
Masterarbeit
Christian Hüning, christian.huening@haw-hamburg.de

Analysis of Performance and Scalability of the Cloud-Based
Multi-Agent System MARS

Fakultät Technik und Informatik
Studiendepartment Informatik

Faculty of Engineering and Computer Science
Department of Computer Science

Christian Hüning, christian.huening@haw-hamburg.de

Analysis of Performance and Scalability of the Cloud-Based
Multi-Agent System MARS

Masterarbeit eingereicht im Rahmen der Masterprüfung

im Studiengang Master of Science Angewandte Informatik
am Department Informatik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Thiel-Clemen
Zweitgutachter: Prof. Dr. Stefan Sarstedt

Eingereicht am: 27. Juni 2016

Christian Hüning, christian.huening@haw-hamburg.de

Thema der Arbeit
Analysis of Performance and Scalability of the Cloud-Based Multi-Agent System MARS

Stichworte
Multiagentensystem, Verteilte Systeme, Lastverteilung, MMAS, MSaaS, Ökologische Modellie-
rung

Kurzzusammenfassung
Agentenbasierte Simulationen werden heutzutage intensiv in einem breiten Feld verschiedener
Domänen eingesetzt. Anwendungen stammen etwa aus den Bereichen der sozialen Wissen-
schaften, der Biologie, Ökonomie sowie der Logistik. Diese Domänen sind besonders für die
individuen-basierte Modellierung großer Agentenmengen prädestiniert, um deren emergentes
Verhalten einzufangen. Das MARS LIFE System als Simulationsengine des Modeling and Si-
mulation as a Service Systems MARS wird in dieser Arbeit präsentiert und hinsichtlich seiner
Fähigkeiten in Bezug auf Skalierbarkeit und Performance analysiert.
Christian Hüning, christian.huening@haw-hamburg.de

Title of the paper
Analysis of Performance and Scalability of the cloud-based multi-agent system MARS

Keywords
Multi-Agent-System, Distributed Systems, Load Balancing, MMAS, MSaaS, Ecological Modeling

Abstract
Agent-based simulations are intensively used in a wide ranging variety of domains nowadays.
Applications originate from the domains of social science, ecology, biology, economy and
logistics to just name a few. These �elds are especially predestined for individual-based
modeling of large amounts of agents in order to capture emergent behaviour. The MARS
LIFE system as the actual simulation engine behind the Modeling and Simulation as a Service
system MARS, is presented in this work and analyzed towards its scalability and performance
capabilities.

Contents

1 Introduction 2
1.1 Why Scale Matters . 4
1.2 Hypotheses . 5
1.3 Structure Outline . 7

2 Methodology 8
2.1 IBM in Ecology . 8

2.1.1 First Steps . 8
2.1.2 Ten years of ecological modelling - A review 8
2.1.3 Integrating Models . 10
2.1.4 Summary . 11

2.2 Simulation Frameworks . 11
2.2.1 General Solutions . 11
2.2.2 Cloud-based Solutions . 13
2.2.3 High Performance Computing . 14
2.2.4 Case Speci�c Implementations . 17

2.3 Requirements . 18
2.3.1 Modularity and Reusability . 18
2.3.2 Information Integration . 19
2.3.3 Scalability . 19
2.3.4 Ease of Use . 20
2.3.5 Visualization . 21
2.3.6 Scienti�c Analysis . 21

2.4 MARS System . 22
2.4.1 Overview . 22
2.4.2 Concepts . 22

3 Implementation 25
3.1 MARS Work�ow . 25
3.2 MARS Basic MSaaS Work�ow . 26

3.2.1 Simulation Model Preparation . 26
3.2.2 Simulation Model Execution . 28
3.2.3 Simulation Model Analyses . 30

3.3 Architecture & Technology . 31
3.3.1 Overview . 31

iv

Contents

3.3.2 LIFE Simulation System . 33
3.3.3 LayerContainer . 38
3.3.4 Agent Shadowing . 40

4 Experiments 46
4.1 Setup . 46

4.1.1 Infrastructure Setup for Experiments 46
4.1.2 Special Settings and Details . 47
4.1.3 An Experimental Model . 48

4.2 Experiment Description . 51
4.2.1 EXP1: Performance comparison of bare-metal, KVM VM & Docker on

KVM . 51
4.2.2 EXP2: AgentShadowing standalone test 51
4.2.3 EXP3: Test of KNP model initialization on 1, 2 and 3 nodes 52
4.2.4 EXP4: Test of KNP Model with single, central ESC on single node . . . 52
4.2.5 EXP5: Test of KNP Model with polyglot ESCs in each layer on single

node . 53
4.2.6 EXP6: Test of KNP Model with distributed, single ESC on 2 and 3 nodes 53
4.2.7 EXP7: Test of KNP Model with polyglot ESCs in each layer on 2 and 3

nodes . 54
4.2.8 EXP8: Test of KNP model with Result WriteOut including the best

options from the above tests . 54
4.2.9 Summary . 54

5 Results 58
5.1 EXP1 - Performance Impact of Virtualization layers. 58
5.2 EXP2 - Agent Shadowing Standalone . 59

5.2.1 Benchmark 1 - Local Behavior . 59
5.2.2 Benchmark 2 - Network Behavior . 60

5.3 EXP3 - Test of KNP model initialization on 1, 2 and 3 nodes 63
5.4 EXP4 - KNP Model with central ESC on single node 64
5.5 EXP5 - KNP Model with polyglot ESCs in each layer on single node without

result output . 64
5.6 EXP6 - KNP Model with distributed, single ESC on 1, 2 and 3 nodes without

result output . 67
5.7 EXP7 - KNP Model with polyglot ESCs in each layer on 1, 2 and 3 nodes without

result output . 68
5.8 EXP8 - KNP Model with polyglot ESCs in each layer on 1, 2 and 3 nodes with

result output . 70

6 Conclusion & Outlook 80
6.1 Conclusion . 80

6.1.1 Hypotheses Validation . 80

v

Contents

6.1.2 Result Summary . 82
6.2 Outlook . 83

vi

Acknowledgement

I would like to express my gratitude to Professor Dr. Thomas Thiel-Clemen for providing me
his trust, the freedom and required assets to cooperatively build the MARS System and the
associated project. His critical feedback, useful comments and engagement throughout the
process were priceless.

Also I wish to thank Prof. Dr. Stefan Sarstedt for his continuous inspiration and support
to try new technologies and guiding me through the process. Our discussions and conjointly
conducted experiments were invaluable.

I would also like to acknowledge the hard work of the MARS team without which the whole
project would not have come alive and the days in the research lab would not have been so
much fun.
I further like to express my thanks to the colleagues from the computer science lab, who were
very supportive and always ready to lend an ear to me and my problems.

Finally I must express my very profound gratitude to my family for providing me with un-
failing support and continuous encouragement throughout my years of study. Special thanks
belong to my partner Wiebke Klare for her continuous support with delicious brain food, for
occasionally dragging me o� work whenever I needed it and for patiently listening to all the
computer science stu� at the dinner table. Thank you.

1

1 Introduction

Agent-based simulations are intensively used in a wide ranging variety of domains nowadays.
Applications originate from the domains of social science, ecology, biology, economy and
logistics to just name a few.

The MARS research group situated at the University of Applied Sciences in Hamburg currently
has a focus on building models from the socio-ecological and biology domains. These �elds
are especially predestined for individual-based modeling of large amounts (millions) of agents
in order to gain additional knowledge about the multitude of interrelations these complex
systems imply.

In terms of computer science the creation of a system capable of simulating millions of in-
dependent software entities, using big data as input and analyzing large amounts of output
is clearly positioned in the �eld of complex and large-scale distributed systems. This work
describes the multi-agent simulation system MARS LIFE, which has been created by the author
over the past two and a half years. Also MARS LIFE will be put in the wider context of the
Modeling and Simulation as a Service system MARS in which it is embedded to outline the
relevance of the overall solution.

IBM, ABM and Multi-Agent Systems

It is important to clarify the usage and meaning of certain terms when talking about simulation
systems and modeling. The overarching topic is titled as agent-based computing (Jennings,
1999; Wooldridge, 1998) and describes the agent-based endeavor as a whole. It includes every-
thing agent related and spans a lot of functional domains from industrial automation all the
way to ecological simulation.

In general agent-based computing is understood as a way to translate real-world problems
into the computing space. Agents are seen as the potential solution to several problems on
di�ering levels of abstraction between rather technical and practical software engineering and

2

1 Introduction

conceptual modeling alike. For instance Wooldridge (1997) proposes the usage of agents as
building blocks of heavily distributed systems, while Russell & Norvig (1995) understand agents
as an indispensable concept to develop intelligent entities in general. The term multi-agent
system thus does not describe a system which is used to gain knowledge about complex real
world systems or similar questions, but a method to design agent-based systems and solve the
related engineering problems (Niazi & Hussain, 2011).

The two major terminologies regarding the types of models, which are simulated with multi-
agent systems are Agent-Based Modeling (ABM) and Individual-Based Modeling (IBM).
Agent-based modeling is dated back to the early days of von Neumann’s self-replicating au-
tomata (Neumann, 1966) and mathematical constructs like Conway’s Game of Life (or simply
Life) (Gardner, 1970). The model of segregation by Thomas Schelling (Schelling, 1969) is
considered as one of the �rst agent-based models as he used the basic concepts of individual
agents acting in an environment and showing emergent behavior. Another early example
showcasing the multi-domain application of ABM is Robert Axelrods book titled "The com-
plexity of cooperation" (Axelrod, 1997), where he utilized ABM in the social sciences.

The term individual-based modeling was coined for ecology by Grimm & Railsback (2005).
Their understanding is that an agent should solely represent an individual being in contrast to
the ABM concept where an agent might just as well be a complete system, a piece of hardware
or anything else that is allowed to be autonomous and act independently in its environment.
Therefore IBM can be seen as a specialization of ABM, that is widely used in ecology and
adjacent scienti�c disciplines. However the de�nition of ’individual’ depends on the modeled
scale as well. When modeling on the landscape scale, a city or a community of people might
su�ce as an individual given the larger scale the model uses, while a model focussing on local
or regional agricultural developments will more likely consider single farmers as individuals
and thus as agents. This is why the predominant reception of the term refers to the precise mod-
eling of individual entities from the real world rather than to describe the level of scale to look at.

The MARS group currently focuses on ecological models in alignment with the de�nition
of individual-based modeling. The remainder of this work will thus use IBM as the term to
describe the MARS models.

3

1 Introduction

Modeling & Simulation as a Service

This work describes the development and investigates upon the scalability and performance
of a Modeling & Simulation as a Service (MSaaS) system. It is therefore important to provide
context for the terminology of the name and its origins.

An early overview of web based modeling and simulation can be found in Narayanan (2000)
but the term MSaaS is just being used by researchers in their publications since the Grand
Challenge for Modeling & Simulation workshop in Dagstuhl, Germany in 2012 (Taylor et al.,
2012) and has since been investigated on several other important conferences like ACM SIGSIM
2013 (Taylor et al., 2013) or WinterSim 2014 (Taylor et al., 2014; Tolk & Mittal, 2014). The MARS
group also made their contribution by describing the term in an early publication about their
system (Hüning et al., 2014) and with a recent publication about the current state of the MARS
system (Hüning et al., 2016). A speci�c de�nition of MSaaS is provided by Cayirci (2013) and
follow-up papers (Johnson & Tolk, 2013; Padilla, 2014) express the interest in and necessity of
cloud-based model ing and simulation. First implementations of cloud based systems like the
large-scale urban systems simulation SEMSim (Zehe et al., 2015) or N2Cloud, a neural-network
cloud-based simulation platform by Huqqani et al. (2010), are also available.

MSaaS systems are expected to deliver scalable simulation execution by means of a browser
accessible user interface suitable for domain experts. The interface should allow to use collected
research data like csv �les, time-series and GIS �les, provide a code-less way of modeling at least
for simple models and o�er possibilities to explore the result sets created. Data con�dentiality
is among the most demanded features for both uploaded and created datasets throughout the
system. All in all the simulation community hopes for MSaaS to be a high quality, highly
available toolkit, which allows to directly start modeling and simulating without the burden of
setting up and maintaining large, complex computing resources.

1.1 Why Scale Ma�ers

Getting emergent behavior from a model is one of the main drivers when IBMs are developed.
By describing each agent type and individualizing it by using collected or scienti�cally created
datasets during initialization the sum of all agents is capable of producing results not achievable
by models which work with stochastic assumptions and large scale aggregations. Or as Gilbert
& Bankes (2002) put it: "(...) the ambitions of modelers are constantly rising, and there are
problems for which the behavior of one million agents is signi�cantly di�erent from that of 100.".

4

1 Introduction

The MARS group is currently developing a large-scale model form the �elds of sociology,
ecology and economy with a focus on South Africa. A brief description of an early and simpli-
�ed version of this model is given in section 4.3. From what the agents do, this model would be
classi�ed as a "gap replacement model" by Perry & Enright (2006) as it simulates individuals
and their lifecycle in a bounded space. The di�erence is however that the landscape scale
of the MARS model would only be possible in a spatially explicit landscape model (SELM)
according to Perry & Enright (2006) as these cover large areas and combine IBM with GIS data.
The authors state that it might become feasible to have an IBM on a landscape level because of
newly available computability capabilities (page 66).

Another model developed by MARS group member Lukas Grundmann aims to model the
human immune system in an individual-based way. This biological model makes a strong case
for working on a large scale as is stated by Wendeldorf et al. (2011) : "Large scale network
models are particularly important for immune simulators to reproduce a true cellular dynamics
of a in vivo system where cell concentrations can reach 108 / mL (Haase, 1999)".

Additional examples for large-scale models from ecology are presented by Hilbers et al. (2015),
Childress et al. (2002) and Muller et al. (2011). Another suggestion for the usage of large-scale
agent-based models to help economy policy-makers is presented by Farmer & Foley (2009) and
a use case for solving transportation demand issues is provided by Balmer et al. (2006). To sum
up, the necessity of being able to simulate massive simulation models on varying scales in time
and space is clearly evident.

1.2 Hypotheses

MARS has been developed by many people and consists of a growing number of di�erent
services, libraries and concepts. For some of which a variety of implementations are available
(i.e. the Environment Service Component, ESC). Performing a proper analysis of the overall
system requires a breakdown into several smaller hypotheses, which then can be systematically
looked into one by one.

Given the amount of virtualization being used in the MARS infrastructure setup (compare
chapter 4.1.1) the impact on performance should be considered. The assumption however is
that there is no signi�cant overhead regarding CPU and memory performance due to the usage

5

1 Introduction

of modern virtualization technologies and thus the �exibility that comes with virtualization
may be utilized.

H1 The �exibility gained by using virtualization technologies like KVM and Docker is not
diminishing CPU or memory performance.

MARS LIFE has been developed for modern multi-core machines and should be capable to
leverage all available resources of a single machine. If the same model is run on a single
machine with more resources, MARS should scale up.

H2 MARS LIFE scales vertically when more CPU cores and/or main memory is available.

Provided that H2 is true, MARS LIFE shall be able to scale across several hosts. Considering
the amount of overhead introduced by the necessary serialization and communication, this
kind of distribution is only reasonable for a model which completely consumes the resources
of a single host.

H3 MARS LIFE scales horizontally when more machines are added to a LIFE cluster and if a
single machine is working to capacity with the simulation model at hand.

The original design of MARS LIFE (called "RUN" back then) de�ned that each agent would
use another layer’s interface to explore and �nd agents residing on that layer. During the
development of MARS however this concept has been neglected and an environment solution
to integrate all agents from all layers has been developed by Florian Ocker. It turned out that
this solution is not optimal when used with large agent amounts. Therefore H4 aims at testing
the impact on performance of the Environment Service Component in its various possible
setups.

H4 Using a polyglot ESC per layer outperforms a centralized ESC in distributed runs.

The AgentShadowing mechanism used in the distribution of layers and agents works with
an enhanced version of the classic proxy pattern. An agent has to be resolved against the
AgentShadowing service and in case of a remote agent, a proxy is returned instead of a local
reference. These proxies may either be pre-initialized during the initialization phase of a
simulation start or on-demand when need arises. Though having the system all wired up
sounds promising, convenient and fast it can be assumed to require a lot of memory and CPU
time to create all proxies in a large simulation.

H5 On-Demand creation of agent stubs is equally or more e�cient than a complete pre-
initialization.

6

1 Introduction

MARS LIFE features a fully automated model initialization mechanism. The implementation is
capable of initializing special layer types like the GIS and time-series layer as well as to create
agents based on a con�guration, which has been assembled in the Websuite. During the agent
creation process LIFE will fetch data from various databases and use C# re�ection to analyze
the agent type’s constructor and call it with the correct set of parameters.

H6 The fully automatic model initialization scales with linear complexity when run on
multiple nodes.

1.3 Structure Outline

This work aims on analyzing the performance and scalability of the MARS LIFE simulation
system, which is embedded in the overall MARS MSaaS system. To clarify the origins and
developments which lead to the creation of MARS and its features Chapter 2 introduces
a brief historical overview of IBM with Multi-Agent Systems (MAS) in ecological science,
features recent related work in a number of categories, that are relevant to the topic of scalable
architectures, provides an overview of system requirements for MSaaS and �nally describes
the current state of the MARS System. Chapter 3 provides an in-depth presentation of the
implemented MSaaS system MARS, the related work�ows and used techniques and technology.
Chapter 4 describes the infrastructure setup, which has been build and is currently used to run
MARS and also details the experiments used to validate or falsify the hypotheses. In chapter 5
results from the experiment execution are presented and chapter 6 �nally draws a conclusion
and provides an outlook towards future research and development.

7

2 Methodology

2.1 IBM in Ecology

2.1.1 First Steps

For more than 25 years, ecologists and social scientists among others are busy researching
how the usage of multi-agent-systems may help to understand their areas of research more
deeply and completely.

Although occasionally explored by others before, Huston et al. (1988) where among the �rst to
make a profound statement for the bene�ts of Individual Based Modeling (IBM) in ecological
science. They point out essential rules of biology that were violated by models used so far,
with the two major rules being, that every individual is di�erent and that actions between two
entities are inherently local.

They further �nd that those phenomenons cannot be depicted correctly by state-variable
models and thus make their point towards IBMs.

2.1.2 Ten years of ecological modelling - A review

Eleven years later Grimm (1999) reviews the evolution of IBM since Huston et al. (1988) stated
their usefulness and develops "heuristic rules of individual-bases modeling". Grimm (1999)
shifts the question from if and why someone should use IBM to how one should develop
IBM based simulations. His rules are derived from a review of ecological models created and
published between 1988 an 1999 and thus aim to provide a general approach for everyone who
wants to create such a model of his own.

His �rst rule sounds as simple as it is important: "Individual-based modelling is modelling". He
wants to make sure, that albeit IBM promises emergent e�ects from a group of more or less
independent agents, this e�ect does never happen without proper modelling, as this activity
means to really understand the problem at hand.

8

2 Methodology

Another rule says that one should "Change the level of aggregation". This refers to the
need of using the right level of detail when modelling reality. A too general level could ignore
important facts in an underlying level, while a too detailed level could loose focus of the pattern
one wants to model. Thinking about these matters leads to the question whether a scale-down
or scale-up approach is better suited when designing a new model. Grimm (1999) states that
starting with a detailed model and then moving up to a more general one, would produce some
quite interesting insights on the di�erent levels of aggregation, though no one would really
want to abandon a working detailed model, which is why this scaling-up approach is not really
used too often.

Instead the scale-down approach is far more useful as it allows to recreate a general pat-
tern within the simulation and then add detail to it by going down while continuously assuring
that the overall pattern is still valid. This also allows to leave each aspect of the model at a
di�erent but suitable level of aggregation while going down the hierarchy.

Figure 2.1: Mutual relationship of top-down and bottom-up approaches in ecological modelling.
Source: (Grimm, 1999)

9

2 Methodology

Comparing IBM with state-variable modelling means comparing a bottom-up approach with
a top-down one. Figure 2.1 shows the mutual relationship between these two complementary
approaches as Grimm (1999) sees them. They are complementary because each on its own
does not lead to su�cient results. In the top-down approach you make a general assumption
on the top level that then will be applied to each individual entity you �nd on the bottom end.
This clearly might lead to wrong results in a multitude of cases. The bottom-up approach on
the other hand emerges from individual models for each di�erent entity but might run into
trouble if it is not clear what you want to know at the top end. So to avoid both problems
it turns out to be a good idea to combine the two approaches by validating the results from
bottom-up IBM against the general patterns of top-down state-variable models.

2.1.3 Integrating Models

As more and more ecological models were created and programmed over the years, more and
more paradigms and ways of implementation of these models emerged. With that another
interesting aspect of IBM came along, the integration of di�erent models. The idea is simple.
Connect and integrate domain speci�c models from domain speci�c experts to create a new
super model of a certain domain. If for example you would want to create a large scale model
of the ecosystem of a national park in south Africa, it would be very helpful, if you could use
existing models of elephants, cheetahs etc.. Actually doing that, turns out to be much more
di�cult, since every group of scientists working on a model uses another, individual paradigm,
architecture, programming language, data format and so forth. Villa (2001) proposes his
Integrating Modelling Architecture (IMA) for hat purpose. He singles out three characterizing
dimensions for connecting di�erent models:

Representation A uni�ed semantic relating to the depiction of space, time and behavior in
every respective model is needed.

Domain A clear distinction between the domain spaces of each sub-model must be made.
In particular this relates to the input and output parameters which are valid for each
sub-model.

Scale Data, which is exchanged between models, must be compatible or translated in space
and time dimensions.

A recent contribution to the Scale dimension has been made by Thiel-Clemen (2013a), who
proposes a data warehouse based information integration process on the simulation data.

10

2 Methodology

These dimensions target the di�culty when technically connecting di�erent models. A more
functional view has been made by Liu et al. (2007) who take a look at the complexity of coupled
human and natural systems. Their integration e�orts aim at taking interdisciplinary research
on a broader scale into account, as well as exceeding local and temporal boundaries when
modelling certain ecological system. As shown by their �ndings, almost every ecosystem today
is tightly coupled with its neighboring economic or social systems and thus these need to be
taken into account when watching the evolution of that ecosystem. Filatova et al. (2013) move
even further and demand that the corresponding aspects of ecological systems like economy,
social systems and bio-physical dynamics need to be integrated into the representation of a
heterogeneous landscape representation.

2.1.4 Summary

The discussion today circles around the �elds of model re-usage (Holst (2013)), model in-
tegration (Filatova et al. (2013), Le et al. (2010), Liu et al. (2007), Villa (2001)), which makes
distributed, parallel simulation execution (Cicirelli et al. (2010), Wang et al. (2009), Wang et al.

(2012), Bellifemine et al. (2008), Thiel (2013), Vigueras et al. (2013)) necessary and the question
of spatial-temporal information integration (Thiel-Clemen (2013a), Filatova et al. (2013)) is
raised.
Since the above mentioned ideas produce a lot of computing complexity, the need for appro-
priate simulation tools and frameworks arises. Over the past years there have been quite a lot
approaches to this �eld, which will be further examined in detail in the next chapter.

2.2 Simulation Frameworks

Research in the MARS Group has been focused on large scale models, scalability and MSaaS
from the very beginning. Recent publications have shown that there is a growing interest on
these topics by other researchers. Therefore an overview of related work in the domains of
traditional, MSaaS and high-performance computing is provided.

2.2.1 General Solutions

JADE

One of the most famous frameworks is JADE (Bellifemine et al., 2008) which allows to execute
a simulation distributed across several JADE container processes or just locally in a single
container. JADE was developed in Java to create a reference implementation of the FIPA agent

11

2 Methodology

speci�cation (http://www.�pa.org). The performance of JADE has been extensively investigated
by Mengistu et al. (2008). Their �ndings show that JADE has signi�cant performance issues
in the �elds of communication and agent migration due to the usage of the LDAP protocol
and slow message transport services. JADE’s Lookup-Directory-Service also is measured
to be slow, which is caused by not using local caching on the respective nodes. Mengistu
et al. (2008) propose improvements to both mechanisms and present promising results from
experiments they conducted. However a more recent investigation of JADE’s performance
seems appropriate, given that the paper is almost 6 years old.

GAMA

GAMA (Amouroux et al., 2007) is a modeling and simulation framework which is based
on RepastJ. It features a nice model description language, called GAML, which allows non-
programmers to create complex models. GAMA is written in Java and thus executable on all
Java enabled systems. A very strong feature of GAMA is its visualization feature, especially
when it comes to using GIS data. An easy import function allows to quickly create a scenario’s
environment and visualization from a GIS �le and thus allows for a quick integration of that
kind of data.

The downside of GAMA is, that it’s not possible to distribute the system and that it does
not scale well across multiple CPU cores. In fact when testing GAMA, it actually used only
just up to 4 cores while running on a 24 core machine. While testing GAMA was found to
have a performance threshold around 80.000 agents, with one simulation step taking more
than 800ms on the aforementioned machine.

WALK

Also from 2013 comes a solution with strong focus on evacuation scenarios which has been
developed here at the Hamburg University of Applied Sciences and is called WALK (Thiel, 2013).
It features a dynamic (re)partitioning and distribution of agents across several compute nodes
and is thus capable of running simulations with hundreds of thousands agents on commodity
hardware. In fact Thiel (2013) showed in his �nal tests that WALK can run a 300.000 agent
random walk simulation in near real time. Also remarkable about WALK is, that its agents
pass the RiMEA tests and thus provide a pretty good behavior. As a recent addition Stefan
Münchow added support for leadership models and social behavior to the agents implemented
in WALK. These additions show very promising results and create a very high interest in
re-using the leadership concept from WALK whenever human agents are explored.

12

http://www.fipa.org

2 Methodology

Vigueras

Another interesting architecture (Vigueras et al., 2013) proposes an almost completely asyn-
chronous, distributed simulation execution to implement interactive simulations, that may be
visualized in near real-time. The only time Vigueras et al. (2013) synchronize the execution of
their agents is, when they happen to act or move beyond the boundaries of their respective
environment patch.

When it comes to visualization of the simulation Vigueras et al. (2013) utilize visualization
nodes (VS) that also act asynchronously on the distributed nodes. Each VS has a camera-style
de�nition of its �eld of view and may thus only ask those nodes for information containing
parts of the environment, which is in that �eld of view. This is very contrary to other visu-
alization approaches (e.g. GAMA, NetLogo), since it does not attempt to visualize the whole
simulation at once.
Considering the amount of agents and the sheer sice of simulated space in our upcoming
scenarios, this approach might become very valuable.

2.2.2 Cloud-based Solutions

The term MSaaS as de�ned by Cayirci (2013) refers to Modeling and Simulation as a Service.
Modeling as a Service describes the capability of creating the actual simulation model though
the o�ered service, while Simulation as a Service usually means the service assisted execution
and evaluation of simulation models. Another feature of MSaaS solutions is that they are o�ered
though a cloud service. Three recent contributions to that category of MAS are presented
below.

mJADES

mJADES (Rak et al., 2012) is a SaaS framework which as a cloud application allows the user
to run multiple simulations in parallel. The name of mJADES and its technology is based on
the cloud middleware mOSAIC and the simulation library JADES. JADES is implemented in
the Java programming language. While MARS is a multi-agent system mJADES uses Discrete
Event Simulation as simulation technique.

C2SuMo

C2SuMo (Cloud-based, Collaborative, and Scaled-up Modeling and Simulation Framework for
STEM Education) (Caglar et al., 2015) is a SaaS framework for tra�c simulations. It uses SUMO,

13

2 Methodology

an open source road tra�c simulation package, and enables scalability by employing multiple
SUMO simulators in the cloud. Like its name says, C2SuMo is developed to support education.
Therefore it simpli�es the SUMO interface to provide a more intuitive way for high school
students creating tra�c simulations.

SEMSim

There is another SaaS tra�c simulation service called SEMSim Cloud Service(Zehe et al., 2015).
It is agent-based, web-based, uses cloud computing to execute multiple simulations at the same
time, enables multi-core usage and provides a real-time visualization for running simulations.
Based on these attributes SEMSim CS exhibits great similarity to MARS. But a main di�erence
consists in the supported simulation domains. SEMSim CS is made for tra�c simulations while
MARS makes no assumptions regarding the model domain.

2.2.3 High Performance Computing

PDES-MAS

PDES-MAS by Suryanarayanan et al. (2013) is short for Parallel Discrete Event Simulation.
The whole multi-agent system is modelled from logical processes, which may be distributed
across several compute nodes.

PDES di�erenciates two types of logical processes (LP). Agent Logical Processes (ALP) model
the agents’ behaviour, whereas Communication Logical Processes (CLP) represent communi-
cation and interaction betweend agents. The overall paradigm used to model the latter are
Shared State Variables (SSV), which hold all information important to the simulation and are
changed concurrently by the agent processes. SSVs reside in the CLPs.

The scalability problem is now solved by arranging the CLPs in a tree of prede�ned �xed
size and with the ALPs as leafs. So each ALP is directly attached to a CLP which allows for a
possible colocation of logic and data. At initialization all SSVs are placed in the root node of
the CLP tree. As the ALPs start working, the SSVs are being repartitioned to CLPs residing
closer to the accessing ALPs. This process is called State Migration by the authors.

All ALPs are executed by a round robin scheduler and manage their own local virtual time
(LVT). This local virtual timestamp is used by the SSVs in the CLPs when there is need for a
rollback. Also each SSV stores a history of recents changes, mapped by the LVT. Rollbacks are

14

2 Methodology

needed when the tree gets repartitioned and / or messages between nodes get lost or are delayed.

Throughout the tests the authors conducted, it became apparent that there is an optimal
number of CLPs for a given simulation and ALP count. If the ALP / CLP ratio is too low,
e.g. there are too many CLPs, the overhead of reorganizing and initializing the whole tree
becomes too large. If there are too less CLPs on the other hand, the bene�t of distribution is lost.

It has to be noted that the concept of PDES-MAS looks rather similiar to that of TupleSpaces /
Linda from Gelernter & Carriero (1992) as it implements the concept of a distributed shared
memory. This system, though scaling very well, raises questions when it comes to usability.
Suryanarayanan et al. (2013) don’t present a solution for importing data, visalization or an
easy enough way to implement a model. The aspect of model reusability could also become
very complex as a sub-model is fully integrated with all other sub-models due to the usage of
shared state variables. It can be expected to be very di�cult to cut out a single sub-model out
of the whole set of SSVs.

Repast HPC

Collier & North (2012) present Repast HPC as a distributable fork of RepastJ or Repast Sym-
phony as the latest version of the famous simulation framework is called. Collier & North
(2012) motivation to build a large scale MAS is very similar to that of the MARS groups’. That
is to allow large-scale model simulation instead of optimizing a smaller-scale model by running
many parallel simulations of the same model.

Repast HPC translates models into working simulations through a concept of agents, contexts
and projections. A context is a set of agents, whereas the term set corresponds to its mathemat-
ical de�nition. Projections at last use contexts to model the environment. This structure allows
for multiple agents to take part in multiple environments, as well as to reuse certain projections.

To distribute a simulation Repast HPC uses a concept called Shared Projections. The en-
vironment created by a projection basically is a 2D grid due to the usage of the Logo language.
This grid is sliced and then distributed across several processes. The slices are created by means
of an in�uence sphere, which represents the space an agent is or may be active in. To optimize
communication a shared grid bu�er is attached to each slice. The bu�er holds non-local agent
stub objects from the neighboring slices and thus allows for changes / interactions to be made
locally at �rst. The system then distributes the changes to the corresponding home objects in

15

2 Methodology

the other processes and takes care of synchronization matters.

Just like Suryanarayanan et al. (2013) the work of Collier & North (2012) provides a very
scalable solution, which also allows for model reusability through its projections and contexts.
However the communication and distribution algorithms rely on a strong localized behavior of
agents. It would be interesting to observe performance of the system with a simulation model
lacking this feature.

From a usability point of view the communication and synchronisation mechanisms seem to
lack usability, since the user has to provide speci�c pieces of code for each class he wants to
take part in it. A more transparent solution would be highly desireable.

Also it must be noted that Collier & North (2012) used high-end super computing hardware
(IBM BlueGene cluster with up to 65.536 cores and In�niband network) which makes it ques-
tionable how the system will run and scale on commodity hardware. The latter would also
allow smaller research teams to make use of the system.

The intense usage of the Logo language paired with RepastHPC only supporting 2D en-
vironments, mark clear restrictions towards the models, which can be implemented. It is rather
complex and uncomfortable to map a 3D environment onto a 2D representation. This could be
observed during the development of the WALK system (Thiel, 2013). In terms of development
the authors provide the information that a skilled developer with good knowledge about both
RepastJ and RepastHPC was able to translate an epidemiology model approximately within a
week.

Collier & North (2012) do also not address the problem of data import, but it can be as-
sumed that we will see that feature in the near future, since Repast Symphony is pretty strong
in that �eld. The same may be true for the challenge of visualization. While GAMA (a fork of
RepastJ by Amouroux et al. (2007)) has very good visualization features, RepastHPC currently
only supports the creation of a global log�le with results from the simulation.

GSAM

The Global-Scale Agent Model (GSAM) (Parker, 2007; Parker & Epstein, 2011) is a distributed
multi-agent system implemented in Java. It was prominently used to simulate an infectious dis-
ease model of the H1N1 virus on a global scale with 6.5 billion agents. However this approach

16

2 Methodology

uses a simpli�ed assumption that includes an active-set of agents. Only these agents need
to be computed during one execution iteration, since the infection model only features the
states of being infected, contagious or neither of both, and thus disables the need to execute
the bunch of agents, which are neither infected nor contagious.

The architecture featured in GSAM de�nes so called ModelBlocks which contain a certain
number of agents and cover a certain region. These ModelBlocks may be distributed across
multiple compute nodes in advance, and communication between agents in di�erent blocks
is implemented by means of Java RMI in conjunction with a bulk communication approach.
The bulk communication pattern boosts performance, but also implies to delay messaging up
to a certain degree. This is only possible due to the nature of the featured model, since the
duration of each agent’s state are well known during development and thus can be utilized as
a maximum delay time.

The presented system is very impressive in simulating 6.5 billion agents on a global scale
within a reasonable amount of time. However the assumptions and optimizations undertaken
by Parker & Epstein (2011) are unlikely to be transferable to a lot of other models from di�ering
domains. For example the active-set approach is not eligible in more individual driven models,
where it cannot be predicted when, how and by whom the state of a model might change or be
changed.

2.2.4 Case Specific Implementations

LUDAS

LUDAS (Land-Use Dynamic Simulator) (Le et al., 2010) implements a social-ecological, land-
use/cover change (LUCC) model featuring four components, which implement human popula-
tion including behavior, the environment, various policy factors with focus on land-use choices
and lastly a decision making procedure which integrates the �rst three features. The model
simulates "a watershed in Vietnam for integrated assessments of policy impacts on landscape
and community dynamics". The implementation has been done in NetLogo and thus does not
provide a very high performance, but showcases the scenario pretty nice.

It is not performance nor distribution which makes LUDAS interesting, but the great in-
tegration of LUCC components into a working simulation scenario. If that model can be

17

2 Methodology

translated into a larger, more capable software architecture, it could provide some very decent
results in future, larger scale LUCC simulations.

MASE

MASE (Ralha et al., 2013) is another LUCC simulation which targets the development of robust
land-use strategies. The showcase features a region called Cerrado in Brazil. Whats remarkable
about MASE is, that it utilizes a methodical, empirical parameterization process for human
behavior, which has been developed by Smajgl et al. (2011). The implementation has been done
with JADE (Bellifemine et al., 2008) and Matlab.

2.3 Requirements

This section provides a summary of the most important requirements found for a modern
simulation system. Findings from various corresponding work as well as the experience from
the MARS project group (http://www.mars-group.org) are also featured.

2.3.1 Modularity and Reusability

As shown (Liu et al., 2007), almost every ecosystem today is tightly coupled with its neighboring
economic or social systems and thus these need to be taken into account when watching the
evolution of that ecosystem. Filatova et al. (2013) go even further by demanding that the corre-
sponding aspects of ecological systems like economy, social systems and bio-physical dynamics
need to be integrated into the representation of a heterogeneous landscape representation.

The integration of existing models is one of the most important requirements resulting from
this circumstances. This can only be done if models or their parts, are designed in a modular
and reusable manner. The idea is to connect and integrate domain speci�c models from domain
speci�c experts to create a new super model of a certain domain or to reuse sub-models in
completely di�erent domains. If for example one would want to create a large scale model of a
given ecosystem in south Africa, it would be very helpful, if already existing models of certain
components, such as animal behaviors, weather, land erosion and so on could be reused.

Comparison is another aspect that could pro�t from modular and reusable models. If it
was easy to integrate most of the models available, models could be run directly next to each
other, consuming the same data, allowing for example to perform real-time digression analyses.

18

http://www.mars-group.org

2 Methodology

Actually integrating models turns out to be extremely di�cult, since each group of scientists
working on a model, tends to use another, individual, paradigm, architecture, programming
language or data format. A good solution should address this problem.

2.3.2 Information Integration

Data is of huge importance in simulation. It is needed for nearly all tasks from generation
of hypotheses, over simulation initialization and calibration to validation. Unfortunately the
data that is being collected, has a tremendous heterogeneity in terms of temporal and spatial
resolution, reference formats, completeness and error margins. To be viable in a simulation,
this data has to be integrated. It must be carefully corrected, the resolutions have to be aligned,
the error must be treated.

Furthermore the relevant data of all the available must be singled out and connected. Since
the MARS group focuses on spacially explicit simulations, a special point is also to link data
without any further reference together to establish a common context. For example we might
be designing a model for an animal species in a wildlife reserve somewhere in Africa. For
one concrete simulation it could be necessary to include weather data for the whole region,
topology data of the general landshape, as well as a rough overview of vegetation types and
population metrics for certain species in that area.

A simulation framework should assist domain experts with all the steps involved: GIS imports,
data collection, data analysis and possibly transformation. These tasks target the di�culty
when technically connecting di�erent models. A more functional view to the importance of
information integration has been made by (Liu et al., 2007) who take a look at the complexity
of coupled human and natural systems. Their integration e�orts aim at taking interdisciplinary
research on a broader scale into account, as well as exceeding local and temporal boundaries
when modelling certain ecological system.

2.3.3 Scalability

Although it should always be the goal of a modeler, to design everything as simple as possible,
some things are inherently computationally intensive. There are several scenarios that, often
in combination, prohibit simulation execution on a single computer within reasonable time
frames. First of all the agents themselves are becoming more complex, in order to replicate
natural behavior. This is especially true for animate objects, such as for example animals or

19

2 Methodology

humans. To come close to the real world, the modeler might need to use computationally ex-
pensive techniques, such as learning or planning algorithms, path-�nding, collision avoidance
and others, often even simultaneously. And the more models are integrated, the more of those
techniques are likely to occur.

As the �eld of multi-agent systems research matures, the applications get also bigger, re-
sulting in a larger number of agents. Imagine for example a continuous �eld with an average
agent density of one agent per square meter accordingly; the system has to handle about 100
agents. Now, if the length of the �eld’s sides is only doubled, the computational e�ort increases
fourfold, in the three-dimensional case even eightfold .

The real world areas of interest are steadily growing larger, further intensifying this problem.
This is especially true, when a model is used to forecast future developments of its real world
counterpart. Initially mostly used for the understanding of dynamic systems, IBM is likely to
be used increasingly for large scale prognosis as well.

Of course it may sometimes be possible to avoid the problem by extrapolating from a sample
set of agents to the bigger scenarios. But that would in return diminish the factor that sets
apart IBM from other simulation techniques: the ability to track individual agent’s actions and
states. Also, depending on the system, some desirable emergent properties of the real system
are only achievable with a realistic density of agents. For example Yamamoto et al., 2008 found
that massively increasing the amount of agents in an auction simulation, signi�cantly changed
the outcome of the simulation.

The most promising solution to really solve this problem, is to make the simulation sys-
tem scalable across multiple computers. Research budgets are not limitless, so it is important
to target commodity hardware or a�ordable compute clouds. Scalability by de�nition means
the computation speed of a single simulation run increases by a constant factor per added
compute node.

2.3.4 Ease of Use

To be useful for and accepted by experts of other domains than computer science, a simulation
system should also be as accessible as possible. There are two aspects are important emphasize
in this context. One is the usability of the general toolset. All user interfaces, processes and use
cases should be addressed with the �nal user in mind and what s/he most likely expects the

20

2 Methodology

system to be like. The other aspect is the way provided by the simulation system to model the
actual questions. Speci�cally a good solution should address and overcome the gap between a
domain speci�c model and its corresponding technical representation in the simulation system.
This means users should be able to create a model without having to deal with technical details
of the underlying simulation framework in the �rst place. Once a model grows more complex
it might however not be possible to hide all facets of implementation anymore.

2.3.5 Visualization

Since large scale simulations with millions of agents are required, a visualization solution that
copes with these numbers must be found as well. Current graphics engines and hardware that
allows to render these numbers in real-time at once to the screen are simply not available at
this time.

Therefore the solution should be able to visualize only a speci�ed section of the whole simula-
tion space. It further is required for that section to be dynamically movable and resizable.

It should also be possible to read out more detailed agent states on-demand. However a
visualization will most likely be used to sanity-check the model in early stages of development
and for presentational issues. Scienti�c evaluation requires di�erent tools, which are described
in the next section.

2.3.6 Scientific Analysis

Evaluating the output of simulation models usually involves quantifying key indicators and
using statistical methods on the output to draw conclusions regarding the initial research
questions. Traditionally simulation output gets written to �les and is then analyzed by the
researchers with their tool of choice (i.e. R, Excel, Python etc.).

Given the potential scale of the output from a simulation model with millions of agents and
the cloud-based nature of the proposed system, renders this approach quite questionable, since
the output may easily become several gigabytes or even terabytes in size. Therefore a good
solution should feature online accessible analysis tools which can work with that amount of
data. An integration of widely used frameworks like for instance R would be desirable. Since
GIS data is widely used as input for simulation models, it should also be possible to generate
new GIS data sets from the resulting output.

21

2 Methodology

2.4 MARS System

2.4.1 Overview

The MARS system is conceptualized as a Modeling & Simulation as a Service system. This is
an important di�erence to other simulation frameworks. Every phase of the modeling lifecycle
can be realized without installing additional software packages on the computer of the domain
expert. Instead she or he accesses all functionality of MARS through a user friendly web
interface. MARS is hosted and maintained by the MARS Group at the University of Applied
Sciences in Hamburg.

These system features have been extracted from the MARS team’s experiences in developing
public transport disease spreading (Noetzel et al., 2013) and crowd evacuation models with the
predecessor version of MARS called WALK (Münchow et al., 2014). It quickly became apparent
that consolidating required datasets, model design decisions and the discussion of results were
too ine�cient when working in geographically distributed teams, without a system supporting
that work�ow.

2.4.2 Concepts

Roles in the MARS Framework

Users of systems like MARS are mainly domain experts. They want to utilize the capabilities of
multi-agent simulations to gain a better understanding of the complex systems they consider
in their research. Since creating, using and analyzing a simulation model is rarely done by
a single individual, the accommodation of each domain expert or group of experts with at
least one tandem partner to deal with the more technical aspects of model implementation and
simulation execution is proposed.

Therefore, within the MARS system a number of user roles are de�ned and supported:

Modeler A domain expert who creates the model to be used in the simulation.

Model Implementer A computer scientist developing the code for the model utilizing MARS
APIs and libraries.

GIS & Data Scientist An expert in the �eld of data integration and GIS operations, who
prepares datasets to be used by the simulation model and manages these datasets within
MARS.

22

2 Methodology

Of course one person may be assigned to more than a single role.

MARS Modeling Paradigm: Layers & Agents

The basic concept in MARS are agents and layers. That allows a uni�ed way of developing
MARS simulation models. This concept is essential and it must be used in every model. This
section outlines the basic idea and showcases the application of layers and agents in the exam-
ple model from section 4.1.3.

The layer concept is inspired by the way GIS data is composed. These �les are structured in
layers, where each layer represents a speci�c aspect. This aspect may be an agent type as well
as a part of the environment.

This idea is translated to a general approach for modeling the implementation of our simulation
system. A domain-speci�c model is transformed into working code by writing a layer for every
aspect of the conceptual model. An aspect should be a considerable sized, self-contained but
yet manageable piece of the original model. The layers represent the environment into which
the agents are placed. Figure 2.2 shows a layer model of the KNP simulation model used in this

Figure 2.2: MARS Layer concept example from KNP model.

paper. The bottom level keeps the digital elevation map (DEM). Internally it is represented by
a GIS shape�le in a resolution of 90 meters. Waterpoints, trees and elephants are represented
as agents, which are placed on their corresponding layers. Finally a number of time-series
layers are de�ned, which are a special type of layer used to handle multi-scale time-series data

23

2 Methodology

from a database located in the MARS cloud.

This approach applies best-practice techniques from software engineering, e.g. separation-
of-concerns. Hence layers could be seen as components with interfaces to each other. Each
layer may expose well-de�ned operations to other layers through its interface. Agents may
use the exported interfaces to access o�ered properties and services. MARS libraries provide
capabilities to de�ne sensors for agents, e.g. discover their surrounding environment. Thus,
like in a service oriented architecture each layer is self-describing to external users and enables
an agile way to compose and reuse agent and layer components.

Types of Layers

MARS currently provides three di�erent base types of layers:

Basic Layer A blank layer, which has to be implemented by the user. Agents and environment
are de�ned here.

GIS Layer A pre-implemented GIS layer. MARS is capable of �lling this layer with a provided
GIS �le either in SHP or ASC format. Refer to section 3.2.1 for further information on
how to map data to such a layer. The layer allows to query for data based on a position
or a geometry, which includes polygons, multi-points and lines.

TimeSeries Layer A pre-implemented layer to access time series previously stored in the
MARS ecosystem. The layer allows to query for data based on time and position.

24

3 Implementation

3.1 MARS Workflow

MARS follows a modeling and simulation work�ow as shown in �gure 3.1. This work�ow
is designed to be executed in a number of iterations, which include continuous re�nement,
simulation and validation of the model. In the �nal stage the results of the model are ready
to be used in publications or further research. Usually the modeler starts by creating the

Figure 3.1: MARS Layer concept example from KNP model.

conceptual model according to the research question (Thiel-Clemen, 2013b). It might be useful
to consult a computer scientist, when translating a conceptual model to a technical MARS
model for the �rst time.

Once the modeler decides her or his model is complete enough to try a �rst simulation run,
the model should be discussed with a computer scientist to discover possible pitfalls, which
might occur throughout implementation or simulation. Sometimes the model code needs
additional information, which was not obvious during the more abstract modeling stage. Also
this discussion should be used to clarify certain aspects, since there might be ambiguities to the

25

3 Implementation

model developer when simply reading the model description and not having deep knowledge
about the domain. It should be mentioned that a modeler might write the model code himself,
if she or he is trained in programming with the C# language.

With the �rst implementation done, the model can be uploaded to the MARS Websuite. GIS
data and time-series data may be mapped to the simulation’s layers and agent attributes. The
data used in this step should have either been prepared (e.g. normalized) by a data scientist or
the modeler himself. This task should be done in parallel with the modeling process and the
data scientist should also partake in the discussion with the MARS developer.

The modeler can now trigger one or more simulation runs from the Websuite’s interface
and examine the results as a 3D visualization. A visual analytics page o�ers fundamental
diagram types. Additionally, MARS o�ers the capability to export the results as a CSV �le for
further analytics with R or other solutions. These results may be accessed as soon as the �rst
chunks of data are available from the simulation, thus a modeler does not have to wait for
the simulation to �nish. Validation of the results is the next step as designed by the MARS
work�ow. If fundamental errors are found in the results, the source of these errors will have to
be searched either in the source code or the conceptual model itself. Usually modelers will
work hand in hand with their tandem partner to �x these. In case the results are technically
acceptable, it must be decided whether the model needs further re�nement. If so, the next
iteration starts. As soon as the modeler is satis�ed, the results can be used in further work
and the MARS cycle ends. The result �les, model code, uploaded data and con�gurations will
persist inside the MARS system for later usage.

3.2 MARS Basic MSaaS Workflow

This chapter describes the MSaaS style work�ow o�ered by MARS to put the actual LIFE
simulation system into context. Most of the described subsystems are being created by other
members of the MARS team, who are referenced where applicable.

3.2.1 Simulation Model Preparation

After the conceptual model has been created and transformed into a MARS model (see �gure
2.2), it needs to be implemented by a computer scientist. This step has to be accomplished in
external development tools (e.g. Visual Studio or Xamarin Studio). The LIFE API is a direct
match of the layer-based MARS model and together with additional supporting libraries (e.g.

26

3 Implementation

for agent creation) streamlines this process. However an in-depth discussion of how models
are implemented would exceed the scope of this paper.

Once the model is implemented and uploaded, the domain experts may start working with
the Websuite. We start out by creating a project and a scenario inside of that project. Projects
are the largest organizational unit in MARS, while scenarios are more speci�c setups in a
project. A scenario de�nes wall-clock simulation timespan, temporal and spatial step size and
an optional spatial boundary. Figure 3.2 shows the corresponding form.

Figure 3.2: Scenario creation in Websuite.

For the KNP model several datasets are needed. A 90 meter resolution elevation map in
the SHP format is used for the Kruger National Park, a csv �le containing tree positions,

27

3 Implementation

another csv �le with elephant herd positions and size as well as several time series in CSV
format for temperature and precipitation data. All these datasets can be uploaded through the
Import Data dialogue. Depending on the type of data di�erent information has to be provided,
i.e. where and when the dataset has been collected, who is the owner of the data etc. Datasets
usually are available to all users of MARS, but can be �agged as being private to address data
con�dentiality concerns. This process has been implemented by Florian Forsthuber (UI) and
Mitja Adebahr (Import services).

After uploading the datasets, the user has to de�ne which compilation of data shall be used in
the selected simulation scenario. With MARS DEIMOS a tool is o�ered to review uploaded
data and perform a validation against the scenario de�nition in terms of temporal and spatial
scale and data availability. Once satis�ed with the selection the tool will create a specially
prepared compilation to be used in the next step. Note that MARS never alters the original
data. Everything is either stored as meta-data or as copies of the original �les, e.g. when a
transformation in another format is needed

The next and penultimate step is to map the selected datasets to the simulation model imple-
mentation uploaded by the computer scientist. This is achieved with a tool we call SHUTTLE
and has been developed by Florian Forsthuber. SHUTTLE will only show parameters of agent
constructors, attributed with "[PublishInShuttle]" in the model code, and further only those
parameters which are mappable from the outside. This excludes other agents or layers for
instance, since they will be injected automatically by MARS LIFE (see chapter 3.3.2]). SHUTTLE
provides a split-pane view featuring the extracted layers and agents from the model on the left
hand side and the provided datasets on the right. Users can now use the data mapping buttons
to dynamically create the domain speci�c language expressions in the middle pane, and thus
map each needed agent parameter to a column from the datasets.
Furthermore SHUTTLE exposes all GIS and TimeSeries layers and asks the user to map GIS and
table datasets respectively to them. Figure 3.3 shows this process. The result of SHUTTLE’s
mapping process is a SimCon�g �le, which will be used in the simulation run to automatically
initialize the simulation model with the data uploaded into the websuite.

3.2.2 Simulation Model Execution

The �nal step is about creating a SimulationPlan which will then be used to start one or more
SimulationRuns. The user creates a SimulationPlan by selecting a SimCon�g, a NodeCon�g
and providing a name. The NodeCon�g controls on how many nodes and resources the Simula-

28

3 Implementation

Figure 3.3: Data Mapping with SHUTTLE.

tionPlan will be executed. The SimulationPlan may then be started via the web user interface,
which results in a SimulationRun being created. Figure 3.4 shows the corresponding page used
in the process. Basic real-time usage statistics for CPU, memory and network load for the
current run are shown, when the SimulationRun tab is expanded.

When starting a model for the �rst time a Docker container image containing all relevant
�les is created. This image includes the needed C# runtime, model code, GIS �les and the
SimCon�g description. Once the image has been created, it is stored and can be reused. This
results in subsequent runs starting almost immediately. After the model container has been
started, MARS LIFE will automatically begin the model initialization by creating all layers in
the order of their dependencies and by using the mapped GIS and time-series �les. When the
layers have been put together, LIFE instantiates all agents according to the mapping created in
the SHUTTLE tool.

When run in a distributed manner with more than a single LayerContainer, LIFE automat-
ically takes care of remotely initializing all layers and agents. Dependencies for layers are
resolved by means of a LayerRegistry service.

29

3 Implementation

Figure 3.4: Starting a SimulationPlan from the Websuite.

3.2.3 Simulation Model Analyses

Once the model is running, �rst results are being sent to the Websuite and may be analyzed in
any of three ways.

3D Visualization

First a 3D visualization can be displayed. This allows users to quickly check whether their
simulation is performing in the way they envisioned. It is a particular good way to check for
movement patterns, areal distribution of agents and if overall areal boundaries are done right.
However a signi�cant performance impact has to be expected when using this feature, since all
information needs to be send to the visualization observer for every tick even though MARS
optimizes this by only sending the information currently inside the viewing cone of the virtual
camera. Figure 3.5 shows a sample visualization of the KNP model. The 3D Visualization
feature is being developed by Jan Dalski.

Visual Analytics

A visual analytics page featuring basic graph types and maps like heat maps, may be used to
create a dashboard for a SimulationPlan. The visualized data is updated in real-time as new
data arrives and is very useful to check a model’s indicator values as soon as they become
available. This allows users to stop and readjust long-running simulations in case something

30

3 Implementation

Figure 3.5: 3D visualization displaying data from the KNP model.

is o� right from the start. Also modelers can leverage the dashboard while optimizing their
models, without ever leaving the Websuite or having to download large data blocks for o�ine
analyses. Figure 3.6 displays the dashboard used for the KNP model. It has been created by
Janus Dybulla.

CSV Export

The third option is to download result datasets as CSV �les. This is necessary when the data will
be used in further research or when the capabilities of the visual analytics page are exceeded
and more sophisticated statistical or visual procedures need to be performed (e.g. in R). This
again is created by Janus Dybulla.

3.3 Architecture & Technology

3.3.1 Overview

MARS is deployed in two major parts. The �rst and most visible part is the MARS Websuite. It
hosts the website which modelers and model developers use to manage their data, con�gure

31

3 Implementation

Figure 3.6: A visual analytics dashboard for the KNP model featuring age distribution charts
and a biomass choropleth map. (J. Dybulla, pes. con.)

their simulations, start simulation runs and analyze the results. The second part of MARS is
the simulation system. It is instantiated and con�gured speci�cally for each simulation run
which is started through the Websuite. All output and results from the simulation system are
transferred back to the Websuite to be evaluated by the users.

The actual simulation component in the overall MARS architecture (Hüning et al., 2014)
is called LIFE. It consists of two main processes which make up the distributed simulation
system. The SimulationManager is the centralized controlling application for the simulation.
It manages the model, calculates the distribution and scheduling pattern, takes care of the
distributed initialization and �nally controls the simulation run. The LayerContainer houses
layers and agents, which are the two primary logical components MARS simulations are made
of. A LIFE system may be composed of any number of LayerContainers among which layers
and agents are distributed. Layers are treated like plugins by LIFE and thus are loaded on
demand when initializing a new simulation. This approach allows for automatic dependency
injection, when one layer depends on another.

32

3 Implementation

LIFE is completely implemented in the C# language. It can be run via the .NET runtime
system on Windows and via the Mono project on Linux and OS X. By that it resembles the
same platform independence as Java. However during development and deployment into
production the MARS team chose to solely use Linux Docker containers (www.docker.io)
for running the MARS Cloud infrastructure services and the actual simulation runs. Hence
MARS LIFE relies on the Mono runtime for C# (www.mono-project.com).

Well known Infrastructure and Platform as a Service (IaaS & PaaS) paradigms are used to host
MARS . To provide IaaS Linux KVM is used as virtualization technology and OpenNebula
as the management tool to operate virtual machines on top of available hardware. Linux
KVM (www.linux-kvm.org) and OpenNebula (www.opennebula.org) both are
open source projects and run on a wide range of hardware, which helps a great deal in achiev-
ing a cost-e�ective cloud environment. While hardware virtualization is provided by KVM,
Docker is used to virtualize all MARS Cloud applications. Docker allows to use the same
environment during development and production, which enables a very �uent deployment
process.

3.3.2 LIFE Simulation System

This section provides an in-depth technical description of the LIFE system.

Architecture Style and Specialties

Just as the MARS Websuite part of the MARS Cloud, LIFE is conceptualized according to the
Microservice architecture style (Fowler, 2014) . The SimulationManager and LayerContainer
however do not use REST interfaces for their communication, but rely on a more performant
binary protocol, since their communication is very time critical. Also these services are not
bound together via the usual gateway services (Net�ix Zuul & Eureka in the MARS case),
but are created on-demand through the Mission Control service and discover each other by
means of a NodeDiscovery service, which uses multicast messaging to advertise and �nd other
nodes. Another distinction to the pure microservice style is that for a certain operation one
may not simply call any instance of the corresponding LIFE service. So each LayerContainer
and SimulationManager in a deployment must not be exchanged with another instance and
calls need to be precisely addressed to a speci�c instance. This is due to the individual agents
and their state, which resides in-memory in each process. However this could be changed in a
future version if the need for fail-over or high-availability deployments arises.

33

www.docker.io
www.mono-project.com
www.linux-kvm.org
www.opennebula.org

3 Implementation

The applications are deployed as Docker containers from previously created images. This
approach allows to restart a simulation very quickly once the image has been created. Also an
image may be moved to other infrastructure setups or even to laptops, which also enables a
modeler to take a simulation with him (i.e. for a conference etc.).

Code Structure & Layout

The LIFE code base consists of two major projects, the SimulationManager and the LayerCon-
tainer. They are accompanied by additional LIFE Services, which are separate components, but
usually are solely used inside the LayerContainer. Both major processes share certain smaller
components grouped together in a namespace named ’Common’ for the more functional parts
and ’T-Components’ for very technical functionality. Figure 3.7 shows the major processes
and the most important smaller components. The ’Common’ namespace mostly contains

Figure 3.7: LIFE Code Map.

helper classes or commonly shared interfaces. Hence the name. An exception to that is the
NodeRegistry, which is used by every LIFE process during startup to �nd other LIFE nodes
belonging to the cluster.

34

3 Implementation

Code which is directly used by model developers resides in the ’LIFE Service’ and ’LIFE
API’ namespaces. ’LIFE Service’ holds the AgentManager and AgentShadowingService classes,
which may be used for automatic initialization and distributed agent resolution. The ’LIFE API’
namespace is where the various Layer and agent interface de�nitions are located.

Finally the ’T-Components’ namespace contains technical implementations of the lower level
messaging components (i.e. AgentShadowing) and sub-system adapters like RabbitMQClient
or MulticastAdapter.

SimulationManager

The SimulationManager as described in section 3.3.1 is the control server in a LIFE deployment.
When deployed the Docker container will contain the model code and a ’SimCon�g’ �le in
JSON format. The entrypoint for the container is set to call ’mono SimulationManager.exe -m
<ModelName>’ which upon container start will execute the SimulationManager and order it to
execute the model identi�ed by <ModelName> through the central SimulationManagerFacade.
The SimulationManager will now tell the ModelContainer component to look into its desig-
nated sub-directory for a model by the assigned name. Also a RuntimeEnvironment is created,
which waits for the ModelContainer to have the model prepared.

Once the ModelContainer found a suitable model, the corresponding DLLs will get loaded into
the current AppDomain and are searched for implementations of the basic ILayer interface.
During this process all layer constructors are analyzed and once the model is completely
scanned, the instantiation order for the model is being calculated.

Now the RuntimeEnvironment gets triggered to setup the simulation run from the provided
SimCon�g and by using all previously registered LayerContainer instances. At �rst an attempt
is made to connect with all LayerContainers. This approach will only fail the setup process,
when no LayerContainer can be connected at all. However if two LayerContainers were
initially found, but only one can be connected, setup will inform the user but still continue
with just one container.

When the cluster has been set up, the instantiation order is fetched from the ModelCon-
tainer and layers are created according to it. The LayerContainer provides a service which
handles the dependency injection for references to other layers (see section 3.3.3). During

35

3 Implementation

Figure 3.8: SimulationManager Code Map.

layer creation it is checked whether distribution is possible. If not, the layer is just instantiated
on the only LayerContainer present. After all layers are completely instantiated, they will be
initialized by issuing a call to their InitLayer() method. Depending on the type of layer and
the information from the SimCon�g �le, the InitLayer() method’s parameters will be �lled
di�erently. For instance a GIS layer needs the location of the GIS �le to load, while basic layers
need information about the agents which are to be created. For further details on the InitLayer
process, refer to the section about the AgentManager component 3.3.3.

If distribution is possible the behavior depends on two things: The layer’s type and whether or
not there is a distribution con�guration loaded from a distribution con�g.xml �le. The type
is important, because GIS and TimeSeries layers may only be replicated, while basic layers
with agents may be distributed as several smaller pieces. The XML �le is currently used as a
placeholder until an user interface in the Websuite is implemented to con�gure the distribution.
If a layer is not described in the XML �le, it will simply be created in the �rst LayerContainer.

36

3 Implementation

So in case more than a single LayerContainer is present, but no XML �le is provided, the
simulation will completely run on a single LayerContainer in non-distributed mode.

If a layer is to be replicated, it will simply be created on all LayerContainers consecutively.
If the layer is to be distributed, the only currently supported mode is an even distribution
across all available LayerContainers. When this mode is selected, the layer will as well be
consecutively created but the parameters provided to the InitLayer() method will be altered to
re�ect the reduced amounts of agents.

When setup has �nished, the RuntimeEnvironment creates an instance of the SteppedSimula-
tionExecutionUseCase class. This class will now start the actual simulation run by triggering
each LayerContainer to advance by one tick (simulation step). It will wait until all Layer-
Containers reported back they are done with the step and then repeat that form of stepped
simulation execution for as many ticks as are speci�ed in the SimCon�g �le.

Alternative Forms of Execution

The actual simulation execution has been outsourced to its own class, to allow for an easier
addition of alternative simulation execution modes in the future. Not everyone may like a
strict stepped simulation execution, which synchronously has to wait for all LayerContainers
to �nish before starting the next step. Event based simulations for instance will require a
di�erent way of execution. Adding a new mode of execution thus involves writing a new
SimulationExecutionUseCase, but also might include changes in the LayerContainer, since
that is where the actual agents are executed.

Layer Name Service

Centrally hosted by the SimulationManager, this service o�ers a simple interface to LayerCon-
tainers to register, resolve and remove layer instances by their type. For each layer type a list
of TLayerNameServiceEntries is stored. These contain connectivity information needed by
each LayerContainer’s LayerRegistry to resolve remote references for dependency injecting
them into newly created layer instances. Though currently not implemented, the Layer Name
Service will also be the place for load balancing remote layer instances in order to further
optimize performance in the future.

37

3 Implementation

LIFE Webservice

As the control server for each LIFE cluster, a SimulationManager also hosts a webservice. It
o�ers an endpoint to start, stop, resume or abort the current simulation and is consumed by
the Mission Control Service in the Websuite.

3.3.3 LayerContainer

Just as the SimulationManager the LayerContainer is deployed as a Docker container with a
default entrypoint. In this case it defaults to ’mono LayerContainer.exe’, so the LayerContainer
ist simply started. After the internal startup has succeeded the LayerContainer starts sending
advertisement messages by means of the NodeRegistry which are received by a listening
SimulationManager. As described in section3.3.2 these are then used to setup the LIFE cluster
and start the initialization phase. A facade class acts as the central access point for all remote
calls coming in from the SimulationManager.

Figure 3.9: LayerContainer Code Map.

When the LayerContainer is connected to a SimulationManager and the latter starts the
simulation setup, a message containing the model code is received. This code is extracted to
disk and loaded by the PartitionManager, who passes this to the LayerFactory, which �nally

38

3 Implementation

loads the received model code via the AddinManager. The PartitionManager does not do
anything else than forwarding the call at the moment, but is meant to become more important
in the future as more sophisticated partitioning strategies are set into place (i.e. neighbor-based
partitioning etc.). The AddinManager is a helper class, which controls the actual runtime
class loading for the model code. Once that is accomplished, the LayerContainer is ready to
instantiate and initialize its �rst layer. This happens by command of the SimulationManager
and is executed by the LayerFactory component.

When a Layer is instantiated by the LayerFactory it needs to resolve the references to other
Layers which are de�ned by the constructor parameters. To achieve that each LayerContainer
features a LayerRegistry which manages a dictionary of instantiated layers. Whenever a Layer
is instantiated, its reference is added to that dictionary. So when references are needed, the
LayerFactory just has to ask for them by name.

This works as well in the distributed case, since the LayerRegistry itself reports registered
Layer instances to a LayerNameService being hosted by the SimulationManager (compare
section 3.3.2). So when the LayerFactory requests a Layer which is not present on the local
node, the request will be forwarded to the LayerNameService and a proxy object for the remote
reference is being generated, which is compatible with the required interface type from the
constructor.

AgentManager

The AgentManager is a component that may be used by developers to automatically create
agents of a speci�c type in the InitLayer() method. It needs to be generi�ed with the interface
and class type of the desired agent type and requires a valid AgentInitCon�g as parameter,
which can be retrieved from the TInitData parameter provided to the InitLayer() method.

Also any needed layer and environment references need to be passed in as well. The layer
references may be obtained through dependency injection from the layer’s constructor, while
the environment might either be self instantiated in the constructor (polyglot ESC) or also be
injected in case the environment implementation is provided as a layer. Once that is done a
single call to GetAgentsForAgentInitCon�g() returns a list of agents, which can be stored in
the layer for further usage and management.

In order to instantiate the agents, data from databases hosted in the MARS cloud might
be needed and will be fetched by the AgentManager. This is done in a parallel manner and
should be as fast as possible. Depending on how many agents are to be created and how large

39

3 Implementation

the used data sets are, this process might turn into a lengthy task. Compare the results from
experiment 3 in chapter 5.3.

3.3.4 Agent Shadowing

Distribution and thus communication are two key aspects of scalability. In a very early version
of the MARS system, layers were only distributable as a whole, so each LayerContainer needed
to take care of one or more complete layers. The authors’ �ndings however have shown, that
one layer may be too complex for a single computer or there may be some rather slow compute
nodes involved. So the new approach will also allow to distribute each layer across several
LayerContainers, which resembles true horizontal scalability. Since distributing layers has
direct in�uence on the agents living on them, the approach for layer distribution is tightly
coupled with the distribution of agents and is meant to make the overall system scalable. That
approach is called Agent Shadowing.

Agent Shadowing is the depiction of an agent living on layer instance A having its shadow cast
onto layer instance B, where it is not actually instantiated, but instead is represented by a stub-
like object as in remote communication concepts like RPC/RMI (Figure 3.10). In RPC/RMI each

Figure 3.10: Agent Shadowing Concept - Logical View.

agent’s methods and properties are callable by third parties through its stub object. Usually
a stub just provides the capabilities to establish an interface-bound communication with the
remote object. If the remote reference changes, in classic RPC/RMI the stub simply becomes
useless, since its reference is not updated. The protocol then has to notice the broken link and
re-establish a new one.

40

3 Implementation

MARS LIFE creates shadow agent stubs (SAS) by making use of C#’s RealProxy class. This class
consumes an interface and translates calls to that interface’s methods into network messages.
A SAS is then extended by the ability to hold cached attributes like its environmental position
or any other attribute. The real agent object updates both, the attributes and the remote
reference, whenever a change occurs. These updates are delivered via multicast when in LAN
to reduce the amount of tra�c. The initial remote references can be provided when the overall
system is initiated since some kind of distribution information has to be provided at that state.
This results in each container node containing the full environment as well as all agents, but
with the di�erence, that only numberOfAgents / numberOfNodes (given an even partitioning)
agents are really instantiated and thus have to be computed. The remaining agents are only
instantiated as SASs and do not contain any agent behavior logic. An increase in container
nodes would reduce the amount of agents per node that have to be actively computed, while
the memory footprint per node would also potentially decrease, assuming that a SAS consumes
less RAM than a full-�edged agent. There is, however, a limit to how many agent’s can be
instantiated as SAS during initialization. Chapter 3.3.4 provides a solution attempt for that case.

Calling or referencing another layer, works by the same pattern of either having a local
instance of that layer to address directly or a stub to communicate with a remote reference.
Environmentally it does not matter which remote reference to a layer is provided, since each
layer instance locally has a full view of its state, even if distributed.

Within MARS LIFE all implementations regarding AgentShadowing are encapsulated within
the AgentShadowingService, which itself is exposed to model developers by means of the
AgentManager. That architecture allows to provide a meaningful interface to developers, while
hiding a lot of the technical implementation inside.

Addressing and Grouping of Agents

Each SAS requires a unique connection to the real agent. This results in a unique port and
socket being used on the client machine. Depending on which OS you are on, the maximum
number of simultaneous TCP connections is limited. For example on Windows 7 you could
theoretically create up to 16 million concurrent connections, but are limited by port restrictions
to something closer to several thousand connections. It thus is obvious that this is not a suitable
approach for a massive scale multi-agent simulation with possibly a million agents. Other
approaches towards the network implementation need to be taken.

41

3 Implementation

An alternative is to change the communication technology from TCP Unicast to UDP Multicast.
A real agent would send its state update only one time per multicast to a group of potentially
interested listeners, who then all receive the message and decide individually whether or not
to consume it. This solution requires the creation of multicast groups, which could be created
either on a per agent, per agent type or per layer base.

A group per agent wouldn’t do much to the port problem mentioned above, since each mul-
ticast socket listener would still require its own port. Grouping by layer could result in too
many messages received by too many SAS which don’t need it (if a layer holds more than one
agent type), or could create a bottleneck if the amount of agents is very high on each layer
instance. Possibly the best result can be achieved with a grouping, based on agent type, since
the recipient group is narrowed down to those agents and hosts, that can use the message.
With that kind of interest management the bottleneck problem should directly scale with
further distribution of the layer itself.

As an additional side e�ect of the per agent type multicast messaging, updating the remote
references of stubs in case of cross-boundary movement of agents, will not be necessary
anymore. Since each individual agent can be reached by a multicast group uniquely generated
from the agent’s type and multicast messaging inherently does not care about endpoints, real
agents may be moved across nodes without regard to references and stubs may be removed
and created dynamically as needed without further lookup.

Cross-Platform Generation of Multicast Groups

The multicast groups needed for each agent type, need to be generated on each host indepen-
dently. Since we cannot know whether MARS LIFE will run with .NET or Mono, the solution
for the generation algorithm needs to be platform independent as well. To create a unique
multicast group based on the agent type, methods GetHashCode() and Random.next() are
needed by the implementation. Simply using the build-in solutions from .NET and Mono is
not working, since Mono was build without knowledge of .NETs implementation. This results
in di�erent behavior in both the Random.next() and the GetHashCode() methods and thus in
di�erent multicast groups on each platform.

MARS LIFE solves these issues by implementing speci�c Random and HashCode methods
based on low-level mathematical and bit-shifting operations. More speci�cally Random is

42

3 Implementation

exchanged by the XOR128 algorithm while FNVHashcode is used as a replacement for .NET
and Mono’s built-in GetHashCode().

Messaging & Serialization

Method calls to a Shadow Agent Stub are automatically translated by LIFE and result in a
message being send via multicast to the corresponding multicast group. These messages need to
be serialized. By default Agent Shadowing uses the build-in BinarySerializer from .NET / Mono.
This library is capable of automatically serializing all classes, which are programmed in valid
C# and by that allows for a very convenient way of sending messages and thus transparently
calling remote methods.

A special case of messaging is the retrieval of attributes form other agents. Usually this
results in calling a getter method or in performing a get-call to a C# property respectively. So
whenever a local agent needs information about another, non-local agent, a remote call needs
to be issued to retrieve the most recent value. This is not optimal, since a lot of redundant
messaging happens, when multiple agents from the same node require the same attribute form
the same agent. MARS LIFE handles this by means of a push mechanism. Whenever a SAS
is created for an agent, the SAS is registered with the real agent. As soon as the real agent
changes an attribute, this updated value is send proactively to all registered SAS instances.
The SAS instance may now serve get-calls from an internal cache instead of issuing a remote
message call, which should result in a great performance boost. The approach guarantees
cache values to be the most recent available.

The load put on the CPU by serialization and the resulting message size are not optimal
and can be greatly enhanced by using specialized serialization libraries like Protobuf. The
downside of solutions other than the C#-native BinarySerializer however are the restriction
towards what can be serialized and how. For instance Protobuf requires a certain mapping
alongside the classes which are to be serialized and needs a really profound knowledge of its
capabilities by the developer in case inheritance and other, more complex class structures or
programming paradigms are in place. Also this solution removes transparency from remote
method calls.

Since using a third party serialization library has its very speci�c demands and eradicates
communication transparency anyway, MARS LIFE o�ers a special interface by the name of
ISerializableByLIFE. Implementing this interface on a custom type, requires the developer to

43

3 Implementation

write a special serialization for that type. This implementation should translate the custom
class into a representation which solely uses primitive types and arrays, because these don’t
have to be serialized at all prior to sending. A best practice is to encode the state of an object
into a bit representation, which then can be send as a byte array.
Whenever Serialization needs to take place in AgentShadowing, this means a method call needs
to be handled. In doing so, all non-primitive parameters, return values and exceptions have to
be serialized and de-serialized. This implies that ISerializableByLIFE needs to be implemented
for all these types when opting for optimal serialization performance. MARS LIFE checks
whether a type implements the interface and automatically falls back to the BinarySerializer if
that is not the case.

Adding and Removing Agents at Runtime

With Agent Shadowing in place, the creation and deletion of agents at runtime becomes a
matter of informing remote nodes about their birth or decease. Therefore each newly created or
removed agent must be registered or un-registered with its generi�ed AgentShadowingService
in the containing layer’s code. The service will then take care of all further steps. Speci�cally
it will make sure that messages for a deleted agent, that still arrive in the same tick, are being
handled by the agent instance regardless of its decease. The agent will thoroughly be removed
before the next tick. This behavior ensures model developers do not have to handle this
condition in their model code.

Paging for Agent Shadowing

It is expected that creating a lot of proxy instances is impracticable due to the time it takes
to instantiate and manage all those objects. Therefore a paging approach for Shadow Agents
has been implemented. Shadow instances are created on-demand through the AgentManager
and feature a TTL (Time To Live) value which is decreased with each simulation tick in which
they are not accessed. When TTL reaches zero, the Shadow Agent is erased. This approach
most likely features slightly slower performance on �rst access attempts to remote agents, but
resolves the matter of very long simulation initialization times when using very large numbers
of agents.

Agent References

When simulation entities in a model are discovered by exploration or any other feasible method,
�nally a technical reference to the real agent needs to be established. In a non-distributed

44

3 Implementation

simulation run this can easily be achieved by passing actual object references to the searching
entity. In a potentially distributed simulation however a discovered entity may be a local or a
distributed agent due to the transparent notion, which is provided by MARS LIFE. Therefore
when an agent has been found, the retrieved agent id needs to be resolved by means of a
generically typed AgentShadowingService (ASS). During initialization all agents are registered
with an ASS generi�ed to their type, whose internal data structure is static. By that each
ASS knows all locally registered agents and may thus decide whether or not to create a local
reference or a proxy object.

45

4 Experiments

To completely test the de�ned hypotheses and analyze MARS LIFE’s performance and scalability
capacities a number of experiments need to be conducted. Some of them may be done as purely
synthetic tests (i.e. impact analysis of virtualization layers), while other require a reasonable
(but not scienti�cally correct) model, that resembles some real-world complexity and challenges
the usual MARS work�ow. The overall goal is to verify or falsify the hypotheses and to �nd
out which components in MARS need further attention from a performance and scalability
perspective.

4.1 Setup

4.1.1 Infrastructure Setup for Experiments

Hardware

The MARS system is being run on a cloud-like infrastructure, which is hosted at the HAW
Hamburg. The test setup consists of 5 physical host machines. Four of these machines are Mac
Pro workstations from 2013 in a con�guration with a Xeon E5 6 core 3.5 Ghz CPU, 64 GB main
memory and 256 SSD each. The �fth machine features a dual Xeon X5660 with 24 cores each
and 96 GB of main memory. All machines are connected to a 40 TB storage system in a Raid 5
con�guration. The network uplinks are 2 Gbit from each compute node to the switch and 20
Gbit �bre channel from the switch to the storage system.

So�ware

The physical hardware nodes all are installed with Ubuntu Linux Server 14.04 and run on
Kernel version 3.13.0-61. On top of that Linux KVM is executed to provide a virtualization
layer across all physical machines. One Mac Pro and the 48 core machine are used to host the
MARS ecosystem services, like webservers, databases and the microservice based architecture,
which make up the MARS backend services for simulation initialization and result analytics.
The remaining 3 Mac Pro machines are each equipped with a virtual machine running Ubuntu

46

4 Experiments

Figure 4.1: MARS Virtual Infrastructure.

15.10 with Kernel 4.2.0-34 and each host a Docker Runtime in version 1.10.3. The three Docker
hosts are bound together into a Docker Swarm to allow for a single access point for container
deployment and the possibility of extended scheduling and load balancing mechanisms. Figure
4.1 shows the setup.

4.1.2 Special Se�ings and Details

Mono Garbage Collector

The simulation containers themselves contain Mono 64bit in version 4.2.2.30 and are con�gured
to use a nursery size of 2GB for their sgen garbage collector. This circumvents the problem
of too often garbage collecting the nursery (small object space) albeit a lot of main memory
is available (64GB). This dramatically increases execution speed, because the whole process
does not have to be halted too often for garbage collection purposes. The nursery is the �rst
generation in Mono’s generational garbage collector. Small (< 4kb) objects start their life cycle
here and only get promoted to the second level in case they get larger and / or live longer than

47

4 Experiments

a certain threshold. However this means that whenever the nursery is full a garbage collection
needs to be performed. This, at least in the Mono implementation, is only possible by halting
all threads of the application, perform gc and resume everything. This results in the CPU usage
going down to a single core, which may irritate performance measurements. Without this
setting the mono runtime would not use more than 1-2 cores of the provided hardware since it
had to stop every couple of seconds to do the garbage collection.

Multicast with Docker Swarm

Docker Swarm nicely integrates Docker Network including an overlay driver to allow con-
tainers on di�erent hosts in the swarm to seamlessly communicate with each other. Multicast
communication is not supported by that driver, but is required by MARS LIFE, since it is a
crucial part of AgentShadowing. The Docker overlay network driver is implemented by using
vxlan over unicast, which means multicast could be implemented by utilizing packet replication
on a network level. This has not been done in the current version of docker for a variety of
reasons.

Weave Net (https://www.weave.works/), a third party solution, however features
multicast and integrates just as easily into a Docker Swarm setup. So Weave is deployed on all
Swarm nodes and the ’weave’ driver is used for all containers being deployed in the context of
MARS.

4.1.3 An Experimental Model

Since MARS has been developed alongside the requirements which are raised by ecological
models, it is just natural to use a simple yet complex enough model as test case. The scenario
was chosen, since it is well aligned with the current major use case of MARS, the current
partnerships of the MARS project and for its good comprehensibility.

A signi�cant test model would need at least one layer of each type (basic, gis, time-series),
moving and non-moving agents, exploration of the environment (ESC) and utilization of exter-
nal data like GIS �les and time-series. Thus the test model contains two agent types with �xed
spatial locations (marula trees and waterpoints) as well as mobile ones (elephants). In addition
a GIS shape�le containing a 90m resolution height map is used in an elevation layer as well as
a timeseries layer fed from a csv �le containing temperature readings. All agent types interact
with each other and with their environment. So together they provide agent-to-environment
and agent-to-agent interactions. Figure 4.2 depicts the conceptual model, while �gure 4.3

48

https://www.weave.works/

4 Experiments

outlines the technical model structure. For a more visual model representation according to
the MARS layer concept, refer to 2.2.

Figure 4.2: Conceptual view of KNP model including agents, environment and used datasets.

The quantitative structure of the model covers the whole Kruger National Park. This means an
area of almost 20.000 square kilometers with 15.000 elephant, 415 waterpoint and 5.2 million
tree agents is simulated. The spatial resolution is set to meters, while the minimum temporal
step size is 1 hour. Thus all agents are executed in an hourly fashion, except for the trees,
which are implemented in such a way, as to wait for 24 hours to pass and then execute a step
on a daily base.

49

4 Experiments

Figure 4.3: Component view of KNP model and its layers.

As described by the conceptual model (�gure 4.2), the waterpoint agents are the least ac-
tive agents. They pretty much just react by re�lling themselves to the elephants drinking from
them. The Large Tree agents are more active in the sense that they use elevation and areal
temperature data for their growth actions in each tick. Also based on the current date they
may produce fruits and distribute the daily fruit amount over a course of three months based
on a gaussian distribution function.

While these two agent types are static and mostly self-centered, the elephant agent type
is the very opposite of it. Its lifecycle is designed around its metabolism. Elephants basically
have to eat and drink constantly throughout the day and do so while wandering the savannah
ecosystem. So the elephant agent �rst updates its food and water consumption depending
on the passed time step and checks whether it’s still alive or not. Next up the surrounding
environment is explored for waterpoints and trees. Waterpoints allow for drinking from them
and thus provide a comparably easy interface. When an elephant �nds a waterpoint it �lls
up until hydration is no longer an issue (200 liters in this model). When trees are found the
decision making is more complex. It incorporates a selection of trees depending on distance and

50

4 Experiments

whether or not a tree bears fruits or is a seedling or not. Eating fruits is the most favored case,
consuming the whole tree in case its a seedling is the second. If none of these cases applies,
the elephant pushed the tree to model general damage on vegetation while walking through
the environment. So no matter which condition becomes true, each elephant interacts with a
tree in each if any are found. Figure 4.4 provides the activity diagram for internal elephant logic.

These three agent types represent a vertical slice through the possible incarnations of agents.
While a waterpoint agent is not moving and just re�lls itself by means of a simple formula, the
elephant agent features a multitude of complex internal and external actions and interactions
with other agents. Not only has the agent to explore its environment, but it also needs to move
according to the exploration results and the rules of its inner logic, which is largely dictated by
herd behavior in this case.

4.2 Experiment Description

Based on the example model and the hypotheses (chapter 1.2) the following experiments are
de�ned. The outcome of an experiment might be relevant for several hypotheses, while others
are strictly de�ned for a single hypothesis.

4.2.1 EXP1: Performance comparison of bare-metal, KVM VM & Docker on
KVM

In order to test the �rst hypothesis (H1) the well-known Linux benchmark tool ’sysbench’ will
be used in version 0.4.12. The benchmark will calculate prime numbers. The test will �rst be
executed on a bare metal MacPro with the con�guration described in chapter 4.1.1. It will then
be repeated on a virtual machine running Ubuntu 14.04 with 12 virtual cores, since the Mac
Pro features 6 real cores plus hyper-threading, which results in 12 logical cores visible to the
hypervisor. Finally a third run will be executed using inside a Docker container running on
Docker 0.9 in the aforementioned VM. The comparison of the three results will show whether
the virtualization layers have any impact on cpu performance or not.

4.2.2 EXP2: AgentShadowing standalone test

The AgentShadowing concept as described in chapter 3.3.4 is at the core of MARS LIFE’s
distribution concept. It is therefore crucial to analyze the performance impact of its messaging
and agent resolution capabilities. A synthetic test is de�ned to compare the resolution speed

51

4 Experiments

of remote agents against that of local agents. Also the other stages involved during setup
like agent creation and registration with the AgentShadowing service are benchmarked. The
idea is to simply show the impact of using AgentShadowing in a model but also to check the
feasibility of using distributable model code in a non-distributed setup. If the overhead is small
enough the general usability of model code is greatly enhanced, since no additional changes
are required to create a distributable version.

A second test aims at the communication component inside of the AgentShadowing solu-
tion. The three stages of message creation, message serialization and the actual message
sending will be tested for several agent amounts. As a baseline the test will be run on a
Windows machine with native .NET 4.5.

This experiment relates to hypothesis H3 as it highlights the impact of the actual distribution
component in MARS LIFE free of side e�ects from any model implementation.

4.2.3 EXP3: Test of KNP model initialization on 1, 2 and 3 nodes

To test hypotheses H5 and H6 two initialization benchmarks will be conducted. All will use the
full KNP model and will be executed on 1, 2 and 3 nodes to measure scalability. The di�erence
is in the way ShadowAgents are being created. On the �rst run they will be created during
initialization, on the second run this will be omitted and ShadowAgents are created on-demand
during simulation. The better option will be used for the remaining experiments.

4.2.4 EXP4: Test of KNP Model with single, central ESC on single node

As a baseline test it is important to run the full scale KNP model on a single node. The moving
agents (elephants) will use the Environment Service Component (ESC) very frequently, which
makes the ESC’s performance crucial to the overall execution speed. So this experiment will
act as a baseline not only for overall simulation performance, but also for the di�erent possible
setups of the ESC. The ESC instance is a non-distributed one which uses a bounding volume
hierarchy as its internal data structure and runs without collision detection for movement.
The collision detection feature is turned o�, because its impact on performance is so heavy
that it wouldn’t make any sense to execute a simulation with more than 5.000.000 agents on it.
Also the example model does not need �ne grained collision detection for the movement of its
entities, since the temporal resolution is set to one hour.

52

4 Experiments

This test will be run on a full scale VM representing a single Mac Pro in the MARS Cloud
infrastructure and on a reduced VM featuring half the resources to relate to hypothesis 2 and
the question of vertical scalability.

4.2.5 EXP5: Test of KNP Model with polyglot ESCs in each layer on single
node

This test is about the comparison of performance between a centralized ESC for all agents,
against a polyglot ESC usage in every layer. What that means is that opposed to storing all
agents inside a single ESC instance, each layer has its own ESC and only stores agents residing
on that layer in it. This comes with a number of possible bene�ts. The number of agents per
ESC is reduced and thus the complexity of the internal data structure. Also the ESC component
does not have to perform costly type checks, when an exploration is performed. Finally each
layer may have another internal implementation of the ESC. For instance the waterpoint and
marula tree layers only host non-moving agents and thus may avoid ESC implementations that
support movement, which usually comes at a cost, since the internal data structures (usually
some sort of tree) has to be rearranged.

4.2.6 EXP6: Test of KNP Model with distributed, single ESC on 2 and 3 nodes

The �rst distributed test will be run with a logically central ESC that manages all agents of
every type. The ESC is con�gured to be distributed via replication and is instantiated once on
every node.

When distributing a simulation with MARS LIFE a decision has to be made regarding which
layer goes where and whether is is distributed, replicated or kept as a whole. For the sake of this
and the following distributed experiments a setup as shown in �gure 4.5 is used. The Marula
trees are equally distributed across all nodes, since there are 5,2 millions of them. Waterpoint
and elephant agents reside on the same node in a non-distributed manner, since they are in
close interaction and are rather few agents (15.415 combined). The elevation and temperature
layers are data layers and thus provide access to locally available datasets (elevation) or act
as facades and caches to database instances running in the MARS cloud (timeseries layer).
Therefore these layers are replicated on all notes, so as to provide fast local access.

53

4 Experiments

4.2.7 EXP7: Test of KNP Model with polyglot ESCs in each layer on 2 and 3
nodes

EXP7 is the same test as EXP5 but in a distributed deployment on 2 and 3 nodes. This means
the used ESC instances are of another type. A distributable ESC is used, which implements
distribution in a rather naive way: Every instance of the ESC is a master replication, which is
achieved by sending every action performed on any instance to all other instances by means
of a multicast message. For the KNP scenario and the used distribution setup this results in a
distributed ESC for Marula trees. Every added or removed marula tree from any instance will
result in a message being send to the two remaining instances in order to update their internal
state. Explorations performed on any node are also propagated to the remaining nodes and
the result is aggregated.

4.2.8 EXP8: Test of KNP model with Result WriteOut including the best
options from the above tests

The impact of writing out results from a simulation needs to be analyzed. Having millions
of agents will results in a lot of data to be written out for each simulation step. Currently
MARS features a solution, which simply outputs everything for every agent after each tick has
been executed. Jan Dalski, the master student, working on this feature recently came up with
signi�cant performance improvement ideas, but these haven’t been implemented in MARS as
of the writing of this paper. So the current state will be monitored while acknowledging that a
potentially better solution is coming.

4.2.9 Summary

Table 4.1 shows how the the di�erent experiments match to the hypotheses from chapter 1.2.
Given the complexity of MARS and the multitude of parameters responsible for the outcome
of an experiment, most hypotheses depend on multiple exepriments.

54

4 Experiments

Hypothesis to Experiment Mapping
Hypothesis Related Experiment Comment

HYP 1 EXP 1 Hypothesis 1 can be tested by simply benchmarking
the key performance indicators with sysbench.

HYP 2
A part of EXP 2 tests the AgentShadowing’s agent
resolving methods. These are crucial for scalability.
EXP 4 is directly designed for this hypothesis.

EXP 2
EXP 4

HYP 3

EXP 2 Testing AgentShadowing is crucial so EXP 2 is rel-
evant. Initialization of a model should also scale
hence EXP 3 is crucial. EXP 5 and EXP 6 are the
experiment which directly compare simulation runs
on 1, 2 and 3 nodes.

EXP 3
EXP 5
EXP 6
EXP 7
EXP 8

HYP 4

EXP 4 HYP 4 uses almost the same experiments as HYP 3,
with the di�erence that results are compared against
EXP 4. This allows to draw conclusions regarding
the ESC’s usage.

EXP 5
EXP 6
EXP 7

HYP 5

Agent creation is especially crucial during initial-
ization and in between simulation ticks. Therefore
results from EXP 2 and EXP 3 relate to the question
whether on-demand creation of new agents during
runtime is feasible.

EXP 3
EXP 2

HYP 6 EXP 3 EXP 3 is designed for HYP 6

Table 4.1: Mapping of experiments to hypotheses.

55

4 Experiments

Figure 4.4: Activity diagram for internal elephant logic.

56

4 Experiments

Figure 4.5: Layer Con�guration used for benchmarking of distributed simulation run

57

5 Results

5.1 EXP1 - Performance Impact of Virtualization layers.

Once the whole infrastructure was set up, experiment 1 was rather easy to execute. The three
stages bare-metal, VM, Docker on VM were performed one after another but without the not
needed technology running. That is no virtualization was present when the bare-metal node
was benchmarked and so on. The results as seen in �gures 5.1 and 5.2 clearly show how small

Figure 5.1: Benchmark BareMetal vs. VM vs. Docker.

the impact of virtualization is on overall CPU performance. The 95th percentile di�erence
between Docker and bare-metal is only about 1,82 ms per request while the overall execution
time of the benchmark di�ers by 0,36 seconds. The peaks in the ’max’ category are repeatable
and originate from the initial process / thread allocation by the underlying kernel. While the
bare-metal execution needs to create a new process, the VM schedules the run on a vCPU

58

5 Results

which already is present as a process on the host system. Docker �nally has to make its way
through the LXC kernel extension in the VM and then onto the host system, which causes the
greater delay. On average the di�erence between Docker and bare-metal is only about 0,41 ms
per request. Looking at the absolute values executing on bare-metal clearly is the fastest option
(compare color coded table 5.2), but given the amount of �exibility and the bene�ts during
development time that are created through virtualization, this is a very acceptable impact on
overall performance.

Figure 5.2: Benchmark results for BareMetal vs. VM vs. Docker. Results are row-wise color
coded with slowest time being red.

5.2 EXP2 - Agent Shadowing Standalone

5.2.1 Benchmark 1 - Local Behavior

The �rst benchmark in this experiment measures the time needed to resolve a local and a
remote agent via the AgentShadowing service. Also the other stages involved in the usage
of AgentShadowing are benchmarked. These include creation and registration of agents as
well as calling a method on each agent. Measurements are taken with the high-resolution
Stopwatch class built into C#.

Results

Figure 5.3 shows the linear scaling behavior of all four aspects. The two setup aspects are a
little above 1 second for 200.000 agents, while the runtime aspects of resolving agents and
calling a method on them are signi�cantly faster at around 100ms and 1ms respectively. The
method calling values for 20 to 20.000 are not visible in the diagram because their values are
reported as 0 ms by the Stopwatch and the y-axis is logarithmic. Figure 5.4 shows all test
results in a table view.

59

5 Results

Figure 5.3: AgentShadowing component test in non-distributed scenario.

5.2.2 Benchmark 2 - Network Behavior

The second benchmark is designed as a white box test of the AgentShadowing’s components.
Each required step is executed manually and measured independently of the others. The
steps involved are message creation, serialization and actual sending. The overall total time of
performing the whole process is also measured.

Message creation is about turning method calls into messages, which involves basic object
creation and value transfers.

As a serializer the BinaryFormatter from .NET/Mono is used. This serializer is by far not the
fastest available (i.e. compared to Protobuf.NET), but it is the most convenient as it is capable of
serializing every .NET type without any mapping. The idea is to start model development with
a non-optimal serializer, and tune it later, when the needed types are de�ned in the agent code.
The message sending �nally is implemented with the AsyncSocketEventArgs pattern from Mi-

crosoft, which is their approach towards high-performance socket applications: "The SocketA-
syncEventArgs class is part of a set of enhancements to the System.Net.Sockets.Socket class that
provide an alternative asynchronous pattern that can be used by specialized high-performance
socket applications. This class was speci�cally designed for network server applications
that require high performance.(...)" (from: https://msdn.microsoft.com/de-de/
library/system.net.sockets.socketasynceventargs(v=vs.110).aspx).

60

https://msdn.microsoft.com/de-de/library/system.net.sockets.socketasynceventargs(v=vs.110).aspx
https://msdn.microsoft.com/de-de/library/system.net.sockets.socketasynceventargs(v=vs.110).aspx

5 Results

Figure 5.4: AgentShadowing component test in non-distributed scenario. All values in ms.

The test implementation involves two sets of components for two distinct sets of agents
in order to simulate two nodes talking to each other. During the test each agent set attempts
to call a method on an agent on the other node, but each step is executed explicitly by the
code. The test is run for 20, 200, 2.000, 20.000, 200.000 and 2.000.000 agents. Given the fact that
Mono is a reimplementation of .NET for Windows, the tests were run on a windows machine
as well to get a baseline to compare against.

Results

Figures 5.5 and 5.7 show the results for Mono on OS X and .NET on Windows respectively. The
Mono benchmark shows a linear increase in duration from 2000 agents onward but fails with
a low level stack over�ow exception from within the Mono framework itself when trying to
execute the run for 2.000.000 agents. The cause of this exception remained unclear, but seems
to result from a bug in the mono runtime.

From 200 to 2.000 agents there is a sudden increase in execution duration at the order of
two magnitudes, which was reproducible across multiple runs. The Windows benchmark
shows a steady linear increase from 2.000 agents onwards and also executes �awlessly with
2.000.000 agents. The absolute overall execution duration though is almost always faster by
two orders of magnitude on Windows as shown in �gure 5.10 even though the used hardware
is a lot weaker. This becomes very evident when directly comparing the values from tables 5.6
and 5.8 for 200.000 agents. 682.452ms on Mono compete against 10.636ms on .NET. So Mono is
more than 64 times slower than .NET in this test.

61

5 Results

Figure 5.5: AgentShadowing Communication Benchmark separated by components. Ran on
Mono

When searching for a possible cause of this behavior it is worth noting that the messag-
ing ("UDP Send" column in tables 5.6 and 5.8) share of overall execution duration on Mono is
94,64 % while on .NET it is 91,17 %. So messaging itself takes a similar percentage of the time.
Looking at the message creation and serialization values reveals that Mono takes 40 times
the time of .NET here as well. Given that these tasks are implemented in a way that relies
heavily on multi-threading and thus should make use of all available cores, the problem could
be situated in Mono’s Parallel Task API implementation.

Measuring the CPU and ethernet bandwidth usage on Windows during the benchmarks’
execution reveals that the Windows machine is probably locked by its CPU at 90+ % utilization
(�gure 5.11) resulting in 78 Mbit/s throughput (�gure 5.12) on the 100Mbit ethernet device,
while the OS X machine with Mono rarely reaches a 50 % CPU load (�gure 5.13) and peaks at
around 1,5 Mbit/s in throughput. It is worth noting that the drops in CPU usage are mostly
visible during the UDP sending part of the test. The other tasks execute with a steady and
more reasonable CPU load (compare �gure 5.14).

It can therefore be concluded that the Mono implementation of System.Net.Sockets and most
probably the Parallel Task API as well have serious performance and scaling problems, which
are not present in the .NET Framework on Windows. Furthermore as indicated in �gures 5.5

62

5 Results

Figure 5.6: AgentShadowing Communication Benchmark separated by components. Ran on
Mono. All values in ms.

and 5.6 the Mono implementation crashed with a stack over�ow exception on attempting to
run 2.000.000 agents or more. The corresponding error messages and stack traces hint towards
a low level bug issue in the System.Net.Threading API.

5.3 EXP3 - Test of KNP model initialization on 1, 2 and 3 nodes

The �rst run of the initialization test was the same for both setups, since on a single node no
ShadowAgents need to be created. Tests for 2 and 3 nodes showed some pretty interesting
results though (�gure 5.15). While the on-demand version scales nicely with more nodes
added (mean factor: 1,79) the pre-init variant starts tremendously slower (almost 30 minutes)
and is rather reluctant to scale with more hardware (factor from 2 to 3 nodes: 1,22). Further
investigation of the pre-init process showed at around 1.000.000 agents that the initialization
of the ShadowAgents turns into a very long running task even on the native .NET platform
on Windows. Performance tracing with dotTrace (https://www.jetbrains.com/
profiler/) revealed that the .NET event system is responsible, since the time it takes to
add a listener to events in the ShadowAgents’s underlying implementation increases with
each agent. This behavior has been expected to some extent (see 3.3.4) and on account of the
results, it is recommended to completely switch over to on-demand ShadowAgent creation. The
TTL of each ShadowAgent prevents the listener problem while still maintaining convenient
communication. For all remaining tests on-demand creation will be used.

63

https://www.jetbrains.com/profiler/
https://www.jetbrains.com/profiler/

5 Results

Figure 5.7: AgentShadowing Communication Benchmark separated by components - Windows

5.4 EXP4 - KNP Model with central ESC on single node

This experiment has been executed two times. The �rst run was allowed to utilize all available
resources of the hosting VM, which translates to 6 cores and 60 GB of memory. The second
run had those resources cut in half to measure the vertical scalability of MARS LIFE for the
given model. The used hardware was restricted by the Docker tools, which allow to reduce
a containers resources to a speci�c level or ratio. As �gure 5.16 shows there is a measurable
improvement in execution speed when resources are increased. The average improvement in
execution duration when doubling the hardware is about 0.76 times that of the baseline, which
in return is 1.32 times slower than running on full resources. So the speed bump is a bit less
of half of what could be expected in an ideal case. Considering the problems introduced by
the Mono runtime in experiment 2, this is likely to indicate an introduced overhead in Mono
for scheduling more threads on more cpu cores and handling additional locks throughout the
simulation.

5.5 EXP5 - KNP Model with polyglot ESCs in each layer on
single node without result output

The execution of the KNP model on MARS LIFE is divided into two parts. During the initializa-
tion required data is fetched from databases located in the MARS Cloud. When everything is set

64

5 Results

Figure 5.8: AgentShadowing Communication Benchmark separated by components. Ran on
Windows. All value in ms.

up the simulation may run I/O free, in case it does not produce any output as in this benchmark.

Results for this benchmark are shown in �gure 5.17. During initialization for every agent type
the constructor parameters are analyzed and matched to the data retrieved from the MARS
Cloud. Also a number of type checks need to be performed for every parameter value to re�ect
special cases like required agent IDs, instances of IEnvironment or other layer types, which
are needed as reference. Finally all static values retrieved from the provided SimCon�g need
to be parsed into their corresponding C# type. The initialization phase took almost 14 minutes,
which is considered an acceptable value given that data for 5.2 million agents is fetched from
the MARS Cloud and the above mentioned process needs to be executed for that amount of
agents.

The CPU utilization is very feasible during this procedure (around 75% mean.). Once
initialized each simulation step takes around 145 seconds with a CPU load between 85 - 98
%. Since there is no distribution and communication involved in this benchmark the socket
problems discovered in EXP2 do not have their negative impact on performance.

It is worth noting that performance, CPU usage and overall execution were far worse, when
the Mono garbage collector was used with its default settings. The process had to stop every
couple of seconds to perform a garbage collection. The root source of this problem resides in
the Mono garbage collector implementation, which is a generational one. It contains three
generations for objects in memory. The �rst and smallest is the "Nursery", which holds very
small and young objects. Its default size is 4 MB. Once the nursery is �lled with small objects,
a garbage collection has to be performed. During the process all no longer referenced objects

65

5 Results

Figure 5.9: Staged performance evaluation of AgentShadowing - Mono vs. Windows.

are being wiped out from the Nursery, while all still used objects are moved into the second
generation, which is where long living objects are stored. Lastly generation three is the large
object store. Objects with a size above a certain threshold are moved here directly without
having to go through the Nursery.

Tweaking the nursery-size from 4MB to 2GB resulted in the improved performance as described
above and should be taken as the standard setting when executing any considerably sized
model. Though this setting results in a slightly larger memory footprint of the mono process,
this e�ect can be ignored given that the simulation run consumed around 50 GB of memory
anyways. However even with the optimized garbage collection mechanism the simulation
had to halt every so often. More sophisticated garbage collector implementations like the one
used by .NET on Windows are capable of performing far better. For instance .NET has a server
mode for garbage collection, which creates a dedicated garbage collection thread and heap
for every core the machine has. By that garbage collection can be handled independently on
di�erent cores.

66

5 Results

Figure 5.10: Total runtime performance evaluation of AgentShadowing - Mono vs. Windows.

5.6 EXP6 - KNP Model with distributed, single ESC on 1, 2 and
3 nodes without result output

It was not possible to run this experiment. As it turned out, the attempt to distribute a single,
logical instance of the current ESC implementation ran into type loading errors. The problem
occurs when an exploration is performed by an agent and replicated to all ESC instances. The
exploration will eventually return a result, which contains agents of a type, whose Assembly
and Namespace have not previously been loaded in the current C# runtime’s app domain. This
is due to agents of that type are not originally running on the current node and thus relates
directly to the distribution con�guration used for this simulation run.

As an example consider a setup as shown in �gure 4.5 and the exploration of an elephant agent
from LayerContainer ’C’, which contains a waterpoint agent as a part of the result. This call
will fail on LayerContainer ’A’, since the type ’WaterPointAgent’ is not present on this node
and thus the ESC instance does not know how to treat the type.

E�ectively this means that currently it is not possible to have a single, logical, but distributed

67

5 Results

Figure 5.11: CPU load during ASS Multi-Stage test on Windows

ESC instance, which is collectively being used by all agent types. The only way to achieve this
in a distributed scenario would be by using a layer which hosts a single, non-distributed ESC
and exposes the IEnvironment interface as its layer interface. That approach however would
be the least performant of all, since every environmental request from every agent not being
hosted on the same node as the environment layer would need to be serialized and send over
the network. Also as the model grows the amount of memory required by the central ESC
would be quite considerable.

5.7 EXP7 - KNP Model with polyglot ESCs in each layer on 1, 2
and 3 nodes without result output

The results of the distributed run across 1, 2 and 3 nodes are presented in �gures 5.18 and 5.19.
Initialization on 3 nodes is 1,7 times faster than on a single node, and takes around 8,08 minutes

68

5 Results

Figure 5.12: Ethernet load during ASS Multi-Stage test on Windows

for 5.2 million agents. The execution speed during simulation is up to 2,32 times larger when
run on 3 nodes compared to running on a single node. The performance gain could possible be
signi�cantly improved by running the distributed simulation on 3 windows nodes, considering
the results from experiment 2 regarding Mono’s performance problems.

When observing the values for 2 nodes in �gure 5.19 the discordant values for ticks 4, 6,
7, 8 and 9 are noticeable. The same phenomenon can be seen for ticks 0, 4 and 7 for 3 nodes.
This sudden increase in execution duration during the simulation shows the impact of agent
interaction, which might peak during some ticks. Since the simulation is non-deterministic
this is quite expected.

Table 5.19 also shows the projected duration for each setup in hours on the assumption
that scenario time covers a full year, which translates to 8760 ticks at an hourly time step. As
it turns out the simulation would run for almost 15 days on a single node, 11 on two nodes

69

5 Results

and still would take 6 days on three nodes. In a production environment this is not really
practicable given that real scenarios are even more complex and might well get larger regarding
scale and the amount of agents. Considering the �ndings from experiment 2 (compare section
5.2.2) this simulation can be expected to execute up to 64 times faster when run on the .NET
platform instead of on Mono. This theoretically would bring down projected durations to 6, 4
and 2,3 hours respectively, which are very acceptable values.

One goal of this work is to measure the resource consumption of speci�c components. Thus
the ESC share of overall execution duration especially in a distributed scenario is of particular
interest. To measure that impact a run distributed across 2 nodes but with a non-distributed
ESC has been performed in order to compare against the original setup with a polyglot ESC.
The results are shown in �gure 5.20 and reveal that the average negative performance impact
of the distributed ESC during execution is 31,8 % and 37,72 % during initialization respectively.
So optimizing the ESC towards a non replicated implementation will be well worth it.

5.8 EXP8 - KNP Model with polyglot ESCs in each layer on 1, 2
and 3 nodes with result output

Figure 5.21 shows the results from experiment 8 against those from experiment 7. The �rst
three bars of every tick show the execution duration including output, while the last three bars
don’t include the output. The actual measured values are shown in table 5.22, where the �rst
three rows do not include output while the last three do. The row labeled "#times faster" is of
special interest, since it shows the factor by which the simulation experiment ran faster than
the previous one. Comparing these scaling factors of 1.35 and 1.72 for two and three nodes
when no simulation output is created and 1,38 and 1,50 with output respectively, reveals that
both modes of execution scale within the same range of complexity.

So MARS even scales while outputting simulation results, albeit absolute simulation per-
formance is a lot slower. How much slower exactly is shown in �gure 5.23, which highlights
that execution speed without output can be up to 4 times faster. To put it the other way
around: When output is included it consumes 68,94 % of an average ticks’ duration. A complete
simulation of the model for its designated wall-clock simulation time of 1 year or 8760 ticks
would take around 33 days to �nish, when executed with the used con�guration including
Mono. Just as mentioned in section 5.7 this can theoretically be reduced to around 7.5 hours
by using Microsoft’s native .NET implementation.

70

5 Results

To �nd the root cause behind the heavy performance impact simulation output has on MARS
LIFE further investigations where conducted. To do that the target database (MongoDB) was
monitored alongside the CPU utilization of LIFE. As it turned out, the target database is not
continuously writing or receiving data when LIFE executes the ResultAdapter responsible for
writing the data after each tick. Comparing output from MongoDB activity monitoring against
the LIFE Mono process cpu load statistics reveals that when MongoDB is not writing any data
the Mono process’ cpu load is going down to a single CPU. Figure 5.24 shows the monitored
behavior. This indicates a garbage collection (see section 4.1.2), which is a logical behavior
since the ResultAdapter is creating a lot of tiny objects that will likely �ll up the nursery / 1st
generation very fast even though it has 2 GB of space. So the problem of slow result output is
as well closely related to the Mono runtime garbage collection behavior.

71

5 Results

Figure 5.13: CPU load during consecutive runs of AgentShadowing benchmark on Mono. X-
axis shows continous time, while y-axis displays percentage of cpu usage per core
from 0 to 100.

72

5 Results

Figure 5.14: CPU load during serialization of 200.000.000 messages with BinaryFormatter on
Mono. X-axis show continous time, while y-axis display percentage of cpu usage
per core from 0 to 100.

73

5 Results

Figure 5.15: Model Initialization with and without on-demand ShadowAgent creation.

74

5 Results

Figure 5.16: Execution duration comparison for initialization and �rst 10 ticks for full KNP
model on a 6 core, 60GB and a 3 core, 30GB machine. Times are in seconds.

Figure 5.17: Duration of initialization and �rst 10 ticks of full scale simulation.

75

5 Results

Figure 5.18: Duration of initialization and �rst 10 ticks of full scale simulation on 1, 2 and 3
nodes.

Figure 5.19: Duration of initialization and �rst 10 ticks, average duration and projected duration
in hours of full scale simulation on 1, 2 and 3 nodes.

76

5 Results

Figure 5.20: Performance impact of distributed ESC during initialization and �rst 10 ticks of
full scale simulation.

Figure 5.21: Duration of initialization and �rst 10 ticks of full scale simulation including result
output.

77

5 Results

Figure 5.22: Duration of initialization, �rst 10 ticks, average duration of a tick and projected
duration of full scale simulation including result output. Color coding is done
separately for the �rst three rows and the last three.

78

5 Results

Figure 5.23: Performance impact of result output during �rst 10 ticks of full scale simulation.

Figure 5.24: Correlation of MongoDB Writes and Mono CPU load.

79

6 Conclusion & Outlook

6.1 Conclusion

6.1.1 Hypotheses Validation

Hypothesis 1

Experiment 1 clearly shows the performance impact of virtualization with KVM and the
overhead introduced by using Docker as container technology. However at 1.02% the relative
loss in execution speed is neglectably small compared to the gains in �exibility and increase in
productivity which virtualization introduces. So hypothesis 1 is validated.

Hypothesis 2

There are two aspect ins MARS LIFE, which are crucial for vertical scalability: The scalability
of distributable code, when run in non-distributed setups and the overall ability to make use of
an increased amount of hardware resources. Both aspects are brie�y evaluated here.

A MARS LIFE model developer has to decide whether his code should be distributable or
not. Being able to write the same code for both scenarios is highly desirable and hence that
solution needs to be tested regarding its scalability and performance. This is exactly what
benchmark one from experiment two aims at. The results show nicely how the basic agent
creation and resolving methods scale linearly with an increased size of agents. The absolute
performance is quite excellent as well. So the �rst aspect of vertical scalability for MARS LIFE
is validated.

Regarding resource utilization experiment four reveals that when resources are doubled the
execution duration is reduced by 24%. This result is a bit discomforting as it shows problem in
hardware utilization and the introduction of possible overheads when the Mono runtime needs
to schedule its threads across more cpu cores. While not a truly bad result and still validating
hypothesis two, there is a lot of room for improvement in vertical scalability for MARS LIFE.

80

6 Conclusion & Outlook

Hypothesis 3

Hypothesis 3 has six relating experiments and thus is probably the most complex to validate.
Horizontal scalability or scaling out inherently implies networking and communication, which
is why experiment two is the �rst to look at. Two benchmarks were performed during that
experiment. The �rst tested the basic and local features of AgentShadowing and showed
excellent linear scaling behavior. The second test examined every component involved when
actually sending messages over the network. The results reveal a performance problem with
Mono and a low-level bug in the used Mono version (4.4.0) but otherwise the measured values
as well increase with linear complexity. Additionally a comparison test on Windows with .NET
was executed, whose results validate the implementation of AgentShadowing as scaling with
linear complexity and performing very well (compare �gures 5.6 and 5.8).

With the basic implementation validated the initialization and actual simulation had to be
checked in several distributed scenarios. Experiment three validates the scalability of the
initialization process by showing excellent linear scaling behavior, since the baseline duration
of 24 minutes is divided by the amount of nodes (i.e. 7.6 minutes on three nodes).

Experiment �ve acts as the baseline simulation benchmark and shows good scale up ca-
pabilities by almost completely utilizing the available hardware. The �rst distributed run
from experiment six was prevented by implementation issues inside the ESC, which is why
a di�erent ESC con�guration (polyglot) was used in experiment seven. These distributed
simulation experiments on two and three nodes revealed a linear scaling behavior with a mean
speed improvement factor of 1.53 for each added node. Experiment eight adds result output
to the setup of experiment seven and while naturally having longer execution durations, the
scalability factor resides in the same range with a mean value of 1.43 per added node. So
hypothesis 3 �nally is validated.

Hypothesis 4

Since experiment six could not be executed the comparison of polyglot versus central ESC
in a distributed case must be omitted. Using a polyglot ESC with distribution via replication
currently is the only way to execute a distributed simulation experiment and hence the fastest
one available. In that sense hypothesis four is valid.

81

6 Conclusion & Outlook

Hypothesis 5

When initializing a distributed simulation there are two possibilities for the creation of Shadow
Agents. They may either be created during initialization and stored in-memory to potentially
reduce ramp-up times during the simulation or they may be created on-demand when needed.
The on-demand solution would be best, when no change in implementation would be required
to switch from local to distributed execution and benchmark 1 from experiment two validates
the practicability of this feature by presenting very good performance results and linear
scalability. A variant from experiment 3, which created all Shadow Agents during initialization,
clearly showed that this solution is not feasible. The initialization takes up to four times
longer to save a tiny amount of time during the simulation. Also this solution requires a lot
more memory (30GB) and since new agents are created during the simulation anyways, the
well performing and scaling on-demand creation of Shadow Agents is clearly superior. Thus
hypothesis �ve is validated.

Hypothesis 6

As stated above the fully automated model initialization scales with linear complexity. Experi-
ment 3 measured the initialization of the full KNP model on 1, 2 and 3 nodes and the results
show how the duration is divided by the number of nodes (24, 12 and 7.6 minutes for 1, 2 and
3 nodes respectively). However it has to be noted that the data required during initialization is
fetched from one or more databases. So there might be an upper limit for scaling out, since each
database instance may only serve so many clients. The used databases can also be clustered
and distributed and by that annihilate this possibly limiting e�ect, but it needs to be taken
into account when addin new database technologies to the stack. Nevertheless hypothesis 6 is
validated.

6.1.2 Result Summary

The scalability abilities of MARS become evident when looking at the hypothesis validation. In
almost all tests a linear scaling behavior has been observed and documented. So the initial goal
of creating a scalable Simulation as a Service system for large-scale scenarios has been achieved.

Though MARS scales, its absolute performance using Mono as runtime is by far not good
enough to support large-scale model execution in a productive way. The KNP model used
in this paper would take around a whole month to run to completion on the current setup
of the platform, which is simply not feasible. Throughout hypothesis validation some major

82

6 Conclusion & Outlook

performance problems have been found, that need to be �xed.

The top three performance impediments for MARS LIFE are:

#1 The Mono runtime has a signi�cant impact on overall performance especially in dis-
tributed runs. Simulations may take up to 100x longer compared to being executed with
the .NET Framework on Windows 10 (see section 5.2.2).

#2 The ResultAdapter and the corresponding output strategy for MARS as currently imple-
mented introduce a signi�cant performance overhead. When activated 68,94% of a tick’s
duration are spend with writing out simulation results on average (see section 5.8).

#3 The currently available implementation of the distributed Environment Service Compo-
nent consumes a 37% portion of an average tick’s duration.

6.2 Outlook

When looking at the results, performance problems and current state of MARS, it needs to be
mentioned that all benchmarks and measurements have been conducted during January of
2016 and thus all results re�ect the state of development from January. Since then the MARS
team is busy working on improvements in the discovered major areas of problems.

Since the number one impediment is Mono a lot of e�ort has been put into improving it
and tweaking its garbage collector in the past months. Some considerable progress has been
made like discovering the best settings for the sgen garbage collector for instance. However
since Microsoft announced its purchase of Xamarin (the company behind Mono) and thus
Mono in addition to the relicensing of their .NET platform to be Open Source, the focus in
the future should lie on refactoring MARS LIFE to use the newly available .NET Core and
.NET FX cross-platform implementations. These are designed to be used in microservice like,
high-performance back-end applications and include a largely enhanced garbage collector.
Though these new frameworks share most of the codebase with the current implementation
of MARS LIFE, still the refactoring of MARS LIFE will require a reimplementation of the
central distribution solution, because most of the namespaces used by the .NET framework
in AgentShadowing are discontinued or replaced in .NET Core / FX. So replacing Mono will
require a considerable amount of work in the future, but must not be omitted if MARS LIFE is
to be used in large-scale real world scenarios.

83

6 Conclusion & Outlook

The result output strategy as implemented in January was very simple and is currently being
heavily overhauled by Jan Dalski. Among the new solutions that he is adding right now are
compression methods, delta updates combined with a key-frame mechanism and an improved
method for selecting what is being written out as a result from the simulation. Also the solution
will greatly bene�t from the improved garbage collector in .NET Core, given that the majority
of problems in simulation output resulted from the garbage collector halting the system.

Lastly the environment service component will undergo a complete redesign. Since the
very beginning of the MARS project in 2013 the requirements for the ESC have changed.
Though the current solution is working, it will face upper boundaries (mostly memory-wise)
on large-scale models and in heavily distributed environments, where replication is no longer a
suitable way of distribution. Taking the polyglot ESC approach into account, the new solution
should not try to �t all use cases, but be either more adaptive or consist of many di�erent
implementations tailored towards speci�c scenarios. This would allow to select the best �t for
every part of a model during development and should increase both, simulation performance
and development speed alike.

84

Bibliography

Amouroux, Edouard, Thanh-quang, C H U, Boucher, Alain, & Drogoul, Alexis. 2007. GAMA :
an environment for implementing and running spatially explicit multi-agent simulations.

Axelrod, Robert. 1997. The Complexity of Cooperation: Agent-Based Models of Competition and

Collaboration. Vol. 1. Princeton, NJ: Princeton University Press.

Balmer, Michael, Axhausen, Kay, & Nagel, Kai. 2006. Agent-based demand-modeling framework
for large-scale microsimulations. Transportation Research Record: Journal of the Transporta-

tion Research Board, 125–134.

Bellifemine, Fabio, Caire, Giovanni, Poggi, Agostino, & Rimassa, Giovanni. 2008. JADE: A
software framework for developing multi-agent applications. Lessons learned. Information

and Software Technology, 50(1-2), 10–21.

Caglar, Faruk, Shekhar, Shashank, Gokhale, Aniruddha, Basu, Satabdi, Ra�, Tazrian, Kinnebrew,
John, & Biswas, Gautam. 2015. Simulation Modelling Practice and Theory Cloud-hosted
simulation-as-a-service for high school STEM education. Simulation Modelling Practice and

Theory, 58, 255–273.

Cayirci, Erdal. 2013. Modeling and simulation as a cloud service: A survey. Proceedings of

the 2013 Winter Simulation Conference - Simulation: Making Decisions in a Complex World,

WSC 2013, 389–400.

Childress, W. Michael, Coldren, Cade L., & McLendon, Terry. 2002. Applying a complex, general
ecosystem model (EDYS) in large-scale land management. Ecological Modelling, 153(1-2),
97–108.

Cicirelli, Franco, Furfaro, Angelo, Giordano, Andrea, & Nigro, Libero. 2010. Parallel Simulation
of Multi-agent Systems Using Terracotta. 2010 IEEE/ACM 14th International Symposium on

Distributed Simulation and Real Time Applications, oct, 219–222.

Collier, N., & North, M. 2012. Parallel agent-based simulation with Repast for High Performance
Computing. Simulation, 89(10), 1215–1235.

85

Bibliography

Farmer, J Doyne, & Foley, Duncan. 2009. The economy needs agent-based modelling. Nature,
460(7256), 685–686.

Filatova, Tatiana, Verburg, Peter H., Parker, Dawn Cassandra, & Stannard, Carol Ann. 2013.
Spatial agent-based models for socio-ecological systems: Challenges and prospects. Envi-
ronmental Modelling & Software, apr, 1–7.

Fowler, Martin. 2014. Microservices, a de�nition of this new architectural term. URL:
http://martinfowler.com/articles/microservices.html. Last accessed at: 30.04.2016.

Gardner, Martin. 1970. Mathematical Games – The fantastic combinations of John Conway’s
new solitaire game "life". Scienti�c American, 120–123.

Gelernter, David, & Carriero, Nicholas. 1992. Coordination languages and their signi�cance.
Communications of the ACM, 35(2), 96.

Gilbert, Nigel, & Bankes, Steven. 2002. Platforms and methods for agent-based modeling.
Proceedings of the National Academy of Sciences, 99(Supplement 3), 7197–7198.

Grimm, Volker. 1999. Ten years of individual-based modelling in ecology: what have we
learned and what could we learn in the future? Ecological Modelling, 115(2-3), 129–148.

Grimm, Volker, & Railsback, Steven. 2005. Individual-based Modeling and Ecology (Princeton

Series in Theoretical and Computational Biology).

Haase, A T. 1999. Population biology of HIV-1 infection: viral and CD4+ T cell demographics
and dynamics in lymphatic tissues. Annual review of immunology, 17, 625–56.

Hilbers, Jelle P, van Langevelde, Frank, Prins, Herbert H T, Grant, C C, Peel, Mike J S,
Coughenour, Michael B, de Knegt, Henrik J, Slotow, Rob, Smit, Izak P J, Kiker, Greg A,
& de Boer, Willem F. 2015. Modeling elephant-mediated cascading e�ects of water point
closure. Ecological Applications, 25(2), 402–415.

Holst, Niels. 2013. A universal simulator for ecological models. Ecological Informatics, 13(jan),
70–76.

Hüning, Christian, Wilmans, Jason, Feyerabend, Nils, & Thiel-Clemen, Thomas. 2014. MARS - A
next-gen multi-agent simulation framework. Simulation in Umwelt- und Geowissenschaften,

Workshop Osnabrück 2014, 1–14.

86

Bibliography

Hüning, Christian, Adebahr, Mitja, Thiel-Clemen, Thomas, Dalski, Jan, Lenfers, Ul�a, Grund-
mann, Lukas, Dybulla, Janus, & Kiker, Gregory A. 2016. Modeling & Simulation as a Service
with the Massive Multi-Agent System MARS. In: Proceedings of the 2016 Spring Simulation

Multiconference.

Huqqani, Altaf Ahmad, Li, Xin, Beran, Peter Paul, & Schikuta, Erich. 2010. N2Cloud: Cloud
based neural network simulation application. The 2010 International Joint Conference on

Neural Networks (IJCNN), 1–5.

Huston, M, DeAngelis, D, & Post, W. 1988. New computer models unify ecological theory.
BioScience, 38, 682–691.

Jennings, Nicholas R. 1999. Agent-Based Computing : Promise and Perils. Pages 1429–1436 of:
16th Int. Joint Conf. on Arti�cial Intelligence (IJCAI-99).

Johnson, Harry E, & Tolk, Andreas. 2013. Evaluating the Applicability of Cloud Computing
Enterprises in Support of the Next Generation of Modeling and Simulation Architectures.
Proceedings of the Military Modeling & Simulation Symposium.

Le, Quang Bao, Park, Soo Jin, & Vlek, Paul L G. 2010. Land Use Dynamic Simulator (LUDAS):
A multi-agent system model for simulating spatio-temporal dynamics of coupled human-
landscape system. 2. Scenario-based application for impact assessment of land-use policies.
Ecological Informatics, 5(3), 203–221.

Liu, Jianguo, Dietz, Thomas, Carpenter, Stephen R, Alberti, Marina, Folke, Carl, Moran, Emilio,
Pell, Alice N, Deadman, Peter, Kratz, Timothy, Lubchenco, Jane, Ostrom, Elinor, Ouyang,
Zhiyun, Provencher, William, Redman, Charles L, Schneider, Stephen H, & Taylor, William W.
2007. Complexity of coupled human and natural systems. Science (New York, N.Y.), 317(5844),
1513–6.

Mengistu, Dawit, Tröger, Peter, Lundberg, Lars, & Davidsson, Paul. 2008. Scalability in
distributed multi-agent based simulations: The JADE case. Proceedings of the 2008 2nd

International Conference on Future Generation Communication and Networking, FGCN 2008,
5, 93–99.

Muller, S, Muñoz-Carpena, R, & Kiker, G. 2011. Model Relevance. Pages 39–65 of: Linkov, Igor,
& Bridges, S Todd (eds), Climate: Global Change and Local Adaptation. Dordrecht: Springer
Netherlands.

87

Bibliography

Münchow, Stefan, Enukidze, I, Sarstedt, Stefan, & Thiel-Clemen, Thomas. 2014. WALK: A
Modular Testbed for Crowd Evacuation Simulation. In: Weidman, U (ed), Proceedings of the
6th International Conference on Pedestrian Evacuation Dynamics. Springer.

Narayanan, S. 2000. Web-based Modeling and Simulation. Proceedings o f the 2000 Winter

Simulation Conference, 60–62.

Neumann, John Von. 1966. Theory of Self-Reproducing Automata. Champaign, IL, USA: Uni-
versity of Illinois Press.

Niazi, Muaz, & Hussain, Amir. 2011. Agent-based computing from multi-agent systems to
agent-based models: A visual survey. Scientometrics, 89(2), 479–499.

Noetzel, Carsten, Reintjes, Ralf, & Thiel-Clemen, Thomas. 2013 (sep). Die Rolle ö�entlicher
Verkehrsmittel bei der Übertragung und Verbreitung von Krankheitserregern. In: Handels, H,
& Ingenerf, J (eds), 58. Jahrestagung der Deutschen Gesellschaft für Medizinische Informatik,

Biometrie und Epidemiologie e.V. (GMDS).

Padilla, Jose. 2014. Cloud-Based Simulators: Making Simulations Accessible To Non-Experts
and Experts Alike. Proceedings - Winter Simulation Conference 2014, 3630–3639.

Parker, Jon. 2007. A �exible, large-scale, distributed agent based epidemic model. Proceedings -
Winter Simulation Conference, 1543–1547.

Parker, Jon, & Epstein, Joshua M. 2011. A Distributed Platform for Global-Scale Agent-Based
Models of Disease Transmission. ACM Transactions on Modeling and Computer Simulation,
22(1), 1–25.

Perry, George L.W., & Enright, Neal J. 2006. Spatial modelling of vegetation change in dynamic
landscapes: a review of methods and applications. Progress in Physical Geography, 30(1),
47–72.

Rak, Massimiliano, Cuomo, Antonio, & Villano, Umberto. 2012. mJADES: Concurrent Simula-
tion in the Cloud. 2012 Sixth International Conference on Complex, Intelligent, and Software

Intensive Systems, 853–860.

Ralha, Célia G., Abreu, Carolina G., Coelho, Cássio G.C., Zaghetto, Alexandre, Macchiavello,
Bruno, & Machado, Ricardo B. 2013. A multi-agent model system for land-use change
simulation. Environmental Modelling & Software, 42(apr), 30–46.

88

Bibliography

Russell, SJ, & Norvig, P. 1995. A modern, agent-oriented approach to introductory arti�cial
intelligence. SIGART Bulletin, 6(2), 24–26.

Schelling, Thomas C. 1969. Models of Segregation. Pages 488–493 of: Papers and Proceedings
of the Eighty�rst Annual Meeting of the American Economic Association, vol. 59.

Smajgl, Alex, Brown, Daniel G, Valbuena, Diego, & Huigen, Marco G A. 2011. Empirical
characterisation of agent behaviours in socio-ecological systems. Environmental Modelling

Software, 26, 837–844.

Suryanarayanan, Vinoth, Theodoropoulos, Georgios, & Lees, Michael. 2013. PDES-MAS:
Distributed Simulation of Multi-agent Systems. Procedia Computer Science, 18(jan), 671–681.

Taylor, S J E, Balci, O, Cai, W, Loper, Margaret L., Nicol, David M., & Riley, George. 2013. Grand
challenges in modeling and simulation: expanding our horizons. Proceedings of the 2013

ACM SIGSIM conference on Principles of advanced discrete simulation., 409–414.

Taylor, Simon J E, Fujimoto, Richard, Page, Ernest H., Fishwick, Paul a., Uhrmacher, Adelinde M.,
& Wainer, Gabriel. 2012. Panel on grand challenges for modeling and simulation. Proceedings
- Winter Simulation Conference.

Taylor, Simon J. E., Kiss, Tamas, Terstyanszky, Gabor, Kacsuk, Peter, & Fantini, Nicola.
2014. Cloud computing for simulation in manufacturing and engineering: introducing
the CloudSME simulation platform. Proceedings of the 2014 Annual Simulation Symposium,
12.

Thiel, Christian. 2013. Analyse von Partitionierungen und partieller Synchronisation in stark

verteiltenmultiagentenbasierten Fußgängersimulationen. Master Thesis, Hamburg University
of Applied Sciences.

Thiel-Clemen, Th. 2013a. Information Integration in Ecological Informatics and Modelling.
Pages 89 – 96 of: Wittmann, J., & Müller, M. (eds), Simulation in Umwelt- und Geowis-

senschaften, Workshop Leipzig.

Thiel-Clemen, Thomas. 2013b. Designing Good Individual-based Models in Ecology. Pages
97–106 of: Wittmann, J, & Müller, M (eds), Simulation in Umwelt- und Geowissenschaften,

Workshop Leipzig.

Tolk, Andreas, & Mittal, Saurabh. 2014. A necessary paradigm change to enable composable
cloud-based M&S services. Proceedings of the 2014 Winter Simulation Conference, 356–366.

89

Bibliography

Vigueras, Guillermo, Orduña, Juan M., Lozano, Miguel, & Jégou, Yvon. 2013. A scalable multi-
agent system architecture for interactive applications. Science of Computer Programming,
78(6), 715–724.

Villa, Ferdinando. 2001. Integrating modelling architecture: a declarative framework for
multi-paradigm, multi-scale ecological modelling. Ecological Modelling, 137(1), 23–42.

Wang, B, Yao, Y, & Himmelspach, Jan. 2009. Experimental analysis of logical process simulation
algorithms in JAMES II. Pages 1167–1179 of: Proceedings of the Winter 2009 Simulation

Conference.

Wang, Y, Lees, M, & Cai, W. 2012. Grid-based partitioning for large-scale distributed agent-based
crowd simulation. Proceedings of the Winter 2012 Simulation Conference.

Wendeldorf, Katherine V., Bassaganya-Riera, Josep, Bisset, Keith, Eubank, Stephen, Hontecil-
las, Raquel, & Marathe, Madhav. 2011. ENteric Immunity SImulator: A Tool for in silico
Study of Gut Immunopathologies. 2011 IEEE International Conference on Bioinformatics and

Biomedicine, 11(3), 462–469.

Wooldridge, Michael. 1997. Agent-based software engineering. IEE Proceedings Software

Engineering., 144(1), 26–37.

Wooldridge, Michael. 1998. Agent-based computing. Interoperable Communication Networks,
5(5), 71–98.

Yamamoto, G, Tai, H, & Mizuta, H. 2008. A platform for massive agent-based simulation and
its evaluation. Massively Multi-Agent Technology.

Zehe, Daniel, Knoll, Alois, Cai, Wentong, & Aydt, Heiko. 2015. {SEMSim} Cloud Service: Large-
scale urban systems simulation in the cloud. Simulation Modelling Practice and Theory,
58.

90

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig verfasst und

nur die angegebenen Hilfsmittel benutzt habe.

Hamburg, 27. Juni 2016 Christian Hüning, christian.huening@haw-hamburg.de

	1 Introduction
	1.1 Why Scale Matters
	1.2 Hypotheses
	1.3 Structure Outline

	2 Methodology
	2.1 IBM in Ecology
	2.1.1 First Steps
	2.1.2 Ten years of ecological modelling - A review
	2.1.3 Integrating Models
	2.1.4 Summary

	2.2 Simulation Frameworks
	2.2.1 General Solutions
	2.2.2 Cloud-based Solutions
	2.2.3 High Performance Computing
	2.2.4 Case Specific Implementations

	2.3 Requirements
	2.3.1 Modularity and Reusability
	2.3.2 Information Integration
	2.3.3 Scalability
	2.3.4 Ease of Use
	2.3.5 Visualization
	2.3.6 Scientific Analysis

	2.4 MARS System
	2.4.1 Overview
	2.4.2 Concepts

	3 Implementation
	3.1 MARS Workflow
	3.2 MARS Basic MSaaS Workflow
	3.2.1 Simulation Model Preparation
	3.2.2 Simulation Model Execution
	3.2.3 Simulation Model Analyses

	3.3 Architecture & Technology
	3.3.1 Overview
	3.3.2 LIFE Simulation System
	3.3.3 LayerContainer
	3.3.4 Agent Shadowing

	4 Experiments
	4.1 Setup
	4.1.1 Infrastructure Setup for Experiments
	4.1.2 Special Settings and Details
	4.1.3 An Experimental Model

	4.2 Experiment Description
	4.2.1 EXP1: Performance comparison of bare-metal, KVM VM & Docker on KVM
	4.2.2 EXP2: AgentShadowing standalone test
	4.2.3 EXP3: Test of KNP model initialization on 1, 2 and 3 nodes
	4.2.4 EXP4: Test of KNP Model with single, central ESC on single node
	4.2.5 EXP5: Test of KNP Model with polyglot ESCs in each layer on single node
	4.2.6 EXP6: Test of KNP Model with distributed, single ESC on 2 and 3 nodes
	4.2.7 EXP7: Test of KNP Model with polyglot ESCs in each layer on 2 and 3 nodes
	4.2.8 EXP8: Test of KNP model with Result WriteOut including the best options from the above tests
	4.2.9 Summary

	5 Results
	5.1 EXP1 - Performance Impact of Virtualization layers.
	5.2 EXP2 - Agent Shadowing Standalone
	5.2.1 Benchmark 1 - Local Behavior
	5.2.2 Benchmark 2 - Network Behavior

	5.3 EXP3 - Test of KNP model initialization on 1, 2 and 3 nodes
	5.4 EXP4 - KNP Model with central ESC on single node
	5.5 EXP5 - KNP Model with polyglot ESCs in each layer on single node without result output
	5.6 EXP6 - KNP Model with distributed, single ESC on 1, 2 and 3 nodes without result output
	5.7 EXP7 - KNP Model with polyglot ESCs in each layer on 1, 2 and 3 nodes without result output
	5.8 EXP8 - KNP Model with polyglot ESCs in each layer on 1, 2 and 3 nodes with result output

	6 Conclusion & Outlook
	6.1 Conclusion
	6.1.1 Hypotheses Validation
	6.1.2 Result Summary

	6.2 Outlook

