
Bachelorarbeit
Kai Thomas Brusch

Generalized Additive Models for very large datasets with
Apache Spark

Fakultät Technik und Informatik
Studiendepartment Informatik

Faculty of Engineering and Computer Science
Department of Computer Science

Kai Thomas Brusch

Generalized Additive Models for very large datasets with
Apache Spark

Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung

im Studiengang Bachelor of Science Angewandte Informatik

am Department Informatik

der Fakultät Technik und Informatik

der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Köhler-Bußmeier

Zweitgutachter: Dipl-Math. Markus Schmaus

Eingereicht am: 26. September 2016

Kai Thomas Brusch

Thema der Arbeit
Generalized Additive Models for very large datasets with Apache Spark

Stichworte
Statistik, Statistical Learning, Regression, Generalisiertes Additive Modell, Splines, B-Splines,

Apache Spark, Generalisiertes Lineare Modell, Big Data, Data Science, Machine Learning

Kurzzusammenfassung
Das Generalisierte Additive Modell erweitert das Generalisierte Lineare Modell mit der FÃ¤higkeit,

eine oder mehrere unabhängige Variablen as Unbekannte glätende Funktionen darzustellen.

Das Generalisierte Additive Model erfreut sich Beliebtheit in Feldern, die sehr grosse Daten-

mengen erfordern. Obwohl dies der Fall ist, wurde das Generalisierte Additive Modell noch in

keinem modernen Cluster Computing Framework implementiert. Apache Spark ist ein moder-

nes Cluster Computing Framework, welches eine Implementation des Generalisierten Linearen

Modell beinhaltet. Diese Arbeit nutzt die, in Spark verfügbare, FunktionalitÃ¤t, um eine Teil-

menge des Generalisierten Additive Modell in ein modernes Cluster Computing Framework zu

implementierten. Ein Generalisiertes Additive Model kann als Generalisiertes Lineare Modell

mit B-Splines realisiert werden. Dieses implementiert ein Generalisiertes Additive Modell als

Generalisierte Lineare Modell mit B-Splines in der Cox-de-Boor Form als Erweiterung in Spark.

Kai Thomas Brusch

Title of the paper
Generalized Additive Models for large datasets with Apache Spark

Keywords
Statistics, Statistical learning, Regression, Generalized Additive Model, Splines, B-Splines,

Apache Spark, Generalized Linear Model, Big Data, Data Science, Machine Learning

Abstract
The generalized additive model extends of the generalized linear model with the ability to

describe predictor variables as the sum of unknown smoothing functions. The generalized

additive model has been used in domains that require very large datasets. Although the

generalized additive model is helpful in those scenarios, no public attempt has been made to

implement it in a modern cluster computing environment. Apache Spark, a modern cluster

computer framework, has provided an implementation for the generalized linear model to

be estimated on very large datasets. The unknown smoothing functions can be expressed

as B-Splines and estimated as part of a generalized linear model. This thesis implements the

generalized additive models as an extension of the generalized linear model in Apache Spark

by representing the unknown smooth functions as B-Splines in the Cox-de-Boor form.

iv

Contents

1 Introduction 1

2 Statistical Learning 3
2.1 Introduction to Statistical Learning . 3

2.2 Inference and Prediction . 4

2.3 Estimating an unknown function . 6

3 Maximum likelihood estimation 8
3.1 Introduction to maximum likelihood estimation 8

4 Linear Models 10
4.1 Linear model . 10

4.1.1 Maximum likelihood and least squares 11

4.1.2 Linear Model . 14

4.1.3 Linear Model in the vector-matrix form 14

4.2 Generalized Linear Model . 17

4.2.1 Likelihood for any exponential family distribution 18

4.2.2 Iterative Reweighted Least Squares . 21

5 Generalized Additive Models 23
5.1 Generalized Additive Models . 23

5.2 Regression Splines . 24

5.2.1 Basis Splines and the Cox-de-Boor Form 24

5.2.2 Fitting Cubic Splines . 27

5.2.3 Penalized Cubic Splines . 30

5.3 Smoothing Parameter Estimation . 34

5.4 Additive Model . 37

5.4.1 Additive Model Example . 41

5.5 Generalized Additive Model . 42

5.5.1 Penalized Iterative Reweighted Least Squares 43

6 Generalized additive models for very large datasets 45
6.1 R Overview . 45

6.2 Apache Spark Overview . 46

6.3 Generalized Linear Models in Spark . 48

6.4 Casting the generalized additive model as a generalized linear model in Spark 50

6.5 GAM in Spark Example . 51

v

Contents

7 Conclusion and Future Work 54
7.1 Conclusion . 54

7.2 Future Work . 55

vi

List of Figures

2.1 James u. a. (2014) describes the units sold as a function of spending on each

of the advertisement channels. The blue line is a linear model describing the

underlying relationship between units sold and media outlet budgets. 4

5.1 B-Spline basis function Bi,1(t) of order 1 Zhang (2006) 25

5.2 B-Spline basis function Bi,2(t) of order 2 Zhang (2006) 26

5.3 B-Spline basis function Bi,3(t) of order 3 Zhang (2006) 27

5.4 A sample times series of equidistant observations where uniform and quantile

knots are inappropriate economist (2011) . 28

5.5 Wear engine relationship as a cubic spline . 30

5.6 Wear engine relationship as a penalized cubic spline 34

5.7 λ in�uence on the estimated spline function f . Wood (2006) 35

5.8 A varying penalty term has a signi�cant in�uence on the resulting GCV score 37

5.9 The smoothest interpolating spline for the given basis and set of knots 38

6.1 Every worker node contains a number of executors. Executors can communi-

cate to other executors within the same application sparkdocumentation . . . 47

vii

1 Introduction

Karl Pearson, the father of applied statistics, famously described statistics as the "grammar of

science". Leveraging data as a method of inquiry has become the maxim of modern scienti�c

thought. Hypothesis testing, statistical modeling and measurements are areas in which statistics

are essential to quantitative science. Eric Schmidt, Executive Chairman of Alphabet, claims

that consumer electronics and the modern Internet generates and processes more data every

two days than in the prior 80.000 years. This ever growing ability to process and store data

enables the use of scienti�c inquiry in areas previously dominated by subjective reasoning.

The use of applied statistics has recently transcended from science into the commercial sphere,

as statistical models are now employed to further the understanding of businesses or provide

essential functionality to them. Statistical models often even constitute the core business

product itself. This development has broadly been coined as ’Data Science’ and ’Big Data’. The

exponential growth of computing power has placed the computer at the heart of statistics.

Modern statistics is leveraging parallel computing to build models that discover and explain

patterns in very large data sets. The aim of this thesis is to enable a speci�c statistical model

to harness the power of modern cluster computing.

The generalized linear model (’GLM’) is the most widely used statistical model. This thesis

focuses on an extension of the GLM called generalized additive model (’GAM’). The GAM

o�ers the interpretability of the traditional GLM but allows for smooth and �exible estimation

of some variables (Hastie, 1990). GLMs and GAMs and much of modern statistical research is

published in the programming language R (Wood, 2006). R was written by statisticians and

has become the lingua franca for statistical research, surpassing Stata as the most popular

statistical programming language. Though ideal for statistics and widely used R lacks the

ability to harness parallelization and cluster computing. The Mixed GAM Computation Vehicle

(’mgcv’) is a popular R library that uses R’s limited parallelization mechanics to estimate GAMs

(Wood u. a., 2015). Apache Spark (’Spark’) is emerging as a prominent general purpose cluster

computing frame work. Spark was designed to perform distributed, in-memory computation

while preserving a high level of abstraction (Zaharia u. a., 2010). This allows Spark to handle

terabytes of data and has proven to be an ideal environment to handle very large datasets (Xin,

1

1 Introduction

2014). Spark o�ers SparkR, a high level language binding that allows R to interact with Spark’s

machine learning library (’Mllib’). Recently Mllib released a GLM implementation that can be

accessed with R. Though Spark o�ers a GLM implementation no public e�orts have yet been

made to bring GAMs to the Spark ecosystem. This thesis introduces an implementation that

established some GAM functionality in Spark by leveraging the existing GLM implementation.

The GAM can be treated as a special case of the GLM where smooth functions are represented

as B-Splines (Hastie u. a., 2001). B-Splines can express an unknown smooth function as

piecewise polynomial basis functions. The Cox-de-Boor form is a recursive, numerical stable

and fast method to construct the polynomial basis functions (De Boor, 2001) given a value range,

the basis order and knots. The formed polynomial basis functions are appended to the GLM’s

model matrix are estimated using the GLM’s iterative reweighted least squares (’IRLS’) method

(Fahrmeir u. a., 2009). Estimating GAMs with Spark thus amounts to expressing particular

predictor variables as a B-spline and utilizing the existing estimation methods present in Spark.

By using this the approach, the spline estimation of GAMs can be performed in a modern

cluster computing environment.

This thesis comprises seven sections. Following the introduction, a chapter on statistical

learning sets out the conceptual framework for this thesis. The following section introduces the

process of maximum likelihood estimation. Section 4 and 5 describes the generalized additive

model as an extension of the linear model and the generalized linear model. Estimating spline

with the linear model is the key aspect of those two sections. Sections 6 introduces Apache

Spark and describes a working approach on how to leverage existing elements in Spark to

implement GAMs. The thesis ends with a conclusion and an overview of future work.

2

2 Statistical Learning

The aim of this chapter is to introduce the framework of statistical learning. After an example

of the use of statistical learning, the concepts of inference and prediction are described. The

last section of this chapter will introduce the main concept of statistical learning relevant for

this thesis: estimating an unknown function.

2.1 Introduction to Statistical Learning

Statistical learning is a set of tools for modeling and understanding complex data sets. Recent

developments in statistics and computer science have created an interesting �eld that empow-

ers modern statistical methods with computational methods. Statistical learning provides a

framework for asking and answering questions by using data.

The bene�ts of statistical learning can be best explaining by the use of the following example

James u. a. (2014). Assuming a statistical consultant is in charge of advising a client on how to

improve the sales of a given product. The client provides a data set containing the sales of a

given product across several markets and the associated marketing budget for three di�erent

media outlets: TV, radio and newspaper. The client is unable to impact the amount of sales

directly, but he is able to change the amount spent on each media outlet. Understanding

the number of items sold as a function of media spending enables the consultant to suggest

a modi�ed spending plan. This spending plan aims to increase sales by modifying media

spending. In ?? the sales are plotted on the Y-axis and the budget for a media outlet on the

X-axis. This model interprets the media budgets as the input variables and sales as the output

variables. The input variables are commonly denoted with Xi, in this example X1 is the TV

budget, X2 the radio budget and X3 the newspaper budget. The name for input variables

has become inconsistent. The terms predictor, independent variables and features are treated

as synonyms. The output variable, in this example the sales, is also called the response or

dependant variable and denoted with Y .

The applied method can be generalized to answer the following question: Given a data set

with observations of a quantitative response Y and several predictors X1, X2, ...Xi, what is

3

2 Statistical Learning

Figure 2.1: James u. a. (2014) describes the units sold as a function of spending on each of the

advertisement channels. The blue line is a linear model describing the underlying

relationship between units sold and media outlet budgets.

the underlying unknown relationship f()? f() explains Y in terms of X . This can be formally

stated as

Y = f(X) + ε (2.1)

The function f() is a �xed but unknown function of the input variablesX1, ...Xp. ε is a random,

identically and independently distributed, error term. Another way of framing this is to see the

function f() as the systematic information in the observations. All statistical learning methods

are concerned with �nding an optimal f(). This thesis will discuss three related methods of

�nding f(). Each method has a di�erent approach to �nding f() and a di�erent interpretation

of the optimal function f .

2.2 Inference and Prediction

Exploring the relationship between dependent and independent variables by estimating a

function that satis�es Y = f(X) + ε is bene�cial for inference and prediction. James u. a.

(2014) argues that inference is concerned with understanding a system while prediction uses

the estimated function to predict Y on di�erent values for X .

Once a function f() has been estimated on a particular data set, this function can also be

used to predict the value of Y for di�erent X1, ..., Xp. Predicting the value of Y new X is

4

2 Statistical Learning

simple when the error is constant. In this case the value of Y can be computed with the

following equation:

Ŷ = f̂(X) (2.2)

The wide hat notation stands for an approximated value. f̂ is the estimated function for the

true unknown relationship f() and Ŷ is an estimation of Y . The accuracy of our predicted

Ŷ depends on two quantities: the reducible error and the irreducible error. The reducible

error originates from the approximating nature of f̂(). The di�erence between f̂() and f()

directly causes the reducible error. A di�erent approximation can in�uence the reducible

error. However, some of the error will always remain unexplained and is inherent in the

measurements taken. This implicit error in our measurements can not be reduced and is thus

called the irreducible error. These two errors can formally be described as:

E(Y − Ŷ) = E[f(X) + ε− f̂(X)]2 = [f(X)− f̂(X)] + V ar(ε)1
(2.3)

V ar(ε) is the irreducible error and [f(X) − f̂(X)] the reducible error. Estimating f to

reduce the reducible error lies at the core of every method discussed in this thesis. However, the

irreducible error can not be neglected from discussion. The irreducible error is only assumed

to be zero mean sum for the easiest of models.

While prediction is forward-looking, inference, the analytical perspective of statistical

learning, is focused on looking backwards. Inference focuses on analyzing the estimated

function f̂ . Examining the respective contribution of each X1, ..., Xp to Y can give qualitative

insight into �nding the best predictors. Returning to the previous example of budget spending

on media outlets: In 2.1 sales respond di�erently to additional spending on each media category.

An analysis of each function of X shows that TV has the steepest slope. Thus, additional

spending on TV advertisement leads to the largest increase in sales. This analysis illustrates

the use of inference to understand the underlying mechanism. Understanding X’s in�uence

on Y is a key aspect of inference and therefore the question is: Does Y in- or decrease with

a change in X and, if so, by how much? Inference also examines the �t of the function. ??
assumes a linear relationship between each X and Y . While this trend aptly explains the

mechanism of the TV sales, it does not explain the Newspaper category. A linear relationship

between sales and Newspaper budget spending seems unreasonable.

1

(James u. a., 2014)

5

2 Statistical Learning

2.3 Estimating an unknown function

There are many approaches to estimating an unknown function for a given data set. James u. a.

(2014) states that all approaches share certain characteristics. First, all methods require a set of

training data. This training set contains tuples of dependant and independent variables. This set

of tuples is used as input for an algorithm that approximates f̂(). Methods for approximating

f̂() can broadly be categorized as parametric and non-parametric.

Parametric models, such as the linear and generalized linear model, assume a speci�c shape

of the true underlying function f(). Parametric models are always estimated in two steps.

First, an assumption about the functional form of f is made. Then the function is estimated.

The simplest assumption is the linear model, which is subject of the following section. A linear

assumption enforces the following form:

f(X) = β0 + β1X1 + ...+ βpXp (2.4)

The function f is linear in the parameters β. The linear assumption poses tight restrictions

on the shape of f but also on search space of potential functions. A non-parametric function

requires searching in an in�nite-dimensional function space. However, the linear assumption

limits the search space to p+1 coe�cients.

After deciding on a shape for f , the function needs to be estimated. The process of actually

�nding f is also referred to as training or �tting a function. In this example, �tting amounts to

�nding the coe�cients β0, β1, ..., βp. Therefore the full problem of �tting a linear model is:

Y ≈ β0 + β1X1 + ...+ βpXp (2.5)

The shape decided in step one does not dictate a speci�c method of �nding the coe�cients,

however there are certain methods associated with particular functional shape and error

distributions. The linear model assumes a Gaussian distributed error term and can be estimated

by the least squares method. Least squares is the simplest estimation method and is introduced

in the next chapter. The choice of parametric form solely dictates the position and number of

the parameters involved, thus the name: parametric.

Choosing a functional shape for f() drastically simpli�es the �tting process by predeter-

mining the amount of coe�cients to be estimated. However, the chosen shape may enforce

conditions that are very di�erent to the actual function f . A poor choice of parametric form

leads to a poor estimate. This problem can be addressed with more �exible methods that allow

for more parameters. A higher number of parameters, however, bears the associated risk of

over�tting the data. Over�tting estimates a function too close to the original data points,

6

2 Statistical Learning

possibly omitting important systemic information. A major bene�t of parametric methods is

the ability to interpret the results. A functional shape is usually determined by factors outside

of the data set. The choice of parametric shape allows for representation of the estimated

coe�cients in meaningful way. Thus the choice of shape enforces a certain model in which

the coe�cients are to be interpreted.

The non-parametric approach is the complement of the parametric one James u. a. (2014).

Non-parametric methods, such as regression splines, do not assume the functional form of

f before estimating it. This brings a major advantage over parametric methods since they

allows f to follow the data as closely as possible without the in�uence of a predetermined

shape. Allowing f to assume any arbitrary form o�ers much more �exibility than parametric

methods. While non-parametric methods avoid the pitfall of a bad functional shape, they have

to search the whole possible space of f. Searching an arbitrary functional space is very time-

and space-intensive and su�ers from over�tting. Non-parametric methods provide much more

�exibility than parametric methods and are useful for certain predictions. Non-parametric

methods excel at interpolating, predicting new cases within the training sets’ range. However,

their results’ arbitrary shape makes the interpretation of the result harder to understand and

they struggle with predictions outside the training sets’ range.

The GAM constitutes an interesting collation of parametric as well as non-parametric

elements: it leverages non-parametric estimation of some variables of a parametric method.

It uses spline estimation to estimate arbitrary functions for some variables of a generalized

linear model.

7

3 Maximum likelihood estimation

3.1 Introduction to maximum likelihood estimation

Maximum likelihood estimation (’MLE’) provides a single framework for estimating linear

models, generalized linear models and generalized additive models. Unlike probability, like-

lihood is used after data is available to describe a function of a parameter vector for a given

outcome. Likelihood also does not always sum to one and may not even be integrable with

respect to beta. Dobson und Barnett (2008) describes the principle of maximum likelihood

estimation as searching for probability distribution parameters that makes the observed data

most likely. This results in a search for the parameter vector that maximizes the likelihood

function L(β|y). The parameter vector is found by searching the multi-dimensional parameter

space. Many statistical objects can be expressed in terms of a random variable. A random

variable is de�ned in terms of one or several parameters. Usually the distribution parameters

are the observed variance and mean. The Poisson distribution, for example, assumes mean =

variance and thus only requires one parameter P (λ). The gamma distribution is de�ned in

terms of shape k and scale θ. Maximum likelihood estimation provides a single framework

to allow parameter estimation for any of the exponential family distributions Dobson und

Barnett (2008).

From a statistical analysis point of view the vector y of observed data is a random sample

from an unknown population. The goal of maximum likelihood estimation is to �nd the

parameters of a given distribution that most likely produced this sample. This process is

described with a probability density function (’PDF’) f() of observed data y given a parameter

β: f(y|β). If individual observations, yi, are statistically independent of one another, the PDF

for the data y, given the parameter vector β, can be expressed as a multiplication of PDFs for

individual observations.

f(y|β) = f((y1, y2, ..., yn)|(β1, β2, ..., βn)) =

n∏
i=1

fi(yi|βi)) (3.1)

8

3 Maximum likelihood estimation

Given a set of parameter values, the corresponding PDF will show that some data are more

probable than other data. However, the data is already given and the search is for the parameters

of the distribution that most likely produced the data. Thus the conditional probability is

reversed. From f(y|β) to L(β|y) produces the likelihood of y given the parameters β. For

computational convenience, the MLE is obtained by maximizing the log-likelihood function,

ln(L(β|y)). This is because the two functions, ln(L(β|y)) and L(β|y), are monotonically

related to each other. In consequence, the same MLE estimate is obtained by maximizing either

one. However, the log-likelihood is preferred because it transforms the product in 3.1 to a

sum. Assuming that the log-likelihood function ln(L(β|y)) is di�erentiable, if β exists, it must

satisfy the following partial di�erential equation known as the likelihood equation:

∂lnL(β|y)

∂βi
= 0 (3.2)

These properties are given because the de�nition of the maximum or minimum of a con-

tinuous di�erentiable function implies that its �rst derivatives vanish at such points. The

likelihood equation represents a necessary condition for the existence of an MLE estimate. An

additional condition must also be satis�ed to ensure that ln(L(β|y)) is a maximum and not a

minimum, since the �rst derivative cannot reveal this. The log-likelihood must be convex near

β. This is veri�ed by calculating the second derivatives of the log-likelihoods and checking if

they are negative.

∂2lnL(β|y)

∂β2i
< 0 (3.3)

This form is only of theoretical value as practical models often involve many parameters and

have highly non-linear PDFs. Thus the estimate must be sought numerically using non-linear

optimization methods. The basic idea for these methods is to �nd optimal parameters that

maximize the log-likelihood focusing on smaller sub-sets of the multi-dimensional parameter

space. This is the preferred approach because exhaustively searching the whole parameter

space becomes intractable with an increasing amount of parameters. The practical method for

MLE searches by trial and error over the course of a series of iterative steps. Each iteration

changes the parameters vector from the previous iteration by a small value. The choice of

the value is tailored to improve the log-likelihood. Though the choice of parameters can

be challenged by other means of estimation, it be can shown that distribution parameter

estimation via MLE will result in the best unbiased estimator J. A. Nelder (1972).

9

4 Linear Models

This chapter introduces the linear model and the generalized linear model. The linear model

explains the matrix vector form and estimation via the least square method. The general-

ized linear model establishes much of the theory behind the generalized additive model and

introduces MLE via the iterative reweighted least squares model. The proposed GAM imple-

mentation will leverage the GLM’s iterative reweighted least squares estimation to realized

spline approximation of predictor variables.

4.1 Linear model

The linear model is the elementary form of statistical models. It enforces a strict parametric

form on the estimated function and consequently belongs to the parametric methods. Even

though linear models have limited real world applications, they introduce many relevant ideas

and concepts for the following methods. The generalized linear model is the generalized

version of the linear model and eases some restrictions set by the linear model. Both models

are essential for understanding the GAM, which is the main subject of this thesis. The GAM is

an extension of the generalized linear model. In the following, the theory behind linear and

generalized linear models is explained before these theories are used in the estimation process.

Simple linear model The simple linear model (or linear regression) explains the response

variable as the linear combination of a predictor variable and the estimated coe�cients. It

is the simplest linear model and explains a normal distributed response variable in terms of

one explanatory variable. Given n observations of xi and yi where yi is the observations of a

random variable Yi with expectation µi ≡ E(Yi), a linear model has the following parametric

form
1
:

Yi = xiβ + εi where µi = xiβ (4.1)

The key assumption for the linear model is that εi is a Gaussian distributed error term and

independent variance of x and y. A linear model assumes that εi are mutually independent

1

(Wood, 2006)

10

4 Linear Models

zero mean random variables with a constant variance σ2. The assumption of constant variance

for all xi is also called homoscedasticity. The linear model explains the response variable

Y in terms of a predictor variable x multiplied by an estimated coe�cient β plus a normal

distributed random error term ε. yi and xi are known but β is unknown and thus needs to be

estimated.

4.1.1 Maximum likelihood and least squares

The simple linear model described in 4.1 can be estimated with several similar techniques.

This section describes the estimation process via maximum likelihood. MLE for simple linear

models assumes �ve conditions. (1) The x values can be described in terms of an arbitrary

random variable X . (2) If X = x, then Y = β0 + β1x+ ε for some coe�cients β0 and β1 and

some random noise variable ε. (3) The error term ε is approximately N(0, σ2) and independent

of X with a constant variance. (4) ε is independent across observations. (5) The response

variable Y is independent across observations and conditional on X . The simple linear model

can be estimated without the third and fourth assumption but they are required for estimation

with MLE
2
. Because of the Gaussian error term this approach is also called the Gaussian-noise

simple linear regression model. The Gaussian-noise simple linear regression model allows for

stating the conditional PDF of Y for each x as:

p(y|X = x;β0, β1, σ
2) (4.2)

This notation explicitly removes the parameters from the random variables. Treating the

random variable parameters individually highlights the estimation through distribution pa-

rameter estimation. Given the Normal distribution PDF and dataset of observations in tuple

form (xn, yn), a general form of the MLE PDF can expressed:

n∏
i=1

p(y|X = xi;β0, β1, σ
2) =

n∏
i=1

1√
2πσ2

e
(yi−(β0+β1x1))

2

2σ2 (4.3)

The independence assumption of Yi allows to write the PDF as a product of conditional

probabilities. However, the relevant question goes in the opposite direction: What are the

parameters β0, β1 and σ2 that are likeliest to produce the probability density function that

generated the observed data? Thus the PDF has be to rearranged to express the desired

2

(Myung, 2003)

11

4 Linear Models

parameters. Given a choice of a parameter vector (b0, b1, s
2) the likelihood as a function of

the those parameters can be given as:

n∏
i=1

p(y|X = xi; b0, b1, s
2) =

n∏
i=1

1√
2πσ2

e
(yi−(b0+b1x1))

2

2s2 (4.4)

As described in the MLE section, the likelihood l is best examined in terms of the log-

likelihood L. Leveraging the log-likelihood, the likelihood can be expressed in terms of a

sum:

L(b0, b1, s
2) = log

n∏
i=1

p(yi|X = xi; b0, b1, s
2) (4.5)

=
n∑
i=1

log p(yi|X = xi; b0, b1, s
2) (4.6)

−n
2
log 2π − n log s− 1

2s2

n∑
i=1

(yi − (b0 + b1xi))) (4.7)

With this formulation the log-likelihood for a given data set and a choice of distribution

parameters can be computed. A key feature of the log-likelihood is that the distribution

parameters can be approximated in the following form Cramer (1974):

β1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
=
cXY
s2X

(4.8)

β0 = ȳ − β1x̄ (4.9)

σ2 =
1

n

1∑
n

(yi − (β̂0 + β̂1xi))
2

(4.10)

A special property of the Gaussian-noise model is that the MLE coe�cients in log-space are

equal to the least squares solution
3
. The estimated coe�cients β1 and β2 are also the slope

and intercept of a linear function that passes through the data tuples (xi, yi). The variance σ2

is also the average error of the linear function that passes through the data. This connection

only works under the assumption of a Gaussian error term and a constant variance. The

constant variance has been re�ected in ?? by giving equal weight for each data point. The least

squares approach gives an alternative approach to estimating β from the given data xi,yi. In

3

(Myung, 2003)

12

4 Linear Models

this approach the model seeks to �nd the β that minimizes the squared di�erence between yi

and xi. Formalizing this notion leads to the de�nition of the least-squares measure S:

S =
n∑
i=1

(yi − (β1 + xiβ1))
2 =

n∑
i=1

(yi − µi)2 (4.11)

Per this de�nition, a good choice of β minimizes the di�erence between yi and µi. As S

converges to 0, the better of an estimate β becomes. The problem of least square estimation

becomes minimizing S with respect to β0 and β1. To minimize S, di�erentiate with respect to

β0 and β1. For algebraical reasons −S is maximized.

∂S

∂β0
= 0 (4.12)

∂S

∂β1
= 0 (4.13)

These two equations are called the normal equations. To �nd the parameters both have to

be maximized. In the normal equations two point estimators b0 and b1 estimate β0 and β1

respectively.

1∑
n

yi = nb0 + b1

1∑
n

xi (4.14)

1∑
n

xiyi = b0

1∑
n

xi + bi

1∑
n

x2i (4.15)

The normal equations in this case are two equations with two unknowns. This system of

equations can be solved Cramer (1974).

β1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
=
cXY
s2X

(4.16)

β0 = ȳ − β1x̄ (4.17)

This shows that under the given conditions the point estimators b0 and b1 are equivalent to

the MLE estimates b0 and b1. Thus the estimation under Gaussian-noise with MLE is the same

as estimating the linear model with least squares. This link provides a strong framework for

13

4 Linear Models

numerically stable and e�cient �tting of the general linear model in terms of matrices and

vectors
4
.

4.1.2 Linear Model

Wood (2006) introduces the linear model as the generalization of the simple linear model,

allowing for the response variable to be explained with multiple predictor variables. Though

the linear model generalizes the simple linear model, it still assumes a normal distributed Y

and equal variance.

4.1.3 Linear Model in the vector-matrix form

Several predictor variables require rewriting the simple linear model in terms of vectors and

matrices. A major bene�t of using the matrix-vector forms is that the problem of �nding

β becomes the problem of solving an overdetermined system of equations. Again, given n

observations of yi and xi plus some additive constant. Explicitly writing each µi = xiβi

illustrates the shape of the system of equations.

µ1 = β0 + x1β1

µ2 = β0 + x2β1

...

µn = β0 + xnβ1

(4.18)

For the linear model this system of equations can be rewritten in a matrix-vector form. This

form allows to phrase the estimation process as �nding a solution to an over-determined system

of equations. Finding this solution is mathematically well established and highly optimized.

The matrix-vector form for the simple linear model takes the following shape:
µ1

µ2

µ3

...

µn

 =


1 x1

1 x2

1 x3

...

1 xn


[
β0

β1

]
(4.19)

4

(Myung, 2003)

14

4 Linear Models

Adding predictor variables and generalizing the simple linear model amounts to appending

a predictor variable vector to the matrix and introducing a new coe�cient to the coe�cient

vector: 
µ1

µ2

µ3

...

µn

 =


1 x1 x2

1 x2 x2

1 x3 x3

...

1 xn xn


 β0

β1

β2

 (4.20)

The matrix-vector form yields the general form of the linear model µ = Xβ. This means that

the value vector µ is given by the model matrixX multiplied by the unknown parameter vector

β. The model matrix can account for an arbitrary amount of predictor variables by adding a

column for each predictor. This formulation assumes numerical predictor variables. Numerical

predictor variables can be either continuous or discrete. Continuous predictor variables are

usually measurements without clear boundaries between values. A classic example is the

measurement of length. Since there are many arbitrary values between 1 meter and 2 meters,

i.e. 1.1, 1.01, 1.001, they are called continuous. Discrete values have a clean border between

two values. The count of occurrences is an example of a discrete variable. Categorical variables

require special encoding in the model matrix. Dummy and factor encoding are the two

approaches for factor variables. For a detailed explanation on factor encoding in linear models

see Fahrmeir u. a. (2009). The model matrix is also known as design matrix and the terms

are used interchangeably. µ = Xβ is the canonical form of a linear model. Algebraically the

method for estimating β for one predictor and estimating the unknown vector β are very

similar. However, a stable and e�cient numerical solution for the matrix-vector form requires

adjustments.

Estimating Linear Models with least squares

Wood (2006) describes the estimation process for unknown parameter vectors as �nding the

least squares solution to β. The computationally stablest and fastest method involves QR-

decomposing the model matrix to express β̂ in terms of the upper triangular matrix. This

method is widely used in statistical packages. This approach starts with the linear model in

the full matrix-vector form:

µ = Xβ, y ≈ N(µ, In, σ
2) (4.21)

15

4 Linear Models

The model matrix X is a matrix with n rows and p columns. With n being the number of

observations and p being a product of predictors and their encoding. Estimating β requires

minimizing the Euclidean length of a vector. The Euclidean length of a vector is the squared

sum of its elements. For a vector v in n dimensional space the Euclidean length is de�ned as:

‖v‖2 ≡ vT v ≡
i=1∑
n

v2 (4.22)

An essential fact about the Euclidean length is that the rotation of a matrix’ coordinates

does not change its length. This property can be used to estimate β from an orthogonal matrix.

This also applies to the rotation of y−Xβ. Leveraging the Euclidean length to de�ne measure

S in the matrix-vector framework yields:

S = ‖y − µ‖2 = ‖y −Xβ‖2 (4.23)

The QR-decomposition of a matrix is a computational stable approach for estimating β

Wood (2006). Any real matrix X can be decomposed into an orthogonal matrix and a triangular

matrix.

X = Q

[
R

0

]
= QfR (4.24)

R is the upper triangular matrix with p rows and p columns and the matrix R has the rank

of the original matrix. Q is an orthogonal matrix with n rows and n columns of which the �rst

p columns form Qf . By de�nition multiplying a vector with an orthogonal matrix does not

change its length. The QR-decomposition divides a matrix into two district matrices that have

di�erent properties but maintain their lengths. Estimating coe�cients of a over-determined

system of equations can be stated in terms of a QR-decomposed matrix X . This amounts to

applying the QR decomposition of the model matrix to 4.23 and can be stated as:

‖y −Xβ‖2 =

∥∥∥∥∥y −Q
[
R

0

]
β

∥∥∥∥∥
2

= ‖QT y −

[
R

0

]
β‖2 (4.25)

Only the orthogonal matrix of the QR-decomposed model matrix is multiplied with the

response variable vector and the original model matrix. Multiplying QT with the response

16

4 Linear Models

vector can be stated as QT y =

[
f

r

]
. Where f is a vector of p dimensions and hence r is a

vector of n− p dimensions.

‖y −Xβ‖2 =

∥∥∥∥∥
[
f

r

]
−

[
R

0

]
β

∥∥∥∥∥
2

= ‖f −Rβ‖2 + ‖r‖2 (4.26)

This form exposes the residual error r as independent of β. ‖f −Rβ‖2 can be reduced to

zero by choosing β so that Rβ equals f . The estimator β̂ can be stated as:

β̂ = R−1f (4.27)

The reducible error, also called residual error, is the di�erence between the model matrix

multiplied by the estimated β minus the value for y. ‖r‖2 = ‖y −Xβ̂‖2. This section shows

that the β vector can be expressed in terms of the decomposed model matrix. All practical

applications for linear models rely on the QR-decomposition.

4.2 Generalized Linear Model

The generalized linear model ("GLM") is an extension of the general linear model. GLMs allow

the response variable to be of any exponential family distribution and the error term to be

heteroscedastic (Dobson und Barnett, 2008). The previously introduced general linear model

assumes a normally distributed response variables with a constant variance. The GLM is less

restrictive on the response variable by allowing it to be distributed according to any of the

exponential family distributions and by allowing the error to be non-constant. Exponential

family distributions contain many practical distributions including Poisson, binomial and

gamma. The binomial distribution is commonly used to model a binary outcome and the

Poisson distribution is used to model count data. The GLM models the link function g() of

the expected value µi as the linear combination of the model matrix X and the estimated

coe�cients β and can be formally described as:

g(µi) = Xiβi (4.28)

Xi is the ith row of a model matrix X and β is a vector of unknown parameters. The GLM

models the expected value of the random variable Y with µi ≡ E(Yi). Yi is now assumed to

be distributed according to some exponential family. Every exponential family distribution has

a link function which transforms the expected value vector µi into the space of the estimated

17

4 Linear Models

coe�cients. The estimation is performed on a transformed scale but the expected variance is

calculated on the original scale of the predictor variables. While the least squares approach

was su�cient for estimating linear models with a normally distributed response and a zero

mean error term, it fails to estimate other exponential distributions. The framework of least

squares estimation thus needs to be extended to account for any exponential family distribution

and a non-constant variance. Iterative reweighted least squares (’IRLS’) provides a method

for maximum likelihood estimation for any exponential family distribution and accounts for

heteroscedasticity (Dobson und Barnett, 2008). The following sections explain the link function,

how to generalize the MLE method from Normal to any exponential distribution and how

to account for non-constant variance by weighting each observation. IRLS provides a single

framework for estimation of all exponential family distributions and can be used to estimate a

special case of the GAM.

4.2.1 Likelihood for any exponential family distribution

Generalized linear model estimation is based on MLE. Unlike the MLE for linear models the

estimation process for GLM must account for two aspects: (1) Y can be of any exponential

family distribution and (2) heteroscedastic error terms.
5

Formally, the GLM models an n-vector

of independent response variables Y where g() is the link function and µ is the expected value

of Y :

g(µi) = Xiβ (4.29)

With µ ≡ E(Y) and the link transformation of Yi as Yi ≈ fθi(yi) where fθi stands for

the canonical link transformation of an exponential family distribution. The link function g()

connects to the expected value of y to the linear predictor of predictor variables. The in�uence

of β is linear but the PDF can be non-linear. The link function connects the two by transforming

the response variable in the space of the estimated coe�cients. The canonical link function gc

is a special case of the link function where gc = Xiβ. For example, the canonical link function

for the Poisson distribution is the log function. The canonical link function ensures that µ stays

within the range of the response variable. To estimate any exponential family distribution,

the likelihood criterion must be stated in a general form. The PDF of any exponential family

distribution can be stated as:

fθ = exp[{yθ − b(θ)}/a(φ) + c(y, φ)] (4.30)

5

The process of extending MLE to account for any exponential family distribution is described in Wood (2006)

18

4 Linear Models

a, b and c are arbitrary functions, φ is an arbitrary scale parameter and θ is the canonical

link parameters. The interesting property of this form is that the general expression for mean

and variance of exponential family distributions can be expressed in terms of a, b and φ. The

mean and the variance are the required parameters to �t any exponential family distribution

and are computed via deriving the log-likelihood. Since the natural logarithm is the inverse of

the exponential function, the log-likelihood can be written as:

l(θ) = [yθ − b(θ)]/a(φ) + c(y, φ) (4.31)

E(Y) can now compute by di�erentiating l with respect to θ and by treating l as a random

variable. This leads to a replacement of the particular value y with the random variable Y .

∂l

∂θ
= [y − b′(θ))]/a(φ)) (4.32)

E(
∂l

∂θ
) = [E(Y)− b′(θ))]/a(φ)) (4.33)

Given that E(∂l/∂θ) = 0, the expected value of the random variable Y can be stated as:

E(Y) = b′(θ) (4.34)

This results in a method to compute the mean of any exponential family random variable

with the �rst derivative of b with respect to θ. This the direct link between the β and the

model parameter. Allowing the parameter β to determine by the mean of the response variable

and hence the canonical parameter, is an established method for �nding these values glm.

The variance of that random variable can be computed from the second derivative of the

log-likelihood:

∂2l

∂2θ
= −b′′(θ)/a(φ) (4.35)

This formula can be re-arranged to express the variance of Y 6
.

var(Y) = b′′(θ)a(φ) (4.36)

To account for the mentioned heteroscedasticity, a weight w is introduced to weigh each

observation proportional to the reciprocal of the error variance for that observation. Thus,

data points with low variance are given higher weights and points with higher variance are

6

Wood (2006)

19

4 Linear Models

given lower weights. With this approach, the generalized linear model can be estimated on

data with a non-constant error term Dobson und Barnett (2008).

var(Y) = b′′(θ)a(φ)/w (4.37)

For reasons of simplicity the function V (µ) is de�ned as V (µ) = b′′(θ) such that var(Y) =

V µ) Wood (2006)

Given vector y of an observation random variable Y , the maximum likelihood estimation

of β is possible due to the independence of all Yi. The formal notation for the MLE of the

likelihood of β, L(β) becomes

L(β)
n∏
i=1

fθi(yi) (4.38)

Given the previously stated probability mass function for exponential family members, the

log likelihood l() of β can be written as:

l(β) =

n∑
i=1

log[fθi(yi))] =

n∑
i=1

(yiθi − bi(θi))/ai(φ) + ci(yi, φ) (4.39)

The log function transforms the product to a sum. φ is assumed to be constant for all i.

The only relevant choices for φ are ones that can be stated as ai(φ) = φ/wi with wi being a

constant. The weights are assumed to be known. This assumption allows us the rewrite the

previous formula as:

l(β) =
n∑
i=1

wi(yiθi − bi(θi)/ai(φ) + ci(yi, φ) (4.40)

The process of �nding the parameter vector β amounts to maximizing the log-likelihood by

partially di�erentiating l with respect to each element of β, setting the resulting expressions

to zero and solving for β.

∂l

∂βj
=

n∑
i=1

wi

(
yi
∂θi
∂βj
− b′(θi) ∂θi∂βj

)
(4.41)

Wood (2006) details that by applying the chain rule, E(Y) = b′(θ) and term substitution

the following form can be produced:

∂l

∂βj
=

1

φ

n∑
i=1

[yi − bi′(θi)]
b′′i (θi)/wi

∂µi
∂βj

(4.42)

20

4 Linear Models

By applying the framework developed above to determine variance and expected value the

full form for the estimation of β can be stated as:

n∑
i=1

(yi − µi)2

V (µi)

∂µi
∂βj

= 0 ∀ j. (4.43)

This matches exactly the same equation that would have to be solved to �nd β by non-linear

weighted least squares if the weights for (V (µi) were known in advance and were independent

of β. In that scenario the least squares objective would be

S =

n∑
i=1

(yi − µi)2

V (µi)
(4.44)

In the formulation, µi depends non-linearly on β but the weights V (µ) are treated as �xed.

To �nd the least squares estimated, ∂S/∂βj must equal to zero for all js. Formulating the

search for β as �nding the optimal choice of distribution parameters of Y invites an iterative

approach that chooses some parameter values and successively adjusts these.

4.2.2 Iterative Reweighted Least Squares

The iterative reweighted least squares ("IRLS") is a method for estimating the maximum

likelihood estimates for the GLM. IRLS realizes this by minimizing the distance between the

weighted current estimated response and the actual response variable Dobson und Barnett

(2008). The process can be state as: Let β̂[k] be the estimated parameter vector at the kth

iteration. η[k] is a vector with the elements η[k] = Xiβ̂
[k]

and µ
[k]
i is de�ned as the inverse of

the link function. µ
[k]
i = g−1(η

[k]
i). Given these de�nitions, the IRLS algorithm can be stated

as:
7
:

1. Compute the weighted variance V (µ
[k]
i) terms implied by the current estimate for β̂[k]

2. Use these estimates and apply the method described to minimize the least squares

objective with respect to β to obtain β̂[k]

3. Set k to k+1

To come to a computational formulation, the least square objective for IRLS can be written

as:

S =
∥∥∥√W [k]

(
z[k] −Xβ

)∥∥∥2 (4.45)

7

The IRLS de�nitions are taken from Wood (2006)

21

4 Linear Models

Where z[k] is the so-called "pseudo data" and W [k]]
is a diagonal matrix with a weight for

each observation, each de�ned as:

z
[k]
i = g′(µ[k])(yi − µ[k]i + η

[k]
i (4.46)

W
[k]
ii =

1

V (µ
[k]
i)µ

[k]
i

(4.47)

With these de�nitions we can �nally write the full form of the practically used IRLS.

1. Use current η[k] and µ[k] to calculate pseudo data z[k] and iterative weights for the

weights matrix W [k]

2. Minimize the least squares objective

∥∥∥√W [k] (
z[k] −Xβ

)∥∥∥2 w.r.t. β to obtain β̂[k+1]

and the resulting η[k+1] = Xiβ̂
[k+1]

and µ
[k+1]
i

3. Set k to k + 1

The proposed method is an iterative method that produces a vector of pseudo data z with

the current parameter estimated β̂ multiplied with the model matrix X and the expected value

of Yi. The distance between the pseudo data vector and the model matrix multiplied by the

weight is then minimized to produce a new set of estimates. Dobson und Barnett (2008) have

shown that the introduced method will converge on the optimal parameter vector β̂.

22

5 Generalized Additive Models

5.1 Generalized Additive Models

The generalized additive model ("GAM") extends the GLM with the ability to estimate vari-

ables with smoothing splines. This addition provides �exible estimation beyond the linear

parametric form of the linear models. GAM has the interpretability advantages of GLMs where

the contribution of each predictor variable is encoded. However, it has substantially more

�exibility because the relationship between predictor and response variable is not assumed

to be linear. The GAM assumes the relationship between predictor and response variable to

be the sum of arbitrary functions. These functions are regularized by penalizing the second

derivative. Because the acceleration of the functions are penalized, they are commonly referred

to as smooth functions. Hastie (1990) introduced GAMs and described many approaches to

estimating the smooth functions. Modern approaches have highlighted the use of regression

splines for smoothing functions estimation Wood (2006). Woods states that the smooth function

can best be represented as regression splines, which is what this thesis focuses on. This thesis

focuses on representing the unknown smooth function via regression splines. The bene�ts of

regression splines will be illustrated by progressively building a function in R that estimates a

GAM. To see the similarities to the GLM, formally describe the GAM as
1
:

g(µi) = X∗i θ + f1(x1i) + f2(x2i) + ...+ f3(x3i) (5.1)

The GAM inherits the link function g(), parameter vector θ and the model matrix X∗i from

the GLM. The GAM follows the GLM’s de�nition of µ ≡ E(Yi) and Y is distributed according

to some exponential family distribution. X∗i is the ith row of the model matrix. The GAM

introduces the smooth functions fj over the predictor variables xk. Specifying a model in

terms of a non-parametric smooth function allows xk to have an arbitrary pattern. Allowing

fj(xk) to follow any shape can give insight into response variable behavior that the parametric

form of GLMs fails to capture. The gained �exibility comes at the raises two new questions:

First, how to �nd these arbitrary functions and second, how to smooth them.

1

The notation and code examples for GAMs follows Wood (2006)

23

5 Generalized Additive Models

5.2 Regression Splines

Regression splines estimate any function by dividing the original function in non-overlaping

sections and �tting an individual function for each. Each section spans between so-called

"knots". Broadly speaking, a regression spline is a function that explains xi in terms of yi with

some error ε by �tting smaller functions and joining them together. The error term is a random

variable that is independent and identically distributed with N(0, σ2). This is identical to the

de�nition of non-parametric methods from the �rst section of this thesis. Formally we are

searching for a function f() that satis�es

yi = f(xi) + εi (5.2)

By leveraging the methods used for �tting a simple linear model, we assume the function

f to be linear in xi. This assumption guarantees that the function can be found with linear

parametric methods. Basis functions are a reasonable approach for estimating the function f

Wood (2006). The basis function allows to represent the function f as a combination of a basis

function and a parameter vector β. The function f can thus be written as:

f(x) =

q∑
i=1

bi(x)βi (5.3)

The function f is represented as the sum of basis functions multiplied by the parameter

vector. Basis splines can be represented as a sum of the basis dimension q. The basis dimension

q is a design choice and tailored to model the underlying behavior. The in�uence of β by linear

combination satis�es the linearity condition. James u. a. (2014) states that the basis over the

entire range of the data amounts to a polynomial regression. Polynomial regression can be

useful but su�ers from instability at the edges and is insu�cient for interpolation. The suitable

alternative is splines estimation. Splines divide the the unknown function into sections. Each

section is then �t with an individual polynomial. Each piecewise polynomial is required to be

continuous at the intersection with the adjacent piecewise polynomial. Basis splines allow to

�nd the interpolating spline through linear estimation. This approach gives enough �exibility

while satisfying the linearity constraint.

5.2.1 Basis Splines and the Cox-de-Boor Form

Basis splines ("B-splines") constitute an appropriate method for the nonparametric estimation

of an unknown function with the already introduced estimation methods. A B-Spline of order

k is a piecewise polynomial of degree k-1, which is continuous up to the kâ2 derivative at

24

5 Generalized Additive Models

the transition between knots. It is possible to uniquely represent any spline function as a

linear combination of B-Splines of that same degree and knots (De Boor, 2001). Expressing an

unknown function of a degree k can thus be described as constructing the B-Splines of order

k+1 and solving for the weights. Since the spline must be a linear combination of its B-Splines,

the weights can be estimated with the introduced least squares method. With this approach a

spline of a predictor variable can be �tted as part of linear or generalized linear model.

Formally, a B-Spline is de�ned over a range of knots which is a non-descending vector of

values.

t0 ≤ t1 ≤ ..tN ≤ tN + 1 (5.4)

Every B-Spline basis of order k can be expressed recursively as a B-Spline basis of order k-1.

The Cox-de-Boor provides recursive expression of a B-Spline B given an order k, a set of x

values and knots ti.

Bi,1(x) :=

 1 if ti ≤ x ≤ ti + 1

0 otherwise

(5.5)

Bi,k(x) :=
x− ti

ti+k−1 − ti
Bi,k−1(x) +

ti+k − x
ti+k − ti+1

Bi+1,k−1(x) (5.6)

This form de�nes the basis function between k adjacent knots for every knot. The following

examples illustrate how the Cox-de-Boor form generates a basis for orders 1 though 3. Starting

with 5.5: A basis function of order 1 is a step function that is 1 in the interval [t, ti+1] and 0

elsewhere. The basis is only de�ned between the current knot t and its neighbor ti+1. Since

this is a basis or order 1, the resulting polynomial is of degree 0 and constant.

Figure 5.1: B-Spline basis function Bi,1(t) of order 1 Zhang (2006)

25

5 Generalized Additive Models

A B-Spline basis function of order 2 is a piecewise linear function over the interval [t, ti+2]

and 0 elsewhere. The full recurrence for a B-Spline of order 2 is given as:

Bi,2(x) :=
x− ti

ti+k−1 − ti
Bi,1(x) +

ti+k − x
ti+k − ti+1

Bi+1,1(x) (5.7)

A B-Spline of degree 2 produces a piecewise polynomial of degree 1 between the interval

[t, ti+2] and 0 elsewhere. This B-Spline is de�ned between 3 adjacent knots.

Figure 5.2: B-Spline basis function Bi,2(t) of order 2 Zhang (2006)

A B-Spline of order 3 is piecewise quadratic function with a smooth transition at ti, ti+3.

The basis are 0 outside [ti, ti+3] and are de�ned between 4 adjacent knots. Following the

recurrence of 5.6, the B-Spline of degree 3 can be given as:

Bi,3(x) :=
x− ti

ti+k−1 − ti
Bi,2(x) +

ti+k − x
ti+k − ti+1

Bi+1,2(x) (5.8)

A main concern for curve �tting with B-Splines is the appropriate choice of knots. The

location and number of knots is a matter of design and has a major in�uence on the resulting

spline. Equidistant knots are called uniform. Uniform knots are the simplest to �t but do not

provide the desired �exibility. Equidistant knots su�er from uneven distributed data points and

become decreasingly e�ective with less data. Quantile knots are a reasonable approach to space

the same number of observations between each knot. Placing the same amount of observations

between each knot evens out the problem of uniform knots. The choice of knots may also

re�ect curvature of the underlying system. Given a time series of data with observations of a

variable at a regular interval, a choice of knots can be used to model non-linear trends.

26

5 Generalized Additive Models

Figure 5.3: B-Spline basis function Bi,3(t) of order 3 Zhang (2006)

This chart illustrates that for time series data the choice of uniform and equidistant knots

might fail to capture the underlying system. The highlighted areas show that there is stronger

curvature between some observations. A model to describe the underlying system can place

a focus on certain time intervals by placing more knots in the highlighted areas and less in

the other areas. The ability to place more knots in certain locations allows for very �exible

modeling. Dictating the shape of the estimated spline by positioning is a powerful design

tool and a major strength of B-Splines. The following section describes how a spline can be

estimated with the B-Spline representation.

5.2.2 Fi�ing Cubic Splines

This section describes how an arbitrary function can be estimated by generating the model

matrix with a cubic basis function and by solving the resulting system of equations. Cubic

splines are B-Splines of order 4 with the additional condition that the �rst and second derivatives

are equal at the knot location. This section explains the the process of �tting a cubic spline to

a data set with the predictor variable x and the response y. The function rk() de�nes a cubic

basis given a vector of values x and the relevant knots xk. The basis rk() is a special case of the

Cox-de-Boor B-Spline form but follows the same theory Wood (2006). The basis is a possible

cubic spline choice. With the function rk() the model matrix X for �nding a cubic spline can

be constructed. The function spl.X() uses the rk() function to generate a model matrix that

contains the basis for each knot x-values combination. This model matrix in combination with

the response vector can be solved to produce the coe�cient vector β and estimate a spline.

27

5 Generalized Additive Models

Figure 5.4: A sample times series of equidistant observations where uniform and quantile knots

are inappropriate economist (2011)

rk(x,z) constructs the basis for a cubic spline on [0,1]
rk<-function(x,z){
((z-0.5)^2-1/12)*((x-0.5)^2-1/12)/4-((abs(x-z)-0.5)^4-(abs(x-
z)-0.5)^2/2+7/240)/24
}
set up model matrix for cubic penalized regression spline
spl.X<-function(x,xk){

number of parameters
q<-length(xk)+2
number of data
n<-length(x)
initialized model matrix
X<-matrix(1,n,q)
set second column to x
X[,2]<-x
and remaining to R(x,xk)

28

5 Generalized Additive Models

X[,3:q]<-outer(x,xk,FUN=rk)
X}

The rows of the model matrix are determined by the number of elements in the data vector

x. The �rst two columns of the model matrix are for encoding and therefore of less interest

for this thesis. The remaining elements of the model matrix are computed through the basis

function rk(). Given that the splines were designed to be linear in the unknown parameter β,

the splines can be estimated with the lm method in R. The ability to �t an arbitrary function

by de�ning the basis and solving the resulting matrix with a linear method is the paramount

aspect of regression splines. It is of such crucial importance because this enables the estimation

of splines as part of GLMs. This allows for GAM estimation in Spark. To �t the spline, the

coe�cients are estimated from the model matrix with a linear model. The exact �tting happens

via the QR-decomposition described in the linear model section. The estimated coe�cients are

multiplied by the same design matrix that produced the coe�cients to estimate �tted values.

This process essentially �ts the function to the data that was used to estimate the coe�cients.

Given a data set of two variables, wear and size, an interpolating cubic spline can be estimated

via model matrix X and the linear estimation method lm().

choose some knots
xk<-1:4/5
generate model matrix
X<-spl.X(x,xk)
fit model with out the first column
mod.1<-lm(wear~X-1)
x values for prediction
xp<-0:100/100
prediction matrix
Xp<-spl.X(xp,xk)
plot the data with a dot plot with a fitted spline
plot(x,wear,xlab="Scaled engine size",ylab="Wear index")
lines(xp,Xp%*%coef(mod.1))

The resulting plot illustrates the data points of wear and size on a two-dimensional plot.

The estimated f() interpolates the data points with piecewise cubic splines. The estimated

function appears to represent the relationship between wear and engine size. The choice of

basis dimensions q = knots+2 was arbitrary and is addressed in the new section. This section

29

5 Generalized Additive Models

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

2.
0

3.
0

4.
0

Scaled engine size

W
ea

r
in

de
x

Figure 5.5: Wear engine relationship as a cubic spline

addressed how to estimate a function with the basis function and how to smooth that function

is set out in the next section.

5.2.3 Penalized Cubic Splines

Penalized cubic splines seek to �nd the smoothest interpolating spline by penalizing the

’wiggliness’ of a function. The choice of basis order does not su�ce to control the smoothness

of the resulting spline Wood (2006). The basis does in�uence the shape of the function but

does not su�ce to enforce the required smoothness. Penalized regression splines are a viable

approach to enforce smoothness. Penalized cubic splines use a smoothing parameter that

penalizes the second derivative. The second derivative or acceleration of an interpolating

function is also a proxy for over- and under�tting. If the acceleration of an interpolation

function is high, the function has enough curvature to account for each data point and will

over�t. By penalizing the acceleration of an interpolating function, over�tting can be avoided.

In the linear model section over-�tting has been stated as a weakness of non-parametric

30

5 Generalized Additive Models

methods. As stated, the aim of �tting a function is to �nd a parameter vector β that minimizes

the following equation:

‖y −Xβ‖2 (5.9)

The penalty term λ weights the second derivation of the estimated function f(). λ penalizes

a hectic function by giving less or more weight to the second derivative. As mentioned, the

second derivative of a function represents the acceleration or the mentioned ’wiggliness’. With

the penalty term the new subject of estimation becomes:

‖y −Xβ‖2 + λ

∫ 1

0
(f
′′
(x))2)dx (5.10)

The trade-o� between �tting all x-values and a smooth function is controlled by the penalty

term λ. Since the penalty term weights the smoothness criteria, it is also called smoothing

parameter. The choice of λ is crucial to the resulting function. While a λ of 0 creates a

function that will directly pass each x-data point, a high lambda value will over-penalize each

acceleration of the function f and generate a straight line. Since the estimated function f is

linear in β, the subject of estimation can be rewritten as:

‖y −Xβ‖2 + λβTSβ (5.11)

The matrix S is a penalty matrix that is speci�c to the chosen basis. The penalty matrix is a

diagonal matrix that contains the di�erences of adjacent values. For evenly spaced knots the

penalty can be written as:

P =
k−1∑
i=1

(βi+1 − βi)2 = β21 − 2β1β2 + 2β22 − 2β2β3 + ...+ β2k (5.12)

And the resulting penalty matrix can be expressed as the multiplication of estimated co-

e�cients and a di�erence matrix. The diagonal matrix has the di�erence between adjacent

coe�cients and its derivatives near the diagonal.

P = βT


1 −1 0 . .

−1 2 −1 . .

0 −1 2 0 .

.

.

β (5.13)

31

5 Generalized Additive Models

Unevenly spaced knots require a more sophisticated penalty term but this penalty matrix

has a more illustrative form. The problem of estimating the penalized regression spline is to

minimize the just-stated equation with respect to β and to estimate λ. It is important to state

that �tting a penalized regression spline requires an estimation of β and λ. Estimating λ will

be discussed in the next section. For a computationally stable �tting of regression splines the

above formula can be rewritten as the following:

‖y −Xβ‖2 + λβTSβ =

∥∥∥∥∥
[
y

0

]
−

[
X√
λB

]
β

∥∥∥∥∥
2

(5.14)

The penalty matrix S for a given basis can be written as its square root B Wood (2006). Any

symmetric matrix can be decomposed into the following form: B =
√
S. The model matrix

X has been augmented with the square root of the penalty matrix S multiplied by the square

root of λ. Since the X matrix is augmented, the vector of y values needs to be augmented

to maintain the required dimensions. Since we still are using linear models, the number of

elements in the y vector must match the number of rows in the augmented X matrix. A simple

square root of a matrix can be written as:

The penalty matrix is speci�c to each basis function. For the author’s choice of the rk basis

the matrix S is created by forming an outer-knot product with the basis rk. The resulting

matrix S is the speci�c penalty matrix for a vector of knots and a basis:

set up the penalized regression spline penalty matrix,
given knot sequence xk
spl.S<-function(xk){

dimension of basis
q<-length(xk)+2
initialize matrix to 0
S<-matrix(0,q,q)
fill in non-zero part
S[3:q,3:q]<-outer(xk,xk,FUN=rk)
S

}

The full model matrix for a penalized spline consists of two combined matrices. The spl.X

function constructs the basis and spl.S produces the corresponding penalty matrix. By combin-

ing the two matrices, the full matrix of 5.21 is constructed.

32

5 Generalized Additive Models

function to fit penalized regression spline to x,y data,
with knots x_knots, given smoothing parameter, lambda.
prs.fit<-function(y,x,x_knots,lambda){

dimension of basis
q<-length(x_knots)+2
number of data points
n<-length(x)
create augmented model matrix
Xa <- rbind(spl.X(x,x_knots),

mat.sqrt(spl.S(x_knots))*sqrt(lambda))
augment the data vector
y[(n+1):(n+q)]<-0
fit penalized regression spline with a linear model
lm(y ~ Xa-1)

}

The prs.Fit function estimates a penalized regression spline for a given vector y of response

variables, a vector x of predictor variables, a choice of knots xknots and a given smoothing

parameter λ. The method then forms X , B, y and

√
λ according to 5.21. The formed system of

equation is solved by the linear model. The resulting estimated model contains the estimated

coe�cients. The proposed function can be used to estimate a penalized regression spline for

the wear data set.

choose some knots
x_knots <-1:7/8
choose a smoothing parameter lambda
lambda <- 0.0001
fit penalized regression spline
mod.2 <- prs.fit(wear,x,x_knots, lambda)
matrix to map params to fitted values at xp
Xp<-spl.X(xp,x_knots)
plot data & spl. fit
plot(x,wear);lines(xp,Xp%*%coef(mod.2))

From the function prs.�t and 5.21 it should be be evident that the choice of λ has a signi�cant

in�uence on the shape of f . The �gure below illustrates the in�uence of λ on the shape of f

33

5 Generalized Additive Models

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

2.
0

3.
0

4.
0

x

w
ea

r

Figure 5.6: Wear engine relationship as a penalized cubic spline

Wood (2006) states that the in�uence of λ is signi�cant so that it should be estimated

individually. This section shows how to estimate the coe�cient vector for a penalized regression

spline. The estimation of λ is discussed in the next section.

5.3 Smoothing Parameter Estimation

The previous section and �gure 5.7 in particular illustrated the importance of the smoothing

parameter λ. A high value for λwill cause over-smoothing while a low value will under-smooth

the data. Too high or too low, a bad choice for λ will result in a spline f̂ that is far from the

original unknown function f . An ideal λ has a small distance between f and f̂ . A measure M

is de�ned to capture this notion.

M =
1

n

n∑
i=1

(f̂i − fi)2 (5.15)

34

5 Generalized Additive Models

Figure 5.7: λ in�uence on the estimated spline function f . Wood (2006)

Wood (2006) uses the following notation for the following equations: f̂i ≡ f̂(xi) and

fi ≡ f(xi). A suitable criterion to estimate λ is thus to minimize M . However, since the true

function f is known, M cannot be estimated but it is possible to estimate the squared error

E(M) + σ2. Wood (2006) proposes to �nd λ through cross validation. Cross validation is

widely used in statistics. Broadly speaking cross validation validates a model on data outside

of the training set. Given f̂−i is the estimated function on all data except yi, an ordinary cross

validation can be given:

Vo =
1

n

n∑
i=1

(f̂−i − yi)2 (5.16)

This score results from leaving out each data point in turn, �tting the model to the remaining

data and calculating the squared di�erence between the missing data point and its predicted

value. These squared di�erences are then averaged over all the data. It should be obvious that

the process of re�tting the function for each y value is O(n2). A computationally superior

cross validation score can be given in terms of a projection matrix Wood (2006).

Vo =
1

n

n∑
i=1

(yi − f̂i)2/(1−Aii)2 (5.17)

The author thus proposes the generalized cross validation score ("gcv") to avoid the computa-

tional overhead. The function’s value at the current index can be expressed in terms of the hat

matrix. For the purpose of this thesis, the hat matrix can be any projection in the column space.

Computing the cross validation score through the hat matrix allows for validation without

forming each possible function for each y value. The computationally most stable version of

35

5 Generalized Additive Models

the gcv score replaces the weights 1− Aii by the mean weight tr(I − A)/n. For a detailed

discussion of the gcv see Wahba (1990).

Vg =
n
∑n

i=1(yi − f̂i)2

tr(I −A)2
(5.18)

This section will use this de�nition to compute the gcv score for a given function and the

given hat matrix. Thereby a simple loop can be established in order to �nd the best possible

λ. This is a very simple approach to �nding the smoothing parameter that minimize the gcv

score. The model producing the smallest gcv score generates the smoothest possible cubic

spline for the given data set.

lambda<-1e-8
n<-length(wear)
V<-0
for (i in 1:60) # loop through smoothing parameters

{
fit model, given lambda
mod<-prs.fit(wear,x,xk,lambda)
find tr(A)
trA<-sum(influence(mod)$hat[1:n])
residual sum of squares
rss<-sum((wear-fitted(mod)[1:n])^2)
obtain GCV score
V[i]<-n*rss/(n-trA)^2
increase lambda
lambda<-lambda*1.5

}
plot(1:60,V,type="l",main="GCV score",xlab="i")

extract index of min(V)
i<-(1:60)[V==min(V)]
fit optimal model
mod.3<-prs.fit(wear,x,xk,1.5^(i-1)*1e-8)
Xp<-spl.X(xp,xk)

36

5 Generalized Additive Models

0 10 20 30 40 50 60

0.
46

0.
50

0.
54

GCV score

i

V

Figure 5.8: A varying penalty term has a signi�cant in�uence on the resulting GCV score

plot(x,wear)
lines(xp,Xp%*%coef(mod.3))

This section introduced the gcv score as a measure to evaluate the �t of a penalized regression

spline. The gcv score is the central metric in evaluating choices for λ and will be used in the

following sections to search for the ideal generalized additive models.

5.4 Additive Model

The discussed methods �t a regression spline to a single variable. Almost all relevant models

have more than one variable. The additive model models the response as the sum of several

predictors. Wood (2006) formally describes the additive model as:

yi = f1(xi) + f2(zi)...fn(wi) + εi (5.19)

37

5 Generalized Additive Models

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

2.
0

3.
0

4.
0

x

w
ea

r

Figure 5.9: The smoothest interpolating spline for the given basis and set of knots

The functions fj are smooth functions estimated with the methods introduced in the previous

sections. The error term ε is distributed according to an independent identically distributed

N(0, σ2). Modelling yi as the sum of individual smoothing functions rather than a single

function of all terms imposes a very strong condition. f1(x) + f2(z) is a special case of the

of the general smooth function of both predictors f(x, z). The bene�t of modelling each

function individually is that each predictor maintains the interpretability of the linear model.

Estimating f(x, z) would provide superior �exibility but drastically decreased interpretability.

The individual smooth function is a major bene�t of the additive model. Fitting additive models

with by the methods used for a single regression spline amounts to rewriting the penalty term.

Instead of penalizing a single spline both splines need to be penalized. The unknown parameter

vector β for the additive model can be estimated by the minimization of the penalized least

squares objective.

‖y −Xβ‖2 + λ1β
TS1β + λ2β

TS2β (5.20)

38

5 Generalized Additive Models

Each smoothing function is estimated by an individual penalty matrix Si and a smoothing

parameter λi. The additive nature of the model enables to write the combined penalty as

S ≡ λ1S1 + λ2S3. The ability to rewrite the penalty matrix as the addition of the individual

penalty matrices and smoothing parameter enables to rewrite the least squares objective for

computation.

‖y −Xβ‖2 + βTSβ =

∥∥∥∥∥
[
y

0

]
−

[
X

B

]
β

∥∥∥∥∥
2

(5.21)

Similar to the single smoothing function, theB is any square root matrix such thatBTB = S.

Summing the di�erent λ and S terms into the square root matrix enables this model to be

estimated with the standard linear model. GAM estimation can be performed in two steps: (1)

Set up the model and the penalty matrices. (2) Estimate the models with smoothing parameters

Wood (2006).

Get X, S_1 and S_2 for a simple 2 term AM
am.setup<-function(x,z,q=10){

generate equidistant knots for simplicity
xk <- quantile(unique(x),1:(q-2)/(q-1))
zk <- quantile(unique(z),1:(q-2)/(q-1))

Generate two individual, non-overlaping penalty matricies
S <- list()
S[[1]] <- S[[2]] <- matrix(0,2*q-1,2*q-1)
S[[1]][2:q,2:q] <- spl.S(xk)[-1,-1]
S[[2]][(q+1):(2*q-1),(q+1):(2*q-1)] <- spl.S(zk)[-1,-1]
Set up the model matrix X

n<-length(x)
X<-matrix(1,n,2*q-1)
1st smooth
X[,2:q]<-spl.X(x,xk)[,-1]
2nd smooth
X[,(q+1):(2*q-1)]<-spl.X(z,zk)[,-1]
list(X=X,S=S)

}

The function am.setup generates the model matrix and the penalty matrices for two predictor

variables and a �xed set of equidistant knots Wood (2006). The knots are an arbitrary choice

39

5 Generalized Additive Models

and only for illustrative purposes. A key aspect is that the function sets up two penalty matrices.

To maintain the additive property each penalty matrix gets placed in a scaled penalty matrix

that is zeros outside of the individual penalty matrix. The scaled penalty matrix has the size of

n rows and the number of parameters multiplied by the penalty matrices. For example, the

�rst penalty matrix covers all rows of for the �rst number of parameter columns and is zero

otherwise. The second penalty matrix is 0 where the previous matrix was de�ned. Setting the

penalty matrix up this way allows for multiplying the smoothing parameter individually to

each matrix and maintaining its additive property. The constructed model matrix X and the

list of individual penalty matrices are now su�cient to estimate an additive model.

function to fit simple 2 term additive model
fit.am<-function(y,X,S,sp){

generate the full penalty matrix and take square root
rS <- mat.sqrt(sp[1]*S[[1]]+sp[2]*S[[2]])
number of params
q <- ncol(X)
n <- nrow(X)
X1 <- rbind(X,rS)
augment data
y1<-y;y1[(n+1):(n+q)]<-0
fit model
b<-lm(y1~X1-1)
tr(A)
trA<-sum(influence(b)$hat[1:n])
RSS
norm<-sum((y-fitted(b)[1:n])^2)
list(model=b,gcv=norm*n/(n-trA)^2,sp=sp)

}

The function �t.am takes the previously generated model and penalty matrix, a vector of y

values and a vector of smoothing parameter values and produces a list of the model and the gcv

score Wood (2006). Each penalty matrix receives an individual smoothing parameter. De�ning

the full penalty matrix as zero outside of the individual penalty matrix allows for multiplying

the smoothing parameter and then adding the individual matrices to form the full penalty

matrix rS. The model matrix on top of the penalty matrix forms the complete model matrix X .

Since the model matrix has more rows that the data vector y, the data vectors receives zeros to

40

5 Generalized Additive Models

match the augmented matrix’ number of rows. The resulting model is then �t via the linear

model from section two. After the model is �t, the gcv score is computed and stored.

5.4.1 Additive Model Example

The process of �tting a two-term additive model can be best understood by using the setup.am

and �t.am functions on a dataset. Wood (2006) uses a default R dataset called trees. This dataset

contains three variables: Volume, Girth and Height for 31 felled cherry trees. The process of

�tting an additive model via cubic splines can by illustrated by explaining the volume of a

cherry as a function of girth and height. The author suggests the following model:

V olumne = f1(Girth) + f2(Height) + εi (5.22)

This model can be estimated with the functions de�ned in the previous section.

am0 <- am.setup(trees$Girth,trees$Height)

The model matrix and the penalty matrices are setup with the rescaled parameters of girth

and height. The resulting list can then be used to estimate the full model but not the smoothing

parameter. To estimate the smoothing parameter, the �t.am functions is called with several

choices of λ. The λ that generates the lowest gcv score is estimated by iteratively trying

di�erent λ values.

initialize smoothing parameter (s.p.) array
sp<-c(0,0)
loop over s.p. grid
for (i in 1:30) for (j in 1:30){

s.p.s
sp[1]<-1e-5*2^(i-1);sp[2]<-1e-5*2^(j-1)
fit using s.p.s.
b<-fit.am(trees$Volume,am0$X,am0$S,sp)
number of data
if (i+j==2) best<-b else
augmented X
if (b$gcv<best$gcv) best<-b

}
lowest GCV score producing smoothing parameter

41

5 Generalized Additive Models

best$sp

[1] 0.01024 5368.70912

The resulting smoothing parameter for girth is fairly low, presumably allowing f1 some

curvature. Height has a very high smoothing parameter, which, most likely, results in a rather

straight line. The values of the smoothing functions at the predictor variable values can be

obtained by zeroing all model coe�cients except those corresponding to the term of interest

and using R’s predict function.

The resulting plot con�rms the observation that the Girth smooth has more curvature than

the Height smooth. The middle �gure is the estimate of the smooth function of Girth at the

given Girth data. The right �gure is the estimate of the smooth function of Height at the given

Height data.

5.5 Generalized Additive Model

Generalized additive models (GAMs) follow from additive models, as generalized linear models

follow from linear models Wood (2006). Like the GLM, the GAM predicts some known smooth

monotonic function of the expected value of the response. The response can follow any

exponential family distribution. For the sake of illustrating the similarities to a GLM, the

function �t.am can extended to account for a gamma error and log link function.

function to fit simple 2 term generalized additive model
Gamma errors and log link
fit.gamG<-function(y,X,S,sp){

get sqrt of combined penalty matrix
rS <- mat.sqrt(sp[1]*S[[1]]+sp[2]*S[[2]])
number of parameterss
q <- ncol(X)
number of data points
n <- nrow(X)
augmented model matrix
X1 <- rbind(X,rS)
initialize parameters
b <- rep(0,q);b[1] <- 1
initialize convergence control

42

5 Generalized Additive Models

norm <- 0;old.norm <- 1
repeat unconverged
while (abs(norm-old.norm)>1e-4*norm) {
generate pseudo data by computing expected value of cur-

rent beta choice
eta <- (X1%*%b)[1:n]
log link, exp of pseudo data
mu <- exp(eta)
compute pseudo data
z <- (y-mu)/mu + eta
augment pseudo data
z[(n+1):(n+q)] <- 0
solve the linear model with pseudo data
m <- lm(z~X1-1)

}
list(model=m,gcv=norm*n/(n-trA)^2,sp=sp)

}

The function �t.gamG takes a model matrix X and a list of penalty matrices S. Both can be

generated by the am.setup function. The generalized additive model seeks the best smoothing

parameter by iteratively searching for a value until convergence. Each iteration step forms a

vector of pseudo data. Pseudo data is the estimated value of the current parameter estimation

after transformation by the canonical link function. If the resulting gcv score of the current

pseudo data does not change, the model converges. This function highlights the two step-

approach to �tting GAMs. Step 1: Use a given choice of lambda parameters to generate the

penalty matrix. Step 2: Merge the model and penalty matrix and estimate the coe�cients.The

�tting process of �nding β given a choice of λ is called penalized iterative reweighted least

squares and is described in the next section.

5.5.1 Penalized Iterative Reweighted Least Squares

While the GLM is �tted by the iterative re-weighted least squares, GAMs are �tted by the

penalized reweighted least squares. The major di�erence is that the minimization objective

contains the penalty matrix. The estimation process with the augmented model matrix is

illustrated in 5.4.1 and used in the previous section. The method suggested to �t GAMs with

43

5 Generalized Additive Models

Apache Spark uses an unpenalized model matrix. Details for penalized reweighted least squares

can be found in Wood (2006).

44

6 Generalized additive models for very
large datasets

This chapter two describes two ecosystems for estimating the generalized additive model on

very large datasets. The R language is a statistical programming language designed to handle

statistical models on a single machine. Spark is a cluster computing framework designed to

handle terabytes of data in distributed environments. R o�ers the GAM with a limited cluster

computing platform, whilst Spark only o�ers the GLM. This section uses the aforementioned

spline estimation methods to treat the GAM as an augmented GLM in Spark.

6.1 R Overview

R is a programming language designed for statistical modeling and data analysis. R was

introduced as the successor to S, which was the �rst programming language designed for

statistics. The designers of the language sharply focused on the realization of statistical

concepts and their primary focus lay on executing statistical software on a single machine.

Its wide use in academia and the professional world has bred a lively community and large

ecosystem for libraries. R o�ers excellent packages for data manipulation, data analysis and

data visualization. The mgcv package provides GAM estimation with a wide array of spline

basis and smoothing parameter estimation. The package’s gam() method is build to estimate a

gam on a single machine with a single or several cores. For very large datasets the mgcv package

o�ers a bam() method that estimate GAMs in a distributed environment Wood u. a. (2015). The

bam() implementation leverages the R libraries "parallel" and "snow". Both libraries allow R

processes to communicate across a network. However, the R cluster computing environment is

a fragmented addition to R’s core functionality. The cluster manager and the communication

protocol rely on established tools but each acts independently of R. The parallel library cluster

manager and the communication protocol are their own ecosystem. This fragmentation renders

the execution’s monitoring and manging complex. The execution of R code on a cluster thus

relies on the orchestration of several independent parts and is a relic of R’s initial design

Schmidberger u. a. (2009). This coordination of a fragmented cluster ecosystem posed limits on

45

6 Generalized additive models for very large datasets

R’s capability to be used on very large datasets. The following sections show how the GAM

can be implemented in a homogeneous cluster computing framework called Spark.

6.2 Apache Spark Overview

Apache Spark is a general purpose cluster computing engine designed for handling iterative

workloads on very large data sets Zaharia u. a. (2010). Spark is commonly seen as a successor

to the class of MapReduce frameworks that emerged in the last decade. The open source

projects HDFS, Hadoop and Hive brought large scale data storage, processing and analytics to

many academic and professional organisations. HDFS allows for storing petabyte level data

on distributed and heterogeneous infrastructure but exposes it through a homogeneous API.

Hadoop and Hive are APIs that allow the performance of MapReduce operations on very large

data sets stored in HDFS. Spark goes further by o�ering a high level general purpose API and

distributed, in-memory processing. The main advantage of the general purpose API is the

ability to abstract from the MapReduce pattern when solving a problem with Spark. Spark

o�ers a �exible API in Scala, Pyhton, Java and R to perform many other operations other than

MapReduce. Other than Hive or Hadoop the processing steps do not have to follow strict Map

and Reduce patterns. Spark uses a scheduler pattern to execute submitted applications. Every

Spark application contains a driver program with the main function and a connection to the

cluster manager. This connection is called the Spark Context and connects the application

logic to the cluster manager. The cluster manager coordinates the registered worker nodes

and distributes the workload. Each worker node contains a set number of executors which

perform the actual computation.

This architecture allows for scaling horizontally with increasing workload. Scaling hor-

izontally means that an increase in workload, data or processing, can be accounted for by

increasing the number of worker nodes. This is particularly important for handling very

large data sets, as the limit of processing and storage is the number of available worker nodes.

Modern cloud computing providers facilitate access to an avalanche of machines, thus its

capacity is limited by the number of available worker nodes. The traditional limit for statistical

models has been computing power, memory and data storage of a single machine. This model

accounts for an increasing workload by vertical scaling. Vertical scaling is the process of

increasing the computing resources of available machines. It is very resource intensive and a

rather in�exible approach. Sparks ability to horizontally scale makes it an ideal environment

to compute statistical models for very large datasets.

46

6 Generalized additive models for very large datasets

Figure 6.1: Every worker node contains a number of executors. Executors can communicate to

other executors within the same application sparkdocumentation

Spark applications perform operations on an abstraction called resilient distributed data

set (’RDD’). The RDD is Spark’s central data structure and can be thought of as a distributed

collection that facilitates four properties: memory abstraction, partitioning, resilience, and lazy

execution. A major advantage of Spark is the ability to write a memory optimized application

while maintaining a high level of abstraction. Historically memory optimized code often

involves writing Fortran or C level code, which forces a very low level perspective on the

programmer. Specifying memory allocation enables very well performing code but it forces

the programmer to worry about minuscule technical details rather than the actual task. Spark,

however, allows for writing memory optimized code while interacting with columns and

rows. Thinking about data in terms of rows and columns is a familiar abstraction from other

analytics software like Python and R. Spark combines this high level abstraction with low-level

optimization that is hidden from the programmer. Spark was designed for cyclic workloads.

Performing an iterative operation on the same dataset in Hive or HDFS involved loading the the

data from disk several times and performing the task. This lead to a large portion of Hive and

Hadoop applications to be spent on I/O, not the actually computation. Spark was designed to

address this weakness and maintains the working set in memory for the entire computation of

a RDD. Spark uses lazy evaluation to reduce the memory usage of a program. Spark facilitates

lazy execution through a concept called lineage. A driver program translates the program into

a logical plan of operations performed on a RDD. The execution plan can be thought of as a

directed acyclic graph (’DAG’) where each vertex is a RDD and each edge a transformation. The

logical execution plan adds an edge and a vertex for each operation, thus the root of the graph

is the initial RDD and the result one of the leafs. The path from the root to a vertex is called its

47

6 Generalized additive models for very large datasets

linage. During the execution of the driver program no computation on any RDD is performed

until a result is required by a di�erent computation or by the programmer. Spark realizes this

by dividing the operations into two classes: Transformations and actions. Transformations will

add a vertex and an edge to the DAG without executing the calculation. Map() and Filter() are

common examples of transformations. Actions add a vertex and an edge but require particular

values to be returned and thus the execution of all upstream transformations. The concept

of lineage also allows for quickly recovering a failed RDD from its predecessors by simple

applying the last transformation to its parent RDD. The ability to recover fast from failure

adds reliability. The RDD serves as the internal data structure for Spark and the application

developer usually interacts with either the DataFrame or DataSet API. Spark is written in Scala,

a functional programming language for the Java virtual machine ("JVM"). The JVM has been

established as an environment for parallel computing and is considered a stable platform for

parallel computation Al-Jaroodi u. a. (2002).

Sparks scalability and in-memory processing capabilities provide an ideal environment for

handling large datasets. The ability to perform iterative workloads in-memory on a very large

scale has been proven to be a powerful framework for solving problems on a large scale Xin

(2014).

6.3 Generalized Linear Models in Spark

Spark o�ers a GLM implementation as part of their machine learning library. Sparks high level

API and in-memory processing can be used for a wide array of applications. For example, Spark

o�ers libraries for streaming, SQL and graph computation. This thesis leverages the machine

learning library (’MLlib’) to implement GAMs in Spark. MLlib was designed to o�er practical

machine learning whilst maintaining scalability and ease of use. It o�ers many common

learning algorithms including classi�cation, regression and clustering. The GLM is speci�ed in

SparkR, a R language binding for some MLlib models. This approach allows for writing R code

whilst executing a Spark job. The language binding is realized as an object mapper that passes

the data and model description from R to Spark. The major advantage of SparkR is the ability

to de�ne models with an RFormula. Statistical models in R are traditionally expressed in terms

of RFormula’s domain speci�c language (’DSL’). The DSL contains common statistical model

descriptions, such as ’ ’ explain, ’+’ column, ’:’ interaction, ’-’ deletion and ’.’ all. For example,

the RFormula for a model explaining Y in terms of X1 and the interaction between X2 and

X3 looks like the following: Y X1 + X2 : X3. SparkR is implemented as an R package that

provides a connection to a Spark cluster manager and the object mapper.

48

6 Generalized additive models for very large datasets

MLlib de�nes applications in terms of pipelines, estimators and transformers. A pipeline

is de�ned as a series of stages, which can be either be an estimator or a transformer. Sparks

MLlib uses the abstraction of DataFrame to interact with an RDD. A DataFrame is a SQL-like

interface to the data stored in the RDD. The DataFrame API is similar to SQL regarding the

querying mechanics and data manipulation through registered User De�ned Function ("UDF").

All operations on a DataFrame are expressed in terms of a SQL query or an UDF. Every data

selection, �lter or manipulation must be stated as an SQL query or an UDF. UDFs are usually

row-wise manipulations that have access to the columns of particular rows and primitive

constants. A MLlib pipeline originates at a particular DataFrame and passes through several

estimator and transformer stages. Every MLlib transformer implements a transform() method,

this method transforms a given RDD into a di�erent RDD. For example, a given transformer

may add a new column to its parent DataFrame via an UDF. An estimator is an abstraction for

the used learning model. Each estimator implements the method �t() which accepts an RDD

and returns a transformer. The resulting transformer can then be used to produce predictions

for a given DataFrame containing the columns of the original DataFrame.

The GLM in Spark are realized in two connected modules: SparkR and MLlib. Spark GLMs

are de�ned in the R environment via SparkR. The SparkR library provides a spark.glm()

function in R that takes the RFormula, the distribution family, along with a pointer to the the

associated data frame and wraps it as a Java object that is sent to Spark. This signature of the

spark.glm() is identical to the classic glm(). This object is then converted to a GLMWrapper in

MLlib. The GLMWrapper has a �t() method that produces a pipeline with two stages: First,

the RFormulaParser and second, the generalized linear regression. The RFormlulaParser is a

transformer that encodes the input columns according to the RFormula into a model matrix.

String and factor encoding happens as part of the RFormulaParser transformer. The model

matrix is row wisely added to the original DataFrame as a new column called ’feature’. The

Y variable is added as a column called ’label’. The DataFrame with these two added columns

is passed to the next pipeline stage, the generalized linear regression. The generalized linear

regression is an estimator that generates an IRLS MLlib object. The IRLS object implements

the �tting of generalized linear models as described in 4.2.2. The IRLS object takes the ’feature’

and ’label’ columns of the DataFrame and adds initial weights to each observation with a new

’weight’ column. A DataFrame only containing the ’feature’, ’label’ and ’weight’ columns

is then used to create a weighted least squared ("WLS") object. The WLS object uses basic

linear algebra subprograms ("BLAS"), a highly optimized Fortran routine, to solve the system

of equations using the Cholesky Decomposition. This IRLS object repeats weight adjustment

and the WLS estimation until convergence.

49

6 Generalized additive models for very large datasets

6.4 Casting the generalized additive model as a generalized
linear model in Spark

A very useful property of the GAM is the ability to cast them as a special case of the GLM

Wood (2006). As outlined in previous sections, the �tting process of GLM and GAM are similar,

the di�erence being the minimization subject. GLMs are estimated by minimizing the squared

error with the IRLS method while GAMs are estimated by minimizing the penalized squared

error with the P-IRLS method. However, a GAM can also be estimated with IRLS when splines

are represented as basis functions and the penalty term is neglected. The GAM uses a penalty

term to safeguard against over�tting; the more knots are used to estimate a spline, the likelier

an estimated function too close to the training data becomes. A moderate number of knots

can alleviate this problem by restraining the estimated function’s ability to capture the data.

The appropriate number of knots is a deliberate design choice and should aim to capture the

underlying trend, not each data point. Estimating GAMs as a GLM with spline estimation

is thus prone to over�tting and this must therefore be deliberately addressed by the person

crafting the statistical model by an appropriate choice of knots. The question of penalty term

estimation is thus deferred to the choice of knots. This approach is less safe than traditional

GAM �tting with smoothing parameter estimation but allows harnessing the existing GLM

and IRLS functionality o�ered in MLlib.

The MLlib GLM implementation can be modi�ed to �t some predictor variables as a regres-

sion spline. To realize the spline estimation of a predictor variable, GLM pipeline must account

for two changes: the RFormulaParser stage must be able to parse a spline term and the model

matrix must be augmented with the basis representation of the spline. A major advantage of

this approach is that the generalized linear regression stage of the GLM is able to process the

augmented model matrix. To realize smoothing term parsing and model matrix augmentation,

a new transformer stage is introduced to the GLM. This stage is called SplineTransformer and

precedes the RFormulaParser and the GLR of the GLM �t() pipeline.

Parsing the spline term and the modi�cation of the model matrix is realized as an additional

stage of the GLM �t() pipeline. A SplineTransfomer transformer is introduced before RFormu-

laParser and the Generalized Linear Regression Estimator. The SplineTransformer facilitates

the two additions required for the GAM to be cast as a GLM. First, the SplineTransformer

parses the spline terms in the RFormula. Borrowing from R’s mgcv package, a spline term can

be speci�ed as ’s(predictor name, basis=cubic, knots=List(1,2,3...)’. Second, the parsed spline

contains three information required to form the basis. Given the basis order, the column to be

expressed as a spline and number of knots the basis functions are formed via the Cox-de-Boor

50

6 Generalized additive models for very large datasets

form. The Cox-de-Boor 5.6 allows to represent a spline through its basis. This is realized by

creating a function b() that constructs the basis functions according to the Cox-de-Boor form.

This function is then used on each value of the predictor variable column to produce the basis.

def b(k: Int, i: Int, x: Double, knots: Vector[Double]): Double = k match {
case 1 =>

if (knots(i) <= x && x < knots(i + 1)) return 1 else 0
case _ =>

(x - knots(i)) / (knots(i + k - 1) - knots(i)) * b(k - 1, i, x, knots) +
(knots(i + k) - x) / (knots(i + k) - knots(i + 1)) * b(k - 1, i + 1, x, knots)

}

val toSplineFunctionVector: (Double, Int, String) => Vector[Double] = {
(x, order, knotsList) =>
Vector.tabulate(stringListToVector(knotsList).length-order){

index => b(order,index,x,stringListToVector(knotsList))}
}

val toSplineFunctionVectorUdf = udf(toSplineFunctionVector)

The UDF adds each element of the basis function vector as an individual column. Once the

spline terms have been added, the RFormula is modi�ed to account for the new columns. To

leverage the existing GLM functionality, the spline terms s() are removed from the RFormula

and the individual spline basis columns are added as a simple predictor ’+’. This allows for

treating the resulting DataFrame with the augmented RFormula as the an ordinary MLlib

GLM. Thus a GAM can be �tted by representing the smooth function through the Cox-de-Boor

form and treating the resulting model matrix as the minimization subject of a least squares

method. This approach only accounts for spline estimation of some predictor variable but no

the smoothing parameter.

6.5 GAM in Spark Example

This section shows a working example of a GAM �tted with Spark using the MLlib GLM

extension described in the previous section. The transformation of the DataFrame and the

RFormula becomes apparent in the log provided below.

load the manipulated SparkR library
library(SparkR

, lib.loc = c(file.path(Sys.getenv("SPARK_HOME")
, "R"
, "lib")))

create a Spark context with 6 virtual worker nodes and 4g of mem-
ory

51

6 Generalized additive models for very large datasets

sc <- sparkR.session(master = "local[6]"
, sparkEnvir = list(spark.driver.memory="4g"))

create a Spark DataFrame from the local R data table
df <- createDataFrame(sc, cars)

describe a Mllib GLM using the RFormula in SparkR
the spline 's(..)' term contains a column, basis and knot vector
data is pointing to a Spark DataFrame
spark_gam <- glm(

wt ~ disp + cyl + s(wt, bs=cs, knots=
c(2.01,2.3,3.2,3.6,3.9,4.1,4.5,4.9,5.2,5.4))

, data=df
, family="poisson")

Spark Log Output:
#
Passed formula string
wt ~ disp + cyl + s(wt, bs = cs, knots = c(2.01, 2.3, 3.2, 3.6,3.9,

4.1, 4.5, 4.9, 5.2, 5.4))

DataFrame columns
mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb

The SplineTransformer now transforms the given RFormula
and the DataFrame

The augmented RFormula now describes the model
wt ~ disp + cyl + wt_smooth_0 + wt_smooth_1 + wt_smooth_2 +

wt_smooth_3 + wt_smooth_4 + wt_smooth_5

The augmented DataFrame only contains columns relevant
for the model:
disp, cyl, wt_smooth_0, wt_smooth_1, wt_smooth_2, wt_smooth_3,

wt_smooth_4, wt_smooth_5

The model is estimated and the coefficients printed
summary(spark_gam)
Deviance Residuals:

52

6 Generalized additive models for very large datasets

(Note: These are approximate quantiles with relative error <= 0.01)
Min 1Q Median 3Q Max
-0.50474 -0.13968 0.00221 0.12046 0.45305

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.75158 0.66655 1.1276 0.25951
disp 0.0028066 0.0025587 1.0969 0.27268
cyl -0.058885 0.20252 -0.29076 0.77124
wt_smooth_0 0.2802 0.64283 0.43589 0.66292
wt_smooth_1 0.011658 0.50666 0.023009 0.98164
wt_smooth_2 0.57985 1.3826 0.41938 0.67494
wt_smooth_3 -3.7067 9.4968 -0.39031 0.6963
wt_smooth_4 56.892 130.5 0.43596 0.66287
wt_smooth_5 1.6079 14.822 0.10848 0.91362

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 9.2191 on 31 degrees of freedom
Residual deviance: 1.6766 on 23 degrees of freedom
AIC: 114.5

Number of Fisher Scoring iterations: 4

53

7 Conclusion and Future Work

7.1 Conclusion

This thesis has shown that the GAM can be implemented in Apache Spark by extending

the GLM implementation in MLlib. Estimating splines of some predictor variables as part

of the GLM by representing them as B-Splines proves to be a feasible working approach.

The Cox-de-Boor form is a simple way to generate B-Splines but special cases like cyclic- or

natural-splines require additional work. Apache Spark’s MLlib and SparkR o�er a plethora of

functions but changing existing functionality requires detailed knowledge of internals. Spark’s

internals are under constant development, which causes some core data APIs to be inconsistent.

Spark o�ers three APIs: RDD, DataSet and DataFrame. The GLM implementation uses all

three APIs at di�erent stages. Some API decisions are nebulous for external developers which

might be only due to historic reasons. All three data APIs feel unfamiliar for R developers.

DataSet and DataFrame require SQL-like interactions via an SQL query statement or an UDF.

Expressing model matrix manipulations in terms of SQL statements requires additional e�ort.

The traditional RDDs are a plain immutable collection with little functionality. This appears to

be the right level of abstraction for application development, however, the matrix and vector

approach in R seems a better �t to express statistical software. Sparks high level approach comes

from its role as scheduler rather than computation environment. Spark itself does not perform

any relevant linear algebra operations, but solely acts as a scheduler and coordinator for Fortran

or Java. The solver for the IRLS algorithm in Sparks GLM is a wrapper for the Fortran package

BLAS. This is very similar to R, where also many relevant operations are performed in C or

Fortran. For example, the QR-decomposition in R uses the Fortran library LAPACK. Therefore

a central question arises: Which environment o�ers a better scheduler and coordinator for

highly optimized linear algebra operations, R or Spark? Spark is a framework built to schedule

and operate distributed on a horizontally scalable infrastructure. The underlying JVM has

been well established in distributed computing and is considered stable. R, on the other hand,

was designed to perform statistical computation on a single machine. Thus, using Spark for

54

7 Conclusion and Future Work

statistical computation might be the wrong approach but using Spark to schedule statistical

software for very large data sets is very powerful.

7.2 Future Work

The GAM has two distinguishing features: spline estimation of predictor variables and smooth-

ing parameter selection to avoid over�tting. This thesis’ implementation focuses on the spline

estimation with Cox-de-Boor basis functions. Spline estimation of predictor variables are a key

aspect of the GAM but are prone to over�tting. A poor choice of knots, number of knots or

knot location may cause a �t that mimics the underlying pattern too accurately and over�ts the

given data. The GAM is designed to safeguard against over�tting by penalizing functions that

follows the data too closely. The next immediate step should be to implement the smoothing

parameter estimation of the GAM. Smoothing parameter estimation requires searching for the

smoothing parameter that produces the lowest generalized cross validation score. Smoothing

parameter estimation needs to answer two questions: How is the penalty realized? How is the

search performed?

The easiest way to represent the penalty term is to use P-Splines. P-Splines allow B-Splines

to be extended with a penalty term. A simple implementation would realize the penalty term

as a Di�erence Matrix appended below the matrix generated by the Cox-de-Boor form. The

model matrix augmented with the penalty term can be estimated with the IRLS. This is how

the penalty term is realized in 5.5. The implementation in Spark would require to add a

transformer stage to the GAM �t() pipeline. The current GAM pipeline includes three stages:

SplineTransfomer, RFormulaParser and Generalized Linear Regression. A P-Spline approach

inserts a transformer after the RFormulaParser, which adds the Di�erence Matrix row-wise to

the model matrix generated by the RFormulaParser. The label column would be augmented

with 0 to match the new number of rows. The IRLS solver in the GLR stage is still able to

handle the augmented model matrix. While this convinces by simplicity, it su�ers greatly

from unbalanced knots. P-Splines are a great choice for equidistant knots but not for a general

implementation. A more general approach for unbalanced knots can found in Wood (2006).

Searching for the lowest gcv producing smoothing parameter can be done by a simple

trial of a human de�ned range. This is the same approach used in the example for the GAM

section. This gcv search can be realized in Spark as an estimator. This estimator would

implement its own �t() function which uses a human de�ned range to run the GLM �t()

with the augmented penalty matrix for each value in the range. This assumes the smoothing

parameter to be in a speci�c range and depends highly on the chosen range but is the simplest

55

7 Conclusion and Future Work

realization of smoothing parameter estimation. The estimator would return the coe�cients of

the augmented GLM that produced the lower gcv score. There are many more approaches to

smoothing parameter estimation discussed in Wood (2006). A more e�cient way of smoothing

parameter estimation can be realized by computing the gcv score by forming only part of the

model matrix and computing the score in parallel Wood u. a. (2015).

56

Bibliography

[sparkdocumentation] : Cluster Mode Overview. – URL https://spark.apache.
org/docs/1.1.1/cluster-overview.html

[economist 2011] : Up means down. 2011. – URL http://www.economist.com/
node/21529079

[Al-Jaroodi u. a. 2002] Al-Jaroodi, J. ; Mohamed, N. ; Jiang, Hong ; Swanson, D.: A

comparative study of parallel and distributed Java projects for heterogeneous systems.

In: Parallel and Distributed Processing Symposium., Proceedings International, IPDPS 2002,

Abstracts and CD-ROM, April 2002, S. 8 pp–

[Cramer 1974] Cramer, Harald: Mathematical methods of statistics. 13. print. Princeton :

Princeton Univ. Press, 1974 (Princeton mathematical series ; 9). – XVI, 575 S. S. – ISBN

0-691-08004-6 ; 978-0-691-08004-8

[De Boor 2001] De Boor, Carl: A practical guide to splines; rev. ed. Berlin : Springer,

2001 (Applied mathematical sciences). – URL https://cds.cern.ch/record/
1428148

[Dobson und Barnett 2008] Dobson, Annette J. ; Barnett, Adrian G.: An Introduction to

Generalized Linear Models, Third Edition. Boca Raton, FL : Chapman & Hall/CRC Press, 2008

(Texts in Statistical Science). – URL http://eprints.qut.edu.au/15448/. –

For more information about this book please refer to the publisher’s website (see link) or

contact the author.

[Fahrmeir u. a. 2009] Fahrmeir, Ludwig ; Kneib, Thomas ; Lang, Stefan: Regression:

Modelle, Methoden und Anwendungen (Statistik und ihre Anwendungen) (German Edition). 2.

Springer, 9 2009. – URL http://amazon.com/o/ASIN/364201836X/. – ISBN

9783642018367

[Hastie 1990] Hastie, Trevor: Generalized additive models. London New York : Chapman

and Hall, 1990. – ISBN 0412343908

57

https://spark.apache.org/docs/1.1.1/cluster-overview.html
https://spark.apache.org/docs/1.1.1/cluster-overview.html
http://www.economist.com/node/21529079
http://www.economist.com/node/21529079
https://cds.cern.ch/record/1428148
https://cds.cern.ch/record/1428148
http://eprints.qut.edu.au/15448/
http://amazon.com/o/ASIN/364201836X/

Bibliography

[Hastie u. a. 2001] Hastie, Trevor ; Tibshirani, Robert ; Friedman, Jerome: The Elements

of Statistical Learning. New York, NY, USA : Springer New York Inc., 2001 (Springer Series

in Statistics)

[J. A. Nelder 1972] J. A. Nelder, R. W. M. W.: Generalized Linear Models. In: Journal

of the Royal Statistical Society. Series A (General) 135 (1972), Nr. 3, S. 370–384. – URL

http://www.jstor.org/stable/2344614. – ISSN 00359238

[James u. a. 2014] James, Gareth ; Witten, Daniela ; Hastie, Trevor ; Tibshirani, Robert:

An Introduction to Statistical Learning: With Applications in R. Springer Publishing Company,

Incorporated, 2014. – ISBN 1461471370, 9781461471370

[Myung 2003] Myung, In J.: Tutorial on Maximum Likelihood Estimation. In: J. Math.

Psychol. 47 (2003), Februar, Nr. 1, S. 90–100. – URL http://dx.doi.org/10.1016/
S0022-2496(02)00028-7. – ISSN 0022-2496

[Schmidberger u. a. 2009] Schmidberger, Markus ; Morgan, Martin ; Eddelbuettel, Dirk ;

Yu, Hao ; Tierney, Luke ; Mansmann, Ulrich: State of the Art in Parallel Computing

with R. In: Journal of Statistical Software 31 (2009), Nr. 1, S. 1–27. – URL https://
www.jstatsoft.org/index.php/jss/article/view/v031i01. – ISSN

1548-7660

[Wahba 1990] Wahba, Grace: Spline models for observational data. Philadelphia : Society for

industrial and applied mathematics, 1990 (CBMS-NSF regional conference series in applied

mathematics). – URL http://opac.inria.fr/record=b1080403. – Based on

a series of 10 lectures at Ohio State University at Columbus, Mar. 23-27, 1987. – ISBN

0-89871-244-0

[Wood u. a. 2015] Wood, Simon N. ; Goude, Yannig ; Shaw, Simon: Generalized additive

models for large data sets. In: Journal of the Royal Statistical Society: Series C (Applied

Statistics) 64 (2015), Nr. 1. – URL http://dx.doi.org/10.1111/rssc.12068.

– ISSN 1467-9876

[Wood 2006] Wood, S.N: Generalized Additive Models: An Introduction with R. Chapman

and Hall/CRC, 2006

[Xin 2014] Xin, Reynold: Apache Spark o�cially sets a new record in large-scale

sorting. 2014. – URL https://databricks.com/blog/2014/11/05/
spark-officially-sets-a-new-record-in-large-scale-sorting.
html

58

http://www.jstor.org/stable/2344614
http://dx.doi.org/10.1016/S0022-2496(02)00028-7
http://dx.doi.org/10.1016/S0022-2496(02)00028-7
https://www.jstatsoft.org/index.php/jss/article/view/v031i01
https://www.jstatsoft.org/index.php/jss/article/view/v031i01
http://opac.inria.fr/record=b1080403
http://dx.doi.org/10.1111/rssc.12068
https://databricks.com/blog/2014/11/05/spark-officially-sets-a-new-record-in-large-scale-sorting.html
https://databricks.com/blog/2014/11/05/spark-officially-sets-a-new-record-in-large-scale-sorting.html
https://databricks.com/blog/2014/11/05/spark-officially-sets-a-new-record-in-large-scale-sorting.html

Bibliography

[Zaharia u. a. 2010] Zaharia, Matei ; Chowdhury, Mosharaf ; Franklin, Michael J. ;

Shenker, Scott ; Stoica, Ion: Spark: Cluster Computing with Working Sets. In: Proceedings

of the 2Nd USENIX Conference on Hot Topics in Cloud Computing. Berkeley, CA, USA :

USENIX Association, 2010 (HotCloud’10), S. 10–10. – URL http://dl.acm.org/
citation.cfm?id=1863103.1863113

[Zhang 2006] Zhang, Jianwei: Maschinelles Lernen Vorlesungen. 2006. – URL

https://tams.informatik.uni-hamburg.de/lehre/2006ss/
vorlesung/maschinelles_lernen/folien/06-16-bw.pdf

59

http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1863103.1863113
https://tams.informatik.uni-hamburg.de/lehre/2006ss/vorlesung/maschinelles_lernen/folien/06-16-bw.pdf
https://tams.informatik.uni-hamburg.de/lehre/2006ss/vorlesung/maschinelles_lernen/folien/06-16-bw.pdf

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig verfasst und

nur die angegebenen Hilfsmittel benutzt habe.

Hamburg, 26. September 2016 Kai Thomas Brusch

	1 Introduction
	2 Statistical Learning
	2.1 Introduction to Statistical Learning
	2.2 Inference and Prediction
	2.3 Estimating an unknown function

	3 Maximum likelihood estimation
	3.1 Introduction to maximum likelihood estimation

	4 Linear Models
	4.1 Linear model
	4.1.1 Maximum likelihood and least squares
	4.1.2 Linear Model
	4.1.3 Linear Model in the vector-matrix form

	4.2 Generalized Linear Model
	4.2.1 Likelihood for any exponential family distribution
	4.2.2 Iterative Reweighted Least Squares

	5 Generalized Additive Models
	5.1 Generalized Additive Models
	5.2 Regression Splines
	5.2.1 Basis Splines and the Cox-de-Boor Form
	5.2.2 Fitting Cubic Splines
	5.2.3 Penalized Cubic Splines

	5.3 Smoothing Parameter Estimation
	5.4 Additive Model
	5.4.1 Additive Model Example

	5.5 Generalized Additive Model
	5.5.1 Penalized Iterative Reweighted Least Squares

	6 Generalized additive models for very large datasets
	6.1 R Overview
	6.2 Apache Spark Overview
	6.3 Generalized Linear Models in Spark
	6.4 Casting the generalized additive model as a generalized linear model in Spark
	6.5 GAM in Spark Example

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

