
Design and implementation of
a data storage abstraction layer

for the Internet of Things

Lucas Andreas Jenß

Masterarbeit

Fakultät Technik und Informatik
Studiendepartment Informatik

Faculty of Engineering and Computer Science
Department of Computer Science

Lucas Andreas Jenß

Design and implementation of
a data storage abstraction layer

for the Internet of Things

Masterarbeit eingereicht im Rahmen der Masterprüfung

im Studiengang Master of Science Informatik
am Department Informatik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Thomas Schmidt
Zweitgutachter: Prof. Dr. Franz Korf

Eingereicht am: 29.03.2016

Lucas Andreas Jenß

Title of the paper

Design and implementation of

a data storage abstraction layer

for the Internet of Things

Keywords

Internet of Things, IoT, File systems, Object storage, Flash memory

Abstract

The usage of persistent flash storage to overcome the memory limitations of Wire-

less Sensor Network nodes emerged in the early 2000s. But research on usable and

reusable storage systems for embedded Operating Systems has stagnated, while

the emergence of the Internet of Things (IoT) has yielded new storage require-

ments, which existing literature does not take into account. In addition, the usage

of NAND flash is scarcely discussed, even though it is significantly cheaper and

offers lower energy consumption than NOR flash. This thesis proposes a design for

a flash-based storage system for constrained IoT nodes which supports NAND flash

memory, and is evaluated based on a proof-of-concept implementation for the RIOT

Operating System. The design is based on an extensive literature review which

was used to gather a list of requirements that a storage system for the IoT should

meet. The resulting system can be used to provide both low-level storage with very

low resource requirements as well as a more sophisticated storage API with mod-

erate resource requirements. The evaluation of the implementation suggests that

it is significantly more resource efficient than most previous systems providing a

similar feature set, and that it can be more easily adapted to different use cases,

improving its reusability.

Lucas Andreas Jenß

Thema der Arbeit

Design und Implementation einer

Datenspeicherabstraktionsschicht

für das Internet der Dinge

Stichworte

Internet der Dinge, IoT, Dateisysteme, Flash Speicher

Kurzzusammenfassung

Persistenter Flash Speicher wird seit den frühen 2000ern eingesetzt, um die Spei-

cherlimitierung von Wireless Sensor Network Knoten zu überwinden. Während

durch das Aufkommen des Internets der Dinge (IoT) neue Datenspeicherungsan-

forderungen entstanden sind, ist die Forschung im Bereich der Datenspeichersys-

teme jedoch stagniert. Des Weiteren geht bestehende Literatur kaum auf die Nut-

zung von NAND Flash Speicher ein, welcher jedoch signifikant günstiger und ener-

gieeffizienter als NOR Flash ist. In dieser Arbeit wird deshalb ein flashbasiertes

Datenspeichersystem für IoT Knoten mit eingeschränkten Resourcen vorgestellt,

welches NAND Flash Speicher unterstützt. Das Design dieses Systems baut auf

einer ausführlichen Auswertung der bestehenden Literatur auf, welche die Basis

für eine Anforderungsanlyse von IoT Datenspeichersysteme bietet. Die Evaluation

der Implementierung des Systems suggeriert, dass es erheblich ressourceneffizi-

enter ist als die meisten vergleichbaren Systeme. Darüber hinaus ist das Sytstem

besser an neue Anwendungsfälle anpassbar, wodurch die Wiederverwendbarkeit

verbessert wird.

Contents

1 Introduction 1

2 Background 5
2.1 The Internet of Things . 5
2.2 Internet-connected embedded devices 5
2.3 Protocols in the Internet of Things . 6
2.4 Embedded operating systems for the IoT 6
2.5 Flash Memory . 8
2.6 Secure Digital (SD) cards . 11
2.7 Efficiency of wireless communication compared to flash storage 12

3 Literature Review 13
3.1 Overview . 13
3.2 Physical storage structures . 16
3.3 Logical storage structures . 24
3.4 Indexing algorithms . 26
3.5 Application Programming Interface . 27
3.6 Discussion . 29

4 Requirements analysis 33
4.1 Use cases . 33
4.2 Functional Requirements . 36
4.3 Non-functional requirements . 38
4.4 Discussion . 39

5 Design of the Flash Translation Layer 41
5.1 Subpages . 42
5.2 Partitioning . 43
5.3 Reading and writing data . 46
5.4 Wear levelling . 47
5.5 Free space management . 47
5.6 Persistent storage of metadata . 50
5.7 Application Programming Interface . 52
5.8 Discussion . 56

v

Contents

6 Design of the Object Storage Layer 59
6.1 Storage structure . 59
6.2 Buffering records . 60
6.3 Combined records . 61
6.4 Record caching . 63
6.5 Object defragmentation . 64
6.6 Storage objects . 64
6.7 Metadata . 68
6.8 Checking object existence . 70
6.9 Opening and closing objects . 71
6.10 Garbage collection . 72
6.11 Thread safety . 73
6.12 Application Programming Interface . 73
6.13 Discussion . 77

7 Implementation 81
7.1 Methodology . 82
7.2 Challenges . 84

7.2.1 Flash storage emulation . 85
7.2.2 Flash Translation Layer configuration 86

8 Evaluation 89
8.1 Performance . 89

8.1.1 Platform . 89
8.1.2 Reproducibility . 90
8.1.3 ROM usage . 91
8.1.4 RAM usage . 93
8.1.5 FTL throughput . 95
8.1.6 OSL throughput . 97

8.2 Design . 98
8.2.1 Extensibility and Reusability . 99
8.2.2 Robustness and Reliability . 100
8.2.3 Usability . 101

8.3 Discussion . 103

9 Conclusion 105
9.1 Key Achievements . 105
9.2 Future work . 106

Glossary 109

Bibliography 117

vi

1 Introduction

Virtually all applications running on a computer need to store and retrieve data.

In some cases, the memory available in the address space of the process itself is

adequate. For other cases, where computations are performed over large data sets,

data needs to be persistently stored, or data needs to be accessed by many users

simultaneously, separate, persistent mass-storage approaches are required.

Flash memory, as a means of mass storage, has replaced Hard Disk Drives (HDDs)

in many areas, since it exhibits higher durability due to the lack of moving parts,

high heat and shock resistance as well as a low noise profile. Furthermore, it

outperforms HDDs in terms of random Input/Output Operations per Second (IOPS)

by about two orders of magnitude [16]. But Flash has another important trait: its

energy footprint is considerably lower compared to HDDs [52]. These properties

facilitate mass-storage for mobile devices, allowing millions of users to store their

personal data on their phones. Enabling ubiquitous mass storage for the Internet

of Things (IoT) might be the next breakthrough based on flash memory, due to its

low cost and high utility value.

Wireless Sensor Networks (WSNs) consist of a large number of small, cheap, and

resource-constrained nodes with ~10 KiB of RAM and ~100 KiB of ROM, which are

physically spread across an area. They communicate wirelessly with one another,

often self-organizing themselves into wireless ad hoc networks [55]. WSNs are

commonly used for gathering data which is evaluated outside of the sensor network

itself. The Internet of Things (IoT) is an evolution of WSNs, where sensors are

connected to the Internet and can act autonomously based on their environment,

possibly interacting with other nodes of the IoT or devices from the Internet, such

as servers or smartphones. Use cases for both WSN and the IoT are plentiful [33]:

1

1 Introduction

• In so-called “precision agriculture”, WSN can be used to control selective irri-

gation and fertilization as well as detection of weeds, pests and soil conditions

[47].

• In civil and environmental engineering, IoT nodes can be employed to monitor

the condition of objects created by humans as well as the environment, or

even individuals themselves.

• In home automation, i.e. the “Smart Home”, a multitude of different sys-

tems can be remotely and automatically managed: lighting, heating, security

systems such as locks or garage doors, water supply, air conditioning, home

entertainment etc.

Many of these use cases can be implemented without mass storage support in

the context of a WSN, since the main functionality of its nodes is to record and

relay data. In the IoT, however, nodes are expected to operate autonomously. This

implies that the evaluation of the sensed data and the resulting decision making

process must take place on the node itself. By equipping IoT nodes with flash

memory, it becomes feasible to implement these evaluation and decision making

strategies without requiring the usage of less resource constrained, and thus more

expensive, hardware.

One area where flash memory could substantially improve the capabilities of IoT

applications is in Information Centric Networking (ICN) [8], which aims to save

energy and radio resources as well as increase the availability of data through

in-network caching and hop-wise replication. ICNs are inherently limited by the

amount of memory available for caching, especially considering that not only the

ICN layer, but also the actual application using ICN for communication must be fit

into the RAM of the IoT nodes. The size of such an ICN cache could be drastically

improved by providing a flash based storage solution.

Even though mass storage has great potential to extend the range of capabilities

of IoT nodes, the research area has been stagnant. Embedded Operating System

(OS) for WSN and the IoT do not currently offer storage systems with feature sets

that match the requirements of WSN applications [46], nor do they examine the

usability and extensibility of their approaches in detail. Furthermore, there are no

publications discussing storage systems in context of the IoT.

2

This thesis presents the design of a storage system tailored to both WSN and IoT

use cases, with special focus on the reusability and usability of the system. To this

end, it provides an extensive survey of existing flash-based storage solutions em-

ployed in the WSN context in Chapter 3, laying the foundation of the requirements

analysis for a storage system tailored to the IoT (Chapter 4). The design itself is

presented in Chapter 5 as well as Chapter 6 and the implementation process is

outlined in Chapter 7. Finally, the resulting design and the implementation are

evaluated (Chapter 8) and the thesis is concluded in Chapter 9.

3

2 Background

2.1 The Internet of Things

Advances in wireless communication and electronics of the early 2000s allowed

WSNs to emerge. Such networks are formed of many so-called “constrained de-

vices” with limited resources in terms of CPU, memory and power. Many use cases

for such networks exist, including monitoring of disaster areas, patient health,

product quality or buildings. By adapting Internet protocols to operate on the

devices that form WSN, they become part of the global Internet, forming the IoT.

2.2 Internet-connected embedded devices

Embedded devices which may be connected to the Internet have been grouped

into three different classes depending on their hardware capabilities in RFC7228

[13] (see Figure 2.1). Class 0 devices are the most constrained and can be com-

pared to sensor nodes of WSN. They are not expected to have enough resources

to connect to the Internet themselves. Instead, they rely on less constrained prox-

ies to achieve Internet connectivity. Class 1 devices are still very constrained, but

can be expected to communicate with Internet nodes using protocols designed for

constrained nodes (see Section 2.3). Class 2 devices are less constrained and can

support most of the protocol stacks employed in the global Internet. Embedded

devices beyond the capabilities of Class 2 do not pose significant limitations on

the development of Internet-connected applications and are thus not further clas-

sified.

5

2 Background

Name data size (e.g., RAM) code size (e.g, Flash)

Class 0, C0 � 10 KiB � 100 KiB

Class 1, C1 10 KiB 100 KiB

Class 2, C2 50 KiB 250 KiB

Figure 2.1: Classes of constrained devices (KiB = 1024 bytes),
as seen in RFC7228 [13].

2.3 Protocols in the Internet of Things

The rapid growth of the IoT has been facilitated not only by the decreasing cost

of hardware in Class 1 devices, but also by the development of two significant

low-power network access layer protocols: IEEE 802.15.4 [1] and Bluetooth Low-

Energy [12]. On top of these, a suite of standard protocols has been created by the

Internet Engineering Task Force (IETF) to provide a common language that enables

IoT nodes to converse among themselves and become part of the global Internet.

Part of this standard suite is 6LoWPAN [32], an adaption layer which translates

IPv6 packets into a minimal format which fits the small payload sizes of low-power

radio protocols such as IEEE 802.15.4. RPL [65] was designed specifically as a

routing protocol for Low-power Lossy Networks (LLNs), and the HTTP-like Con-

strained Application Protocol (CoAP) [59] was developed to achieve standardized

communication between Application Programming Interface (API) endpoints on the

Internet and IoT nodes.

The existence of these protocols is one of the factors which make the IoT possible.

Without them, Class 1 devices would not be able to exchange data over the Internet

in a meaningful way, since they do not provide the necessary resources for a full

TCP/IPv6 and HTTP(S) stack. A more complete survey of the technologies enabling

the IoT can be found in [4].

2.4 Embedded operating systems for the IoT

Desktop and server OSs are designed for fundamentally different system require-

ments than what we encounter in WSN or IoT applications on constrained nodes. As

a result, a number of OSs specifically designed for constrained nodes have emerged

6

2.4 Embedded operating systems for the IoT

over the past decade, the prominent ones being TinyOS [53], Contiki [25] and, more

recently, RIOT [7].

TinyOS is an OS initially developed at the University of Berkeley. It was originally

intended to be used for nodes in WSNs (1 KiB memory), but has since transitioned

to targeting a multitude of different use cases, such as personal area networks,

smart buildings and smart meters (mostly Class 1 devices). For most of its exis-

tence, TinyOS has been an OS aimed at the research community and experts in

the field of WSN, causing it to be less approachable for other people seeking to

participate [39]. It uses a custom C dialect for event-driven programming called

nesC. In the event-driven model, processes only run when an event is triggered, af-

ter which they manually return control to the kernel. The impact of such decisions

has only recently become evident: with constrained nodes becoming affordable for

personal or small-scale projects, potential users are alienated by the complexity of

the system.

Contiki was also targeted at WSN in the beginning. Unlike TinyOS, its applications

are written in C and it provides facilities for dynamically loading, unloading and

updating modules at runtime, allowing the behavior of an application to be changed

while deployed. Contiki’s concurrency model uses preemptable threads as opposed

to the event-based system employed by TinyOS. Contiki is currently advertising

itself as “the Open Source OS for the IoT”.

RIOT is a recent development in the space of IoT OSs, targeting Class 1 devices.

Unlike TinyOS, which was primarily aimed at the research community, RIOT aims to

simplify development of IoT applications. It is written in C and allows applications

to be developed in C or C++. It uses a multithreaded programming model and a

POSIX-like API, allowing many libraries to be ported from other POSIX OSs with

little effort.

All the previously mentioned systems currently support the relevant IoT protocols

which have been developed to connect embedded devices to the global Internet

(see Section 2.3).

7

2 Background

2.5 Flash Memory

Flash memory is a type of Electrically Erasable Programmable Read-Only Memory

(EEPROM). In contrast to HDDs, where data is stored on one or more rotating

magnetic disks, flash memory does not have any moving parts. It stores data in

memory cells composed of floating-gate transistors which store an electrical charge

applied to them. The fabrication of flash memory is among the fastest scaling

semiconductor technologies, with 16 nm fabrication processes being common since

2014 and at least one semiconductor vendor preparing mass-production of 14 nm

flash in 2016.

Figure 2.2 shows the components of NAND flash memory: the die, planes, blocks

and pages. The die is the memory chip, which contains one or more planes. Each

plane is outfitted with a number of blocks (typically 2,048–16,384). Each block, in

turn, is composed of pages (typically 32–256), which are the smallest units than

can be programmed (written to) [68]. Each page has a fixed number of bytes for

data storage and a dedicated region for page metadata, for example 256 bytes of

data + 8 bytes of metadata. The rapid evolution of flash semiconductors allows

for larger memory capacities on smaller dies, but also also has implications for

performance: for a fixed page size, write throughput decreases as the fabrication

process shrinks. As a result, vendors have been continually increasing page sizes to

compensate this effect [2]. The family of flash memory chips on the Mica platform

(2004), had a page size of 264 bytes [6]. Current chips tend to have a page size of

two or four kilobytes.

Flash memory has some properties which set it apart from traditional HDDs:

Bulk-erase An erase operation can only be performed on an entire block, eras-

ing all resident pages. An erase operation sets all bits to 1. This is a time

consuming operation and should therefore be performed infrequently [68].

Write-once Programming a page consists of selectively setting bits of a previously

erased page to 0, such that the desired bit sequence is achieved. While mul-

tiple program operations setting bits to 0 can be issued (though limited in

number, depending on the flash chip) the reverse operation requires the era-

sure of the entire resident block [34]. As a result, fine grained modifications

of already written data is more complex than on traditional HDDs. For NOR

8

2.5 Flash Memory

Die

Plane

Block

Page

Figure 2.2: Components of a flash die. Note that a block commonly has many more
than the 10 pages which were used for illustration (typically 32-256).

flash, the same limitations apply except that, because pages do not exist, each

byte of a block can be independently programmed.

Block deterioration: Each block will fail after a number of program/erase cycles,

depending on the type of flash memory being used.

Depending on the type of flash memory, the above properties are subjected to small

variations. There are two primary types of flash memory, named according to the

way their memory cells are built. One of them is NOR flash whose memory cells

resemble NOR gates. NOR flash is the most reliable and expensive type of flash,

but also the slowest. Instead of having to program entire pages at once, most NOR

flash allows to program arbitrary bytes of a page (write-once still applies). NAND

flash is again divided into two categories depending on how many bits are stored

in each of the memory cells. If only a single bit can be stored it is called Single-

Level Cell (SLC) flash, if more than one bit can be stored it is called Multi-level Cell

(MLC) flash. NAND flash generally provides higher density storage at lower cost

per bit. However, using NAND flash comes with a number of additional limitations

[18]:

• Partial page programming is not possible (MLC) or only possible a limited

number of times (SLC, up to 4 times)

9

2 Background

NOR
NAND

SLC MLC

Size range 256 KB to 2 GB 128 MB to 512 GB 16 GB to 2 TB

Page size range 256 B to 2 KB 2 KB to 4 KB 4 KB+

Program/Erase cycles 100,000+ 100,000 3,000 to 10,000

Price factor 40x 10x 1x

Read speed > 100 MB/s > 20 MB/s > 15 MB/s

Write speed < 1 MB/s > 8 MB/s > 2 MB/s

Block erase time 900 ms 2 ms 2 ms

Figure 2.3: Comparison between different types of flash memory.

• Bit errors are expected, so Error-Correcting Codes (ECCs) must be used.

Flash memory vendors provide ECC requirements for each chip, meaning that

they vary between types of flash, size of pages, etc.

– Reading a page many times may cause read disturbance, causing bits of

the same page or adjacent pages to flip. For MLC this happens around

100,000 reads and around 1,000,000 reads for SLC.

– Writing a page may cause write disturbance, causing bits of the same

page, which were not written, or bits of adjacent pages to flip.

• Durability of MLC flash erase blocks much lower (see Figure 2.3).

• Pages of an erase block must be programmed sequentially to reduce write

disturbance. The effect is particularly severe on MLC flash, but must also be

taken into account for SLC.

As a result, NAND flash is also less reliable and its usage implies significant ad-

ditional implementation complexity [52, 68]. An overview of the different types of

flash memory is given in Figure 2.3.

The properties of flash memory have implications for systems which aim to store

data on them. Wear-levelling is a generic term for techniques to distribute pro-

gram/erase operations evenly across all blocks, thus prolonging the lifetime of the

device. Updating a page is problematic because it requires the prior erasure of the

resident block. As a result, out-of-place updates are performed: pages (or entire

10

2.6 Secure Digital (SD) cards

files) to be modified are re-written with their modifications at a different location.

Out-of-place updates come with a side effect, however. The pages where the up-

dated data previously lived become obsolete and must be erased at some point in

time. Garbage collection techniques are employed to determine blocks which have

a high percentage of obsolete pages. Remaining live data is then copied to another

block and the page is erased, making it available for writing again.

The implications of the continually growing page sizes of flash memory primarily

impact constrained devices. Since it is not possible to write to a page many times

without erasing the resident block first, data to be written must be buffered in

RAM. Normally, this buffer would need to have at least the size of a single page.

Assuming a page size of e.g. 2 KiB, this is already 20% of total RAM provided by a

Class 1 device.

File Systems (FSs) not explicitly designed for usage with flash memory are difficult

to adapt to its special properties. For desktop computing, vendors of NAND flash

Solid-State Drives (SSDs) are employing complex translations layers which convert

operations intended for HDDs to operations on flash memory. With wider availabil-

ity of SSDs, operating system vendors are also including functionality to optimize

their existing FSs for usage with flash memory.

2.6 Secure Digital (SD) cards

A special type of flash memory currently available is the SD card. It is notable be-

cause its storage is managed by a dedicated microcontroller. This controller omits

some of the complexities of its underlying flash memory, such as ECC computation.

Unfortunately, this controller has negative consequences for the usage of SD cards

in low-power embedded scenarios. Flash memory is well-suited for embedded use

because of its very low power requirements, which an additional controller under-

mines by drawing power for every operation. While the SD card controller can

be powered down/up on demand to reduce its sleep current, this operation is very

costly in terms of energy (equivalent to thousands of read operations [44]). As a

result, SD cards should only be used for low-power embedded scenarios if no other

option is available.

11

2 Background

2.7 Efficiency of wireless communication compared to

flash storage

Wireless communication is commonly the most expensive operation an IoT node can

perform, and the energy footprint has not improved significantly in the last decade

(see Figure 2.4). In comparison to the 11 year old Texas Instruments CC2420

transceiver, the best current generation counterpart (the Atmel AT86RF233) per-

forms 38% better for receiving data and 21% better for sending data. Integrating

the transceiver into a Microcontroller Unit (MCU) (e.g., the CC2630) achieves fur-

ther improvements. In comparison, a recent survey puts the energy consumption

when reading from a 8 GB SLC NAND flash chip at 0.001µJ per Byte, and at

0.025µJ when writing a Byte [49].

The estimated energy consumed when taking into account CPU operation as well

as the cost of transferring data is about 5–7x higher than the cost of accessing a

flash device, depending on the efficiency of the CPU [45]. However, this overhead is

also incurred when sending data wirelessly. In summary, it can be said that storing

a byte on flash is more than an order of magnitude more energy efficient than

transmitting it wirelessly, and reading a byte from flash is more than two orders of

magnitude more efficient.

8 GB Flash AT86RF233 CC2420 CC2520 C2630

MCU 7 7 7 7 3

RX (mA) 11.8 18.8 18.5 6.1

TX (mA) 13.8 17.4 33.6 9.1

RX at 3V (µJ/byte) 0.001 1.13 1.80 1.78 0.59

TX at 3V (µJ/byte) 0.025 1.32 1.67 3.23 0.87

Figure 2.4: Overview of energy consumption of current IEEE 802.15.4 transceivers
for the 2.4 GHz band compared to an 8 GB flash chip. Energy per byte
calculated using maximum 802.15.4 compliant data rate of 250 kbps.
RX (receive) and TX (transmit) current are based on manufacturer
datasheets. The MCU row indicates whether or not the transceiver
comes integrated into a microcontroller unit.

12

3 Literature Review

This section provides a broad overview of data storage paradigms which have sur-

faced in the context of WSNs and the IoT (Section 3.1), followed by an examination

of the prevalent themes of embedded storage regarding physical storage structures

(Section 3.2) and logical storage structures (Section 3.3).

3.1 Overview

In 2014, the International Telecommunication Union (ITU) declared WSNs one of

the most rapidly developing information technologies, providing an elaborate sur-

vey of possible use cases ranging from agricultural, civil and environmental moni-

toring to smart home applications and emergency management [33]. As these WSN

devices are connected to the global Internet, they become part of the IoT.

The engineering constraints for the implementation of these use cases have not

changed when compared to early literature establishing the WSN research field

[54, 3]. Sensor nodes are often required to be autonomous of a wired energy

source, requiring careful management of available resources in order to prolong

their lifetime. Their autonomy can only be useful, however, if nodes are also capa-

ble of reliable self-organization without human interaction throughout their lifetime

[41]. These constraints must be met while at the same time keeping cost of pro-

duction low, to make WSN economically viable products, and sizes small, to allow

unintrusive deployment in many situations [33]. The latter can only be achieved by

developing flexible hardware and software solutions not tied to a single use case,

thus increasing possible production volume and, as a result, reducing development

cost per unit.

One way to reduce energy consumption and broadening the applicability of WSN

and IoT nodes is the utilization of mass storage made possible by advances in the

13

3 Literature Review

area of flash memory [46]. Early approaches to data storage in WSN mostly focus

on providing a convenient way to access named byte streams inspired by common

FS. The nature of temporal sensor data, being a series of sequential records which

does not change once written, was identified as a primary design requirement early

on [29, 21, 70].

Matchbox [29, 30] is, to the author’s best knowledge, the earliest storage system

intended for WSN. It stored byte streams on flash memory using a log-structured

approach, providing only appending writes and sequential reads. The authors of Ef-

ficient Log-Structured Flash File System (ELF) [21] developed a very similar system

based on similar constraints, but acknowledge that, e.g. for storage of configura-

tion files and binary images used in Over-the-air (OTA) updates, the ability to mod-

ify already written data is necessary. The Transactional Flash Filesystem (TFFS)

[28] supports reading and writing files grouped into transactions, with the aim of

preventing inconsistent state on the storage medium if the device should suddenly

fail during any operation. TFFS supports modification of already written data. The

Coffee file system [62] builds upon previous log-structured approaches. The au-

thors goal was to eliminate the high in-RAM metadata overhead which comes with

systems such as ELF by having a constant per-file memory footprint while at the

same time reducing the complexity of the storage system in order to reduce gen-

eral RAM and ROM footprint. A later extension to the Coffee FS enables support

for encryption of stores data [9].

MicroHash [70] is the first approach designed based on the assumption that just

providing a byte stream is not sufficient in a WSN environment. Instead an in-

dexed sequence of timestamped records is employed, allowing more efficient ac-

cess to written records. The authors of Capsule [45, 46] take this idea further by

proposing a data storage system which can be adapted to many different use cases

while still maintaining energy and memory efficiency, based on a variety storage

objects adapted to different use cases. They present a system composed of a vari-

ety of storage objects matching the different storage requirements encountered in

WSN applications. Along with the previously identified need for sequential storage

of sensor records, the authors acknowledge network-related data such as packet

buffers or routing tables as a potential source of data which can be stored on flash

memory to reduce RAM requirements. In addition, data-rich sensing applications

such as acoustic or seismic sensing need to perform operations on large data sets

14

3.1 Overview

which do not fit into memory at once, but can be computed when data is loaded

partially into RAM from flash memory. The storage objects the authors propose

are streams, indices, queues and stacks as well as the compound object stream-

index.

The authors of Squirrel [50] put special focus on the in-network processing ca-

pabilities of WSN data storage, providing a stream-oriented programming model

for sensor applications, aiming to decouple data processing from data storage and

handling the latter transparently for the application developer. When developing

an application based on Squirrel, a directed graph of predefined stream operators

is formed, each of which implements different storage policies. Depending on the

operators as well as the size and volume of data entering the graph, data is ei-

ther stored on flash memory or in RAM to improve energy efficiency. This data

flow oriented approach is inspired by previous, similar applications in the WSN

context without additional external storage [42, 10]. In contrast to the previous

approaches, the authors of Squirrel do not mention capabilities for long-term stor-

age of data on flash memory, but focus on processing large amounts of data before

sending it. Unfortunately, the details regarding how and when data is stored on

flash memory are entirely omitted from the paper presenting the approach, mak-

ing further analysis in context of storage systems futile. As such, it is not further

discussed in the remainder of this thesis.

Similar to Capsule [46], the authors of Antelope [63] reason that functionality for

managing and querying data in WSN should be merged into a dedicated system

to avoid reimplementation for every application. For this purpose they propose a

Database Management System (DBMS) named Antelope. At its core, the database

kernel coordinates database logic and query execution. The interaction with the

database kernel happens, as is common in DBMS, through a dedicated query lan-

guage, in this case called Antelope Query Language (AQL). AQL can be used to

execute queries locally or remotely. The authors also stress the importance of be-

ing able to select different indexing algorithms depending on the use-case. As a

result, Antelope’s indexing subsystem allows for the selection of several provided

algorithms as well as the addition of new ones. At first glance, systems such as

Cougar [69] and TinyDB [41] seem comparable to Antelope in the sense that they

also provide a database-like query interface to nodes of a WSN. The latter, however,

15

3 Literature Review

are only used to program the way in which sensor data is sent towards the network

sink, and not how the data is stored on the node itself.

One property which can be observed across the approaches mentioned so far is

their lack of adaptability to current NAND flash memory designs, primarily large

storage sizes and large page sizes. Since platform flexibility, that is the ease of

adaption to different use cases, is one of the most important aspects of WSN [33],

this thesis proposes an adaptable data storage abstraction which facilitates both

long-term storage and in-network processing. An additional issue with previous

approaches is that most of them are implemented for the TinyOS operating system,

which has not seen a release in over three years. The system proposed by this

thesis is implemented on the emerging embedded OS RIOT [7].

3.2 Physical storage structures

The design of flash memory entails a range of physical limitations which complicate

its management (see Section 2.5). This section details how previous approaches

have structured data in flash memory to overcome these issues, and highlights

their individual shortcomings.

All of the previously mentioned approaches to data storage on constrained nodes

employ some variation of log-structured data storage. Log-structured file systems

were initially intended to improve performance on traditional HDDs, especially for

write operations. Their main idea is that all information is written to disk sequen-

tially, structured as a log of write operations [58]. This makes write operations ex-

tremely fast, since they are always sequential, but lowers read performance since

files have to be reconstructed from the log. On a constrained node, write/read

performance is not commonly a bottleneck due to the limited CPU and networking

speeds of the involved hardware. However, the log structure was found to be a

good fit for flash storage due to the implicit wear levelling that comes with a file

system that has a sequential log structure [66, 43]: when all write operations just

append to the existing log on the flash storage, the device is linearly filled up until

no more space is available. Only then it becomes necessary to delete old data, so

that new one can be written. And since existing log entries are not modified in a

16

3.2 Physical storage structures

log-structured approach, updates to existing data are also appended to the log, i.e.,

data is automatically updated out-of-place.

Existing log-structured FSs such as JFFS [66] and YAFFS2 [5] have proven use-

ful on flash-based SSDs in desktop computing. Unfortunately, they have been de-

signed with the assumption that main memory is abundant [45], often using several

megabytes of RAM per gigabyte of storage [31]. Given that WSN and IoT node are

often Class 1 devices, such approaches are difficult to impossible to employ in con-

strained scenarios [45]. As a result, only Flash Translation Layers (FTLs) which

have been specifically designed for constrained nodes are examined.

Matchbox [29], ELF [21] and Capsule [44, 46] were all developed for the Mica

hardware platform with 512 KB of NOR flash memory and a page size of 264 bytes.

Coffee [62] was evaluated on a Tmote Sky with a 1 MB NOR flash module (256 B

pages). The authors of TFFS only mention evaluation on simulated flash chips.

Matchbox is a storage system for constrained nodes that only supports appending

writes to existing data, i.e., already written data cannot be modified, only deleted.

The physical storage layout of Matchbox is shown in Figure 3.1. Each page has a

data portion (256 Byte) and a metadata portion (8 Byte). The metadata contains a

pointer to the next page that belongs to the same logical storage structure, a Cyclic

Redundancy Check (CRC) sequence, a page write counter for wear-levelling and a

magic number identifying the type of page. In addition, Matchbox also stores the

length of the data in the current page, in case it is only partially in use. An index of

all files on the FS is stored in a “root metadata page” which is located somewhere

on the flash storage. Since metadata is stored on a single root page, the number

of file metadata which can be accommodated is limited by its size. On startup,

Matchbox scans the entire flash memory for the newest root page, identified by its

version number. In addition, free space is tracked using a bitmap. This approach

was deemed reasonable for flash sizes as small as 512 KB, where scanning the

entire flash is fast and a bitmap tracking free pages is only 256 bytes in size.

ELF stores its data in so-called “nodes”, each of which occupies one or more pages.

The first page of each node contains information about the node, such as its type

and its length in pages. At the end of each page, ELF stores metadata regarding

the page. It contains a pointer to the next page belonging to the node, as well as a

CRC and a write counter. Unlike Matchbox, it also stores a flag whether the page

17

3 Literature Review

Page

Page metadata File #1 data

End of file

File #2 data

Figure 3.1: Page organization on flash memory for Matchbox.

is obsolete. Matchbox does not need such functionality, since deletion is solely

reflected in Matchbox’s “root metadata page”. Information about the nodes which

make up a file is stored in a separate log in RAM (see Figure 3.2). When a file is

updated, for example, a new node will be created with the updated data. After the

node is written, the information about the node is updated in RAM. ELF expects

the target platform to have a separate EEPROM where it can periodically save the

in-RAM state of the filesystem, so that it is not lost on failure/reboot. This avoids

scanning the entirety of the flash storage for file system metadata, but requires a

separate storage device on the platform. ELF also tracks free space as a bitmap.

Given that storage has been scarce on constrained devices due to its cost in the

past, it is unlikely that future constrained devices will come equipped with two

forms of storage at the same time, especially considering that the type of EEPROM

described for ELF must at least have the capabilities of the rather expensive NOR

flash.

The Transactional Flash Filesystem (TFFS) [28] is a log-structured system that is

organized in erase blocks instead of pages. This method of storage is only possible

on NOR flash, since all other types of flash have a hard limit on how often pages can

be partially programmed. Each erase block has two areas. The first are is the de-

scriptor area, which starts at the beginning of the erase block and grows upwards.

It contains information about what data is stored in the erase block and where, as

well as the status of the data (live/obsolete). The second area is the data area and

starts at the end of the erase block and grows downwards (see Figure 3.3). An

erase block at the beginning of the flash device is reserved for the main file system

log which stores file metadata and where data for a file is stored. A significant

difference to all other systems discussed is that data in the main file system log is

18

3.2 Physical storage structures

Pages in flash memory forming a linked list

Linear view of all pages

File system log (RAM)

File
node

Common
Node

Common
Node

Common
Node

…File
node

Common
Node

Figure 3.2: Page organization on flash memory for ELF [21]

19

3 Literature Review

addressed via logical erase units. These are mapped to physical erase blocks using

the “logical-to-physical erase unit table”, which is stored in RAM. This mechanism

is used so that, when performing garbage collection during which live data has to

be copied to a different block, the metadata does not have to be updated. Instead,

the entry in the logical-to-physical table is modified. The drawback of this approach

is that said table grows with the amount of erase units, which makes RAM usage

proportional to flash memory size.

Figure 3.3: Physical layout of TFFS [28]

Coffee assumes that pages of a block can be written in random order and pre-

allocates a default or given number of pages for each created file, to which its data

is then written. If, at some point, the file size exceeds the pre-allocated space, It

creates a new, larger file and copies the contents from the old one. Coffee stores

information about files in the file header, which contains the size of the file, a

number of file flags and information about the file’s “micro log”. The micro log data

structure is used to log changes to files without having to update the original page,

20

3.2 Physical storage structures

thus overcoming the write-once property of flash memory. Coffee’s physical layout

is shown in Figure 3.4. Matchbox and ELF store most of the metadata related to

a file in RAM at all times. In order to reduce memory usage, the authors of Coffee

decided to store that information on flash memory at the beginning of each file.

Since Coffee, unlike Matchbox and ELF, has no central point where it stores file

system metadata, it needs to be recreated from the state of flash memory. When

Coffee is first requested to open or create a file, it will scan flash memory to find the

file, or enough free space to allocate a new file, respectively. An in-RAM metadata

cache is filled with information from prior search operations, though the paper

[62] does not make clear if all files found during this operation are cached, or

only the matching one. As for Matchbox, this approach works well for small flash

devices, but is problematic for larger ones, as scanning the entirety of the device

becomes very costly energy wise. In addition, Coffee does not track free space on

flash memory. Instead it scans for free space whenever a file is created, allocating

the file at the first suitable position (first-fit allocation). This approach has the

advantage of reduced RAM requirements, but finding free space for a new file

becomes dependent on the size of the storage device. In addition, as storage usage

increases , so does the time required to find a fitting storage location.

Page

File metadata

File #1 used data File #1 pre-allocated data

Micro Log (example)
- Page #42: changed bytes 34-37 to 0xDEADBEEF
- Page #41: changed byte 0-1 to 0x1234

Figure 3.4: Page organization on flash memory for Coffee

MicroHash [70] is an early system which aims to provide storage and indexed

retrieval of fixed-size records, without resorting to the already well-known files/

directories abstraction. MicroHash is log-structured by page and uses a backward-

pointing approach, meaning that each page includes a pointer to its predecessor,

thus forming a reverse linked-list of pages (see Figure 3.5). This has the advantage

21

3 Literature Review

of not requiring updates of already written pages to point to the next data page

(compare Matchbox and ELF). However, it entails performance problems when it-

erating through a file from the beginning, since the successor of any given page

can only be retrieved by iterating through the log from its end. When looking at

Figure 3.5, to determine the successor of page one, it is necessary to read all pages

beginning at page four until reaching page two, if this structure is not cached in

RAM. A small part (“a few erase blocks”) of the flash storage is separately managed

as the “root pages”. MicroHash regularly writes a serialized version of the in-RAM

metadata to these blocks, such that its state can be restored if the node fails or is

restarted. This is a similar approach to that of ELF, since it avoids scanning the

entirety of the flash memory on startup, but it is an improvement over ELF for not

requiring a separate EEPROM. Since erase blocks have a limited amount of erase

cycles, the root directory must shrink with time, ultimately not being able to store

any more data. The authors of MicroHash do not explain how block deterioration

is handled, but go into great detail about their record index structure optimized for

flash memory.

Page 2Page 1 Page 4Page 3

Figure 3.5: Page-based backward-pointing log structure as employed by Micro-
Hash [70]

Capsule uses a similar approach to the that of MicroHash, but where MicroHash

uses a backward-pointing log of pages, Capsule uses the same technique for its

records. That is, each record includes a pointer to its predecessor, thus forming

a reverse linked-list ending at the first record written for a data structure. Each

page can contain multiple – possibly interleaved – records belonging to multiple

data structures, such as a stack or a stream (see Figure 3.6). In contrast to the

previous concepts, Capsule does not store mutable metadata for its records, thus

eliminating the need to update a page after it has been written. The metadata

for the data structures, which are composed of records, are stored in RAM. For

most cases, this is simply a pointer to the most recently written record, from which

the entirety of the data can be restored by following the linked list. To preserve

the metadata in case the device loses power or is turned off, Capsule employs the

same approach as MicroHash. It designates a number of blocks at the beginning

22

3.2 Physical storage structures

of the flash medium for metadata, called the “root directory”, to which metadata

is written periodically. As with MicroHash, the authors do not explain how block

deterioration of erase blocks is handled.

Page

Data structure #1 records

Data structure #2 records

Free page

Record metadata

Page

Figure 3.6: Page organization on flash memory for Capsule

Matchbox and Coffee share the approach that file/page metadata contains a pointer

to the next page, i.e., their log is forward-pointing. Coffee uses this approach

as well, but only for file updates. This method implies that part of a page (the

pointer) has to be updated after it was initially written, because at that time the

next (or micro log) page is not yet known. Updating a page is, however, not possible

for MLC flash and only possible a limited number of times for SLC flash without

causing severe write disturbance. The same problem applies to ELF’s and Coffee’s

metadata flags. As a result, Matchbox, ELF and Coffee fail to support all MLC

NAND flash and are only applicable in a limited fashion to SLC flash. The Capsule

system, in contrast, supports both NOR and NAND flash due to its reverse linked-

list approach. Capsule, however, only supports updating written data in a very

limited fashion, which can be considered a step back from previous approaches.

Matchbox ELF TFFS MicroHash Coffee Capsule

Log structure yes yes yes yes (yes) yes

No forward pointing log no no yes yes no yes

Supported flash types NOR NOR NOR Unknown NOR,
MMC,
(NAND)

NOR,
MMC,
NAND

Figure 3.7: Properties of the physical storage structure of the examined storage
systems. Entries in parentheses indicate partial support.

23

3 Literature Review

3.3 Logical storage structures

The logical structure is the representation of data that the storage system exposes

to the application developer, regardless of how it is stored on flash memory. For

most of the discussed approaches, namely Matchbox, ELF, TFFS and Coffee, this

representation is that of a named byte stream, better known as a file. In case of

Matchbox, these files are append-only, meaning that data cannot be modified once

written, whereas ELF and Coffee support file modification. ELF allows the orga-

nization of files into a hierarchy of directories, whereas Matchbox and Coffee are

flat FS. The author of Coffee argues that, since the number of files on constrained

devices is typical small, this is not a limitation in the context of WSN. The API pro-

vided by the three systems is similar. They all provide means of opening, closing

and deleting a file, as well as listing all files (in a directory, in case of ELF). Match-

box only provides a sequential read operation, whereas ELF and Coffee allow read

operations anywhere in a file.

Authors of systems such as MicroHash [70], Capsule and Squirrel [50] argue that

files are not an ideal level of abstraction for WSN use cases. According to these

authors, there are some basic requirements found in most WSN applications which

a storage system for constrained nodes should take into account: support for in-

network querying, processing, filtering and aggregation of sensor data in the form

of a sequence of sensor readings (records) of fixed size [70, 46, 40]. Ignoring them

causes application developers to fill in the gap, constantly reimplementing basic

storage functionality specifically for each application, and thus limiting reusability

and degrading maintainability due to the amount of code and complexity involved.

In a study of three different WSN applications, more than 40% of the entire code-

base, in one case 60%, were dedicated to data storage, excluding any functionality

provided by the OS [50].

A major limitation is that MicroHash only supports append-only streams of fixed

size values which cannot be deleted once written. If the storage device becomes

full, the system will simply overwrite data at the beginning of the device, thus act-

ing like a ring buffer. From the logical storage perspective, MicroHash provides

indexed streams of records, which can be queried by time or value. The publica-

tion goes into detail about the structure of the employed index as well as search

algorithms, but does not address the exposed API or how the system is used.

24

3.3 Logical storage structures

The authors of Capsule go further by incorporating other data structures into their

storage abstraction layer. Their concept allows the creation of storage objects of

different types (stream, queue, stack, file, index), each of which intended for a

different storage requirement (see Figure 3.8). They argue that, for in-network

archival of sensor data, immutable streams are an appropriate data structure.

When combined with a supplementary index, such a stream also allows to query

values with good performance. For applications which need to perform compu-

tations requiring a lot of memory (e.g., Fast Fourier Transform (FFT) or wavelet

transforms), large arrays are commonly used as storage backend. Finally, queues

and stacks are common data structures which can be employed to reduce the mem-

ory usage of many applications, including OS components such as packet buffers.

An arbitrary number of Capsule objects can be created as well as deleted, making

it adaptable to different application requirements. While Capsule has high ROM

requirements (25 kB), it only needs about 1.6 kB of RAM.

Application Data type Storage object

Archival storage Raw sensor data Stream

Archival storage and querying Raw sensor data Stream-Index

Signal processing and aggregation Temporary array Index

Network routing Packet buffer Queue/Stack

Debugging logs Time-series logs Stream(-Index)

Calibration Tables File

Figure 3.8: Taxonomy of applications and storage objects for Capsule [45].

A different concept is followed by the authors of Antelope [63], which is built on

top of Coffee. Antelope is a relational DBMS [17] which provides a Structured

Query Language (SQL)-like interface to the flash storage on a constrained node.

Data is stored in the form of relations, which can be created, filled and deleted

at runtime. A relation consists of a name, a number of attributes (columns) and

data tuples (rows). In addition, each attribute my be outfitted with an index for

faster retrieval. Antelope provides a sophisticated data storage mechanism on con-

strained nodes, which effectively hides all of the underlying complexity of flash

storage. However, using a domain-specific query language requires facilities for

parsing and evaluating it, which comes at a cost as far as memory and runtime

are concerned. Antelope alone uses between 3.4 and 3.7 kB of RAM and 17 kB of

25

3 Literature Review

ROM. Being built on the Coffee FS, its memory footprint must also be considered.

In total, using Antelope requires between 3.7 and 4 kB of RAM, or 40% of a typi-

cal Class 1 device. Furthermore, Antelope is hindered by the same limitations as

Coffee, discussed in the previous section.

3.4 Indexing algorithms

An index is an auxiliary data structure with the primary goal of limiting the set of

records that have to be processed when filtering a range of values [63]. Creating

and maintaining indexes is a well-researched problem in the field of databases, but

the resource limitations of WSN applications [70] and the properties of NAND flash

memory [36] result in different challenges.

The B+-Tree is one of the more popular indexing data structures for file systems

and DBMS, maintaining a relationship between indexed values and thus allowing

querying of value ranges as well as successor or predecessor information. But

when applied to embedded systems with flash memory it quickly becomes imprac-

tical, because updating a leaf node of the tree requires updates of all its parent

nodes. Due to the write-once property of flash, this requires re-writing all data

along the path from the updated node to the root node of the tree. Approaches like

µ-Tree [36] and FlashDB [51] built upon B+-Trees, adapting their concepts to the

properties of flash memory. µ-Tree tries to improve the locality of the B+-Tree up-

dates by grouping all elements along the path from a node to the tree’s root into the

same physical flash page. The cost of updating a node – in terms of write operations

– is thus reduced from O(n) to O(1). FlashDB [51] introduces a log-structured con-

cept into the B+-Tree. Updates are first written into a log, which is optimized for

writing, and at some point converted to disk mode, which is optimized for reading.

A more recent publication – TL-Tree [40] – presents an unbalanced tree structure

for time-based indexing, instead of building upon B+-Tree. At the same time, they

present significant performance improvements to µ-Tree [36], to which TL-Tree is

then compared.

In summary, indexing algorithms designed for non-flash storage, even when built

for embedded devices, are not easily usable on flash memory because of the limita-

tions it imposes on updating data on a page. The previously examined approaches

26

3.5 Application Programming Interface

show that this problem can be addressed by workarounds as in FlashDB and µ-

Tree, or by designing a flash-adapted tree structure such as as TL-Tree. A detailed

evaluation of indexing algorithms – beyond what general APIs are necessary to

incorporate them into a storage system – is, however, out of scope for this thesis.

3.5 Application Programming Interface

While different definitions exist, the term API has come to mean “any well-defined

interface that describes the service that one component, module, or application

provides to others software elements” [23]. In this section, the APIs exposed by

previous storage systems will be compared in terms of exposed functionality. Since

MicroHash [70] does not provide information about the exposed API, it is omitted

in this section. Note that while the systems developed for TinyOS all share the

event-based nature of its nesC programming language, as exemplified in Listing 1,

they are discussed here as if the had a more common C-like API.

The file based storage systems – Matchbox, ELF and Coffee – all expose a similar

API, as can be seen in Figure 3.9. Their similarity stems from their similar storage

structure and functionality. A concrete API example from the Coffee FS is shown in

Listing 2. The only file based system which provides a storage abstraction beyond

a simple byte stream is TFFS. In addition to reading and writing binary content,

it allows storage of fixed size records. Furthermore, since it is transaction based,

every operation must be given a transaction in which it should be carried out. All

operations are accumulated and executed in bulk once the transaction is commited

(see Listing 3).

Listing 1: Example of event-based API usage in TinyOS

1 // Call the command
2 call File.create("file name");
3

4 // Subscribe to the event which is invoked once the command has completed.
5 event void File.createDone(result_t res)
6 {
7 call Console.string("Created file\n");
8 }

27

3 Literature Review

Listing 2: Example of reading and writing data using the Coffee FS

1 // Writing
2 fd_write = cfs_open(filename, CFS_WRITE);
3 cfs_write(fd_write, message, sizeof(message));
4 cfs_close(fd_write);
5

6 // Reading
7 fd_read = cfs_open(filename, CFS_READ);
8 cfs_read(fd_read, buf, sizeof(message));
9 cfs_close(fd_read);

Listing 3: Example of TFFS’ API supporting transactions of multiple FS operations.

1 tid transaction_id = BeginTransaction();
2 AddRecord(file, buffer, length, transaction_id);
3 AddRecord(file, other_buffer, other_length, transaction_id);
4 CommitTransaction(transaction_id);

Since Capsule and Antelope implement a fundamentally different storage paradigm,

it is natural that their APIs differ from the previously examined ones. The object-

based storage of Capsule provides a different set of API calls for every provided ob-

ject. This is comparable to the standard library of many programming languages,

where each data structure provides its own interface. An example of Capsule’s

implementation of this concept is shown in Listing 4, in which L1–18 show the ini-

tialization and append operation of a file object and L20–33 show the initialization

and push operation of a stack object. Interestingly, Capsule implements these in

two different ways. While the file object is addressed by name (L4), the stack ob-

ject is addressed by a numeric stack ID. Capsule’s maximum number of stacks is

defined at compile. Note the API was not taken from the publications on Capsule

[44, 45, 46], but from the TinyOS 1.x source code [20].

Finally, Antelope exposes a SQL-like interface called the Antelope Query Language

(AQL). Note that how the connection between the query language and the C code

of the application is made is not made clear in the publication [63] and was thus

taken from an Antelope usage tutorial [38]. Listing 5 shows the AQL being used

for the purpose of creating a sensor data relation, inserting data, and subsequently

performing a query. In the example, post processing is directly applied during the

query, such that only the mean and maximum humidity values are returned.

28

3.6 Discussion

Matchbox ELF Coffee TFFS

Open/Create 3 3 3 3

Read (sequential) 3 3 3 3

Read (random) 7 3 3 3

Append 3 3 3 3

Modify 7 3 3 3

Delete 3 3 3 3

Rename 3 3 3 3

Flush 3 7 7 7

Reserve space 3 7 3 7

Transactions 7 7 7 3

Records 7 7 7 3

Figure 3.9: API functionality provided by previous flash file systems for embedded
devices.

3.6 Discussion

Summarizing the literature review presented in this section, the following systems

were examined, categorized by their abstraction:

• File based: Matchbox, ELF, Coffee, TFFS

• Object based: MicroHash, Capsule

• Stream based: Squirrel

• DBMS based: Antelope

It is important to note that all these types of storage systems are designed for

the same purpose, but with very different requirements. For example, Antelope

provides an easy to use, SQL-like API that can be used to query data locally and

remotely, and allows various forms of data processing without writing any code.

All this functionality comes at a significant complexity and memory cost. On the

other hand, systems like Coffee and ELF have a much smaller range of capabili-

ties, but also require less resources to function. To choose an appropriate level of

abstraction, it is necessary to compile a list of the requirements a storage system

29

3 Literature Review

Listing 4: Capsule API example using a File object and a Stack object

1 // File Object API
2 // Entry point
3 command result_t StdControl.init() {
4 call File.create("my filename");
5 }
6

7 event void File.createDone(result_t res) {
8 if (SUCCESS != call File.append(buff, LEN)) {
9 call Console.string("File appending failed\n");

10 }
11 }
12

13 event void File.appendDone(result_t res) {
14 if (SUCCESS != res) {
15 call Console.string("File appending failed\n");
16 }
17 call File.close();
18 }
19

20 // Stack Object API
21 // Entry point
22 command result_t StdControl.init() {
23 call Stack.init(FALSE);
24 if (SUCCESS != call Stack.push(stack_id, LEN, &buff)) {
25 call Console.string("Error pushing to stack\n")
26 }
27 }
28

29 event void Stack.pushDone(result_t res)) {
30 if (res == FAIL) {
31 [...]
32 }
33 }

for WSN and IoT applications should fulfill. This task is carried out in the following

section.

30

3.6 Discussion

Listing 5: Antelope’s AQL usage example for creating a relation, inserting data, and
performing a query

1 db_init();
2

3 // Create relation
4 db_query(&handle, "CREATE RELATION samples;");
5 db_query(&handle, "CREATE ATTRIBUTE time DOMAIN INT IN samples;");
6 db_query(&handle, "CREATE ATTRIBUTE humidity DOMAIN INT IN samples;");
7

8 // Insert data
9 db_query(&handle, "INSERT (%u, %u) INTO samples;", 1, 2);

10

11 // Query data
12 db_query(&handle, "SELECT MEAN(humidity), MAX(humidity) FROM samples;");
13 db_print_tuple(&handle);

31

4 Requirements analysis

Sensors connected to IoT and WSN devices generate data which must be pro-

cessed, filtered and possibly archived. But the main reason to collect sensor data is

to interpret it, in order to extract useful information for its users [24]. In this sec-

tion, typical use cases that require short or long term storage of data which exceeds

the RAM capacity of sensor nodes will be examined. This is done with the goal of

compiling a list of requirements that components of an adaptable data storage ab-

straction should meet. Based on this, the case will be made for an object-based

storage approach, showing that it best fits the requirements imposed by WSN and

IoT use cases.

4.1 Use cases

#1 – Facilitating caching in Information Centric Networks

The idea behind ICN is that communication is no longer host-centric, i.e., data is

no longer retrieved from a known host. Instead, ICN-based techniques take ad-

vantage of in-network caching and hop-by-hop replication of named data in order

to spread it throughout the network. IoT applications can benefit from ICN, since

it can reduce wireless communication and increase availability of data in case of

node failures [8, 71]. One major limitation is the small amount of data that can

be stored (cached) in the memory of a constrained node. Consequently, employ-

ing an additional, flash-based storage back-end could vastly enhance the storage

capacities of IoT ICN applications.

33

4 Requirements analysis

#2 – Reducing operating system and application memory footprint

It is common for operating systems outside the contrained device domain to vir-

tually extend the amount of available RAM by “swapping out” data to persistent

storage. Unfortunately, doing so automatically on constrained devices is difficult

due to the management overhead as well as the missing Memory Management Unit

(MMU) on the nodes. It is possible, however, to manually decide on data structures

which must not necessarily live in RAM, and implementing them such that they

are stored in flash memory instead. This may be done by the application or by the

operating system. For example, a kernel developer could decide to implement a

routing protocol such that the routing table can optionally be stored on flash to

preserve RAM. Reducing the amount of memory the OS and applications occupy

can broaden the range of applications that can be implemented or allow additional

features to be added. Storing OS network layer components (e.g. packet buffers

and routing tables) on external flash memory instead of RAM can alleviate memory

usage of such components and may even “lead to increased performance” [62].

#3 – Improving management mechanisms for IoT nodes

Observing the behavior of a WSN from edges of the network only provides limited

insight into what is going on inside it. While it is possible to include additional

information in the packets delivered to the observing entity – as is done in network

management protocols such as SNMP [15] and NETCONF [26] – this comes with

an energy overhead due to high energy per byte cost when transmitted wirelessly.

As such, it is preferable to store such information locally and evaluate the infor-

mation in bulk when retrieved from network nodes. For long-term deployments

for example, gathered network performance data could be used to fine-tune net-

work topology for future deployments [63]. Such data could also be employed to

improve simulation systems by comparing actual performance data with simulated

data. For failing nodes, error logs could help reproduce issues that occurred on

deployed nodes.

34

4.1 Use cases

#4 – Improving capabilities of intermittently connected entities

A WSN may be composed of roaming entities or entities deployed in physically re-

mote areas where connectivity is not constantly available, that is the number of

neighbors of each network node is typically less than one. Connectivity becomes

available sporadically, or constantly but with very low connection capacity [51].

Nodes with sufficient local storage can store data from their sensors until connec-

tivity is available and then transmit the entirety of the data or some form of pre-

processed summary [19]. In Delay Tolerant Netork (DTN) terminology, this type of

packet delivery is called “store-carry-and-forward” [60]. Alternatively, a node may

not be wirelessly connected at all, requiring that its data is physically retrieved by

replacing the storage medium periodically. Such deployments would benefit from

local storage since it removes the need for any wireless communication, ultimately

increasing battery life.

#5 – Processing data which does not fit into main memory

Processing data on a constrained node can be desirable if the entirety of the data

is not of interest. For example, when monitoring a forest environment through

a WSN, biologists are commonly interested in the long-term behavior [70]. Only

transmitting summaries of captured data would result in less wireless communica-

tion, thus extending the node lifetime. Post-processing might even be necessary

if roaming entities (see above) are expected to have connectivity only for short in-

stances of time, which would not allow to transmit the sensed data in its entirety.

For other applications, high frequency collection of sensor data is necessary. This

includes cases such as vibration measurement to evaluate structural integrity of

buildings, but also any form of audio capture and analysis.

Processing such data on the node is cumbersome for the application developer,

since it is beyond the size that can be accommodated in RAM. It requires manually

managing items that are currently held in RAM and identify which items need to be

loaded/unloaded. Listing 6 shows a simplified version of such an application. Pro-

viding this functionality on the storage system level allows application developers

to process large sets of data without implementation overhead for data manage-

ment.

35

4 Requirements analysis

Listing 6: Simplified example of processing a number of items which are stored on
an external storage medium and do not fit into memory in their entirety.
The developer would also have to implement all used functions regarding
counting, loading/unloading and accessing items.

1 int num_items = get_number_of_items();
2 for(int i=0; i<num_items; i++) {
3 if(!item_in_memory(i)) {
4 item_load(i);
5 }
6

7 int item = item_get(i);
8 // Perform calculation with item
9

10 item_unload(i);
11 }

#6 – Enhancing support for over-the-air programming

WSN and IoT devices are often expected to operate autonomously for long peri-

ods of time, and their requirements may change over the course of their lifetime

depending on their deployment scenario. To account for such changes, it should

be possible to reprogram these constrained nodes wirelessly. A wide variety of

protocols exist for this task, most of which store the received program code on ex-

ternal storage prior to updating the actual application section of the node’s memory

[64] (for a recent survey, see [14]). A simpler form is OTA reconfiguration, where

operational parameters stored on external memory are changed instead of repro-

gramming the application code.

4.2 Functional Requirements

What functionality the storage system must provide, i.e., the system’s functional

requirements, are listed below.

• The system should provide storage abstractions for common WSN and IoT use

cases, as identified in the previous section. Most authors of previous storage

systems agree that an – optionally indexed – stream of sensor data is a very

common requirement. In addition – based on the authors of Capsule [46] –

36

4.2 Functional Requirements

other common storage abstractions are arrays (e.g., for use case #5), stacks

and queues (e.g., for use case #2).

• The system must support different types of indexes, due to the diverse nature

of use cases. For example, information in ICNs is named and possible hierar-

chical [67], suggesting trie-based indexing. For temporal data, such as that

provided by sensors, a B+-Tree or TL-Tree [40] is preferable.

• The system must be built to support the properties of flash memory, such that

it is applicable to as many varieties as possible.

– It must support NOR and SLC NAND flash with page sizes up to 1024

bytes. It should support SLC NAND flash with page sizes greater than

1024 and may support MLC NAND.

– It must provide wear levelling facilities, such that lifetime of flash mem-

ory is maximized.

– It must support identification and bit errors when writing to and reading

from flash memory.

– It must implement garbage collection to free obsolete blocks

– It must support a wide variety of flash memory sizes. The support must

range from small 512 kB NOR chips – for short-term storage of configu-

ration data – to large 1 GB+ SLC NAND chips for long-term storage of

historical data or in-network caching application in ICNs.

• The storage system must be able to provide a dedicated area on the flash

memory reserved for OTA updates. It must be possible to write data to this

area without storage system headers added to them, as these would corrupt

the application binary (use case #6).

• The system must provide the means for locally processing data which does

not fit into the constrained node’s RAM.

• The system must reduce the complexity of locally processing data which does

not fit into the constrained node’s RAM (use case #5). This must be achieved

such that the application developer is not confronted with the complexity

shown in Listing 6 every time they wish to iterate through an object.

37

4 Requirements analysis

• The system should support the secure (i.e., encrypted) storage of confidential

data.

4.3 Non-functional requirements

The identified, non-functional requirements define how the storage system should

behave, and are examined below.

• Reliability

– The system must be able to handle sudden energy loss, such that data

written to the storage medium is not corrupted or lost.

– The system must only fail to write data if the storage medium is full and

it is not possible to create free space by reclaiming blocks with obsolete

data.

– The system must be able to operate on a multi-threaded OS, that is, it

must be thread-safe. This implies that performing operations concur-

rently from different threads must not result in data corruption or other

non-recoverable errors.

– There is no need for the system to support parallel reading/writing.

Threads trying to perform such operations while another one is in progress

may block or the operations may return an error.

• Performance

– The system should occupy no more than 1–2 KB of RAM and 10–20 KB

of ROM, so that it can extend existing applications running on Class 1

devices.

– The system must provide sufficient write speed such that audio and other

data sensed at high frequencies can be buffered to the storage medium

prior to post-processing. The write performance of prior systems, rang-

ing between 10 KB/s [21] and 40 KB/s [62], should serve as a reference

for evaluating the performance of the developed system.

• Usability

38

4.4 Discussion

– The system must come with clearly defined interfaces between the dif-

ferent layers of abstractions, such that a lower layer may always be used

in isolation.

– The API must have consistent naming of functions, as well as consistent

naming and ordering of parameters.

– All non-internal functions of the system must be documented.

– The system must come with examples explaining how common function-

ality is used. These examples must include initialization of the system

and storing/accessing/erasing data.

• Extensibility

– The storage system’s extensibility encompasses its ability to be adapted

to circumstances which were not originally thought of, and the ability

to improve or replace components without having to change the overall

structure of the system. Most importantly, the system must be extend-

able with new ECC algorithms to support specific flash memory require-

ments, and also extendable with index data structures to account for

different application scenarios.

• Reusability

– The system must not be built specifically for a single hardware platform,

and, if possible, it should be built such that it is portable to other OS.

4.4 Discussion

One of the most important research priorities in WSN and the IoT is the reduction

of development and deployment cost [33]. Since hardware cost is incurred per

node, lowering resource usage of constrained applications is an important factor,

given that it allows cheaper devices to be used. But even though a large portion

of deployment cost depends on the hardware, the software development cost must

not be underestimated. As a result, reusability and maintainability are important,

non-functional requirements of the storage system to be developed.

39

4 Requirements analysis

File-based storage, when examined in isolation, is the least expensive in terms of

resources and implementation complexity. When put in context of an application,

however, it becomes apparent that using file-based storage simply shifts complex-

ity and resources cost from the operating system to the application, where abstrac-

tions such as indices must then be implemented. The other extreme for storage

on constrained nodes is a fully fledged DBMS such as Antelope [63]. Such a sys-

tem makes the complexities involved with data storage completely transparent to

the developer and provides common post-processing mechanisms. Common pro-

gramming errors (e.g., null pointer, off by one, overflow, etc.) when querying and

inserting data are avoided due to the SQL-like interface. This usability comes at the

cost of significant resource usage and complexity. In addition, it hinders extensi-

bility of the system, since new features must be implemented at least in the query

language parser and the query evaluation mechanism. If concurrent storage ac-

cess was a requirement, a DBMS would make its implementation easier due to the

possibility to schedule incoming queries, but concurrent access was not deemed

useful on constrained devices.

In terms of complexity and resource cost, an object-based storage system such as

Capsule [44] can be found somewhere between file systems and DBMS. Commonly

needed features and data structures can be provided, so that an application de-

veloper must not implement them. This greatly increases reusability and – since

storage access is less abstract compared to a DBMS – the cost in terms of imple-

mentation complexity and resource usage is not as severe.

The design of the the storage system based on the requirements gathered in this

section is detailed in the following section.

40

5 Design of the Flash Translation Layer

In the upcoming two sections, the design of the storage system for the IoT is pre-

sented. Based on the literature review performed in Chapter 3 and the require-

ments analysis of Chapter 4, the file-based approach was deemed unreasonable to

provide a reusable storage system for the IoT, given that storage abstractions must

be implemented in the application itself, which are then hard to reuse. On the other

hand, a DBMS is powerful in terms of functionality, but its usage has a range of dis-

advantageous implications, primarily the necessity to parse and evaluate a query

language. This makes a DBMS resource intensive. As a result, the object-based

storage paradigm – as implemented by Capsule [44] – was chosen. An object-based

storage system provides the ability to implement common storage abstractions in

a resuable way at little resource cost, making it a good fit for use on constrained

devices.

The system is structured as two main components which communicate through well

defined interfaces (see Figure 5.1). The component which handles the direct inter-

action with the flash storage device is the Flash Translation Layer (FTL), presented

in Chapter 5. On the basis of the FTL, the Object Storage Layer (OSL) provides

a set of reusable storage abstraction – or objects – to be used by the application

developer, without exposing the complexities of the employed flash storage. The

Object Storage Layer (OSL) is presented in Chapter 6.

The design of the FTL presented in this chapter is primarily shaped by the con-

straints imposed by flash memory (see Section 2.5). Its main goal is to provide a

convenient, low-level interface for data storage on flash memory. The FTL is de-

signed such that it can be used without any further storage-related components

except for the flash memory driver. The FTL also serves as the foundation for the

higher-level storage system to be presented in Chapter 6.

41

5 Design of the Flash Translation Layer

<<component>>
Flash Translation

Layer

<<component>>
Object Storage

Layer

<<component>>
Flash device

driver

<<component>>
Application with

high-level storage
requirements

<<component>>
Application with

low-level storage
requirements2

FTL Interface

FTL Driver
Interface

Object Storage
Interface

Figure 5.1: Overview of the storage system components as well as the types of
applications they are intended for

This chapter is structured as follows. The first two sections describe the basic

physical storage layout of the FTL, which divides pages into subpages (Section 5.1)

and the flash device into partitions (Section 5.2). How data is read and written is

explained in Section 5.3, followed by a short note on wear levelling (Section 5.4)

and an explanation of the free space tracking and garbage collection mechanics

provided be the FTL (Section 5.5). How the state of the storage system is persisted

to flash memory is detailed in Section 5.6. The chapter is concluded by present-

ing an overview of the FTLs API (Section 5.7) and a discussion of the chapter in

Section 5.8.

5.1 Subpages

One of the most important requirements for the storage system is the support for

common types of flash memory, so that it can be used without modification in a

wide range of scenarios. This implies that only the most restrictive properties of

the various types of flash storage may be depended upon, which are exhibited by

NAND flash. As detailed in Section 2.5, NAND flash memory only supports a limited

number of write operations per page until the parent block has to be erased. MLC

42

5.2 Partitioning

NAND exhibits the extreme case, where only a single write operation is possible.

As a result, writing small fractions of a page is not easily possible.

To address this problem, data must be collected in a page-sized buffer in RAM.

Once this buffer is full, the collected data can then be written to the flash page all

at once. Given that current NAND flash storage commonly has page sizes of 2 KiB

or more, such buffers are a problem for constrained nodes, since these have very

little RAM. In order to reduce the required buffer size, the FTL divides each flash

memory page into subpages of p / k Bytes, where p is the page size and k is the

maximum number of write operations which can be performed per page before it

has to be erased [46]. The resulting storage buffers must only have the size of a

single subpage, and each subpage must be fully written in one write operation. For

example, a device with p = 2048 Bytes and k = 4 would result in a subpage size of

512 Bytes (see Figure 5.2a), reducing RAM usage by 75%.

The FTL also allows the application developer to sacrifice storage space on the

flash device in order to reduce buffer size. This is done by setting subpage size

to p / x Bytes, where x > k, and instructing the FTL to only write to the first k

subpages. This makes (x − k) / x percent of memory per page unreachable by the

storage system. For example, if x was set to 8 in the example above, then each

subpage would have a size of 256 Bytes. Since the flash device only supports four

writes per page, however, only the first 4 subpages can be written to. As a result,

(8−4)/8 = 50% of memory would become unreachable, as shown in Figure 5.2b.

In summary, division of pages into subpages is performed to significantly reduce

required buffer sizes. Since subpage size is proportional to the maximum number

of write operations per page (k), NOR flash allows for the smallest sizes, followed

by SLC NAND. Finally, using MLC NAND comes with the highest subpage sizes

since its k = 1.

5.2 Partitioning

Partitions are a well-known concept in file system design, allowing the definition of

– usually named – regions designated to hold a certain kind of data. Such regions

can be useful for a number of reasons, such as having a dedicated area for OTA

update storage or storing metadata (see Section 5.6). While previously developed

43

5 Design of the Flash Translation Layer

Page size (p)

Subpage size (p/k)

Writable subpages

Unreachable subpagesSubpage
size (p/x)

Option b) - Page divided by x > k

Option a) - Page divided by k or x < k

Figure 5.2: Subdivision of pages into subpages with the aim of reducing buffer
size. Option b) shows the special case where the amount of subpages
is greater than the maximum number of write operations per page, re-
sulting in unreachable storage space.

44

5.2 Partitioning

storage systems sometimes featured dedicated regions for specific kinds of data, it

was never possible for an application developer to create custom partitions.

Partitions in the designed FTL provide this flexibility by making the amount of

partitions, their size and their offset configurable at compile time. A partition is a

named area on the flash device – identified by its start offset and its size – which

does not overlap with any other partition. Whenever data should be written using

the FTL, the developer must actively choose the target partition.

To simplify partition management, the offset and size is specified in erase blocks.

If partition boundaries were specified in pages instead, the situation depicted in

Figure 5.3 could occur. In that case, erasing the highlighted block is difficult,

since the deletion routine must be aware of both the end of partition #1 and the

beginning of partition #2. Partitions must also be larger than one block, since

erasing a block is only possible if its live data can be copied to another block first.

Erase block

Partition #1

Partition #2Start of
Partition #2

Figure 5.3: Partition boundaries inside an erase block are problematic, because it
makes the erasure of the highlighted block dependant on data in both
partitions.

Apart from simplifying the issue of metadata storage (see Section 5.6) and provid-

ing a way to store OTA update data, configurable named partitions can be seen

as very simple fixed-size files. This has the advantage of allowing the FTL to be

used as a (very limited) file system, where the available files (partitions) and their

maximum size are defined at compile time.

45

5 Design of the Flash Translation Layer

5.3 Reading and writing data

Since the storage system should be compatible with all common flash types, the

FTL must ensure that all subpages of an erase block are written sequentially from

the beginning to avoid write disturbances and resulting bit errors. To achieve this,

the FTL keeps track of the next subpage that should be written for every parti-

tion. After the last subpage of a partition has been written, the FTL will simply

wrap around and start at the beginning, if free space is available there (see Sec-

tion 5.5).

Reading and writing data occurs on a per-subpage basis and is performed either

in raw or managed mode. When writing in raw mode, the passed buffer will be

written to the storage device as-is, without any metadata. This mode is useful, for

example, when writing firmware images for OTA updates which need to be flashed

to ROM exactly as received. When writing data in managed mode, each subpage is

preceded by a metadata header (shown in Listing 7). The metadata header stores

the amount of data on that subpage as well as an optional ECC. Disabling the ECC

is desirable, for example, when the used flash storage has an integrated hardware

ECC. Reading data in raw mode simply returns the contents of the given subpage,

whereas managed mode is aware of the metadata. This allows the storage system

to verify the integrity and possibly repair a subpage based on its ECC.

Listing 7: The two byte subpage header which is prepended to each page written
by the FTL.

1 typedef struct __attribute__((__packed__)) {
2 unsigned int data_length:15;
3 unsigned int ecc_enabled:1;
4 } subpageheader_s;

Listing 7 shows that the ECC is not part of the FTL’s subpage header structure.

This is because ECC requirements vary between different types of flash memory,

and different ECC algorithms may also result in different ECC sizes. To provide

support for a wide range of devices, the FTL instead allows per-device configu-

ration of a fixed ECC size (e), as well as a custom ECC generation and checking

function, such that developers can provide their own implementations if necessary.

46

5.4 Wear levelling

If the ecc_enabled flag is set, the next e bytes following the subpage header will

be assumed to contain the ECC.

5.4 Wear levelling

As discussed in the previous section, the FTL is built so that it writes to all pages of

a partition sequentially and wraps around at the end. This provides automatic, per-

partition wear levelling, since all pages must have been written once before being

written a second time. Even with perfect wear levelling, bad blocks are expected

to appear throughout the lifetime of a flash storage device. When bad blocks are

encountered, the storage system will simply skip them, finding the first subsequent

good block that it can write to.

5.5 Free space management

Since small amounts of data cannot be easily deleted on flash memory, a different

technique has to be employed to reclaim blocks which have been written to, but no

longer contain any live data. To be able to reason about when to reclaim storage,

and which areas to reclaim, it is important to keep track of areas of flash storage

containing data and areas that can be reclaimed by the garbage collection. The

FTL does this by keeping track of three different parameters for each partition:

1. The index of the block which is currently in use, i.e., the block where data will

be written to next (Iused).

2. The index of the last known free block, i.e., the block which does not contain

any live data but has not been erased yet (Ifree).

3. The index of the last block which is free and has already been erased (Ierased).

Four different example states of the storage system are shown in Figure 5.4. When

the storage system is first initialized (Figure 5.4a), no pages of the partition are

yet in use and all of them are free, so Iused points to the first and Ifree points to

the last block of the flash medium. Since erasing a block is a time-consuming

operation (compare Section 2.5), some, but not all blocks are erased on storage

47

5 Design of the Flash Translation Layer

system initialization so that this does not have to be done on-demand. The exact

amount of pages that are erased can be configured (Ierased = 5 for this example).

After some pages have been written, the storage situation could look like that of

Figure 5.4b, where some pages are now in use (Iused > 0) and additional pages

have been erased (Ierased = Iused + 5), but Ifree remains the same. As data is being

written to the storage system, Iused will reach a pre-defined threshold (50% in the

example – Figure 5.4c) at which garbage collection is initiated.

Garbage collection is a process that the FTL cannot complete on its own, since it

does not know by itself what data is stored on the subpages and whether or not

this data is still needed. As a result, the FTL provides a mechanism to register a

garbage collection handler function. This handler is given a block index as well as

the amount of blocks to be cleared, and is expected to remove all live data from

the requested blocks. After the handler is executed successfully, the cleared blocks

will be marked as free by the FTL (Figure 5.4d), that is, the Ifree index will be

incremented by the amount of cleared blocks.

This technique of tracking free data is convenient for the FTL, since it only requires

three indices to be stored, as opposed to, e.g., a bitmap of free blocks. In addition,

one of these indices is already being stored in the form of the next free subpage

to be written (see Section 5.3), since the resident block of that subpage is the last

block currently in use. As a result, the FTL only uses an additional eight bytes

(four bytes per block index) to track free space across a partition of arbitrary size.

While the involved copying operation of live data to new blocks could also be seen

as the cost of this space management scheme, one can argue that copying live is

always required on flash memory, since per-page deletion of obsolete data is not

possible.

48

5.5 Free space management

Partition

Used FreeErased

Used FreeErased

b) State after having written some data

Used FreeErased

c) State right before storage reclamation (e.g., at 50% free space left)

UsedFree Erased

d) State right after storage reclamation

Used blocks

Free blocks
a) State after storage system initialization

Figure 5.4: Overview of the different states encountered when managing free
space of a partition.

49

5 Design of the Flash Translation Layer

5.6 Persistent storage of metadata

The state of the FTLs – its metadata – is held in Random-Access Memory (RAM),

and thus needs to be persisted by the FTL such that it can be restored if the de-

vice crashes or reboots. The metadata changes frequently because it needs to be

updated whenever data is written to the flash device. This is a problem when meta-

data is persisted, since updating already written data is costly on flash memory.

Previous approaches to data storage on constrained nodes have employed one of

the following techniques for metadata storage:

1. Do not store metadata. Instead, restore it from the flash device itself when

the system is initialized [29, 62] – This approach is feasible for small flash

capacities, but is inconvenient for larger flash devices. In the worst case, it

requires every page of the flash device to be read when the storage system is

initialized.

2. Store metadata on a separate storage device which is less restricted in terms

of updating already written data[21] – This is a simple solution in terms of

storage system design, but requires every embedded device to provide at

least two forms of persistent storage.

3. Designate a dedicated area on the flash device for metadata storage [45]

The FTL adopts the last technique, since it is not dependant on the size of the flash

device and does not require an additional storage medium to be present. The per-

sistence of metadata in the FTL is provided by the checkpointing mechanism, which

writes all the relevant metadata state to a dedicated partition, either periodically

or on demand.

Designating a dedicated partition where only metadata is stored efficiently solves

the problem of finding the newest metadata entries. If the partition is dedicated

only to a certain kind of data (e.g., storage system metadata), and said data is ver-

sioned (i.e., it has a monotonically increasing version number), it is possible to ap-

ply a variation of the binary search algorithm to find the latest datum in O(log(n)),
where n is the amount of pages in the partition. The algorithm in question is shown

in Listing 8. It begins by fetching the version number from the center of the par-

tition and comparing it to the beginning. If the version number is greater in the

50

5.6 Persistent storage of metadata

center, it will go on to examine the second half of the partition, otherwise the first.

It continues splitting the remaining area in half until the newest version is found.

Listing 8: Adaption of the binary search algorithm used to find the newest index
partition entry using a variant of binary search.

1 # Returns the version number of page
2 def version_number(page): # -> int
3

4 def latest_index(num_pages): # -> int
5 pivot = 0
6 version = version_number(pivot)
7 jump = ceil(num_pages / 2)
8

9 while True:
10 next_pivot = pivot + jump
11 next_version = version_number(next_pivot)
12 if next_version > version:
13 pivot = next_pivot
14 elif jump > 1:
15 jump = ceil(jump/2)
16 else:
17 return pivot # this is the highest version number!

The stored metadata state is composed of its version number, the information which

subpage should be written to next (see Section 5.3) as well as the free space man-

agement pointers (see Section 5.5). In addition to the FTLs metadata, any storage

system built on top of the FTL would also have to store metadata, for example file

or object names.Persisting both sets of metadata through different mechanisms

(one for the FTL and one for the the system built on top) could lead to diverging in-

formation, where both sets of metadata represent a different storage system state.

To prevent this, the FTL allows to store arbitrary “foreign metadata” alongside its

own.

After metadata has been stored, it also needs to be restored, for example when

the device reboots. If no data has been written to the flash device since the last

checkpoint, the restoration process is simple, since only the latest checkpoint must

be loaded. If this is not the case, that is, if data new data has been written since

the last checkpoint, there are two options to handle this discrepancy.

1. Update the metadata state by scanning each record which has been written

since the latest checkpoint.

51

5 Design of the Flash Translation Layer

2. Ignore the data which has been written since the last checkpoint and continue

based on the latest metadata state.

Option one is costly in terms of energy, but preserves all written data, whereas

option two is cheap in terms of energy but loses all data written since the latest

checkpoint. Which approach is applicable ultimately depends on the application

requirements.

5.7 Application Programming Interface

The usability of the APIs a software system provides can have a significant impact

on its adoption and sustained use. As such, the design of usable APIs can be seen

as critical for any software project, but especially for open-source projects which

aim at widespread adoption. Designing an API involves many stakeholders, such

as API producers, consumers and testers, all of which need to write software based

on API prototypes, evaluating whether the API meets their needs [23]. As a result,

the APIs presented in this thesis are prototypes based on feedback from the RIOT

community. For final inclusion in the RIOT kernel, the API is expected to change

based on further feedback from kernel developers and the community. In case of

the FTL, the amount of functionality that needs to be exposed is relatively small:

• System initialization

• Writing, reading and erasing data

• Storing metadata

• Configuring the ECC algorithm

System initialization is performed by populating a struct with the required con-

figuration parameters and invoking the FTL initialization function. An example

is shown in Listing 9. The configuration parameters consist of basic information

about the flash device (L6–11), function pointers for the flash device driver inter-

face (L13–16) as well as the necessary buffers (L18–19). In addition, all partitions

must be defined before the FTL is initialized (L22–43) and a list of partitions must

be made available in the configuration (L46). Finally, "ftl_init" initializes the stor-

age system, such that data can be read or written once it returns successfully.

52

5.7 Application Programming Interface

When examining the flash driver interface, one might notice that there are two

different functions for the erase operation, “erase” and “erase_bulk". Since eras-

ing blocks in bulk is not supported by all flash storage devices, the FTL will de-

tect whether or not this feature is supported by checking if the function pointer

to ”erase_bulk" is set. If not, block erasure will be performed with the “erase”

function.

Writing data is performed using either “ftl_write_raw", ”ftl_write" or "ftl_write_ecc"

(see Listing 10). These functions correspond to the three options for writing data

described in Section 5.3. While writing in raw mode requires the selection of a

target subpage, writing in managed mode will automatically write to the next free

subpage and return its number. When specifying pages (or blocks), these are al-

ways relative to the beginning of their respective partition, making it impossible to

accidentally modify data outside of the selected partition.

Listing 10: Example usage of the API for writing data using the FTL

1 // Signature

2 int ftl_write_raw(const ftl_partition_s *partition, unsigned char *buffer,

3 uint32_t subpage);

4 // Example

5 int ret = ftl_write_raw(&firmware_partition, &buffer, 42);

6

7 // Signature

8 int ftl_write(const ftl_partition_s *partition, const unsigned char *buffer,

9 uint16_t data_length);

10 // Example

11 int subpage = ftl_write(&data_partition, &buffer, 100);

12

13 // Signature

14 int ftl_write_ecc(const ftl_partition_s *partition, const unsigned char *buffer,

15 uint16_t data_length);

16 // Example

17 int subpage = ftl_write_ecc(&data_partition, &buffer, 100);

Reading data is also possible in either raw or managed mode using “ftl_read_raw"

or ”ftl_read" (see Listing 11). The only relevant difference is that, when reading in

managed mode, a header struct must be passed to the "ftl_read" function so that

the header information can be returned. The managed read call will automatically

53

5 Design of the Flash Translation Layer

recognize if an ECC is present and verify the integrity of the subpage. Erasing data

can be performed per erase block (used in garbage collection) or per partition (see

Listing 12).

Listing 11: Example usage of the API for reading data using the FTL

1 // Signature

2 int ftl_read_raw(const ftl_partition_s *partition, unsigned char *buffer,

3 uint32_t subpage);

4 // Example

5 int ret = ftl_read_raw(&firmware_partition, &buffer, 42);

6

7 // Signature

8 int ftl_read(const ftl_partition_s *partition, unsigned char *buffer,

9 subpageheader_s *header, uint32_t subpage);

10 // Example

11 subpageheader_s header;

12 int ret = ftl_read(&data_partition, &buffer, &header, 42);

Listing 12: Example usage of the API for erasing data using the FTL

1 // Signature

2 int ftl_erase(const ftl_partition_s *partition, uint32_t block);

3 // Example

4 int ret = ftl_erase(&data_partition, 123);

5

6 // Signature

7 int ftl_format(const ftl_partition_s *partition);

8 // Example

9 int ret = ftl_format(&firmware_partition);

For metadata storage (see Section 5.6) the functions shown in Listing 13 were

designed. “ftl_write_metadata" stores the FTLs metadata in a dedicated partition.

Through the ”foreign_metadata" parameter, it allows to store additional data not re-

lated to the FTL. This mechanism is used, for example, to store the state of the OSL.

Storing both states using the same mechanism ensures that both states represent

the same point in time. After storing it, the FTL can either load the latest metadata

or a certain metadata version (“ftl_load_latest_metadata" and ”ftl_load_metadata"

54

5.7 Application Programming Interface

respectively). The "set_ftl_state" parameter dictates whether or not the state stored

in the retrieved metadata should supersede the current state of the FTL.

Listing 13: Example usage of the API for storing metadata using the FTL

1 // Signature

2 int ftl_write_metadata(ftl_device_s *device, const void *foreign_metadata,

3 uint16_t length);

4 // Example which stores only the FTL’s metadata

5 int ret = ftl_write_metadata(&device, NULL, 0);

6

7 // Signature

8 int ftl_load_latest_metadata(ftl_device_s *device, void *buffer,

9 ftl_metadata_header_s *header, bool set_ftl_state);

10 // Example which will update the FTL’s state to the latest metadata

11 ftl_metadata_header_s header;

12 int ret = ftl_load_latest_metadata(device, foreign_metadata_buffer, &header, true);

13

14 // Signature

15 int ftl_load_metadata(ftl_device_s *device, void *buffer, ftl_metadata_header_s *header,

16 uint32_t version, bool set_ftl_state);

17 // Example which retrieves a specific metadata version but

18 // does not update the FTL’s state

19 ftl_metadata_header_s header;

20 int ret = ftl_load_metadata(&device, foreign_metadata_buffer, &header, 123, false);

Finally, the FTL allows the specification of a custom ECC computing and verifica-

tion function as well as the size of the resulting ECC (see Listing 14). Both are

passed a data buffer of given size, for which the ECC is computed or verified. Note

that it is only possible to change the ECC algorithm before any data has been writ-

ten. If the ECC was changed after data has been written to the storage system, the

data would be assumed to be corrupt when next checked because the ECC written

using the previous algorithm would be verified using the new algorithm.

55

5 Design of the Flash Translation Layer

Listing 14: Example usage of the API for changing the ECC algorithm of the FTL

1 typedef int (*ecc_compute)(const unsigned char *data, uint32_t size,

2 unsigned char *code);

3 typedef int (*ecc_verify) (unsigned char *data, uint32_t size,

4 const unsigned char *code);

5 // Signature

6 int ftl_set_ecc(ftl_device_s *device, uint16_t size,

7 ecc_compute compute_fn, ecc_verify verify_fn);

5.8 Discussion

In summary, the functionality provided by the FTL is intentionally kept simple, as

it is primarily meant to provide a robust foundation for the Object Storage Layer

(OSL) to be presented in the following chapter. Unlike Capsule’s Flash Abstraction

Layer, however, it is also designed to be used on its own, or to provide a basis for

other possible storage systems to be implemented in the future.

The FTL supports a wide variety of flash devices, including NOR flash as well as

SLC and MLC NAND flash. A major limitation for the usage of NAND flash memory

on Class 1 embedded devices is the memory impact of the required buffers. By

dividing pages into subpages the FTL tries to alleviate this problem. Because MLC

NAND flash does not support this subdivision – and commonly features page sizes

of 4 KiB or more – it is conceivable that this type of flash will not find widespread

adoption for Class 1 IoT appliances.

56

5.8 Discussion

Listing 9: FTL API example configuration of an 8 MiB flash device with a page size
of 512 Bytes and k = 4, such that 512

4 = 128 Bytes = subpage size. The
configuration has an index partition as well as a "sensordata" partition.
The interface to the flash driver (flash_driver_* functions) is omitted
in this example.

1 #import "storage/ftl.h"
2 unsigned char subpage_buffer[128];
3 unsigned char ecc_buffer[6];
4

5 ftl_device_s device = {
6 .total_pages = 16384,
7 .page_size = 512,
8 .subpage_size = 128,
9 .pages_per_block = 1024,

10 .ecc_size = 6,
11 .partition_count = 2,
12

13 ._write = flash_driver_write,
14 ._read = flash_driver_read,
15 ._erase = flash_driver_erase,
16 ._bulk_erase = flash_driver_bulk_erase,
17

18 ._subpage_buffer = subpage_buffer,
19 ._ecc_buffer = ecc_buffer
20 };
21

22 ftl_partition_s index_partition = {
23 .device = &device,
24 .base_offset = 0,
25 .size = 3,
26 .next_page = 0,
27 .erased_until = 0,
28 .free_until = 0
29 };
30

31 ftl_partition_s sensordata_partition = {
32 .device = &device,
33 .base_offset = 3,
34 .size = 2,
35 .next_page = 0,
36 .erased_until = 0,
37 .free_until = 0
38 };
39

40 ftl_partition_s *partitions[] = {
41 &index_partition,
42 &sensordata_partition
43 };
44

45 int main(void) {
46 device.partitions = partitions;
47 int ret = ftl_init(&device);
48 assert(ret == 0);
49

50 }
57

6 Design of the Object Storage Layer

While the design of the FTL is mainly shaped by the constraints of the underlying

flash storage, the design of the Object Storage Layer (OSL) is primarily meant to

provide a usable and feature-rich storage system for common WSN and IoT use

cases. The OSL resembles the object-based storage paradigm as used by Capsule

[44], storing data in the form of so-called “storage objects”, each providing a basic

data structure and exposing an API tailored to the object.

In this chapter, the physical structure of stored data (Section 6.1) and the way data

is buffered before being written to flash (Section 6.2) are examined first. Subse-

quently, the implications of the designed storage structure and the supplementary

mechanism necessary for its proper operation are discussed in Section 6.3 to Sec-

tion 6.5. The following Section 6.6 details the core concept of the OSL, its storage

objects and their features, followed by how their state is held in RAM and how it

is persisted to flash memory (Section 6.7). Section 6.8 examines the problem of

knowing whether or not an object with a certain name exists, which is relevant

trying to retrieve metadata of a certain object from flash, i.e., opening it (Sec-

tion 6.9). The subsequent overview of the garbage collection (Section 6.10) and

thread safety (Section 6.11) mechanisms is followed by the presentation of the

OSLs API (Section 6.12). The chapter is concluded by a discussion of the chapter

in Section 6.13.

6.1 Storage structure

All storage objects provided by the OSL share the same basic structure when stored

on flash memory. A storage object is composed of one or more records which form

a backward-pointing log, i.e., the n-th record always points to the (n− 1)-th record.

Whenever data is added to an object, a new record reflecting the change is created.

59

6 Design of the Object Storage Layer

An example showing a possible on-flash composition of two storage objects and a

total of five records is shown in Figure 6.1. Each record has a header which stores

the predecessor and the record length (compare Listing 15). The pointer to the

predecessor is stored as a subpage index and the offset inside the subpage where

the record begins (see Figure 6.2). A backward-pointing log-structured approach

was chosen because it meets all the requirements for usage on both NOR and

NAND flash storage. In addition, many of the previously storage systems, such as

Capsule [44] and ELF [21], have shown that log structured storage is a good fit for

flash devices.

The disadvantages of the backward-pointing log-structured approach are twofold.

First, adding an eight byte header to every record, whose data might be as small

as one byte, comes with a large storage overhead. This problem is discussed in

Section 6.3. Second, this approach implies with poor random-read and front-to-

back iteration performance. This isssue is discussed in Section 6.4.

Subpage

Object #1 records

Object #2 records

Record header

Subpage header

Ø Ø

Figure 6.1: Physical OSL storage structure example using two objects spread
across two subpages. The subpage header (yellow) is added by the
FTL.

6.2 Buffering records

Modifying an object of the OSL does not immediately store requested changes on

flash memory, since the modification may be much smaller than the size of a sub-

page. Instead, a buffer in RAM is used to accumulate object records until they

60

6.3 Combined records

Subpage
Record

struct osl_record_s {
 uint32_t subpage;
 uint16_t offset;
}

Other data

Addressed record

Record header

Subpage header

Figure 6.2: Visualization of the way in which records are addressed by the OSL.

Listing 15: OSL Record header in C packed structure notation.

1 typedef struct osl_record_s {
2 uint32_t subpage;
3 int16_t offset;
4 } osl_record_s;
5

6 typedef struct __attribute__((__packed__)) {
7 osl_record_s predecessor;
8 unsigned int length:15; //!< Length of the data contained in this record
9 unsigned int is_first:1; //!< Is this the first record of the log?

10 } osl_record_header_s;

exceed the size of a single subpage and then “flushes” the changes to flash mem-

ory. The buffer is automatically flushed whenever a checkpoint is created (see

Section 6.7).

6.3 Combined records

An eight byte record header per data element is an efficiency problem, because the

element stored in the record may be as small as one byte, resulting in a storage

overhead of 800%. Even a 64 bit integer per record would still result in an overhead

61

6 Design of the Object Storage Layer

of 100%. In other words, storing one Gigabyte of 64 bit sensor data would require

another Gigabyte of record headers.

To improve efficiency, the OSL combines consecutively written data elements into

the same record if they belong to the same object. As a result, a new header will

only be created if a different object is written or if the subpage is full. Compared

to the naive approach of writing one record per data element – which results in a

constant userdata to metadata ratio - the combined approach performs depending

on the number of interleaved objects on the subpage, with a best-case user data

percentage of 96%.

This is visualized in Figure 6.3 for a subpage size of 256 bytes. When not combining

records, the user data percentage is constant and proportional to the size of the

data element. While an eight byte data element achieves 50% user data, a one byte

element only achieves 12.5%. When combining records, the user data percentage

depends on how many data elements of the same object are written consecutively,

because, as soon as a data element from another object is written (interleaved), a

new record header must be created as well.

5 10 15 20 25 30

of interleaved records

 0%

 20%

 40%

 60%

 80%

100%

P
e
rc

e
n
ta

g
e
 o

f
u
se

r
d
a
ta

o
n
 a

 2
5
6
 b

y
te

 s
u
b
p
a
g
e

Size = 1 byte

Size = 4 byte

Size = 8 byte

Size = 1 byte,
combined record

Figure 6.3: Comparison between naive and combined record storage with element
sizes of one, four, and eight bytes, assuming a page size of 256 bytes.

62

6.4 Record caching

6.4 Record caching

The backward-pointing approach has a severe negative side-effect in terms of read

performance. Given an object with n log records, the complexity of sequentially

traversing the log structure isO(n2), since r(n) records need to be traversed (Equa-

tion 6.1) in order to iterate through such an object from the beginning to the end.

This is because, given any record in the backward-pointing log, there is no simple

way to determine its successor. As a result, one must always start start at the end

of the log and traverse it until the desired log record is found. Note that this is not

an issue when sequentially traversing the log from the end towards the beginning,

in which case iteration complexity is O(n).

In order to improve performance when iterating through an object, a read cache

of configurable size k is introduced. This read cache stores the page numbers of k

log records, so that, when accessing a record in the object, log traversal can start

from the nearest cache entry instead of the end of the log. This is exemplified in

Figure 6.4. The first cache entry always points to the subpage that was last read,

since it is probable that records near it are going to be read as well (principle of

locality). The remaining cache entries are evenly distributed along the log records

of the object. If an object has 500 log entries and the cache size is five, for example,

the cached records would be 100, 200, 300 and 400, plus the last read subpage.

n+ (n− 1) + (n− 2) + ...+ 2 + 1 =
n(n+ 1)

2
= r(n) (6.1)

0 100

Target
record: 8

subpage boundaries
Cache

record: 16

Record access
without cache entry

Record access
with cache entry

Figure 6.4: Example of accessing a record of an object – which has a total of 100
records – with and without cache entry

63

6 Design of the Object Storage Layer

6.5 Object defragmentation

The caching technique described in Section 6.4 improves the sequential read per-

formance by reducing n, i.e., the number of records which need to be traversed by

a factor proportional to k. As an the number of records in an object grows, how-

ever, the performance will still degrade exponentially, since the size of the record

cache stays the same.

To provide good read performance even for storage objects containing many records,

an additional – compacted - storage mode similar to the “Disk Mode” of FlashDB

[51] is introduced. When a storage object grows beyond a certain size, it is transi-

tioned from the normal log-structured mode into the compacted form. In this pro-

cess, the records of the object are rewritten to sequential pages on flash memory

(see Figure 6.5). Since the compacted form guarantess that the logical successor

of a record is also its physical successor on flash memory, sequentially reading in

compacted mode has a complexity of O(n). After defragmentation, new records

are again written in log-structured mode until the defragmentation threshold is

reached.

6.6 Storage objects

After having examined the physical structure of storage objects, this section presents

the taxonomy of the OSLs storage objects and their applications (see Figure 3.8).

The storage objects provided by the OSL are mostly the same as the ones sug-

gested by the authors of Capsule [45], given that they cover most of the typical

data storage requirements that can be expected in IoT scenarios. Unlike Capsule,

however, the taxonomy includes a Cache Table object, which is primarily intended

to accommodate ICN cache data. An overview of the provided objects as well as

their supported operations is shown in Figure 6.7.

The Stream is a core component of the OSL, allowing to store records from different

types of sensor sources for archival, querying and processing. It is an append-only

data structure, meaning that it is not possible to modify elements once they have

been added to the stream. Appending an element to a stream creates a new log

entry and lets the metadata head field point to it. The stream object also allows to

64

6.6 Storage objects

Subpage

Object #1 records

Object #2 records

Record header

Subpage header

Ø Ø

a) Two interleaved storage objects before compaction

b) Object #2 after compaction

Figure 6.5: Example of the OSLs storage object defragmentation. The two sub-
pages in b) are not the same subpages as in a)

Application Data type Storage object

Archival storage (and querying) Sensor data Stream

Data processing Array Index

Network routing Packet buffer Queue/Stack

Debugging logs Time-series logs Stream

ICN Cache Named binary data Cache Table

Figure 6.6: Taxonomy of the OSLs storage objects and their applications.

65

6 Design of the Object Storage Layer

Storage object Operations

Stream append(value), get(index)

Index add(key, value), find(key), remove(key), query(min, max)

Queue add(value), remove(), peek()

Stack push(value), pop(), peek()

Cache Table set(key, value), get(key)

Figure 6.7: Overview of the OSLs storage objects as well as the operations they
support.

discard the n oldest elements of the stream, such that the object can be trimmed

if it grows beyond a certain size. This operation advances the tail metadata field

by the desired amount of elements to be dropped. The Stream operations are

visualized in part one of Figure 6.8.

Element 2Element 1 Element 4Element 3

Tail Head

Element 2Element 1 Element 4Element 3

Tail

Element 4Element 3

Tail

Element 5

Head

Head

1) Stream and Queue

1.a) Drop two elements

1.b) Append one element

Element 2Element 1 Element 3

Tail Head

Element 2Element 1 Element 3

Tail

Element 2Element 1

Tail

Element 4

Head

Head

2) Stack

2.b) Push an element

2.a) Pop an element

Figure 6.8: Operations on the OSL objects Stream, Queue and Stack visualized

Queues and Stacks are data structures encountered in many applications, and as

such they are provided as a general measure to allow RAM usage of embedded ap-

plications to be reduced by storing such data on flash memory (e.g., the OS packet

buffers). The addition of the “drop” operation to the Stream – which Capsule did

not implement on Streams – not only allows them to be trimmed, but also enables

the Queue object to be implemented as a special case of a Stream. The “add(value)”

operation of a Queue is equivalent to the “append(value)” operation of the Stream,

66

6.6 Storage objects

the “remove()” operation of the Queue is the same as “drop(1)” in the Stream, and

the Queue’s “peek()” is equal to Stream’s “get(0)”. The Stack operations are shown

in part two of Figure 6.8. Pushing an element to a Stack is equivalent to appending

an element to a Stream, and popping an element off a Stack sets the head pointer

to the predecessor of the head element being popped.

The OSL also provides a data structure not previously seen on storage systems for

flash memory. It is tailored to the needs of ICNs, allowing arbitrary, named binary

data to be stored in a flash-optimized “Cache Table”. This data structure is based

on the commonly known hash table, which provides named access to data divided

into buckets depending on their name’s hash value. Similarly, the “Cache Table”

manages a dedicated FTL partition and caches named ICN data among the blocks

of the partition based on the data’s name hash.

An example of a three-block cache table is shown in Figure 6.9. When an element

should be inserted – using “set(key, value)” – the OSL calculates the hash of its key

modulo the amount of blocks, and thus decides into which block the value should

be stored. The data is then written into the first unused subpage in that block.

Retrieving an element from the Cache Table is done by determining in which block

the element lives based on its name, and then iterating through the pages from the

newest to the oldest subpage, until the element is found. This has the side-effect

that overwriting an existing key does not involve any extra operations, since it will

always be found before the older version. When any block becomes full, it is simply

erased. This is possible because there is no guarantee on the lifetime of cached

data in ICNs. An alternative approach where cache data is not discarded would

require two blocks per Cache Table bucket, such that, when a block is full, the

remaining live data in the full block could be copied to the empty one. However, this

would also necessitate tracking whether data is obsolete, and would thus further

complicate Cache Table management.

The Index object is intended to be used as a means of storing associated key-value

pairs and quickly retrieving either concrete values based on a key or ranges of val-

ues based on a query. In contrast to the previously presented storage objects, there

are many variants of indexing data structures which are useful under different cir-

cumstances and in different applications. As a detailed evaluation and selection

of suitable data structures is out of scope of this thesis (compare Section 3.4), no

distinct Index object designs are presented here. Instead of providing a concrete

67

6 Design of the Object Storage Layer

na
m

e

na
m

e

na
m

e

Block #1 Block #2 Block #3

na
m

e

na
m

e

na
m

e

hash function

Figure 6.9: Distribution of named data based on name hash in a OSL Cache Table
with three blocks

Index object, the OSL facilitates the integration of custom indexing data structures

(see Section 6.12).

6.7 Metadata

The OSL keeps information about a limited number of objects in RAM. These are

the objects which are considered “open”. How many objects can be open simultae-

nously is defined at compile time. Every storage object held in RAM consists of the

fields shown in Listing 16. The “head” and “tail” fields designate the last and first

record which belongs to the storage object log. The location of the first record is

necessary for garbage collection purposes (see Section 6.10).

The next field is the “name hash”. While, in the OSLs API, objects are addressed

by human readable string names, these are internally converted to a 64-bit hash to

allow object names of arbitrary length and to save memory. The only requirement

for the hash function is that it guarantees a uniform distribution of hashed values.

Such a hash – of any length – can be truncated to 64 bits, with the uniform distri-

bution criterium being maintained [37]. While the chance for collision exists, its

68

6.7 Metadata

Listing 16: OSL structure for storing object information

1 typedef struct osl_object {
2 osl_record_s head;
3 osl_record_s tail;
4 uint64_t name_hash;
5 uint32_t num_records;
6 uint16_t record_size;
7 uint8_t type;
8 } osl_object_s;

likeliness is minimal, especially given that an embedded IoT application is unlikely

to create millions of files. The approximate collision probability is given by the Pois-

son approximation of the Birthday Paradox (compare Equation 6.2), where n is the

space of possible hash values and k is the number of hashed values. For k = 200, 000

object names and n = 264, for example, the chance of collision is 1.08 × 10−9, i.e.,

one in a billion.

P (n, k) ≈ 1− e
−k2

2n (6.2)

The remaining three fields are for tracking the amount of records in the log, the

record size (which is fixed per object) and the type of the object (e.g., stream or

queue). In addition to the object data, the OSL also keeps a dedicated subpage

buffer (see Section 6.2) as well as the record cache (see Section 6.4) in RAM.

Storing metadata primarily on flash would be hard to update due to its write-once

property. As a result, it is stored primarily in RAM. Because of this, the OSL needs

a mechanism to achieve persistence for when the device loses power or crashes. As

a solution, the array of open storage objects is periodically, or on demand, stored

on flash memory using the FTLs metadata persistence API (see Listing 13). As in

Capsule [46], the OSL calls this process “checkpointing”. Creating a checkpoint

also causes the subpage buffer (Section 6.2) to be flushed.

69

6 Design of the Object Storage Layer

6.8 Checking object existence

Retrieving an object’s persisted metadata from flash memory is costly since it po-

tentially involves reading several subpages (see Section 6.9). To prevent searching

on flash for objects that do not exist, the OSL persists a Bloom filter populated with

the name hashes from all objects which it currently manages.

A Bloom filter [11] is a space-efficient, probalistic data structure which allows to

test whether an element is member of a set. It is probabilistic, since it has a chance

of returning a false positive. This chance increases with the number of members in

the set. The Bloom filter is used to efficiently determine whether or not an object

with a given name exists. To achieve this, the Bloom filter is populated with the

names of all existing objects.

As mentioned above, a Bloom filter has a non-zero chance of a false positive. The

probability of such an event depends on three parameters:

• The size of the Bloom filter m (in bits)

• The number of elements in the set (n)

• The number of independent hash functions k. The optimal value for k is a

function of m and n (see Equation 6.3).

To choose the optimal size of the Bloom filter, it is thus necessary to estimate how

many objects are expected to exist at the same time in common IoT applications.

Unfortunately, due to lack of data, a reliable estimate could not be made. As a

result, a compromise between Bloom filter size and false positive rate based on

Figure 6.10 was made. The Bloom filters of 128 and 256 bits have a high false pos-

itive rate even with under 50 elements, whereas 1024 bits (128 bytes) is excessive

when considering that subpage sizes of 256 bytes are realistic. An experimental

size of 512 bits was thus chosen for the Bloom filter.

k =
m

n
ln 2 (6.3)

70

6.9 Opening and closing objects

0 200 400 600 800 1000

Number of elements in Bloom filter

0.0

0.2

0.4

0.6

0.8

1.0
Fa

ls
e
 p

o
si

ti
v
e
 p

ro
b
a
b
ili

ty

m=128

m=256

m=512

m=1024

Figure 6.10: False positive probability for a Bloom filter of different sizes (in bits)

6.9 Opening and closing objects

The process of opening an object involves checking whether it already exists, and

if so, finding its metadata in RAM or on flash memory. The algorithm is shown

as Python sample code in Listing 17. The first phase simply scans the objects in

RAM for an object with the requested name, and returns it. If non is found, the

latest metadata is loaded and the Bloom filter is consulted to know whether or not

an object of the requested name exists. If that is the case, or in case of a false

positive, the OSLs metadata is scanned from newest to oldest metadata version,

until either the requested object is found or the oldest version is reached.

Closing an object does not immediately delete it from RAM, since it is likely that a

previously opened file is re-opened at by the application at a later time. Instead, the

object is marked as “closed” and will only be evicted from RAM once another object

which is not currently held in memory is requested for opening. Before evicting an

object from flash memory, its metadata is written to flash such that its current state

is persisted.

71

6 Design of the Object Storage Layer

Listing 17: Algorithm employed by the OSL to find the metadata of an object re-
quested to be openend (in Python-based sample code)

1 def find_object_metadata(name):
2 # Search in RAM
3 for obj in objects_in_ram:
4 if obj.name == name:
5 return obj
6

7 # Consult Bloom filter
8 version = latest_metadata_version()
9 metadata = load_metadata(version)

10

11 # Check if the object exists on flash memory
12 if not metadata.bloom_filter.contains(name):
13 return False
14

15 # Search on flash memory
16 while version >= 0:
17 for obj in metadata.objects:
18 if obj.name == name:
19 return obj
20

21 version -= 1
22 metadata = load_metadata(version)
23

24 return False

6.10 Garbage collection

On initialization, the OSL registers itself with the FTLs as to handle garbage col-

lection (compare Section 5.5). Whenever the FTL needs to free additional space, it

will invoke said handler and instruct the OSL to copy all remaining live data on one

or more blocks to the end of the log structure. To identify which objects need to

be copied, the OSL has to iterate through all of them. For each object, the system

checks whether or not the object’s head record (see Section 6.7) is located on one

of the pages to be erased. If that is the case, the object is added to the list of objects

that must be copied. After all objects have been examined, the ones from the list

are then rewritten to flash and their metadata is updated. After this process is com-

pleted, control is returned to the FTL, informing it which blocks have been cleared.

Note that, in the process of rewriting objects to flash, they are also automatically

72

6.11 Thread safety

compacted into “Disk Mode” (see Section 6.5), which improves subsequent read

performance and reduces metadata overhead for the objects in question.

6.11 Thread safety

In multi-threaded desktop OS it is common that many processes write or read data

simultaenously, and that their performance depends on that the host OS is able

to accommodate these operations in a timely fashion. Being able to provide this

functionality, however, comes with significant complexity and resource usage (e.g.,

for buffers) at the OS-level.

To avoid this complexity for the storage system at hand, the OSL does not include

the ability for concurrent write or read operations. In a multi-threaded OS, the

OSL provides minimalistic safe-guarding against errors caused by concurrent op-

erations by using a simple locking strategy composed of two locks.

1. The flash device lock safeguards against concurrent write or read operations

on the FTL and thus the flash device. Since, on the FTL level, both use a

shared buffer, it is necessary that only a single write or read operation is

active at any given time.

2. The write buffer lock safeguards against concurrent use of the OSL record

buffer. This buffer can be filled while another FTL operation is in use, but as

soon as it is full – and thus needs to be flushed – the flash device lock must be

acquired.

6.12 Application Programming Interface

The OSL exposes an API which completely abstracts the special properties of flash

memory in order to provide a storage system for IoT devices which is as simple

to use as possible. As indicated in Section 5.7, this API is only a prototype and is

expected to change before inclusion into the RIOT kernel. The OSL design – in its

current state – features the following functionality:

• System initialization

73

6 Design of the Object Storage Layer

• Creation, retrieval and modification of the object types listed in Section 6.6

• Iteration through an object

• Defragmentation of existing objects

• Creation of a metadata checkpoint

Initializing the OSL requires that the FTL has already been successfully initialized,

but is otherwise very simple, as can be seen in Listing 18. The listing also shows

how a checkpoint is created.

Listing 18: API for initialization and checkpointing of the OSL

1 // Signatures

2 int osl_init(osl_s *osl, ftl_device_s *device, ftl_partition_s* data_partition);

3 int osl_create_checkpoint(osl_s* osl);

4 // Example

5 osl_s osl;

6 int main() {

7 // The FTL must already be initialized in "device".

8 int ret = osl_init(&osl, &device, &data_partition);

9 [...]

10 osl_create_checkpoint(&osl);

11 }

In the OSL, each storage object comes with its own function for creation, modifi-

cation and access, but their usage is very similar. Opening a storage object always

requires a reference to the OSL configuration as well as an Object Descriptor (OD).

The latter contains all information necessary to perform operations on an object,

and is used is passed to all functions operating on an object after it has been cre-

ated. Listing 19 shows the API of the Stream object. In the example, the Stream

is set up to store uint32_t records and is given the name “some stream” (L7).

In line 9 and 10, an element is then appended to and retrieved from the Stream,

respectively. The very similar Queue and Stack APIs are shown in Listing 20.

As identified in Chapter 4, post-processing of stored data is an important task

for IoT and WSN applications. The OSL currently supports simple iteration over

Streams, Queues and Stacks using the API shown in Listing 21. To iterate over

an object, the application developer creates an osl_iter struct – which holds the

74

6.12 Application Programming Interface

Listing 19: API of the Stream object provided by the OSL

1 // Signatures
2 int osl_stream(osl_s* osl, osl_od* od, char* name, size_t object_size);
3 int osl_stream_get(osl_od* od, void* object_buffer, uint32_t index);
4 int osl_stream_append(osl_od* od, void* object);
5 // Example
6 osl_od some_stream;
7 osl_stream(&osl, &some_stream, "some stream", sizeof(uint32_t));
8 uint32_t x = 42;
9 osl_stream_append(&some_stream, &x); // Append the value of x

10 osl_stream_get(&some_stream, 0); // Get the first element of the stream

state of the iteration – and initializes it with the object over which they wish to it-

erate (L8–9). The “osl_iterator_next” function is then called – here in a while loop –

until it returns false, indicating the the iteration has finished. If desired, the index

of the current element can be extracted from the osl_iter structure as shown in

line 11.

The API for the Cache Table differs from the previously examined storage objects,

because it operates on an entire FTL partition. Creation of a Cache Table thus

requires a reference to the partition on which it should be created. It does not

need a name, since the partition already unique identifies it, i.e., there can not be

multiple Cache Tables per partition. The API for storing and retrieving data (L14–

15) is also somewhat more complicated compared to the previous objects, since

the Cache Table elements must not be of fixed size. As a result, both setting and

retrieving an element requires the length of the key and the value to be given, since

they are not inferable from the void pointers once passed to the OSL. In the case

of retrieving data from the Cache Table, the “value_size” parameter is set by the

OSL such that the application developer knows how much data was written to the

buffer. Finally, it is possible to wipe all data from a Cache Table using the “format”

function (L17).

Since there are many different kinds of index data structures, which vary in their

intended applications, the Index object API is built to provide the ability to be ex-

tended with different index types depending on the requirements of the application.

Listing 23 shows the API of the Index object, which can either be created by spec-

ifying a type of Index to be used (L2–3), or by creating an Index object with the

default type (L4–5). It is then possible to add, retrieve, and remove key-value pairs

75

6 Design of the Object Storage Layer

Listing 20: API of the Queue and Stack objects provided by the OSL

1 // Signatures
2 int osl_queue(osl_s* osl, osl_od* od, char* name, size_t object_size);
3 int osl_queue_add(osl_od* od, void* item);
4 int osl_queue_peek(osl_od* od, void* item);
5 int osl_queue_remove(osl_od* od, void* item);
6 // Example
7 osl_od some_queue;
8 osl_queue(&osl, &some_queue, "example queue", sizeof(uint8_t));
9 uint8_t x = 123;

10 osl_queue_add(&some_queue, &x); // Add the value of x
11 osl_queue_peek(&some_queue &x); // Set x to the first element of the queue
12 osl_queue_remove(&some_queue &x); // Set x to the first element and remove
13 // the value from the queue
14

15 // Signatures
16 int osl_stack(osl_s* osl, osl_od* od, char* name, size_t object_size);
17 int osl_stack_push(osl_od* od, void* item);
18 int osl_stack_peek(osl_od* od, void* item);
19 int osl_stack_pop(osl_od* od, void* item);
20 // Example
21 osl_od some_stack;
22 osl_stack(&osl, &some_stack, "example stack", sizeof(uint64_t));
23 uint64_t x = 123;
24 osl_stack_push(&some_stack, &x); // Push the value of x
25 osl_stack_peek(&some_stack &x); // Set x to the top element of the stack
26 osl_stack_pop(&some_stack &x); // Set x to the top element and pop the
27 // value off the stack

from the index (L15–17). In addition, the API allows to query ranges of keys (L24).

This API call is notable because it is passed a Stream object as a parameter, into

which the resulting values of the range query are written. This is done because it

is not possible to know how many elements the requested range contains. Once

the query has completed, the results can then be processed as previously shown in

the Stream object API.

The API for adding a new index type requires a number of functions to be im-

plemented and to be registered with the OSL, using the “osl_index_register_type"

function, as shown in Listing 24. If successful, it returns a type number which

can then be used when creating an Index object. The operations that must be im-

plemented are essentially the same as the ones provided by the Index object (see

Listing 23). While all index type must support the ”add“ and ”find“ operations, the

function pointers for ”remove“ and ”query" may be set to NULL if the index does not

76

6.13 Discussion

Listing 21: API of the object iteration functionality provided by the OSL

1 // Signatures
2 int osl_iterator(osl_od* od, osl_iter *iterator);
3 bool osl_iterator_next(osl_iter *iter, void *buffer);
4 // Example
5 osl_od some_stream; // Assuming a stream one or more uint16_t elements
6 // has been created and is referenced by this descriptor
7 uint16_t x;
8 osl_iter iterator;
9 osl_iterator(&some_stream, &iterator);

10 while(osl_iterator_next(&iterator, &x)) {
11 printf("Index: %"PRIu32" Value: %"PRIu16"\n", iterator.index, x);
12 }

support them. Finally, it is possible to modify the default index type by calling the

function shown in L9 with one of the previously registered index types.

6.13 Discussion

Internally, the record-based, backward-pointing log-structure is the OSLs most

prominent design feature, as this chapter has shown. While this storage organi-

zation supports virtually all types of flash memory in existence today, it is not with-

out downsides. It requires several different techniques – such as record caching,

combined records, and object defragmentation – to provide acceptable, i.e., non

quadratic, performance when iterating from the beginning of the log towards the

end. Given that iterating from the end to the beginning of the log exhibits linear

performance, this is only an issue when the iteration order is relevant.

It should be noted that, while Capsule provides an “Index + Stream”, due to the

time constraints of this thesis this object has not yet been designed for the OSL.

Furthermore, the usage of the Bloom filter for tracking object existence was a

late addition, and was thus not included in the implementation and the evaluation.

Whether the usage of the Bloom filter benefits the application may depenend on its

storage behavior, e.g., how many objects it uses and how often it opens and closes

them.

77

6 Design of the Object Storage Layer

Listing 22: API of the Cache Table object provided by the OSL

1 // Signatures
2 int osl_cache_table(osl_s* osl, osl_od* od, ftl_partition_s* partition);
3 int osl_cache_table_set(osl_od* od, void* key, void* value, size_t key_size,
4 size_t value_size);
5 int osl_cache_table_get(osl_od* od, void* key, void* value, size_t key_size,
6 size_t *value_size);
7 int osl_cache_table_format(osl_od* od);
8 // Example
9 osl_od ct;

10 size_t size;
11 unsigned char buffer[128];
12 char *name = "test element";
13 osl_cache_table(&osl, &ct, cache_partition, 128); // Sizes chosen arbitrarily
14 osl_cache_table_set(&ct, name, buffer, strlen(name), 42); // Insert an element of 42 bytes
15 osl_cache_table_get(&ct name, buffer, strlen(name), &size); // Retrieve an element.
16 // Size is set to 42
17 osl_cache_table_format(&ct); // Delete all data from the cache table

Listing 23: API of the Index object provided by the OSL

1 // Signatures
2 int osl_index(osl_s* osl, osl_od* od, char* name, uint8_t type, size_t key_size,
3 size_t value_size);
4 int osl_index_default(osl_s* osl, osl_od* od, char* name, size_t key_size,
5 size_t value_size);
6 int osl_index_add(osl_od* od, void* key, void* value);
7 int osl_index_find(osl_od* od, void* key, void* value);
8 int osl_index_query(osl_od* od, osl_od* stream_od, void* key_min, void* key_max);
9 int osl_index_remove(osl_od* od, void* key);

10 // Example
11 osl_od some_index;
12 osl_index_default(&osl, &some_index, "example index", sizeof(uint32_t), sizeof(uint8_t));
13 uint32_t key = 123;
14 uint8_t value = 456;
15 osl_index_add(&some_index, &key, &value); // Add value 456 pointed to by key 123
16 osl_index_find(&some_index &key, &value); // Retrieve value pointed to by key
17 osl_index_remove(&some_index &key); // Remove value pointed to by key
18

19 uint32_t key_min = 100;
20 uint32_t key_max = 200;
21 osl_od target_stream; // This has been initialized with a stream object
22 // Retrieves all values between (and including) min and max and stores appends
23 // them to the provided stream.
24 osl_index_query(&some_index &target_stream, &key_min, &key_max);

78

6.13 Discussion

Listing 24: API for registering new index types using the OSL

1 // Signatures
2 int16_t osl_index_register_type(
3 osl_s* osl,
4 int (*add_fn)(osl_od* od, void* key, void *value, size_t key_size, size_t value_size),
5 int (*find_fn)(osl_od* od, void* key, void *value, size_t key_size, size_t value_size),
6 int (*remove_fn)(osl_od* od, void* key, size_t key_size),
7 int (*query_fn)(osl_od* od, osl_od* stream_od, void* key_min, void *key_ma, size_t key_size),
8);
9

10 int16_t osl_index_set_default(osl_s* osl, uint8_t type);

79

7 Implementation

A prototype of the designed storage system was implemented in C for the RIOT

operating system. Due to the time constraints of the project at hand, it was not

possible to implement the entirety of the system as designed in Chapter 5 and

Chapter 6. The goal was to build a proof-of-concept implementation to determine

whether or not the conceived design is viable. This required all of the FTLs func-

tionality as well as the core functionality of the OSL to be implemented. Said core

functionality is comprised of:

• Creation of record log structure

• Stream and queue objects

• Iteration through streams

• Record caching

• Storage and restoration of FTL and OSL metadata

The storage system was implemented for RIOT, an OS targeted at Class 1 devices

(see Section 2.4). In contrast to other embedded operating systems for the IoT, it

provides a multi-threaded programming environment comparable to that of desk-

top OS such as Linux. RIOT and its applications are fully implemented in the C

programming language (C99 compliant).

The implementation was split into two RIOT modules, the FTL module and the OSL

module. A RIOT module commonly consists of a Makefile containing the module

name and dependencies, a header file defining the exposed API, one or more im-

plementation files as well as optional tests. A module is structured as shown in

Listing 25.

Even though RIOT provides a programming environment similar to that of Linux,

its focus on Class 1 embedded devices implies a number of tradeoffs, the most

81

7 Implementation

Listing 25: Directory and file structure that makes up the RIOT FTL module.

1 o
2 |-- sys/
3 | |-- include/
4 | | |-- storage/
5 | | | ‘-- ftl.h
6 | | ‘-- [..]
7 | |-- storage/
8 | | |-- ftl/
9 | | | ‘-- ftl.c

10 | | ‘-- [..]
11 | ‘-- [..]
12 ‘-- tests/
13 |-- storage_ftl/
14 | |-- Makefile
15 | ‘-- main.c
16 ‘-- [..]

prominent of which is the discouragement of dynamic memory allocation at runtime

using malloc. For kernel components, the use of dynamic memory allocation is

forbidden in RIOT. While this is a feature which is used in virtually every application

for desktop operating systems, it is discouraged – yet possible – in RIOT1, since it

breaks real-time guarantees, increases code complexity and makes it more likely

that an application fails at runtime due to memory exhaustion. Avoiding dynamic

memory allocations makes it possible to reason more confidently about memory

usage of an embedded application, and completely prevents the problem of memory

leaks.

The remainder of this chapter will examine the development methodology in Sec-

tion 7.1 and highlight the challenges encountered during the implementation in

Section 7.2.

7.1 Methodology

Test-driven Development (TDD) was chosen as the approach for the implementa-

tion of the prototype. The idea behind TDD is to write executable test cases for a

1https://github.com/RIOT-OS/RIOT/wiki/Coding-conventions

82

https://github.com/RIOT-OS/RIOT/wiki/Coding-conventions
https://github.com/RIOT-OS/RIOT/wiki/Coding-conventions

7.1 Methodology

piece of functionality before implementing it, thus formalizing its API and evalu-

ating whether it supports the intended use cases. Once the tests are written, the

functionality is implemented and iterated upon until the tests pass. Due to the for-

malization phase before writing the actual functionality, this approach “encourages

decomposition [and] improves understanding of the underlying requirements”, ul-

timately improving productivity and code quality [27]. In addition, it reduces the

effort it takes to change functionality at a later time, since running the existing

tests automatically verifies that previously made assumptions about the code are

still correct (assuming that the tests are implemented correctly).

RIOT uses embUnit [56] as a testing framework, thus it was also used for writing

the tests for the implemented storage system. An example test case from the FTL

test suite is shown in Listing 26. It tests the different variants of the FTLs ability to

write and read data to a given partition, such as writing data exceeding the page

size (L4–5) and writing data smaller than the subpage size (L11–13). Note that,

countrary to what the name of the framework indiciates, the storage system is not

tested in the form of unit tests. Instead, the FTL and OSL are treated as black

boxes and the exposed APIs functionality is tested.

When following the TDD approach, it is useful to have a fast feedback loop, allowing

the developer to quickly see whether the implementation of a feature or a recent

change breaks any tests. Unfortunately, the feedback loop is relatively long when

having to flash the code onto the embedded device. As an example, running the

FTL test suite on the MSBA2 platform takes 37.23 seconds total, 16.91 seconds to

flash the test suite and 20.32 seconds to run it.

To deal with the problem of long feedback loops in embedded software develop-

ment, RIOT features a “native mode”, where the application is built as an x86 exec-

tuable which can be run directly on the development machine. Using native mode,

the application does not need to be flashed, and due to the much faster hardware

of common desktop computers, the tests can be executed with negligible delay. It

allows to run the FTL test suite in about 0.5 to 0.75 seconds, or roughly 50 times

faster than on the embedded device. Taking advantage of native mode, most im-

plementation problems were taken care of before having to flash the application to

the embedded device at all when following the process of Figure 7.1.

83

7 Implementation

Listing 26: An embUnit-based test case checking the functionality of writing and
reading data using the FTL

1 static void test_write_read(void) {
2 [variable initialization]
3

4 ret = ftl_write(&data_partition, page_buffer, 512);
5 TEST_ASSERT_EQUAL_INT(-EFBIG, ret);
6

7 ret = ftl_write(&data_partition, page_buffer, data_length);
8 TEST_ASSERT_EQUAL_INT(0, ret);
9 TEST_ASSERT_EQUAL_INT(0, data_partition.last_written_subpage);

10

11 ret = ftl_write(&data_partition, page_buffer, data_length/2);
12 TEST_ASSERT_EQUAL_INT(0, ret);
13 TEST_ASSERT_EQUAL_INT(1, data_partition.last_written_subpage);
14

15 subpageheader_s header;
16 ret = ftl_read(&data_partition, page_buffer, &header, subpage);
17 TEST_ASSERT_EQUAL_INT(0, ret);
18 TEST_ASSERT_EQUAL_INT(data_length, header.data_length);
19 memset(expect_buffer, 0xAB, data_length);
20 TEST_ASSERT_EQUAL_INT(0, USTRNCMP(page_buffer, expect_buffer, data_length));
21

22 ret = ftl_read(&data_partition, page_buffer, &header, subpage+1);
23 TEST_ASSERT_EQUAL_INT(0, ret);
24 TEST_ASSERT_EQUAL_INT(data_length/2, header.data_length);
25 memset(expect_buffer, 0xAB, data_length/2);
26 TEST_ASSERT_EQUAL_INT(0, USTRNCMP(page_buffer, expect_buffer, data_length/2));
27 }

7.2 Challenges

To test the implemented storage system using RIOT’s native mode, a layer to em-

ulate the flash memory’s properties had to be implemented (see subsection 7.2.1).

Furthermore, because of the complexity involved when configuring the FTL, a

script was written to generate the necessary configuration structures based on the

flash memory parameters (see subsection 7.2.2). Finally, since RIOT did not previ-

ously provide an ECC, an implementation of the Hamming algorithm (as described

in [48]) was ported and has since been merged into the RIOT kernel [35].

84

7.2 Challenges

Implement tests
Implement

feature

Run tests
(native)

Run tests
(hardware)

Eliminate
problems

tests pass

test fail

Next feature

tests pass

Figure 7.1: Development process taking advantage of the shortened feedback loop
by using native mode, depicted as a flowchart.

7.2.1 Flash storage emulation

Using native mode to shorten the development feedback loop has one downside:

since all storage interface which are conveniently available in common desktop

operating systems provide storage only through several layers of abstraction, it is

difficult to directly access a storage medium that presents the properties of flash

memory. Since it is important that the implemented storage system is tested on

such a medium, its properties need to be emulated in native mode.

To this end, the “flash_sim" RIOT module was developed, whose API is shown in

Listing 27. Before usage, the module is initialized with the desired flash parameters

to be emulated (L1–8), namely the page size, the block size and the total storage

size. Upon initialization, the module creates a file which serves as storage location

for the emulated flash medium. One can then read, write and erase data by page, as

is typical for flash memory (see Section 2.5). The module only allows writing pages

which have been previously erased and returns an error if a page inside a block

is written non-sequentially, as exhibited by NAND flash. The ”flash_sim" module is

not intended to perfectly replicate the behavior of flash memory. Instead, it aims to

provide a best-effort mechanism to check if the typical properties of flash memory

are being respected when executing tests or example applications in RIOT native

mode.

85

7 Implementation

Listing 27: API of the "flash_sim" module used to emulate flash storage character-
istics in RIOT native mode

1 typedef struct flash_sim {
2 uint32_t page_size; //!< Page size to be emulated
3 uint32_t block_size; //!< Block size
4 uint64_t storage_size; //!< Total amount of storage to be made available
5

6 uint32_t pages; //!< Number of pages
7 FILE *_fp; //!< File descriptor for the file simulating the flash device
8 } flash_sim;
9

10 int flash_sim_init(flash_sim *fs);
11 int flash_sim_read(const flash_sim *fs, void *buffer, uint32_t page);
12 int flash_sim_write(const flash_sim *fs, const void *buffer, uint32_t page);
13

14 int flash_sim_read_partial(const flash_sim *fs, void *buffer,
15 uint32_t page, uint32_t offset, uint32_t length);
16

17 int flash_sim_write_partial(const flash_sim *fs, const void *buffer,
18 uint32_t page, uint32_t offset, uint32_t length);
19

20 int flash_sim_format(flash_sim *fs);
21 int flash_sim_erase(const flash_sim *fs, uint32_t block);

7.2.2 Flash Translation Layer configuration

The fact that RIOT discourages dynamic memory allocation at runtime has led to

a relatively complex setup procedure for the FTL, since the device and partition

configuration structures as well as buffers must be manually created (as shown in

Listing 9). This has proven to be a task prone to errors. To improve the usability of

the system, a script has been developed which – given the parameters of the target

flash medium – generates a basic RIOT application skeleton with the appropriate

configuration.

While this makes set up of the FTL easier for a concrete flash device, it still de-

mands fundamental knowledge of the properties of the targeted flash memory. For-

tunately, the FTL configuration can be avoided completely – from the application

developers perspective – if the flash device to be used is a fixed part of the targeted

hardware platform. In such a case, the main FTL configuration (compare Listing 9)

is stored with the code to support the specific targeted hardware, such as drivers,

interrupt configuration, etc. In that case, the application developer needs to simply

86

7.2 Challenges

Listing 28: Example usage of the FTL configuration script. It configures three par-
titions on the flash device: index, OTA and OSL. The script’s output is a
C file containing the configuration seen in Listing 9 as well as a function
initializing the FTL.

1 $./ftl_config.py
2 usage: ftl_config.py [-h] --page-size PAGE_SIZE --pages-per-block
3 PAGES_PER_BLOCK --total-blocks TOTAL_BLOCKS --ecc-size
4 ECC_SIZE --number-of-subpages NUMBER_OF_SUBPAGES
5 [--partition-name PARTITION_NAME]
6 [--partition-size PARTITION_SIZE]
7 ftl_config.py: error: the following arguments are required: --page-size, --pages-per-block,
8 --total-blocks, --ecc-size, --number-of-subpages
9

10 $./ftl_config.py --page-size 1024 --pages-per-block 2048 --total-blocks 512 \
11 --ecc-size 12 --number-of-subpages 4 \
12 --partition-name index --partition-size 4 \
13 --partition-name ota --partition-size 4 \
14 --partition-name osl --partition-size "remaining"

include the provided configuration header and can then proceed to configure the

FTL partitions, as shown in Listing 29.

Listing 29: Simplification of FTL configuration process for hardware platforms
which can be pre-configured

1 #import "storage/ftl.h"
2

3 // The platform-specific FTL configuration. Exports the "msba2_ftl_device"
4 // variable which contains the FTL config, as well as a standard partition
5 // layout ("msba2_ftl_partitions").
6 #import "msba2/ftl-config.h"
7

8 int main(void) {
9 device.partitions = msba2_ftl_partitions;

10 int ret = ftl_init(&msba2_ftl_device);
11 assert(ret == 0);
12 }

87

8 Evaluation

This chapter presents an evaluation of the design and the implementation of the

storage system based on the requirements formulated in Chapter 3. First, a perfor-

mance evaluation in terms of resource usage and throughput of both FTL and OSL

is carried out in Section 8.1, followed by an evaluation of the presented design.

Finally, the results are discussed in Section 8.3.

8.1 Performance

Unfortunately, no common standards for testing storage system performance cur-

rently exists. In a publication on the Linux B-Tree FS, the authors state that “The

only realistic way to check which file system is the best match for a particular use

case, is to try several file systems, and see which one works best” [57]. A plethora

of benchmarking approaches exist for different types of systems such as desktop

FS, Network File Systems (NFSs) and databases which are all not easily applicable

to embedded systems [61].

A detailed comparative study of different benchmarks, applications and file sys-

tems was not possible in the context of this thesis. As a result, the non-functional

performance requirements established in Section 4.3 were examined: ROM usage,

RAM usage and write throughput.

8.1.1 Platform

The performance evaluation of the developed storage system was performed on

MSBA2 hardware platform developed by the FU Berlin (shown in Figure 8.1). The

MSBA2 features a LPC2387 ARM7 processor with 98 KB of RAM, 512 KB of ROM

and a microSD slot. As SD card, an unbranded SD-C02G (2 GB) and a Transcend

89

8 Evaluation

TS1GUSD (1 GB) were used. If not otherwise specified, the measurements were

performed on the 2 GB card.

Figure 8.1: Top view of the MSBA2 platform with a 2 GB microSD card

8.1.2 Reproducibility

The reproducibility of the performance evaluation presented in this chapter is se-

verely limited by a number of factors. To achieve high reproducibility, the differ-

ent systems would have to be tested on the same physical platform, running code

generated by the same compiler and being benchmarked on the same workload.

Unfortunately, none of these goals could be met. This is primarily because many of

the previous developments in the area of WSN storage are comparatively old, and

unfortunately unmaintained. To the author’s best knowledge, this applies to Match-

box, ELF, TFFS and Capsule – all implemented for TinyOS 1.x – which has not been

under development since 2005. But even if all these systems were under active

development, a shared hardware platform which runs TinyOS, Contiki and RIOT

would still be needed, but does not currently exist. In addition, the performance

evaluation was carried out using a microSD card due to the lack of a platform with

RIOT support that featured native flash memory. This is not optimal since, as ex-

plained in Section 2.6, SD cards feature a dedicated microcontroller that performs

many of the tasks carried out by the FTL (e.g., wear levelling). As a result, any

measurements of throughput, latency, and energy consumption made using an SD

card are worse compared to using raw flash memory when a separate FTL is al-

ready implemented. In summary, the comparisons to other storage systems in this

chapter must be understood under the premise that they are mere comparisons of

benchmarks done on different systems, partially in different decades, and that the

90

8.1 Performance

performance of the system is expected to be higher on raw flash memory than it is

using an SD card.

8.1.3 ROM usage

Read-Only Memory (ROM) size reflects the quantity of code which was written for

the storage system, each function occupying a fixed number of bytes. The maxi-

mum amount of ROM used by the FTL (2.41 KiB) and the OSL (2.55 KiB) is shown

in Figure 8.2, grouped into functionality for reading, writing, and other purposes,

such as initialization and utility functions. In comparison, an average Class 1 de-

vice comes with about 100 KiB of ROM. The maximum is examined here because

the actual ROM usage depends on which functionality is used by the application.

Unused functionality will be stripped by the linker and thus does not end up in

the application binary. ROM measurements were performed by inspecting an ap-

plication’s ELF file using the nm utility, and summing up the sizes of the relevant

symbols.

Figure 8.2 shows that, in the current state of the implementation, the FTL and the

OSL occupy a roughly equal amount of ROM. This is deceptive, however, since the

FTLs functionality is fully implemented, whereas that of the OSL is not. The two

object types which have already been implemented (stream and queue) account for

19% of the OSLs ROM usage, or 488 Bytes. Given that four storage objects remain

to be implemented, some more complex than the existing ones, a final maximum

ROM usage of roughly 5–8 KiB can be projected. Further comparing both systems

shows that the FTL requires about the same portion for reading and writing data,

whereas the OSL uses more than double the code size for reading. The reason

for this disparity is the complexity involved when stepping through log-structured

objects – including record caching (see Section 6.4) – which is entirely implemented

in the OSL.

A comparison of the ROM of different WSN storage systems is shown in Figure 8.3.

Given that the OSL is not fully implemented yet, it is not suprising that it currently

uses less ROM than all other approaches. However, even the projected ROM is

still 6 KiB below that of Capsule. All approaches except Coffee and the developed

storage system exhibit a ROM usage of 16 KiB or more.

91

8 Evaluation

FTL OSL
0

500

1000

1500

2000

2500

3000

R
O

M
 u

sa
g
e
 i
n
 B

y
te

s

Other

Reading

Writing

Figure 8.2: Maximum ROM usage for the implemented storage systems. Grouped
by subsystem and categorized as functionality relating to reading and
writing data as well as other functionality, such as initialization and
utility functions

FT
L

FT
L
+
 O

SL

Cof
fe

e

FT
L
+
 O

SL

(p
ro

je
ct

ed
)

Cap
su

le

M
at

ch
bo

x

Ant
el
op

e
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

R
O

M
 u

sa
g
e
 i
n
 B

y
te

s

.

Figure 8.3: ROM usage of different storage systems for embedded WSN devices.
The system developed for this thesis is highlighted in green, including
the projected ROM usage of the final implementation.
Sources: Coffee [62], Capsule and Matchbox [46], Antelope [63]

92

8.1 Performance

8.1.4 RAM usage

RAM is the scarcer resource, of which Class 1 embedded devices commonly feature

about 10 KiB. In contrast to ROM, whose maximum can be easily determined, RAM

usage of the storage system depends on various hardware and application-specific

parameters:

• Properties of the flash storage device (FTL)

– Page size and subpage size

– ECC requirements

• Number of configured partitions (FTL)

• Number of maximum open objects (OSL)

• Size of the record cache (OSL)

For the FTL, the necessary amount of static RAM usage can be calculcated as

shown in Equation 8.1. No dynamic memory allocation was used. The sizes of the

in-RAM elements which do not depened on the flash memory parameters are shown

in Figure 8.4. The usage values were obtained by using C’s sizeof operator on the

data structures of the storage system.

An example setup employing two partitions, a subpage size of 256 Bytes, and a 6

Byte ECC would result in a RAM usage of 374 Bytes. This example is realistic when

using, e.g., an SLC NAND flash chip with a page size of 1024.

FTL RAM usage (Bytes) =

FTLConfigurationBaseSize + SubpageSize + ECCSize+

ConfiguredPartitions ∗ FTLPartitionStructSize

(8.1)

While the OSL is mostly shielded from the properties of the underlying flash mem-

ory by the FTL, the RAM usage of OSL is still dependant on the subpage size be-

cause of the needed record buffer. Based on the above scenario with a 256 Byte

subpage size, as well as the standard maximum open objects of four and record

cache size of six, the RAM usage of the OSL is 492 Bytes (based on Equation 8.2).

93

8 Evaluation

Description Size (bytes)

FTL Configuration Base Size 56

FTL Partition Struct Size 28

OSL Configuration Base Size 36

OSL Open Object Size 32

OSL Cache Record Size 12

Figure 8.4: Portions of in-RAM which are static, i.e., they do not depend on the
properties of the employed flash memory

This results in a total RAM usage of 866 Bytes for the example scenario, when both

FTL and OSL are employed. Note that, while ROM usage will significantly increase

as all OSL functionality is implemented, the same is not the case for RAM, since the

in-memory state of the current implementation is already capable of supporting all

designed objects.

OSL RAM usage (bytes) =

OSLConfigurationBaseSize + SubpageSize +

MaxOpenObjects ∗ OSLOpenObjectSize+

RecordCacheSize ∗ OSLCacheRecordSize

(8.2)

In Figure 8.5 the RAM usage of the FTL and OSL – in two different configurations –

is compared to the systems examined in Chapter 3. Since Matchbox, TFFS, Coffee

and Antelope were all built for and evaluated on NOR flash, the first configuration

(#1) uses a 64 Byte subpage size which is easily achieved on NOR flash. The second

configuration (#2) uses a 256 Byte subpage size, which is realistic when using the

larger SLC NAND flash.

As Figure 8.5 shows, the developed storage system is about 40% more RAM effi-

cient than Capsule while providing a comparable feature set. Antelope uses almost

four times the memory of the OSL #2, but also provides very different features,

which makes a direct comparison less significant. When compared to early sys-

tems, the developed storage system (#1) outperforms Matchbox by about 45% but

performs 37% worse than TFFS. In both cases, however, it provides a more sophis-

94

8.1 Performance

ticated feature set. Finally, Coffee appears to be the most memory efficient storage

system for the functionality it provides. FTL #1 is on par in terms of memory re-

quirements, provides a less sophisticated abstraction. Note that ELF and TFFS are

missing from this comparison because a general figure of their memory usage is

impossible to determine. This is because RAM usage in ELF depends on the amount

of files in use as well as their size, and RAM usage in TFFS depends on the size of

the addressed flash memory.

FT
L
#
1

Cof
fe

e

FT
L
#
2

FT
L
+
 O

SL
 #

1

FT
L
+
 O

SL
 #

2

M
at

ch
bo

x

Cap
su

le

Ant
el
op

e
0

500

1000

1500

2000

2500

3000

3500

R
A

M
 u

sa
g
e
 i
n
 B

y
te

s

Figure 8.5: RAM usage of different storage systems for embedded WSN devices.
The system developed for this thesis is highlighted in green. It is exam-
ined in two configurations, #1 using a 64 Byte page size and #2 using
a 256 Byte page size
Sources: Coffee [62], Capsule and Matchbox [46], Antelope [63]

In summary, given that the FTL can be used without the OSL, its small memory

footprint allows it to be employed even on the lower-end spectrum of Class 1 de-

vices. As far as the OSL is concerned, Coffee is the only system developed thus far

which outperforms it by a relevant margin. When considering that Coffee is limited

in its applicability, both in terms of flash type and size, the additional memory the

OSL requires appears to be an acceptable trade-off.

8.1.5 FTL throughput

Figure 8.6 shows the measured throughput achieved by the FTL implementation on

two different microSD cards. The “bare” measurement shows maximum through-

put which is achievable using the existing driver, which was not developed as part

95

8 Evaluation

of this thesis. For every benchmark, the storage medium was first formatted and

then the measurements were performed as shown in Listing 30. Every benchmark

was repeated ten times (outer loop), and every operation was repeated 10,000

times (inner loop). For every repetition, the time taken was measured. The amount

of written or read data was derived from the number of operations and the sub-

page size, that is, 10,000 subpage writes with a subpage size of 512 byte equal five

MiB of data written. This amount was then divided by the time taken to obtain the

throughput figure. For all measurements, the standard deviation was always below

0.1% and is thus not shown in the graphs.

Listing 30: Benchmark code used to evaluate the throughput of the FTL and OSL

1 #define REPETITIONS 10
2 #define ITERATIONS 10000
3 timex_t then; // Timex is RIOT’s timer subsystem
4 timex_t now;
5 timex_t elapsed;
6 for(int i=0; i<REPETITIONS; i++) {
7 xtimer_now_timex(&then);
8 for(int p=0; p<ITERATIONS; p++) {
9 ret = [operation to be tested];

10 myassert(ret == 0);
11 page++;
12 }
13 xtimer_now_timex(&now);
14 elapsed = timex_sub(now, then);
15 timex_to_str(elapsed, sprint_buffer);
16 printf("%s, \n", sprint_buffer);
17 }

When observing the measured write speeds, it seems like the different modes of op-

eration (e.g., ECC calculation) do not impact throughput at all. This is not possible,

however, since header management and ECC calculation do take time to complete.

As a result, the assumption is that write throughput on the available SD cards is

too slow, such that additional FTL operations simply fill up cycles the CPU would

otherwise idle waiting for the previous write operation to complete.

The same does not apply to read throughput. Since the bare read performance is

much better compared to the write performance, the overhead of evaluating stor-

age headers and ECC calculation can be clearly seen for both SD cards. When

examining the higher-performing SD card, “w/o ECC” mode incurs a performance

penalty of about 30% and adding ECC calculation results in a total of 57% perfor-

96

8.1 Performance

mance reduction in comparison to raw mode. Furthermore, when comparing the

read throughput of both SD cards, it is notable that, why bare and raw speeds differ

between both cards, “w/o ECC” and ECC mode achieve very similar results. This

indicates that about 1 MiB/s for “w/o ECC” mode and about 650 KiB/s is the upper

throughput bound on the evaluated platform.

Bare Raw w/o ECC w/ ECC

Unbranded SD-C02G microSD

0

200

400

600

800

1000

1200

1400

1600

T
h
ro

u
g
h
p
u
t

(K
iB

/s
)

Bare Raw w/o ECC w/ ECC

Transcend TS1GUSD

Write

Read

.

Figure 8.6: Throughput measurements of the FTL, using a subpage size of 512
Bytes. The "Bare" columns indicate the maximum achievable through-
put given the current driver. The other columns correspond to the
modes of reading and writing data provided by the FTL (see Chapter 5)

8.1.6 OSL throughput

The read speed measurements for front-to-back iteration using the OSLs are shown

in Figure 8.7. They compare throughput of streams with different numbers of

elements, both with cache disabled and enabled. The throughput measurement

is made based on the element number, because when iterating through a stream

from the front to the back it exhibits O(n2) read complexity due to the backward

pointing log structure (compare Section 6.4). The benchmark was performed the

same way as for the FTL.

97

8 Evaluation

In the results, it is clearly visible that the OSL does not provide acceptable read

performance when caching is disabled, where it already falls below the 2 KiB/s

mark with a stream of just 500 elements. While enabling caching (as described

in Section 6.4) alleviates the problem, a quadratic decrease in front-to-back read

throughput is still discernible, with a 4000 element stream reaching just above

20 KiB/s.

Write throughput does not suffer from the same problem, since appending an ele-

ment to the log is a O(1) operation. As a result, the mean write speed of the OSL

is about 220 KiB/s regardless of the number of elements in the object. This is circa

22% slower than the ECC write speed achieved by the FTL.

100 500 1000 2000 4000

Number of elements in the stream

0

20

40

60

80

100

120

140

T
h
ro

u
g
h
p
u
t

(K
iB

/s
)

Cache disabled

Cache enabled

Figure 8.7: Measured OSL read throughput using a subpage size of 512 Bytes and
a record cache size of six elements

8.2 Design

In contrast to the performance, the design and its characteristics are less tangible

and therefore harder to evaluate. As such, this section attempts to contrast the

98

8.2 Design

capabilities of the designed system with the requirements gathered in Section 4.2

and Section 4.3.

When considering the functional requirements that were established at the begin-

ning of this thesis (see Section 4.2), the designed systems meets all of these except

for the support of secure storage, which was omitted due to time constraints. The

design and implementation provide a storage system built to take into account the

properties of all common kinds of flash storage. Partitions can accommodate OTA

update binaries, and local processing of arbitrarily large data is provided by the

iteration API of the OSL. And while the OSL does not currently contain concrete

indexing algorithms, it provides an API for registering custom implementations.

In terms of the non-functional requirements (see Section 4.3), the performance has

already been extensively evaluated, and the remaining requirement categories are

examined in the following sections.

8.2.1 Extensibility and Reusability

The FTL and OSL were designed to be applicable in the widest possible range of

scenarios in the context of IoT and WSN applications. To what degree this was

achieved is difficult to evaluate without an extensive study of relevant applications.

It is possible, however, to examine the features of the designed storage system

which aim to further its applicability.

In contrast to most previous approaches to storage on embedded systems (compare

Figure 3.7), the FTL and OSL support both NOR and NAND flash memory, which

is both cheaper and more energy efficient than NOR flash (compare Section 2.5).

Furthermore, the system supports platforms with multiple flash media, including

NOR and NAND flash at the same time. This makes the designed system applicable

to a wider range of platforms than previous systems.

For scenarios where RAM is particularly scarce, the FTL can be used on its own

to provide resource efficient storage support, although limited in its functionality.

This is not only useful for OTA updates, where a dedicated partition can be used to

store updated firmware. It can also be used used to provide a simple and resource

efficient means of storage, e.g., for configuration data (as shown in Listing 31).

99

8 Evaluation

Note that it is also possible to use the FTL in the way shown in the listing while

also using the OSL to store sensor data at the same time.

Listing 31: Example of using the FTL without the OSL to store configuration data

1 // Setup
2 struct config {
3 [...]
4 };
5 struct config example;
6

7 // Storing configuration
8 int ret = ftl_write_ecc(data_partition, &example, sizeof(struct config));
9

10 // Retrieving latest written configuration
11 int ret = ftl_read(data_partition, &example, NULL, data_partition.next_page - 1);

Another option to reduce RAM usage is to sacrifice part of the available flash stor-

age to decrease buffer sizes, as explained in Section 5.1. The OSL was built to

be easily extensible using different ECC algorithms and index datastructures, such

that requirements that are not covered by its base featureset may be added without

the need to modify its core functionality (see Section 6.12).

To further improve the reusability of the system, the Cache Table object designed

for ICN data should be made more generally applicable. Currently it is based on the

assumption that the data stored in it is cache data, and as such does not preserve

them when a block becomes full and must be deleted.

Finally, the system’s SD card support should be improved. Their internal controller

already handles many of the special properties of flash storage, such as its ECC

requirements or bad block detection. In order to prevent resources from being

wasted, the FTL should provide an SD card mode where such functionality is dis-

abled.

8.2.2 Robustness and Reliability

In terms of robustness, the primary drawback of the designed system is its cur-

rent inability to automatically create checkpoints of the metadata stored in RAM.

To resolve this, one or more strategies for automatic metadata storage should be

100

8.2 Design

devised. The default strategy should be a cautious one, possibly sacrificing stor-

age space in order to persist checkpoints more frequently. To prevent checkpoints

from being written even when no changes have ocurred, the FTL and OSL should

separately track whether their metadata has to be persisted.

Beyond the aforementioned issue, the prototype implementation functions reliably

under load tests such as the ones in the performance evaluation, the written test

suites and demo applications. Another aspect relevant to robustness is how the

system reacts to a crash or power loss when an operation is in progress.

• When a write operation of user data gets aborted, the target subpage will be

in an inconsistent state. If the subpage was written with ECC enabled – which

is the default when using the OSL – then the inconsistency will be detected

by the read operation and an error is returned. If an ECC is not used, then

garbage may be returned if the subpage header was written correctly.

• If no checkpoint has been written since the last user data, the RAM metadata

is going to be in a more current state than the metadata on flash. If a crash

occurs in this situations, the data written since the last checkpoint is lost, but

could be restored by analysing every subpage written since the last check-

point. The same can be done if a writing metadata fails, which should always

be detectable since ECC is enabled by default.

8.2.3 Usability

“Usability is a multi-faceted set of trade-offs as opposed to a singular, objective and

attainable end goal” [22]. The biggest such trade-off in the design of the storage

system’s API is the way the FTL is initially configured. For this task, a rather com-

plex configuration structure must be created, currently containing twelve fields.

The partition configuration is created in a similar fashion. The developer must

also make sure that, e.g., the provided subpage buffer has the same size as the

configured subpage size.

The need for this complex initialization procedure is caused by the best practice

on embedded systems to not allocate memory dynamically at runtime, which pre-

vents the system from automatically creating buffers of necessary size. While this

approach makes reasoning about memory usage of the resulting application much

101

8 Evaluation

easier and prevents memory leaks in the storage system, it also complicates ini-

tial setup significantly. The configuration tool presented in subsection 7.2.2 tries

to alleviate this problem. Given that this configuration is hardware specific, it is

fortunately possible to omit this complexity for common hardware supported by

the RIOT OS (see subsection 7.2.2). For SD cards, it is additionally possible to

determine their size due to their dedicated MCU. In that case, the FTL could auto-

matically adapt to the size of the SD card employed.

When assuming that the FTL configuration is provided as part of the RIOT hard-

ware configuration, a simple application storing data retrieved from sensor can be

implemented using the OSL as seen in Listing 32, providing high-level data storage

support with low coginitive overhead required.

Listing 32: Example of a small application using the OSL to store sensor data in a
stream object.

1 #include "storage/ftl.h"
2 #include "storage/osl.h"
3

4 // Hardware specific FTL configuration structure
5 // Provides the "device" variable as well as data_partition.
6 #include "ftl-configuration.h"
7

8 osl_s osl;
9

10 int main(void)
11 {
12 // This depends on the hardware and is not
13 // provided by the storage system
14 initialize_storage_driver();
15

16 ftl_init(&device);
17 osl_init(&osl, &device, &data_partition);
18

19 osl_od stream;
20 osl_stream(&osl, &stream, "sensor_data", sizeof(uint32_t));
21

22 while(1) {
23 uint32_t datum = get_sensor_value();
24 osl_stream_append(&stream, &datum);
25 // Wait until next sensor datum should be retrieved.
26 }
27 }

102

8.3 Discussion

The API is designed to be uniform in terms of naming, and provide only a single

option for achieving a certain task. Its consistent use of returned error codes im-

proves the ability to pinpoint problems quickly. One big issue regarding naming is

the chosen designator “index partition” for the partition which stores the system’s

metadata, while its name suggests that it stores data somehow related to the in-

dex object. Since the confusion this may cause is foreseeable, the naming of this

partition will be changed to “metadata partition” instead.

8.3 Discussion

Based on the proof of concept implementation, the evaluation suggests that the

designed storage system meets the requirements formulated in Chapter 4. In terms

of resource usage, it currently outperforms all previous storage systems except for

Coffee. In terms of throughput, the front-to-back read performance is exhibiting

O(n2) complexity, where n are the number of records, and should thus be improved.

Back-to-front iteration performance isO(n) instead, but a throughput measurement

could not be performed due to time constraints.

The robustness and usability of the system must be further evaluated. For the

former, existing methods for testing the recoverability of storage systems should

be researched. The latter requires peer review as well as audits of applications

which use the storage systems, such that it can be improved on their basis.

103

9 Conclusion

The field of storage systems for constrained WSN devices has not seen many new

developments in recent years. In addition, many of the early storage systems were

built for TinyOS 1.x, which is no longer under development. Given the steady

increase in popularity of the IoT and the resulting new challenges and requirements

– such as in Information Centric Networking – a re-evaluation of previous concepts

and their adaption to the current environment was necessary. This thesis provides

such an adaption.

9.1 Key Achievements

Literature Review A thorough review of existing embedded storage systems pro-

vided the foundation for the requirements analysis and the resulting design

decisions. In summary, most previous systems were designed for WSN as

well as outdated platforms and operating systems, but still provided valuable

insights into the main hurdles identified by previous researchers.

Requirements Analysis An examination of common IoT and WSN use cases pro-

vided the basis for a list of requirements for the storage system. The identified

key requirement was the native storage of common data structures such as

streams of records and ICN cache data, as opposed to unstructured storage of

byte streams as provided by traditional file systems. Additionally, the support

for all common types of flash was identified as a strong requirement.

Design Based on the foregoing literature review and requirements analysis, a stor-

age system composed of a Flash Translation Layer (FTL) and an Object Stor-

age Layer (OSL) was designed, where the former acts as a lower-level man-

aged interface to flash memory and the latter provides a storage interface for

structured data that fully abstracts from the properties of flash memory. The

105

9 Conclusion

FTL was explicitly designed to be usable on its own, and thus on systems that

are especially resource constrained.

Implementation A proof of concept implementation for the RIOT operating sys-

tem was created to evaluate the feasiblity of the designed system.

Evaluation The implementation was evaluated based on the requirements analy-

sis. The results suggest that the implemented system is more resource effi-

cient than systems with comparable functionality. However, sequential read

throughput – when iterating from start to end – degrades quadratically as the

number of records increases.

9.2 Future work

While this thesis suggests that providing a reusable, yet resource efficient storage

system for the IoT is feasible, it still leaves plenty of room for future work.

The presented evaluation had several shortcomings. Comparability was hindered

by the lack of a common platform able to host the different storage systems being

compared. One of the main causes for this was that previous storage systems are

mostly outdated. Future work should thus include porting the designed storage

system to platforms that host comparable systems like Coffee, ELF or Capsule and

employ native flash memory as opposed to SD cards. In addition, further evaluation

of the performance characteristics of the system must be performed, such as back-

to-front iteration of objects, which was omitted due to time constraints. The same

applies to measurements of the systems energy consumption. Also, existing storage

system benchmarks should be examined to determine whether they can be applied

to the system at hand.

Furthermore, several of the designed OSL features remain to be implemented.

These are the Stack, Index, and ICN Cache data structures as well as the garbage

collection mechanics. Since additional performance optimizations were designed,

but have not yet been implemented, future work should include their implementa-

tion as well as performance evaluation. More specifically, these optimizations are

object defragmentation and using bloom filters to track existing objects.

106

9.2 Future work

The integration of the storage system into the RIOT kernel, along with the associ-

ated extensive peer review, will likely result in both usability and technical improve-

ments to the system. In the long run, the integration will also provide insights into

how people are using the system and which problems arise in its usage.

The availability of mass storage on IoT and WSN platforms is still very limited.

Research in this area has stagnated at the point where feasible flash memories

for embedded systems had sizes ranging from hundreds of Kilobytes to several

Megabytes. This threshold has since increased by three to four orders of magni-

tude. By advancing research in this area, the author hopes that interest in flash

storage for IoT devices can be raised.

107

Glossary

API Application Programming Interface. 6, 24, 27–30, 39, 42, 52–57, 59, 68, 69,

73–81, 83, 84, 97, 99, 101

AQL Antelope Query Language. 15, 28, 31

CoAP Constrained Application Protocol. 6

CRC Cyclic Redundancy Check. 17

DBMS Database Management System. 15, 25, 26, 40, 41

DTN Delay Tolerant Netork. 35

ECC Error-Correcting Code. 10, 11, 39, 46, 52, 54–56, 82, 91, 94, 96, 98, 99

EEPROM Electrically Erasable Programmable Read-Only Memory. 8, 18, 22

ELF Efficient Log-Structured Flash File System. 14

FFT Fast Fourier Transform. 25

FS File System. 11, 14, 17, 24, 26–28, 87

FTL Flash Translation Layer. 17, 41–43, 45–48, 50–57, 59, 60, 67, 69, 72, 73, 75,

79–85, 87–89, 91–100, 103, 104

HDD Hard Disk Drive. 1, 8, 11, 16

ICN Information Centric Networking. 2, 33, 37, 65–67, 98, 103

IETF Internet Engineering Task Force. 6

IOPS Input/Output Operations per Second. 1

109

Glossary

IoT Internet of Things. 1–3, 5–7, 12, 13, 17, 30, 33, 36, 39, 41, 56, 59, 65, 68, 70,

73, 74, 79, 97, 103–105

ITU International Telecommunication Union. 13

LLN Low-power Lossy Network. 6

MCU Microcontroller Unit. 12, 100

MLC Multi-level Cell. 9, 10, 23, 42

MMU Memory Management Unit. 34

NFS Network File System. 87

OD Object Descriptor. 74

OS Operating System. 2, 6, 7, 16, 24, 25, 34, 38, 39, 66, 72, 79, 100

OSL Object Storage Layer. 41, 54, 56, 59–61, 64–69, 71–79, 81, 85, 87, 89, 91–100,

103, 104

OTA Over-the-air. 14, 36, 37, 43, 45, 46, 85, 97

RAM Random-Access Memory. 50, 59, 60, 68, 69, 71, 91–93, 97–99

ROM Read-Only Memory. 89–92

SLC Single-Level Cell. 9, 10, 23

SQL Structured Query Language. 25, 28, 29, 40

SSD Solid-State Drive. 11, 17

TDD Test-driven Development. 80, 81

TFFS Transactional Flash Filesystem. 14, 17, 18, 27

WSN Wireless Sensor Network. 1–3, 5–7, 13–17, 24, 26, 30, 33–36, 39, 59, 74,

88–90, 93, 97, 103, 105

110

List of Figures

2.1 Classes of constrained devices (KiB = 1024 bytes), as seen in RFC7228

[13]. 6

2.2 Components of a flash die. Note that a block commonly has many more

than the 10 pages which were used for illustration (typically 32-256). . 9

2.3 Comparison between different types of flash memory. 10

2.4 Overview of energy consumption of current IEEE 802.15.4 transceivers

for the 2.4 GHz band compared to an 8 GB flash chip. Energy per byte

calculated using maximum 802.15.4 compliant data rate of 250 kbps.

RX (receive) and TX (transmit) current are based on manufacturer

datasheets. The MCU row indicates whether or not the transceiver

comes integrated into a microcontroller unit. 12

3.1 Page organization on flash memory for Matchbox. 18

3.2 Page organization on flash memory for ELF [21] 19

3.3 Physical layout of TFFS [28] . 20

3.4 Page organization on flash memory for Coffee 21

3.5 Page-based backward-pointing log structure as employed by Micro-

Hash [70] . 22

3.6 Page organization on flash memory for Capsule 23

3.7 Properties of the physical storage structure of the examined storage

systems. Entries in parentheses indicate partial support. 23

3.8 Taxonomy of applications and storage objects for Capsule [45]. 25

3.9 API functionality provided by previous flash file systems for embedded

devices. 29

5.1 Overview of the storage system components as well as the types of

applications they are intended for . 42

111

List of Figures

5.2 Subdivision of pages into subpages with the aim of reducing buffer

size. Option b) shows the special case where the amount of subpages

is greater than the maximum number of write operations per page,

resulting in unreachable storage space. 44

5.3 Partition boundaries inside an erase block are problematic, because it

makes the erasure of the highlighted block dependant on data in both

partitions. 45

5.4 Overview of the different states encountered when managing free space

of a partition. 49

6.1 Physical OSL storage structure example using two objects spread across

two subpages. The subpage header (yellow) is added by the FTL. . . . 60

6.2 Visualization of the way in which records are addressed by the OSL. . 61

6.3 Comparison between naive and combined record storage with element

sizes of one, four, and eight bytes, assuming a page size of 256 bytes. . 62

6.4 Example of accessing a record of an object – which has a total of 100

records – with and without cache entry 63

6.5 Example of the OSLs storage object defragmentation. The two sub-

pages in b) are not the same subpages as in a) 65

6.6 Taxonomy of the OSLs storage objects and their applications. 65

6.7 Overview of the OSLs storage objects as well as the operations they

support. 66

6.8 Operations on the OSL objects Stream, Queue and Stack visualized . . 66

6.9 Distribution of named data based on name hash in a OSL Cache Table

with three blocks . 68

6.10False positive probability for a Bloom filter of different sizes (in bits) . 71

7.1 Development process taking advantage of the shortened feedback loop

by using native mode, depicted as a flowchart. 85

8.1 Top view of the MSBA2 platform with a 2 GB microSD card 90

8.2 Maximum ROM usage for the implemented storage systems. Grouped

by subsystem and categorized as functionality relating to reading and

writing data as well as other functionality, such as initialization and

utility functions . 92

112

List of Figures

8.3 ROM usage of different storage systems for embedded WSN devices.

The system developed for this thesis is highlighted in green, including

the projected ROM usage of the final implementation. Sources: Coffee

[62], Capsule and Matchbox [46], Antelope [63] 92

8.4 Portions of in-RAM which are static, i.e., they do not depend on the

properties of the employed flash memory 94

8.5 RAM usage of different storage systems for embedded WSN devices.

The system developed for this thesis is highlighted in green. It is ex-

amined in two configurations, #1 using a 64 Byte page size and #2

using a 256 Byte page size Sources: Coffee [62], Capsule and Matchbox [46],

Antelope [63] . 95

8.6 Throughput measurements of the FTL, using a subpage size of 512

Bytes. The "Bare" columns indicate the maximum achievable through-

put given the current driver. The other columns correspond to the

modes of reading and writing data provided by the FTL (see chapter 5) 97

8.7 Measured OSL read throughput using a subpage size of 512 Bytes and

a record cache size of six elements . 98

113

List of Listings

1 Example of event-based API usage in TinyOS 27

2 Example of reading and writing data using the Coffee FS 28

3 Example of TFFS’ API supporting transactions of multiple FS operations. 28

4 Capsule API example using a File object and a Stack object 30

5 Antelope’s AQL usage example for creating a relation, inserting data,

and performing a query . 31

6 Simplified example of processing a number of items which are stored

on an external storage medium and do not fit into memory in their en-

tirety. The developer would also have to implement all used functions

regarding counting, loading/unloading and accessing items. 36

7 The two byte subpage header which is prepended to each page written

by the FTL. 46

8 Adaption of the binary search algorithm used to find the newest index

partition entry using a variant of binary search. 51

10 Example usage of the API for writing data using the FTL 53

11 Example usage of the API for reading data using the FTL 54

12 Example usage of the API for erasing data using the FTL 54

13 Example usage of the API for storing metadata using the FTL 55

14 Example usage of the API for changing the ECC algorithm of the FTL . 56

9 FTL API example configuration of an 8 MiB flash device with a page

size of 512 Bytes and k = 4, such that 512
4 = 128 Bytes = subpage

size. The configuration has an index partition as well as a "sensordata"

partition. The interface to the flash driver (flash_driver_* functions)

is omitted in this example. 57

15 OSL Record header in C packed structure notation. 61

16 OSL structure for storing object information 69

115

List of Listings

17 Algorithm employed by the OSL to find the metadata of an object re-

quested to be openend (in Python-based sample code) 72

18 API for initialization and checkpointing of the OSL 74

19 API of the Stream object provided by the OSL 75

20 API of the Queue and Stack objects provided by the OSL 76

21 API of the object iteration functionality provided by the OSL 77

22 API of the Cache Table object provided by the OSL 78

23 API of the Index object provided by the OSL 78

24 API for registering new index types using the OSL 79

25 Directory and file structure that makes up the RIOT FTL module. . . . 82

26 An embUnit-based test case checking the functionality of writing and

reading data using the FTL . 84

27 API of the "flash_sim" module used to emulate flash storage character-

istics in RIOT native mode . 86

28 Example usage of the FTL configuration script. It configures three

partitions on the flash device: index, OTA and OSL. The script’s output

is a C file containing the configuration seen in Listing 9 as well as a

function initializing the FTL. 87

29 Simplification of FTL configuration process for hardware platforms

which can be pre-configured . 87

30 Benchmark code used to evaluate the throughput of the FTL and OSL . 96

31 Example of using the FTL without the OSL to store configuration data 100

32 Example of a small application using the OSL to store sensor data in a

stream object. 102

116

Bibliography

[1] “IEEE Standard for Local and metropolitan area networks–Part 15.4:

Low-Rate Wireless Personal Area Networks (LR-WPANs),” IEEE Std

802.15.4-2011 (Revision of IEEE Std 802.15.4-2006), pp. 1–314, sep 2011.

doi: 10.1109/IEEESTD.2011.6012487

[2] M. Abraham and Micron Technology Inc., “NAND Flash Architecture and

Specification Trends,” in Proceedings of the 2012 Flash Memory Summit,

Santa Clara, CA, 2012. URL: http://bit.ly/1T6dibz

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on

sensor networks,” IEEE Communications Magazine, vol. 40, no. 8, pp.

102–105, 2002. doi: 10.1109/MCOM.2002.1024422

[4] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,

“Internet of Things: A Survey on Enabling Technologies, Protocols, and

Applications,” IEEE Communications Surveys & Tutorials, vol. 17, no. 4, pp.

2347–2376, jan 2015. doi: 10.1109/COMST.2015.2444095. URL:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7123563

[5] Aleph One Ltd., “Yaffs2 specification and development nodes,” 2005. URL:

http://www.yaffs.net/yaffs-2-specification. Accessed on: 2016-03-01

[6] Atmel Inc., “Specification of the AT45DB041D serial-interface Flash

memory,” 2010.

[7] E. Baccelli, O. Hahm, M. Günes, M. Wählisch, and T. C. Schmidt, “RIOT OS:

Towards an OS for the Internet of Things,” in Proc. of the 32nd IEEE

INFOCOM. Poster. Piscataway, NJ, USA: IEEE Press, 2013.

[8] E. Baccelli, C. Mehlis, O. Hahm, T. C. Schmidt, and M. Wählisch, “Information

Centric Networking in the IoT: Experiments with NDN in the Wild,” in Proc.

117

https://dx.doi.org/10.1109/IEEESTD.2011.6012487
http://bit.ly/1T6dibz
https://dx.doi.org/10.1109/MCOM.2002.1024422
https://dx.doi.org/10.1109/COMST.2015.2444095
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7123563
http://www.yaffs.net/yaffs-2-specification

BIBLIOGRAPHY

of 1st ACM Conf. on Information-Centric Networking (ICN-2014). New York:

ACM, 2014, pp. 77–86. doi: 10.1145/2660129.2660144

[9] I. Bagci, M. Pourmirza, S. Raza, U. Roedig, and T. Voigt, “Codo: confidential

data storage for wireless sensor networks,” in Proceedings of the 2012 IEEE

9th International Conference on Mobile Ad-Hoc and Sensor Systems (MASS

2012) - Supplement. Las Vegas, NV: IEEE, 2012, pp. 1–6. doi:

10.1109/MASS.2012.6708508

[10] A. Bakshi, V. K. Prasanna, J. Reich, and D. Larner, “The Abstract Task Graph:

A Methodology for Architecture-independent Programming of Networked

Sensor Systems,” in Proceedings of the 2005 Workshop on End-to-end,

Sense-and-respond Systems, Applications and Services, ser. EESR ’05.

Berkeley, CA, USA: USENIX Association, 2005, pp. 19–24.

[11] B. Bloom, “Space/Time Trade-Offs in Hash Coding with Allowable Errors,”

ACM Communications, vol. 13, no. 7, 1970. doi: 10.1145/1061453.1061454

[12] Bluetooth SIG Inc., “Bluetooth Core Specification 4.2,” Tech. Rep., 2015.

URL: https://www.bluetooth.com/specifications/adopted-specifications

[13] C. Bormann, M. Ersue, and A. Keranen, “Terminology for Constrained-Node

Networks,” RFC 7228 (Informational), may 2014. URL:

http://www.ietf.org/rfc/rfc7228.txt

[14] S. Brown and C. Sreenan, Software Updating in Wireless Sensor Networks: A

Survey and Lacunae, 2013, vol. 2, no. 4. doi: 10.3390/jsan2040717

[15] J. Case, R. Mundy, D. Partain, and B. Stewart, “Introduction and Applicability

Statements for Internet-Standard Management Framework,” RFC 3410

(Informational), dec 2002. URL: http://www.ietf.org/rfc/rfc3410.txt

[16] S. Cho, C. Park, Y. Won, S. Kang, J. Cha, S. Yoon, and J. Choi, “Design

Tradeoffs of SSDs: From Energy Consumption&Rsquo;s Perspective,” Trans.

Storage, vol. 11, no. 2, pp. 8:1—-8:24, mar 2015. doi: 10.1145/2644818

[17] E. F. Codd, “A relational model of data for large shared data banks,”

Commun. ACM, vol. 13, no. 6, 1970. doi: 10.1145/362384.362685

118

https://dx.doi.org/10.1145/2660129.2660144
https://dx.doi.org/10.1109/MASS.2012.6708508
https://dx.doi.org/10.1145/1061453.1061454
https://www.bluetooth.com/specifications/adopted-specifications
http://www.ietf.org/rfc/rfc7228.txt
https://dx.doi.org/10.3390/jsan2040717
http://www.ietf.org/rfc/rfc3410.txt
https://dx.doi.org/10.1145/2644818
https://dx.doi.org/10.1145/362384.362685

BIBLIOGRAPHY

[18] J. Cooke, “The Inconvenient Truths of NAND Flash Memory,” in Proceedings

from the 2007 Flash Memory Summit, no. August, Santa Clara, CA, 2007, pp.

1–32.

[19] D. Culler, J. Hill, M. Horton, K. Pister, R. Szewczyk, and A. Woo, “Mica: The

commercialization of microsensor motes,” Sensors Magazine, vol. 19, no. 4,

pp. 40–48, 2002.

[20] D. Culler, D. Ganesan, O. Gnawali, and D. Gay, “TinyOS on SourceForge,”

2005. URL: https://sourceforge.net/projects/tinyos. Accessed on: 2016-03-14

[21] H. Dai, M. Neufeld, and R. Han, “ELF: An Efficient Log-structured Flash File

System for Micro Sensor Nodes,” in Proceedings of the 2Nd International

Conference on Embedded Networked Sensor Systems, ser. SenSys ’04. New

York, NY, USA: ACM, 2004, pp. 176–187. doi: 10.1145/1031495.1031516

[22] J. Daughtry, U. Farooq, B. Myers, and J. Stylos, “API usability,” ACM SIGSOFT

Software Engineering Notes, vol. 34, no. 4, p. 27, 2009. doi:

10.1145/1543405.1543429

[23] C. de Souza, D. Redmiles, L.-t. Cheng, D. Millen, and J. Patterson, “Sometimes

You Need to See Through Walls — A Field Study of Application Programming

Interfaces,” Proceedings of the ACM conference on Computer supported

cooperative work (CSCW), pp. 63–71, 2004. doi: 10.1145/1031607.1031620

[24] Y. Diao, D. Ganesan, G. Mathur, and P. Shenoy, “Rethinking Data

Management for Storage-centric Sensor Networks,” in Proceedings of the

3rd biennial conference on Innovative Data Systems Research. CIDR, 2007.

URL: http://www-db.cs.wisc.edu/cidr/cidr2007/index.html

[25] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and flexible

operating system for tiny networked sensors,” in 29th Annual IEEE

International Conference on Local Computer Networks. IEEE (Comput.

Soc.), 2004, pp. 455–462. doi: 10.1109/LCN.2004.38

[26] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, “Network

Configuration Protocol (NETCONF),” RFC 6241 (Proposed Standard), jun

2011. URL: http://www.ietf.org/rfc/rfc6241.txt

119

https://sourceforge.net/projects/tinyos
https://dx.doi.org/10.1145/1031495.1031516
https://dx.doi.org/10.1145/1543405.1543429
https://dx.doi.org/10.1145/1031607.1031620
http://www-db.cs.wisc.edu/cidr/cidr2007/index.html
https://dx.doi.org/10.1109/LCN.2004.38
http://www.ietf.org/rfc/rfc6241.txt

BIBLIOGRAPHY

[27] H. Erdogmus, M. Morisio, and M. Torchiano, “On the effectiveness of the

test-first approach to programming,” IEEE Transactions on Software

Engineering, vol. 31, no. 3, pp. 226–237, 2005. doi: 10.1109/TSE.2005.37

[28] E. Gal and S. Toledo, “A Transactional Flash File System for

Microcontrollers,” (USENIX 2005): Proceedings of the annual conference on

USENIX Annual Technical Conference, p. 7, 2005.

[29] D. Gay, “Matchbox: A simple filing system for motes,” pp. 1–13, 2003. URL:

http://webs.cs.berkeley.edu/tos/dist-1.1.0/snapshot-

1.1.3Dec2003cvs/doc/matchbox.pdf

[30] D. Gay, “Design of Matchbox , the simple filing system for motes,” pp. 1–4,

2003. URL:

http://webs.cs.berkeley.edu/tos/tinyos-1.x/doc/matchbox-design.pdf

[31] G. Goodson and R. Iyer, “Design Tradeoffs in a Flash Translation Layer,”

Proceedings of Workshop on the Use of Emerging Storage and Memory

Technologies HPCA WEST 2010, 2010. URL:

http://drona.csa.iisc.ernet.in/ gopi/west10/goodson.pdf

[32] J. Hui and P. Thubert, “Compression Format for IPv6 Datagrams over IEEE

802.15.4-Based Networks,” RFC 6282 (Proposed Standard), sep 2011. URL:

http://www.ietf.org/rfc/rfc6282.txt

[33] International Telecommunication Union, “Applications of Wireless Sensor

Networks in Next Generation Networks,” Telecommunication

Standardization Sector of ITU, Tech. Rep. February, 2014.

[34] A. Jagmohan, M. Franceschini, and L. Lastras, “Write amplification reduction

in NAND Flash through multi-write coding,” in Mass Storage Systems and

Technologies (MSST), 2010 IEEE 26th Symposium on, may 2010, pp. 1–6.

doi: 10.1109/MSST.2010.5496985

[35] L. Jenß, “Add 256 byte block hamming code implementation,” 2015. URL:

https://github.com/RIOT-OS/RIOT/pull/4229. Accessed on: 2016-03-03

[36] D. Kang, D. Jung, J.-U. Kang, and J.-S. Kim, “µ-Tree : An Ordered Index

Structure for NAND Flash Memory,” 7th ACM & IEEE Conference on

120

https://dx.doi.org/10.1109/TSE.2005.37
http://webs.cs.berkeley.edu/tos/dist-1.1.0/snapshot-1.1.3Dec2003cvs/doc/matchbox.pdf
http://webs.cs.berkeley.edu/tos/dist-1.1.0/snapshot-1.1.3Dec2003cvs/doc/matchbox.pdf
http://webs.cs.berkeley.edu/tos/tinyos-1.x/doc/matchbox-design.pdf
http://drona.csa.iisc.ernet.in/{~}gopi/west10/goodson.pdf
http://www.ietf.org/rfc/rfc6282.txt
https://dx.doi.org/10.1109/MSST.2010.5496985
https://github.com/RIOT-OS/RIOT/pull/4229

BIBLIOGRAPHY

Embedded Software (EMSOFT ’07), pp. 144–153, 2007. doi:

10.1145/1289927.1289953

[37] J. Kelsey, “SHA-160: A Truncation Mode for SHA256 (and most other

hashes),” 2005. URL:

http://csrc.nist.gov/groups/ST/hash/documents/Kelsey_Truncation.pdf.

Accessed on: 2016-03-16

[38] G. Krishna, “Antelope (Database Management System) - Contiki,” 2014. URL:

https://bit.ly/1Lnhaml. Accessed on: 2016-03-14

[39] P. Levis, “Experiences from a Decade of TinyOS Development,” 10th USENIX

conference on Operating Systems Design and Implementation, pp. 207 – 220,

2012.

[40] H. Li, D. Liang, L. Xie, G. Zhang, and K. Ramamritham, “Flash-Optimized

Temporal Indexing for Time-Series Data Storage on Sensor Platforms,” ACM

Transactions on Sensor Networks, vol. 10, no. 4, pp. 1–30, jun 2014. doi:

10.1145/2526687

[41] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TinyDB: An

Acquisitional Query Processing System for Sensor Networks,” ACM Trans.

Database Syst., vol. 30, no. 1, pp. 122–173, mar 2005. doi:

10.1145/1061318.1061322

[42] G. Mainland, G. Morrisett, and M. Welsh, “Flask: Staged Functional

Programming for Sensor Networks,” in Proceedings of the 13th ACM

SIGPLAN International Conference on Functional Programming, ser. ICFP

’08. New York, NY, USA: ACM, 2008, pp. 335–346. doi:

10.1145/1411204.1411251

[43] C. Manning, “YAFFS (yet another Flash File System),” 2001. URL:

https://bit.ly/1SObK5o

[44] G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy, “Ultra-low power data

storage for sensor networks,” in Proceedings of the fifth international

conference on Information processing in sensor networks - IPSN ’06. New

York, New York, USA: ACM Press, apr 2006, p. 374. doi:

10.1145/1127777.1127833

121

https://dx.doi.org/10.1145/1289927.1289953
http://csrc.nist.gov/groups/ST/hash/documents/Kelsey{_}Truncation.pdf
https://bit.ly/1Lnhaml
https://dx.doi.org/10.1145/2526687
https://dx.doi.org/10.1145/1061318.1061322
https://dx.doi.org/10.1145/1411204.1411251
https://bit.ly/1SObK5o
https://dx.doi.org/10.1145/1127777.1127833

BIBLIOGRAPHY

[45] G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy, “Capsule: an

energy-optimized object storage system for memory-constrained sensor

devices,” SenSys ’06: Proceedings of the 4th international conference on

Embedded networked sensor systems, p. 195, 2006. doi:

10.1145/1182807.1182827

[46] G. Mathur, P. Desnoyers, P. Chukiu, D. Ganesan, and P. Shenoy, “Ultra-low

power data storage for sensor networks,” ACM Transactions on Sensor

Networks, vol. 5, no. 4, pp. 1–34, nov 2009. doi: 10.1145/1614379.1614385

[47] J. McCulloch, P. McCarthy, S. M. Guru, W. Peng, D. Hugo, and A. Terhorst,

“Wireless Sensor Network Deployment for Water Use Efficiency in

Irrigation,” in Proceedings of the Workshop on Real-world Wireless Sensor

Networks, ser. REALWSN ’08. New York, NY, USA: ACM, 2008, pp. 46–50.

doi: 10.1145/1435473.1435487

[48] Micron Technology Inc., “TN-29-08 : Hamming Codes for NAND Flash

Memory Devices Technical Note Hamming Codes for NAND Flash Memory

Devices,” Micron, pp. 1–7, 2005.

[49] V. Mohan, T. Bunker, L. M. Grupp, S. Gurumurthi, M. R. Stan, and

S. Swanson, “Modeling Power Consumption of NAND Flash Memories Using

FlashPower,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 32, no. 7, pp. 1031–1044, 2013. doi:

10.1109/TCAD.2013.2249557

[50] L. Mottola, “Programming Storage-centric Sensor Networks with Squirrel,”

Proceedings of the 9th ACM/IEEE International Conference on Information

Processing in Sensor Networks - IPSN ’10, p. 1, 2010. doi:

10.1145/1791212.1791214

[51] S. Nath and A. Kansal, “FlashDB: Dynamic Self-tuning Database for NAND

Flash,” in Proceedings of the 6th International Conference on Information

Processing in Sensor Networks, ser. IPSN ’07. New York, NY, USA: ACM,

2007, pp. 410–419. doi: 10.1145/1236360.1236412

[52] S. Park, Y. Kim, B. Urgaonkar, J. Lee, and E. Seo, “A comprehensive study of

energy efficiency and performance of flash-based SSD,” Journal of Systems

122

https://dx.doi.org/10.1145/1182807.1182827
https://dx.doi.org/10.1145/1614379.1614385
https://dx.doi.org/10.1145/1435473.1435487
https://dx.doi.org/10.1109/TCAD.2013.2249557
https://dx.doi.org/10.1145/1791212.1791214
https://dx.doi.org/10.1145/1236360.1236412

BIBLIOGRAPHY

Architecture, vol. 57, no. 4, pp. 354–365, 2011. doi:

10.1016/j.sysarc.2011.01.005

[53] D. C. Philip Levis, Sam Madden, Joseph Polastre, Robert Szewczyk, Alec Woo,

David Gay, Jason Hill, Matt Welsh, Eric Brewer, “TinyOS: An operating

system for sensor networks,” Ambient Intelligence, 2004. doi:

10.1007/3-540-27139-2_7

[54] G. J. Pottie and W. J. Kaiser, “Wireless integrated network sensors,”

Communications of the ACM, vol. 43, no. 5, pp. 51–58, may 2000. doi:

10.1145/332833.332838

[55] K. S. Prabh and T. F. Abdelzaher, “Energy-conserving Data Cache Placement

in Sensor Networks,” ACM Trans. Sen. Netw., vol. 1, no. 2, pp. 178–203, nov

2005. doi: 10.1145/1105688.1105690

[56] T. Punkka, “embUnit - Embedded Unit Testing Framework,” 2006. URL:

http://embunit.sourceforge.net/embunit/. Accessed on: 2016-03-15

[57] O. Rodeh, J. Bacik, and C. Mason, “BTRFS: The Linux B-Tree Filesystem,”

ACM Transactions on Storage, vol. 9, no. 3, pp. 1–32, 2013. doi:

10.1145/2501620.2501623

[58] M. Rosenblum and J. K. Ousterhout, “The Design and Implementation of a

Log-structured File System,” in Proceedings of the Thirteenth ACM

Symposium on Operating Systems Principles, ser. SOSP ’91. New York, NY,

USA: ACM, 1991, pp. 1–15. doi: 10.1145/121132.121137

[59] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application Protocol

(CoAP),” RFC 7252 (Proposed Standard), jun 2014. URL:

http://www.ietf.org/rfc/rfc7252.txt

[60] T. Small and Z. J. Haas, “Resource and performance tradeoffs in

delay-tolerant wireless networks,” Proceeding of the 2005 ACM SIGCOMM

workshop on Delay-tolerant networking - WDTN ’05, pp. 260–267, 2005. doi:

10.1145/1080139.1080144

[61] A. Traeger, E. Zadok, N. Joukov, and C. P. Wright, “A nine year study of file

system and storage benchmarking,” ACM Transactions on Storage (TOS),

vol. 4, no. 2, pp. 1–56, 2008. doi: 10.1145/1367829.1367831

123

https://dx.doi.org/10.1016/j.sysarc.2011.01.005
https://dx.doi.org/10.1007/3-540-27139-2{_}7
https://dx.doi.org/10.1145/332833.332838
https://dx.doi.org/10.1145/1105688.1105690
http://embunit.sourceforge.net/embunit/
https://dx.doi.org/10.1145/2501620.2501623
https://dx.doi.org/10.1145/121132.121137
http://www.ietf.org/rfc/rfc7252.txt
https://dx.doi.org/10.1145/1080139.1080144
https://dx.doi.org/10.1145/1367829.1367831

BIBLIOGRAPHY

[62] N. Tsiftes, A. Dunkels, Z. H. Z. He, and T. Voigt, “Enabling large-scale storage

in sensor networks with the Coffee file system,” 2009 International

Conference on Information Processing in Sensor Networks, no. 1, 2009. URL:

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5211918

[63] N. Tsiftes and A. Dunkels, “A Database in Every Sensor,” Technology, p. 316,

2011. doi: 10.1145/2070942.2070974

[64] Q. W. Q. Wang, Y. Z. Y. Zhu, and L. C. L. Cheng, “Reprogramming wireless

sensor networks: challenges and approaches,” IEEE Network, vol. 20, no.

June, pp. 48–55, 2006. doi: 10.1109/MNET.2006.1637932

[65] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik,

J. P. Vasseur, and R. Alexander, “RPL: IPv6 Routing Protocol for Low-Power

and Lossy Networks,” RFC 6550 (Proposed Standard), mar 2012. URL:

http://www.ietf.org/rfc/rfc6550.txt

[66] D. Woodhouse and Red Hat Inc., “JFFS : The Journalling Flash File System,”

2001. URL: http://www.sourceware.org/jffs2/jffs2-html/

[67] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopoulos,

X. Vasilakos, K. V. Katsaros, and G. C. Polyzos, “A Survey of

information-centric networking research,” IEEE Communications Surveys

and Tutorials, vol. 16, no. 2, pp. 1024–1049, 2014. doi:

10.1109/SURV.2013.070813.00063

[68] M.-C. Yang, Y.-M. Chang, C.-W. Tsao, P.-C. Huang, Y.-H. Chang, and T.-W. Kuo,

“Garbage collection and wear leveling for flash memory: Past and future,” in

Smart Computing (SMARTCOMP), 2014 International Conference on, nov

2014, pp. 66–73. doi: 10.1109/SMARTCOMP.2014.7043841

[69] Y. Yao and J. Gehrke, “The cougar approach to in-network query processing

in sensor networks,” ACM SIGMOD Record, vol. 31, no. 3, p. 9, 2002. doi:

10.1145/601858.601861

[70] D. Zeinalipour-Yazti, S. Lin, V. Kalogeraki, D. Gunopulos, and W. A. Najjar,

“Microhash: An Efficient Index Structure for Fash-based Sensor Devices,” in

Proceedings of the 4th Conference on USENIX Conference on File and

Storage Technologies - Volume 4, ser. FAST’05. Berkeley, CA, USA: USENIX

Association, 2005, p. 3.

124

http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=5211918
https://dx.doi.org/10.1145/2070942.2070974
https://dx.doi.org/10.1109/MNET.2006.1637932
http://www.ietf.org/rfc/rfc6550.txt
http://www.sourceware.org/jffs2/jffs2-html/
https://dx.doi.org/10.1109/SURV.2013.070813.00063
https://dx.doi.org/10.1109/SMARTCOMP.2014.7043841
https://dx.doi.org/10.1145/601858.601861

BIBLIOGRAPHY

[71] Y. Zhang, L. Grieco, E. Baccelli, J. Burke, R. Ravindran, and G. Wang, “ICN

based Architecture for IoT - Requirements and Challenges,” 2015. URL:

https://tools.ietf.org/html/draft-zhang-iot-icn-challenges-02

125

https://tools.ietf.org/html/draft-zhang-iot-icn-challenges-02

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbstän-

dig verfasst und nur die angegebenen Hilfsmittel benutzt habe.

Hamburg, 29.03.2016 Lucas Andreas Jenß

	1 Introduction
	2 Background
	2.1 The Internet of Things
	2.2 Internet-connected embedded devices
	2.3 Protocols in the Internet of Things
	2.4 Embedded operating systems for the IoT
	2.5 Flash Memory
	2.6 Secure Digital (SD) cards
	2.7 Efficiency of wireless communication compared to flash storage

	3 Literature Review
	3.1 Overview
	3.2 Physical storage structures
	3.3 Logical storage structures
	3.4 Indexing algorithms
	3.5 Application Programming Interface
	3.6 Discussion

	4 Requirements analysis
	4.1 Use cases
	4.2 Functional Requirements
	4.3 Non-functional requirements
	4.4 Discussion

	5 Design of the Flash Translation Layer
	5.1 Subpages
	5.2 Partitioning
	5.3 Reading and writing data
	5.4 Wear levelling
	5.5 Free space management
	5.6 Persistent storage of metadata
	5.7 Application Programming Interface
	5.8 Discussion

	6 Design of the Object Storage Layer
	6.1 Storage structure
	6.2 Buffering records
	6.3 Combined records
	6.4 Record caching
	6.5 Object defragmentation
	6.6 Storage objects
	6.7 Metadata
	6.8 Checking object existence
	6.9 Opening and closing objects
	6.10 Garbage collection
	6.11 Thread safety
	6.12 Application Programming Interface
	6.13 Discussion

	7 Implementation
	7.1 Methodology
	7.2 Challenges
	7.2.1 Flash storage emulation
	7.2.2 Flash Translation Layer configuration

	8 Evaluation
	8.1 Performance
	8.1.1 Platform
	8.1.2 Reproducibility
	8.1.3 ROM usage
	8.1.4 RAM usage
	8.1.5 FTL throughput
	8.1.6 OSL throughput

	8.2 Design
	8.2.1 Extensibility and Reusability
	8.2.2 Robustness and Reliability
	8.2.3 Usability

	8.3 Discussion

	9 Conclusion
	9.1 Key Achievements
	9.2 Future work

	Glossary
	Bibliography

