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Zusammenfassung 
 
Tobias Kathke 

 
Thema der Bachelorthesis  

Methodische Voruntersuchungen zur Vibroakustischen Simulation von Windenergie-
anlagen mit der Finite-Elemente-Methode (FEM) 

 
 
Stichworte 

Fluid-Struktur-Kopplung, Vibro-Akustik, Schall, Finite-Elemente-Methode, Abstrahlung, 
Impedanz, Robin-Randbedingung 

 
Kurzzusammenfassung 

In dieser Arbeit werden methodische Voruntersuchungen zur vibro-akustischen 
Simulation einer Windenergieanlage mittels der Finite-Elemente-Methode anhand 
einfacher Prinzipmodelle durchgeführt. Der Schwerpunkt liegt dabei auf der Umsetzung 
der Fluid-Struktur-Kopplung zwischen den vibrierenden Bauteilen des Antriebsstrangs 
und dem akustischen Umgebungsmedium (Luft), sowie der Untersuchung der 
akustischen Randbedingungen und dem Einfluss konstruktiver Maßnahmen auf den 
Schalldruck im akustischen Fluid.  
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Methodological Studies in Vibro-acoustic Simulation of Wind Turbines with the Finite 
Element Analysis (FEA) 
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Abstract 

In this line of work methodological studies in vibro-acoustic simulations of a wind turbine 
are held on the basis of simple principle models using the finite element analysis. The 
emphasis lies on the implementation of the fluid-structure interaction between the 
vibrating parts of the power train and the surrounding acoustical medium (air), as well 
as the analysis of the acoustic boundary conditions and the influence of constructive 
modifications on the sound pressure within the acoustic fluid.   

 

  



 

 
 

 

 

 

 

 

 

 

Widmung 

Diese Arbeit widme ich meiner verstorbenen Großmutter Ingrid Kathke, die mir das Studium, so wie 

ich es erleben durfte, ermöglicht hat.  

 

 

Danksagung 

Ein herzlicher Dank geht an meinen Betreuer Prof. Dr.-Ing. habil. Frank Ihlenburg für seinen stetigen 

Optimismus und seine nicht abreißende Begeisterung diesem Projekt gegenüber, die mir über so man-

chen Totpunkt hinweghalf. Durch seine Anregungen, die ich gerne aufgenommen habe, umfasst die 

Arbeit gewiss einige Seiten mehr, die der Struktur und dem Inhalt zugutegekommen sind.



 

I 
 

Contents 

List of Tables ............................................................................................................................. III 

List of Figures ............................................................................................................................ IV 

List of Abbreviations ............................................................................................................... VIII 

Nomenclature ........................................................................................................................... IX 

1 Motivation ........................................................................................................................ 1 
1.1 Background of the thesis ................................................................................................... 1 
1.2 Tasks and objectives .......................................................................................................... 2 

2 Theoretical Introduction ................................................................................................... 3 
2.1 Airborne sound.................................................................................................................. 3 
2.2 Acoustic Boundary Conditions ........................................................................................... 6 
2.2.1 Sound-soft boundary (Dirichlet Boundary Condition) ......................................................... 7 
2.2.2 Sound-hard boundary (Neumann Boundary Condition) ..................................................... 7 
2.2.3 Robin Boundary Condition ................................................................................................. 8 
2.2.4 Absorbing Elements (Infinite Elements) ........................................................................... 10 
2.2.5 Perfectly Matched Layers ................................................................................................ 11 
2.3 Structure-borne sound .................................................................................................... 12 
2.4 Fluid-Structure Interaction .............................................................................................. 14 
2.5 Perception of Sound ........................................................................................................ 15 

3 Finite Element Analysis ................................................................................................... 18 
3.1 Governing Equations ....................................................................................................... 18 
3.1.1 Derivation of the variational formulations ....................................................................... 18 
3.1.2 Derivation of the Discrete Systems .................................................................................. 20 
3.1.3 Implementation of the FSI ............................................................................................... 21 
3.2 Solution Methods for Frequency Response ...................................................................... 22 
3.2.1 Direct Solution................................................................................................................. 22 
3.2.2 Mode Superposition ........................................................................................................ 22 
3.3 Finite Elements for FSI (3D).............................................................................................. 25 

4 Verification Examples ..................................................................................................... 26 
4.1 Rectangular Panel Backed on Closed Cavity ..................................................................... 26 
4.2 Rectangular Panel on Hemisphere ................................................................................... 33 

5 Application Case Studies ................................................................................................. 36 
5.1 Cylinder in Air .................................................................................................................. 36 
5.1.1 Constructive Modifications .............................................................................................. 39 
5.2 Power Train in Air ............................................................................................................ 54 
5.2.1 Constructive Modifications .............................................................................................. 59 

6 Conclusion ...................................................................................................................... 61 

7 Literature ........................................................................................................................ 62 

8 Appendix ....................................................................................................................... A-1 
8.1 Guide to ACT Acoustics in ANSYS Workbench ................................................................. A-1 
8.1.1 Installing the Extension ................................................................................................... A-1 
8.1.2 Setting up the FSI Example ............................................................................................. A-1 



 

II 
 

8.1.3 Setting the Mode-Superposition Method........................................................................ A-7 
8.2 ANSYS Mechanical ADPL Scripts ...................................................................................... A-8 
8.2.1 MAPDL Rectangular Plate on Rectangular Cavity ............................................................ A-8 
8.2.2 MAPDL Cylinder in Air................................................................................................... A-12 
8.3 Matlab Rectangular Plate on Rectangular Cavity (after Howard [14]) ............................ A-16 

 

   



 

III 
 

List of Tables  

Table 2.1: Classification of Sound Pressure and SPL (based on [18]) ............................................................ 16 

Table 4.1: Comparison of the computing times for the cavity-plate example .............................................. 28 

Table 4.2: Used acoustic fluids for comparison of displacement at driving point ......................................... 30 

Table 5.1: Parameter for tuned mass damper ............................................................................................ 51 

 

 

 

  



 

IV 
 

List of Figures 

Figure 2.1: fluid element subject to a pressure gradient ............................................................................... 4 

Figure 2.2: Illustration of sound wave, wave length and period [21] ............................................................. 6 

Figure 2.3: Fluid-Structure Interface with different boundary conditions ...................................................... 7 

Figure 2.4: Transmission at a border with impedance boundary condition ................................................... 8 

Figure 2.5: Schematic of a spherical infinite element .................................................................................. 10 

Figure 2.6: Construction of the PML ........................................................................................................... 11 

Figure 2.7: Coupling types between cavity and structure ............................................................................ 14 

Figure 2.8: Fletcher-Munson curves of equal loudness [20] ........................................................................ 15 

Figure 2.9: Auditory sensation area [22]..................................................................................................... 16 

Figure 2.10: A-,B-,C- weighted filter curves [22] ......................................................................................... 17 

Figure 3.1: Hexahedral solid, shell and fluid element with nodal DOFs ........................................................ 25 

Figure 4.1: A closed acoustic cavity with an attached flexible plate............................................................. 26 

Figure 4.2: Frequency response at the driving point (after [17]) ................................................................. 27 

Figure 4.3: Comparison of the solution methods ........................................................................................ 28 

Figure 4.4: Acoustic pressure at (0.2, 0.3, 0.5) inside the cavity .................................................................. 29 

Figure 4.5: Comparison of acoustic fluids at driving point ........................................................................... 30 

Figure 4.6: Comparison of the first four mode shapes ................................................................................ 31 

Figure 4.7: Driving point displacement different boundary conditions (water, rectangular cavity) .............. 32 

Figure 4.8: Driving point displacement with different boundary conditions (air, rectangular cavity) ............ 32 

Figure 4.9: Plate backed on hemisphere cavity ........................................................................................... 33 

Figure 4.10: Driving point displacement with different boundary conditions (air, hemisphere) ................... 34 

Figure 4.11: Driving point displacement with different boundary conditions (water, hemisphere) .............. 34 

Figure 4.12: Acoustic pressure of 0.475, 0.675, 0.575 with absorbing boundary conditions (air) ................ 35 

Figure 4.13: Acoustic pressure of 0.475, 0.675, 0.575 with absorbing boundary conditions (water) ........... 35 

Figure 5.1: Principle model for the FSI of a wind turbine ............................................................................ 36 

Figure 5.2: Displacement of the cylinder at (0, 250, 0) and corresponding mode shapes ............................. 38 

Figure 5.3: SPL(A) at (0, 255, 257) .............................................................................................................. 38 

Figure 5.4: First Mode displacement at (0, 250, 0) and SPL(A) at (0, 255, 257) with added mass.................. 39 

Figure 5.5: Second mode displacement at (-500, 250, 0) with added mass .................................................. 40 



 

V 
 

Figure 5.6: Third mode displacement at (0, 250, 0) with added mass .......................................................... 40 

Figure 5.7: Second mode SPL(A) at (-500, 255, 257) with added mass ......................................................... 40 

Figure 5.8: Third mode displacement at (0, 255, 257) with added mass ...................................................... 40 

Figure 5.9: First mode and selected area .................................................................................................... 41 

Figure 5.10: First mode displacement at (0, 250, 0) with area-wide mass ................................................... 41 

Figure 5.11: First mode SPL(A) at (0, 255, 257) with area-wide mass .......................................................... 41 

Figure 5.12: Second mode and selected area ............................................................................................. 42 

Figure 5.13: Second mode displacement at (-500, 250, 0) with area-wide mass .......................................... 42 

Figure 5.14: Second mode SPL(A) at (-500, 255, 243) with area-wide mass ................................................. 42 

Figure 5.15: Third mode and selected area................................................................................................. 43 

Figure 5.16: Third mode displacement at (0, 250, 0) and (-500, 250, 0) with area-wide mass ...................... 43 

Figure 5.17: Third mode SPL(A) at (0, 255, 257) and (-500, 255, 243) with area-wide mass ......................... 43 

Figure 5.18: Attached point masses and influenced first mode shape ......................................................... 44 

Figure 5.19: First displacement at (0, 255, 0) with added point masses ....................................................... 44 

Figure 5.20: First mode SPL(A) at (0, 255, 257) with added point masses .................................................... 44 

Figure 5.21: Attached point masses and influenced second mode shape .................................................... 45 

Figure 5.22: Second mode displacement at (0, 250, 0) with added point masses ........................................ 45 

Figure 5.23: Second mode SPL(A) at (-500, 255, 257) with added point masses .......................................... 45 

Figure 5.24: Attached point masses and influenced third mode shape........................................................ 46 

Figure 5.25: Third mode displacement at (0, 250, 0) and (-500, 250, 0) with added point masses................ 46 

Figure 5.26: Third mode SPL(A) at (0, 255, 257) and (-500, 255, 243) with added point masses ................... 46 

Figure 5.27: First mode displacement at (0, 250, 0) with added thickness ................................................... 47 

Figure 5.28: First mode SPL(A) at (0, 255, 257) with added thickness .......................................................... 47 

Figure 5.29: Second mode displacement at (-500, 250, 0) with added thickness ......................................... 48 

Figure 5.30: Third mode displacement at (0, 250, 0) with added thickness ................................................. 48 

Figure 5.31: Second mode SPL(A) at (-500, 255, 243) with added thickness ................................................ 48 

Figure 5.32: Third mode SPL(A) at (0, 255, 257) with added thickness ........................................................ 48 

Figure 5.33: First mode displacement at (0, 250, 0) and SPL(A) at (0, 255, 257) with patch ......................... 49 

Figure 5.34: Second mode displacement at (-500, 250, 0) and SPL(A) at (-500, 255, 243) with patches........ 49 

Figure 5.35: Third mode displacement at (0, 250, 0) and (-500, 250, 0) with added patches ........................ 50 



 

VI 
 

Figure 5.36: Third mode SPL(A) at (0, 255, 257) and (-500, 255, 243) with added patches ........................... 50 

Figure 5.37: Tuned mass damper attached to the cylinder for the first and third mode .............................. 51 

Figure 5.38: First mode displacement at (0, 250, 0) with added tuned mass damper .................................. 52 

Figure 5.39: First mode SPLA at (0, 255, 257) with added tuned mass damper ............................................ 52 

Figure 5.40: Third mode displacement at (0, 250, 0) with tuned mass damper............................................ 53 

Figure 5.41: Second mode displacement at (-500, 250, 0) with tuned mass damper ................................... 53 

Figure 5.42: Third mode SPL(A) at (0, 255, 257) with tuned mass damper................................................... 53 

Figure 5.43: Second mode SPL(A) at (-500, 255 ,243) with tuned mass damper .......................................... 53 

Figure 5.44: Power train in air .................................................................................................................... 54 

Figure 5.45: Main shaft displacement at (0, 200, 375) ................................................................................ 55 

Figure 5.46: Main shaft SPL(A) at (290, 290, 375) ....................................................................................... 55 

Figure 5.47: Gear box displacement at (0, 300, 1175) ................................................................................. 56 

Figure 5.48: Gear Box SPL(A) at (290, 290, 1175) ........................................................................................ 56 

Figure 5.49: Brake displacement at (-100, 200, 1750) ................................................................................. 57 

Figure 5.50: Brake SPL(A) at (290, 290, 1750) ............................................................................................. 57 

Figure 5.51: Generator displacement at (-100, 200, 2100) .......................................................................... 58 

Figure 5.52: Generator SPL(A) at (290, 290, 2100) ...................................................................................... 58 

Figure 5.53: Displacement figure of the power train at 1766 Hz ................................................................. 59 

Figure 5.54: Generator displacement at (-100, 200, 2100) with added mass ............................................... 59 

Figure 5.55: Generator SPL(A) at (290,290,2100) with added mass ............................................................. 60 

Figure 8.1: Inside the Extensions Manager ................................................................................................ A-1 

Figure 8.2: Installing the Extension............................................................................................................ A-1 

Figure 8.3: Rectangular Plate on Cavity Example ....................................................................................... A-1 

Figure 8.4: Selecting the Acoustic Body ..................................................................................................... A-1 

Figure 8.5: Details of the Acoustic Body .................................................................................................... A-2 

Figure 8.6: Setting of the FSI [14] .............................................................................................................. A-2 

Figure 8.7: Selecting the FSI Interface ....................................................................................................... A-3 

Figure 8.8: Picking the FSI Interface Tool ................................................................................................... A-3 

Figure 8.9: Selecting the Boundary Conditions .......................................................................................... A-3 

Figure 8.10: Setting up the Absorbing Elements ........................................................................................ A-3 

file:///H:/Bericht_Rev_09.docx%23_Toc462821832
file:///H:/Bericht_Rev_09.docx%23_Toc462821833
file:///H:/Bericht_Rev_09.docx%23_Toc462821834
file:///H:/Bericht_Rev_09.docx%23_Toc462821835
file:///H:/Bericht_Rev_09.docx%23_Toc462821836
file:///H:/Bericht_Rev_09.docx%23_Toc462821838
file:///H:/Bericht_Rev_09.docx%23_Toc462821840
file:///H:/Bericht_Rev_09.docx%23_Toc462821841


 

VII 
 

Figure 8.11: Analysis Settings of a Hamonic Analysis ................................................................................. A-4 

Figure 8.12: Selecting the frequency response for the deformation of the structure .................................. A-4 

Figure 8.13: Setting up the frequency response ........................................................................................ A-4 

Figure 8.14: Results for Harmonic Analysis of the ACT Acoustic Extension ................................................. A-5 

Figure 8.15: Far Field Microphone............................................................................................................. A-5 

Figure 8.16: Point defined in the worksheet of a named selection ............................................................. A-5 

Figure 8.17: Settings of Acoustic Pressure ................................................................................................. A-6 

Figure 8.18: Analysis Settings for Mode-Superposition .............................................................................. A-7 

Figure 8.19: Setting of the Acoustic Body for Mode-Superposition ............................................................ A-7 

Figure 8.20: Unsymmetric Harmonic Mode Superposition ......................................................................... A-7 

A 

  

file:///H:/Bericht_Rev_09.docx%23_Toc462821842
file:///H:/Bericht_Rev_09.docx%23_Toc462821844
file:///H:/Bericht_Rev_09.docx%23_Toc462821846
file:///H:/Bericht_Rev_09.docx%23_Toc462821847
file:///H:/Bericht_Rev_09.docx%23_Toc462821848
file:///H:/Bericht_Rev_09.docx%23_Toc462821849
file:///H:/Bericht_Rev_09.docx%23_Toc462821850
file:///H:/Bericht_Rev_09.docx%23_Toc462821851


 

VIII 
 

List of Abbreviations 

 
BEM Boundary Element Method 

DOF Degree of Freedom 

FE Finite Element 

FEA  Finite Element Analysis 

FEM Finite Element Method 

PDE Partial Differential Equation 

PML Perfectly Matched Layer 

RAM Random Access Memory 

RMS Root Mean Square 

SPL Sound Pressure Level 

SPL(A) A-weighted Sound Pressure Level 

  



 

IX 
 

Nomenclature 

 
𝑎 Acceleration [𝑚 ∙ 𝑠−2] 

𝐴 Area [𝑚] 

𝐴𝑛 Normal admittance [𝑚3 ∙ 𝑁−1 ∙ 𝑠−1] 

𝐵 Bulk modulus [𝑁 ∙ 𝑚2] 

𝐵′ Bulk modulus of a plate [𝑁 ∙ 𝑚] 

𝑐 Speed of sound [𝑚 ∙ 𝑠−1] 

𝑐𝐵 Bending wave speed of sound [𝑚 ∙ 𝑠−1] 

𝑐𝑗  Damping of mode j [𝑚 ∙ 𝑠−1] 

𝑐𝐿 Longitudinal speed of sound [𝑚 ∙ 𝑠−1] 

𝐶 Damping matrix [𝑘𝑔 ∙ 𝑠−1] 

𝐶𝑠 Structure damping matrix [𝑘𝑔 ∙ 𝑠−1] 

𝐶𝑓  Fluid damping matrix [𝑘𝑔 ∙ 𝑠−1] 

𝐸 Young’s modulus [𝑃𝑎] 

𝑓 Frequency [𝐻𝑧] 

𝑓 Volume load [𝑁 ∙ 𝑚−3] 

𝐹 Force [𝑁] 

𝐹𝑓  Applied force in fluid [𝑁] 

𝐹𝐽 Modal force [𝑁] 

𝐹𝑠  Applied force on structure [𝑁] 

𝐺 Flexibility matrix [𝑚 ∙ 𝑁−1] 

�̃� Residual flexibility matrix [𝑚 ∙ 𝑁−1] 

𝐺𝑠 Interpolation Matrix [𝑚2] 

ℎ Thickness [𝑚] 

ℎ𝜆 Elements per wave length [−] 

𝑖 Mode [-] 

𝐼 Area moment of inertia [𝑚4] 

𝑗 Mode [-] 

𝑘 Wavenumber [𝑚−1] 

𝑘𝐵  Bending wavenumber [𝑚−1] 

𝑘𝑗  Stiffness of mode j [𝑁 ∙ 𝑚−1] 

𝐾 Stiffness matrix [𝑁 ∙ 𝑚−1] 

𝐾𝑠 Structure stiffness matrix [𝑁 ∙ 𝑚−1] 

𝐾𝑓  Fluid stiffness matrix [𝑁 ∙ 𝑚−1] 



 

X 
 

𝐿𝑖  Sound pressure level [𝑑𝐵] 

𝐿𝑡  Total sound pressure level [𝑑𝐵] 

𝐿(𝐴) A-weighted sound pressure level [𝑑𝐵] 

𝑚 Number of modes [−] 

𝑚 Mass [𝑘𝑔] 

𝑚′ Mass per unit length [𝑘𝑔 ∙ 𝑚−1] 

𝑚′′ Area mass [𝑘𝑔 ∙ 𝑚−2] 

𝑚𝑗 Mass of mode 𝑗 [𝑘𝑔] 

𝑀 Molar matrix [𝑘𝑔] 

𝑀𝑚𝑜𝑙  Molar mass [𝑘𝑔 ∙ 𝑚𝑜𝑙−1] 

𝑀𝑠 Structure mass matrix [𝑘𝑔] 

𝑀𝑓  Fluid mass matrix [𝑘𝑔] 

𝑛 Normal vector [−] 

𝑛 Total number of modes [−] 

𝑁 Number of modes [−] 

𝑛𝑓  Normal vector fluid [−] 

𝑛𝑓  Number of nodes of the fluid domain [−] 

𝑛𝑠 Normal vector structure [−] 

𝑛𝑠 Number of nodes of the solid domain [−] 

𝑝 Acoustic pressure [𝑃𝑎] 

�̇� First derivative of acoustic pressure [𝑃𝑎 ∙ 𝑠−1] 

�̈� Second derivative of acoustic pressure [𝑃𝑎 ∙ 𝑠−2] 

𝑝𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑  Absorbed acoustic pressure [𝑃𝑎] 

𝑝𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 Incident acoustic pressure [𝑃𝑎] 

𝑝0 Static pressure [𝑃𝑎] 

𝑝𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑  Reflected acoustic pressure [𝑃𝑎] 

𝑝𝑡 Total pressure [𝑃𝑎] 

𝑝𝛤 Acoustic pressure at boundary 𝛤 [𝑃𝑎] 

𝑞 Transformation variable of modal pressure [𝑃𝑎] 

�̇� First derivative of the transformation variable of modal pressure [𝑃𝑎 ∙ 𝑠−1] 

r Radius [𝑚] 

𝑟𝛤 Reflection ratio [−] 

𝑅 Coupling matrix [𝑁 ∙ 𝑚−1] 

𝑅 Gas constant [𝐽 ∙ 𝑚𝑜𝑙−1 ∙ 𝐾−1] 

𝑅 Residual vector matrix [𝑚] 

𝑅 Radius [𝑚] 



 

XI 
 

𝑆 Surface area [𝑚2] 

𝑡 Time [𝑠] 

𝑡 Surface load [𝑃𝑎] 

𝑇 Period [𝑠] 

𝑇𝑠 Interpolation matrix [𝑚3] 

𝑇0 Static temperature [𝐾] 

𝑢 Displacement [𝑚] 

�̇� Velocity [𝑚 ∙ 𝑠−1] 

�̈� Acceleration [𝑚 ∙ 𝑠−2] 

𝑢𝑓  Displacement of fluid [𝑚] 

𝑢𝑖  Knot displacement [𝑚] 

𝑢𝑛 Normal displacement [𝑚] 

𝑢𝑠 Displacement of the structure [𝑚] 

𝑣 Acoustic particle velocity [𝑚 ∙ 𝑠−1] 

𝑣𝑛 Normal acoustic particle velocity at boundary 𝛤 [𝑚 ∙ 𝑠−1] 

𝑣𝑛,𝑓 Normal acoustic fluid particle velocity [𝑚 ∙ 𝑠−1] 

𝑣𝑛,𝑠 Normal acoustic particle velocity of the structure surface [𝑚 ∙ 𝑠−1] 

𝑣0 Static particle velocity [𝑚 ∙ 𝑠−1] 

𝑣𝑡 Total particle velocity [𝑚 ∙ 𝑠−1] 

𝑣𝛤 Acoustic particle velocity at boundary 𝛤 [𝑚 ∙ 𝑠−1] 

𝑉 Volume [𝑚3] 

𝑤 Test function [Pa] 

𝑥 Mode contribution [−] 

𝑥𝐻  Higher mode contribution [−] 

𝑥𝐿 Lower mode contribution [−] 

𝑦𝑖 Modal knot displacement [𝑚] 

𝑦�̇� Modal knot velocity [𝑚 ∙ 𝑠−1] 

𝑦�̈� Modal knot acceleration [𝑚 ∙ 𝑠−2] 

𝑍 Acoustic impedance [𝑁𝑠 ∙ 𝑚−3] 

𝑍𝑛 Normal acoustic impedance [𝑁𝑠 ∙ 𝑚−3] 

𝑍𝑛 Specific acoustic impedance [𝑁𝑠 ∙ 𝑚−3] 

𝛼 Parameter for constant damping [𝑠−1] 

𝛽 Parameter for constant damping [s] 

𝜀𝑣  Elastic strain [𝑚] 

κ Heat capacity ratio [−] 

λ Wave length [𝑚] 



 

XII 
 

λ𝐵  Bending wave length [𝑚] 

𝜇 Poisson’s ratio [−] 

𝜌 Acoustic density [𝑘𝑔 ∙ 𝑚−3] 

𝜌f Static density of acoustic fluid [𝑘𝑔 ∙ 𝑚−3] 

𝜌0 Static density [𝑘𝑔 ∙ 𝑚−3] 

𝜌t Total density [𝑘𝑔 ∙ 𝑚−3] 

ω Angular speed [𝑠−1] 

ω𝑗 Angular speed of mode 𝑗 [𝑠−1] 

𝛤 Boundary [𝑚2] 

𝛤𝑎  Boundary with absorbing elements [𝑚2] 

𝛤𝐷  Dirichlet boundary [𝑚2] 

𝛤𝑖  Impedance boundary [𝑚2] 

𝛤𝑛 Neumann boundary [𝑚2] 

𝛤𝑟  Radiation boundary [𝑚2] 

𝛤𝑅  Robin boundary [𝑚2] 

∆𝑖  Attenuation factor [𝑑𝐵] 

𝛷𝑖 Test function [−] 

𝛷𝑗 Test function [−] 

𝛷𝑗 Mode shape [−] 

𝛷𝑗
𝐿 Left mode shape [−] 

𝛺 Forcing frequency [𝐻𝑧] 

𝛺 Acoustic domain [𝑚3] 

𝛺𝑓  Fluid acoustic domain [𝑚3] 

𝛺𝑚𝑎𝑥  Highest forcing frequency [𝐻𝑧] 

𝛺𝑚𝑖𝑛 Lowest forcing frequency [𝐻𝑧] 

𝛺𝑠 Structure acoustic domain [𝑚3] 
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1 Motivation 

Wind turbines are a common sight on Northern Germany’s landscape, especially in East Frisia along 

the coastline due to the rather flat land and strong winds. A cycling tour from the town of Norden to 

the Jade Bight showed in a spectacular kind of way how disturbing, or more precisely noisy, these wind 

turbines can be. Although they were never too loud, they are indeed accompanying every sound in the 

region by a monotone noise. For this reason, every improvement on the sound radiation is welcome 

and could help to establish wind turbines even in underdeveloped regions like the south of Germany.   

Because of my studies at the University of Portsmouth on the south coast of England and the circum-

stance that I never wrote an academic work and accordingly any other kind of important paper in 

English, I used the opportunity to train my language skills and write this thesis in English instead of 

German. 

1.1 Background of the thesis 

This thesis is a pre-work for the vibro-acoustic subproject within the upcoming research project X-

Energy; a cooperation between the University of Applied Sciences HAW Hamburg and the wind turbine 

manufacturer Suzlon Ltd.  

Since previous approaches to reduce the acoustic emissions of a wind turbine are primarily related to 

the aero-acoustic optimization of the rotor blades, the research of power train-related noise emission 

by means of vibro-acoustics is an almost unexplored territory [13]. Measured frequency spectra re-

veals a reason for this new direction of research, as a majority of corresponding frequencies are coming 

from the driveline components (generator and gearbox). The rotor blades are just the end of the acous-

tic path of the noise source via the drive shaft and hub.  

For this reason, the sound radiating parts of the power train shall be analysed and improved regarding 

their acoustic emissions with the aid of the finite elements analysis (FEA). During the research project 

X-Energy a detailed vibro-acoustical model of the power train will be created, enhanced and later val-

idated with a large-scale plant.   
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1.2 Tasks and objectives 

The social acceptance of wind energy turbines also depends on their acoustic emissions. The vibro-

acoustic simulation provides a helpful tool to analyse and influence these emissions during the devel-

opment and design phase of new wind turbines. Therefore, the fluid-structure interaction (FSI) of the 

vibrating parts of the power train and the surrounding acoustic medium, e.g. air, plays a dominant role 

and needs to be realised.  

In this line of work methodological studies to this objective are being executed with the use of the 

finite element software ANSYS.  In a first step an appropriate verification model from the literature is 

being recreated in the simulation in order to justify the acoustic radiation of the vibrating model. Af-

terward different solution methods and boundary conditions are tested in order to see their influence 

on the structure-acoustical system and its solution.  

This is followed by a simple principle model for the fluid-structure interaction of the power train and 

the surrounding medium. A variation of mass, stiffness and damping is being applied in order to im-

prove the acoustic radiation of the structure and its emission within the fluid by constructive modifi-

cations.  

In a last step this model will be changed to resemble a more typical power train.  

As results, the modal characteristics of the model (eigenmodes of the structure and fluid, influence of 

the fluid on structure modes, etc.) and the frequency responses of the structure and fluid are docu-

mented and analysed.  
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2 Theoretical Introduction 

All acoustic problems have in common that they can be broken down into three sub-problems. That is 

to say excitation, dispersion and radiation. The excitation leads to the introduction of vibrational en-

ergy into a structure. The properties of the structure determine the dispersion of the wave and the 

transport of energy from the excitation source to the surroundings. The distribution of vibrational en-

ergy on a structure always causes the radiation of sound into the surrounding medium (e.g. air) [19].  

Sound is a vibration that propagates as a typically audible mechanical wave of pressure 𝑝 and displace-

ment 𝑢. While a technical fluid reacts only on changes of volume by changes in pressure, a solid also 

resists changes of its shape. Therefore, a separate description of airborne sound and structure-borne 

sound is needed. In the execution of this work sound is regarded as a time-harmonic vibration, as the 

considered acoustical sources behave also time-harmonic. Sound is normally characterized by a super-

position of time-harmonic pure tones with different frequencies and amplitudes. 

This section includes the theoretical fundamentals of sound excitation and its propagation in fluids and 

structures. It also describes the fluid-structure interaction as well as the boundary conditions needed 

for the analysis of the acoustic system, consisting of an acoustic medium and acoustic emission source. 

Finally, the analysis and solution methods and the acoustic output quantities are presented.  

2.1 Airborne sound 

Sound is characterized by small pressure fluctuations 𝑝 of the static pressure 𝑝0 [21]. These fluctua-

tions propagate through the medium, e.g. air, as sound waves and form the acoustic sound field. In 

fluids, sound propagates in longitudinal waves only, as shear strains cannot be sustained. 

In the direction of propagation, the medium becomes denser and rarer. The changes in density 𝜌 and 

pressure require a periodic motion of fluid particles 𝑣 [21]. Therefore, the physical state of every point 

of the fluid volume can be characterized [16] by 

 𝑝𝑡(𝑥, 𝑡) = 𝑝0 + 𝑝 ( 2.1 ) 

 𝜌𝑡(𝑥, 𝑡) = 𝜌0 + 𝜌  

 𝑣𝑡(𝑥, 𝑡) = 𝑣0 + 𝑣  

where 𝑝, 𝜌, 𝑣 describes the acoustic fluctuations, 𝑝0, 𝜌0, 𝑣0 the static and 𝑝𝑡, 𝜌𝑡 , 𝑣𝑡  the total value.  
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Due to very rapid temporal changes within the sound field it can be assumed that all sound processes 

underlie adiabatic behaviour, so that a sound field can be seen as a gas without thermal conduction 

[18]. Because of rather small changes of the dynamic components around the equilibrium point at their 

static components, the relationship between sound density and sound pressure can be linearised.   

By considering the mass conservation 

 𝛿𝜌 =  −𝜌0 (
𝛿𝑉

𝑉0
) ( 2.2 ) 

the relation between sound pressure and density can be described by the material law 

 𝑝 =  (
𝜕𝑝

𝜕𝜌
)
0

𝛿𝜌 = −(𝜅𝑝0) (
𝛿𝑉

𝑉0
) = −𝐵𝜀𝑣 = −𝐵 div 𝑢  ( 2.3 ) 

where 𝜅 is the heat capacity ratio and (
𝜕𝑝

𝜕𝜌
)
0

describes the slope of the adiabatic curve, 𝐵 is bulk mod-

ulus and 𝜀𝑣  is the elastic strain of the volume.  Regarding a fluid volume element under external pres-

sure in one direction 

 

the equilibrium results in 

 
𝐹 = 𝑆 [𝑝 − (𝑝 +

𝜕𝑝

𝜕𝑥
𝛿𝑥)] = −𝑆

𝜕𝑝

𝜕𝑥
𝛿𝑥  

 𝐹 = 𝑚𝑎  

 
−𝑆

𝜕𝑝

𝜕𝑥
𝛿𝑥 = 𝑆𝛿𝑥𝜌0

𝜕𝑣

𝜕𝑡
  

 
−

𝜕𝑝

𝜕𝑥
= 𝜌0

𝜕𝑣

𝜕𝑡
 ( 2.4 ) 

Expanded it to three directions results in the Euler equation  

 −∇𝑝 = 𝜌0

𝜕𝑣

𝜕𝑡
 ( 2.5 ) 

Figure 2.1: fluid element subject to a pressure gradient  
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Combining equations ( 2.3 ) and ( 2.5 ) follows to the wave equation 

 
𝜕2𝑝

𝜕𝑥2
+

𝜕2𝑝

𝜕𝑦2
+

𝜕2𝑝

𝜕𝑧2
= (

𝜌0

𝐵
)
𝜕2𝑝

𝜕𝑡2
 ( 2.6 ) 

 ∆𝑝 =
1

𝑐2
�̈� ( 2.7 ) 

The acoustic wave equation describes the acoustic response of the fluid. Planar waves represent one 

of the specific wave equation solutions for the one-dimensional wave propagation, spherical waves 

that for the three dimensional wave propagation. 

The speed of sound 𝑐 is a constant which depends of the material and the absolute temperature. It 

describes the speed of propagation of the sound wave, whereas the particle velocity 𝑣 describes the 

movement of the particles during expansion and compression [18].  

 
𝑐 = √

𝜌0

𝐵
= √𝜅

𝑅

𝑀𝑚𝑜𝑙
𝑇0 ( 2.8 ) 

where 𝑀𝑚𝑜𝑙  is the molar mass, 𝑅 is the gas constant and 𝑇0 is the static temperature, e.g. room tem-

perature in K. With the time-harmonic dependency of the sound pressure 𝑝(𝑥, 𝑡) = 𝑝(𝑥)𝑒−𝑖𝜔𝑡 one 

gets the Helmholtz equation  

 ∆𝑝 + 𝑘2𝑝 = 0 ( 2.9 ) 

where 𝑘 is the wave number. It describes the relationship between the circular frequency of the har-

monic vibration and the speed of sound. 

 𝑘 =
𝜔

𝑐
 ( 2.10 ) 

The wave length of the acoustic wave is 

 𝜆 =
2𝜋

𝑘
=

𝑐

𝑓
 ( 2.11 ) 

Figure 2.2 shows the relationship between the sound wave to the left and its progression through the 

sound field. The patterns of small particles at the lower right graph show regions of high and low den-

sity which correspond to high and low sound pressure. The upper right graph shows the spatial distri-

bution of sound pressure for different points in time. The patterns are moving in course of time to the 

right. After the period 𝑇 the wave has moved by one wave length 𝜆. The wave length is the distance 

between two antinodes in the distribution of sound pressure. 
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2.2 Acoustic Boundary Conditions 

To be able to find unique solutions of the Helmholtz equation ( 2.9 ) for a given domain 𝛺 the boundary 

conditions at the border Γ has to be known. There are three basic forms of natural constrains of the 

Helmholtz equation, namely the Dirichlet boundary condition, the Neumann boundary condition, and 

the impedance boundary condition.  

This chapter describes the natural boundary conditions of the wave equation, as well as the acoustic 

boundary conditions used in FEM. By introducing the reflection at the border between two acoustic 

media, the boundary conditions can be differentiated between absorbing boundary conditions and 

reflecting boundary conditions. Figure 2.3 shows a general example of a fluid-structure interaction 

with different boundary conditions applied at the borders. 

Figure 2.2: Illustration of sound wave, wave length and period [21] 
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2.2.1 Sound-soft boundary (Dirichlet Boundary Condition) 

The Dirichlet boundary or pressure boundary condition is a specification of the sound pressure 𝑝 at 

the border of the field area. 

 𝑝 = 𝑝Γ          ∀𝑥: ∈ Γ𝐷 ( 2.12 ) 

The sound-soft boundary 𝑝Γ = 0 is a special case of the Dirichlet boundary condition. It is used as an 

approximation of media transitions to an acoustic medium with much lower impedance, e.g. for a wa-

ter basin covered by air [10]. 

2.2.2 Sound-hard boundary (Neumann Boundary Condition) 

The Neumann boundary condition is the normal derivative of the sound pressure at the boundary. This 

corresponds to the specification of the normal component of the particle velocity 𝑣𝑛  at the border of 

the field area. 

 ∇𝑝 ∙ 𝑛 =
𝜕𝑝

𝜕𝑛
= −𝑗𝜔𝜌𝑓𝑣𝑛 = 𝜔2𝜌𝑓𝑢𝑛              ∀𝑥: ∈ Γ𝑛 ( 2.13 ) 

where 𝑢𝑛 is the displacement in the normal direction. The sound-hard boundary 𝑣𝑛 = 0 describes the 

natural boundary condition used in FEM (see ch. 3.1). It is a good approximation of a rigid boundary, 

such as a massive wall.  

Figure 2.3: Fluid-Structure Interface with different boundary conditions  
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2.2.3 Robin Boundary Condition 

For a plane wave the acoustic impedance 𝑍𝑛 is defined by the relationship between the acoustic pres-

sure and the normal component of the particle velocity. It is the resistance of an acoustic medium to 

the wave propagation. 

 𝑍𝑛 =
𝑝

𝑣𝑛
 ( 2.14 ) 

with the complex pressure amplitude 𝑝 = 𝑝𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 + 𝑝𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑. At fluid boundaries, the incident 

waves are partly absorbed and partly reflected depending on the relation between the specific acoustic 

impedances of the acoustic medium and the boundary. The reflection ratio 𝑟𝑟  is a technical measurable 

variable [10], which describes the ratio of reflected and incident acoustic pressure waves, it can be 

presented by the specific impedances of the regarded acoustic media at the boundary.   

 𝑟𝑟 =
𝑍2 − 𝑍1

𝑍2 + 𝑍1
=

|𝑝𝑟|

|𝑝𝑖|
 ( 2.15 ) 

Sound-hard boundaries, such as rigid walls, have a reflection ratio 𝑟𝑟 = 1, whereas open domains have 

a reflection ratio 𝑟𝑟 = 0 and therefore no reflection at all. Unfortunately, the absence of reflection at 

open domains is only true when incoming waves are perpendicular to the surface of the boundary [14]. 

Figure 2.4 shows the reflection and absorption of an incoming wave at a wall with a rigid boundary as 

well as an open domain boundary. Depending on the size of the acoustic domain the reflection rate at 

the open domain boundary can be improved. 

 

 

 

Figure 2.4: Transmission at a border with impedance boundary condition 
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In the far field pressure and particle velocity are in phase. The relationship can be expressed as 

 𝑝 = 𝜌0𝑐𝑣𝑛  ( 2.16 ) 

This leads to the characteristic sound impedance 

 𝑍0 = 𝜌0𝑐        ( 2.17 ) 

The admittance boundary is a special case of the Robin boundary condition, which is a weighted com-

bination of the Dirichlet and Neumann boundary condition. 

 ∇𝑝 ∙ 𝑛 =
𝜕𝑝

𝜕𝑛
= −𝑗𝜔𝜌𝑓(𝑣𝑛,𝑓 − 𝑣𝑛,𝑠)             ∀𝑥 ∈ Γ𝑅 ( 2.18 ) 

with 

 𝑣𝑛,𝑓 − 𝑣𝑛,𝑠 = 𝐴𝑛𝑝 = 
𝑝

𝑍𝑛
  ( 2.19 ) 

where 𝑣𝑛,𝑓  is the normal velocity of the fluid particle on the boundary, 𝑣𝑛,𝑠 is the normal velocity of 

the structure surface and 𝐴𝑛 is the normal admittance. Using the Euler equation ( 2.5 ) to change the 

particle velocity into pressure shows 

 ∇𝑝 ∙ 𝑛 =
𝜕𝑝

𝜕𝑛
= −𝑗𝜔𝜌𝑓(𝐴𝑛𝑝 ) = −𝑗𝜔𝜌𝑓 (

𝑝

𝑍𝑛
 ) = −

𝜌0

𝑍𝑛

𝜕𝑝

𝜕𝑡
 ( 2.20 ) 

The density 𝜌0 of the fluid can be replaced by the specific sound impedance of the fluid. This yields to 

the Robin boundary condition in terms of impedances.  

 
𝜕𝑝

𝜕𝑛
= −

𝑍0

𝑍𝑛

1

𝑐

𝜕𝑝

𝜕𝑡
= −

1 + 𝑟𝑟

1 − 𝑟𝑟

1

𝑐

𝜕𝑝

𝜕𝑡
             ∀𝑥 ∈ Γ𝑖 ( 2.21 ) 

Setting 𝑍𝑛 = 𝑍0 the radiation boundary condition [11] as a special case of the Robin Boundary Condi-

tion is 

 
𝜕𝑝

𝜕𝑛
= −

1

𝑐

𝜕𝑝

𝜕𝑡
              ∀𝑥 ∈ Γ𝑟 ( 2.22 ) 

The radiation boundary is an open domain boundary and therefore shows no reflection at all, if the 

incident waves arrive in the normal direction to the boundary. At impedance boundaries, e.g. at the 

border of the FSI, the reflection is depending on the impedances of the two acoustic media and can be 

described by the reflection ratio.    
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2.2.4 Absorbing Elements (Infinite Elements) 

Another method of absorbing outgoing acoustic pressure waves is to use infinite elements which par-

tition the exterior of the outside of a spherical-shaped body. The pressure wave has to satisfy the 

Sommerfeld radiation condition, whereby the acoustic waves generated in the inside of the acoustic 

medium are outgoing, at infinity [3]. 

 lim
𝑟→∞

𝑟 [
𝜕𝑝

𝜕𝑟
+

1

𝑐

𝜕𝑝

𝜕𝑡
] = lim

𝑟→∞
𝑟 [

𝜕𝑝

𝜕𝑟
− 𝑗𝑘𝑝] = 0 ( 2.23 ) 

where 𝑟 is the distance from the origin.  

 

 

It is assumed that the sound generation in the acoustic domain, e.g. from an acoustic source or vibrat-

ing structure, is close to the origin. At large distances 𝑟 from the origin the acoustic response varies 

more in the radial direction than in directions that are perpendicular to the radial direction, which is 

characteristic of spherical spreading [14]. An equivalent notation of the Sommerfeld radiation condi-

tion is 

 lim
𝑟→∞

𝑟[𝑝 − 𝜌0𝑐𝑣𝑟] = 0 ( 2.24 ) 

where 𝑣𝑟  is the acoustic particle velocity in the radial direction.  

Figure 2.5: Schematic of a spherical infinite element 
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Equation ( 2.24 ) suggests that at large distances 𝑟 → ∞, the acoustic field resembles an outward-

proceeding plane wave [3]. Rearranging this equation leads to the suggestion that at large distances 𝑟, 

the acoustic field resembles an outward-travelling plane wave. The impedance can then be described 

as 

 𝑍 =
𝑝

𝑣𝑟
 ( 2.25 ) 

While at infinite distances from the origin, the Sommerfeld radiation condition provides perfect ab-

sorption, the boundary condition has to be applied to an external surface of the acoustic domain in a 

finite element model [14]. Consequently, appropriate mass, stiffness and damping matrices, which 

satisfy the boundary condition (translated into a proper expression for a finite radius 𝑟), have to be 

implemented to an element attached to the exterior boundary of the acoustic domain.  

2.2.5 Perfectly Matched Layers 

Perfectly Matched Layers (PMLs) are artificial anisotropic materials that absorb all incident waves with-

out any reflection, except those that are travelling tangentially to the PML interface [14]. The PML 

region acts as an infinite open domain and is attached to the acoustic medium.  

 

Figure 2.6 shows a typical example for the construction of the PML enclosure. It can be seen that all 

edges of the bodies align with the coordinate system and a sound-soft Dirichlet boundary is applied on 

the border. Those conditions are of technical importance to the computational implementation within 

the FEM [3]. 

Figure 2.6: Construction of the PML  
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2.3 Structure-borne sound 

A solid structure, e.g. a beam, plate, building, etc., reacts to outer loads by elastic deformation. As with 

airborne sound the vibration of the structure can be explained by continuous conversion of potential 

energy to kinetic energy of the involved masses. Because of the tri-axial state of stress every direction 

of movement has its own kind of wave [18]: 

Transverse bending wave: Deflection is perpendicular to the direction of the wave propagation 

Transverse torsion wave: Twisting of the beam sections 

Longitudinal strain wave: Deflection along the beam axis 

The most important kind of structure-borne wave for the radiation of sound into the surrounding me-

dium is the transverse bending wave, as the deflection is perpendicular to the surface of the structure.  

The main features of the bending wave can be obtained by regarding the bending wave equation of a 

beam without local forces.  

 
𝜕4𝑣

𝜕𝑥4
−

𝑚′

𝐵
𝜔2𝑣 = 0 ( 2.26 ) 

where 𝑚′ is the mass per unit length and 𝜔 is the angular speed. By inserting the particle velocity  

 𝑣 = 𝑣0𝑒
−𝑗𝑘𝐵𝑥 ( 2.27 ) 

the bending wave number 𝑘𝐵  can be determined.  

 𝑘𝐵
4 =

𝑚′

𝐵
𝜔2 ( 2.28 ) 

It is described by 

 𝑘𝐵 =
𝜔

𝑐𝐵
=

2𝜋

𝜆𝐵
 ( 2.29 ) 

The speed of sound in a structure can now be characterized by 

 
𝑐𝐵 =  √

𝐵

𝑚′

4

√𝜔 = √
𝐸𝐼

𝜌𝐴

4

√𝜔 ( 2.30 ) 

where 𝐸 is the Young’s modulus, which describes the elasticity of a material, 𝐴 is the cross sectional 

area and 𝐼 is the area moment of inertia.  
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The bending wave length results in 

 
𝜆𝐵 = 2𝜋√

𝐵

𝑚′

4 1

√𝜔
= 2𝜋√

𝐸𝐼

𝜌𝐴

4 1

√𝜔
 ( 2.31 ) 

In contrast to airborne sound, the wave of wave length 𝜆𝐵 has a frequency depending speed of sound 

𝑐𝐵. Similar to the bending wave of a beam, the bending wave length for a homogeneous plate can be 

written as  

 
𝜆𝐵 = 2𝜋√

𝐵′

𝑚′′

4 1

√𝜔
 ( 2.32 ) 

with 

 𝐵′ =
𝐸

1 − 𝜇2

ℎ
3

12
 ( 2.33 ) 

and 

 𝑚′′ = 𝜌ℎ ( 2.34 ) 

where 𝑚′′ is the area density, 𝐵′ is the bending resistance of the plate, ℎ is the thickness of the plate 

and 𝜇 is the Poisson’s ratio.  

Neglecting 𝜇2 ≪ 1 the quotient 
𝐵′

𝑚′′ can be simplified to 

 
𝐵′

𝑚′′
= 12

𝜌ℎ

𝐸ℎ3
=

12

𝑐𝐿
2ℎ2

 ( 2.35 ) 

where 𝑐𝐿 = √
𝐸

𝜌
 is the speed of the longitudinal wave. The bending wave length can then be approxi-

mated to 

 
𝜆𝐵 ≈ 1.35√

ℎ𝑐𝐿

𝑓
 ( 2.36 ) 

and the structure-borne speed of sound to 

 𝑐𝐵 ≈ 1.35√ℎ𝑐𝐿𝑓 ( 2.37 ) 
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2.4 Fluid-Structure Interaction 

A typical example for fluid-structure interaction is the coupling of a thin solid shell structure to a rela-

tively heavy fluid, as thin shell structures are easily excited by acoustic pressure when the ambient 

density of the surrounding medium is comparable to the structural density. In this case modelling the 

strong coupling FSI, meaning a bi-directional coupling, is indispensable. This is true for a fluid with a 

high density such as water, but is often omitted for fluid with relative low density like air; simplifying 

the considered problem to the in vacuo case (no acoustic FSI, as sound does not progress in a vacuum) 

or, if there is an interest in a point in the fluid domain, to the weak coupling case by treating the influ-

ence of the acoustic pressure to the structure as negligible. Figure 2.7 shows the difference of the two 

acoustic coupling cases. 

 

For the bi-directional coupling between the vibration of the structure and the pressure response in the 

fluid, kinetic and kinematic coupling conditions have to be fulfilled [11]. The kinetic condition requires 

the normal force resultants of the fluid and the structure to be equal at every point on the interface 

between the boundaries ( 2.39 ), as seen in Figure 2.3. For an inviscid and therefore shear-free fluid 

the force equilibrium can be stated in the normal direction only. The kinematic condition requires the 

normal displacement components to be equal at all times ( 2.40 ). 

 𝜎 ∙ 𝑛𝑠 = −𝑝 ∙ 𝑛𝑓   

 𝑛𝑠 = 𝑛𝑓 = 𝑛 ( 2.38 ) 

 𝜎 ∙ 𝑛 = −𝑝 ∙ 𝑛 ( 2.39 ) 

 𝑢𝑠𝑛 = 𝑢𝑓𝑛 ( 2.40 ) 

Figure 2.7: Coupling types between cavity and structure 
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2.5 Perception of Sound 

The human ear is a highly sensitive receiver capable of perceiving sound waves with frequencies be-

tween 16 Hz and  20 kHz [8]. The limits of, in the field of vibro-acoustic interested, audible sound are 

not sharply specified, as the upper limits vary individually depending on the age of a person and other 

factors, such as noise exposure at work or habitual exposure to loud music [18].  

Sound events with the same sound pressure but a different frequency are not considered equal in 

loudness. In order to evaluate the subjective effect of a sound event it is not enough to specify the 

objectively measurable sound pressure, rather the frequency-dependent sense of hearing must be 

considered [16]. The definition of volume is based on the subjective comparison of a sound event with 

the reference sound pressure 𝑝0 = 2 ∙ 10−5𝑃𝑎 of an incident plane wave with the frequency of         

1000 Hz.  

This leads to the sound pressure level (SPL) 

 𝐿𝑖 = 20 log (
𝑝

𝑝0
) = 10 log (

𝑝

𝑝0
)
2

 ( 2.41 ) 

The perceived volume of a sound with the same loudness as a pure tone has the SPL 𝐿 with its own 

unit called phon. At the frequency of 1000 Hz the values for volume and SPL are identical. Measure-

ments of pure tones depending on the frequency follows the curves of equal loudness found in Figure 

2.8.  

 

Figure 2.8: Fletcher-Munson curves of equal loudness [20] 
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The curve of the volume for just perceptible sound events is called hearing threshold. The volume level 

above a sound event is perceived as painful is called pain threshold. This value is in a range from 120 

to 130 phon. Figure 2.9 shows the auditory sensation area between the two thresholds with the 

marked areas where music and voice related sound pressure and frequencies appear.   

  

Table 2.1 shows the sound pressure and their corresponding SPLs along with some typical examples. 

Due to the logarithmic scale doubling the sound pressure causes an increase of 6 dB of the SPL, as well 

as a superposition of two equal loud sound events according to equation ( 2.41 ) an incline of 3 dB.  

Sound pressure 

𝑝(𝑃𝑎, 𝑅𝑀𝑆) 

Sound pressure level (SPL) 

𝐿(𝑑𝐵) 

Situation/description 

2 ∙ 10−5 0 Auditory threshold 

2 ∙ 10−4 20 Forest with little wind 

2 ∙ 10−3 40 Library 

2 ∙ 10−2 60 Office 

2 ∙ 10−1 80 Busy street in a city 

2 ∙ 100 100 Jackhammer, Siren 

2 ∙ 101 120 Start of jet aircrafts 

2 ∙ 102 140 Pain barrier 

Figure 2.9: Auditory sensation area [22] 

Table 2.1: Classification of Sound Pressure and SPL (based on [18]) 
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The total SPL can be calculated with 

 
𝐿𝑡 = 10 log (∑10𝐿𝑖/10

𝑛

𝑖=1

) ( 2.42 ) 

To represent the sensitivity of the human ear the sound level in the measurement and evaluation is 

often filtered.  This reduces the weighting of the low frequencies and enhances the mid frequencies. 

Very often the A-filtered SPL is used, as it most resembles the human auditory sensation.  

 
𝐿(𝐴) = 10 log (∑10(𝐿𝑖+∆𝑖)/10

𝑛

𝑖=1

) ( 2.43 ) 

where ∆𝑖 is an attenuation factor according to the weighting in Figure 2.10. 

 

 

 

 
  

Figure 2.10: A-,B-,C- weighted filter curves [22] 
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3 Finite Element Analysis  

The finite element analysis (FEA) is a numerical method for finding approximate solutions to boundary 

value problems for partial differential equations. It can be used to calculate the response of a model 

by applying forcing functions, e.g. an acoustic source or mechanical forces. The to be analysed domain, 

e.g. a solid, a structure, a fluid, or a coupled fluid structure, is therefore partitioned into subdomains 

called finite elements whose corner points are called nodes.  

In case of the fluid-structure interaction the physical unknowns 𝑢 and 𝑝 are approximated by nodal 

functions 𝑢ℎ ≈ 𝑢,  𝑝ℎ ≈ 𝑝  

 
𝑢ℎ(𝑥, 𝑡) = ∑𝑢𝑖(𝑡)

𝑛𝑠

𝑖=1

𝜑𝑖(𝑥),            𝑝ℎ(𝑥, 𝑡) = ∑ 𝑝𝑖

𝑛𝑓

𝑖=1

(𝑡) 𝜑𝑖(𝑥) ( 3.1 ) 

where 𝑢𝑖, 𝑝𝑖 are unknown nodal values, 𝑛𝑠 is the number of nodes of the solid domain, 𝑛𝑓  is the num-

ber of nodes of the fluid domain and 𝜑𝑖  are linear interpolants called testing functions. The summation 

extends over all nodes in the solid and fluid domain, separately for each one. 

3.1 Governing Equations 

The FE discretization procedure starts from the weak formulation of the partial differential equation 

(PDE). This formulation can be obtained by testing the PDEs using the Galerkin procedure. After the 

discretization of the weak formulations the coupling of the fluid and structure will be created.   

3.1.1 Derivation of the variational formulations 

For the finite element formulation of the acoustic fluid the Helmholtz equation ( 2.9 ) is multiplied by 

a testing function 𝑤 and integrated over the computational domain 𝛺𝑓, whereby the stationary vector 

function 𝑤 satisfies the Dirichlet boundary condition. 

 
∫ 𝑤(∇ ∙ (∇𝑝) + 𝑘2𝑝)
𝛺𝑓

𝑑𝑉 = 0 ( 3.2 ) 

 
∫ 𝑤 ∙ ∇ ∙ (∇𝑝) 𝑑𝑉 + ∫ 𝑤 ∙ 𝑘2𝑝

𝛺𝑓𝛺𝑓

𝑑𝑉 = 0  

Using the Gauss integral theorem to integrate the first term yields the weak formulation  

 
∫ ∇𝑤 ∙ ∇𝑝 𝑑𝑉 − ∫ 𝑤 ∇𝑝 ∙ 𝑛 𝑑𝐴

𝛤

− ∫ 𝑤 ∙ 𝑘2𝑝
𝛺𝑓𝛺𝑓

𝑑𝑉 = 0 ( 3.3 ) 



 

19 

Rearranging and simplifying to 

 
∫ ∇𝑤 ∙ ∇𝑝 𝑑𝑉 − ∫ 𝑤 ∙ 𝑘2𝑝

𝛺𝑓𝛺𝑓

𝑑𝑉 = ∫ 𝑤 
𝜕𝑝

𝜕𝑛
 𝑑𝐴 = −

𝛤

∫ 𝑗𝑤𝜔𝜌𝑓𝑣𝑛𝑑𝐴
𝛤

 ( 3.4 ) 

Applying the natural boundary condition in FEM by setting a sound-hard boundary will simplify the 

term to 

 
∫ ∇𝑤 ∙ ∇𝑝 𝑑𝑉 − ∫ 𝑤 ∙ 𝑘2𝑝

𝛺𝛺

𝑑𝑉 = 0 ( 3.5 ) 

 

Similar to the acoustic fluid the weak formulation of the structural vibration can be gathered by using 

the equilibrium ( 2.4 ) in terms of 𝜎 and expand it into three dimensions. Multiplying this equilibrium 

by a stationary vector function 𝑞 and integrating it over the solid domain 𝛺𝑠 equates 

 
−∫ ∇σ ∙ q 𝑑𝑉 + ∫ 𝜌𝑠�̈�

𝛺

∙ q 𝑑𝑉
𝛺

= 0 ( 3.6 ) 

The weak formulation is gained by using the Gauss integral theorem to integrate the first term by parts 

 
∫ σ: ∇q 𝑑𝑉 − ∫ (𝜎 ∙ 𝑛)  ∙ 𝑞 𝑑𝐴

𝛤

∫ 𝜌𝑠�̈�
𝛺

∙ q 𝑑𝑉
𝛺

= 0 
( 3.7 ) 

With 𝜎 = 𝐶𝜀 = 𝐶𝐷𝑢, where 𝐶 is the solid material tensor and 𝐷 is the operator matrix 

 

𝐷 =

[
 
 
 
 
 
 
 
 
 
 
 
 
𝜕

𝜕𝑥
0 0

0
𝜕

𝜕𝑦
0

0 0
𝜕

𝜕𝑧
𝜕

𝜕𝑦

𝜕

𝜕𝑥
0

𝜕

𝜕𝑧
0

𝜕

𝜕𝑥

0
𝜕

𝜕𝑧

𝜕

𝜕𝑦]
 
 
 
 
 
 
 
 
 
 
 
 

 ( 3.8 ) 

and 𝜀(𝑞) = 𝐷𝑞 the tensor scalar σ: ∇q = σ(𝑢): 𝜀(𝑞) can be written as σ: ∇q = (𝐷𝑞)𝑇𝐶(𝐷𝑢), so that 

 
∫ (𝐷𝑞)𝑇𝐶(𝐷𝑢) 𝑑𝑉 − ∫ (𝜎 ∙ 𝑛)  ∙ 𝑞 𝑑𝐴

𝛤

∫ 𝜌𝑠�̈�
𝛺

∙ q 𝑑𝑉
𝛺

= 0 
( 3.9 ) 
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3.1.2 Derivation of the Discrete Systems 

The FEA is based on the discretisation of the weak form. The regarded system is divided into a number 

of elements with 𝑛 nodes. The acoustic pressure and weighting function 𝑤 can be approximated by 

using the Galerkin method to 

 
𝑝 = ∑𝜑𝑖  𝑝𝑖

𝑛

𝑖=1

 
( 3.10 ) 

 
𝑤 = ∑𝜑𝑗𝑤𝑗

𝑛

𝑗=1

 
( 3.11 ) 

where 𝜑𝑖  are test functions.  By inserting equation ( 3.10 ) and ( 3.11 ) the weak form ( 3.4 ) can be 

written as 

 
𝑤𝑖 ∫ ∇𝜑𝑖∇𝜑𝑗  𝑑𝑉 𝑝𝑗 − 𝑘2𝑤𝑖 ∫ 𝜑𝑖𝜑𝑗  𝑑𝑉 𝑝𝑗

𝛺𝑓𝛺𝑓

= 𝑗𝜌𝑓𝑤𝑖𝜔 ∫ 𝜑𝑖𝜑𝑗𝑣𝑛𝑑𝐴
𝛤

 ( 3.12 ) 

for every combination of 𝑖 and 𝑗 within an element [10]. Replacing 𝑘 by equation ( 2.10 ) equals 

 
𝑤𝑖 ∫ ∇𝜑𝑖∇𝜑𝑗  𝑑𝑉 𝑝𝑗 −

𝜔2

𝑐2
𝑤𝑖 ∫ 𝜑𝑖𝜑𝑗  𝑑𝑉 𝑝𝑗

𝛺𝑓𝛺𝑓

= 𝑗𝜌𝑓𝑤𝑖𝜔 ∫ 𝜑𝑖𝜑𝑗𝑣𝑛𝑑𝐴
𝛤

 ( 3.13 ) 

With 𝑤𝑖 = 1 and by introducing [𝑀𝑓] = 
1

𝑐2 ∫ 𝜑𝑖𝜑𝑗  𝑑𝑉
𝛺𝑓

 as the mass matrix, [𝐾𝑓] = ∫ ∇𝜑𝑖∇𝜑𝑗  𝑑𝑉
𝛺𝑓

as 

the stiffness matrix, and {𝐹𝑓} =  𝑗𝜌𝑓𝜔∫ 𝜑𝑖𝜑𝑗𝑣𝑛𝑑𝐴
𝛤

= 𝜌𝑓𝜔
2 ∫ 𝜑𝑖𝜑𝑗𝑑𝐴 𝑢𝑛𝛤

 as the load vector of the 

discrete system, the discretised system can be written as 

 (−𝜔2[𝑀𝑓] + [𝐾𝑓]){𝑝} = {𝐹𝑓} ( 3.14 ) 

 

By introducing the impedance boundary condition the discrete system of equation ( 3.13 ) is 

 

𝑤𝑖 ∫ ∇𝜑𝑖∇𝜑𝑗  𝑑𝑉 𝑝𝑗 −
𝜔2

𝑐2
𝑤𝑖 ∫ 𝜑𝑖𝜑𝑗  𝑑𝑉 𝑝𝑗 +

𝛺𝑓𝛺𝑓

𝑗𝜔𝜌𝑓𝑤𝑖 ∫ 𝜑𝑖𝜑𝑗

1

𝑍𝑛,𝑗
𝑑𝐴 𝑝𝑗

𝛤𝑖

= 𝜌𝑓𝑤𝑖𝜔
2 ∫ 𝜑𝑖𝜑𝑗𝑑𝐴

𝛤𝑛

 𝑢𝑛 

( 3.15 ) 

where 𝛤𝑛 is the border of the Neumann boundary and 𝛤𝑖  is the border of the impedance boundary.  
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Equation ( 3.14 ) can now be expressed as 

 (−𝜔2[𝑀𝑓] + 𝑗𝜔[𝐶𝑓] + [𝐾𝑓]){𝑝} = {𝐹𝑓} ( 3.16 ) 

where [𝐶𝑓] =  𝜌𝑓 ∫ 𝜑𝑖𝜑𝑗
1

𝑍𝑛,𝑗
𝑑𝐴

𝛤𝑖
 is the damping matrix of the fluid.  

Similar to the acoustic fluid the discretised system of the structure can be written as 

 (−𝜔2[𝑀𝑠] + 𝑗𝜔[𝐶𝑠] + [𝐾𝐹]){𝑢} = {𝐹𝑠} ( 3.17 ) 

where [𝑀𝑠] = 𝜌 ∫ 𝜑𝑖𝜑𝑗  𝑑𝑉
𝛺𝑠

 is the mass matrix and [𝐾𝑠] = ∫ 𝜑𝑖𝐷
𝑇𝐶𝐷𝜑𝑗  𝑑𝑉

𝛺𝑠
  is the stiffness matrix. 

The load vector {𝐹𝑠} =  [𝑇𝑠]{𝑓} + [𝐺𝑆]{𝑡} consists of the interpolation matrices [𝑇𝑠] = ∫ 𝜑𝑖𝜑𝑗 𝑑𝑉
𝛺𝑠

 for 

the inner forces and [𝐺𝑠]=∫ 𝜑𝑖𝜑𝑗  𝑑𝐴
𝛤

 for the outer forces, where {𝑓} is the vector of the volume forces 

and {𝑡} is the vector of the surface loads [10]. The structural damping can be respected by the propor-

tional damping matrix [𝐶𝑠] = 𝛼[𝑀𝑠] + 𝛽[𝐾𝑠] with 𝛼 and 𝛽 as damping parameters.  

3.1.3 Implementation of the FSI 

Applying the coupling conditions ( 2.39 ) and ( 2.40 ) to the discretised weak formulations of the equa-

tions of motion for the structure and fluid equals 

 (−𝜔2[𝑀𝑠] + 𝑗𝜔[𝐶𝑠] + [𝐾𝐹]){𝑢} − [𝑅]{𝑝} = {𝐹𝑠} ( 3.18 ) 

 (−𝜔2[𝑀𝑓] + 𝑗𝜔[𝐶𝑓] + [𝐾𝑓]){𝑝} − 𝜔2𝜌0[𝑅]𝑇{𝑢} = {𝐹𝑓} ( 3.19 ) 

with 𝑝 =  𝜔2𝜌0𝑢, where [𝑅] is the coupling matrix that take in account the surface area associated 

with each node on the fluid-structure interface. Written down as a linear system it is shown that the 

dynamic stiffness matrix is not symmetric. 

 (−𝜔2 [
𝑀𝑆 0

𝜌0𝑅
𝑇 𝑀𝐹

] + 𝑗𝜔 [
𝐶𝑆 0
0 𝐶𝐹

] + [
𝐾𝑆 −𝑅
0 𝐾𝐹

]) {
𝑢
𝑝} = {

𝐹𝑠

𝐹𝑓
} ( 3.20 ) 

By defying a transformation variable for the nodal pressure ( 3.21 ) the symmetric formulation of  the 

linear system ( 3.22 ) can be obtained [4].  

 �̇� = 𝑗𝜔𝑞 = 𝑝 ( 3.21 ) 

 
(−𝜔2 [

𝑀𝑆 0

0 −
𝑀𝐹

𝜌0

] + 𝐽𝜔 [

𝐶𝑆 −𝑅

−𝑅𝑇 −
𝐶𝐹

𝜌0

] + [

𝐾𝑆 0

0 −
𝐾𝐹

𝜌0

]) {
𝑢
𝑞} = {

𝐹𝑠

𝑗

𝜔𝜌0
𝐹𝑓

} ( 3.22 ) 
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3.2 Solution Methods for Frequency Response 

While looking at the response of a vibrating system the frequency response is more of interest than its 

behaviour in time, as it clearly indicates the eigenfrequencies of a system and its response to it.  The 

frequency response therefore records the magnitude and phase of the vibrating system as a function 

of frequency, e.g. in this work the frequency response of the amplitude of displacement or acoustic 

pressure is used to describe the behaviour of the system.   

The solution used in the frequency response can be gained by the direct solution of the discrete system 

or the mode superposition method. 

3.2.1 Direct Solution 

The direct solution can be obtained by calculating the displacement and acoustic pressure of the linear 

system ( 3.20 ) or the symmetric equivalent ( 3.22 )  for every defined forcing frequency 𝛺 within the 

requested frequency range [𝛺𝑚𝑖𝑛 : 𝛺𝑚𝑎𝑥] [11].  

Therefore, the displacement and acoustic pressure of the discrete system  

 (−𝛺2[𝑀] + 𝑖𝛺[𝐶] + [𝐾]){𝑢} = {𝑓} ( 3.23 ) 

can be computed by multiplying the inverse of the dynamic stiffness matrix on the left side with the 

force vector {𝑓}. 

 {𝑢} = [−𝛺2[𝑀] + 𝑗𝛺[𝐶] + [𝐾]]
−1

{𝑓} ( 3.24 ) 

Because of the dependency of the forcing frequency 𝜔, the inverse of the dynamic stiffness matrix has 

to be calculated at every sub-step. This leads to high computing times depending on the system’s DOFs 

as well as the requested frequency range.  

3.2.2 Mode Superposition 

As an alternative to the direct approach, the solution of the harmonic response can be obtained by 

modal superposition. In a first step the natural frequencies and mode shapes are obtained from a 

modal analysis, which later characterises the dynamic response of the steady harmonic excitation [2]. 

The frequency response solution is searched as a superposition of eigenvectors 𝛷𝑖. {𝑢} is 

 
{𝑢} = ∑{𝛷𝑖}

𝑁

𝑖=1

𝑦𝑖 ( 3.25 ) 
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where 𝑁 is the number of modes used in the computation and 𝑦𝑖 are modal coordinates of the real 

valued eigenvectors of the form 𝛷 = {𝑢}, and 𝛷 = {
𝑢
𝑝} for the coupled problem respectively. With 

𝑁 ≪ 𝑛, the solution will be searched in form of the lower eigenvectors’ superposition, whereby 𝑛 rep-

resents the system’s number of modes. 

Equation ( 3.23 ) can then be represented as 

 
[𝑀]∑{𝛷𝑖}

𝑁

𝑖=1

�̈�𝑖 + [𝐶]∑{𝛷𝑖}

𝑁

𝑖=1

�̇�𝑖 + [𝐾]∑{𝛷𝑖}

𝑁

𝑖=1

𝑦𝑖 = {𝑓} ( 3.26 ) 

and by pre-multiplying with the mode shape {𝛷𝑗}
𝑇

 as 

 
{𝛷𝑗}

𝑇
[𝑀]∑{𝛷𝑖}

𝑁

𝑖=1

�̈�𝑖 + {𝛷𝑗}
𝑇
[𝐶]∑{𝛷𝑖}

𝑁

𝑖=1

�̇�𝑖 + {𝛷𝑗}
𝑇
[𝐾]∑{𝛷𝑖}

𝑁

𝑖=1

𝑦𝑖 = {𝛷𝑗}
𝑇
{𝑓} ( 3.27 ) 

The orthogonality condition of the natural modes states that for 𝑖 ≠ 𝑗 

 {𝛷𝑗}
𝑇
[𝑀]{𝛷𝑖} = 0 

( 3.28 ) 

 {𝛷𝑗}
𝑇
[𝐾]{𝛷𝑖} = 0 

( 3.29 ) 

and 

 {𝛷𝑗}
𝑇
[𝐶]{𝛷𝑖} = 0 ( 3.30 ) 

if only Rayleigh or constant damping is allowed. Applying condition ( 3.28 ), ( 3.29 ) and ( 3.30 ) to 

equation ( 3.27 ) equals for 𝑖 = 𝑗. 

 {𝛷𝑗}
𝑇
[𝑀]{𝛷𝑗} �̈�𝑗 + {𝛷𝑗}

𝑇
[𝐶]{𝛷𝑗} �̇�𝑗 + {𝛷𝑗}

𝑇
[𝐾]{𝛷𝑗} 𝑦𝑗 = {𝛷𝑗}

𝑇
{𝑓} ( 3.31 ) 

With the modal transformations of the mass and stiffness matrices 

 
[�̂�] = {𝛷𝑗}

𝑇
[𝑀]{𝛷𝑗} = [𝐸] = [

1
⋱

1

]

𝑁𝑥𝑁

 ( 3.32 ) 

 

[�̂�] = {𝛷𝑗}
𝑇
[𝐾]{𝛷𝑗} = [𝜔2] = [

𝜔1
2

⋱
𝜔𝑁

2

]

𝑁𝑥𝑁 

 ( 3.33 ) 
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equation ( 3.31 ) can be written as 

 (−𝛺2[�̂�] + 𝑗𝛺{𝛷𝑗}
𝑇
[𝐶]{𝛷𝑗}  + [�̂�])  𝑦𝑗 = {𝛷𝑗}

𝑇
{𝑓} ( 3.34 ) 

 (−𝛺2[𝐸] + 𝑗𝛺{𝛷𝑗}
𝑇
[𝐶]{𝛷𝑗}  + [𝜔2])  𝑦𝑗 = {𝛷𝑗}

𝑇
{𝑓}  

By multiplying the inverse of the modal transformed dynamic stiffness matrix on the left side with the 

modal transformed force vector {𝑓} the modal coordinates  𝑦𝑗 can be estimated 

  𝑦𝑗 = (−𝜔2[�̂�] + 𝑗𝜔[�̂�]  + [�̂�])
−1

{𝑓} ( 3.35 ) 

The modal coordinates 𝑦𝑗 are then converted back into the geometric displacements {𝑢} by equation 

( 3.25 ). For an accurate analysis of the driving frequency belt  𝛺 ∈ [𝛺𝑚𝑖𝑛: 𝛺𝑚𝑎𝑥] the solution should 

cover all modes with the associated frequencies  𝜔 ≤ 1.5 ∙ 𝛺𝑚𝑎𝑥 , as they characterise the frequency 

response [12]. The approximate solution generally shows a good convergence to the direct solution 

within the lower frequencies of the frequency belt. By increasing the number of modes 𝑁 to the sys-

tem’s number of modes 𝑛 the approximate solution equals the modal transformation of the direct 

solution. The main advantage of this approach lies within the reduced computational effort, as the 

system of equations is consistently trimmed with 𝑁 ≪ 𝑛.    

For the mode-superposition in fluid-structure interaction, the symmetric formulation as shown above 

may not succeed in extracting all eigensolutions, therefore the unsymmetric formulation along with 

the unsymmetric eigensolver is being used [7].  

Equation ( 3.31 ) is then replaced by 

 {𝛷𝑗
𝐿}

𝑇
[𝑀]{𝛷𝑗}�̈�𝑗 + {𝛷𝑗

𝐿}
𝑇
[𝐶]{𝛷𝑗}�̇�𝑗 + {𝛷𝑗

𝐿}
𝑇
[𝐾]{𝛷𝑗}𝑦𝑗 = {𝛷𝑗

𝐿}
𝑇
{𝑓} ( 3.36 ) 

where {𝛷𝑗
𝐿} is the left mode shape of mode 𝑗 and {𝛷𝑗} is the right mode shape of mode 𝑗.  

Residual Vectors 

When the applied loads excite the higher frequency modes of a structure the modally truncated solu-

tion will be imprecise. To improve the accuracy of the response additional modal transformation fac-

tors, called residual vectors, can be used [2]. The dynamic response 𝑥  can then be gained by superpo-

sition of the lower mode contributions 𝑥𝐿 by equation ( 3.1 ) and the higher mode contributions 𝑥𝐻, 

which can be represented as the combination of residual vectors. 

 {𝑥} = {𝑥𝐿} + {𝑥𝐻} ( 3.37 ) 
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The residual vectors {𝑅} can be expressed as 

 {𝑅} = [�̃�]{𝑓} ( 3.38 ) 

with the residual flexibility matrix 

 
[�̃�] = ∑

{𝛷𝑗
𝐿}{𝛷𝑗}

𝑇

𝜔𝑗
2

𝑛

𝑖=𝑚+1

= [𝐺] − ∑
{𝛷𝑗

𝐿}{𝛷𝑗}
𝑇

𝜔𝑗
2

𝑚

𝑖=1

 ( 3.39 ) 

where [𝐺] is the inverse matrix of the stiffness matrix [𝐾] 

 
[𝐺] = ∑

{𝛷𝑗
𝐿}{𝛷𝑗}

𝑇

𝜔𝑗
2

𝑛

𝑖=1

= ∑
{𝛷𝑗

𝐿}{𝛷𝑗}
𝑇

𝜔𝑗
2

𝑚

𝑖=1

+ ∑
{𝛷𝑗

𝐿}{𝛷𝑗}
𝑇

𝜔𝑗
2

𝑛

𝑖=𝑚+1

 ( 3.40 ) 

 

Restrictions of the Mode Superposition Method 

The mode superposition method is not supported if damping, apart from modal damping, proportional 

or Rayleigh damping is present [7]. In particular, if acoustic damped boundary conditions, fluid dynam-

ics viscosity, perforated material, PML absorbing condition or infinite elements are defined. Conse-

quently, absorbing boundary conditions are not supported in general. 

3.3 Finite Elements for FSI (3D) 

In order to solve a FSI problem the fluid and solid volumes are partitioned into finite elements. In case 

of the fluid the volume is divided into hexahedral or tetrahedral elements with one degree of freedom 

(DOF) per node. The solid domain can be meshed by volume elements with three DOFs or shell ele-

ments with 6 DOFs per knot. For the coupling between solid and fluid elements optional DOFs (corre-

sponding to the translational DOFs of the structure) are being used within the fluid elements (for fur-

ther information see ch. 8.1.2 or [5] and [6]).  

 

Figure 3.1: Hexahedral solid, shell and fluid element with nodal DOFs 
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4 Verification Examples 

4.1 Rectangular Panel Backed on Closed Cavity 

To demonstrate and validate the structural-acoustical coupling of the FSI between an acoustic medium 

and a structure it is common to take a look at a rectangular panel backed by a rectangular closed cavity, 

as it represents a typical sound radiating application where the response of a structure is influenced 

by the acoustic pressure on its surface and vice versa, e.g. thin walls in frame buildings or machine 

housings. 

 

 

In this example the flexible plate is forced to swing at the point (0.2, 0.3) m due to a time-harmonic 

force of 1N within the frequency range Ω = [0: 250]𝑠−1. The elastic panel has the dimensions            

1𝑚 ∙  1𝑚 and the thickness ℎ = 0.01 𝑚. The panel is simply supported and coupled to an acoustic 

cavity with the dimensions 1𝑚 ∙ 1𝑚 ∙ 1𝑚. The remaining surfaces of the cavity are rigid walls, i.e. Neu-

mann boundary conditions are applied.  The acoustic fluid is water (𝜌𝐹 = 1000
𝑘𝑔

𝑚3 , 𝑐𝐹 = 1481
𝑚

𝑠
) and 

the flexible plate is made from steel (𝐸 = 210 𝐺𝑃𝑎, 𝜌𝑆 = 7900
𝑘𝑔

𝑚3 , 𝜈 = 0.3). 

The frequency response at the driving point is recorded and then compared with the work of M. Fischer 

and L. Gaul [17]. The flexible plate’s applied mesh of the referred work consists of 20 ∙ 20 shell ele-

ments with an element length ℎ𝜆 = 0.05𝑚. The same element length is applied to the acoustic cavity. 

 

Figure 4.1: A closed acoustic cavity with an attached flexible plate  
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With the longitudinal speed of sound 𝑐𝐿 and the dominant driving frequency Ω the bending wave 

length can be determined   

 

𝑐𝐿 = √
𝐸

𝜌
= √

210 ∙ 109 𝑁
𝑚2

7900
𝑘𝑔
𝑚3

= 5155.80
𝑚

𝑠
  

 
𝜆𝐵 ≈ 1.35√

ℎ𝑐𝐿

Ω
= 1.35√

0.01𝑚 ∙ 5155.80
𝑚
𝑠

250 𝑠−1
= 0.61𝑚  

With the element per wave length condition 
𝜆𝐵

ℎ𝜆
= 6…8 the recommended element size can be esti-

mated to  

 ℎ𝜆 =
𝜆

8
=

0.61𝑚

8
= 0.076𝑚 ( 4.1 ) 

The chosen element length in the referred work ℎ𝜆,𝑐ℎ𝑜𝑠𝑒𝑛 = 0.05𝑚 does fulfil the recommended ele-

ment per wave length condition in equation ( 4.1 ). 

 

Figure 4.2: Frequency response at the driving point (after [17]) 
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The frequency response of the graph in Figure 4.2 compares the FEM solution of ANSYS with the ana-

lytical Fourier series solution derived by Pretlove [1] and the FEM-BEM solution by M. Fischer and L. 

Gaul. All graphs show an appropriate correspondence to each other.   

Comparison of the solution methods 

The solution can be found by three different settings and two methods as described in chapter 3.2. 

Figure 4.3 affirms the similarity of the three graphs, but also shows a slight difference regarding the 

unsymmetric and symmetric matrix formulated solution using the direct method. The advantage of 

the symmetric matrix formulation lies in the lower computing time; however, the computing time of 

the mode-superposition method is considerably lower than using the direct solution.   

 

 

Solution method Computing time 

Direct solution with unsymmetric matrix formulation 2h06’ 

Direct solution with symmetric matrix formulation 1h42’ 

Modal-Superposition with unsymmetric matrix formulation 41’36’’ 

 

Figure 4.3: Comparison of the solution methods 

Table 4.1: Comparison of the computing times for the cavity-plate example 
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The computing times in Table 4.1 were achieved by using a laptop computer with four AMD A8-3520M 

processors with a frequency of 1600 Mhz and a RAM of 8 GB. The direct solution calculated the fre-

quency range Ω = [0: 250]𝑠−1 in 250 steps for both matrix formulations. The modal superposition 

method used the first 200 modes of the system to calculate the solution.  

Acoustic pressure inside the cavity 

Carl Howard [14] has calculated the vibro-acoustic response of a simply supported rectangular plate 

backed to a cavity with rigid boundaries by mode-superposition of the plate’s eigenfrequencies (after 

Leissa [15]) and the natural frequencies of the acoustic cavity (after Leo L. Beranek and István L. Ver 

[9]). A modified version of his script, attached in the appendix, uses the same dimensions and defined 

points as the academic example used above. It leads to roughly same results and offers the opportunity 

to measure the acoustic pressure at a point in the acoustic cavity. Figure 3.5 shows the acoustic pres-

sure at the point (0.2, 0.3, 0.5) m. 

 

 

The results from the theoretical modal coupling do not precisely align with the results of the direct 

solution using FEM. This can be explained by a higher stiffness effect within the theoretical model, as 

all the eigenfrequencies are at higher frequencies as their corresponding modes using FEM. 

Influence of acoustic fluids 

As mentioned in chapter 2.4 the density of the used acoustic fluid characterises the influence of the 

FSI, as the modes are affected by the added mass and added stiffness effect of the coupled system. 

Figure 4.5 shows a comparison of four fluids with known speeds of sounds and densities (s. Table 4.2) 

to the displacement of the uncoupled plate.   

Figure 4.4: Acoustic pressure at (0.2, 0.3, 0.5) inside the cavity 
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Comparing the vibration modes to the eigenmodes of the uncoupled plate (in vacuo case) the effect 

of the acoustic cavity is particularly noticeable for mode shapes that have a non-zero average flux over 

the interface. In this case the stiffness effect of the cavity plays a dominant role [17], whereas the 

added mass effect of the acoustic fluid is dominant for mode shapes with zero average flux.   

 

 

Fluid Density 

𝜌 (𝑘𝑔 𝑚3⁄ ) 

Speed of Sound 

𝑐 (𝑚 𝑠⁄ ) 

Air 1,21 343 

Ethanol 790 1160 

Pentan 621 1020 

Vacuum 0 0 

Water 1000 1481 

 

Figure 4.5: Comparison of acoustic fluids at driving point 

Table 4.2: Used acoustic fluids for comparison of displacement at driving point 
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Figure 3.6 shows the first four mode shapes of the uncoupled plate (upper shapes) in comparison to 

their counterparts of the acoustic fluid water (lower shapes). It is recognisable that the first eigenfre-

quency’s mode shape of the uncoupled plate at a frequency of 49 Hz can be found at a frequency of 

134 Hz in the coupled system. Mode shapes with zero average flux over the interface can be found at 

frequencies below their uncoupled counterparts due to the added mass effect. 

 

Air 

Mode (1,1) Mode (1,2) Mode (2,2) Mode (3,1) 

𝑓 = 49𝐻𝑧 𝑓 = 122𝐻𝑧 𝑓 = 196𝐻𝑧 𝑓 = 245𝐻𝑧 

 

                

 

Water 

Mode (1,1) Mode (1,2) Mode (2,2) Mode (1,3) 

𝑓 = 134𝐻𝑧 𝑓 = 60𝐻𝑧 𝑓 = 111𝐻𝑧 𝑓 = 149𝐻𝑧 

 

              

Comparison of boundary conditions 

Figure 4.7 shows a comparison of the sound-hard boundary with the radiation boundary. One can see 

that the peaks of the curve with the radiation boundary are clearly reduced, as the reflection ratio 

compared to the reflecting Neumann curve is much lower. Figure 4.8 then shows the same setting with 

the acoustic fluid air and the in vacuo case.  It thus can be shown that the influence of the reflection is 

not as huge as the acoustic fluid water and the influence of the absorbing boundary is not as high. 

Figure 4.6: Comparison of the first four mode shapes 
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Figure 4.7: Driving point displacement different boundary conditions (water, rectangular cavity) 

Figure 4.8: Driving point displacement with different boundary conditions (air, rectangular cavity)   



 

33 

4.2 Rectangular Panel on Hemisphere 

To be able to compare the different absorbing boundary conditions with each other the plate described 

in chapter 4.1 is attached to a hemisphere with the radius 𝑟 = 1𝑚. The origin of the hemisphere lies 

at the centre of the plate at (0.5, 0.5)𝑚. At the ground of the hemisphere impedance boundary con-

ditions are applied, corresponding to the FSI and the attached open domain. In addition to the dis-

placement at the driving point, the acoustic pressure at the point (0.475, 0.675, 0.575)𝑚 is being rec-

orded. 

 

 

Figure 4.10 and Figure 4.11 show the displacement of the driving point on the plane for different 

boundary conditions and the in vacuo case. Due to the cavity’s different construction the response 

varies from the previous example, showing a more ideal behaviour for a plate swinging in an open 

domain. The stiffness of the coupled system does not influence the modes as strongly as in the previous 

example and so the added mass effect can now be clearly seen.  

Figure 4.9: Plate backed on hemisphere cavity 
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Figure 4.10: Driving point displacement with different boundary conditions (air, hemisphere) 

Figure 4.11: Driving point displacement with different boundary conditions (water, hemisphere) 
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The differences between the absorbing boundary conditions are negligible for the displacement of the 

driving point, but there are small deviations between the graphs of the radiation boundary and the 

infinite element boundary at the point in the acoustic cavity in Figure 4.12 and Figure 4.13. Although 

the radiation damping effect in air can not be seen at the driving point, there is a clear damping effect 

measuring the acoustic pressure at the point in the cavity. Peaks influenced by the reflection of the 

Neumann boundary condition are suppresed or reduced when using an absorbing boundary condition.   

 

 

Figure 4.12: Acoustic pressure of (0.475, 0.675, 0.575) with absorbing boundary conditions (air) 

Figure 4.13: Acoustic pressure of (0.475, 0.675, 0.575) with absorbing boundary conditions (water) 
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5 Application Case Studies 

To show and analyse the FSI of the vibrating parts of the power train two principle models are being 

looked at. The first model regards the power train of the wind turbine as one cylindrical module lying 

in an acoustic medium. The second model treats the power train as a group of parts, showing the 

generator, the gear box, a brake and the main shaft in the same acoustic fluid. In both cases an outer 

shell does not exist, reducing the problem to the inner space of the wind turbine cabin.  

5.1 Cylinder in Air 

The model consists of a solid cylinder lying in the acoustic fluid air. The cylinder is forced to vibrate 

with the harmonic force 𝐹 = 1𝑁 within the frequency range Ω = [100: 2000]𝑠−1 in the y-direction of 

the model. The cylinder is unsupported. At the outer border of the model the radiation boundary con-

dition is applied, reducing the influence of the reflection within the model.  

 

The cylinder has a length of 2𝑙 = 2𝑚, a radius of 𝑟 = 0.25𝑚 and a thickness of ℎ = 0.01𝑚. The acous-

tic cavity filled with the acoustic fluid air (see Table 4.2) has a length of 2𝐿 = 2.5𝑚 and a radius             

𝑅 = 0.5m. 

 

Figure 5.1: Principle model for the FSI of a wind turbine 
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The dominant wave length of the acoustic fluid is 

 
𝜆 =

𝑐

𝑓
=

343
𝑚
𝑠

2000
1
𝑠

= 0.1715𝑚 ( 5.1 ) 

With the element per wave length condition 
𝜆

ℎ𝜆,𝑎𝑖𝑟
= 6…8 the recommended element size of the fluid 

can be estimated to  

 ℎ𝜆,𝑎𝑖𝑟 =
𝜆

6
=

0.1715𝑚

6
= 0.0286𝑚 ( 5.2 ) 

The dominant bending wave length of the cylindrical structure can be determined by 

𝜆𝐵 = 2𝜋 ∙ √
𝐵

𝑚′

4

∙
1

√𝜔
= 2𝜋 ∙ √

5.002 ∙ 1016 𝑘𝑔𝑚𝑚3

𝑠2

61.037 ∙ 10−3 𝑘𝑔
𝑚𝑚

4

∙
1

√2𝜋 ∙ 2000
1
𝑠

= 1686.41𝑚𝑚 
( 5.3 ) 

𝐵 = 𝐸 ∙ 𝐼 = 2.1 ∙ 105
𝑁

𝑚𝑚2
∙

𝜋

64
(5004 − 4904)𝑚𝑚4 = 5,002 ∙ 1013 𝑁𝑚𝑚2   

= 5,002 ∙ 1016
𝑘𝑔𝑚𝑚3

𝑠2
 

 

𝑚′ =  𝜌 ∙ 𝐴 = 7850
𝑘𝑔

𝑚3
∙
𝜋

4
(0.52 − 0.492)𝑚2 = 61.037

𝑘𝑔

𝑚
= 61.037 ∙ 10−3

𝑘𝑔

𝑚𝑚
  

whereby the moment of inertia 𝐼 and the Area 𝐴 are related to an open cylinder. As the recommended 

element size of the structure is 

 ℎ𝜆,𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 =
1.68641𝑚

6
= 0.2812𝑚 ( 5.4 ) 

and the chosen element length is ℎ𝜆,𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒,𝑐ℎ𝑜𝑠𝑒𝑛 = 0.05𝑚 this simplification is not affecting the 

results.  The model is calculated with the fluid element size ℎ𝜆,𝑎𝑖𝑟 = 0.03𝑚 for frequencies under 𝑓 =

1000 𝐻𝑧 and ℎ𝜆,𝑎𝑖𝑟 = 0.05𝑚 for frequencies above. A constant damping ratio of 𝐷 = 0.002 is applied.  

Figure 5.2 shows the frequency response at (0, 0, 0.25)𝑚 of the uncoupled cylinder. The bending 

modes of the cylinder are at a frequency of 𝑓 = 514 𝐻𝑧, 𝑓 = 1068𝐻𝑧 and 𝑓 = 1594 𝐻𝑧. The other 

peaks correspond to either bending modes of the closed cylinder’s caps, extensional modes or radial 

shearing modes. As the bending modes in the normal direction of the applied harmonic force causes 

the highest radiation of sound into the acoustic medium they are the only modes being looked at dur-

ing further investigations, showing the influence of mass, stiffness and damping variation on each of 

the corresponding modes. 
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Figure 5.2: Displacement of the cylinder at (0, 250, 0) and corresponding mode shapes 

Figure 5.3: SPL(A) at (0, 255, 257) 
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5.1.1 Constructive Modifications 

The behaviour of a discrete system can easily be changed by constructive modifications influencing the 

present mass, stiffness and damping characteristics. In most of the cases the adjustment of the eigen-

frequency to a higher or lower frequency level plays a dominant role, depending on the working fre-

quencies of a machine.  

To influence the eigenfrequency of the structure in a first step the mass of the cylinder is augmented 

by a distributed mass, shared in equal parts on every knot of the system. In a next step the areas of 

the added mass are reduced to the areas of highest displacement at the eigenfrequencies. These con-

centrated mass areas are then replaced by point masses. 

In a similar way the thickness of the system will be variated to show the influence of the system’s 

stiffness. The thickness of the cylinder is then adjusted to the areas of highest displacement during the 

modes by the use of attached patches.  

This is followed by the use of tuned mass dampers, which influence the behaviour of the dominant 

mode dramatically and can be used to reduce the radiated sound pressure, if well designed. 

 

Addition of an equally distributed mass 

The influence of the mass on a vibrating system plays a dominant role, e.g. a lighter system is easily 

excited to swing with a higher frequency than the corresponding heavy system. As the radiation of 

sound is influenced by the amplitude and frequency of the vibrating system, the acoustic pressure can 

be efficiently decreased by adding an equally distributed mass to the system. To adequately reduce 

the second and third mode a relatively heavy mass is needed.  

 

 

Figure 5.4: First Mode displacement at (0, 250, 0) and SPL(A) at (0, 255, 257) with added mass 
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Figure 5.5: Second mode displacement at (-500, 250, 0) with added mass Figure 5.6: Third mode displacement at (0, 250, 0) with added mass 

Figure 5.7: Second mode SPL(A) at (-500, 255, 257) with added mass Figure 5.8: Third mode displacement at (0, 255, 257) with added mass 
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Distributed mass on selected area 

Adding an equally distributed mass on the areas of highest displacement shows nearly the same be-

haviour as adding the same mass onto the whole surface. Figure 5.9, Figure 5.12 and Figure 5.15 show 

the areas with the attached weight.  

  

 

 

 

Figure 5.9: First mode and selected area 

Figure 5.10: First mode displacement at (0, 250, 0) with area-wide mass 

Figure 5.11: First mode SPL(A) at (0, 255, 257) with area-wide mass 
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Figure 5.12: Second mode and selected area 

Figure 5.13: Second mode displacement at (-500, 250, 0) with area-wide mass 

Figure 5.14: Second mode SPL(A) at (-500, 255, 243) with area-wide mass 
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Figure 5.15: Third mode and selected area 

Figure 5.16: Third mode displacement at (0, 250, 0) and (-500, 250, 0) with area-wide mass 

Figure 5.17: Third mode SPL(A) at (0, 255, 257) and (-500, 255, 243) with area-wide mass 
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Addition of point masses  

Adding point masses to the system can augment or reduce the radiation of sound into the surrounding 

medium, depending on the placement of the point masses onto the system. Figure 5.18, Figure 5.21 

and Figure 5.24 show an example for point masses attached to the system optimised for the dominant 

modes of the system. The SPL(A) is trimmed with a higher value, as it is by the attachment of an equally 

distributed mass. 

 

 

 

Figure 5.18: Attached point masses and influenced first mode shape 

Figure 5.19: First displacement at (0, 255, 0) with added point masses 

Figure 5.20: First mode SPL(A) at (0, 255, 257) with added point masses 
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Figure 5.21: Attached point masses and influenced second mode shape 

Figure 5.22: Second mode displacement at (0, 250, 0) with added point masses 

Figure 5.23: Second mode SPL(A) at (-500, 255, 257) with added point masses 
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Figure 5.24: Attached point masses and influenced third mode shape 

Figure 5.25: Third mode displacement at (0, 250, 0) and (-500, 250, 0) with added point masses 

Figure 5.26: Third mode SPL(A) at (0, 255, 257) and (-500, 255, 243) with added point masses 
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Variation of the thickness 

Varying the thickness of the system’s outer shell results in a higher frequency due to the added stiff-

ness effect. By increasing the weight of the system dramatically the damping effect shows an excellent 

reduction of the SPL for the mode shapes with a non-zero average flux over the interface (in this case 

the first and the third mode). The second mode first reacts by an added stiffness effect, but then 

changes to an added mass effect, reducing the frequency in a forceful way.  

 

 

Figure 5.27: First mode displacement at (0, 250, 0) with added thickness 

Figure 5.28: First mode SPL(A) at (0, 255, 257) with added thickness 
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Figure 5.29: Second mode displacement at (-500, 250, 0) with added thickness Figure 5.30: Third mode displacement at (0, 250, 0) with added thickness 

Figure 5.31: Second mode SPL(A) at (-500, 255, 243) with added thickness Figure 5.32: Third mode SPL(A) at (0, 255, 257) with added thickness 
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Addition of patches 

To influence the modes directly, patches according to Figure 5.9, Figure 5.11 and Figure 5.15 are at-

tached to the system in the regions of highest displacement. It is a good choice to reduce the sound 

pressure without heavily increasing the weight of the system. Figure 5.33 to Figure 5.36 show the dis-

placement and SPL(A) for a patch with the same material as the original system; so it appears more 

along the lines of a variation of the outer shell thickness on selected areas. The added patches can be 

made from different materials, e.g. sound absorbing bitumen, butyl rubber materials or materials with 

higher modal damping values.  

The damping of the radiated sound pressure is more efficient if the added masses are huge. In case of 

the second mode, the added thickness has to be larger than 𝑡 = 15𝑚𝑚 to show any improvement on 

the radiated sound pressure at all. By augmenting the mass on the patches for the side peaks of the 

third mode (Figure 5.36, right graph), the radiation of sound pressure could be improved for the cases 

with a high middle peak’s patch thickness 𝑡1. 

 

 

 

 

Figure 5.33: First mode displacement at (0, 250, 0) and SPL(A) at (0, 255, 257) with patch 

Figure 5.34: Second mode displacement at (-500, 250, 0) and SPL(A) at (-500, 255, 243) with patches 
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Figure 5.35: Third mode displacement at (0, 250, 0) and (-500, 250, 0) with added patches 

Figure 5.36: Third mode SPL(A) at (0, 255, 257) and (-500, 255, 243) with added patches 
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Addition of a tuned mass damper 

Tuned mass dampers are used to reduce the vibration response of single dominant peaks. The tuned 

mass damper is a mass oscillator attached to the vibrating system, which is constructed to have the 

same eigenfrequency as the peak that is to be reduced. The dominant peak is reduced in an efficient 

way, but two additional peaks will occur to both sides of the peak, according to the stiffness and mass 

of the used tuned mass damper. Unfortunately, these peaks will radiate sound when excited, so a well-

coordinated design of the tuned mass damper is necessary to not create a louder acoustic source.  

 

The displayed tuned mass damper in Figure 5.37 consists of a sphere with the mass 𝑚 and a spring 

with the stiffness 𝑘 balanced to the natural frequency 𝜔 of the dominant peak.  Table 5.1 shows the 

parameters for each of the dominant modes within the frequency range. 

 
Frequency of the mode shape 

Hz 

 514 1068 1594 

Mass 

kg 

Stiffness of the spring 

N/m 

0,1 10430.4 ∙ 102   

1 10430.4 ∙ 103 45030.31 ∙ 103 100308.18 ∙ 103 

10 10430.4 ∙ 104   

100 10430.4 ∙ 105   

Figure 5.37: Tuned mass damper attached to the cylinder for the first and third mode 

Table 5.1: Parameter for tuned mass damper 
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Figure 5.38 and Figure 5.39 show the first mode displacement and SPL(A) with tuned mass dampers of 

different masses. It can be shown that the created peak of dominated stiffness is converging to a fre-

quency, whereas the mass dominated peak is lowering its frequency due to the added mass effect. By 

increasing the mass of the tuned mass damper the radiated SPL of the stiffness dominated peak is 

rising as well, whereas the SPL of the mass dominated peak is decreasing with the decline of the fre-

quency.  

Figure 5.42 shows an example of a badly coordinated tuned mass damper design, as the mass domi-

nated peak’s SPL(A) is higher than the SPL(A) of the original system. Adding a higher mass to the tuned 

mass damper could solve this problem, but this will lead to the increase of the second peak; which is 

almost on the same level as the dominant peak of the system without a tuned mass damper. Conse-

quently, other constructive modifications should have priority.   

 

 

Figure 5.38: First mode displacement at (0, 250, 0) with added tuned mass damper 

Figure 5.39: First mode SPLA at (0, 255, 257) with added tuned mass damper 
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Figure 5.40: Third mode displacement at (0, 250, 0) with tuned mass damper Figure 5.41: Second mode displacement at (-500, 250, 0) with tuned mass damper 

Figure 5.42: Third mode SPL(A) at (0, 255, 257) with tuned mass damper Figure 5.43: Second mode SPL(A) at (-500, 255 ,243) with tuned mass damper 
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5.2 Power Train in Air                                                 

The simplified model shows a power train (consisting of a gear box, a generator, a break, and a part of 

the main shaft) lying in the acoustic fluid air. The parts of the power train are forced to vibrate with 

the harmonic force 𝐹 = 1𝑁 within the frequency range Ω = [100: 2000]𝑠−1 in the x-direction of the 

model. The model is unsupported and a constant damping ratio of 𝐷 = 0.002 is used. At the outer 

border of the model the radiation boundary condition is applied. 

 

 

Figure 5.44: Power train in air 
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Figure 5.45: Main shaft displacement at (0, 200, 375) 

Figure 5.46: Main shaft SPL(A) at (290, 290, 375) 
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Figure 5.47: Gear box displacement at (0, 300, 1175) 

Figure 5.48: Gear Box SPL(A) at (290, 290, 1175) 
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Figure 5.49: Brake displacement at (-100, 200, 1750) 

Figure 5.50: Brake SPL(A) at (290, 290, 1750) 
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Figure 5.51: Generator displacement at (-100, 200, 2100) 

Figure 5.52: Generator SPL(A) at (290, 290, 2100) 
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5.2.1  Constructive Modifications 

As the SPL augment along with the frequency, constructive modification of the mass is realised for the 

frequency of  𝑓 = 1766 𝐻𝑧 as an example. At this frequency the generator of the power train shows 

some mode shapes. The modification is applied to the generator only.  

 

 

 

Figure 5.53: Displacement figure of the power train at 1766 Hz 

Figure 5.54: Generator displacement at (-100, 200, 2100) with added mass 



 

60 

 

  

Figure 5.55: Generator SPL(A) at (290,290,2100) with added mass 
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6 Conclusion 

The vibro-acoustic simulation is a fast and efficient tool to analyse the behaviour of the fluid-structure 

coupled system.  Changes can be quickly realised and investigated regarding different settings and 

solution methods.  

The first verification example has indicated an accordance to the analytical solution, while the modified 

system has shown the similarity between the different absorbing boundary conditions. The influence 

of the boundary reflection could be impaired by the cavity’s different construction; whereby a spheri-

cal hull is the fluid’s optimal body for open domain problems. The use of PML could not be realised 

due to the strict setup, but is a possible alternative for further studies.  

Detailed investigations were held on the cylindrical principle model, as it showed the influence of the 

system’s eigenmodes regarding the radiation of sound into the acoustic domain. The applied construc-

tive modifications resulted in a great improvement on the radiated sound pressure, if the influence of 

the added mass and added stiffness to the system was distinct, meaning a great shift in the frequency 

of the dominant peak for the added mass or a major damping effect on the displacement amplitude 

for the added stiffness. Varying the thickness in the regions of highest displacement at the part’s outer 

shell, e.g by the addition of fitted patches, or adding point masses can support the reduction of the 

sound pressure without adding too much weight to the system. The use of a well-designed tuned mass 

damper can help to reduce the SPL for lower eigenfrequencies, but is counterproductive for higher 

modes. The detailed model of the power train confirmed the carried out improvements, as well as the 

use of the cylindrical model as a simplification of the power train. The recorded frequency response of 

the sound pressure clearly marks the sound emitting frequencies. 

In the course of the upcoming research project X-Energy the presented model of the power train can 

be improved by creating the support of the power train within the wind turbine cabin. With the crea-

tion of the cabin’s outer shell the influence of the power train’s sound radiation for a point outside the 

cavity could be analysed. The implementation of the manufacturer’s model of a power train could help 

to reduce the sound radiation in a more specific way, before enhancing and validating the model. 

 

  



 

62 

7 Literature 

[1] A.J. Pretlove: Free Vibrations of a Rectangular Panel Backed by a Closed Rectangular Cavity. In: 
Journal of Sound and Vibration, S. 197–209 

[2] 14.8. Mode-Superposition Method, ANSYS Inc., ANSYS 17.0 Help ANSYS Help System/Mechani-
cal APDL/Theory Reference /14. Analysis Tools 

[3] 8.3. Propagation, Radiation, and Scattering of Acoustic Pressure Waves, ANSYS Inc., ANSYS 17.0 
Help ANSYS Help System/Mechanical APDL/Theory Reference /8.Acoustics 

[4] 8.4. Acoustic Fluid-Structural Interaction (FSI), ANSYS Inc., ANSYS 17.0 Help ANSYS Help Sys-
tem/Mechanical APDL/Theory Reference /8.Acoustics 

[5] ANSYS Mechanical APDL Acoustic Analysis Guide, ANSYS Inc., Theory Reference /Acoustic Analy-
sis Guide 

[6] AACTx_R170_L_01_Introduction to Acoustics, ANSYS Inc., Bestandteil der ANSYS ACT Acoustics 
Extension 2014 

[7] AACTx_R170_L_03_Harmonic Analyses, ANSYS Inc., Bestandteil der ANSYS ACT Acoustics Exten-
sion 2014 

[8] Baumann, B., Stein, U. u. Wolff, M.: Physik für Ingenieure. Bachelor Basics ; mit 21 Tabellen. Wil-
burgstetten: Schlembach 2011 

[9] Beranek, L. L. (Hrsg.): Noise and vibration control engineering. Principles and applications. A 
Wiley Interscience publication. New York u.a.: Wiley 1992 

[10] Franck, A.: Finite-Elemente-Methoden, Lösungsalgorithmen und Werkzeuge für die akustische 
Simulationstechnik. Techn. Hochsch., Diss.--Aachen, 2008. Aachener Beiträge zur technischen 
Akustik, Bd. 9. Berlin: Logos-Verl. 2009 

[11] Frank Ihlenburg: Computational Methods for Vibroacoustic Simulations. Hamburg 2014 

[12] Technische Schwingungslehre, Frank Ihlenburg, 2014 

[13] Teilvorhabenbeschreibung Vibroakustik. Vibroakustische Optimierung der Haupttriebstrang-
komponenten einer Windenergieanlage (VakuOm), Frank Ihlenburg u. Thomas Grätsch, 2016 

[14] Howard, C. Q. u. Cazzolato, B. S.: Acoustic analyses using Matlab and Ansys. Boca Raton, Florida: 
CRC Press 2015 

[15] Leissa, A. W.: Vibration of plates. Woodbury, NY: American Institute of Physics 1993 

[16] Lerch, R., Sessler, G. u. Wolf, D.: Technische Akustik. Grundlagen und Anwendungen. Berlin, Hei-
delberg: Springer Berlin Heidelberg 2009 

[17] M. Fischer u. L. Gaul: Fast BEM–FEM mortar coupling for acoustic–structure interaction. In: In-
ternational Journal for Numerical Methods in Engineering, S. 1677–1690 

[18] Möser, M.: Technische Akustik. VDI-Buch. Berlin, Heidelberg: Springer Vieweg 2015 

[19] Möser, M. u. Kropp, W.: Körperschall. Physikalische Grundlagen und technische Anwendungen. 
Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg 2010 



 

63 

[20] Ryan Bemrose: Louder Sounds Better, Microsoft Developer Blog 2007. 
https://blogs.msdn.microsoft.com/audiofool/2007/02/07/louder-sounds-better, abgerufen am: 
20.08.2016 

[21] Wagner, S., Bareiß, R. u. Guidati, G.: Wind Turbine Noise. Berlin, Heidelberg: Springer 1996 

[22] Wikibooks.org: Acoustics/Fundamentals of Psychoacoustics, 2012. https://en.wiki-
books.org/wiki/Acoustics/Fundamentals_of_Psychoacoustics, abgerufen am: 20.08.2016 

 

  



 

A-1 
 

8 Appendix 

8.1 Guide to ACT Acoustics in ANSYS Workbench 

This guide shows the main functions of the ACT Acoustics Extension and their set-up in the rectangular 

plate on cavity example examined in this work. The ACT Acoustics Extension is a free extension, which 

can be downloaded in the ANSYS Customer Portal. All the here presented content is implemented in 

ANSYS Mechanical APDL. A detailed guideline can be found in the help section of the program. 

8.1.1 Installing the Extension 

 Once downloaded from the customer portal the extension 

can be easily installed by using Install Extension under Exten-

sions. After the installation the extension can be found under 

Manage Extensions. The extension has to be picked manually 

at every new project. 

8.1.2 Setting up the FSI Example 

Considering the rectangular plate on cavity example the flexible 

plate is attached to the left of the rectangular cavity. Both have 

structural steel assigned as material. As this cannot be true for the 

acoustic fluid an Acoustic Body has to be applied to the cavity, which 

overwrites the pre-assigned properties to acoustic relevant proper-

ties. 

 

 

 
Figure 8.4: Selecting the Acoustic Body 

 

Figure 8.3: Rectangular Plate 
on Cavity Example 

Figure 8.2: Installing the Extension 

Figure 8.1: Inside the Extensions Manager 
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The scope of the acoustic domain can be 

selected by direct geometric selection or a 

prepared named selection. The main 

properties of the acoustic fluid can be de-

fined in the Acoustic Body. The most im-

portant of this settings are already pre-de-

fined by the acoustic fluid air. The refer-

ence pressure values are important for 

the further researches (e.g. for the evalu-

ation of the SPL) and should better not be 

changed, if there is no need for it. Under 

Acoustic-Structural Coupled Body Options 

the symmetric and unsymmetric matrix formulation can be chosen VERWEIS AUF FLUID-STRUCTURE-

INTERACTION. In case of a FSI problem it is very important to use either Program Controlled Coupled 

or Coupled With Symmetric Algorithm for the fluid element layer on the FSI Interface. 

 

 

 

As coupled associated elements uses four DOF per knot it is recommended to use another fluid body 

with the uncoupled tag right behind it, to minimize the computational times with just one DOF per 

element knot (s. chapter 3.3). The coupling between the two domains is therefore implemented at the 

first layer of the acoustic domain. As long as not indicated by an additional boundary condition the two 

acoustical bodies are regarded as one acoustic domain. 

Figure 8.6: Setting of the FSI [14] 

Figure 8.5: Details of the Acoustic Body 
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Setting the FSI Interface is im-

portant for non-solid structures, 

such as shell structures, which are 

in contact with the acoustic fluid. 

The FSI Interface for solid struc-

tures is set up automatically.  

The related faces are the ones of 

the Acoustic body and not the faces 

of the structure! They can be 

picked manually, which can be difficult for some inner faces, by using the FSI Interface under Boundary 

Conditions or automatically by using the Automatically Create FSI Condition According to Contacts Tool 

under Tools in the Acoustics Tool Bar. 

 

Without applying a boundary con-

dition to the outer faces of the 

model the Neumann Boundary 

Condition (sound-hard boundary) is 

automatically set up to the system. 

As its sound reflecting behaviour is 

often unwanted absorbing bound-

ary conditions, such as the Robin 

Boundary (Impedance Boundary 

and Radiation Boundary) can be se-

lected from the Acoustics Tool Bar under Boundary Conditions.  If an absorption coefficient is known 

the Absorption Surface can be used.  

While the Robin boundary conditions can be used on every sur-

face the Absorbing Elements (2.2.4) (s. Figure 4.9) can only be 

used on a sphere. It is important to specify the origin and radius 

of the sphere as well as forcing the elements to lie on this sphere, 

if not an error message will occur.  

Figure 8.8: Picking the FSI Interface Tool 

Figure 8.7: Selecting the FSI Interface 

Figure 8.9: Selecting the Boundary Conditions 

Figure 8.10: Setting up the Absorb-
ing Elements 
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In the analysis settings of the harmonic 

analysis the solution settings have to be 

defined. The requested frequency range 

can be inserted by a linear scale, logarith-

mic scale and in octave bands. The solution 

interval defines the steps within the fre-

quency span.  

The solution method can be chosen be-

tween the direct method and modal super-

position. The use of Variational technol-

ogy, meaning a mixture of both solution 

methods, is not recommended. 

Some results need the General Miscellane-

ous and the Ansys MAPDL DB to be acti-

vated for their post-processing.  

Modal damping can be applied by inserting a constant damping ratio 𝐷 or using Rayleigh Damping by 

setting the stiffness 𝛽 and/or mass coefficient 𝛼. 

 

As result the frequency response of 

displacement at the driving point 

and the acoustic response of a point 

in the cavity are of interest. 

Therefore, the Frequency Response 

of the Deformation is used from the 

Solution Toolbar. We are interested 

in the deformation in the y-direc-

tion. The y-axis of the chart is loga-

rithmic to clearly show the peaks of 

the response.  

Figure 8.12: Selecting the frequency response for the deformation of the structure  

Figure 8.11: Analysis Settings of a Hamonic Analysis 

Figure 8.13: Setting up the frequency response 
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In the acoustic domain we are interested in the results in the far field, especially a point somewhere 

in the acoustic domain, which is not close to the acoustic source. When measuring the SPL at a point 

in the acoustic domain microphones are being used. In a similar way the far field microphone provides 

the possibility to enter a point by Spherical or Cartesian coordinates and evaluate the acoustic pres-

sure, SPL or acoustic power at this point within the requested frequency range. 

As the FEA evaluates the acoustic 

pressure at every knot and not in-

between, the program automati-

cally searches the nearest knot. 

The far field microphone is regretta-

bly error-prone and is sometimes 

not working at all, e.g. after an un-

expected error during the post-pro-

cessing. The Acoustic-Time-Fre-

quency-Plot offers the same bandwidth of results, but need a knot to be specified before, e.g. pre-

defined in the worksheet of a named selection. 

Figure 8.14: Results for Harmonic Analysis of the ACT Acoustic Extension 

Figure 8.15: Far Field Microphone 

Figure 8.16: Point defined in the worksheet of a named selection 
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Apart from the frequency responses we can look at the 

acoustic pressure, SPL and displacement at specific fre-

quencies. The acoustic probe tools can deliver us the value 

of a knot at a specific frequency. 

The frequency can be inserted directly and the nearest so-

lution set will be displayed. We can also insert a solution 

set instead of a frequency. The advantage of this method is 

that we actually know the frequency it represents. 

 

  

Figure 8.17: Settings of Acoustic Pressure 
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8.1.3 Setting the Mode-Superposition Method 

The mode superposition method can be set as the solution method of a FSI problem, if absorbing 

boundary conditions are not required and other damping methods, apart from modal damping, are 

not considered.    

The mode superposition method is set in the analysis set-

tings under solution method. The modal frequency range, 

along with the number of modes to find, can remain pro-

gram controlled or set manually. Residual vectors can en-

hance the solution of the mode-superposition, but are not 

supported by the unsymmetric eigensolver and therefore 

cannot be used during modal-superposition of a system 

with FSI coupling in ANSYS. 

As only the unsymmetric MAPDL solver 

can be used within the mode-superposi-

tion method, the Acoustic-Structural Cou-

pled Body Options has to be changed to 

Program Controlled Coupled within the 

acoustic body details.   

 

 

 

At last the Unsymmetric Harmonic 

Mode Superposition has to be se-

lected from the Analysis Settings of 

the Acoustics Toolbar in case of the 

bi-directional coupling between the 

fluid and the structure.  

Without this setting or an equivalent 

MAPDL command the solver is not set properly and will create an error message while the evaluation 

of the mode-superposition.  

Figure 8.19: Setting of the Acoustic Body for Mode-Superposition 

Figure 8.18: Analysis Settings for Mode-
Superposition 

Figure 8.20: Unsymmetric Harmonic Mode Superposition 
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8.2 ANSYS Mechanical ADPL Scripts 

The use of the Ansys Workbench is a quite comfortable way of solving a problem using ANSYS, but in 

case of the acoustic analysis it requires an additional extension. Another way to solve an acoustic prob-

lem is the use of mechanical ADPL, often referred as Classic ANSYS. It offers all the possibilities of the 

program; of which many are not implemented into the workbench.  

The interface is obsolescent and it is quite complicated to build and analyse the model using the avail-

able tools. Therefore, it is more efficient to write a script using the mechanical ADPL language and read 

it into the program.  

With the use of MAPDL the two main examples are been created parallel to their counterparts in AN-

SYS Workbench. Because of the more user friendly interface regarding changes of the model the Work-

bench gained priority.  

8.2.1 MAPDL Rectangular Plate on Rectangular Cavity 

 

FINISH 
/CLEAR 
 
! Pre-Processing 
 
/PREP7      
 
! Material properties of fluid in cavity 
 
speedair  = 344     ! Speed of Sound of air [m/s] 
dens_air  = 1.21     ! Density of Air [kg/m^3] 
 
! Material properties of flexible plate 
 
platedens = 7900    ! Density [kg/m^3] 
plate_E = 210e9     ! Youngs modulus [Pa] 
plate_mu = 0.32    ! Poissons Ratio [-] 
 
! Dimensions of the cavity 
 
box_x = 1     ! Length [m] 
box_y = 1     ! Width [m] 
box_z = 1     ! Height [m] 
 
! Thickness of the plate. 
 
plate_t = 0.01     ! Thickness [m] 
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! Defining the Fluid Element (with FSI) 
 
ET,1,FLUID30,,1            ! Element type Fluid 30 with 4 DOF 
MP,SONC,1,speedair    ! Material Property Speed of Sound 
MP,DENS,1,dens_air    ! Material Property Density 
MP,MU,1,0.00                ! Material Property Damping 
R,1,20e-6                   ! Real Constant for Reference pressure  
                                       ! 20uPa 
! Defining the Fluid Element (without FSI) 
 
ET,2,FLUID30,,0           ! Element Type Fluid 30 with 1 DOF 
MP,SONC,2,speedair 
MP,DENS,2,dens_air 
MP,MU,2,0.00               
R,2,20e-6                  
 
! Defining the Shell Element for the structure  
 
R,3,plate_t     ! Defining Plate Thickness as Real  
                                 ! Constant 
 
ET,3,SHELL181     ! Element Type Shell 181 
SECTYPE,,SHELL 
SECDATA,plate_t, 
MP,EX,3,plate_E     ! Material Property Young’s Module 
MP,DENS,3,platedens    ! Material Property Density 
MP,NUXY,3,plate_mu    ! Material Property Poisson’s Ratio 
 
! Create the acoustic cavity 
 
BLOCK,0,box_x,0,box_y,0,-box_z 
 
! Meshing 
 
ESIZE,0.05     ! Set element size 
 
TYPE,1 
REAL,1 
MAT,1 
VMESH,ALL     ! Volume Meshing 
 
NSEL,S,LOC,Z,0     ! Selecting the Face for Plate 
TYPE,3 
REAL,3 
MAT,3 
ESURF,ALL 
 
ESEL,S,TYPE,,3     ! Change all the elements touching the  
                                ! plate to FSI 
NELEM 
ENODE 
ESEL,R,TYPE,,1 
TYPE,2 
REAL,2 
MAT,2 
EMODIF,ALL 
SF,ALL,FSI,1 
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ESEL,S,TYPE,,2     ! Constrain the Displacement DOF for the 
      ! other fluid elements 
NELEM 
NSEL,U,LOC,Z,0 
D,ALL,UX 
D,ALL,UY 
D,ALL,UZ 
 
! Setting the Simply Supported Boundary at the Edges of the plate 
 
ESEL,S,TYPE,,3 
NSLE,S,1 
NSEL,R,EXT 
D,ALL,UZ 
NSEL,S,LOC,Z,0 
NSEL,R,LOC,X,0 
D,ALL,UX 
NSEL,S,LOC,Z,0 
NSEL,R,LOC,Y,0 
D,ALL,UY 
 
ALLSEL 
EPLOT 
 
! Apply force to the plate 
 
f_node=NODE(0.20000,0.3000,0.0) 
F,f_node,FZ,1 
 
! Solution 
 
/SOLU       
ANTYPE,3 
HROPT,FULL       ! Direct Solution 
HROUT,ON 
LUMPM,0      ! Lumped Matrix Off 
EQSLV,FRONT,1e-006,     ! Specifying the Solver 
PSTRES,0 
HARFRQ,1,250,      ! Requested Frequency Range 
NSUBST,249,      ! Number of Substeps 
KBC,1         ! Load Step is Stepped 
SAVE 
SOLVE 
SAVE 
 
! Post-Processing 
 
/POST26       
LINES,100000 
 
FILE,'file','rst','.'    
PRCPLX,1 
/gropt,logy,1 
 
! Retrieve the displacement at the drive point on the plate 
 
NSOL,2,f_node,UZ 
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! Retrieve the pressure at a point inside the cavity 
 
p_node=NODE(0.2,0.3,-0.5) 
NSOL,3,p_node,PRES 
 
! Plot the drive point displacement 
 
/AXLAB,X,Frequency [Hz] 
/AXLAB,Y,Displacement [m] 
 
PLVAR,2 
 
! Export the drive point displacement 
 
/OUTPUT,d_node,txt 
PRVAR,2 
/OUTPUT 
 
! Export the pressure inside the cavity 
 
/OUTPUT,p_node,txt 
PRVAR,3 
/OUTPUT 
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8.2.2 MAPDL Cylinder in Air 

 

FINISH 
/clear 
/batch 
/title, Acoustic Analysis of a thin walled zylinder  
/nopr 
 
! Pre-Processing 
 
/prep7                    ! Model creation preprocessor 
 
E = 0.25                 ! Enclosure Thickness [m] 
 
R1 = 0.25                          ! Radius Cylinder [m] 
R2 = R1 + E              ! Radius Fluid Enclosure [m] 
 
L1 = 2                            ! Length Cylinder [m] 
L2 = L1+2*E      ! Length Fluid Enclosure [m] 
 
! Building the model 
    
CYLIND,0,R1,-L1/2,L1/2,0,180      ! CYLIND, RAD1, RAD2, Z1, Z2, THETA1, THETA2 
CYLIND,0,R2,-L2/2,L2/2,0,180       ! Creating upper half of the body 
 
VSBV,2,1,,DELETE,DELETE          ! New body get volume number 3, so volume number  
       ! 1 and 2 are free again 
 
AROTAT,2,7,5, , , ,1,6,360,4 ,        ! Creating surface for the cylinder 
 
CYLIND,0,R1,-L1/2,L1/2,-180,0      ! Creating lower half of the body 
BLOCK,-R2,R2,-R2,,-L2/2,L2/2        ! BLOCK, X1, X2, Y1, Y2, Z1, Z2 
 
VSBV,2,1,,DELETE,DELETE          ! New body get volume number 5, so volume number  
       ! 4 and 2 are free again 
 
VADD,3,4              ! Boolean addition for fluid body 
 
Lambda1 = 0.172               ! Wave length Air [m] 
Lambda2 = 1.686               ! Wave length Solid [m] 
 
! Setting the Element Size 
 
N1 = 6                    ! Air Elements per Wave length 
N2 = 30      ! Sturcture Elements per Wave length 
 
H1 = Lambda1/N1            ! Element Size Air 
H2 = Lambda2/N2             ! Element Size Structure 
 
! Material properties of fluid in cavity 
 
speedair  = 344     ! Speed of Sound of air [m/s] 
dens_air  = 1.21     ! Density of Air [kg/m^3] 
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! Material properties of cylinder 
 
Cylinderdens = 7900    ! Density [kg/m^3] 
cylinder_E  = 210e9    ! Youngs modulus [Pa] 
cylinder_mu  = 0.32    ! Poissons Ratio [-] 

 
 
! Thickness of the clyinder. 
  
cylinder_t = 0.01     ! Thickness [m] 
 
! Defining the Fluid Element (with FSI) 
 
ET,1,FLUID221,,1            ! Element type Fluid 221 with 4 DOF 
MP,SONC,1,speedair    ! Material Property Speed of Sound 
MP,DENS,1,dens_air    ! Material Property Density 
MP,MU,1,0.002                ! Material Property Damping 
R,1,20e-6                   ! Real Constant for Reference pressure  
                                       ! 20uPa 
 
! Defining the Fluid Element (without FSI) 
 
ET,2,FLUID221,,0           ! Element Type Fluid 221 with 1 DOF 
MP,SONC,2,speedair 
MP,DENS,2,dens_air 
MP,MU,2,0.002               
R,2,20e-6                  
 
! Defining the Shell Element for the structure  
 
R,3,cylinder_t     ! Defining Plate Thickness as Real  
                                 ! Constant 
 
ET,3,SHELL181     ! Element Type Shell 181 
SECTYPE,,SHELL 
SECDATA,cylinder_t, 
MP,EX,3,cylinder_E    ! Material Property Young’s Module [Pa] 
MP,DENS,3,cylinderdens    ! Material Property Density [kg/m^3] 
MP,NUXY,3,cylinder_mu    ! Material Property Poisson’s Ratio [-] 
MP,MU,1,0.002                ! Material Property Damping 

 
! Meshing  
 
TYPE,1                   ! Meshing Fluid with FLUID221 Elements, as Fluid30   
       ! Elements causes an Error 
MAT,1 
VSEL,S,,,1            
ESIZE,H1 
VMESH, ALL 
NSEL,S,LOC,Z,-L1/2,L1/2          ! Applying the FSI 
CSYS,1 
NSEL,R,LOC,X,0,R1 
SF,ALL,FSI 
CSYS,0 
ALLSEL, ALL 
NSEL,S,EXT 
SF,ALL,INF              ! Radiation Boundary 
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ALLSEL, ALL 
 
TYPE,3                    ! Meshing Solid 
MAT,3 
FLST,5,12,5,ORDE,12              ! List the areas to mesh 
FITEM,5,4 
FITEM,5,5 
FITEM,5,9 
FITEM,5,10 
FITEM,5,13 
FITEM,5,14 
FITEM,5,15 
FITEM,5,16 
FITEM,5,17 
FITEM,5,18 
FITEM,5,19 
FITEM,5,20 
ASEL,S,,,P51X               ! Selecting the listet areas 
ESIZE,H2 
AMESH,ALL 
ALLSEL,ALL 
f_node=NODE(R1,0,L1/2) 
F,f_node,FX,1 

 
FINISH 
 
! Solution 
 
/SOLU       
ANTYPE,3 
HROPT,FULL       ! Direct Solution 
HROUT,ON 
LUMPM,0      ! Lumped Matrix Off 
EQSLV,FRONT,1e-006,     ! Specifying the Solver 
PSTRES,0 
HARFRQ,100,2000,     ! Requested Frequency Range 
NSUBST,9,      ! Number of Substeps 
KBC,1         ! Load Step is Stepped 
SAVE 
SOLVE 
SAVE 
 
! Post-Processing 
 
/POST26       
LINES,100000 
 
FILE,'file','rst','.'    
PRCPLX,1 
/gropt,logy,1 
 
! Retrieve the displacement at the drive point on the plate 
 
NSOL,2,f_node,UX 
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! Retrieve the pressure at a point inside the cavity 
 
p_node=NODE(0.3,0,-0.3) 
NSOL,3,p_node,PRES 
 
! Plot the drive point displacement 
 
/AXLAB,X,Frequency [Hz] 
/AXLAB,Y,Displacement [m] 
 
PLVAR,2 
 
! Export the drive point displacement 
 
/OUTPUT,d_node,txt 
PRVAR,2 
/OUTPUT 
 
! Export the pressure inside the cavity 
 
/OUTPUT,p_node,txt 
PRVAR,3 
/OUTPUT 
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8.3 Matlab Rectangular Plate on Rectangular Cavity (after Howard [14]) 

 
clc 
clear all 
  
% Dimensions of the cavity 
  
cavity.len_x = 1;    % [m] 
cavity.len_y = 1;    % [m] 
cavity.len_z = 1;    % [m] 
  
cavity.volume = cavity.len_x .* cavity.len_y .* cavity.len_z;   % [m^3] 
  
% Parameters of the fluid 
  
fluid.density   = 1000;      % [kg/m^3] density of the gas 
fluid.speed     = 1481;      % [m/s] speed of sound of the gas 
  
% Dimensions of the plate 
  
plate.len_x = cavity.len_x;     % [m] 
plate.len_y = cavity.len_y;      % [m] 
plate.thick = 0.01;               % [m] 
  
surfacearea = plate.len_x .* plate.len_y; 
  
% Material properties of Steel 
  
plate.density   = 7900;      % [kg/m^3] density 
plate.E         = 2.1e11;         % [Pa] Youngs modulus 
plate.mu        = 0.3;             % [no units] Poissons Ratio 
  
% Define location of acoustic source 
  
speaker.loc_x=0.1; 
speaker.loc_y=0.1; 
speaker.loc_z=0.1; 
speaker.vol_velocity=0; 
  
% Define the location of the microphone 
  
mic.loc_x=0.2; 
mic.loc_y=0.3; 
mic.loc_z=0.5; 
  
% Define the point load on the plate 
  
force.loc_x  = 0.2; 
force.loc_y  = 0.3; 
force.amp    = 1;        % amplitude of the force 
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% Define location of accelerometer 
  
accel.loc_x = force.loc_x; 
accel.loc_y = force.loc_y; 

  
% Define the number of structural and acoustic modes to use 
  
nstrmodes   =   100;     % number of structural modes to use 
ncavmodes   =   200;    % number of acoustic modes to use 
  
% Define the analysis frequency range 
  
freq_vect = [1:250];                        % [Hz] 
end_freq = freq_vect(length(freq_vect)); 
  
% Calculate the resonance frequencies of the cavity 
 
n_max = 50; 
  
fprintf('===Start calculation of the resonance frequencies of the cavity\n'); 
  
mode_index=[]; 
for ii=0:n_max 
    for jj = 0:n_max 
        for kk = 0:n_max 
            mode_index = [ mode_index ; ii jj kk ]; 
        end; 
    end; 
end; 
  
% Calculate the resonance frequencies of the cavity 
  
res_freq = sqrt(    (mode_index(:,1) / cavity.len_x).^2 +   ... 
                    (mode_index(:,2) / cavity.len_y).^2 +   ...     
                    (mode_index(:,3) / cavity.len_z).^2 ); 
  
res_freq = res_freq .* fluid.speed ./ 2;    % [Hz] 
  
% sort the resonance frequencies 
  
temp=sortrows([res_freq mode_index],1); 
res_freq = temp(:,1); 
mode_index = temp(:,2:4); 
  
% Use only first 1:ncavmodes 
  
cavity.res_freq = res_freq(1:ncavmodes); 
cavity.mode_index = mode_index(1:ncavmodes,:); 
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% Calculate the modal volume 
  
epsilon_modal_volume = zeros(size(cavity.mode_index)); 
index2change = find(cavity.mode_index(:,1)==0); 
epsilon_modal_volume(index2change,1) = 1; 
index2change = find(cavity.mode_index(:,1)>0); 
epsilon_modal_volume(index2change,1) = 0.5; 
index2change = find(cavity.mode_index(:,2)==0); 
epsilon_modal_volume(index2change,2) = 1; 
index2change = find(cavity.mode_index(:,2)>0); 
epsilon_modal_volume(index2change,2) = 0.5; 
index2change = find(cavity.mode_index(:,3)==0); 
epsilon_modal_volume(index2change,3) = 1; 
index2change = find(cavity.mode_index(:,3)>0); 
epsilon_modal_volume(index2change,3) = 0.5; 
  
cavity.modalvolume = cavity.volume         ... 
            .* epsilon_modal_volume(:,1)    ... 
            .* epsilon_modal_volume(:,2)    ... 
            .* epsilon_modal_volume(:,3); 
  
% Evaluate the mode shapes at the microphone locations 
  
cavity.phi_eval =  ... 
    cos(cavity.mode_index(:,1)*pi*mic.loc_x.'/cavity.len_x) .*   ... 
    cos(cavity.mode_index(:,2)*pi*mic.loc_y.'/cavity.len_y) .*   ... 
    cos(cavity.mode_index(:,3)*pi*mic.loc_z.'/cavity.len_z); 
  
% Evaluate the mode shapes at the acoustic source location 
  
speaker.phi_eval =  ... 
    cos(cavity.mode_index(:,1)*pi*speaker.loc_x.'/cavity.len_x) .*   ... 
    cos(cavity.mode_index(:,2)*pi*speaker.loc_y.'/cavity.len_y) .*   ... 
    cos(cavity.mode_index(:,3)*pi*speaker.loc_z.'/cavity.len_z); 
  
fprintf('===End of calculation of the resonance frequencies of the cavity \n'); 
  
% Calculate the resonance frequencies of the plate 
 
n_max = 50; 
  
fprintf('===Start calculation of the resonance frequencies of the plate\n'); 
  
str_mode_index=[]; 
for ii=1:n_max 
    for jj = 1:n_max 
            str_mode_index = [ str_mode_index ; ii jj ]; 
    end; 
end; 
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% Calculate the resonance frequencies of the plate 
  
D = plate.E .* plate.thick.^3 ./ (12.*(1 - plate.mu.^2)); 
  
res_freq =  1./(2.*pi) .*  ... 
            sqrt(D ./ plate.density ./ plate.thick ) .*   ... 
            (   (str_mode_index(:,1).*pi ./ plate.len_x).^2 +   ... 
                (str_mode_index(:,2).*pi ./ plate.len_y).^2  ); 
             
% sort the resonance frequencies 
  
temp=sortrows([res_freq str_mode_index],1); 
res_freq = temp(:,1); 
str_mode_index = temp(:,2:3); 
  
% use only first 1:nstrmodes 
  
plate.res_freq = res_freq(1:nstrmodes); 
plate.mode_index = str_mode_index(1:nstrmodes,:); 
  
% Calculate the modal mass of the plate 
plate.modalmass =   plate.density          ... 
                    .* plate.thick      ... 
                    .* plate.len_x      ... 
                    .* plate.len_y      ... 
                    ./ 4 * ones(1,nstrmodes); 
         
% Calculate the force load vector in terms of modal participation 
  
force_modal = - force.amp .*   ... 
    sin(plate.mode_index(:,1).*pi.*force.loc_x ./ plate.len_x) .*   ... 
    sin(plate.mode_index(:,2).*pi.*force.loc_y ./ plate.len_y); 
  
% Calculate speaker acoustic load vector in terms of modal participation 
  
Q_speaker =     speaker.vol_velocity        ... 
                    * speaker.phi_eval; 
       
% Calculate the mode shapes at the accelerometer locations       
  
plate.psi_eval =    ... 
            sin(plate.mode_index(:,1)*pi*accel.loc_x.'/ plate.len_x) .* ... 
            sin(plate.mode_index(:,2)*pi*accel.loc_y.'/ plate.len_y); 
  
fprintf('===End of calculation of the resonance frequencies of the plate\n'); 
  
% Calculate the coupling coefficients matrix (Bij) 
  
C_nm = zeros(ncavmodes,nstrmodes); 
for nn_cav=1:ncavmodes 
    for mm_plate=1:nstrmodes 
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% This was the equation from the paper in Bokil,  
  
        if (    ... 
            (cavity.mode_index(nn_cav,1)~=plate.mode_index(mm_plate,1)) &     ... 
            (cavity.mode_index(nn_cav,2)~=plate.mode_index(mm_plate,2)) ),      ...                        
 
% For the system under investigation here, the flexible plate is mounted at $z=0$.  
  
                C_nm(nn_cav,mm_plate) =                                  ... 
                        (1./pi.^2)     ... 
                        * (                            ... 
                            plate.mode_index(mm_plate,1)     ... 
                            .* plate.mode_index(mm_plate,2)       ... 
                            )           ... 
                        .*( (-1).^(cavity.mode_index(nn_cav,1) + plate.mode_index(mm_plate,1) ) -1 ) ... 
                        .*( (-1).^(cavity.mode_index(nn_cav,2) + plate.mode_index(mm_plate,2) ) -1 ) ... 
                        ./ (    ... 
                            (cavity.mode_index(nn_cav,1).^2 - plate.mode_index(mm_plate,1).^2)     ... 
                          .*(cavity.mode_index(nn_cav,2).^2 - plate.mode_index(mm_plate,2).^2) ... 
                            );                                  
        end; 
    end; 
end;      

 
% Pre-calculate some matrices before entering the frequency loop. 
  
C_11_temp   = diag((plate.res_freq*2*pi).^2 .* plate.modalmass.'); 
C_12        = surfacearea*C_nm.'; 
C_21_temp   = surfacearea*C_nm; 
C_22_temp1  = diag(cavity.modalvolume           ... 
                .* (2*pi*cavity.res_freq).^2    ... 
                / (fluid.density*fluid.speed.^2)); 
C_22_temp2  = diag(cavity.modalvolume           ... 
                / (fluid.density*fluid.speed.^2)); 
  
% Execute the big frequency loop 

 
for ii=1:length(freq_vect), 
     
    omega = 2*pi*freq_vect(ii); 
  
    load_vec =  [                       ... 
                force_modal;              ... 
                Q_speaker*(1j*omega)   ... 
            ]; 
     
    LHS     =   [   C_11_temp-diag(plate.modalmass.')*(omega.^2)  C_12    ;   ... 
                    (omega.^2)*C_21_temp                            C_22_temp1-omega.^2*C_22_temp2    ]; 
                 
    small_q(:,ii) = inv(LHS)*load_vec;     
end; 
     
disp('End of calculations') 
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% Separate the modal participation factors 
  
struct_q = small_q(1:nstrmodes,:); 
acoust_q = small_q(nstrmodes+1:nstrmodes+ncavmodes,:); 
  
% Calculate some acoustic and structural results 
  
sq_struct_q=struct_q.^2; 
sq_acoust_q=acoust_q.^2; 
  
sum_sq_struct_q=sum(sq_struct_q); 
sum_sq_acoust_q=sum(sq_acoust_q); 
  
matlab_ape=1/(4*fluid.density*fluid.speed^2)*cavity.modalvolume.'*abs(acoust_q.^2); 
matlab_pressure = cavity.phi_eval.' * acoust_q; 
matlab_sq_p= matlab_pressure.^2; 
  
matlab_displacement = plate.psi_eval.' * struct_q; 
  
% Plot the acoustic presure at the microphone 
  
figure 
set(gca,'fontsize',16); 
p1h=semilogy(freq_vect,abs(matlab_pressure)); 
set(p1h,'linewidth',2); 
xlabel('Frequency [Hz]'); 
ylabel('Pressure [Pa]'); 
title('Acoustic Pressure at a Point in the Cavity'); 
grid 
  
% Plot the displacement at the accelerometer 
  
figure 
set(gca,'fontsize',16); 
p2h=semilogy(freq_vect,abs(matlab_displacement)); 
set(p2h,'linewidth',2); 
xlabel('Frequency [Hz]'); 
ylabel('Displacement [m]'); 
title('Plate Displacement at Drive Point'); 
grid 

 

 


