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Abstract 

The topic of this Master's thesis is the implementation of the action plane fracture 

criteria of Puck into the Abaqus (3DS Dassault Systems, Paris, France) environment. The 

proper code will be developed in Fortran code. The necessity of using this criterion follows 

that in Finite Element codes the strength of fibre-reinforced plastic is typically computed 

based on an analytical function describing the yield surface. Therefore, it cannot be 

distinguished between different failure modes. The Puck's failure criterion singles out the 

fibre failure and inter-fibre failure. Even though Abaqus options include Hashin theory, which 

also distinguish IFF and FF, Hashin didn't take into account the fracture plane and in Abaqus 

Hashin's criteria is only available for 2D model. That is why this criterion is one of the best 

failure criteria for fibre-reinforced plastic available today. 

The Puck's failure criterion code will be done in an implicit way. It is important to 

check whether this code is working properly in cooperation with Abaqus software. There is a 

need of validation this implementation. The first step to achieve it, is to prepare some 

example based on literature and calculate them using Compositor composite's calculator 

(program prepared and developed by Instutut für Kunsttoffverarbeitung, RWTH Aachen). 

These calculations will serve in the next step of this thesis, when this results will be checked 

with the one achieved with Abaqus software and implemented code. To obtain the validation 

of action plane fracture criteria of Puck, results from numerical calculations must be similar 

with experiments ones. 

Ensuring that the code works correctly and it provides acceptable results, action 

plane fracture criteria of Puck will be used in modeling and calculating degradation process 

in composite structure. By using action plane fracture criteria of Puck there is a wish to obtain 

a properly defined model and thanks to that receive correct results for numerical calculations. 

Thanks to this work we achieved a subroutine that can allow us to calculate a 3-

dimensional model of a lamina. It is important, because now we can model more complex of 

laminate structure, not only 2-dimensional models, which in many cases are not sufficient. 

The implementation will improve researches about degradation processes in laminate 

structures, which was not available before.  
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Abbreviations 

IFF - inter-fiber fracture 

FF- fibre fracture 

FEA- Finite Element Method 

COS- coordinate system 

Used symbols and their units 

σ�, σ�, σ�	�MPA� − 	normal	stresses	in	the	material	COS	
σ��	�MPa� − 	�ibre	directions	stress	
τ��, τ��, τ��	�MPa� − 	shear	stresses	in	the	material	COS	
σ!, σ", σ#	�MPA� − 	normal	stresses	in	the	global	COS	
τ"#, τ!#, τ!"	�MPa� − 	shear	stresses	in	the	global	COS	
σ∥&,'	�MPa� − 	normal	stresses	parallel	to	�ibre	direction	(t	for	tension, c	for	compression)	
σ,&,'	�MPa� − 	normal	stresses	perpendicular	to	�ibre	direction		
τ,∥	�MPa� − 	in − plane	shear	stresses	
τ,,	�MPa� − 	through − thickness	shear	stresses	
σ/	�MPa� − 	normal	stress	in	the	action	plane	
τ/�	�MPa� − 	shear	stress	in	the	action	plane, parallel	to	�ibre	direction	
τ/&	�MPa� − 	shear	stress	in	the	action	plane, perpendicular	to	�ibre	direction	
θ	�°� − 	the	angle	of	the	action	plane	
θ�2	�°� − 	the	angle	of	the	fracture	plane	
ψ	�°� − 	the	angle	between	τ/�	and	τ/&	in	the	action	plane	
η6�	�−� − 	weakening	factor	
η7	�−� − 	residual	stiffness	fracture	
η78	�−� − 	residual	stiffness	fracture	for	Young:s	modulus	
η7	�−� − 	residual	stiffness	fracture	for	shear	modulus	
υ��, υ��, υ��, υ��, υ��, υ��	�−� − 	Poisson:s	numbers		
a, ζ	�−� − 	equation	constants	for	residual	stiffness	fraction	
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f8	>>, Fb	�−� − 	�ibre	fracture		
f8	@>>, Z�b	�−� − 	inter − �ibre	fracture	
f8B�−� − 	inter − �ibre	fracture	with	no	weakening	effect	
f8��−� − 	inter − �ibre	fracture	with	including	weakening	effect	
E�, E�, E�	�MPa� − 	Young:s	modulus,material	COS	indexing	
G��, G��, G��	�MPa� − 	shear	modulus,material	COS	indexing	
E∥, E,	�MPa� − 	Young:s	modulus, direction	of	acting	indexing	
G,∥	�MPa� − 	shear	modulus, direction	of	acting	indexing	
fF	�−� − 	stretch	factor	
f8	�−� − 	exposure	factor	
R∥', R∥& , R,' , R,& , R,∥, R,,	�MPa� −
	material	strength	resistances	in	reference	to	direction	and	kind	of	stress		
RH, RI	�MPa� − 	material	strength	resistances	in	reference	to	kind	of	stress	
RJ	�MPa� − 	strength	resistance	of	the	action	plane	
p,∥& , p,∥' , p,,& , p,,' 	�−� − 	slope	parameters	
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1. Introduction 

1.1.  Motivation 

The importance of efficiency is increasing more and more these days. It is no different 

in aircraft design where since many years engineers are trying to develop new materials for 

airplanes structures, which can decrease their weight. Steel and aluminium alloys are no 

more sufficient due to their mass and limited strength for lightweight constructions. That is 

why it leaded to use of fiber-reinforced plastics. Composites offer not only outstanding 

mechanical properties but also high potential for lightweight.  

As always, every technology has some disadvantages. The main deficiency of using 

composites is not only the cost of manufacture them but also case of repair. This leads to 

increased weight. Due to this fact, it is often, that instead of repairing damaged structures, a 

whole part is replaced. Nevertheless, a new technology of fixing defects is providing these 

days. The idea of adhesive bonded scarf repairs, reinforced with high strength yarns, 

improves bonding characteristics (cp. [Lit. 2.]).  

Even thought, the new approach is sensible reliable, there is a need to validate 

strength properties of such bonded joints. Among all available strength criterions for 

composites, action plane fracture criteria of Puck is the most suitable. The necessity of using 

this criterion follows that in Finite Element Method yarns are idealized based on classical 

laminate theory. Nevertheless, with the action plane fracture criteria of Puck we can obtain 

an improvement of the model.    

Follow the fact that this process must be computerized and automated, there is a 

need to create a composite model for the yarn in Abaqus  (3DS Dassault Systems, 

Paositeris, France) environment. However, options in Abaqus do not allow to model 

composite as three-dimensional solid element. An implementation of action plane fracture 

criteria of Puck into Abaqus allows to determined the proper model for yarn.   

1.2.  Tasks  

The task of this thesis is to implement the action plane fracture criteria of Puck into 

Abaqus software and use it to provide a degradation process for a modeled lamina. To 

achieve it, a proper subroutine must be provided in a Fortran code. To check, whether it is 

working properly, results from numerical calculation must be compared with experimental 

data and also examples solved in Compositor (program prepared and developed by Instutut 

für Kunsttoffverarbeitung, RWTH Aachen). Compositor is an calculation spreadsheet, 

developed and destined to provided 2-dimensional model of lamina. It allows to calculate 
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actual state of stress on the basis of state of strain using classical laminate theory and on the 

basis of Puck's criteria, check whether fibre fracture and inter-fibre fracture occurs in 

modeled example of lamina. 

1.3.  Structure of the thesis 

The thesis will be divided in two parts: theoretical and practical. In the theoretical part 

the action plane criteria of Puck will be introduced first. Then the material law of orthotropic 

material will be provided. As the last, the degradation process will be explained with 

introduction of proper subroutine that must be used in this process to properly model material 

behavior of lamina in each integration point.  

In the practical part of this thesis the validation process of the action plane criteria of 

Puck will be discussed. To achieve the validation, two examples from literature of 

degradation process will be provided in Compositor calculation spreadsheet. These 

examples then will be compared with results achieved with Abaqus software with the usage 

of implemented Fortran subroutine code.  

At the end a summary and conclusions will be presented. As the next step, the 

implemented action plane fracture criteria of Puck will be used in bended joints reinforced 

with yarns in the bending line.  
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2. Action plane fracture criteria of Puck 

This chapter will shortly introduce essence of action plane fracture criteria of Puck in 

accordance with the Lit. 1 and the Lit 2. The main task of such criteria is to determine 

whether a load applied to the structure leads to fracture or not. It also allows us to achieve 

information about degradation process and how lamina would behave with different type of 

layup. This is possible thanks to complexity of this criteria, which is going to be described 

below. 

2.1.   General information 

In fiber-reinforced laminas two different types of fracture can occur. It is distinguish 

between fibre fracture (FF) and inter-fibre fracture (IFF). The necessity of dividing procedure 

comes from the fact that FF and IFF have different influence on the load-carrying capacity of 

laminates. Briefly saying, IFF must be taken into account but under some certain 

circumstances can be acceptable. On the other hand, FF almost always means the loss of 

the load-carrying capacity of the laminate.  

We can single out few main kinds of stresses that can appear in a loaded structure 

(cp. Fig. 2-1). These are compression-tension normal stresses and shear stresses. 

Furthermore we can distinguish compression-tension stresses on these which work parallel 

to the fibre direction K∥L,M and perpendicularly to the fibre direction K∥L,M ("t" for tension, "c" for 

compression). As well, we can divide shear stresses into these which work in plane parallel 

to fibre direction N,∥ (in-plane shear stresses) and these which work in-plane perpendicular to 

fibre direction N,, (trough-thickness shear stresses).  

While, fiber fracture mostly occurs when stresses are parallel to the fibre direction 

(σ║), for inter-fibre fracture the most important are streses σ┴ transverse to the fibre direction 

and shear stresses: in-plane shear stresses N⊥∥  and trough-thickness shear stresses N⊥⊥. To 

achieve best mechanical properties laminates should consist of several unidirectional plies 

with different fibre orientations. Therefore, different types of failure can occur, according to 

type of load (cp. Fig. 2-1]). 
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Figure 2-1 Basic stressing of a lamina, [Lit.2.] p. 35.  

It is important to understand that plane fracture criteria of Puck, as well as other 

criterias, is a hypothesis. It means basing on only few known states of fracture, it gives an 

infinite number of possible states. These determined states of fracture are related to basic 

strengths. In the case of unidirectional lamina these are ones referred to applied tension and 

compression: P∥M, P∥L, P,M , P,L  and in-plane and out-of-plane shear: R┴║, R┴┴. Basic strengths 

are material constants, which define the material resistance to act of appropriate stresses. 

Indexes in their symbols are related to stresses they are referred to. These values can be for 

instance determined experimentally. Furthermore, the fracture criterion defines a closed 

surface in the six-dimensional stress space (σ1,σ2,σ3,τ12,τ13,τ23). This surface, in the best case, 

includes all available experimental specified strengths and predicts fractures at all other 

stress combinations. The Fig.2-2. shows the so called Puck's fracture cigar for a 2-

dimensional state of stress (σ1,σ2,τ12)  

This surface is the representation stress state of three stresses (σ1,σ2,τ12) . Fb  is the  

abbrevation for sub-surface for fibre-fracture  and Zfb for sub-surface for inter-fibre fracture. 

For 3-dimensional state of stress the strength criteria is formulated as function of 

stresses and strength resistance parameters (cp. [Lit.2.], p. 36). 

F(K�, K�, K�, N��, N��, N��, PQ , PR) ⋚ 1										�2.1� 
If equation [2.1] results in F=1, it is termed the fracture condition. In other words, 

when a value F=1 occurs for a stress state, it means that any increase in stress will result in  

fracture.  
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Figure 2-2 Puck's fracture cigar, [Lit.1.], p. 46 

2.2. Fibre fracture conditions 

As was said earlier in this chapter, fibre fracture mostly leads to lose of load-carrying 

capacity. In the case of FF from  equation [2.1] the following fracture condition arises: 

F = K�P∥L = 1	for	tension										�2.2�	
and	
F = K�−P∥M = 1	for	compression										�2.3� 

For both equations we have to remember to put values as positive values. If F<1, it 

means that fracture limit has not been exceeded. 

More precise calculations show that actually the composite stress σ1 matters, but 

rather fibre direction stress σ1f. The stress in fibre does not depend only on parallel stresses, 

but on transverse stresses. This happens due to Poisson's ratio influence. However, fracture 

conditions obtained with equations [2.2],[2.3] differ by only a few percent in comparison with 

[σ1,σ2,τ21] stress combinations, in which σ2 was taken into account. Moreover, experimental 

researches demonstrated that shear buckling of the fibres elastically embedded in the matrix 

is what is involved in the case of fibre fracture under a compressive stress σ1.  
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2.3.  Inter-fibre fracture 

Inter-fibre fracture is caused by stress σ2,σ3,τ23,τ31,τ21. It happens since matrix and 

fibre/matrix-interface are affected directly by these stresses which act on planes parallel to 

the fibres.  

 

Figure 2-3 Three dimensional stressing in local COS and laminate COS, [Lit.2.], p. 12. 

As we see in Fig. 2-3, we single out two different coordinate system and two 

expressions of stress vector as well: 

YKZ = (K�, K�, K�, N��, N��, N��)[ 	− �ibre	coordinate	system 

YK′Z = ]K^, K_, K`, N_`, N^`, N^_a[ − 	laminate	or	compoment	COS 

2.3.1. Action planes and fracture planes 

The fracture limit of a material is determined by the stresses on the fracture plane. 

Following the plane fracture criteria of Puck, is it very important what is the kind of fracture 

and what is the action plane where the fracture occurs. Combined stresses acting on a 

common action plane have to be related to strengths of that specific action plane (cp. Fig. [2-

4]). These strengths are the combination of a single stress σ┴ or τ┴║ or τ┴┴ that the action 

plane can carry. In the need of distinguish fraction resistance of the action plane and 

strengths, there has been introduced the term fracture resistance of the action plane RA to 

which the following definition has been formulated: 
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A fracture resistance of the action plane is the resistance (expressed in the dimension 

of a stress) by which an action plane resists its own fracture due to a stress in the considered 

action plane caused by one of the basic stressing σ┴ or τ┴║ or  τ┴┴ . ([Lit.1.],p. 48.] 

 

Figure 2-4 Basic stressings and their action planes, [Lit.1.], Page 48. 

In need to determine the common strength of a material, it is enough to divide the 

maximum bearable load by the cross section area. It is significant to specify whether the 

fracture has occurred in the action plane of the applied stresses or not. In Fig.2-5 it is shown 

that not always it happens. 

As we can see in almost all cases a tensile stress K,L  leads to a fracture plane 

perpendicular to the applied stress. In this case the fracture plane and the action plane of the 

applied stress correspond to each other. Hence to this fact, the strength of the material P,L  

(material resistance for transversal tension stress) and the fracture resistance of the action 

plane P,c	L will have the same value. Same case is with measuring P,∥c . It will have the same 

value as P,∥. 
Contrary to the two cases above, a single compressive stressing based on K,M cannot 

separate the material in its action plane which is perpendicular to stress K,M. The element 

fractures due to the resulting shear stressing N,,  on an oblique fracture plane. What is more 

it is impossible to achieve a fracture in the action plane of an applied  N,,, the element 

fractures due to a tensile stressing K,L  on an oblique fracture plane.  
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Figure 2-5 Fracture planes, [Lit.1.], Page 49 

From these considerations we can achieve a conclusion that there are only three 

stresses that can act on a common action plane: K,, N,∥	and	N,,. It means that there is a 

need of three fracture resistances of the action plane Pc. Two of them can be provided from 

usual strengths of material. The last one P,,c  must be calculated in another way.  

2.3.2. Fracture modes 

The consequence of using plane-related fracture hypothesis, is that there is an infinite 

number of action planes that are potential fracture planes. Therefore, before fracture 

stresses can be calculated, the action plane with the highest risk of fracture has to be found. 

It requires a numerical search.  

To find this proper plane the stretch factor de	must be calculated for a number of 

sections between f = �−90°, 90°�, normally with the iteration step equal to 1°. The  term de is 

the factor, by which these plane stress vector Ki = �Kj(f), NjL(f), Nj�(f)�	on the considered 

action plane must be increased to cause the fracture.  The normal stress KjL,Mis the stress 

acting perpendicularly to action plane (c for compression, t for tension and index n means 

that the direction of stress is perpendicular to action plane). Shear stresses NjL , Nj� are the 

stresses acting on action plane: shear stresses NjL are the stresses perpendicular to fibre 

direction and shear stresses Nj� are the stresses parallel to fibre direction, (cp. Fig. 2-6). The 
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index t means that stresses are perpendicular to fibre direction and 1 that they are parallel to 

fibre direction. 

 

Figure 2-6 Shear stresses on action plane, [Lit.1.], Page 50 

In order to a better interpretation and explanation of action planes and states of stress 

the nomenclature of stresses will be change now into representation of fibre coordinate 

system YKZ = (K�, K�, K�, N��, N��, N��)[.  

Based on the state of stress and defined action plane we can determine three modes. 

Modes describe what kind of fracture occurs. Therefore we can achieve mode A, B and C. 

The first one, mode A, is the case when action plane is parallel to fibre direction and fracture 

is caused by normal tension stresses perpendicular to fibre direction K�L with or without 

accompaniment of shear stresses N�� or only by shear stresses N��. Therefore, in the action 

plane we can achieve three different states of stresses: Ki = �Kj > 0, NjL = 0, Nj� = 0�, Ki = �Kj > 0, NjL = 0, Nj� ≠ 0� and Ki = �Kj = 0, NjL = 0, Nj� ≠ 0�. Mode B will be achieved, 

when normal compressive stresses K�M  occurs with accompaniment of shear stresses N�� 

and the action plane will be perpendicular to normal stresses. It this case the stress vector on 

action plane has the following representation: Ki = �Kj < 0, NjL = 0, Nj� ≠ 0�. Mode C is the 
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mode when action plane occurs when the angle between plane perpendicular to normal 

stresses and the action plane is different from 0°.  In this case, stressing causes transversal 

shear stresses in action plane NjL. Therefore, we can achieve two different state of stress in 

the action plane: Ki = �Kj < 0, NjL ≠ 0, Nj� ≠ 0� and Ki = �Kj < 0, NjL ≠ 0, Nj� = 0�. 

 

Figure 2-7 Vizualization of stress factor, [Lit.1.], Page 51 

dn = 1de = opqrℎt	ud	vwtxvo	ytzpyy	{pwtuz	Kiopqrtℎ	ud	tℎp	{pwtuz	K|}~~~~~i	ud	tℎp	ytzpyypy	opv��qr	tu	dzvwtxzp										�2.4� 
The factor dn 	is the stress exposure and this is the direct measure for the risk of 

fracture. For each mode (cp. Fig. 2-7) it should be calculated with different equations and for 

three-dimensional stresses proper ones are shown below. 

For mode A (K� ≥ 0): 
dn|����B° = 1P,∥ ���P,∥P,L − �,∥L �� K�� + N��� + �,∥L K�� = 1										�2.5� 

For mode B: 

dn|����B° = 1P,∥ ��N��� + ]�,∥M K�a� + �,∥M K�� = 1										�2.6� 
For mode C: 



11 
 

dn|���	���	(�) = N���4]P,∥ + �,∥M P,,c a� ∗ (−P,M )K� + K�(−P,M ) = 1										�2.7�										 

wuyf|� = � 12(1 + �,,M ) ��P,,cP,∥�
� ∗ �N��K� �

� + 1�										�2.8� 
The meaning of "p" parameters will be explained later on.  

2.3.3. Action plane stresses 

As written above, in this criteria the stress vector is formulated with three stresses Ki = �Kj(f), NjL(f), Nj�(f)�	, which act on parallel-to-fibre section planes. The applied stresses 

which have to be transmitted by the matrix and the fibre/matrix interfaces are of main 

importance for an inter-fibre fracture. The action plane related stresses are derived from the 

applied stresses as shown in below equations: 

Kj(f) = K� ∗ wuy�f + K� ∗ y�q�f + 2 ∗ N�� ∗ y�qf ∗ wuyf										�2.9� 
NjL(f) = −K� ∗ y�qf ∗ wuyf + K� ∗ y�qf ∗ wuyf + N�� ∗ (wuy�f − y�q�f)										�2.10� 

Nj�(f) = N�� ∗ y�qf + N�� ∗ wuyf									�2.11� 
For numerical calculations it is more comfortable to write it matrix notification: 

� Kj(f)NjL(f)Nj�(f)� = � w� y� 2yw−yw yw (w� − y�)0 0 0 				0 00 0y w� ¡¢¢
¢£
K�K�N��N��N��¤¥

¥¥¦											�2.12� 

where w = wuyf and y = y�qf 

As we can see, IFF is mainly caused by the stresses	K�, K�, N��, N��, N��.	 The action 

plane of the stress K� is perpendicular to any IFF action plane. Therefore the stress vector Ki = �Kj(f), NjL(f), Nj�(f)� does not depend on this stress. However, the stress K� has some 

influence on IFF and it is weakening the material. This phenomenon will be described more 

precisely in section 2.5 of this thesis. 

When the normal stress Kj is a positive stress (tensile), it assists the shear stresses NjL and Nj� in causing IFF. In opposite, a compressive normal stress will slow down the IFF. 

Due to this fact, two sets of equations should be taken into account, depending on normal 

stress sign.  



 

With the new equations and stresses now it is possible to make statements regarding 

the direction of fracture plane 

plane stresses Kj, NjL, Nj� and the 

of this vector). Sub-figure b) shows us the master fracture body based on equations 

[2.18]. The other four sub-figures shows cross

figure c) determine the cross-

and f) for Nj� = 0. The sub-figure

between stresses Nj� and NjL
sections.         

Figure 2-8 Action plane stresses, [Lit.2.

The intersection stress exposure 

stress, is calculated with the following equations.

For Kj ≥ 0: 
dn(f) = ��� 1P,L −

 

 

12 

new equations and stresses now it is possible to make statements regarding 

 (cp. Fig. 2-7). In the figure 2-8  a)  we can again see the action 

and the shear vector Nj§ (shear stresses NjL , N
figure b) shows us the master fracture body based on equations 

figures shows cross-section of the master fracture body. S

-section for Kj = 0. Sub-figure d) is the cross

figure e) is the cross-section of constant ¨
jL. As we can see, aster fracture body is defined by its cross 

Lit.2.], Page 44 

The intersection stress exposure dn(f), dependent on angle and type of normal 

following equations. 

− �,§LP,§c �Kj��+� NjLP,,c �� + �Nj�P,∥�
� + �,§LP,§c Kj									

new equations and stresses now it is possible to make statements regarding 

we can again see the action Nj� are components 

figure b) shows us the master fracture body based on equations [2.13]-

fracture body. Sub-

figure d) is the cross-section for NjL = 0 ¨ angle, the angle 

. As we can see, aster fracture body is defined by its cross 

 

, dependent on angle and type of normal 

		�2.13� 
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For Kj < 0: 

dn(f) = �� NjLP,,c ��+�Nj�P,∥c �� + ��,§MP,§c Kj�� + �,§MP,§c Kj										�2.14� 
where appropriate factors depended on ¨ angle are calculated as follows: 

�,§LP,§c = �,,LP,,c wuy�¨ + �,∥LP,∥ y�q�¨											�2.15� 
�,§MP,§c = �,,MP,,c wuy�¨ + �,∥MP,∥ y�q�¨										�2.16� 
wuy�¨ = 1 − y�q�¨ = NjL�NjL� − Nj�� 										�2.17� 
�dn	©ªª(f)�«¬^ = dn	©ªª]���a										�2.18� 

where the used symbol f|� is the angle of fracture plane. 

Now also we can calculate missing factor P,,c : 

P,,c = P,M2(1 + �,,M )											�2.19� 
Parameters used in above equations �,∥M , �,∥L , �,,L , �,,M  are so called slope parameters. 

These values should be determined on the experimental way. But if there is no experimental 

data available, there are recommended values, which should be used (cp. Table.[2-1]). 

 �,∥M  �,∥L  �,,M = �,,L  

GFRP 0.25 0.30 0.20 to 0.25 

CFRP 0.30 0.35 0.25 to 0.30 

Table 2-1 Slope parameters, [Lit.1.], p. 57 

These are values for glass-fibre-reinforced (GFRP) plastics and carbon-fibre-

reinforced plastics (CFRP). 

Assuming above considerations we can distinguish three modes according to Table 

[2-2]. 
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Mode A f|� = 0° Mode B f|� = 0° Mode C f|� ≠ 0° 
YKjL 0 0Z YKjL 0 Nj�Z Y0 0 Nj�Z 

YKjM 0 Nj�Z YKjM NjL Nj�Z YKjM NjL 0Z 
Table 2-2 Different modes and their stresses, [Lit.1.], p. 59 

2.4.  Material law 

Now when we know how Puck's criteria works, we can skip to material degradation 

factors, but first some words about material law must be said.  

Unidirectional fibre-reinforced lamina must be described with strength parameters, 

these are P∥L, P∥M, P,L , P,M , P,,, P,∥, P,,c , as well as material constants. This means Young and 

shear modulus, and Poisson's ratio: ­∥, ­,, ®,∥, ¯,∥, ¯∥,, ¯,,. With the material constants we 

can build material stiffness matrix (elasticity matrix). Basing on this matrix and defined state 

of strain, we can  determine the state of stress, see equation 2.20. 

�K�, K�, K�, N��, N��, N���° = �­� ∗ �K�, K�, K�, ±��, ±��, ±���°											�2.20� 
Where [E] is the stiffness matrix.  

For Puck's criteria we are interested in calculating stresses that occurs under applied 

load or displacement. Let us precise above equation (19)(cp. [Lit.1.], p. 21.]). 

¡¢
¢¢¢
£ K�K�K�N��N��N��¤¥

¥¥¥
¦
=

¡¢
¢¢
¢£
²���� ²���� ²���� 0 0 0²���� ²���� ²���� 0 0 0²���� ²���� ²���� 0 0 00 0 0 ²���� 0 00 0 0 0 ²���� 00 0 0 0 0 ²����¤¥

¥¥
¥¦ ∗

¡¢
¢¢
¢£
³�³�³�±��±��±��¤¥

¥¥
¥¦										�2.21� 

The components of the elasticity matrix are given below: 

²���� = ­�(1 − ¯��¯��)Υ									�2.22� 
²���� = ­�(1 − ¯��¯��)Υ										�2.23� 
²���� = ­�(1 − ¯��¯��)Υ										�2.24� 

²���� = ²���� = ­�(¯�� + ¯��¯��)Υ = ­�(¯�� + ¯��¯��)Υ										�2.25� 
²���� = ²���� = ­�(¯�� + ¯��¯��)Υ = ­�(¯�� + ¯��¯��)Υ										�2.26� 
²���� = ²���� = ­�(¯�� + ¯��¯��)Υ = ­�(¯�� + ¯��¯��)Υ										�2.27� 
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²���� = ®��										�2.28� 
²���� = ®��									�2.29� 
²���� = ®��										�2.30� 

where Υ factor is calculate as follows: 

Υ = 11 − ¯��¯�� − ¯��¯�� − ¯��¯�� − 2¯��¯��¯�� 										�2.31� 
There are also some stability restriction on the engineering constants: 

­�, ­�, ­�, ®��, ®��, ®�� > 0											�2.32� 
|¯��| < �­�­��

�� 	uz	|¯��| < �­�­��
�� 										�2.33� 

|¯��| < �­�­��
�� 	uz	|¯��| < �­�­��

�� 										�2.34� 
|¯��| < �­�­��

�� 	uz	|¯��| < �­�­��
�� 										�2.35� 

1 − ¯��¯�� − ¯��¯�� − ¯��¯�� − 2¯��¯��¯�� > 0										�2.36� 
The equations shown above lead to calculate the stress vector which must be 

multiplied by rotation matrix to achieve 3-element stress vector Ki = �Kj(f), NjL(f), Nj�(f)� 
(see section 2.3.3) for Puck's criteria usage. 

2.5. Weakening factor 

As was said before, the stress K� does not have any influence on the inter-fibre 

fracture. It is due to the fact that the action plane of K� is perpendicular to the action plane of 

the stresses Kj, NjL , Nj�	. Nevertheless, some effects make us to take K� under consideration, 

while calculating IFF. For instance, when fibre fracture marks the fracture of a large number 

of elementary fibres, it causes the decrease of lamina's  load-bearing capacity in the direction 

of fibre direction over a macro-region. What is more, in the event of tensile stress K�, some 

fibres can break even before the FF limit of lamina has been reached. Also, in the case of 

compressive stress, it is possible that individual bundles of fibres could already start kinking 

before the total fracture occurs. These micro fibre fractures cause local damage in the lamina 

which takes the form of micro fractures in the matrix material. It weakens the fibre matrix 

cohesion and hence reduce its resistance to IFF. It is called weakening effect. 
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The way to include in IFF analysis the weakening effect, appropriate to the physical 

circumstances, is to multiply the action-plane-fracture resistances by a degradation factor µ¶�, when "w" in index means weakening and "1" that is due to the fact of  K� influence. For 

simplification of equations and calculations it is assumed that the weakening factor has the 

same value for all three action-plane-resistances P,L , P,,c , P,∥. This assumption has the effect 

that the inclination of the fracture given by the fracture plane angle f|� and the IFF mode 

connected with it are not affected by the weakening which is now dependent on K�, because K�	does not depend on f.  

It is  obvious that the reduction of fracture resistances results in an increased stress 

exposure. Therefore the stress exposure dn� when taking into account the influence of K� 

becomes: 

dn� = dnBµ¶� 											�2.37� 
The only work now is to find the weakening factor. It is derived by the following 

equations (see Lit.1. Page 46., eq. (4.26)): 

µ¶� = w ·v¸w�(v� − y�) + 1 + y¹(wv)� + 1 										�2.38� 
Where: 

w = dnBdn(ªª) 	and	v = 1 − y√1 −»� 										�2.39� 
The range of validity of the weakening factor is gives by: 

1y ≥ dnBdn(ªª) ≥ »										�2.40� 
As far as there are no reliable experimentally determined values for parameters s and 

m, some values must be chosen. It is recommended to use value s=m=0.5 (cp. [Lit.1.], p. 

62.). 

2.6.  Material degradation 

The purpose of using Puck's criteria, is not only to determine when the fracture in 

lamina occurs, but also how the material will behave after this happened. The stress 

exposure dn = 1 denotes the state of stress in a lamina where the first macroscopic crack 

through the entire thickness of the respective lamina occurs. In the case of a composite 
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structure, reaching a single lamina's fracture condition is not equivalent with the 

disintegration of the whole material. In a such confined lamina a further increased applied 

load starts a successive damage evolution process in the form of a growing macroscopic 

crack density. This means the reduction of the lamina's load-bearing capacity and this 

process is called degradation. 

The degradation process of a lamina due to an increasing macroscopic crack density 

is represented by the reduction of the stiffness. This means that under the same load applied 

to the structure, there will be a change of displacement. 

reduced	stiffness = µ ∗ original	stiffness 
Loading a laminate in-plane, the lamina is only exposed to transverse stress K�	and 

in-plane shear stress N��. It is causing that only transverse Young's modulus E2 and the in-

plane shear modulus G12 are about to be degraded. After several experiments (cp. Lit. 6), it 

was suggested that Poisson's ratio should stay constant. 

­�}�¼ = ½ µ ∗ ­�¾}¿À	for	tensile	σ/	on	the	fracture	plane­�¾}¿À	for	compresive	σ/	on	the	fracture	planeÂ 										�2.41� 
®��}�¼ = µ ∗ ®��¾}¿À										�2.42� 

 The reduction factor is calculated as follows: 

µ(dn	©ªª) = 1 − µÃ1 + v(dn	©ªª − 1)Ä + µÃ	for	dn	©ªª > 1										�2.43� 
As we can see the exposure value dn = 1 results in reduction factor value µ = 1.  

Factors a and Å	used in equation [2.43] must be chosen in base of experimnets. 

Several experiments showed that reasonable values are v = �0.95; 5.5� and Å = �1.17; 1.5� 
(see Lit.1., Page 80.) depending on the material. It was also suggested to reduce shear 

modulus less than Young's modulus. It is made by using different residual stiffness fractions µÃ for these modulus. There is a different value for residual stiffness fraction for Young's 

modulus µÃn and for residual stiffness fraction for shear modulus µÃÇ. These values also 

must be defined experimentaly and differently for each material. Therefore we will achieve 

two different equations for Young's modulus degradation and shear modulus: 

µn(dn	©ªª) = 1 − µÃn1 + v(dn	©ªª − 1)Ä + µÃn 	for	dn	©ªª > 1									�2.44� 
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µÇ(dn	©ªª) = 1 − µÃÇ1 + v(dn	©ªª − 1)Ä + µÃÇ 	for	dn	©ªª > 1										�2.45� 
And equations [2.41] and [2.42] will now look as follows: 

­�}�¼ = ½µn ∗ ­�¾}¿À	for	tensile	σ/	on	the	fracture	plane­�¾}¿À	for	compresive	σ/	on	the	fracture	planeÂ 										�2.46� 
®��}�¼ = µÇ ∗ ®��¾}¿À											�2.47� 
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3. Degradation procedure 

The main reason for using Puck's criteria is to provide degradation process of 

composite structure with Abaqus software. For this purpose an user-defined material 

behavior subroutine (UMAT) is written in Fortran code and then implemented to Abaqus 

Finite Element numerical calculations. It is written for implicit method and will include all 

presented above part's of Puck's theory for the fibre fracture and inter-fibre fracture prediction 

of the degradation rule.  

Abaqus by itself has many calculation options in its software, also for composites 

structure. Nevertheless it allows to model only a 2-dimensional model and does not have 

Puck's criteria definition in its library. Therefore there is a need to use a user subroutine that 

allows us to define material law for every integration point in the model and change material 

constants due to degradation process for every integration point. The only suitable 

subroutine for this job is the user-defined material behavior subroutine called UMAT (cp. 

[Lit.4.]). Between this subroutine and  Abaqus software we can achieve two-way 

communication and thanks to that obtain necessary values from Abaqus main program, 

update them in UMAT subroutine and send them back. This communication occurs every 

increment in every step during analysis. To describe more precisely the whole process of this 

communication, the heading of this subroutine is needed to be introduced first (see also 

Appendix 1.): 

       SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD ,SCD, 
     1 RPL,DDSDDT,DRPLDE,DRPLDT, 
     2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DP RED,CMNAME, 
     3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DR OT,PNEWDT, 
     4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KST EP,KINC) 
C 
      INCLUDE 'ABA_PARAM.INC' 
C 
      CHARACTER*80 CMNAME 
      DIMENSION STRESS(NTENS),STATEV(NSTATV), 
     1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTE NS), 
     2 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1) ,DPRED(1), 
     3 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3 ),DFGRD1(3,3) 

This is the heading that has to be included in every UMAT subroutine and it described  

what information will be provided by Abaqus the main program to the subroutine and what 

information should be send back to Abaqus by the subroutine. The first group of variable, 

mentioned after the name of the subroutine, are the information gained from Abaqus. The 

second group are information send back to Abaqus after every increment in every step.  

The definition of variables used in UMAT subroutine in according to [Lit.4.]l: 



 

STRESS(NTENS)- this array is passed in as the stress tensor at the beginning of the 

increment and must be updated in

increment. It contains the stresses 

STATEV(NSTATV)-  

These are passed in as the values at the

must be returned as the values at the end of

values that we want to update after every increment. 

context of communication with Abaqus. 

lamina's elasticity matrix due to degradation process.

stiffness fraction for Young's modulus and shear modulus, and IFF.

how solution-dependent state variable

Figure 3-1 Solution depended variables settings

 

20 

his array is passed in as the stress tensor at the beginning of the 

increment and must be updated in this routine to be the stress tensor at t

It contains the stresses K�, K�, K�, N��, N��, N��.  

an array containing the solution-dependent state variables.

These are passed in as the values at the beginning of the increment. In all cases STATEV 

must be returned as the values at the end of the increment. In other words, these are the 

values that we want to update after every increment. It is very important variable in the 

context of communication with Abaqus. With this variables we are allowe

lamina's elasticity matrix due to degradation process. The exect entries are stresses, residual 

stiffness fraction for Young's modulus and shear modulus, and IFF. In the Fig. 3

dependent state variables are activated in Abaqus. 

Solution depended variables settings 

his array is passed in as the stress tensor at the beginning of the 

this routine to be the stress tensor at the end of the 

dependent state variables. 

In all cases STATEV 

In other words, these are the 

It is very important variable in the 

es we are allowed to change 

The exect entries are stresses, residual 

In the Fig. 3-1 it is shown 
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DDSDDE(NTENS,NTENS)- Jacobian matrix of the constitutive model, 
ÈQÈÉ , where ΔK 

are the stress increments and Δ³ are the strain increments (cp. equation 3-47). DDSDDE(I,J) 

defines the change in the n-th stress component at the end of the UMAT. In linear problems 

it is equal to elasticity matrix (also called secant stiffness matrix).  

Ë = ∆K∆³

¡¢
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¢¢
¢¢
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¢£
∆K�∆³� ∆K�∆³� ∆K�∆³� ∆K�∆±�� ∆K�∆±�� ∆K�∆±��∆K�∆³� ∆K�∆³� ∆K�∆³� ∆K�∆±�� ∆K�∆±�� ∆K�∆±��∆K�∆³� ∆K�∆³� ∆K�∆³� ∆K�∆±�� ∆K�∆±�� ∆K�∆±��∆N��∆³� ∆N��∆³� ∆N��∆³� ∆N��∆±�� ∆N��∆±�� ∆N��∆±��∆N��∆³� ∆N��∆³� ∆N��∆³� ∆N��∆±�� ∆N��∆±�� ∆N��∆±��∆N��∆³� ∆N��∆³� ∆N��∆³� ∆N��∆±�� ∆N��∆±�� ∆N��∆±��¤¥
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¥¦

											�3.47� 

However, in our procedure we are using stiffness matrix showed in equation [2.21]. 

STRAN(NTENS)- an array containing the total strains (³�, ³�, ³�, ±��, ±��, ±��) at the 

beginning of the increment. This information is provided by Abaqus at the begining of every 

increment. 

DSTRAN(NTENS)- an array of strain increments. 

 

Figure 3-2 Solution process 

Figure 3-1 helps us to understand what actually STRESS, STRAN and DSTRAN 
array contain. In the current increment point Abaqus provides state of stress from the 
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previous increment STRESS(i), state of total strains and the end of previous increment 
STRAN(i) and DSTRAN. At the end of increment, the subroutine provides information about 
current state of stress STRESS(i+1) and current state of total strains STRAN(i+1). 

TIME(1)- value of the step time at the beginning of the current increment. 

TIME(2)- value of total time at the beginning of the current increment. 

DTIME- time increment. 

Fig. 3-1 shows interpretation of TIME(1), TIME(2) and DTIME variables. 

 

Figure 3-3 Graphical interpretation of TIME(2), TIME(1) and DTIME variables 

NDI- number of direct stress components (K�, K�, K�) at this integration point 

NSHR- number of engineering shear stress components (N��, N��, N��) at this 

integration point. 

NTENS- size of stress or strain component array (NDI+NSHR). 

NSTATV- number of solution-dependent state variables that are associated with this 

material type. It describes how many solution-dependent variables should be sent back to 

the Abaqus every iteration. 

PROPS(NPROPS)- user-specified array of material constants associated with this 

user material. It contains all material constants defined in the Abaqus main program. 



 

NPROPS- user-defined number of material constants associated with this user 

material. It describes how many material co

program. 

In the Fig. 3-4 it is shown how material constants and number of these variables are 

set in Abaqus. In the case of laminate we can distinguish eighteen variables which are: ­�, ­�, ­�, ¯��, ¯��, ¯��, ®��, ®��, ®

Figure 3-4 Material constants settings
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defined number of material constants associated with this user 

It describes how many material constants will be provided by Abaqus main 

4 it is shown how material constants and number of these variables are 

In the case of laminate we can distinguish eighteen variables which are: ®��, P∥L, P∥M , P,L , P,M , P,∥, �,∥M , �,∥L , �,,M , �,,L . 

Material constants settings 

defined number of material constants associated with this user 

nstants will be provided by Abaqus main 

4 it is shown how material constants and number of these variables are 

In the case of laminate we can distinguish eighteen variables which are: 
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COORDS- an array containing the coordinates of this integration point. These are the 

current coordinates if geometric nonlinearity is accounted for during the step, otherwise, the 

array contains the original coordinates of the point. 

DFGRD0(3,3)-  array containing the deformation gradient at the beginning of the 

increment. If a local orientation is defined at the material point, the deformation gradient 

components are expressed in the local coordinate system defined by the orientation at the 

beginning of the increment. 

DFGRD1(3,3)-  array containing the deformation gradient at the end of the 

increment. If a local orientation is defined at the material point, the deformation gradient 

components are expressed in the local coordinate system defined by the orientation. This 

array is set to the identity matrix if nonlinear geometric effects are not included in the step 

definition associated with this increment.  

NOEL- this variable returns the number of element from the model. 

NPT- this variable returns the number of integration point. 

LAYER- layer number. 

KSPT- section point number within the current layer. 

KSTEP- step number. 

KINC-  increment number. 

The whole process begins in Abaqus module, where a geometrical model has to be 

built and all material properties, boundary conditions and applied load are defined. It includes 

geometrical dimensions of the model, as well as composite layup and layup's coordinates 

systems. Then meshing properties such as number of elements, in which the model will be 

divided, and type of elements (including number of integration points for each element) must 

be provided in this part. Also here, material constants: Young's modulus, shear modulus, 

Poisson's ratios, strength resistances and slope parameters must be defined. This values are 

defined in Abaqus main program as mechanical constants. Every increment Abaqus main 

program stends this values to the UMAT subroutine where they are contained in the PROPS 

array. Then boundary conditions and loading for each step must be provided. The last step is 

setting the connection between Abaqus and UMAT subroutine. It has to be defined that 

Abaqus must use defined subroutine in every increment during the process of solving the 

model.  
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At the beginning of the solution, UMAT subroutine is provided with the strain at the 

beginning of the load increment and also all other properties mentioned above. On the bases 

of the orthotropic material law (see equations: 2.21-2.36), UMAT is calculating the elasticity 

matrix with the initial value of material constants (in the first increment material constants are 

not degraded yet) and then the particular state of stress on the basis of the input state of 

strain. From these stresses and material strength resistances, the fibre fracture dn	ªª is 

calculated (see equations: 2.2,2.3). After that, the stresses of the action plane Kj(f), NjL(f), Nj�(f) are calculated for each action plane angle. Then the inter-fibre fracture 

stress exposure dn	©ªª is numerically calculated (see equations: 2.13,2.14) for numerous f 

angle value to find the biggest value of this factor, as well as the f angle for which it occurs. 

The calculated dn	ªª is then used to determine the weakening effect and weakening factor µ¶� due to the fibre-parallel stress K� influence. If the weakening occurs, then the result will 

be an increase of dn	©ªª value. If the IFF occurs then this value will be lower than 1. If the IFF 

does not occur, this value will be greater than 1 (or equal to 1, when the action plane 

strength resistance is reached). Then the subroutine procedure calculates residual stiffness 

fraction for Young's modulus and shear modulus (see equations: 2.44-2.45). This values will 

be equal to 1, if the dn	©ªª value is greater or equal to 1. This is the end of subroutine for 

current increment and all calculated and updated values (state of stresses, strains, Jacobian, 

IFF and residual stiffness fractions) are sent back to Abaqus. In the next increment, 

subroutine is provided with updated state of stress from previous increment and increment of 

strains at the current time-step. The material constants are multiply by residual stiffness 

fractions and a new elasticity matrix is calculated. If in the previous increment the IFF did not 

occur, then it will be the same matrix, as the initial elasticity matrix. Then the whole 

procedure is repeated. 

 The degradation process will last as long, as we defined it in main program. It 

depends on the user when and with what reasons, the degradation process will be stopped. 

It is adopted that the degradation process is completed when the stresses related to 

degraded elements of elasticity matrix will converge to constant values. The degradation 

flow-char is shown below (should be consider with Appendix.1.). 

What must be mentioned also here, is the process of finding the solution of current 

increment. As was mentioned before and shown in Fig. 3-2, Abaqus is looking for the 

solution in the current increment on base of the information from previous one. In this case, 

to stresses (STRESS(i)) calculated on base of the old elasticity matrix (DDSDDE(i)) in the 

previous increment we are adding stresses calculated on base of new, degraded, matrix 

(DDSDDE(i)) and current strain increment (DSTRAN). Then the solution is wrong. We have 

to correlate this value in the manner shown below. 
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STRESS(i+1)=STRESS(i)+DDSDDE(i+1)*DSTRAN         [3.48] 

DSTRESS=STRESS(i+1)-DDSDDE(i+1)*(STRAN(i)+DSTRAN)         [3.49] 

STRESS(i+1)*=STRESS(i+1)-DSTRESS(i+1)         [3.50] 

where STRESS(i+1)* is our final solution. 

 

Figure 3-5 Solution finding process 

Figure 3-5 shows how the finding proper solution is proceed.  
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Figure 3-6 Scheme of degradation process 
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4. Experimental data and Compositor calculations 

At the end of this thesis an implementation of the action plane fracture criteria of Puck 

into Abaqus software is provided. As was said before, the subroutine code will be prepared in 

Fortran and used in Abaqus CAE module. Nevertheless, this code, somehow, must be 

validated. The only reliable process to check, whether is it working properly, it is to compare 

it with experimental data and also with other calculation programme. In this chapter, one 

example of degradation process on the basis of some experimental researches (cp. Lit.3) 

and one own example will be provided and checked in Compositor.  Both of them, will be 

examples of three-layer composite but with different layup and hence to that, different state 

of stress and strain is expected. This examples will be later used to validate Abaqus 

calculations. The results of experiments can be written in Lit.3.  

As it was said at the beginning of this thesis, Compositor is an calculation 

spreadsheet prepared and developed by Instutut für Kunsttoffverarbeitung, RWTH Aachen. 

This program was specially prepared for Puck's criteria calculations for 2-dimensional models 

of lamina. In this program we can model a lamina and in base of classical laminate theory 

calculate the state of stresses and strains for an applied load. Then with the Puck's criteria 

module, we are able to check whether IFF occurs and define the value of IFF and residual 

stiffness fraction for Young's modulus and shear modulus.    

4.1.  Degradation of 3-layer lamina with 0°/90°/0° layers   

In the first example,  the degradation of Young's modulus transverse to the fibres ­,  

and shear modulus ®, was investigated using flat specimens. The laminate of the specimens 

was built up of a 5 mm thick test layer with the fibre direction 90°. This layer was supported 

with two 1 mm thick layer with fibre direction 0°. This kind of lamina is especially used for 

coefficients calibration. The only possible inter-fibre fracture can occur in the 90° layer and 

that is why it so easy to observe the degradation process. Tests were conducted on a 

hydraulic tension/compression machine. The laminate was loaded with a monotonously 

increasing tensile force in the direction of supporting layers fibres. Inter-fibre fracture was 

detected optically, acoustically and by sudden drop of stiffness. The test was stopped after 

IFF occurred. The laminate was unloaded and reloaded again until a new IFF occurred. This 

procedure was repeated until crack saturation was reached. Basing on state of stress and 

strains, fractures and degradations values were calculated. Material used in this example 

was Toray T700, Epoxy Vantico LY556/HY917/DY063 (cp. Lit.3.). 

This test was repeated in Compositor. Obviously, as long as, the Compositor is an 

Excel calculation sheet, no time-depended calculation could be provided. In that case, a 

loading that causes inter-fibre fracture must have been guessed. Second thing that must be 
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mentioned is that Compositor is basing o 2D state of stress. Below Fig. 4-1 shows the 

boundary conditions and applied load. 

 

Figure 4-1 Sketch of loading and bundary conditions 

Due to this fact, a procedure in Compositor is as it follows. The laminate is loaded 

with a constant, guessed value of load. Then the IFF criterion for test layer is checked and if 

IFF does not occur, the value of loading is increased and IFF is checked again. For the 

purpose of this calculations it set that IFF value should has the value around 1,01, which is 

equal to 1% of overstraining. This part of procedure is stopped when a suitable loading, 

causing IFF, is found.   

When IFF occurs, then exposure factor is calculated and material constants, such as ­, and ®, are degraded. After that, a new stiffness matrix is calculated and the laminate is 

loaded again and the procedure of searching the load causing IFF is repeated. This iteration 

process is being continued until Young's transverse modulus, shear modulus and stresses 

converge to constant values.    

On below Fig. 4-1 we can observe the degradation process of material constants in 

the 90° layer. The final value of shear modulus is 99,15% of the beginning value of this 

modulus. The final value of Young's modulus is 81,08% of the beginning value. Young's 

modulus has been degraded more than shear modulus which is correct with the theory 

provided in section 2.6. We can also observe that both modulus are decreasing almost 

linearly. 
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Figure 4-2 Material constants of 90 degree layer [see Ap.2] 

During the process if searching the load causing IFF for every iteration, it occurs that 

value of this load increases almost linearly every iteration. It is due to the fact that the load 

applied in the previous iteration, cannot cause overstraining in the current iteration with the 

degraded material constants.   

 

Figure 4-3 Applied load (cp. Appendix.2.) 
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Figure 4-4 State of strains in the 90 degree layer (cp. Appendix.2.) 

 

Figure 4-3 shows that during the degradation process strains in the 90° layer in the 
direction of applied load are increasing. Strains in the perpendicular direction stays about 
constant value during the degradation process. 

Figures 4-4 and 4-5 show changing of states of stress in 90° and 0° layers. As we can 

observe stress K� in the 90° layer converge to constant value after first three iterations and 

this layer is already degraded. In the figure 4-5 we can observe monotonously increasing 

stress K� in the 0° layer. It means that additional load was carried by this layer, what also 

explains why the increase of strains ³� in the 90 layer, does not meaningfully influences on 

stresses in this layer.   
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Figure 4-5 State of stress in the 90 degree layer (cp. Appendix.2.) 

 

Figure 4-6 State of stress in the 0 degree layer (cp. Appendix.2.) 
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4.2.  Degradation of 3-layer lamina with -45°/90°/-45° layers   

In the second example, the whole Compositor procedure proceeded in the same way 

as in the first example. The difference was only the layup. In this case, the laminate of the 

specimens was built up of 3 mm thick test layer with the fibre direction 90°. This layer was 

supported with two 0,5 mm thick layer with fibre direction 45°. This change should cause 

some shearing stresses in test layer. In this example, in a comparison to the previous, inter-

fibre fracture can also occur in the supporting layers.  

Below figures 4-6 and 4-7 show material constant degradation. In comparison to the 

previous example, we can observe here, that after five iteration the inter-fibre fracture of 

supporting layers (-45°) occurs. It is due to the fact that fibre direction of supporting layer is 

not parallel to the load direction and increasing load made impact also on this layer. 

 

Figure 4-7 Material constants of 90 degree layer (cp. Appendix.3.) 
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Figure 4-8 Material constants of -45 degree layer  (cp. Appendix.3.) 

As the consequence of the fact of degradation in every layer, the load-carrying 

capability of whole lamina is decreasing. Hence the applied load which causes IFF 

converging to constant value (see Fig.[4-8]). It means that every iteration, the increment of 

load needed to cause fracture in degraded lamina is getting lower.    

 

Figure 4-9 Applied load (cp. Appendix.3.) 
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As we can observe on below figures 4-9 and 4-10, there is a difference between state 

of stress in this example and the previous one (see section 4.1). First of all, because of non-

parallel fibre direction in supporting layer, shear stresses appeared in the lamina. Due to the 

fact that in every layer an IFF occurs, and additional load cannot be carried by supporting 

layers. We can observe that in 90° layer stresses K� are constant from the beginning. 

Stresses K� and N�� are also converging to constant value. The differences between staring 

and final value for these stresses are small. In the 0° layer the stresses K� are increasing 

before the first fracture appears and the start to converge to constant value. Stresses K� and N�� very quickly converged to constant value. 

 

Figure 4-10 State of stress in the 90 degree layer (cp. Appendix.3.) 
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Figure 4-11 State of stress in the 0 -45 degree layae (cp. Appendix.3.) 
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5. Abaqus Cae standard 

Before there is a possibility to implement the Puck's criteria into Abaqus, there is a 

need to check whether Abaqus CAE mode is properly calculating states of strain and stress 

with applied load. It will be validate with simple examples, that can be checked with manual 

calculation. First for 2D state of stress and then for 3D state of stress, both for isotropic 

materials. This step is very important, cause thanks to that, we can be sure that the only 

errors that can occurs, are caused by wrong implementation and it will help to find errors and 

fix them. 

5.1.  2D state of stress 

The first calculated example will be a 2-dimensional state of stress. The model was a  

4-node, square plate element of dimensions 1mm x 1mm with boundary as shown below: 

 

Figure 5-1 2D model and boundary conditions 

The material of the model was steel with material constants value E=210 000 MPa 

and Poisson's ratio equal to 0.3. The applied displacement ∆u=0.01mm.  

First manual calculations will be shown and then compared with results from Abaqus 

software. 

³^ = ∆x^x^ = 0.011 = 0.01 

³_ = −ß ∗ ³^ =	−0.3 ∗ 0.01 = −0.003 

Δx_ = x_ ∗ ³_ = −0.003	�»»� 
K^ = ³ ∗ ­ = 0.01 ∗ 2.1 ∗ 10à = 2.1 ∗ 10��áâv� 



 

K
Obviously in such case, stresses will have constant value in whole model. Actually, 

there was no need to calculate stresses in the 

this direction, but this equation also proves it.

Results provided by Abaqu

dimensional state of stress, for isotropic material model, Abaqus provides proper results.

5.2.  3D state of stress

Now whole procedure, as shown in previous chapter, will be repeated, but for 3

dimensional example. The model now will be one, 8

dimensions: 1mm x 1mm x 1mm. Boundary conditions in 0XY surface will stay the same as 

in 2D example. The only change is an additional boundary on 0Z direction, shown below 

[Fig.5-6].  

Figure 5-2 0XZ boundaray conditions for 3D model

The material of the model was steel with material constants v

and Poisson's ratio equal to 0.3. The applied displacement 

As before, first manual calculations will be provided. 

K^ = ³
38 

K_ = ­1 − ¯� ]³_ − ¯ ∗ ³^a = 0	�áâv� 
Obviously in such case, stresses will have constant value in whole model. Actually, 

d to calculate stresses in the Y-direction, because there is no contraction in 

this direction, but this equation also proves it.  

Results provided by Abaqus for this example were the same. It proves that in 2D 

dimensional state of stress, for isotropic material model, Abaqus provides proper results.

3D state of stress 

Now whole procedure, as shown in previous chapter, will be repeated, but for 3

The model now will be one, 8-node, hexagonal element with following 

dimensions: 1mm x 1mm x 1mm. Boundary conditions in 0XY surface will stay the same as 

2D example. The only change is an additional boundary on 0Z direction, shown below 

0XZ boundaray conditions for 3D model 

The material of the model was steel with material constants value E=210 000 MPa 

and Poisson's ratio equal to 0.3. The applied displacement ∆u=0.01mm.  

As before, first manual calculations will be provided.  

³^ = ∆x^x^ = 0.011 = 0.01 

³ ∗ ­ = 0.01 ∗ 2.1 ∗ 10à = 2.1 ∗ 10��áâv� 

Obviously in such case, stresses will have constant value in whole model. Actually, 

direction, because there is no contraction in 

It proves that in 2D 

dimensional state of stress, for isotropic material model, Abaqus provides proper results.  

Now whole procedure, as shown in previous chapter, will be repeated, but for 3-

node, hexagonal element with following 

dimensions: 1mm x 1mm x 1mm. Boundary conditions in 0XY surface will stay the same as 

2D example. The only change is an additional boundary on 0Z direction, shown below 

 

alue E=210 000 MPa 
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There is no contraction in 0Y and 0Z directions, therefore we can assume that 

stresses in these directions are equal to zero. 

K_ = K` = 0 

That's why we are able to write following equations: 

³_ = 1­ ãK_ − ¯ ∗ (K` + K^)ä = −¯ ∗ K^­  

³_ = 1­ ãK` − ¯ ∗ ]K^ + K_aä = −¯ ∗ K^­  

³_ = ³` = −0.003 

Δx_ = Δx` = x_ ∗ ³_ = x` ∗ ³` = −0.003	�»»� 
  Results from Abaqus gives us the the same displacement values and stresse as 

calculated manually. Only for stresses K_, K` we can notice that values are not exactly zero, 

but the values are negligibly small (~10-13 ) and we can assume them as numerical errors 

and recognize them as zeros. 

All in all, above calculations prove that Abaqus CAE module is providing proper 

values for state of stress and strains, for 2-dimensional state, as well as for 3-dimensional.  

What is more, we can see that results from  2-dimensional model with 3-dimensional 

model. This is very important for the comparison results from Abaqus with Compositor 

calculation. There is a wish to compare 2-dimensional model of lamina, calculated in 

Compositor with 3-dimensional model created in Abaqus. Thanks to above calculation we 

are sure that it is possible with proper boundary conditions.  
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6. Comparison between Abaqus and Compositor results 

In this section it will provided the comparison between results of degradation process 

of lamina on base of Compositor calculations and results gained from Abaqus with the usage 

of user-subroutine UMAT.  

To do such comparison, the model in Abaqus must be properly prepared first. As we 

showed in the section 5, it is possible to compare 2-dimensional and 3-dimensional solution. 

As far as subroutine UMAT is delived for 3-dimensional state of stress and strain, we have to 

modify material constants to achieve solution comparable with 2-dimensial state of stress 

and strain. For this reason no stresses in the Z direction can occurs due to contraction. It is 

achieved by setting Poisson's values ¯��, ¯�� to zeros. In this manner the elasticity matrix is 

simplified to equation. 6.50. 

¡¢
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¥¦ ∗
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¥¥
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Moreover it is better to applied displacement in Abaqus than the load. Thanks to that 

we can achieve in Abaqus almost exact state of strain as in Compositor. The procedure was 

to applied the displacement provided by Compositor in the direction of applied load.  

Proper boundary are also needed. To achieve the same values we have to define 

boundary conditions working in the same manner in Compositor (cp. Fig.4-1) and in Abaqus. 

This boundary condition will be the same as shown in Fig. 5-1 and 5-2. 

6.1.  Abaqus results for example from section 4-1 

In the section 4-1 it is shown that only in the 90° layer an IFF occured. Also in Abaqus 

no IFF occurs in 0° layers. Due to this fact is it not necessary to compare results for material 

constants and IFF for 0°  layers. For these layers only state of stress is compared. 

As long as Abaqus model is divide into several number of elements, it is not possible 

to achieve one constant value for whole layer. It is also due to the fact that in Abaqus model 

the constraints and reaction between each layers is taken into account. Then a range of 

values is achieved in dependency of the position of each degradation point. The comparison 

is recognized as a successful when a value from Compositor is included in the range of 

values from Abaqus.  



 

Table 6-1 shows value of IFF achieved in Compositor and Abaqus. As we can see, 

for every step value from Compositor is included in 

table we can also see the difference in percents between values from Compositor and values 

from Abaqus in the middle of the layer.

Table 6-1 Comparison of IFF in 90 d

 

In Fig. 6-1 IFF is shown for the last step.

Figure 6-1 IFF  for 90 degree layer in the 0/90/0 layup

Table 6-2 the K� stresses for each ste

we can observe that the range of values gained from Abaqus is quite big, is due to the fact of 

Step nr Compositor

1 1,01684
2 1,01684
3 1,01540
4 1,01578
5 1,01514
6 1,01512
7 1,01472
8 1,01468
9 1,01433
10 1,01411
11 1,01399
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1 shows value of IFF achieved in Compositor and Abaqus. As we can see, 

for every step value from Compositor is included in the range of values from Abaqus.

table we can also see the difference in percents between values from Compositor and values 

from Abaqus in the middle of the layer. 

Comparison of IFF in 90 degree layer for 0/90/0 layup 

1 IFF is shown for the last step. 

for 90 degree layer in the 0/90/0 layup 

stresses for each step. Values are provided as absolute values. Here 

we can observe that the range of values gained from Abaqus is quite big, is due to the fact of 

Compositor Abaqus
Abaqus values in the 

middle of layer
1,01-1,017 1,015
1,015-1,021 1,016
1,012-1,017 1,016
1,014-1,019 1,015
1,012-1,016 1,015
1,014-1,017 1,015
1,013-1,016 1,015
1,014-1,016 1,014
1,013-1,015 1,014
1,013-1,015 1,014
1,013-1,014 1,014

IFF

1 shows value of IFF achieved in Compositor and Abaqus. As we can see, 

the range of values from Abaqus. In this 

table we can also see the difference in percents between values from Compositor and values 

 

 

are provided as absolute values. Here 

we can observe that the range of values gained from Abaqus is quite big, is due to the fact of 

Abaqus values in the 
Delta[%]

0,18083
0,08248
0,05923
0,07643
0,01367
0,01203
0,02793
0,06731
0,03233
0,01044
0,00100



 

contraction in Y direction between layers. The influence of this reaction increases getting 

closer to the border of the layer, where stres

Compositor are included in the range of values from Abaqus.

values are converged to the smallest value from the range. Therefore, the difference is really 

big around 95%.  

Table 6-2 Comparison of sigma_1 stress in 90 degree layer in 0/90/0 layup

In Fig. 6-1K�	is shown for the last step.

Figure 6-2  Sigma_1 stress  for 90 degree layer in the 0/90/0 layup

In the table 6-3 we can observe that the value stress 

almost always bigger than the range of values obtained with Abaqus. 

Step nr

1
2
3
4
5
6
7
8
9
10
11
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between layers. The influence of this reaction increases getting 

yer, where stresses are the bigger. Nevertheless, values from 

Compositor are included in the range of values from Abaqus. For the middle of the layer the 

values are converged to the smallest value from the range. Therefore, the difference is really 

 

Comparison of sigma_1 stress in 90 degree layer in 0/90/0 layup 

is shown for the last step. 

for 90 degree layer in the 0/90/0 layup 

3 we can observe that the value stress K� gained from Compositor is

always bigger than the range of values obtained with Abaqus. 

Step nr Compositor
Abaqus (absolute 

values)
4,374783777 0,1229-13,8
4,43702505 0,147-14,08
4,547218057 0,134-14,42
4,655241499 0,125-14,72
4,764456482 0,117-15,04
4,872974874 0,1145-15,36
4,981888668 0,114-15,67
5,090518353 0,1145-16,01
5,199394124 0,142-16,32
5,308024384 0,146-16,66
5,416713396 0,1145-16,98

sigma_1 [MPa]

between layers. The influence of this reaction increases getting 

es are the bigger. Nevertheless, values from 

For the middle of the layer the 

values are converged to the smallest value from the range. Therefore, the difference is really 

 

gained from Compositor is 

always bigger than the range of values obtained with Abaqus. However, the 



 

difference is about 0,5% what is acceptable. 

of the reason might be the problem with procedure shown in equations 4.47

stop. Another option is that some numerical problems occurs.

the difference in percents between value of stresses from Compositor and value of stresses 

from Abaqus in the middle of the 90

Table 6-3 Comparison of sigma_2 stress in 90 degree layer in 0/90/0 layup

In Fig. 6-1K�	is shown for the last step.

Figure 6-3  Sigma_2 stress  for 90 degree layer in the 0/90/0 layup

As the last the comparison between material constants is provided. In the table 6

and 6-5 we can see that in all steps and for both values, the value from Compositor is 

Step nr Compositor

1 44,93451423
2 45,97491627
3 45,9032592
4 45,9173934
5 45,88441044
6 45,87897279
7 45,85789975
8 45,84806127
9 45,82849176
10 45,81863054
11 45,80644609
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% what is acceptable. There is only a bigger difference in the first. One 

of the reason might be the problem with procedure shown in equations 4.47

stop. Another option is that some numerical problems occurs. In this figure it is also shown 

percents between value of stresses from Compositor and value of stresses 

the middle of the 90° layer. 

Comparison of sigma_2 stress in 90 degree layer in 0/90/0 layup 

s shown for the last step. 

Sigma_2 stress  for 90 degree layer in the 0/90/0 layup 

As the last the comparison between material constants is provided. In the table 6

5 we can see that in all steps and for both values, the value from Compositor is 

Compositor
Abaqus (absolute 

values)
Abaqus values in the 

middle of layer
44,93451423 45,43-45,78 45,69
45,97491627 45,67-45,93 45,74
45,9032592 45,52-45,77 45,7
45,9173934 45,64-45,84 45,7
45,88441044 45,56-45,74 45,69
45,87897279 45,63-45,78 45,67
45,85789975 45,58-45,70 45,67
45,84806127 45,62-45,72 45,65
45,82849176 45,62-45,72 45,65
45,81863054 45,61-45,68 45,63
45,80644609 45,59-45,64 45,63

sigma_2 [MPa]

There is only a bigger difference in the first. One 

of the reason might be the problem with procedure shown in equations 4.47-4.49 for the first 

In this figure it is also shown 

percents between value of stresses from Compositor and value of stresses 

 

 

As the last the comparison between material constants is provided. In the table 6-4 

5 we can see that in all steps and for both values, the value from Compositor is 

Abaqus values in the 
Delta[%]

1,6535
0,5136
0,4448
0,4757
0,4255
0,4576
0,4114
0,4339
0,3910
0,4134
0,3867



 

included in the range of values from Abaqus. 

percents between value of material constants from Compositor and value of stresses from 

Abaqus in the middle of the 90

Table 6-4 Comparison of E_2  in 90 degree layer in 0/90/0 layup

In Fig. 6-1	­�	is shown for the last step.

Figure 6-4  Young's modulus  for 90 degree layer in the 0/90/0 layup

. 

 

 

Step nr Compositor

1 9765,092292
2 9530,804832
3 9327,124065
4 9121,197635
5 8930,102522
6 8743,363084
7 8566,530992
8 8394,589881
9 8231,275993
10 8073,660677
11 7921,290309
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included in the range of values from Abaqus. In this figure it is also shown the diff

percents between value of material constants from Compositor and value of stresses from 

Abaqus in the middle of the 90° layer. 

Comparison of E_2  in 90 degree layer in 0/90/0 layup 

is shown for the last step. 

Young's modulus  for 90 degree layer in the 0/90/0 layup 

Compositor Abaqus 
Abaqus values in the 

middle of layer

9765,092292 9709-9842 9744
9530,804832 9512-9533 9516
9327,124065 9279-9391 9308
9121,197635 9099-9133 9106
8930,102522 8888-8984 8913
8743,363084 8719-8762 8729
8566,530992 8529-8613 8550
8394,589881 8370-8418 8381
8231,275993 8198-8272 8216
8073,660677 8048-8099 8060
7921,290309 7891-7958 7907

E_2 [MPa]

In this figure it is also shown the difference in 

percents between value of material constants from Compositor and value of stresses from 

 

 

Abaqus values in the 
Delta[%]

0,21600
0,15534
0,20504
0,16662
0,19152
0,16427
0,19297
0,16189
0,18558
0,16920
0,18040



 

Table 6-5  Comparison of G_12  in 90 degree

In Fig. 6-1 ®��	is shown for the last step.

Figure 6-5  Shear modulus  for 90 degree layer in the 0/90/0 layup

Considering above results we can 
example, Abaqus provides results with the difference below 0,5% in comparison to results 
gained from Abaqus. This difference is calculated for values provided by Abaqus for the 
middle of the 90° layer, where the c
interaction between layers in the Y direction. In the 2
the Compositor, this contraction do
cannot turn off this contraction. Because of this contraction there is also a big difference in 
values between Compositor calculations and values
layer. Nevertheless, this difference 
results and our calculations look really promisingly.

Step nr Compositor

1 4938,141147
2 4932,995315
3 4928,638833
4 4924,477936
5 4919,758533
6 4915,769089
7 4911,94456
8 4907,961997
9 4904,113446
10 4900,208198
11 4896,258818
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Comparison of G_12  in 90 degree layer in 0/90/0 layup 

is shown for the last step. 

Shear modulus  for 90 degree layer in the 0/90/0 layup 

Considering above results we can come to the conclusion that, in this particular 
example, Abaqus provides results with the difference below 0,5% in comparison to results 
gained from Abaqus. This difference is calculated for values provided by Abaqus for the 

layer, where the contraction in Y is the lower. This contraction is cause by 
interaction between layers in the Y direction. In the 2-dimensional state of stress on base of 
the Compositor, this contraction does not exist. In the 3-dimensional Abaqus model we 

this contraction. Because of this contraction there is also a big difference in 
between Compositor calculations and values achieved in Abaqus for the middle of the 

layer. Nevertheless, this difference in stresses K� does not influence meaningfu
and our calculations look really promisingly. 

Compositor Abaqus 
Abaqus values in the 

middle of layer
4938,141147 4937-4940 4938
4932,995315 4933-4933 4933
4928,638833 4928-4930 4928
4924,477936 4924-4924 4924
4919,758533 4919-4921 4920
4915,769089 4915-4916 4915
4911,94456 4911-4913 4911
4907,961997 4907-4908 4907
4904,113446 4903-4905 4903
4900,208198 4899-4900 4900
4896,258818 4895-4897 4896

 G_12[MPa]

 

 

to the conclusion that, in this particular 
example, Abaqus provides results with the difference below 0,5% in comparison to results 
gained from Abaqus. This difference is calculated for values provided by Abaqus for the 

ontraction in Y is the lower. This contraction is cause by 
dimensional state of stress on base of 

dimensional Abaqus model we 
this contraction. Because of this contraction there is also a big difference in K� 

for the middle of the 
does not influence meaningfully on our 

Abaqus values in the 
Delta[%]

0,0029
0,0001
0,0130
0,0097
0,0049
0,0156
0,0192
0,0196
0,0227
0,0042
0,0053



 

6.2.  Abaqus results for example from section 4

In the manner as in section 6

the Compositor results and results provide by Abaqus. Neverthe

an example where shear stresses appears due to non parallel direction of fibre in the 

supporting layer do not give a suitable result in Abaqus that can be compare. 

that state of stress in laminas is not lamin

compare.  Below Fig.  6-6 shows the stress 

Figure 6-6 Sigma_2 stresess in the 45/90/45 lamina

To clarify it better, why there is no possibility 

Compositor, the Fig. 6-7 is shown.

where big concentration of stress appears, we also achieve high IFF. On the other hand we 

also achieve zones where IFF is

(0,5676-1,403). In comparison, the Compositor gives as the IFF value equal to 1,01474. Of 

course this value is in the range of values gained from Abaqus, where maximum over

straining is about 40%. Nevertheless, 

same what Compositor gives.  
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for example from section 4-2 

In the manner as in section 6-1, there was a wish to discuss the comparison between 

s and results provide by Abaqus. Nevertheless, it turn out that choosing 

an example where shear stresses appears due to non parallel direction of fibre in the 

not give a suitable result in Abaqus that can be compare. 

that state of stress in laminas is not laminar, there is no opportunity to find suitable values to 

6 shows the stress K�.  

45/90/45 lamina 

To clarify it better, why there is no possibility of validate the calculation on base of 

7 is shown. It shows the IFF for the first step. As we can see, in zones 

where big concentration of stress appears, we also achieve high IFF. On the other hand we 

also achieve zones where IFF is lower than one. In the end we have a big range of values 

1,403). In comparison, the Compositor gives as the IFF value equal to 1,01474. Of 

course this value is in the range of values gained from Abaqus, where maximum over

evertheless, on the basis on this we cannot validate if this is the 

same what Compositor gives.   

the comparison between 

less, it turn out that choosing 

an example where shear stresses appears due to non parallel direction of fibre in the 

not give a suitable result in Abaqus that can be compare. Due to the fact 

ar, there is no opportunity to find suitable values to 

 

of validate the calculation on base of 

It shows the IFF for the first step. As we can see, in zones 

where big concentration of stress appears, we also achieve high IFF. On the other hand we 

lower than one. In the end we have a big range of values 

1,403). In comparison, the Compositor gives as the IFF value equal to 1,01474. Of 

course this value is in the range of values gained from Abaqus, where maximum over-

on the basis on this we cannot validate if this is the 



 

Figure 6-7 IFF in the 45/90/45 lamina

The first conclusion about this example was that supporting layer for flat specimens 

cannot has fibre orientation other than zero and only test layers can be orientated differently. 

To find out if this is the right thinking, number of examples w

different lamina's layup.  

Example 1: 0°/+-45°/0 °

Example 2: 0°/+-60°/0 °

Example 3: 0°/+-45° /90

Unfortunately non of the

Compositor. In non of these examples there is a zone of laminar state of stress, which allow 

us to compare a specific value of IFF, stresses or material constants.

only option to validate Puck's criteria on base of 

flat specimens of lamina are laminas with only 

 One of the opportunity to create a model, with other orientations of fibre, which can 

be compared is to create a model of a tube. Then th

direction of 0° axis or a torsion should be applied to the tube. 
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in the 45/90/45 lamina 

lusion about this example was that supporting layer for flat specimens 

cannot has fibre orientation other than zero and only test layers can be orientated differently. 

right thinking, number of examples were provide in Abaqus for

° 

° 

/90°/+-45°/0° 

Unfortunately non of these examples is suitable to compare with results gained from 

Compositor. In non of these examples there is a zone of laminar state of stress, which allow 

us to compare a specific value of IFF, stresses or material constants. This shows that the 

only option to validate Puck's criteria on base of comparison with results from Compositor 

flat specimens of lamina are laminas with only 0° and 90 ° degrees layer. 

One of the opportunity to create a model, with other orientations of fibre, which can 

be compared is to create a model of a tube. Then this kind of model should be loaded 

axis or a torsion should be applied to the tube.  

 

lusion about this example was that supporting layer for flat specimens 

cannot has fibre orientation other than zero and only test layers can be orientated differently. 

provide in Abaqus for 

results gained from 

Compositor. In non of these examples there is a zone of laminar state of stress, which allow 

This shows that the 

with results from Compositor  for 

One of the opportunity to create a model, with other orientations of fibre, which can 

is kind of model should be loaded in the 
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6.3.  Abaqus results for example from section 4-2 for 3-dimensional state 

of stress 

In the section 4-1 it is shown that Abaqus provides good results in comparison to 2-

dimensional calculations of Compositor. Now the calculation for 3-dimensional state of 

stress, where also the contraction in Z direction will be taken into account, will be provided.  

There is a wish to check how big influence will have the contraction in Z direction in 

this particular example of lamina. Therefore, results from Abaqus for the case from section 6-

1 will be compared with results from Abaqus for the same example but with possibility of 

contraction in the Z direction. For simplification, in tables there are used abbreviations: Z-no 

for the model with no contraction in the Z direction and Z-yes for the model with possible 

contraction in the Z direction.  

What we can observe in the table 6-6, is that generally we achieved the same inter-

fibre fracture in both cases. Only in two steps we can find differences in the value of IFF for 

the middle of the layer, but they are smaller than 0,1%.  

 

Table 6-6 IFF comparison between two Abaqus models 

Step nr Abaqus (Z-no)
Abaqus values in 
the middle of layer 

(Z-no)
Abaqus (Z-yes)

Abaqus values 
in the middle of 

layer (Z-yes)
Delta[%]

1 1,01-1,017 1,015 1,01-1,017 1,015 0
2 1,015-1,021 1,016 1,015-1,021 1,017 0,098425
3 1,012-1,017 1,016 1,012-1,017 1,016 0
4 1,014-1,019 1,015 1,014-1,019 1,016 0,098522
5 1,012-1,016 1,015 1,012-1,016 1,015 0
6 1,014-1,017 1,015 1,014-1,017 1,015 0
7 1,013-1,016 1,015 1,013-1,016 1,015 0
8 1,014-1,016 1,014 1,014-1,016 1,014 0
9 1,013-1,015 1,014 1,013-1,015 1,014 0
10 1,013-1,015 1,014 1,014-1,015 1,014 0
11 1,013-1,014 1,014 1,013-1,014 1,014 0

IFF



 

Figure 6-8 IFF for the end step with the possible contraction in the Z

For K� a small change in

maximum values increased about 0,5%. 

Table 6-7 Sigma_1 comparison between two Abaqus models

Step nr Abaqus (Z-no)

1 0,1229-13,8
2 0,147-14,08
3 0,134-14,42
4 0,125-14,72
5 0,117-15,04
6 0,1145-15,36
7 0,114-15,67
8 0,1145-16,01
9 0,142-16,32
10 0,146-16,66
11 0,1145-16,98
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IFF for the end step with the possible contraction in the Z-direction 

a small change in the range of values can be observed (cp. Table 6

maximum values increased about 0,5%.  

Sigma_1 comparison between two Abaqus models 

Abaqus (Z-no) Abaqus (Z-yes)
Difference 

between max. 
Values [%]

0,1229-13,8 0,099-13,88 0,580
0,147-14,08 0,101-14,15 0,497
0,134-14,42 0,099-14,50 0,555
0,125-14,72 0,101-14,80 0,543
0,117-15,04 0,099-15,13 0,598
0,1145-15,36 0,101-15,45 0,586
0,114-15,67 0,099-15,76 0,574
0,1145-16,01 0,1-16,10 0,562
0,142-16,32 0,1-16,41 0,551
0,146-16,66 0,1-16,75 0,540
0,1145-16,98 0,1-17,07 0,530

sigma_1 [MPa]

 

the range of values can be observed (cp. Table 6-7). The 

 

Difference 
between max. 

Values [%]



 

Figure 6-9 Sigma_1 for the end step with the possible contraction in the Z

There is almost no difference in 

step number 9 there is a difference in the range of stress values, but values in the middle

the layer are the same for both cases in this step. 

Table 6-8 Sigma_2 comparison between two Abaqus models

Step nr Abaqus (Z-no)
Abaqus values in 
the middle of layer 

1 45,43-45,78
2 45,67-45,93
3 45,52-45,77
4 45,64-45,84
5 45,56-45,74
6 45,63-45,78
7 45,58-45,70
8 45,62-45,72
9 45,62-45,72
10 45,61-45,68
11 45,59-45,64
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Sigma_1 for the end step with the possible contraction in the Z-direction 

There is almost no difference in K� between two models (cp. Table 6

a difference in the range of stress values, but values in the middle

for both cases in this step.  

Sigma_2 comparison between two Abaqus models 

Abaqus values in 
the middle of layer 

(Z-no)
Abaqus (Z-yes)

Abaqus values 
in the middle of 

layer (Z-yes)
45,69 45,43-45,78 45,69
45,74 45,67-45,94 45,74
45,7 45,52-45,77 45,7
45,7 45,64-45,84 45,7
45,69 45,56-45,74 45,69
45,67 45,63-45,78 45,67
45,67 45,58-45,70 45,67
45,65 45,62-45,72 45,65
45,65 45,59-45,67 45,65
45,63 45,61-45,68 45,63
45,63 45,59-45,64 45,63

sigma_2 [MPa]

 

between two models (cp. Table 6-8). Only in time 

a difference in the range of stress values, but values in the middle of 

 

Abaqus values 
in the middle of 

layer (Z-yes)
Delta[%]

45,69 0
45,74 0
45,7 0
45,7 0
45,69 0
45,67 0
45,67 0
45,65 0
45,65 0
45,63 0
45,63 0



 

Figure 6-10 Sigma_2 for the end step with the

For Young's modulus, there are some small changes in the range of values in some 

time steps (cp. Table 6-9), but values in the middle of layer 

Table 6-9 Young's modulus comparison between two Abaqus models

Step nr Abaqus (Z-no)
Abaqus values in 
the middle of layer 

1 9709-9842
2 9512-9533
3 9279-9391
4 9099-9133
5 8888-8984
6 8719-8762
7 8529-8613
8 8370-8418
9 8198-8272
10 8048-8099
11 7891-7958
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Sigma_2 for the end step with the possible contraction in the Z-direction 

For Young's modulus, there are some small changes in the range of values in some 

, but values in the middle of layer equivalent for every time step. 

Young's modulus comparison between two Abaqus models 

Abaqus values in 
the middle of layer 

(Z-no)
Abaqus (Z-yes)

Abaqus values 
in the middle of 

layer (Z-yes)
9744 9711-9842 9744
9516 9512-9533 9516
9308 9280-9392 9308
9106 9099-9133 9106
8913 8889-8984 8913
8729 8720-8762 8729
8550 8530-8613 8550
8381 8370-8418 8381
8216 8199-8272 8216
8060 8048-8099 8060
7907 7892-7958 7907

E_2 [MPa]

 

For Young's modulus, there are some small changes in the range of values in some 

every time step.  

 

Abaqus values 
in the middle of 

layer (Z-yes)
Delta[%]

9744 0
9516 0
9308 0
9106 0
8913 0
8729 0
8550 0
8381 0
8216 0
8060 0
7907 0



 

Figure 6-11 Young's modulus for the end step with the possible contraction in the Z

For shear modulus, we cannot obser

Table 6-10 Shear modulus comparison between two Abaqus models

Step nr Abaqus (Z-no)
Abaqus values in 
the middle of layer 

1 4937-4940
2 4933-4933
3 4928-4930
4 4924-4924
5 4919-4921
6 4915-4916
7 4911-4913
8 4907-4908
9 4903-4905
10 4899-4900
11 4895-4897
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Young's modulus for the end step with the possible contraction in the Z-direction

For shear modulus, we cannot observe any changes (cp. 6-10). 

Shear modulus comparison between two Abaqus models 

Abaqus values in 
the middle of layer 

(Z-no)
Abaqus (Z-yes)

Abaqus values 
in the middle of 

layer (Z-yes)
4938 4937-4940 4938
4933 4933-4933 4933
4928 4928-4930 4928
4924 4924-4924 4924
4920 4919-4921 4920
4915 4915-4916 4915
4911 4911-4913 4911
4907 4907-4908 4907
4903 4903-4905 4903
4900 4899-4900 4900
4896 4895-4897 4896

G_12 [MPa]

 

direction 

 

Abaqus values 
in the middle of 

layer (Z-yes)
Delta[%]

4938 0
4933 0
4928 0
4924 0
4920 0
4915 0
4911 0
4907 0
4903 0
4900 0
4896 0



 

Figure 6-12 Shear modulus for the end step with the possible 

Considering the results of the comparison between two Abaqus example, we can 

assume that the possible contraction in the Z direction does not influence meaningfully on 

the results in this particular example.

small (~10-4) and they do not have huge impact on the IFF

contraction in the Y direction. 

criteria works for 3-dimensional sta

difference between 2D and 3D state of stress but for more complex models the Compositor 

calculation will be not sufficient and the advantage of presented subroutine will be used. 
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Shear modulus for the end step with the possible contraction in the Z-direction 

Considering the results of the comparison between two Abaqus example, we can 

assume that the possible contraction in the Z direction does not influence meaningfully on 

the results in this particular example. Stresses K�, which appeared in the model are negligibly 

) and they do not have huge impact on the IFF. More influence has the 

contraction in the Y direction. Nevertheless, it is shown that user-subroutine UMAT for Puck's 

dimensional state of stress. In this simple example there is now big 

difference between 2D and 3D state of stress but for more complex models the Compositor 

calculation will be not sufficient and the advantage of presented subroutine will be used. 

 

 

Considering the results of the comparison between two Abaqus example, we can 

assume that the possible contraction in the Z direction does not influence meaningfully on 

which appeared in the model are negligibly 

More influence has the 

subroutine UMAT for Puck's 

te of stress. In this simple example there is now big 

difference between 2D and 3D state of stress but for more complex models the Compositor 

calculation will be not sufficient and the advantage of presented subroutine will be used.  
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7. Summary 

In this thesis the action plane fracture criteria of Puck was succesfully implemented 

into Abaqus software. This process took a long time. At first, the action plane fracture criteria 

of Puck had to be considered and understand (cp. section 2.). We need to know what kind of 

information this criteria needs about state of stress and material constants. Then the whole 

process of lamina degradation in Abaqus was planned and discussed (cp. section 3). After 

considering what information must be provided by Abaqus to the subroutine and what 

information must be send back, a proper subroutine type was chosen to assure proper two 

way communication between Abaqus and subroutine. After that the subroutine was prepared 

in the Fortran code. 

Prepared user-subroutine (UMAT) must have been validated. Do achieve a validation 

two example of degradation process were provided in Compositor (cp. section 4). There was 

the wish to compare both of them with the results from Abaqus. The validation was 

successful for the example showed in section 4.1. We achieve comparable results with the 

difference below 1% between values gained from Abaqus and Compositor. Unfortunately 

there was no possibility to compare the second example (cp. section 4-2) with the Abaqus. 

Nevertheless, it was shown that user-subroutine with Puck's criteria implementation is 

working and provides good results. 

 The big advantage of this subroutine is that it can be used for 3-dimensional model in 

Abaqus, for 3-dimensional state of stress. It was the main goal for this thesis and it was 

achieved. What is more the subroutine is easy to use does require advanced knowledge in 

Abaqus software.  

 Now the action plane fracture criteria of Puck can be used for more complex 3D 

models in Abaqus. The main reason that there was such a need to implement Puck's criteria 

into Abaqus is to develop researches about bended joints reinforced with yarns in the 

bending line and therefore improve their characteristics.  
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8. Conclusion 

There is a few conclusion about this work. First of all, there is a need to create a 

proper model in Abaqus of a laminate when layers with different than 0° and 90° orientation 

of fibre occurs. There are some ideas proposed in section 6.3. These examples must be 

provide to check how implemented code is working when shear stresses appears.  

Second thing that can improve implementation of Puck's criteria is to implement the 

tangent stiffness matrix instead of using secant stiffness matrix and change the procedure of 

looking for the solution. For examples provided in this thesis, using secant stiffness matrix 

and procedure showed in section 3, Fig. 3-5, is sufficient. Nevertheless, tangent stiffness 

matrix should be implement and it should be check which approach gives better solution. 

In this thesis the implicit code was provided and we achieved good result with this 

method. However, even though implicit method is often more efficient for static problems, it is 

required to use explicit method when using Puck's failure criterion in numerical calculations 

of bonded repairs. This is due to the fact that failure is a highly dynamic process and only 

explicit method can produce the solution with the proper precision. That is why the next step 

should be transformation the code into explicit method.  

As the last it this propose to find in literature an experimental example of failure in 

bended joints reinforced with yarns in the bending line. Then a proper model should be 

create in Abaqus and solution should compare with experimental data. It would be the last 

step of complex problem of the Puck's criteria validation. This thesis was the part of this 

process. 
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[1] Subroutine Fortran code: Puck_s_ criteria_UMAT.for 
[2] Compositor degradation process of 3-layer lamina with 0°/90°/0° layers: 

T700_0_90_0_layup.xlsx 
[3] Compositor degradation process of 3-layer lamina with -45°/90°/-45° layers: 

T700_45_90_45_layup.xlsx 
[4] Material constants: material constants.xlsx 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



57 
 

 

 

 

 

 

 

 

Declaration 

Herewith I affirm that this master thesis is entirely my own work. Where use has been 

made of the work of others, it has been fully acknowledged and referenced. 

 

Date           Signature 

 


