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Angri�sverhalten klassi�ziert und in Listen speichert.
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Abstract
The objective of this thesis is to determine a chain of di�erent methods from the �eld of data

mining, for the detection of advanced persistent threats. For this, both PDNS and NetFlow data

log �les are examined with multiple Perl scripts for preprocessing and data transformation

purposes, as well as inserted into a data mining tool (Weka) to apply algorithms for knowledge

discovery. To aid the detection of attacks, a tra�c light concept for suspicious communication

behaviour is being presented, which yields the automated developing of several lists containing

IP addresses with varying levels of suspiciousness.
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1 Introduction

1.1 Background

Corporations deal with a signi�cant quantity of diverse and often sensitive data and are

therefore increasingly under attack by multiple types of hackers. Attacks can be executed

by black hat hackers (being paid to illegally break into networks), hacktivists (politically or

religiosly motivated to expose wrongdoing), state sponsored hackers (governments funding

hacker groups) or spy hackers (hired by corporations to in�ltrate and steal the competition‘s

data). A breach in the companie‘s networks however is not only a business risk but involves

also the customer‘s loss of trust in the company with regards to future transactions.

Current trends like Internet of Things, Cloud Technology and Industry 4.0 require particular

attention in security as its goal is the interlinking of industrial practices with information

technology, hence creating large amounts of data. With cyber attacks still on the rise, organiza-

tions try to contain threats with the use of information security teams, which apply �rewalls,

anti-malware software and even Intrusion Detection Systems (IDS). These components may

have the ability to thwart some attacks but not the most sophisticated and inconspicuous

ones.[3] [18]

Network intrusion where speci�c targets are selected to leverage advanced attack techniques

are termed Advanced Persistent Threats (APTs). The attacker‘s goal is to remain undetected as

long as possible while using various malware to acquire con�dential information. There are

currently several tools available for intrusion detection but none of them being able to detect

reliably APTs due to the variety and complexity of the attacks.

Managing large data quantity to seek potential in�ltration is a task, which can be realised

with data mining (DM). Data mining involves the exercising of particular algorithms to extract

patterns and meaningful knowledge from data.[14] The purpose of this thesis is thus to evaluate

the application of multiple data mining algorithms as a method for APT attack detection.
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1 Introduction

1.2 Scope

The province of data mining contains many di�erent algorithms and approaches, each suitable

depending on the instance. The di�culty with �nding appropriate algorithms for APT detection

lies in the fact that attackers only have to trick one employee to open or release malware which

leads to hidden vulnerability exploitation. With humans always being the weakest link in a

network it is extremely challenging to prevent an APT attack before intrusion. Attacks can be

targeting both executives as well as regular employees with e.g. spear-phishing or watering

hole attacks, making the attack vector even more diverging. The highest success rates in APT

defense lies therefore rather in attack detection than prevention. Data mining algorithms may

help prevent or recognize attacks in many circumstances, but the challenge is to determine

speci�cally which method is the most favourable.

The goal of this thesis is to develop a chain of procedures to learn the network’s behaviour and

determine a method of scanning for obtrusive IP addresses. The hypothesis is therefore that the

application of selected, together stringed data mining tasks possible APT intrusion discloses.

The aim is to develop a multistep technique to aid the process of seeking for traces of network

invasion and unauthorized activity by analyzing large data sets of log �les. This developed

technique contains multiple steps since only applying anomaly detection algorithms on these

vast data sets would take too much time and not yield the desired quality of recognition

accuracy. This can be managed with the usage of preprocessing tasks prior to the appliance of

algorithms, which will be further discussed in chapter 3.1.2.

1.3 Target audience

This thesis is intended for both technical sta� of organization / national governmental CERTs

and any in IT Security interested parties like security architects, network design engineers

and technically-minded students. The primary spreading of malware can spring from any

node in a network and therefore any user. Every organization, independently from its size,

should instruct its employees about the importance of IT security and the correlation between

their actions and potential intrusion. This document assumes, that the reader is familiar with

the general network architectures and components as well as basic concepts of IP protocols

and logging. Applied algorithms will be speci�cally elucidated or refered to its descriptive

scienti�c paper in the footnote.

2



1 Introduction

1.4 Outline

This thesis’s structure is as follows: Chapter two contains the fundamentals and theory of data

mining and knowledge discovery steps to establish a general understanding and reasoning for

a speci�c path. Data mining is hereby being explained in the broader sense of the procedure of

obtaining information from a set of data using knowledge discovery tasks. Speci�cally the task

of preprocessing is of grand interest, as the application of algorithms can only yield usable

results, if the data has been prepared for evaluation. Thereafter is chapter three, containing

explanations of the selected approach and created scripts, as well as analysis of obtained results.

Chapter three also includes the introduction of the tra�c light concept for di�erent level of

suspiciousness and it’s explanation. This is concluded with chapter four where achievements

are being summarized and compared with the hypothesis and �nished with the outlook section,

where possible scenarios and functionalities are being listed.

3



2 Theory section

2.1 Network architecture

Before the analysis of potential attack vectors and development of an intrusion detection algo-

rithm chain, a broad knowledge of typical network structures is essential. Figure 2.1 depicts a

simpli�ed con�guration of a generic network architecture in corporations or governments. [24]

Attacker

Bot 

with 

Botmaster

CSU / DSU

@

Relaying/

DNS/SMTP

Mailserver MTA

ISP

DNS
Router Firewall 1

Webserver

FTP

DNS

SMTP Proxy

Content-

control 

software

Internal email

Internal data

Firewall 2

User

@

DMZ

Intranet

 LAN Client

Intranet LAN 

Server

Figure 2.1: Exemplary Network Architecture

The corporation’s interface to the internet is usually a router, which manages data packets

between networks and has optionally a channel service unit / data service unit (CSU / DSU)

before itself, connecting a terminal to a digital line and performing protective functions

against electrical disturbances. The router is followed by a �rewall (FW) or packet �lter (here

labeled Firewall 1 and also called "front-end"), applying �ltering techniques and marking the
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2 Theory section

barrier to the corporation’s demilitarized zone (DMZ). The DMZ acts as an additional interface

between a trusted and an untrusted network segment, thus ensuring further partition and

safety. Within the DMZ and following the �rewalls are components like a webserver, FTP

server and SMTP server. [22]

Each one of them is capable of generating log �les in various formats with varying extent

(e.g. webserver log �les contain only a fraction of the full HTTP request / response). They

are usually connected to a second �rewall ("back-end"), isolating the DMZ from the intranet.

However, imposing further restrictions with two �rewalls provides additional security as well

as increased administrative maintenance. The intranet with LAN can be divided into server

and client party, with the user being on the client side. [21]

2.2 What is Data Mining?

Automated systems generate data for di�erent purposes in large quantities. Examples are

�nancial interactions (ATM machines), internet tra�c, sensors or user interactions which lead

to collecting data in exabyte ranges. However to gain useful information about the system and

product the data has to be processed. [26]

Data mining is hereby the practice of automatically analysing data with the goal of extracting

knowledge for further usage. After collecting data it has to be extracted, cleaned and ana-

lytically processed before commencing the return of a valuable feedback. The outcome can

(depending on the objective) be either the prediction of possible / likely outcome or the de-

scription of data. The application of DM however involves several steps which are challenging

to realize since even in related problems each data set may di�er in format or type i.e. in

quantitative, categorical or even graph-oriented values.

For simpli�cation each data mining application is being connected to either clustering, classi�-

cation, association pattern mining or outlier problems. Categorizing into these major building

blocks helps to structure the process of optimal information retrieval from raw data sets. [33]

5



2 Theory section

2.3 Data Mining in the Process of Knowledge Discovery in
Databases

Acquiring speci�c information from a large data set is di�cult and requires several steps which

altogether can be called the Knowledge Discovery in Databases (KDD) Process. KDD describes

hereby the general act of �nding knowledge in data by applying various methods of whom

DM the analytic part covers. Figure 2.2 illustrates the iterative and interactive procedure from

the selection of dataset to the actual consolidation of knowledge. [7] [15]

1. Selection: After understanding the target and scope, the �rst step is the selection of a data

set or subset based on the objectives. This results in the target data on which later DM will

be applied and a model generated. Therefore if the set is too small or lacking the important

attributes the resulting knowledge can be faulty.

2. Preprocessing: The target data might have invalid values like outlier, noise or missing

entries. Noisy data is removed, missing values are �lled with e.g. average ones or entirely

deleted and format standards are implemented. This step has the goal to ensure data reliability

and involves di�erent strategies for the unwanted data. DM algorithms can already be applied

on the corrupt value in this context.

3. Transformation: Not all data features are relevant and useful for the KDD process,

hence this step. By applying transformation methods, such as feature selection or dimension

reduction, variables can be reduced to receive only the relevant values for DM. This is typically

performed with an ETL tool (Extract Transform Load), which enables automated extraction,

transformation and loading of data as well as additional tasks like communication between

distinct databases or reading of di�erent �le formats. This step is therefore rather project

speci�c.

4. Data Mining: This step involves the applying of e�cient and intelligent methods based on

the objective to either describe or predict data. After selecting one of the main algorithm tasks

(clustering, classi�cation, association pattern mining or outlier problem) a suitable algorithm

is to be selected and adapted on appropriate parameters.

5. Interpretation / Evaluation: Finally visualization and knowledge techniques are being

used to present the discovered and evaluated knowledge to the user in an understandable

manner. This acquired intelligence can now be utilized for action on other systems.

6



2 Theory section

Target Data

Preprocessed 
Data

Transformed
 Data

Pattern/Model 
Rules

Knowledge

Data

Selection

Preprocessing

Transformation

Data Mining

Interpretation

Figure 2.2: Data Mining in the Process of KDD

Each step has a feedback to the previous step to ensure iteration and loops between methods

as well as interaction with the user for further modi�cation.

2.4 Main Data Mining Tasks

As stated in chapter 2.2, each data mining task can be derived to one of the following four

problems: Association pattern mining, outlier detection, clustering and classi�cation. This is

due to the fact, that they cover a wide range of possible scenarios, overlap and are related to

one another.

2.4.1 Association Pa�ern Mining

Association Pattern Mining, today also often refered to as Association Rule mining, is a

procedure with the objective of extracting relevant correlations and identifying frequent

patterns or relationships between distinct attributes. A famous example of this method is in

the context of items in a supermarkt: The supermarket owner might want to investigate if

there is a dependency between certain products bought by his customers to adjust promotions

or placement of products. If e.g. a customer buys beer it could be likely that diapers would be

bought too, suggesting that dads are often told to do last-minute shopping, while the mothers

are with the baby. This association rule would be expressed in the form X⇒ Y, with X and Y

being the items and for this example as { Beer }⇒ { Diapers }.[1]

7
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2.4.2 Outlier Detection

This task covers the detection of both outliers and anomalies.

Outliers are unusual data that di�er greatly from the other observations (or median) and

thus raise suspicion for faulty behavior. These anomalies can however contain meaningful

information about unusual system characteristics which could lead to useful knowledge. They

are nevertheless legitimate data points from valid observation, unlike anomalies, which are

illegitimate data points that have been generated by a di�erent process than the rest of the data.

Anomaly detection is applied to uncover e.g. (network) intrusion, or fraud in various �elds

like insurance risk modeling, medical diagnosis or even law enforcement. Studying weather

patterns to determining climate changes or natural disasters e.g. involves the collecting of large

data sets. Anomalies and outliers in the data provide important insights about environmental

trends and causes. [1][8]

2.4.3 Clustering

Clustering describes the process of partitioning objects into smaller groups based on their

similarities. The creation of clusters allows a summarization and understanding of the data.

A particular importance before applying clustering, lies in the �rst step of the KDD pro-

cess, data selection, to reduce dimensionality in large data sets. This leads to better learn-

ing performances/accuracy and interpretability. The clustering methods can be categorized

into density-based, partitioning or hierarchical methods. Shopping behaviour can be deter-

mined with clustering approaches, e.g. by comparing customer buying the same items and

categorizing them. [33]

2.4.4 Classification

The last main DM task, classi�cation allocates data points in a data set to a target class by

applying a model. This model has been trained based on already partitioned training data from

an example group and is referred to as the training model. The aim is to predict the target class

of each unseen data point. Since the generating of a model requires an example data set to

learn the structure of the classes, this task is refererred to as supervised learning. The necessity

of a training model is crucial and the major di�erence to clustering. A possible scenario for

classi�cation might e.g. be the determination of loan viability in the banking industry. [19][33]

Data Mining can also be divided into six tasks, adding summarization and regression to

the four depicted tasks. However as stated, the classes are related to one another and overlap

8
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greatly in various algorithms. Summarization deals with the selection of a data subset to

represent the properties and structure of the entire set. This is also found in association

pattern mining.

Regression is used for prediction and has the aim to estimate the relationship and behaviour of

data by creating a regression function. Data entries can be dependent and independent from

another and might induce di�erent behaviour depending on the scenario. Forecasting with

regression might be regarded as a data classi�cation method, but di�ers in the output. Regres-

sion has a continuous target value, predicting a response, whereas classi�cation categorical

target variable creates and therefore a class membership identi�es.[10][4]

2.5 Advanced Persistent Threats

Ensuring information safety in organisations and governments has always been di�cult

and important but the emerging of Advanced Persistent Threats (APT) has shown that the

sophistication of intrusion and caused damage is nowadays at a whole new level. Unlike other

attacks this threat has the objective to access sensitive information stealthily from a speci�c

target for as long as possible. While there are di�erent de�nitions of the threat actor, the

description of an APT can be well stated by summarizing the term components:[31] [14] [1]

Advanced: The threat actor (usually a group of hackers) has an adaptive mindset, possesses

high technical skills and is usually well resourced. This enables compromising the target,

gaining and maintaining access to networks by exploiting an organisation‘s weaknesses which

can either be technical or human.

Persistent: The actor does not seek immediate �nancial gain but rather uses monitoring and

hidden interactions over the course of years to obtain certain information steadily.

Threat: This term depicts, that the actor is a human with intent and motivation, not an

automated piece of code, using di�erent kinds of tools and backdoors. This usually also means,

that the operator is well funded and organized.

2.5.1 A�ack Methology / Kill Chain

The operators can be politically driven (espionage or even a directed attack) as well as targeting

organizations in sectors with high-value information such as the �nancial- / mining- or oil

industry. Some of the most famous attacks have e.g. been “Moonlight Maze“ which targeted

9



2 Theory section

the computers at the Pentagon, NASA and research laboratories, “Operation Aurora“ where

intellectual property of Google has been stolen and “Stuxnet“ where the stuxnet computer

worm has been used to compromise Iran‘s nuclear program. However most companies /

governments which have been targeted are either unaware of the (still ongoing) attack or just

wish to not impart the situation to the public. The main concerns are the damage in reputation

and thus pro�t loss as well as not wanting to provide information to the hackers about the

system‘s point of breach.

The attack methodology, which can also be called “Kill Chain“ consists typically of the fol-

lowing six steps. Each one of them is interrelated with each other and describe the structure

of intrusion. Disrupting any of the steps means that the operators e�ort is thwarted for

certain time. [13] [31] [17]

1. Reconnaissance: This step is deemed one of the most critical steps for the actor since it is

about gathering all kinds of information about the target. The success of an attack often de-

pends on how thorough and extensive the gathering is executed. Used methods can be domain

brute forcing, DNS cache snooping and web service exploration to retrieve technical data and

search engine scripting, directory harvesting and spear phishing for nontechnical data.

2. Preparation: The attack is being prepared by testing particular tools or hardware (USB

�ash drives), identifying speci�c software versions, determining user name structure and

vulnerabilities (e.g. zero-day expoits or social engineering).

3. Targeting: After identifying the vulnerabilities and informations in step 1. and 2. now the

attack is being launched as well as monitored and the exploitation process initiated.

4. Further Access: To maintain access to the victim‘s resource, the operators quickly try to

ensure a foothold in the compromised system by e.g. deploying backdoors to several machines

(like using malicious device drivers that target the OS), installing rootkits and trying to obtain

the administrator password. The type of backdoor using depends on the system and network.

5. Data gathering: The gathering manner of the relevant information depends on whether

the victim has detected the attack or not. If detected, the operator will usually ex�ltrate as

quickly as possible to maximise yield. Otherwise they will chose the “slow and low“ methods

to extract slowly (small quantities) and as unobtrusively as possible.

10
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6. Maintenance: After successfully gathering information without detection the operators

will clean up evidence of exploitation, preparation or even reconnaisance. To avoid detec-

tion the malicious activity is minimized and only periodic communication to the backdoors

is implemented.

2.6 Algorithm Requirements and Procedure

The origin of malware distribution in a network can vary depending on the APT attack type

and targeted vulnerabilities. APT intrusion itself may be conducted in a number of ways, with

each attack being speci�cally customized for its target, making it even more hard to �nd traces

in a vast set of network tra�c.

However one succinct common manner of all APT attackers is the aim to stay undetected for

as long as possible and gather data for a maximum period of time. Criteria to determine �t

algorithms for the detection are therefore �rstly, that the methods need to operate reliably on

vast amounts of data, since each network component is capable of logging, and secondly the

algorithm design should assure superior detection of inconspicuous occurences.

The strategy is to examine log �les for attack vectors which means, that supervised learning

methods are required, like support vector machine (SVM), linear regression or decision trees

rather than clustering or anomaly detection. Furthermore, studies suggest, that supervised al-

gorithms outperform unsupervised methods if the data contains no unknown attacks. Whereas

their accuracy deteriorates signi�cantly with a set containing unknown attacks. [12]

This thesis’s procedure is as follows:

Network tra�c data will be preprocessed and normalized for further examination, which

means, scripts will be necessary to manipulate both windows and unix based tra�c data. After

preprocessing, the data is to be joined to create an instance containing relevant data from both

tra�c objects. This instance can then be used to classify IP addresses into three categories

based on their behaviour with the internal network’s components:

• Very suspicious: Displays harmful characteristics and is to be secured immediately.

Entries with this feature can be pooled as a blacklist.

• Suspicious: These entries manifest some queer tendencies and can not be distinctively

be categorized into a black- or whitelist and thus should be inspected further.

• Harmless: IP addresses declared as harmless are captured in a whitelist as they have

not evoked any questionable conditions. There is no need to examine them promptly.
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The task of classifying is to be performed with the conduction of decision trees, as they o�er

several characteristics which are advantageous for this task. Firstly, there is their hierarchical

structure, which makes them easy to read and interpret as well as their ability to be rapidly

adjusted and increased. For this thesis an exemplary count of three categories for IP address

behaviour su�ces, but with increased complexity the tree can easily be expanded.

Another advantage is the output construction of decision trees, as the aim is the generating of

IP addresses lists, which are highly interpretable and can simply be extracted by exporting

the nodes.

2.6.1 Weka

Realizing the task of data mining requires the application of automatic analysis on large data

sets to extract interesting information. This task can be achieved with semi-automatic software

applications ranging from open-source to proprietary tools. The selected workbench for this

thesis is Weka (Waikato Environment for Knowledge Analysis), an open-source collection

of machine learning algorithms. It has been developed by the University of Waikato in New

Zealand in 1993 and is licensed under the General Public License (GNU) with the current

stable release being 3.8.0 from April 14, 2016. It runs on Windows, OS X and Linux and

can be called from Java code or used with the graphical user interface, the latter being the

selected approach. [29]

Supported �le formats include CSV, LibSVM, ARFF or C4.5 format, which can be loaded into

Weka from multiple sources, such as databases or URLs. Its workbench includes algorithms

of all four data mining subclasses, as mentioned in chapter 2.4 with additional visualization

features and statistical evaluation. Weka has the advantages of simplicity and portability, since

the GUI allows quick learning and it is advisable to use Weka with the aid of Java code with

large data sets ( > 10 GB). It is however not as fast as other tools e.g. R, which is written in C

and Fortran. [9]

2.6.2 Decision Trees

Decision trees o�er the possibility of arranging features into a tree-like structure, thus of-

fering decision support for multiple domains e.g. calculating �nancial probabilities for cost-

e�ectiveness of research and business decisions or classi�cation of multi-leveled vision in the

�eld of object recognition.[32]

A tree is built from the root to the leaf, by comparing objects and deciding, whether it matches

the conditions of the path (input features), which are the internal nodes and can therefore be

12
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placed in the leaf node. Internal nodes are termed split criteria as they are the conditions that

the data has to ful�l to be passed along to the next criterion. For example, if a split criterion is

Height ≤ 180 cm, the left branch of this internal node will contain all data with the height

up to 180 cm, whereas the right branch will contain all entries greater than 180 cm. The split

criteria goal is to maximize the division of the di�erent leafes and can be done by univariate or

multivariate splitting. [1]

Univariate splitting
This split handles the splitting of one variable and can be conducted on three types of attributes:

1. Categorical attributes:
It is possible for categorical variables to take on one of r di�erent values, with r being a

limited and de�ned value. Applying a split can be performed with an r-way split, where

every branch corresponds to one possible value of r. Another possibility that can be

executed, if r is not large, is the practice of a binary split, which tests each and every

one of the 2r − 1 combinations and selects the best one.

2. Binary attributes:
These variables result in the generating of a binary tree, whose branches match one of

the binary values.

3. Numeric attributes:
Variables can also contain a �xed number r of ordered values within a small range.

Splitting these can also be executed with a r-way split on each value or by using a binary

condition and then selecting the best one.

Multivariate splitting
Multivariate splitting is performed, if nodes are to contain more than one attribute as a split

criterion e.g.

Height ≤ 180 cm / Eyecolour = hazel

The resulting decision trees are much shallower, which indicates, that multivariate criteria

are more powerful than univariate splitting criteria. Shallower trees are fundamentally more

desirable, as the leafes contain larger data sets and are deemed to be less likely to over�t

the model.

Data-dependant accuracy and over�tting are the most prominent problems with decision trees.

Over�tting is the state in which a decision tree has been constructed to this level, that it �ts the
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data to well, thus even classifying noise variances, which can be avoided with the utilization

of a pruning mechanism after tree construction to remove over�tting nodes.

2.6.3 Tree Evalutation

Weka provides several algorithms to generate decision trees: Hoe�ding tree, LMT, M5P, random

tree, REP tree or J48.

Hoe�ding Tree: This algorithm is supported by the Hoe�ding bound and categorized as a

"Very Fast Decision Tree" (VFDT). It can be constructed incrementally and simultaneously

with the data’s arrival and o�ers the advantages of not requiring the entire data when building

the tree and performing well with large data set. However drawbacks are the delayed node

building and the static architecture of the tree, as nodes once built can not be changed or

reversed. Since the data set is allocated as a whole and tree building is required to take place

promptly, this algorithm is not deemed as the superior approach.

Logistic model trees (LMT): The LMT incorporates linear logistic regression and tree in-

duction, thus o�ering the advantage of estimating probabilities while classifying. However,

interpretability is aggravated as a consequence and externally calculated probabilities are not

wished at this step, therefore is this approach not selected.[11]

M5P: This tree implements the M5 algorithm invented by R.Quinlan by recursively splitting the

dataset based on the value of a chosen splitting attribute with the aim to minimize prediction

error at each branch. M5 model trees o�er the advantage of superior prediction accuracy and

compactness over regression trees since they are able to extrapolate. They excel however when

determining numeric prediction, which are not required for this thesis’s set of problems.

RandomTree: Another by Weka o�ered classifying approach is the random tree, constructing

a tree by randomly selecting attributes at each node and thus also not being the right algorithm

for blacklist generating, since the tree is requested to base its branche building on the �ags

which represent the criteria for a possible attack.

Reduced Error Pruning (REP): REP trees are based on minimizing the error resulting from

variance and being also categorized as a fast decision tree learner, however displaying inferior

behaviour to J48. [34]
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J48: The selected classi�er is J48, since the desire for this de�nition of task is the building

of a binary decision tree for IP address categorization. J48, an open source Java implemen-

tation of the C4.5 algorithm in Weka, is an extension to the ID3 algorithm. C4.5 generates a

primary (unpruned) tree by pursuing the concept of divide-and-conquer and implementing

rulesets. Starting at the root every branch becomes a prototype rule, whose instances are the

consequences along the path. Each rule is being adjusted by analyzing the e�ect of rejecting

every instance, with the aim to possibly discard an instance. C4.5’s disadvantages are the

large amount of required memory space and CPU time. It’s advantages however overweigh:

Simplicity, dealing with noise and easy-to-interpret model building and is therefore quali�ed

to generate the desired lists.

There is an improvement of the C4.5, called C5.0 (since 1997), o�ering new capabilities and

various enhancements like improved scalability of the decision trees and rulesets, boosting

capability to optimizy predictive accuracy or permission for new data types. [16]

2.6.4 NetFlow

The term NetFlow depicts the service of gathering IP related network tra�c with routers to

understand network behaviour and is provided by Cisco. Applying services like NetFlow can

help improve network security, since it facilitates the detection of e.g. unauthorized tra�c, new

applications‘ impact and even some anomaly detection by analyzing IP �ow. The monitored IP

packets consist of �ve to seven attributes: [30]

• IP source address

• IP destination address

• source port

• destination port

• layer three protocol type

• class of service

• router or switch interface

There are already many NetFlow versions (one to ten), with version �ve, seven and nine being

the best documented ones and version �ve and nine (frequently used versions) having the

most common export packet format types. A signi�cant di�erence between NetFlow version

�ve and version nine is, that version �ve uses a "static format" data structure, whose record
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information cannot be extended to a non-version-�ve like format and function properly. Unlike

version nine, which utilizes a dynamic template format of "data �owsets", allowing the adding

of �elds to NetFlow export packets.

The output of Net�ow is a �ow record, which in version nine consists of a packet header and

one or more template / data FlowSets. FlowSets are collections of records (template FlowSets),

which follow the packet header in an export packet or collections of data (data FlowSets), that

have been grouped. If a �ow is �nished, the router will output the �ow record. This data can be

accessed with the Command Line Interface (CLI), providing an immediate view of the network

situation or by exporting the data to a NetFlow collector (server), to assemble and analyze the

information routinely. [5]

2.6.5 Nfdump

Nfdump consist of multiple tools for linux-based systems to process net�ow data for tra�c track-

ing or analysis. The input are �ows which can be read in by a router and accumulated / stored by

nfcapd (one of nfdump’s tools), a net�ow capture daemon. The output �le is rotated every n min-

utes (n typically being 5) and stored as nfcapd.YYYYMMDDhhmm with the interval’s time and

date as the timestamp. Further nfcap handling is expounded in the application subsection. [23]

2.6.6 Passive DNS (PDNS)

Passive DNS is a system, which stores DNS record data for given location and time period to

enhance DNS security. The domain name system (DNS) o�ers a distributed database for record

sets, such as IP addresses and matching domain names on the Internet. It is however a very

volatile infrastructure, which is constantly under attack, e.g. distributed denial-of-service attack

(�ooding the target with requests) or spoo�ng attacks (compromising the DNS server itself).

Passive DNS captures inter-server DNS messages from authorative name servers and forwards

them to a collection point of analysis in a time-stamped and compressed format. This recursive

approach captures therefore anonymously server-to-server communication and can be applied

with software, such as "dnstap". There are several di�erent databases, to which sensors upload

and collect data, which can then be reviewed for incident analysis. The concept has been

originally developed by Florian Weimer in 2005 and presented at the FIRST conference.

One of the multiple uses of Passive DNS is the monitoring of changes to the resource record

types A, AAAA (see chapter 3.1.2) over a span of time, indicating phishing, as legitimate

domain names rarely change their address / name servers.
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There are numerous RR types, with the following being relevant for this thesis: [25]

A / AAAA: The RR type A returns a 32-bit IPv4 address to map hostnames to the IP address of

the host, whereas AAAA the same with 128-bit IPv6 addresses performs.

CNAME: These RRs create a synonymous name (canonical format) for the hostname, e.g. to

hide network implementation details from clients.

MX: The MX (mail exchange) RR de�nes a mail exchange server to process or forward a

mail for the domain name with the use of the Simple Mail Transfer Protocol (SMTP) to its

destination mail server.

SOA: Every DNS zone contains a SOA RR at the beginning of the zone, containing authorative

information about the zone (e.g. serial number or authorative server).

SRV: The SRV record speci�es the service location of the desired servers and is often used

instead of MX.

NF: RR typed NS indicate the authorative server zones, where every zone must contain as

many as one NS recort at the root of the zone.

PTR: PTR is the counterpart to the A resource record, as it maps an IP address to a host.

2.6.7 Format

The raw data is a collection of log �les from di�erent sources, each having its distinct format

and structure. Features like date or time can be represented in various ways (e.g. Aug. 5, 2016

or 2016-08-05) and need to be converted into a collective format, before the applying of any

algorithm. Scripts or tools are therefore required, to recognizes the present data format and

translate it into a mutual structure. [1]

The Internet Engineering Task Force (IETF) developed an object-oriented format called Intru-

sion Detection Message Exchange Format (IDMEF) for alert data, with exact regulations for

characters, time formats and identi�ers. IDS tools like PRELUDE, SNORT and SURICATA are

able to generate data in IDMEF format (alerts) and generate Heartbeat messages, which are

sent periodically to indicate current activity of the analyzers. [6]

The provided NetFlow data for this thesis is in ".xz" �le format and can be extractet with

nfdump, using a linux based system (here: Ubuntu 16.04.1), and then transformed to a CSV �le
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for further use. Since the �le contains less relevant information for this investigation as well,

a script is used (NFPreprocess.pl see appendix A.5) to create a CSV �le with only signi�cant

data columns. Weka requires the CSV data to be in speci�c format or preferably in ARFF

(Attribute-Relation File Format), to ensure control over the object types.

ARFF data are ASCII text �les describing the structure and type of the data by creating a header

and data section. The header contains the relation’s name (@RELATION), list of attributes

(@ATTRIBUTE) and their type (NUMERIC, NOMINAL, STRING or DATE <date-format>),

whereas the data section (@DATA) the attribute’s data contains.[28]
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3.1 Approach

There are already many IDSs on the market to aid with the detection of non-authorized network

in�ltration for both anomaly detection and misuse detection. The di�erence between both

instances is, that anomaly detection involves the analysis of speci�ed user behaviour and

system‘s activity relating to historical data, whereas misuse detection is based on prior declared

abnormal or normal behaviour. The common denominator of most IDSs is that they usually

focus on only certain components of the correlation process and thereby not deliver the desired

low false positives and nonrelevant positives rates.

To prevent this, the approach developed in this thesis, is to conduct extensive preprocessing

and administer each received object with the use of scripts to obtain a high level of accuracy.

In addition, the thesis introduces Weka to apply a classi�cation algorithm to extract knowledge

from log �les. The proposed algorithm chain in this thesis shall be as follows (as shown in

�gure 3.1 below):

The raw data (for this thesis: PDNS and NF log �les) will �rst be inserted into the preparation

module, which conducts three tasks: Preprocessing, object fusion and setting �ags. The

outcome is manageable log data, which can now be passed to Weka, executing the decision

tree building and list creating. The obtained blacklist and list of suspicious IPs (greylist), is

then to be presented to a selected expert to evaluate its validity. IPs known to be non-malicious

can be removed from the black- or grey list and inserted to the white list to speed up future

network analysis. This chain of methods can be repeated periodically with new log �les to

�lter and enrich the generated three lists in every cycle. The following are descriptions of the

speci�c practices. [27]
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Figure 3.1: Method Chain

3.1.1 Selection

Before commencing with the selection of suitable data amounts, the log data has to be extractet

and transformed to a comprehensible format. NF and PDNS logs are, as previously mentioned,

in nfcapd- or pcap format stored, divided into more than thousand �les and captured by a

NF daemon or Wireshark. The �rst two generated scripts "pcapHandler.pl" (see listing A.3)

and "nfcapHandler" (see listing A.1) in combination with "nfCSVmerge.pl" (see listingA.2)

perform the converting to CSV. Each of these scripts is written in the programming language

Perl, except for "nfcapHandler", which is a shell script. The functionality of "pcapHandler.pl"

compared to "nfCSVmerge.pl" in combination with "nfcapHandler" is very similar, with the

di�erence, that pcap �les are being handled on a windows system and the NF data requires a

Unix environment, hence the other two scripts.

"pcapHandler.pl"’s approach is �rstly, to access the folder containing all pcap �les and read the

�les’s labels. This enables the automated running of a console command on every one of them,

which is:

<path\tshark.exe> -tad -r <path\name of the current �le> > <path\name of new �le.csv>
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The resulting CSV �les (one CSV per pcap) are �rstly being stored in a new folder and secondly

being merged into one cumulative CSV �le to simplify the task of data selection.

The Unix-based equivalent has slight di�erencies, as the approach is divided into conversion

and the separate merging of all CSV �les into one. Data selection can be performed easily on

the two cumulative CSV �les. Displaying the �les is rather di�cult due to data dimensions and

can no longer be done with excel or notepad++, but is being realized with the tool UltraEdit,

which is capable of handling large sets of CSV �les.

Selecting data is a crucial step in KDD, as it creates the basis for following tasks and can

determine the outcome of any knowledge discovery. The received log data is a network’s tra�c

log data from a wednesday the 28.09.2016 2 AM to thursday 29.09.2016 2 AM and contains

entries with varying protocols (UDP, TCP, ICMP for NF and DNS for PDNS). It would be the

most interesting, to examine log �les from several weeks and months, to really get acquainted

with the employee’s and network’s characteristics. This way the task of learning the internal

IP addresses for the "checkBehaviour.pl" (see listing A.7) script would be simpli�ed and a

rudimentary white list could also have been constructed. However, the available memory

capacity is limited and even running all scripts on the whole CSV �le containing 24 hours

worth of logs would take too much time. The main bottleneck for calculations however, is

Weka itself, as running large data invokes an "out of memory exception", thus not allowing

the examination of large time intervals. With the given resources, Weka is just about able to

calculate a 500 KB �le containing over 20000 lines

To cover as many potential �ag scenario as possible. the time 5:58 AM to 6:53 AM has been

chosen, as the two minutes from 5:58 to 6:00 are within the irregular working hours range and

thus will trigger the corresponding �ag, perhaps as well as the other two (see chapter 3.1.4).

3.1.2 Preprocessing / Transformation

The data selection is succeeded by data manipulation in form of normalization with feature

selection and is being executed by the script "PDNSPreprocess.pl" (see listing A.4) for PDNS

and "NFPreprocess.pl" (see listing A.5) for NF data. The NF or PDNS CSV �le is to be called as

an argument when running any of both scripts.

Both preprocessing scripts exhibit at this point, why the choice of programing language for

data manipulation scripts is Perl: It handles strings and characters e�ciently with the usage

of regular expressions, provide rapid application development due to its typelessness and is

especially favourable when combining di�erent and powerful components together. [20]

Many features known from other programing languages are also existent and if not, can often

be incorporated with additional libraries (like Net::IP::Lite in "PDNSPreprocess.pl").
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"PDNSPreprocess.pl" handles the DNS protocol entries and transforms PDNS data into the

following format:

date (YYYY-MM-DD), time (hh-mm-ss), protocol, DNS-Server-IP (IPv4), query type, content1

(host), content2 (IP to host in IPv4)

Every entry is being dissected into log properties and stored for further enquire. DNS entries

contain not only reverse look-up data about the given host but also resource records (RR)

depending on the query request / response type. PDNSPreprocess.pl di�erentiates between

the RR types: A, AAAA, CNAME, MX, SOA, SRV, NS and PTR, which are the RR types used in

the provided data (for RR de�nitions see chapter 2.6.6).

Mail message transfers logs e.g. have the RR type MX and thus a di�erent structure than

RR in PTR type, which implement reverse DNS lookups, but return the IP in inverted order.

Deviating entries are invalid and declared as zero in the content2 column to avoid empty

�elds. Besides rounding up the time �eld, further normalization is being conducted on some

source, destination or host IPs responses which are in IPv6 and not in IPv4 format and are being

converted into IPv4 format the the submethod "IPv6toIPv4". Both, the NF and PDNS, preprocess

scripts also execute data transformation and select only necessary features and reduce the

entry dimension, by leaving out additional �ags and characters. However, PDNSPreprocess.pl

aims to output only the log entries with the type "response", since these contain valuable

information in the content2 �eld (IP addresses to the hosts, if available), and thus returning

half of the raw data input (data without query requests).

NF data contains di�erent information than PDNS logs, like port numbers or packets sent. The

aim is to retrieve the following output format:

date (YYYY-MM-DD), time (hh-mm-ss), protocol, source IP (IPv4), source port number, desti-

nation IP (IPv4), destination port number, number packets sent, number bytes sent

NFPreprocess.pl (see listing A.5) realizes preprocessing by splitting each log entry and remov-

ing unnecessary blank spaces and arrows as well as rounding the time to whole seconds. In

case of the protocol being ICMP, the destination port is being set as zero for echo replies. Trans-

formation in form of feature reduction is being achieved by removing the entities "transaction

duration" and "�ow count".
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3.1.3 Object Fusion

The last task of the preparation module is the fusion of the two preprocessed data objects,

which represent the communication at the same section. This is performed by the "Connect-

PDNStoNF.pl" (see listing A.6) script, which requires NF as the �rst and PDNS data as the

second argument when executing. The desired output for this application is:

date (YYYY-MM-DD), time (hh-mm-ss), protocol, source IP (IPv4), source host (if found), num-

ber of source port, destination IP (IPv4), destination host (if found), number of destination port,

number of bytes to destination, number of packets to destination, number of bytes to source,

number of packets to source.

At �rst the preprocessed NF �le is being checked for matching entries, where a request matches

the response (with the antedecent entry being the outputted one). This is conducted by com-

paring source IPs with destination IPs and vice versa. When a pair is found, its’ source or

destination IPs are being compared to the response IPs from the PDNS data (content2), where

a reverse look up has been successful, and if available the host information is appended. Con-

ducting these tasks results in the combining of four log entries to one, containing only the

important transaction information. Conducting this object fusion is furthermore part of the

knowledge discovery.

3.1.4 Flags

Decision tree learning is a powerful data mining approach for various range of duties such as

classifying objects by their nature. This thesis proposes a framework for an IP grading system

to facilitate the detection of APT attacks. After having applied multiple tasks of preprocessing,

the data can now be analyzed for the execution of the J48 decision tree in Weka. Each data entry

is to be analyzed and marked for its level of suspiciousness with the script "checkBehaviour.pl"

(see listing A.7). Entries are being screened for three indicators of an APT attack:

1. Is there tra�c beyond regular working hours?
The standard working hours for a medium-sized company with �ex time is assumed to

be from six o’clock in the morning to ten o’clock in the evening. Any irregular tra�c is

deemed suspicious and marked with a �ag.
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2. Has there been data exchange with the exact byte size and the same addresses?
When �nding multiple occurences of the same byte size exchange between two parties,

it is to be examined �rst, in which direction the data transmission is taking place. The

reason for this is to ascertain, if an internal component / network has been the victim of

an APT attack and is sending data for two reasons:

• The infected object is con�rming being still under the attacker’s control
Attackers try to maintain power over networks / components for as long as possible,

thus often not pursuing any data ex�ltration for a long time after infection. To

signalise the attacker an ongoing control over the network, infected devices period-

ically send a ping to a command and control server, which is called beaconing. This

behaviour can ideally be detected with network data from a long period of time.

• The infected component is already transmitting data from the network
In case the attacker has already initiated the ex�ltration and is trying to execute

the thievery as unobtrusively as possible, he omitts large packages and sends

more frequently.

3. Is there tra�c involving unpermissible ports?
Depending on the character of component types (client / server), among which an

exchange takes place, some ports are considered undesirable and indicate intrusion.

Setting a �ag for suspicious port activity follows the illustrated concept in �gure 3.2.

Server o�er both a server- and client port, to send or receive. It is important to de�ne

�rstly which component is within the network or external for additional rule sets.

Request initiator beyond the network can then be categorized into client and server:

External clients sending requests to an internal component are only allowed to address

a server on it’s server port (smaller than 1023) and are not permitted to establish a

connection to an internal client. Any instances violating these terms are considered very

suspicious and marked with a �ag.

Server beyond the network may only send a request to an internal server from a client

port (greater than 1023) to the internal server’s server port. Connections to an interior

client are prohibited.

Internal clients on the other side may only address the internal server on the server

ports. Any connection attempts from the client on the internal server’s client port or

any port on an external component is highly suspicious and marked.

Server within the company’s network are allowed to response to an external component
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Figure 3.2: Client / Server Port Usage

from the server’s client port. Responding an internal client is approved, if the responding

server is using it’s server port to reach the client.

The script "checkBehaviour.pl" performs the task of setting a �ag if any of the above listed

conditions applies. The speci�c approach is as follows:

To append the three �ag columns to the preprocessed data, each entry is being extended by

three zeros, representing the default setting of non-suspicious objects. Adjusting �ags for

tra�c beyond working hours can be done by comparing the entry’s timestamp to the approved

working periods. Analysing the data for reocurring byte sizes however, requires comparing

each entry to every following instance, multiplied by the number of the whole data. While

iterating through data the �rst time, the script also generates a list of both internal server and

client IPs to prepare instances for the subsequent �ag setting in cases of unauthorized port

usage. These lists are created through checking primarily, if the IP is within the network, by

comparing their �rst three bytes (most signi�cant byte is the �rst) to 249.210.50 or 249.210.51,

which are known to be the �rst three bytes of the internal network.
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Subsequently to determine, if the entry is a server or client, it is checked, if the port of the

destination IP equals 22, 25, 53, 80, 123 or 443, which are the authorized server ports of an

interior server, receiving a request. Actually setting any �ags is performed in a second iteration

of all entries, where any relations involving unsolicited ports can be examined with the use of

generated interior server and clients lists.

Di�erentiating between internal servers and clients meets no di�culties, as a network admin-

istrator would have the IP addresses of the network’s devices and components. The issues lies

within the unknowing of components and intentions from outside, which always have the

bene�t of unlimited possibilities and time. Therefore is "checkBehaviour.pl" designed to cover

as many malicious procedures involving the stated �ag conditions as possible to ensure a strict

black and greylist regime.

3.2 Application of Selected Algorithms

The perl script "checkBehaviour.pl" yields the entry format:

<IP address>,<�ag for suspicious time>,<�ag for repeated byte size>,<�ag for suspicious port>

The decision tree can thereby be generated with the �ags as the internal nodes to perform

the classi�cation of the given IP addresses. Before deploying the data in Weka, it might be

desirable to convert the �le into ARFF format. This can be realized with the Weka GUI Chooser,

by selecting the ARFFViewer from the Tools selection, opening the CSV �le and saving it as an

ARFF document.

Some characteristics are already being displayed when opening the log �le in Weka: The

left-sided window contains the column identi�ers and an attribute number, which is useful

for further data manipulation in the Weka GUI. For example, attributes can be removed

from the list, if deemed unnecessary for algorithm appliance, or di�erent �lter types can

be selected in the �lter menu at the top-center, which e.g. can convert numeric to nominal

attributes. These �ltering capabilities are very bene�cial, if the task of preprocessing has not

been extensive enough to conduct a Weka algorithm, since data can be quickly transformed

into the desired structure.

The right-sided window contains detailed information of the selected attribute: Attribute details

like name, type (nominal / numeric), count of distinguishable entries within this attribute or

uniqueness (in percent) with regard to other instances. Numeric attributes are also brie�y

statistically analysed by determining a minimum, maximum and mean value of the selected
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attribute, as well as a standard deviation from it. Nominal attributes are listed with a count

and decimal number weight. A window with a brief visual overview of the selected attribute’s

distribution within the whole data set is right below the selected attribute information and can

be adjusted to display the selected attribte distribution in relation to another attribute.

If all attributes are nominal, the classifying can be applied by selecting the Classify tab and

choosing the classi�er tree J48. However, to access the generated tree nodes and store them as

lists, additional settings have to be adjusted in the Weka GUI Object Editor, especially the �eld

"saveInstanceData" set to "true", to save each nodes content. Furthermore, the used class is the

IP address and test options are set to cross-validation ten folds, as studies have suggested that

a fold of ten retrieves the best estimate of error. [2]

Cross-validation is a technique to determine how accurately a model performs by partitioning

data into sets. In this case the data is being partitioned into ten equal sized samples, declaring

nine of them as training data to test the model and applying the model on the one remaining

sample. This process is being executed ten times. Another validation technique, such as using

a percentage of the data for validation (data partitioning) into two sets e.g. 20 % for testing and

80 % training are not suitable, as the whole data set is necessary for intrusion detection and

relevant log data could be overlooked.

3.3 Outcome

Weka generates a decision tree (see � gure 3.3) from the entered data with a height of three,

where the root node is the �ag condition "suspiciousPort", stating the remaining two �ag

conditions "suspiciousTime" and "repeatedByteSize" as internal nodes. All three �ag occurences

are portraying suspicious behavior, which could indicate APT activity. However they are not

equally severe, which means the combination of the �ag occurences is also relevant:

The root node "suspiciousPort" is the most critical factor, since unauthorized port activity

could indicate command & control communication. IP addresses triggering this �ag are most

de�nitely of great interest and require analysis.

Either "suspiciousTime" and "repeatedByteSize" are conditions which express a similar low

level of data suspiciousness as each one of them individually can feature actual legitimate

connections. Communication logged at irregular working hours might suggest data ex�ltration

or botnet activity, but they can also be a operating system update, legitimate data transfer to

other time zones or an employee working unusually late / early. Connections with repeated byte

size occurences may be evaluated similarly, as hereby marked IP addresses portend beaconing

characteristics or low-key piracy, but can also be coincidence or authorized automated email

27



3 Method

checks. Suspicion for APT attacks can therefore be only raised with these two �ags, if they

appear in combination with any of the other two left conditions.

Listed IP addresses from the leafs can be either the client or server party, depending on the

nature of behaviour. The generated tree allows the access to each node and performs no

accuracy improvements, as the decision has been set (in the generic object editor) to "non

collapsing" (no parts from the tree are being reduced that would not reduce training error), with

a minimum number of object of one instance per leaf and no pruning performed, thus all nodes

have been displayed. The decision tree itself can be displayed, by selecting "Visualize tree" in

the result list. Its leafs are multiple lists of IP addresses with varying level of dangerousness,

which are illustrated with reference to the tra�c light colours, categorizing entries into lists

(see �gure 3.3):

• Blacklist: The red circled nodes in the left branch with the numbers six, seven and

eight contain IP addresses, which have triggered all three �ags and are highly suspicious

(highlighted in red). Hosts can be identi�ed with the aid of this list, which are either

source or target of an attack. Further analysis could result in attack patterns which

are composed of a sequence of individual attacks. Because of the J48 settings in the

generic object editor, the tree is unpruned and not collapsed, therefore all nodes are

being displayed to ensure detection of even small local features in the data set.

• Greylist: The yellow circled nodes with the number two, three, four and �ve are IP

addresses causing one to two �ags, hence display some questionable features. The �ag

count itself is not decisive, but rather the nature of the �ag, as stated above.

• Whitelist: The remaining node number one, which is circled green does not have any

marked �ags and contain IP addresses, which are deemed harmless in this scenario and

can be utilized for successive log examination.

Each leaf can be stored for further usage, by selecting the desired node and saving the node’s

content as an Ar� �le. When opening the Ar� �le node content in Weka, again a very helpful

overview of the attributes is presented, but with the advantage that a distribution and count of

the attributes reveals which IP addresses have been marked the most.
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Figure 3.3: Generated Decision Tree

3.4 Analysis

Examination of the lists in Weka reveal the distribution and frequency of the IP addresses in its

list. In general, it can be stated, that the most connections in the grey- and whitelist are reserved

from the Internet Assigned Numbers Authority (IANA) with e.g. the IP address: 249.163.50.251.

These IP addresses can now be categorized as non-harmful but have to be checked upon

in the future.

The greylist contains also many occurences of connections to Apple Inc. with the IP address

17.199.49.146, which is one of the candidates, where the IT-expert would have to determine, if

it is suspicious or not. In this case, the expert could transfer the IP address to the white list, as

it would be extremely unlikely that an APT attack would originate from Apple.

The analysis of the blacklist has also revealed the highest occurence of connections established

were to a reserved IANA entity, however the IT-expert should not research the highest number

of connections but rather the unobtrusive calls, which have not emerged often.
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The connection to the IP address 40.139.133.66 e.g. which is a supposed dental o�ce in Aspen

United States, would be an instance to check by the expert, since the connection occurence is

low and the organisation unknown.

The examined data did not contain any real APT attacks and display only regular network

characteristics, which explains, why no real malicious entities were found but rather recom-

mendations made.

3.5 Coverage

APT detection can be attempted by several di�erent approaches and this thesis’s method is

focused on the network tra�c side. Multiple APT possibilities can be examined by concentrating

on the log �les of network components, such as unusual outbound network tra�c, symptons

of root kits or irregular access patterns.

The implemented chain of tasks has shown, that the preprocessing of data is an essential step,

which determines the quality of the algorithm result. It is possible to extract knowledge from

vast sets of data to study the network and determine possible APT attacks when examining

network tra�c. The selected classi�cation algorithm, J48, generated a tree, on which a tra�c

light concept can be applied, to identify IP addresses with di�erent levels of suspiciousness.

The advantage of this, is its extensibility, as trees can be easily implemented on unidenti�ed

instances to study its nature. However some facts have also occured, which should be taken

into consideration:

Weka is a very capable tool for data mining tasks but displayed some weaknesses, e.g. its long

runtime when validating data or the problem of running out of memory, as the heap space �lls

quickly. This also led to the selection of the data to be only �ve minutes (see chapter 3.1.1). For

future algorithm application it would be advisable to use Weka with its Java interface, which

allows more resilient data manipulation.

Additionally, a disadvantage of perl is, that it is a interpretative language. This means, that it is

comparatively slower to other languages like C. Its slowness has also been the reason, next to

Weka’s runtime, why the data selection resulted in the choice the 5 minute span of log �les.
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4.1 Summary

This thesis’s goal was to create a concept with the help of data mining, which could facilitate

the detection of APTs and possibly be connected to existing IDSs. To establish a common

ground of knowledge, data mining has been explained in the conjunction of KDD, as �nding

vulnerabilities involves multiple KDD domains. Available data mining methods have been

categorized into four major classes: Accociation pattern mining, clustering, outlier detection

and classi�cation. Each one of them o�ering unique approaches and possibilities for a broad

province of tasks.

A goal was to determine which algorithm of theses classes could aid create an approach to

reveal possible APT attack indicators. The selected approach is the systematic examination

of network data to search for attack marks which in return could yield the IP address of the

instance initiating this behaviour. Three exemplary attack marks have been suggested for this

reason:

• tra�c on suspicious ports

• action at unusual working hours

• and repeatedly same transmitted data sizes.

However before the selection of an algorithm, an extensive stage of preprocessing has been

conducted, which is why this thesis required the creation of �ve di�erent consecutive perl

scripts, to ensure the reliability of data. Would the data have originated from one source, a

preprocess script count of two would have su�ced. But since the intention was also to o�er a

perspective into realistic network interconnections, data collected from a unix and a windows

based system has been employed. Merging both data sets has been an essential step to both

understand each system’s advantages and disadvantages as well as to learn possible obstacles

when dealing with two very di�erent and large data sets.

After having reduced and converted each data to a common denominator, both NF and PDNS

data have been joined to create the essence of both information instances. A sixth perl script
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has then been employed to perform marking of the three suspicious activity occurrences

and preparing the data for following algorithm practice. Therefor the classi�cation class has

been selected with the speci�c choice of decision trees to conduct supervised learning on the

received data. Di�erent decision tree types have been evaluated, with the chosen tree instance

being J48, an open source java implementation of the C4.5 algorithm in the data mining tool

Weka. As a result of this, a multi-level tree has been generated, whose leaves are lists of IP

addresses meeting the stated marking conditions to their degree. IP addresses ful�lling all

three �ag terms are classi�ed as "very suspicious" and are listed in the blacklist of potential

attackers, requiring de�nite review and action of an expert. Connections evoking only one

to two of the �ags are placed in the greylist, not needing immediate intervention, as many

authorized connections might also invoke marking and thus require review. However other

greylist entries could have the potential of being well-hidden attacks and should be checked

for validity. Whitelist entries with no �ags set are IP addresses categorized as reliable for

future exchange.

Each generated list can be individually examined, processed in Weka for further dissection or

implemented into IDS tools, o�ering valuable core information about network characteristics

and potential attacks.

4.2 Conclusion

This thesis’s main task has been the development of a chain of methods, to study a network’s

logging characteristics and determine an approach to identify suspicious IP addresses indicat-

ing an APT attack. This goal has been achieved with the creation of multiple perl scripts for

di�erent steps of preprocessing and the automated generating of black-, grey- and whitelists

with the help of decision trees. The hypothesis, that a chain of data mining tasks possible APT

detection discloses can be con�rmed with the listed assumptions. APTs are highly sophisticated

and complex attacks, which can be challenging to test or generalize, especially since they

do not use commonly known attack signatures. However, the decision tree in this thesis is

based on the conjecture, that APTs display some of the declared �ag behaviours, which is an

oversimpli�cation. The hypothesis is therefore only con�rmed for the given environment, as

the decision tree would have to be improved with the addition of more �ag conditions to aid

available IDS in real life.

Also, the task of preprocessing is noted to be exceedingly vital for any attempts to gain in-

formation from vast log sets, which is why this thesis premised on the transformation and

normalization of data. Every one of the three generated lists are in a CSV format and can
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therefore be easily incorporated into available NIDS to improve intrusion detection and adjust

�lter rulesets of existing network guard components. The characteristic tree structure makes

it especially advantageous, since any noticeable objects can be easily examined with a decision

tree and partitioned into nodes of interest, thereby o�ering a valuable advancement to existent

systems. Furthermore, an additional functionality has been implemented in the step of object

fusion between NF and PDNS: The PDNS log �les contain host names after the resource record

type and when available, an IP address. If the NF data matches the PDNS log data with regards

to time and place of recording, host names from the PDNS log �les can be connected to the

source or destination IPs from the NF data. This functionality occurs after the application of

the "ConnectPDNStoNF.pl" script (see listing A.6), which inserts one column for the hostname

after each the source and destination IP address. For this thesis however, the host names are

not inserted (marking as zero, when not found), since the PDNS logs do not match the NF logs

entirelly, due to the place of recording.

4.3 Outlook

The result of this thesis is a quantitative connection option for other NIDS with alert function-

ality due to its universality and uniform outputs. This o�ers multiple possibilities for further

advancements. The most distinct one being the opportunity of connecting this thesis’s concept

to existing IDS. However the potential goes well beyond that:

Obtained lists can be returned into the chain for future network scanning to train the learning

module and improve the detection accuracy. This could create a cycle of constant learning

and advance even further when coupling or cross-checking results to trusted external lists e.g.

Spamhaus or Distributed Sender Blackhole List, which are lists containing IP addresses from

which large amounts of spam have been distributed.

Another extension could be linking the achieved chain to alert systems components, using

the generated output to trigger explicit automated alerts which could be immediately sent to

employees in a mail and intercept tra�c. This method would shift the functionality from mere

attack detection to attack prevention.

Furthermore, the whole potential of the generated method chain has not been fully reached as

the host inscribing functionality is not being used. If the �agged data also contained host names,

could the resulting lists not only include IP addresses but also names of organizations. This

might be interesting for further alert noti�cation and immediate �ltering as mentioned above.
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A.1 NF to CSV Converting

Listing A.1: nfcapHandler

1 #
2 #Script to convert NF data into CSV format
3 #
4 #Author: Cornelia Bruelhart
5 #SoSe 2016
6 #Hochschule fuer angewandte Wissenschaften Hamburg
7 #Bachelorthesis: Analysis of available Data Mining Algorithms to

detect Advanced Persistent Threats (APT)
8 #
9

10 #!/bin/sh
11

12 counter=0
13 for file in /home/conny/Desktop/netflow-20160928/*;
14

15 do nfdump -r "$file" > /home/conny/Desktop/NFtoCSV/"nf"$counter.csv
16 counter=‘expr $counter + 1‘
17

18 done
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A.2 NF CSV Merging

Listing A.2: nfCSVmerge.pl

1 #Script to merge all CSV NF files into one.
2 #
3 #Author: Cornelia Bruelhart
4 #SoSe 2016
5 #Hochschule fuer angewandte Wissenschaften Hamburg
6 #Bachelorthesis: Analysis of available Data Mining Algorithms to

detect Advanced Persistent Threats (APT)
7 #
8 use 5.010;
9 use strict;

10 use warnings;
11

12 #Path of csv-directory
13 my $csvDirectory = ’Desktop\\NFtoCSV’;
14

15 opendir(CSVFILE,$csvDirectory);
16 #Merge all csv-files to one
17

18 my @csvfiles = readdir(CSVFILE);
19 closedir(CSVFILE);
20

21 my $csvfilecounter = @csvfiles; #-3;
22 foreach(@csvfiles){
23

24 if(($_ eq ".")||($_ eq "..")){
25 next;
26 }
27

28 my $currentCSV = "Desktop\\NFtoCSV\\$_";
29

30 open (my $data, ’<’, $currentCSV) or die "Could not open ’
$currentCSV’ $!\n";

31 while (my $line = <$data>){
32 print $line;
33 }
34 }
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A.3 PCAP to CSV Converting

Listing A.3: pcapHandler.pl

1 #Script to convert all pcap files from a directory to csv-format and
save in a folder named CSV, which already is on the desktop

2 #
3 #Author: Cornelia Bruelhart
4 #SoSe 2016
5 #Hochschule fuer angewandte Wissenschaften Hamburg
6 #Bachelorthesis: Analysis of available Data Mining Algorithms to

detect Advanced Persistent Threats (APT)
7 #
8 use 5.010;
9 use strict;

10 use warnings;
11

12 #Path of the pcap- and csv-directory
13 my $pcapDirectory = ’Desktop\\passive-dns-20160928’;
14 my $csvDirectory = ’Desktop\\CSV’;
15

16 opendir(CSVFILE,$csvDirectory);
17 opendir(PCAPFILE,$pcapDirectory);
18 my @files = readdir(PCAPFILE);
19

20 #closedir(CSVFILE);
21 closedir(PCAPFILE);
22

23 my $counter = 0;
24

25 foreach(@files){
26 if(($_ eq ".")||($_ eq "..")){
27 next;
28 }
29

30 $counter++;
31 my $cmd = "\"C:\\Program Files\\Wireshark\\tshark.exe\" -tad -r

Desktop\\passive-dns-20160928\\$_ > $csvDirectory\\file$counter.
csv";
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33 system($cmd);
34 }
35

36 closedir(CSVFILE);
37 opendir(CSVFILE,$csvDirectory);
38 #Merge all csv-files to one
39

40 my @csvfiles = readdir(CSVFILE);
41 closedir(CSVFILE);
42

43 my $csvfilecounter = @csvfiles -3;
44 foreach(@csvfiles){
45 #print "blubb";
46 if(($_ eq ".")||($_ eq "..")){
47 next;
48 }
49

50 my $currentCSV = "Desktop\\CSV\\$_";
51

52 open (my $data, ’<’, $currentCSV) or die "Could not open ’
$currentCSV’ $!\n";

53 while (my $line = <$data>){
54 print $line;
55 }
56 }

A.4 PDNS Preprocessing

Listing A.4: PDNSPreprocess.pl

1 #
2 #Script to normalize log files containing pdns-entries. This script

checks for the most common DNS-types like AAAA, PTR or NS and
performs normalization.

3 #Important data, such as sourceIP or IP address to given host is
being saved, whereby only the response queries are returned.

4 #
5 #Author: Cornelia Bruelhart
6 #SoSe 2016
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7 #Hochschule fuer angewandte Wissenschaften Hamburg
8 #Bachelorthesis: Analysis of available Data Mining Algorithms to

detect Advanced Persistent Threats (APT)
9 #

10 use 5.010;
11 use Text::CSV;
12 use Net::IP::Lite;
13

14 #Open file
15 my $file = $ARGV[0] or die "Need to get CSV file on the command line

\n";
16 open(my $data, ’<’, $file) or die "Could not open ’$file’ $!\n";
17

18 print "Date,Time,Protocol,DNS-Server-IP,Type,Content1,Content2\n";
19

20 while (<>) {
21

22 my($preQuery, $data) = split(/Standard/);
23 ($no,$date,$time,$srchost,$arrow,$dsthost,$proto, $len) = split(

" ",$preQuery);
24 $_ = $data;
25

26 #Some entries contain the sourceIP in IPv6 format, thus the
calling of the submethod IPv6ToIPv4

27 if($srchost =~ /:/){
28 $srchost = IPv6ToIPv4($srchost);
29 }
30

31 if($dsthost =~ /:/){
32 $dsthost = IPv6ToIPv4($dsthost);
33 }
34

35 if ( m/^ query response 0x.... (.*)/ ) {
36

37 #A & CNAME( which returns the canonical value of the
requested page)

38 #No furter manipulation required
39 $ip = $srchost;
40 $type = "response";
41 ($tmp1,$content,$tmp2,$content2) = split( " ", $1 );
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42

43 #In case of server failure
44 if($tmp1 eq "Server"){
45 $content = "Server failure";
46 $content2 = 0;
47 }
48

49 #In case of format failure
50 if($tmp1 eq "Format"){
51 $content = "Format failure";
52 $content2 = 0;
53 }
54

55 if($tmp2 eq"A"){
56 #Leave variables as they are
57 }
58

59 #AAAA: AAAA Records return the requested IP in IPv6
format, which is converted to IPv4 below.

60 elsif( $tmp2 eq "AAAA"){
61 $content2 = IPv6ToIPv4($content2);
62 }
63

64 #MX: Extract the response IP in case of PTR or MX,
which occurs in the logs after the A record

65 elsif( $tmp2 eq "MX"){
66 my $i= 0;
67 my @ipv4 = split(" ",$data);
68 foreach(@ipv4){
69 if($ipv4[$i] eq "A"){
70 $i++;
71 last;
72 }
73 else{$i++;}
74 }
75 $content2 = $ipv4[$i];
76 }
77

78 # NS: Is the response of type NS, return 0
79 elsif($tmp2 eq "NS"){
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80 $content2 = "0";
81 }
82

83 #PTR responses return the reversed IP address of the
(first part of the)arpa-address

84 if($tmp1 eq "PTR"){
85 my @ipReverse = split(/\./, $content);
86 $content2 = "$ipReverse[3].$ipReverse[2].$ipReverse

[1].$ipReverse[0]";
87 }
88

89 #The submethod NoMatchFunc is called, when there is
no such name in the entries.

90 if($tmp1 eq "No"){
91 my($content, $content2) = NoMatchFunc($data)

;
92 }
93

94 #Assigns the value 0, if the field is empty.
95 if(!defined($content2)){
96 $content2 = "0";
97 }
98 }
99

100 elsif ( m/^ query 0x.... (.*)/ ) {
101

102 $ip = $dsthost;
103 $type = "request";
104 ($tmp1,$content,$tmp2) = split( " ", $1 );
105 $content2 = "0";
106

107 }
108

109 # The following rounds the miliseconds to seconds. Time
format now: hh:mm:ss

110 my @timetmp = split(":", $time);
111 $seconds = sprintf ("%.0f", $timetmp[2]);
112 if($seconds < 10){
113 $seconds = "0$seconds";
114 }
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115 $time = "$timetmp[0]:$timetmp[1]:$seconds";
116

117 if($type eq "response"){
118 print "$date,$time,$proto,$ip,$type,$content,$content2\n";
119 }
120 }
121

122 #Submethod to return the requested address in content and Strint "No
maching page found" in content2

123 sub NoMatchFunc{
124 my @iptmp = @_;
125 my $arraycontent = $iptmp[0];
126 my $i = 0;
127 my @param = split(" ",$arraycontent);
128 foreach(@param){
129 if($param[$i] eq "A" || $param[$i] eq "PTR"

|| $param[$i] eq "SRV" || $param[$i] eq "
SOA" || $param[$i] eq "AAAA"){

130 $i++;
131 last;
132 }
133 else{$i++;}
134 }
135 $content = $param[$i];
136 $content2 = "No matching page found";
137 return($content, $content2);
138 }
139

140 #Submethod to convert the refered IPv6 to IPv4
141 sub IPv6ToIPv4{
142 my @iptmp = @_;
143 my $arraycontent = $iptmp[0];
144

145 #Fills up the field, if the address contains ::
146 $arraycontent = ip_transform( $arraycontent, { lead_zeros =>

1});
147

148 my @ipv6 =split(":", $arraycontent);
149

150 my $v6part1 = hex( $ipv6[6]);
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151 my $v6part2 = hex( $ipv6[7]);
152 my $ip41 = scalar($v6part1>>8);
153 my $ip42=scalar($v6part1&0xff);
154 my $ip43=scalar($v6part2>>8);
155 my $ip44=scalar($v6part2&0xff);
156

157 $arraycontent = $ip41.".".$ip42.".".$ip43.".".$ip44;
158 return ($arraycontent);
159 }

A.5 NetFlow Preprocessing

Listing A.5: NFPreprocess.pl

1 #
2 #Script to normalize log files containing netflow data
3 #
4 #Author: Cornelia Bruelhart
5 #SoSe 2016
6 #Hochschule fuer angewandte Wissenschaften Hamburg
7 #Bachelorthesis: Analysis of available Data Mining Algorithms to

detect Advanced Persistent Threats (APT)
8 #
9

10 use 5.010;
11

12 my $SourceDirectory = ’Desktop\\NFtoCSV’;
13

14 opendir(CSVFILE,$SourceDirectory);
15

16 my @files = readdir(CSVFILE);
17

18 my $counter = 0;
19 my $flag = 0;
20

21 my $outputFile = "E:\\PreprocessedNF\\nfPreprocessedAndMerged.csv";
22

23 foreach(@files){
24
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25 if(($_ eq ".")||($_ eq "..")){
26 next;
27 }
28

29 my $currentCSV ="Desktop\\NFtoCSV\\$_";
30

31 open (my $data, ’<’, $currentCSV) or die "Could not open $currentCSV
\n";

32 open(OutFILE, ’>>’, $outputFile) or die "Could not open $outputFile\
n";

33

34 my @lines;
35

36 my ($date,$time, $srcIP, $dstIP, $srcPort, $dstPort, $proto, $bytes,
$packets);

37 my $buffer;
38

39 #Store file in array
40 while (<$data>) {
41 chomp;
42 push @lines, $_;
43 }
44

45 #remove the first line, which contains no log data
46 shift @lines;
47

48 my $stringtmp;
49

50 foreach $stringtmp (@lines){
51

52 my @tmp = split(’\s+’,$stringtmp);
53

54 if(($tmp[0] eq "Summary:")||($tmp[0] eq "Time")||($tmp[0] eq
"Total")||($tmp[0] eq "Sys:")||($tmp[0] eq "Date")){

55 next;
56 }
57 $date = $tmp[0];
58 ($time,$buffer) = split("\\.",$tmp[1]);
59 $proto = $tmp[3];
60 ($srcIP,$srcPort) = split(":",$tmp[4]);
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61 ($dstIP,$dstPort) = split(":",$tmp[6]);
62 $packets = $tmp[7];
63 $bytes = $tmp[8];
64

65 if ( $proto eq "ICMP" ) {
66 $dstPort = 0;
67 }
68 if($flag == 0){
69 print OutFILE "Date,Time,Protocol,SrcIP,SrcPort,DstIP,

DstPort,Bytes,Packets\n";
70 $flag = 1;
71 }
72 print OutFILE "$date,$time,$proto,$srcIP,$srcPort,$dstIP,

$dstPort,$bytes,$packets\n";
73 }
74 }
75 close(CSVFILE);
76 close(OutFILE);

A.6 Connect PDNS to NetFlow

Listing A.6: ConnectPDNStoNF.pl

1 #Script to match PDNS to NF log entries by comparing response IP
addresses to source and destination IPs

2 #
3 #Author: Cornelia Bruelhart
4 #SoSe 2016
5 #Hochschule fuer angewandte Wissenschaften Hamburg
6 #Bachelorthesis: Analysis of available Data Mining Algorithms to

detect Advanced Persistent Threats (APT)
7 #
8 use 5.010;
9 use Text::CSV;

10

11 #Open files
12 #First file is Netflow data
13 my $file = $ARGV[0] or die "Need to get CSV file as the first

parameter on the command line\n";
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14 open(my $data, ’<’, $file) or die "Could not open ’$file’ $!\n";
15

16 #Second file is the pDNS data
17 my $file2 = $ARGV[1] or die "Need to get CSV file as the second

parameter on the command line\n";
18 open(my $data2, ’<’, $file2) or die "Could not open ’$file2’ $!\n";
19

20 #Store first file in array. This contains the Netflow data.
21 while (<$data>) {
22 chomp;
23 push @linesFirstFile, $_;
24 }
25

26 #Store second file in array. This contains the pDNS responses
27 while (<$data2>) {
28 chomp;
29 push @linesSecondFile, $_;
30 }
31

32 print "Date,Time,Protocol,srcIP,srcHost,srcPort,dstIP,dstHost,
dstPort,bytesToDstIP,packetsToDstIP,bytesToSrcIP,packetsToSrcIP\n
";

33

34 my $arraySizePDNS = @linesSecondFile;
35 my $arraySize = @linesFirstFile;
36 my @OneOfPair;
37 my $tmp=0;
38 for ( my $i=1; $i < $arraySize; $i++){
39

40 ($date,$time,$proto,$srcIP,$srcPort,$dstIP,$dstPort,
$bytesToD,$packetsToD) = split (",",$linesFirstFile[$i]);

41

42 #Iterate through the rest of the log file and
compare it to the above selected

43 for (my $j = $i+1; $j < $arraySize; $j++){
44

45 my ($date2,$time2,$proto2,$srcIP2,$srcPort2,$dstIP2,
$dstPort2,$bytesToC,$packetsToC) = split (",",
$linesFirstFile[$j]);

46
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47 if(($srcIP eq $dstIP2) &&($dstIP eq $srcIP2
) && ($dstPort == $srcPort2) && ($srcPort
== $dstPort2) ){

48

49 my ($srcHost,$srcHost2,$dstHost,
$dstHost2);

50

51 for (my $p = 1; $p < $arraySizePDNS;
$p++){

52

53 my ($datePDNS,$timePDNS,
$protoPDNS,$ipPDNS,
$typePDNS,$contentPDNS,
$content2PDNS) = split ("
,",$linesSecondFile[$p]);

54

55 if($content2PDNS eq "No
matching page found"){

56 last;
57 }
58

59 if($srcIP eq $content2PDNS){
60 $srcHost =

$contentPDNS;
61 }
62 elsif($dstIP eq

$content2PDNS){
63 $dstHost =

$contentPDNS;
64 }
65 elsif($srcIP2 eq

$content2PDNS){
66 $srcHost2 =

$contentPDNS;
67 }
68 elsif($dstIP2 eq

$content2PDNS){
69 $dstHost2 =

$contentPDNS;
70 }
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71 if(!defined($srcHost)){
72 $srcHost = 0
73 }
74

75 if(!defined($dstHost)){
76 $dstHost = 0
77 }
78 }
79

80 $OneOfPair[$tmp] = "$date,$time,
$proto,$srcIP,$srcHost,$srcPort,
$dstIP,$dstHost,$dstPort,
$bytesToD,$packetsToD,$bytesToC,
$packetsToC\n";

81 $tmp++;
82 last;
83 }
84 }
85 }
86 print @OneOfPair;

A.7 Set Flags

Listing A.7: checkBehaviour.pl

1 #
2 #Script to apply rules on the input and check for suspicious

behaviour and attributes. Potential threat indicator are marked
as flags in each entry object. Three

3 #tags are being set/checked: Has there been data exchange with the
exact byte size (with the same IPs), is there unsupervised
traffic at an unusual time and is

4 #there traffic on uncommon ports (in regard to the protocols).
5 #
6 #Author: Cornelia Bruelhart
7 #SoSe 2016
8 #Hochschule fuer angewandte Wissenschaften Hamburg
9 #Bachelorthesis: Analysis of available Data Mining Algorithms to

detect Advanced Persistent Threats (APT)
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10 #
11 use 5.010;
12 use Text::CSV;
13 use Switch;
14

15 #Open file
16 #File contains of the combination of pdns and NF entries. These

entries have been selected and modified by the select.pl script.
17 my $file = $ARGV[0] or die "Need to get CSV file as the first

parameter on the command line\n";
18 open(my $data, ’<’, $file) or die "Could not open ’$file’ $!\n";
19

20

21 #Store file in array.
22 while (<$data>) {
23 chomp;
24 push @linesFile, $_;
25 }
26

27

28 #print "Date,Time,Protocol,srcIP,srcHost,srcPort,dstIP,dstHost,
dstPort,bytesToDstIP,packetsToDstIP,bytesToSrcIP,packetsToSrcIP,
suspiciousTime,repeatedByteSize,suspiciousPort\n";

29 print "IPaddress,suspiciousTime,repeatedByteSize,suspiciousPort\n";
30

31 my $arraySize = @linesFile;
32

33 #Create two lists for the IP addresses belonging to the internal
servers or the internal clients

34 my @internalServers;
35 my @internalClients;
36 my @OneOfPair;
37 my @linesSecondArray;
38

39 my $suspiciousTime;
40 my $suspiciousTime2;
41 my $repeatedByteSize;
42 my $repeatedByteSize2;
43 my $suspiciousPort;
44 my $suspiciousPort2;
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45

46 my $serverIPCounter = 0;
47

48 #Attach three flags to the entries set as false. In Perl 0 = false
1=true (anything but 0)

49 for ( my $h = 1; $h < $arraySize; $h++){
50 ($date,$time,$proto,$srcIP,$srcHost,$srcPort,$dstIP,$dstHost

,$dstPort,$bytesToD,$packetsToD,$bytesToC,$packetsToC) =
split(",",$linesFile[$h]);

51 $linesSecondArray[$h] = "$date,$time,$proto,$srcIP,$srcHost,
$srcPort,$dstIP,$dstHost,$dstPort,$bytesToD,$packetsToD,
$bytesToC,$packetsToC,0,0,0\n";

52 }
53 my $secondArraySize = @linesSecondArray;
54

55 for ( my $i=1; $i < $secondArraySize; $i++){
56

57 ($date,$time,$proto,$srcIP,$srcHost,$srcPort,$dstIP,$dstHost,
$dstPort,$bytesToD,$packetsToD,$bytesToC,$packetsToC,
$suspiciousTime,$repeatedByteSize,$suspiciousPort) = split (",",
$linesSecondArray[$i]);

58

59 #Compare the first three bytes, if the IP address is
internal or external

60 my($first,$second,$third,$fourth) = split("\\.",$dstIP);
61

62 #Check if IP is internal
63 if($first==249 && $second==210 && (($third ==51)||($third

==50))){
64

65 #Check if the IP belongs to an internal server and store the
IP in internalServers array

66 switch($dstPort){
67 case [22,80,25,53,123,443]{
68 if(grep{$_ eq $dstIP} @internalServers){
69 #do nothing, is already in array
70 }
71 else{
72 $internalServers[$serverIPCounter]=$dstIP;
73 $serverIPCounter++;
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74 }
75 }
76 }
77 }
78

79 #Split the time into parts of hours,minutes and seconds, and
set flag to true, if the traffic took place from

23:00:00 to 05:59:00
80 my ($hours,$min,$sec) = split(":",$time);
81

82 if(($hours < 6) || ($hours > 22)){
83

84 $suspiciousTime = 1;
85 $linesSecondArray[$i] = "$date,$time,$proto,$srcIP,

$srcHost,$srcPort,$dstIP,$dstHost,$dstPort,
$bytesToD,$packetsToD,$bytesToC,$packetsToC,
$suspiciousTime,$repeatedByteSize,
$suspiciousPort\n";

86 }
87

88 if( $repeatedByteSize == 1){
89 #Continue with next iterator, since the flag has already

been set
90 next;
91 }
92

93 #Iterate through the rest of the log file and compare it to
the above selected

94 for (my $j = $i+1; $j < $secondArraySize; $j++){
95

96 my ($date2,$time2,$proto2,$srcIP2,$srcHost2,$srcPort2,
$dstIP2,$dstHost2,$dstPort2,$bytesToD2,$packetsToD2,
$bytesToC2,$packetsToC2,$suspiciousTime2,
$repeatedByteSize2,$suspiciousPort2) = split (",",
$linesSecondArray[$j]);

97

98

99 # Check, if there has already been an exchange of
data with the same packet size
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100 # (same packets to D = possible exfiltration ->
inside IP sends data regularly)

101 # (same packets to C = possible exfiltration ->
outside IP sends data regularly)

102 if(($bytesToD2 == $bytesToD) && ($dstIP2 eq $dstIP))
{

103 my $insideBool = IsInternal($dstIP);
104

105 if(!$insideBool){
106

107 $linesSecondArray[$i] = "$date,$time,$proto,
$srcIP,$srcHost,$srcPort,$dstIP,$dstHost,
$dstPort,$bytesToD,$packetsToD,$bytesToC,
$packetsToC,$suspiciousTime,1,
$suspiciousPort\n";

108 $linesSecondArray[$j] = "$date2,$time2,
$proto2,$srcIP2,$srcHost2,$srcPort2,
$dstIP2,$dstHost2,$dstPort2,$bytesToD2,
$packetsToD2,$bytesToC2,$packetsToC2,
$suspiciousTime2,1,$suspiciousPort2\n";

109

110 }
111 }
112 elsif(($bytesToC2 == $bytesToC) && ($srcIP2 eq

$srcIP)){
113 my $insideBool = IsInternal($srcIP);
114

115 if(!$insideBool){
116 $linesSecondArray[$i] = "$date,$time,$proto,

$srcIP,$srcHost,$srcPort,$dstIP,$dstHost,
$dstPort,$bytesToD,$packetsToD,$bytesToC,
$packetsToC,$suspiciousTime,1,
$suspiciousPort\n";

117 $linesSecondArray[$j] = "$date2,$time2,
$proto2,$srcIP2,$srcHost2,$srcPort2,
$dstIP2,$dstHost2,$dstPort2,$bytesToD2,
$packetsToD2,$bytesToC2,$packetsToC2,
$suspiciousTime2,1,$suspiciousPort2\n";

118 }
119 }
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120 else {
121 # Otherwise do nothing & leave flag as 0
122 }
123 }
124 }
125

126 #Fill the internalClients array with IPs, since internal servers are
now known

127 for ( my $k = 1; $k < $secondArraySize; $k++){
128 ($date,$time,$proto,$srcIP,$srcHost,$srcPort,$dstIP,$dstHost

,$dstPort,$bytesToD,$packetsToD,$bytesToC,$packetsToC,
$suspiciousTime,$repeatedByteSize,$suspiciousPort) =
split(",",$linesSecondArray[$k]);

129

130 #Compare the first three bytes, if the IP address is
internal or external

131 my $srcBool = IsInternal($srcIP);
132 my $dstBool = IsInternal($dstIP);
133

134 #Check if srcIP is internal
135 if($srcBool){
136

137 #Check if it is already declared as a internal
server- otherwise it‘s an internal client

138 if (grep{$_ eq $srcIP}@internalServers){
139 #do nothing, is already marked as a internal

server
140 }
141 else{
142 push (@internalClients,$srcIP)
143 }
144 }
145 }
146

147 #Set flag, if suspicious connection has been etablished / suspicious
port used

148 for ( my $l = 1; $l < $secondArraySize; $l++){
149 ($date,$time,$proto,$srcIP,$srcHost,$srcPort,$dstIP,$dstHost

,$dstPort,$bytesToD,$packetsToD,$bytesToC,$packetsToC,
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$suspiciousTime,$repeatedByteSize,$suspiciousPort) =
split(",",$linesSecondArray[$l]);

150

151 my $srcBool = IsInternal($srcIP);
152

153 #Check if srcIP is internal
154 if($srcBool){
155 #Is it a internal server
156 if(grep{$_ eq $srcIP}@internalServers){
157

158 my $bool=IsInternal($dstIP);
159 if($bool){
160 switch($srcPort){
161 case [22,80,25,53,123,443]{
162 my $clientBool = IsInternalClient(

$dstIP);
163 if(($dstPort > 1023)&&($clientBool))

{
164 #$linesSecondArray[$l] = "$date,

$time,$proto,$srcIP,$srcHost,
$srcPort,$dstIP,$dstHost,$dstPort
,$bytesToD,$packetsToD,$bytesToC,
$packetsToC,$suspiciousTime,
$repeatedByteSize,0\n";

165 $linesSecondArray[$l] = "$srcIP,
$suspiciousTime,$repeatedByteSize
,0\n";

166 }
167

168 else{
169 #$linesSecondArray[$l] = "$date,

$time,$proto,$srcIP,$srcHost,
$srcPort,$dstIP,$dstHost,$dstPort
,$bytesToD,$packetsToD,$bytesToC,
$packetsToC,$suspiciousTime,
$repeatedByteSize,1\n";

170 $linesSecondArray[$l] = "$srcIP,
$suspiciousTime,$repeatedByteSize
,1\n";

171 }
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172 }
173 else{
174 my $serverBool = IsInternalServer(

$dstIP);
175

176 if(($srcPort > 1023) && ($serverBool
)){

177 #$linesSecondArray[$l] = "$date,
$time,$proto,$srcIP,$srcHost,
$srcPort,$dstIP,$dstHost,$dstPort
,$bytesToD,$packetsToD,$bytesToC,
$packetsToC,$suspiciousTime,
$repeatedByteSize,0\n";

178 $linesSecondArray[$l] = "$srcIP,
$suspiciousTime,$repeatedByteSize
,0\n";

179 }
180 else{
181 #$linesSecondArray[$l] = "$date,

$time,$proto,$srcIP,$srcHost,
$srcPort,$dstIP,$dstHost,$dstPort
,$bytesToD,$packetsToD,$bytesToC,
$packetsToC,$suspiciousTime,
$repeatedByteSize,1\n";

182 $linesSecondArray[$l] = "$srcIP,
$suspiciousTime,$repeatedByteSize
,1\n";

183 }
184 }
185 }
186 }
187 else{
188 if($srcPort > 1023){
189 switch($dstPort){
190 case[22,80,53,25,123,443]{
191 #$linesSecondArray[$l] = "$date,

$time,$proto,$srcIP,$srcHost,
$srcPort,$dstIP,$dstHost,$dstPort
,$bytesToD,$packetsToD,$bytesToC,
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$packetsToC,$suspiciousTime,
$repeatedByteSize,0\n";

192 $linesSecondArray[$l] = "$srcIP,
$suspiciousTime,$repeatedByteSize
,0\n";

193 }
194 else{
195 #$linesSecondArray[$l] = "$date,

$time,$proto,$srcIP,$srcHost,
$srcPort,$dstIP,$dstHost,$dstPort
,$bytesToD,$packetsToD,$bytesToC,
$packetsToC,$suspiciousTime,
$repeatedByteSize,1\n";

196 $linesSecondArray[$l] = "$srcIP,
$suspiciousTime,$repeatedByteSize
,1\n";

197 }
198 }
199 }
200 else {
201 #$linesSecondArray[$l] = "$date,$time,$proto

,$srcIP,$srcHost,$srcPort,$dstIP,$dstHost
,$dstPort,$bytesToD,$packetsToD,$bytesToC
,$packetsToC,$suspiciousTime,
$repeatedByteSize,1\n";

202 $linesSecondArray[$l] = "$srcIP,
$suspiciousTime,$repeatedByteSize,1\n";

203 }
204 }
205 }
206 #Therefore it is an internal client
207 else{
208 my $bool=IsInternal($dstIP);
209 if($bool){
210 my $serverBool = IsInternalServer(

$dstIP);
211 if($serverBool){
212 switch($dstPort){
213 case [22,80,25,53,123,443]{
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214 #$linesSecondArray[$l] = "
$date,$time,$proto,$srcIP
,$srcHost,$srcPort,$dstIP
,$dstHost,$dstPort,
$bytesToD,$packetsToD,
$bytesToC,$packetsToC,
$suspiciousTime,
$repeatedByteSize,0\n";

215 $linesSecondArray[$l] = "
$srcIP,$suspiciousTime,
$repeatedByteSize,0\n";

216 }
217 else{
218 #$linesSecondArray[$l] = "

$date,$time,$proto,$srcIP
,$srcHost,$srcPort,$dstIP
,$dstHost,$dstPort,
$bytesToD,$packetsToD,
$bytesToC,$packetsToC,
$suspiciousTime,
$repeatedByteSize,1\n";

219 $linesSecondArray[$l] = "
$srcIP,$suspiciousTime,
$repeatedByteSize,1\n";

220 }
221 }
222 }
223 else{
224 #$linesSecondArray[$l] = "$date,

$time,$proto,$srcIP,$srcHost,
$srcPort,$dstIP,$dstHost,$dstPort
,$bytesToD,$packetsToD,$bytesToC,
$packetsToC,$suspiciousTime,
$repeatedByteSize,1\n";

225 $linesSecondArray[$l] = "$srcIP,
$suspiciousTime,$repeatedByteSize
,1\n";

226 }
227 }
228 else{
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229 #$linesSecondArray[$l] = "$date,$time,$proto
,$srcIP,$srcHost,$srcPort,$dstIP,$dstHost
,$dstPort,$bytesToD,$packetsToD,$bytesToC
,$packetsToC,$suspiciousTime,
$repeatedByteSize,1\n";

230 $linesSecondArray[$l] = "$srcIP,
$suspiciousTime,$repeatedByteSize,1\n";

231 }
232 }
233 }
234

235 #SrcIP has to be external
236 else{
237 my $serverBool = IsInternalServer($dstIP);
238

239 if($serverBool){
240 if($srcPort > 1023){
241 switch($dstPort){
242 case [22,80,25,53,443,1194]{
243 #$linesSecondArray[$l] = "$date,$time,$proto

,$srcIP,$srcHost,$srcPort,$dstIP,$dstHost
,$dstPort,$bytesToD,$packetsToD,$bytesToC
,$packetsToC,$suspiciousTime,
$repeatedByteSize,0\n";

244 $linesSecondArray[$l] = "$srcIP,
$suspiciousTime,$repeatedByteSize,0\n";

245 }
246 else{
247 #$linesSecondArray[$l] = "$date,$time,$proto

,$srcIP,$srcHost,$srcPort,$dstIP,$dstHost
,$dstPort,$bytesToD,$packetsToD,$bytesToC
,$packetsToC,$suspiciousTime,
$repeatedByteSize,1\n";

248 $linesSecondArray[$l] = "$srcIP,
$suspiciousTime,$repeatedByteSize,1\n";

249 }
250 }
251 }
252 else{
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253 #$linesSecondArray[$l] = "$date,$time,$proto,$srcIP,
$srcHost,$srcPort,$dstIP,$dstHost,$dstPort,
$bytesToD,$packetsToD,$bytesToC,$packetsToC,
$suspiciousTime,$repeatedByteSize,1\n";

254 $linesSecondArray[$l] = "$srcIP,$suspiciousTime,
$repeatedByteSize,1\n";

255 }
256 }
257 #An external component tries to connect to an internal

client
258 else{
259 #$linesSecondArray[$l] = "$date,$time,$proto,$srcIP,$srcHost

,$srcPort,$dstIP,$dstHost,$dstPort,$bytesToD,$packetsToD,
$bytesToC,$packetsToC,$suspiciousTime,$repeatedByteSize
,1\n";

260 $linesSecondArray[$l] = "$srcIP,$suspiciousTime,
$repeatedByteSize,1\n";

261 }
262 }
263 }
264

265 print @linesSecondArray;
266

267 #Check, if the given IP is listed as an internal client
268 sub IsInternalClient{
269 my @iptmp = @_;
270 if (grep{$_ eq $iptmp[0]}@internalClients){
271 return(1);
272 }
273 else{
274 return(0);
275 }
276 }
277

278 #Check, if the given IP is listed as an internal server
279 sub IsInternalServer{
280 my @iptmp = @_;
281 if (grep{$_ eq $iptmp[0]}@internalServers){
282 return(1);
283 }
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284 else{
285 return(0);
286 }
287 }
288

289 #Check, if the given IP is listed as an internal component
290 sub IsInternal{
291 my @iptmp = @_;
292 my($first,$second,$third,$fourth) = split("\\.",$iptmp[0]);
293 if($first==249 && $second==210 && (($third ==51)||($third

==50))){
294 return(1);
295 }
296 else{
297 return(0);
298 }
299 }
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