term)

10 rows/7 ms 30 rows/36 ms

Table 4.21: Text search test results

With the �rst query, MongoDB performs text search well, delivering all the exact matches

of the term "java" and proves to be case insensitive by delivering matches for "Java" also.

Meanwhile, VoltDB searches using LIKE which is case sensitive (only works with "java", not

"Java").

The second query is about �nding matches based on a wildcard, not an exact term. In Mon-

goDB, no matches were found. The reason is because text search in MongoDB doesn’t support

wildcards. A possible solution to �nd documents based on wildcards is using regex, which

provides "regular expression capabilities for pattern matching strings in queries", according

to MongoDB documentation. MongoDoc VoltDB has the advantages here. Using the LIKE

operator, it is possible to �nd matches containing the exact wildcard (no matches containing

the wildcard in capital letters because of case sensitivity).

The di�erences between MongoDB and VoltDB become more apparent with the third query.

MongoDB delivers 16 matches, which contains exact matches of the terms "java", "shop" and

"co�ee". VoltDB instead returns 34 matches using LIKE operator. Since the search in VoltDB is

case sensitive, the matches for "Java" were not delivered. However, matches that contains the

queried terms as part of another word, e.g. "workshop" are returned. Because of that, it can be

concluded that the search in VoltDB, though less accurate due to case sensitivity, has a wider

range than the text search functionality in MongoDB, which only looks for exact matches.

In the case of the fourth query, both databases perform equally well on excluding matches

containing the term "co�ee". However, VoltDB still returns matches containing the word

"Co�ee". The number of matches in VoltDB is also higher because VoltDB, just as with the

third query, also return matches containing words that have the terms "java" or "shop" as part

of them.

44

4 Evaluation in real life application speci�c scenarios

Test case Query MongoDB VoltDB
Without index With index Without index With index

Non-unique

single index

Create a non-unique index

on the �eld price
in table product.
Perform this query:

Return 50 products priced

between $25 and $50.

51 rows/14 ms 51 rows/7 ms

51 rows/32 ms

(AdHoc SQL)

51 rows/43 ms

(Stored procedure)

51 rows/39 ms

(AdHoc SQL)

51 rows/38 ms

(Stored procedure)

Unique

compound index

Create a unique index

based on the �elds

product_id,

customer_id
and review_time
in table review.

Get the product_id
of a random product.

Perform this query:

Return all reviews

of a speci�c product,

sorted by the review time

in descending order,

given the product_id.

7 rows/ 10 ms 7 rows/6ms

7 rows/23 ms

(AdHoc SQL)

7 rows/24 ms

(Stored procedure)

7 rows/24 ms

(AdHoc SQL)

7 rows/ 21 ms

(Stored procedure)

Table 4.20: Index test results

Performance-wise, the text search in MongoDB is faster, presumably due to the text index,

which is part of the text search. On the contrary, VoltDB has no dedicated full text search and

has to traverse through every record in the database to �nd matches for the LIKE operator.

The database performs better in text search tests is MongoDB, in both functionality and

performance. It has dedicated text search which is case insensitive. It is indeed helpful,

especially during product search since the customers don’t need to capitalize any letter just

to get correct matches. It is also proven to be much faster when searching for matches. The

abilities to receive a list of terms as input and exclude certain terms from the search are also a

bonus. Though the text search doesn’t support wildcards, this problem can be overcome by

combining text search for exact matches with regex for pattern matching to have a powerful

search tool covering all possible matches.

Transaction

In table 4.22 are the results of the read-only transaction test. As can be seen in the results,

aggregation framework in MongoDB delivers the same data ten times faster than transaction

in VoltDB. It is indeed helpful while loading a big catalog of products in an online store. A

read-only transaction is a transaction without any write operation. Since most transactions

in ecommerce are read-only, no existing data is modi�ed and no contraint violations or data

inconsistency are caused by these transactions. Performance therefore should be the priority.

45

4 Evaluation in real life application speci�c scenarios

Test case MongoDB
(Aggregation framework)

VoltDB
(Stored procedure)

Transaction

Deliver 20 products in

book category

which have an average

rating of 5.0 and are

sorted by price

in ascending order

20 rows/2ms 20 rows/22ms

Table 4.22: Transaction test results

Security

MongoDB and VoltDB achieve the desired results for all the queries described in table 4.11.

With the �rst query, the data get updated very quickly for user A in both databases. Granting

an user more access to data and resources also works well in both MongoDB and VoltDB for

the queries in role based access control test case. When an user attempts to access or to perform

an action, to which they don’t have permission, there are immediate error messages to inform

the users about their lack of permissions.

Both MongoDB and VoltDB grant users privileges by assigning roles to them. Users in both

databases can have many roles and the roles are cumulative. There are also default roles that

can be assigned to users. MongoDB is, however, is more �exible about the level of access control.

In MongoDB, not only access to databases can be speci�ed in roles, but also speci�c actions,

such as: �nd, update, delete can also be de�ned for collections inside databases. This indeed

provides more �exibility in customizing roles. There are not just only read-only or read-write

access for the whole database. Users can have di�erent privileges in di�erent collections of

the same database, depending on their roles. On the contrary, the choices are more limited

in VoltDB. Roles can be created based on default permissions described in table 4.10. These

permissions are very basic, specifying only access to all AdHoc SQL, stored procedures of

the database. Permissions to speci�c actions: UPDATE, INSERT, SELECT, DELETE can’t be

speci�ed for single tables. One way to work around this problem is to grant users read-only

access to the whole database, then de�ne stored procedures for speci�c tasks, such as insert a

review of a product, and allow the users’role access to these stored procedure. All of this can

be done during the creation of stored procedures. This is also how the security test queries in

this thesis are performed in VoltDB.

Compared to traditional SQL databases, VoltDB lacks GRANT ability to give users customized

access to the tables in the databases. The workaround with stored procedures can be done,

is, however, not optimal. Being able to grant roles di�erent privileges on di�erent collections

easily, MongoDB proves to outperform VoltDB in the security tests.

Summary

The purpose of the above tests is to investigate the more suitable for an ecommerce scenario

out of the two databases MongoDB and VoltDB. Based on the results, even though it is not

46

4 Evaluation in real life application speci�c scenarios

Test case Query MongoDB VoltDB
Range-based
sharding

Hash sharding
Partitioning
column

INSERT

Insert 1365 user pro�les

(averaging 3 times)

31069 ms 31412 ms 28517 ms

SELECT

Return 1365 user pro�les

(averaging 3 times)

7 ms 5 ms 64 ms

Find age group

Count the number of users

whose ages are between

25 and 35 years old

224 rows/47 ms 224 rows/41 ms 224 rows/25 ms

Friends of friends

Return friends of friends

(only ids). The query

is performed on 333

user pro�les

9890 ms 9691 ms 12994 ms

Friends of

friends with

pro�les

Return friends of friends

(with pro�les). The query

is performed on

333 user pro�les

193874 ms 184276 ms 8948 ms

Mutual friends

Return the mutual friends

of two users,

given their user_id:

23 and 227

2 rows/70 ms 2 rows/90 ms 2 rows/31 ms

Friends in

same location

Return the friends of an users,

who also live

in the same location

as the user,

given the user_id

of the user: 23

7 rows/23 ms 7 rows/85 ms 7 rows/31 ms

Table 4.23: Performance test results

fully capable of joins as VoltDB, MongoDB is still able to perform the common queries that

involve joins in an online store. The read operations in MongoDB are faster than in VoltDB,

indexes are easy to create and e�ective. Since the transactions in an online store are mostly

read-only ones, MongoDB’s lack of ACID support can be tolerated. Text search in MongoDB

is a powerful tool to query for product data e�ectively and e�ciently, a function which can

not be ignored in an online store. Furthermore, there are more security options in MongoDB.

The roles in MongoDB can be customized with speci�c actions, not only on a database level,

but also collection level, which is very practical and suits the scenario well, since for di�erent

collections customers may di�erent types of access to. It can be concluded that MongoDB

is more suitable for the ecommerce scenario, even though ecommerce is a �eld that is often

associated with SQL databases.

47

4 Evaluation in real life application speci�c scenarios

4.6.2 Social network

Performance test

Table 4.23 shows the results of performance test in social network scenario. The time measured

is in milliseconds.

VoltDB is better than MongoDB at data insertion. It maybe because in the data model of

VoltDB for this scenario, the friend list is not stored inside the user pro�le but in the relationship

table, which makes each data record slightly smaller. MongoDB is, however, is better than

VoltDB in reading data with both methods of sharding (10 times faster in retrieving 1365 user

pro�les). Sharding the database using hashed keys makes reading faster in this case because

there is no �lter in the search, mongos performs thus a broadcast operation for the query in the

whole database. For social networks, the daily number of read operations are more than the

number of write operations. Having better performance in reading data put MongoDB in the

leading position.

About social network related queries, VoltDB seems to perform better than MongoDB

with aggregate function count. On the other hand, both range-based and hash shardings

provide the results faster with the query to �nd ids of friends of friends. VoltDB in turn

outperforms in �nding pro�les of friends of friends and �nding mutual friends. The reason

for the inconsistencies in performance of MongoDB is because MongoDB is not optimal for

joining tables and not capable of having nested joins. The processing of the queries in these 3

cases in MongoDB has to be broken down in smaller parts and be handled in the application

code while only one query containing multiple of joins su�ce in VoltDB to deliver the desired

results. In the case of �nding friends of a given user who are also in the same location as

that user, range-based sharding in MongDB and partitioning column in VoltDB display better

performance than hash sharding in MongoDB. It is because both of them use location as shard

key, so when a query includes this shard key, only relevant shards are targeted. Hash sharding
in this case performs searches on all shards.

Although better at single read of user pro�les, when more complicated queries, which are

essential to social network environment and require multiple levels of joins are involved,

MongoDB doesn’t perform as well as VoltDB. Overall, VoltDB is the better database in the

performance test case.

Functionality

Aggregation
Table 4.24 show the results of the aggregation test for both aggregation methods in MongoDB

aggregation framework and map-reduce as well as the regular SQL query in VoltDB. Of all the

three methods, aggregate framework proves to be the most e�cient one with shortest time

to deliver the �nal result. Compared to it, map-reduce in MongoDB is not as e�cient, albeit

being more �exible with the customization of map and reduce functions by using custom

Javscript. This customization is, however, can become more complex than just using the

built-in operators to de�ne phases in an aggregate pipeline. VoltDB also supports map-reduce
by incorporating export functionality to Hadoop, this feature is unfortunately not supported

48

4 Evaluation in real life application speci�c scenarios

Test case Query MongoDB VoltDB
Aggregation
framework

Map Reduce AdHoc SQL

Aggregation

Return all users

who used to study

or is studying

at the same high school

together with their

number of friends

given the name of the school .

223 rows/3 ms 223 rows/16 ms 223 rows/569 ms

Table 4.24: Aggregation test results

Test case Query MongoDB VoltDB
Range-based
sharding

Hash sharding

Partial index

Create a partial index

on users with the feature

high_school.
Return all the users

studying at a speci�c

school given the school name.

207 rows/11 ms 207 rows/3 ms 207 rows/27 ms

Table 4.25: Partial index test results

in the test database, which is a community edition, only in enterprise edition. Using only the

normal AdHoc SQL to query the data, it is expected to fall far behind both the aggregation

methods in MongoDB. Without taking Hadoop’s performance into consideration, it can not be

denied that the aggregate framework in MongoDB delivers impressive performance.

Partial index
In table 4.25 are the results of partial index test. Partial index is a MongoDB feature. Only doc-

uments which ful�ll certain requirements are indexed, in this case it requires that the attribute

high_school exists in the indexed document. The results indicate that partial index does help

MongoDB search for matches faster, in both cases of sharding, since not all documents need

to be traversed through, only a subset having the attribute high_school. VoltDB takes longer

to perform the search, due to not having partial index. Between both types of sharding in

MongoDB, with hash sharding, the results are returned faster, presumably because the data is

distributed more equally to all the nodes in the cluster than with range-based sharding, which

means there is a balance in the workloads for every node. Partial index aids well in boosting

the performance of the whole cluster. The reason for that is because in social networks, not all

user pro�les have the same attributes. Hence, by applying partial index on an attribute, only a

small subset of data need to be traversed through when the query includes this attribute.

49

4 Evaluation in real life application speci�c scenarios

Test case Query MongoDB VoltDB
Stored procedure

Transaction

As an user write a post

and publish it (which means

the post is saved to the database).

After publishing the above post,

the page is refreshed

and all the posts

together with the new post

are shown.

4 rows/31 ms 4 rows/42 ms

Table 4.26: Read-write transaction test results

Transaction

Table 4.26 shows slight di�erence in performance of MongoDB and VoltDB in the read-write

transaction test. Despite VoltDB is a little slower than MongoDB, since write actions are

involved in this test, stored procedure’s ACID nature guarantees data consistency and failure

tolerance. VoltDB is thus more suitable in performing transactions which involve write actions.

Distribution

Replication
Replication is tested in both MongoDB and VoltDB by inserting 1365 user pro�les into each

database and then connect to the replica to check if the data is updated. In MongoDB, only

one shard is a replica set with two nodes. After the data being inserted and the primary node

is checked for new data, the secondary node is con�rmed to have the same amount of data

records as the primary node. The following message 4.1 is returned when querying for the

status of the secondary node. This proves that the replication was successful and the secondary

node is up to date.

1 source: 141.22.32.15:27018
2 syncedTo: Mon Juli 25 2016 20:10:38 GMT+0200 (CEST)
3 0 secs (0 hrs) behind the primary

Listing 4.1: Replication lag

In VoltDB, both the replication methods passive and cross data center are tested. The data

updates in both methods are very quick. Passive replication provides another node in read-only

mode with up to date data and it is possible to read data from this node. The replica can replace

the master when the master fails. Meanwhile, with cross datacenter, no cluster is primary

database, read-write are possible in all clusters. Changes from any of them get transfered to

the others.

Compare them with each other, replica set in MongoDB is the least suitable replication

method for social networks since the replica in MongoDB don’t provide any access to the data,

50

4 Evaluation in real life application speci�c scenarios

Test case Query MongoDB VoltDB

Single-partitioned

procedure

Count the number of users

whose ages are between

25 and 35 years old

in a given location.

80 rows/34ms 80 rows/ 24ms

Table 4.27: Single-partitioned procedure test results

act only as a data backup for the primary node and therefore doesn’t contribute to the high

availability of the network. Coming second is passive replication in VoltDB. By having the

data accessible in read-only mode, it increases the high availability of the whole network for

read operations. However, because all write operations are performed on the master node, this

can leads to bottleneck in performance and even single point of failures. The cross datacenter
approach maybe the best solution here. The daily amounts of write queries are almost as

much as read queries in social networks. Having multiple nodes available for both read and

write operations increases high availability, boost performance and helps avoid single point

of failures on one master node. It is still possible that changes on one node are not copied to

other nodes in case that node fails.

Single-partitioned procedure
Table 4.27 presents the results of the single-partitioned procedure test. VoltDB is slightly

faster than MongoDB in delivering the result of the aggregate function count. Considering

ACID nature of stored procedures, VoltDB seems to be the safer choice when there are write

operations, which are very common in social networks (e.g. writing posts, comments). Since

the performance of VoltDB also does not fall behind that of MongoDB even when both of them

are given the same advantages, VoltDB proves to be the better choice here.

Summary

VoltDB, as seen in performance test result, is better than MongoDB in delivering the result of

the aggregate function count, data insertion and social network related queries which involve

multiple joins. In the performance test, VoltDB also delivers the result of count faster than

MongoDB. Though not supporting partial index, its ACID nature guarantees data consistency

and reliability of write actions, which are very common in social networks on a daily basis. It’s

support of single-partitioned stored procedure also reduces the overall query time by narrowing

down the search to a speci�c partition, which is extremely helpful with data localization. VoltDB

also shows better support of replication, having two di�erent methods of replicating data in

a cluster. Both of which do not only secure the data, but also increases high availability and

performance of the whole system. Without taking aggregation into consideration since Hadoop

export functionality can not be tested, VoltDB seems to have more advantages than MongoDB.

Considering the fact that social networks are about modeling relations among people, VoltDB

is more suitable in modeling social networks because of its nature as a relational database. A

51

4 Evaluation in real life application speci�c scenarios

test of aggregation methods which involve both methods in MongoDB and Hadoop export

functionality in VoltDB should be conducted to make a de�nite conclusion.

52

5 Conclusion

This thesis, as stated before, focuses on conducting an application-oriented comparison of

MongoDB, a NoSQL representative and VoltDB, a NewSQL representative. The scenarios,

which are chosen for testing, are ecommerce and social network. Both of them are typical

scenarios in daily lives. One is a typical example usually associated with traditional SQL

databases while the other is operated in a distributing environment, which is NoSQL databases’

strength.

Over the course of this thesis, testing criteria and testing queries are tailored to suit the

targeted scenario. The results, including the performance time, are documented and used to

identify the more suitable database for each test scenario.

In ecommerce test scenario, MongoDB proves to be a better candidate with adequate support

for joins, e�ective indexes, better performance in reading operations, �exibility in customizing

user roles on multiple levels and in explicit details. It’s support for full text search �ts well into

an ecommerce scenario also. VoltDB, even though being a relational database with fully ACID

transaction and join support, is less suitable performance-wise. Moreover, since transactions

in ecommerce are mostly read-only, data consistency matters less.

In social network test scenario, VoltDB seems to be in a leading position. Based on the fact

that social networks center around relations, a relational database is more suitable for modeling

data. Since the common social network related queries involve multiple nested joins, VoltDB’s

fully support of join simpli�es the creation and conduction of queries. MongoDB, instead, due

to it’s limited support of joins, needs to break down the complex queries and handle them

explicitly in application codes, which raises the complexity of designing queries and reduces

performance. Replicating data in VoltDB is not just about securing data. By having more nodes

with the same data and open access to them, data replication in VoltDB also help increase

high availability and boost performance of the whole system. Compared to that, replication in

MongoDB only exist as backup for the primary database and only usable when the primary

database fails.

Although this thesis attempts to cover as many aspects as possible, there are still opening

matters to be investigated. One of them is VoltDB’s support of Hadoop, which is supposedly

increases performance noticeably. The scenarios tested here are also very limited. Other

aspects, such as delivery and payment in ecommerce as well as likes in social networks should

also be used to test MongoDB and VoltDB before making conclusions.

53

Bibliography

[Aboutorabi u. a. 2015] Aboutorabi, S. H. ; Rezapour, M. ; Moradi, M. ; Ghadiri, N.:

Performance evaluation of SQL and MongoDB databases for big e-commerce data. In:

Computer Science and Software Engineering (CSSE), 2015 International Symposium on, Aug

2015, S. 1–7

[ArangoDB] ArangoDB: Benchmark: PostgreSQL, MongoDB, Neo4j, Ori-

entDB and ArangoDB, URL https://www.arangodb.com/2015/10/
benchmark-postgresql-mongodb-arangodb/

[Bain 2009] Bain, Tony: Is the Relational Database Doomed?

(2009). – URL http://readwrite.com/2009/02/12/
is-the-relational-database-doomed/#awesm=~ookpfnVjGmGXHJ

[Basel Kayyali und Kuiken 2013] Basel Kayyali, David K. ; Kuiken, Steve V.: How

big data is shaping US health care. (2013). – URL http://www.mckinsey.com/
industries/healthcare-systems-and-services/our-insights/
how-big-data-is-shaping-us-health-care

[Bernstein 2014] Bernstein, D.: Today’s Tidbit: VoltDB, May 2014, S. 90–92. – ISSN

2325-6095

[bigdatanerd 2011] bigdatanerd: WHY NOSQL-PART 1âCAP THEO-

REM, URL https://bigdatanerd.wordpress.com/2011/12/08/
why-nosql-part-1-cap-theorem/, December 2011

[Boicea u. a. 2012] Boicea, A. ; Radulescu, F. ; Agapin, L. I.: MongoDB vs Oracle –

Database Comparison. In: Emerging Intelligent Data and Web Technologies (EIDWT), 2012
Third International Conference on, Sept 2012, S. 330–335

[Brewer 2012] Brewer, Eric: CAP Twelve Years Later: How the "Rules"

Have Changed. (2012). – URL http://www.infoq.com/articles/
cap-twelve-years-later-how-the-rules-have-changed

[Cox und Ellsworth 1997] Cox, Michael ; Ellsworth, David: Application-controlled demand

paging for out-of-core visualization. (1997)

[Date und Darwen 1997] Date, C. J. ; Darwen, H.: (1997). ISBN 0-201-96426-0

54

https://www.arangodb.com/2015/10/benchmark-postgresql-mongodb-arangodb/
https://www.arangodb.com/2015/10/benchmark-postgresql-mongodb-arangodb/
http://readwrite.com/2009/02/12/is-the-relational-database-doomed/#awesm=~ookpfnVjGmGXHJ
http://readwrite.com/2009/02/12/is-the-relational-database-doomed/#awesm=~ookpfnVjGmGXHJ
http://www.mckinsey.com/industries/healthcare-systems-and-services/our-insights/how-big-data-is-shaping-us-health-care
http://www.mckinsey.com/industries/healthcare-systems-and-services/our-insights/how-big-data-is-shaping-us-health-care
http://www.mckinsey.com/industries/healthcare-systems-and-services/our-insights/how-big-data-is-shaping-us-health-care
https://bigdatanerd.wordpress.com/2011/12/08/why-nosql-part-1-cap-theorem/
https://bigdatanerd.wordpress.com/2011/12/08/why-nosql-part-1-cap-theorem/
http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed

Bibliography

[Doshi u. a. 2013] Doshi, K. A. ; Zhong, T. ; Lu, Z. ; Tang, X. ; Lou, T. ; Deng, G.: Blending SQL

and NewSQL Approaches: Reference Architectures for Enterprise Big Data Challenges. In:

Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), 2013 International
Conference on, Oct 2013, S. 163–170

[Eifrem und Rathle 2013] Eifrem, Emil ; Rathle, Philip: The most important part of

Facebook Graph Search is âGraphâ. (2013). – URL http://neo4j.com/blog/
why-the-most-important-part-of-facebook-graph-search-is-graph/

[Gantz und Reinsel 2010] Gantz, John ; Reinsel, David: The Digital Universe

Decade Are You Ready? (2010). – URL http://www.emc.com/collateral/
analyst-reports/idc-digital-universe-are-you-ready.pdf

[Gen] Gen: MySQL vs. MongoDB: The Pros and Cons When Building

a Social Network, URL https://www.morpheusdata.com/blog/
2015-04-01-mysql-vs-mongodb-the-pros-and-cons-when-building-a-social-network

[Gunelius 2014] Gunelius, Susan: The Data Explosion in 2014 Minute by

Minute â Infographic. (2014). – URL http://aci.info/2014/07/12/
the-data-explosion-in-2014-minute-by-minute-infographic/

[ISTC] ISTC: Benchmarking Graph Databases, URL http://istc-bigdata.org/
index.php/benchmarking-graph-databases/

[J. McAuley 2015] J. McAuley, J. L.: Inferring networks of substitutable and complementary
products. 2015. – URL http://cseweb.ucsd.edu/~jmcauley/pdfs/kdd15.
pdf

[Laney 2001] Laney, Doug: 3D Data Management: Controlling Data Volume, Velocity and

Variety. (2001)

[Li und Manoharan 2013] Li, Y. ; Manoharan, S.: A performance comparison of SQL and

NoSQL databases. In: Communications, Computers and Signal Processing (PACRIM), 2013
IEEE Paci�c Rim Conference on, Aug 2013, S. 15–19. – ISSN 1555-5798

[Mathew und Kumar 2015] Mathew, A. B. ; Kumar, S. D. M.: Analysis of data management

and query handling in social networks using NoSQL databases. In: Advances in Comput-
ing, Communications and Informatics (ICACCI), 2015 International Conference on, Aug 2015,

S. 800–806

[Microsoft] Microsoft: Data Access for Highly-Scalable Solutions: Using SQL, NoSQL,

and Polyglot Persistence. . – URL https://msdn.microsoft.com/en-us/
library/dn313285.aspx#sec7

[MongoDBBlog] MongoDBBlog: Joins and Other Aggregation Enhancements Com-
ing in MongoDB 3.2. – URL https://www.mongodb.com/blog/post/
joins-and-other-aggregation-enhancements-coming-in-mongodb-3-2-part-1-of-3-introduction

55

http://neo4j.com/blog/why-the-most-important-part-of-facebook-graph-search-is-graph/
http://neo4j.com/blog/why-the-most-important-part-of-facebook-graph-search-is-graph/
http://www.emc.com/collateral/analyst-reports/idc-digital-universe-are-you-ready.pdf
http://www.emc.com/collateral/analyst-reports/idc-digital-universe-are-you-ready.pdf
https://www.morpheusdata.com/blog/2015-04-01-mysql-vs-mongodb-the-pros-and-cons-when-building-a-social-network
https://www.morpheusdata.com/blog/2015-04-01-mysql-vs-mongodb-the-pros-and-cons-when-building-a-social-network
http://aci.info/2014/07/12/the-data-explosion-in-2014-minute-by-minute-infographic/
http://aci.info/2014/07/12/the-data-explosion-in-2014-minute-by-minute-infographic/
http://istc-bigdata.org/index.php/benchmarking-graph-databases/
http://istc-bigdata.org/index.php/benchmarking-graph-databases/
http://cseweb.ucsd.edu/~jmcauley/pdfs/kdd15.pdf
http://cseweb.ucsd.edu/~jmcauley/pdfs/kdd15.pdf
https://msdn.microsoft.com/en-us/library/dn313285.aspx#sec7
https://msdn.microsoft.com/en-us/library/dn313285.aspx#sec7
https://www.mongodb.com/blog/post/joins-and-other-aggregation-enhancements-coming-in-mongodb-3-2-part-1-of-3-introduction
https://www.mongodb.com/blog/post/joins-and-other-aggregation-enhancements-coming-in-mongodb-3-2-part-1-of-3-introduction

Bibliography

[MongoDBDoc 2016] MongoDBDoc: Sharding Introduction, URL https://docs.
mongodb.com/manual/core/sharding-introduction/, 2016

[MongoDoc] MongoDoc: SQL to MongoDB Mapping Chart, URL https://docs.
mongodb.com/manual/reference/sql-comparison/

[Morgan 2015] Morgan, Andrew: Joins and Other Aggregation Enhancements

Coming in MongoDB 3.2, URL https://www.mongodb.com/blog/post/
joins-and-other-aggregation-enhancements-coming-in-mongodb-3-2-part-1-of-3-introduction,

2015

[Parker u. a. 2013] Parker, Zachary ; Poe, Scott ; Vrbsky, Susan V.: Comparing NoSQL

MongoDB to an SQL DB. In: Proceedings of the 51st ACM Southeast Conference. New York,

NY, USA : ACM, 2013 (ACMSE ’13), S. 5:1–5:6. – URL http://doi.acm.org/10.
1145/2498328.2500047. – ISBN 978-1-4503-1901-0

[Standford] Standford: Standford Snapshot. – URL https://snap.stanford.
edu/data/

[Stonebraker u. a. 2007] Stonebraker, Michael ; Madden, Samuel ; Abadi, Daniel J. ;

Harizopoulos, Stavros ; Hachem, Nabil ; Helland, Pat: The End of an Architectural

Era: (It’s Time for a Complete Rewrite). In: Proceedings of the 33rd International Conference
on Very Large Data Bases, VLDB Endowment, 2007 (VLDB ’07), S. 1150–1160. – URL

http://dl.acm.org/citation.cfm?id=1325851.1325981. – ISBN 978-

1-59593-649-3

[VoltDBDoc] VoltDBDoc: VoltDB Documentation, URL https://docs.voltdb.
com

[Wall 2014] Wall, Matthew: Ebola: Can big data analytics help contain its spread? (2014). –

URL http://www.bbc.com/news/business-29617831

[Wikipedia] Wikipedia: Social network. – URL https://en.wikipedia.org/
wiki/Social_network

56

https://docs.mongodb.com/manual/core/sharding-introduction/
https://docs.mongodb.com/manual/core/sharding-introduction/
https://docs.mongodb.com/manual/reference/sql-comparison/
https://docs.mongodb.com/manual/reference/sql-comparison/
https://www.mongodb.com/blog/post/joins-and-other-aggregation-enhancements-coming-in-mongodb-3-2-part-1-of-3-introduction
https://www.mongodb.com/blog/post/joins-and-other-aggregation-enhancements-coming-in-mongodb-3-2-part-1-of-3-introduction
http://doi.acm.org/10.1145/2498328.2500047
http://doi.acm.org/10.1145/2498328.2500047
https://snap.stanford.edu/data/
https://snap.stanford.edu/data/
http://dl.acm.org/citation.cfm?id=1325851.1325981
https://docs.voltdb.com
https://docs.voltdb.com
http://www.bbc.com/news/business-29617831
https://en.wikipedia.org/wiki/Social_network
https://en.wikipedia.org/wiki/Social_network

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig verfasst und
nur die angegebenen Hilfsmittel benutzt habe.

Hamburg, 8. August 2016 Ngoc Huyen Nguyen

	1 Introduction
	1.1 Motivation
	1.2 Goals

	2 Basics
	2.1 Big Data
	2.1.1 Definition
	2.1.2 Current status

	2.2 A general comparison between SQL and NoSQL
	2.2.1 Transaction and consistency models
	2.2.2 Data schema
	2.2.3 Data query and data types
	2.2.4 Scalability

	2.3 NewSQL
	2.3.1 Summary

	3 Analysis
	3.1 MongoDB as NoSQL Representative
	3.2 VoltDB as NewSQL Representative
	3.3 MongoDB vs VoltDB
	3.3.1 General Comparison

	4 Evaluation in real life application specific scenarios
	4.1 Goals
	4.2 Equivalences in structure between MongoDB and VoltDB
	4.3 Test scenarios
	4.3.1 E-Commerce
	4.3.2 Social Network

	4.4 Evaluation criteria
	4.4.1 Data model
	4.4.2 Performance
	4.4.3 Functionality
	4.4.4 Transaction
	4.4.5 Security
	4.4.6 Distribution

	4.5 Evaluation tests
	4.5.1 E-Commerce
	4.5.2 Social Network

	4.6 Test results
	4.6.1 Ecommerce
	4.6.2 Social network

	5 Conclusion

