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Abstract
This thesis describes a robust and more precise navigation solution with fusion of
low-cost inertial, pressure and magnetic-field sensors and a consumer-grade GPS-
receiver using the idea of Kalman filtering. The derived algorithm implements the
physical properties of each sensor and takes advantage of vehicle movement cons-
traints with odometry assistance. An adaptive solution detects faulty measurement
data especially in urban areas with poor GPS-signal quality.
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Kurzzusammenfassung
Die Arbeit beschreibt die Entwicklung einer robusten und genauen Navigationslösung
mit Hilfe der Fusion von kostengünstigen Trägheits-, Luftdruck- und Magnetfeldsenso-
ren und einem GPS Empfänger unter Verwendung eines Kalman Filters. Der hergelei-
tete Algorithmus nutzt die physikalischen Eigenschaften der Sensoren und macht Ge-
brauch von einem Fahrzeugmodell, welches mit einer Odometrieinformation ergänzt
wird. Eine adaptive Lösung detektiert gestörte Signale insbesondere in städtischen
Gebieten mit schlechter GPS-Signalqualität.
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1 Introduction

Everywhere in the world vehicles are constantly moving from one place to another. While
doing so one essential information is always needed: the exact location. A breakthrough
technical resolution for this challenge has been the well known Global Positioning System
(GPS). Nevertheless its unreliability due to local disturbances or interruptions of satellite-
signals and technical limitations in capturing high dynamic movements are still restricting the
area of usage and accuracy performance.

1.1 Project BEEdeL

The research project BEEdeL (German abbreviation: “Bewertung des Einsatzes von Elek-
trobussen mit dezentraler Ladeinfrastuktur”) deals with the development of an autonomous
system (“data logger”) for recording movement and environmental data of multiple buses for
public transportation in Hamburg. The ultimate goal is a feasibility study for electric buses
and an efficient placement of charging stations. Since the beginning of year 2015 more than
20000 hours measurement data have been recorded.

1.2 Motivation and Requirements

Figure 1.1 shows a visualised extract of GPS measurement data in the urban area of Ham-
burg. Obviously the determined positions are inaccurate compared to the expected travel
route of a road vehicle. The data logger has also recorded information about the accelera-
tion, angular rate, magnetic field, air pressure and velocity of the odometer. To utilise this
potential for improvement describes the purpose of this thesis. Aiming at the elimination of
those GPS-errors and therefore optimisation of reliability and of the accuracy through the
inclusion of information derived from all sensors. The goal is to determine the lane where
the bus is driving, which requires an accuracy of approximately 2 meters.

1.3 Solution Approach

Based on physical laws all measurements are related to the vehicle’s position in some way.
For example the information about acceleration and angular rate enables a calculation of
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Figure 1.1: Disturbed GPS measurement data

relative distance by applying physical equations of motion. Assuming that these inertial mea-
surements were perfect, this leads to an exact position. In practise technical instruments are
not perfect and the inertial position error will grow further gradually. But this is the crucial
point to build on. Inertial measurements give a precise relative solution for short time while
GPS is more stable in the long term. These complementary error behaviours will restrict
each other and eventually result in a smaller position error.

1.4 Structure of Thesis

Chapter 3 presents the mathematical background for processing noisy measurements. It
concludes important general definitions and properties of signals providing the theo-
retical basics for understanding the following concept of Kalman filtering. An example
implementation shows the application of the Kalman filter for a simple one dimensional
model.

Chapter 4 provides an overview about navigation mathematics in 3-dimensional space and
definitions for further coordinate frames.

Chapter 5 describes the technical equipment displaying a detailed overview of the vehicle
and all sensors. An outlier detection and a least square temperature compensation al-
gorithm is developed. Furthermore the theory for the vehicle constraints and odometer
integration is provided.

Chapter 6 implements the Kalman filter algorithm in three dimensional space. A concep-
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tual architecture of an extended Kalman filter is gradually developed. This includes
the derivation of the system and measurement models and the configuration of the
Kalman filter. A 2D-calibration algorithm for the magnetometer is evolved followed by
the innovation filter technique which enables a robust solution for handling outliers in
measurement. The chapter concludes with the implementation in software.

Chapter 7 evaluates the results of the algorithm starting with the position solutions which
are compared to a reference generated from Google Maps and a height database.
Further the innovation filtering and the ability of smoothing outages are illustrated. At
last other useful estimates from the algorithm are analysed.

Chapter 8 summarizes the results of this thesis and suggest ideas for further research.



2 List of Abbreviations

BEEdeL German abbreviation: “Bewertung des Einsatzes von Elektrobussen mit
dezentraler Ladeinfrastruktur”

CTM coordinate transformation matrix

ECEF Earth centered fixed frame

ECI Earth centered intertial frame

GPS Global Positioning System

HDOP horizontal dilution of precision

IAE innovation based adaptive estimation methods

IMU inertial measurement unit

INS inertial navigation system

LSB least significant bit

MEMS microelectromechanical system

NED North-East-Down-frame

NMEA National Marine Electronics Association

ODR output data rate

PSD power spectral density function

RMS root mean sqaure

RTS Rauch Tung Striebel

SI International System of Units

SPS Standard Positioning Service

VDOP vertical dilution of precision

WGS84 World Geodetic System in 1984
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Information is carried within every single physical interaction or state. For some quantities it
is important to be known exactly e.g. for the purpose of generating useful data. Real sensors
of technical instruments are always exposed to undesirable quantities like thermal noise or
instrument biases. This chapter gives a theoretical background of how to separate the best
estimate of true information from those noisy measurements.

Measurement
equipment

Noise +
instrument

biases

Physical
quantities

Signal
processing

NNN

XXX

Real world

zzz1

...

zzzn

Precise data

Figure 3.1: Overview measurement processing chain

3.1 Signals

3.1.1 Deterministic and Random Signals

Mathematically two types of signals can be distinguished (Figure 3.2). When a signal is
predictable for the timespan of interest it is called deterministic. Consequently a signal is
called random or non-deterministic, when its value is not exactly predictable for a given point
in time [3, p.57-59].

Physical processes like vehicle movements are of deterministic nature if precise informa-
tion about all influences is available. In practise signals describing those physical movements
are a combination of deterministic signals when the control input is known and random sig-
nals including unpredictable effects from winds, vibration, wheel slipping etc.
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Figure 3.2: Types of signals

3.1.2 Properties of Random Signals

Obviously deterministic signals have a big advantage as they are exactly defined with func-
tions for every point in time. This enables analysts to work with them comfortably. Likewise it
is desired to achieve a feasible definition for random signals too.

Probability distribution

A way to describe a chance is the concept of random variables: Every physical quantity
needs to be assigned to a meaningful rational number for further mathematical processing.
By counting the possible outcomes of some random experiment a statistically distribution is
created in form of a histogram.

-2 -1.5 -1 -0.5 0 0.5 1 1.5
0

50

100

150

200

250

Figure 3.3: Histogram and normal distribution fit

Processes in nature are usually described by a continuous random variable as they have
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an infinite number of different outcomes. Then the histogram is created by assigning areas
of the outcomes to several discrete values which are called “bins”.

In many situations the profile of the histogram matches to some special probability density
functions. This has been the motivation when remembering the lack of a functional definition!
One function fitting a lot of natural random experiments is called Gaussian or Normal density
function. It is exactly defined by its average value µ and variance σ2.

fX(x) =
1√

2πσX
· exp

[
−(x− µX)2

2σ2
X

]
, X ∼ N(µX , σ

2
X) (3.1)

Looking at the prior random 1st-order process all points in the timespan of interest could be
defined as a set of random variables (Xt1 , Xt2 , ..., Xtn) with their variate probability densities
fXt1 , fXt1Xt2 , ..., fXt1Xt2 ...Xtn in terms of ordinary histograms or matching special functions.
Theoretically an infinite number of equal implementations has to be build up and sampled
to gather enough information for this general approach. However, this would take infinitely
long.

Stationary and Ergodic processes

In order to handle the description of signals in a feasible way, two properties are important.

A process is called strict-sense stationary when all its variate probability densities fXt1 ,
fXt1Xt2 , ..., fXt1Xt2 ...Xtn are time invariant [3, p.63]. In 3.1.2 a more practical description in
form of wide-sense stationarity is proposed.

The definition of ergodicity is dealing with the problem of infinite implementations. A
process is said to be ergodic if the average taken at one point of time through these imple-
mentations (ensemble average) equals time averaging over one implementation. Fulfilling
this condition allows the evaluation of a single signal to determine the distribution character-
istics.

An example for a stationary non ergodic process is a random instrument bias, which is
constant after initialisation, but changing with every reset [3, p.64].

Mean Value, Mean Square Value and Variance

For a random variable X the mean value (1st moment of X) is defined as follows:

E(X) =

∫ ∞
−∞

xfX(x)dx (3.2)

The subsequent properties are valid when the process X is stationary and ergodic. For
physical noise processes these conditions can be rarely justified. Thus, heuristic knowledge
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is used and simple assumptions are made quite often [3, p.64]. The time average (mean
value) for a random signal X(t) is defined as

E[X(t)] = µX = lim
T→∞

1

2T

∫ T

−T
X(t)dt

(3.3)

The variance (2nd moment of X) is defined as

V [X(t)] = σ2
X = lim

T→∞

1

2T

∫ T

−T
[X(t)− µX ]2 dt (3.4)

Practically the time for calculating the the mean and variance is restricted. Therefore the
calculation of the average from a stationary process is more like a reduction of its variance
until a sufficient threshold σX̄ is reached. In section 3.1.3 the relation for the variance and
the averaging time T is derived.

Correlation

Taking a closer look at the random signal of example 3.2b one can see some dependence
between adjoining values. The mean value or variance of the process do not capture this
behaviour. A powerful tool for describing the degree of similarity for one signal with itself or
another signal at two different times is the correlation function.

RX(t1, t2) = E[X(t1)X(t2)] =

∫ ∞
−∞

∫ ∞
−∞

xt1xt2fXt1Xt2 (xt1 , xt2)dxt1dxt2 (3.5)

A process is wide-sense stationary if the mean-valueE[X(t1)] and varianceE[(X(t1)−µ)2]
are independent of t1 and the autocorrelation depends only on the time difference τ = t2−t1
[3, p.68]. In that case

RX(τ) = E [X(t)X(t+ τ)] = lim
T→∞

1

2T

∫ T

−T
X(t)X(t+ τ)dt = CX(τ) + µµT (3.6)

When evaluating a limited discrete sequence the auto-covariance function is often used to
get rid of the mean value [9, Appendix B.42-44]:

CX(τ) = E[(X(t)− µX)(X(t+ τ)− µX)] = RX(τ)− µµT (3.7)

The cross-correlation function is defined as

RXY (τ) = lim
T→∞

1

2T

∫ T

−T
X(t)Y (t+ τ)dt (3.8)
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Figure 3.4: Random 1st order process autocorrelation

Power Spectral Density

Obviously the autocorrelation is an indicator for the rate of change. This suggests a promising
connection to the frequency domain and it is. The result of applying the Fourier Transforma-
tion on the autocorrelation is the power spectral density function (PSD) which is only valid for
stationary ergodic signals.

SX(jω) = F{RX(τ)} =

∫ ∞
−∞

RX(τ)e−jωτdτ

RX(τ) = F{SX(jω)}−1 =
1

2π

∫ ∞
−∞

SX(jω)ejωτdω

(3.9)

Within the scope of measurements only positive frequencies can be displayed. Due to energy
conservation the single spectrum comprises twice the amplitude of the double sided PSD [9,
Appendix B, p.17].

S+
X(jω) =

{
2SX(jω), f > 0
SX(jω), f = 0

(3.10)

3.1.3 Gaussian White Noise Process

A fundamental zero mean random stationary process w(t) is white noise. It is totally un-
correlated and by definition jumping around infinitely fast and high [3, p.75]. As a result the
autocorrelation is defined by the delta-distribution and the PSD by a constant.

Rw(τ) = E[wtwt+τ ] = AS · δ(τ) c sS+
w (jω) = AS · 1 (3.11)
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Gaussian white noise is described by a sequence of zero mean normal distributed random
variables with infinite variance. If the spectral amplitude AS = 1, it is called unity white
noise wu.

The whole power is calculated by integrating the PSD-spectrum and results in the auto-
correlation value at τ = 0 (Parseval’s theorem).

Pw =
1

2π

∫ ∞
−∞

SX(jω)dω = Rw(0) = σ2
w =∞ (3.12)

In many data sheets the random characteristic is written down in form of [units]√
Hz

describing

the square root
√
AS = RS of a constant continuous white-noise PSD-function. In reality no

white noise is existing as all physical systems are band limited and no infinite source of power
can be provided. Therefore in real applications band limited white noise is assumed.

Swb =

{
AS, |ω| ≤ ωb
0, |ω| > ωb

(3.13)

To prevent aliasing effects the sampling-rate has to be more than twice as high as the high-
est frequency in the signal (Nyquist-Shannon theorem). This can be accomplished with
an analogue filter limiting the bandwidth of a signal before the sample and hold circuit [18,
p.114/115]. When the bandwidth of a limited white noise signal by far exceeds the cut-off
frequency of this filter (ωb > 100fcutoff , error < 1%)[3, p.110/111] or the sampling rate [9,
Appendix B, p.18] pure white noise can be assumed in further analysis steps. The spec-
ification As in combination with the bandwidth B in [Hz] of the filter allows an estimated
calculation of the standard deviation σ2

w. From (3.12) the variance is determined by integrat-
ing over the whole spectrum. The bandwidth of a filter limits the integration interval for the
white noise spectrum. Thus,

σ̂2
w =

1

2π

∫ 2πB

−2πB

Sw(ω)dω =

∫ B

−B
Sw(f)df =

∫ B

0

S+
w (f)df = AS ·B (3.14)

Conversely it is possible to determine As from a sampled sequence of white noise which is
quite useful for later Kalman filter configuration.

The following example demonstrates the derived theory for the noise of a gyroscope.
From the data sheet a noise density RS = 0.01

◦/s√
Hz

is given. The noise gets reduced at
the output by a configured digital low path filter with cut-off frequency fg = B = 12.5Hz.
The PSD and the filtered noise in time domain are illustrated in figure 3.5 using a high order
low-pass filter in Matlab. Applying (3.14) leads to an estimated standard deviation of σ̂ =
RS ·
√
B = 0.0388

◦

s
which is close to the true standard deviation of σ = 0.0391

◦

s
calculated

from the time domain filtered noise signal.
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Figure 3.5: Noise in time and frequency domain

Impact of averaging time for white noise variance

In (3.3) the mean value gets calculated by averaging about an infinite amount of time. In
reality no infinite data can be provided for this approach. Thus, the averaging time is lim-
ited resulting in a not perfect mean in mathematical sense and still having some variance.
The following derivation clarifies the relationship between the accuracy of the mean and the
averaging time T of averaged white noise w̄(t).

σ2
w̄ = E[w̄(t)w̄(t)] = E

[
1

T

∫ T/2

−T/2
w(t′)dt′

1

T

∫ T/2

−T/2
w(t′′)dt′′

]

=
1

T 2

∫ T/2

−T/2

∫ T/2

−T/2
E[w(t′)w(t′′)]dt′dt′′

=
1

T 2

∫ T/2

−T/2

∫ T/2

−T/2
Asδ(t

′ − t′′)dt′dt′′

=
1

T 2

∫ T/2

−T/2
Asdt

′′

=
1

T
As

(3.15)

As a result the variance drops by 1
T

for averaged white noise. This should always be remem-
bered when working with limited means.
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3.1.4 Gauss Markov Process

Quite often physical noise is exponentially correlated like in 3.4. This process is then called
a Gauss Markov (or first order autoregressive process) [3, p.77].

RX(τ) = σ2e−β|τ | c sSX(jω) =
2σ2β

ω2 + β2
(3.16)

SX(jω) =
2σ2β

ω2 + β2
(3.17)

A shaping filter is able to create a Gauss Markov process X(t) out of unity white noise w(t).
The transfer-function for the filter is determined by the usage of the PSD and the Wiener-
Khintchine-theorem [18, p.213]:

SX(jω) = G(s) ·G(−s) =
2σ2β

ω2 + β2

G(s) =
X(s)

W (s)
=

√
2σ2β

s+ β
with ωcutoff = β(4σ2 − β)

(3.18)

The inverse LaPlace transformation gives the differential equation for a Gauss Markov pro-
cess.

ẋ(t) = −βx(t) +
√

2σ2βw(t)

= − 1

τc
x(t) + σ

√
2

τc
w(t)

(3.19)

The correlation time τc defines a window of time in which the values of a signal are dependent
[8, p.127]. The example noise sequence 3.2b has a correlation time (Figure 3.4) of about 10
seconds.

The Gauss Markov process is stationary and therefore often used for modelling slow
varying bounded sensor errors e.g. the change of pressure depending on weather.

3.1.5 Random Walk

The random walk is a sequence of random steps. Continuously these steps will be infinitesi-
mally small mathematically resulting in an integrator driven by white noise [3, p.84].

X(t) =

∫ t

0

w(t′)dt′ (3.20)
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The mean of the process is zero but it is non-stationary due to its time dependent variance.

σ2(t) = E
[
(X(t)− µ)2

]
= E

[
X(t)2

]
= E

[∫ t

0

w(t′)dt′
∫ t

0

w(t′′)dt′′
]

=

∫ t

0

∫ t

0

E[w(t′)w(t′′)]dt′dt′′ =

∫ t

0

∫ t

0

ASδ(t
′ − t′′)dt′dt′′

=

∫ t

0

ASdt
′′ = tAS

(3.21)

Figure 3.6 visualizes the development of the standard deviation σ which is analogue to the
error in velocity resulting from the noise in an acceleration signal. Also many other processes
can be approximately modelled by a random walk with the advantage of tuning only one
parameter AS compared to two of the Gauss Markov process.

0 10 20 30 40 50 60 70 80 90 100

Time [sec]

-20

-10

0

10

20

Standard deviation of 1σ

Figure 3.6: Random walk driven by white noise with As = 1

3.1.6 Random Constant

A random constant is similar to a random walk but without white noise as an input. Instead
it has an initial uncertainty σ. The autocorrelation function is constant. Static states can be
modelled by this process e.g. a lever arm of a rigid body.

3.2 Derivation of Kalman Filter Equations

In this chapter the general purpose of evaluating noisy measurement data has been intro-
duced. The central problem is how to separate signals containing the information about
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specific quantities from additive disturbances like noise or biases [3, p.141]. The Kalman
Filter solves this in an optimal way using physical connections between desired information
and technical properties of the measurement equipment. It takes advantage of simple Gaus-
sian white noise properties and minimises the mean-squared estimation error (Covariance)
from the estimated states (Mean) in a linear dynamic system with white system and white
measurement noise [8, p.1]. Especially when using different measurement techniques faulty
parts of the signals will be observable and can be removed. It is a Bayesian estimation
technique [9, p.82]. Figure 3.7 illustrates the principle of Kalman filtering to simulate the real
world systems and measurements with linear system and sensor models.

System
dynamics

Random disturbances

Control input

Initial conditions

Sensors

Sensor noise

Sensor models

System
model for
Estimates

Covariances

Initial conditions

Noise model

Kalman gain

+

···

+

www

xxx(t0)

x̂xx(t0)

uuu

xxx

vvv

zzz

δδδzzz

δδδx̂xx+

x̂xx+

QQQ
x̂xx−

PPP− HHH,RRR

ẑzz−

PPP+

KKK

Real world
Kalman filter

Figure 3.7: Real systems and modelled systems in a Kalman filter (inspired by [8, p.38])

3.2.1 State Space Modeling

All physical states are the result of changed initial conditions. Differential equations express
this fact in a mathematical way. A general time varying continuous-time model represents all
possible equations.

ẋxx(t) = fff(t, xxx(t), uuu(t)) +GGG(t)www(t)

zzz(t) = hhh(t, xxx(t), uuu(t)) + vvv(t)
(3.22)
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where:

xxx: state vector (n x 1)

fff : non-linear system function

www: system noise vector (n x 1)

GGG: system noise distribution matrix (n x n)

zzz: measurement vector (m x 1)

hhh: non-linear measurement function

vvv: measurement noise vector (m x 1)

This kind of dynamic state model can contain non-linear properties which are difficult to
handle in analysis and calculations. Therefore further methods make use of a linear time
variant state space model. The control input uuu is used for noiseless system inputs. In this
thesis all signals are disturbed by noise and rather handled as measurements. Thus uuu is
neglected in further steps.

ẋxx(t) = FFF (t)xxx(t) +GGG(t)www(t)

zzz(t) = HHH(t)xxx(t) + vvv(t)
(3.23)

where:

xxx: state vector (n x 1)

FFF : system matrix (n x n)

www: system noise vector (n x 1)

GGG: system noise distribution matrix (n x n)

zzz: measurement vector (m x 1)

HHH : measurement matrix (m x n)

vvv: measurement noise vector (m x 1)
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3.2.2 Discrete System and Measurement Model

Continuous information require an infinite amount of storage. No digital system is able to
achieve this. Therefore the continuous model 3.23 is transformed into a discrete system.
Many Kalman-Filter books do not derive the following exponential approach [24, p.5], which
is fundamentally important for all further steps. The system matrix FFF and system noise
distribution matrix GGG will be assumed constant during the propagation interval τ = tk −
tk−1.

ẋxx(t) = FFFxxx(t) +GGGwww(t)

ẋxx(t)− FFFxxx(t) = GGGwww(t)

e−FFFtẋxx(t)− e−FFFtFFFxxx(t) = e−FFFtGGGwww(t)

d

dt
e−FFFtxxx(t) = e−FFFtGGGwww(t)∫ tk

tk−1

d

dτ
e−FFFτxxx(τ)dτ =

∫ tk

tk−1

e−FFFτGGGwww(τ)dτ

e−FFFtkxxx(tk)− e−FFFtk−1xxx(tk−1) =

∫ tk

tk−1

e−FFFτGGGwww(τ)dτ

e−FFFtkxxx(tk) = e−FFFtk−1xxx(tk−1) +

∫ tk

tk−1

e−FFFτGGGwww(τ)dτ

xxx(tk) = eFFF ·(tk−tk−1)xxx(tk−1) +

∫ tk

tk−1

eFFF ·(tk−τ)GGGwww(τ)dτ

(3.24)

Finally a solution emerges as the sum of an initial condition part and particular solution also
called driven response part [3, p.123].

xxx(tk) = φφφ(tk, tk−1)xxx(tk−1)︸ ︷︷ ︸
Initial condition solution

+

∫ tk

tk−1

φφφ(tk, τ)GGG(τ)www(τ)dτ︸ ︷︷ ︸
Particular solution wwwk−1

(3.25)

The transition matrix φφφk−1 originates from the initial condition part where the system matrix
is FFF = FFF (tk− τs) = FFF k−1. The exponential function with matrix argument can be evaluated
by its power-series. For small τs in most cases a first order approximation (truncation after
the second addend) is sufficient and sometimes exact.

φφφk−1 = eFFFk−1τs =
∞∑
r=0

FFF r
k−1τs
r!

≈ III + FFF k−1τs (3.26)
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For the white noise vector wk−1 the system noise distribution matrix is defined as GGG =
GGG(tk − τs) = GGGk−1.

wwwk−1 =

∫ tk

tk−τs
φφφ(tk+1, τ)GGGk−1www(τ)dτ (3.27)

The measurements are sampled so the measurement vector from 3.23 can be directly dis-
cretised with t = tk. Then the whole sampled continuous-time system is given by

xxxk = φφφk−1xxxk−1 + wwwk−1

zzzk = HHHkxxxk + vvvk
(3.28)

where:

xxxk: state vector (n x 1)

φφφk−1: system matrix (n x n)

wwwk−1: system noise vector (n x 1)

zzzk: measurement vector (m x 1)

HHHk: measurement matrix (m x n)

vvvk: measurement noise vector (m x 1)

3.2.3 Phases of Kalman Filter Algorithm

The algorithm is implemented in a closed loop running through all desired points in time
illustrated in figure 3.8. It can be divided into three phases. The process starts with initial
conditions x̂xx−0 and PPP−0 .

Kalman Gain

As the Kalman gain represents the fundamental concept of Kalman filtering its full derivation
follows in the next steps. The notation originates from two books [3, p.144/145] and [9,
p.82-103] combining most of the advantages. Some steps are explained in greater detail.

The basic idea is the assumption of white uncorrelated noise for the system noise wwwk and
measurement noise vvvkkk.

E[wwwkwwwi] =

{
QQQk, i = k

000, i 6= k

E[vvvkvvvi] =

{
RRRk, i = k

000, i 6= k

E[wwwkvvvi] = 000 ∀ i, k

(3.29)
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Update propagated estimates
x̂xx+
k = x̂xx−k +KKKk(zzzk −HHHkx̂xx

−
k )

PPP+
k = (III − KKKkHHHk)PPP

−
k

Compute Kalman gain

KKKk =
PPP−k HHH

T
k

HHHkPPP
−
k HHH

T
k +RRRk

x̂xx−0 , PPP
−
0

Propagation
x̂xx−k = φφφk−1x̂xx

+
k−1

PPP−k = φφφk−1PPP k−1φφφ
T
k−1 +QQQk−1

Measurements
zzzk

Output
x̂xx+
k , PPP

+
k

Figure 3.8: Kalman filter loop [3, p.147]

In this section an optimal solution for weighting between propagated system states x̂xx−k and
noisy measurements zzzk with a factor KKKk is derived.

x̂xx+
k = x̂xx−k +KKKk(zzzk −HHHkx̂xx

−
k )

= x̂xx−k +KKKkδzzz
−
k

(3.30)

where:

x̂xx+
k : updated state vector

x̂xx−k : predicted state vector

KKKk: linear weighting factor of measurements called Kalman gain

δzzz−k : measure innovation

The updated error covariance PPP+
k represents the Gaussian squared standard deviation for

the true state xxxk around its mean value given by the updated state state vector x̂xx+
k .

eee+
k = xxxk − x̂xx+

k (3.31)

PPP+
k = E[eeekeee

T
k ] = E[(xxxk − x̂xx+

k )(xxxk − x̂xx+
k )T ] (3.32)

The same applies for the predicted state vector.

eee−k = xxxk − x̂xx−k (3.33)
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PPP−k = E[eee−k eee
−T
k ] = E[(xxxk − x̂xx−k )(xxxk − x̂xx−k )T ] (3.34)

Substituting from 3.30 and 3.28 gives

PPP+
k = E

[(
xxxk −

(
x̂xx−k +KKKk(zzzk −HHHkx̂xx

−
k )
)) (

xxxk −
(
x̂xx−k +KKKk(zzzk −HHHkx̂xx

−
k )
))T]

= E
[(
xxxk −

(
x̂xx−k +KKKk(HHHkxxxk + vvvk −HHHkx̂xx

−
k

)) (
xxxk −

(
x̂xx−k +KKKk(HHHkxxxk + vvvk −HHHkx̂xx

−
k

))T]
= E

[(
xxxk − x̂xx−k −KKKkHHHk(xxxk − x̂xx−k )−KKKkvvvk

) (
xxxk − x̂xx−k −KKKkHHHk(xxxk − x̂xx−k )−KKKkvvvk)

)T]
= E

[(
(III −KKKkHHHk)(xxxk − x̂xx−k )−KKKkvvvk

) (
(III −KKKkHHHk)(xxxk − x̂xx−k )−KKKkvvvk

)T]
= E

[(
(III −KKKkHHHk)(eee

−
k )−KKKkvvvk

) (
(eee−k )T (III −KKKkHHHk)

T − vvvTkKKK
T
k

)]
= E

[
(III −KKKkHHHk)eee

−
k eee
−T
k (III −KKKkHHHk)

T − (III −KKKkHHHk)eee
−
k (vvvTkKKK

T
k )

−KKKkvvvkeee
−
k T (III −KKKkHHHk)

T +KKKkvvvkvvv
T
kKKK

T
k

]
(3.35)

The predicted state vector error eee−k is uncorrelated with the measurement noise (3.29).
Therefore

PPP+
k = E

[
(III −KKKkHHHk)eee

−
k eee
−T
k (III −KKKkHHHk)

T
]

+ E
[
KKKkvvvkvvv

T
kKKK

T
k

]
= (III −KKKkHHHk)E

[
eee−k eee

−T
k

]
(III −KKKkHHHk)

T +KKKkE
[
vvvkvvv

T
k

]
KKKT

k

= (III −KKKkHHHk)PPP
−
k (III −KKKkHHHk)

T +KKKkRkKKK
T
k

= PPP−k −KKKkHHHkPPP
−
k − PPP

−
kHHH

T
kKKK

T
k +KKKk

(
HHHkPPP

−
kHHH

T
k +RRRk

)
KKKT

k

(3.36)

The state variance is given by the diagonal of PPP+
k . A minimization procedure (3.38) of this

diagonal will result in the optimal Kalman gain with help of two matrix differentiation formu-
las.

d

dAAA
[diag(AAABBB] = BBBT (AAA,,, BBB = n× n)

d

dAAA

[
diag(AAACCCAAATTT

]
= 2AAACCC (CCC = symmetric)

(3.37)

d

dKKKk

[
diag(PPP+

k )
]

= 0

d

dKKKk

[
diag

(
PPP−k −KKKkHHHkPPP

−
k − PPP

−
kHHH

T
kKKK

T
k +KKKk

(
HHHkPPP

−
kHHH

T
k +RRRk

)
KKKT

k

)]
= 0

−2(HHH−k PPP k)
T − 2KKKk(HHHkPPP

−
kHHH

T
k +RRRk) = 0

(3.38)
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Solving equation 3.38 for the Kalman gain leads to

KKKk =
PPP−kHHH

T
k

HHHkPPP
−
kHHH

T
k +RRRk

(3.39)

Update Step

The update for the state vector has been the first approach for the Kalman Gain calculation.
Repeating 3.30

x̂xx+
k = x̂xx−k +KKKk(zzzk −HHHkx̂xx

−
k )

= x̂xx−k +KKKkδzzz
−
k

Substituting KKKk from 3.39 into equation 3.36 gives the update formula for the state-
covariance matrix

PPP+
k = PPP−k −KKKkHHHkPPP

−
k − PPP

−
kHHH

T
kKKK

T
k +

(3.39): PPP−k HHH
T
k =KKKk(HHHkPPP

−
k HHH

T
k +RRRk)︷ ︸︸ ︷

KKKk

(
HHHkPPP

−
kHHH

T
k +RRRk

)
KKKT

k

= PPP−k −KKKkHHHkPPP
−
k − PPP

−
kHHH

T
kKKK

T
k + PPP−kHHH

T
kKKK

T
k

= (III −KKKkHHHk)PPP
−
k

(3.40)

Propagation Step

During the propagation the prior state estimate is predicted by the physical system imple-
mented in the transition matrix for the time interval τs. When working with closed loop feed-
back error states 3.41 can be skipped.

x̂xx−k = φφφk−1x̂xx
+
k−1 (3.41)

The prior error covariance is always predicted [9, p.99].

PPP−k = E
[
(x̂xx−k − xxxk)(x̂xx

−
k − xxxk)T

]
= φφφk−1PPP k−1φφφ

T
k−1 +QQQk−1

(3.42)

A pracitcal approach for the state matrix has been proposed in 3.26. The analytical and
practical determination of the driven noise covariance matrix QQQk−1 is even more rough.

By substituting 3.27 for the discrete white noise, the noise covariance matrix is generally
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defined as

QQQk−1 = E
[
wwwk−1www

T
k−1

]
=

∫ tk

tk−τs

∫ tk

tk−τs
φφφ(tk−1, t

′)GGG(t′)E[www(t′)wwwT (t′′)]GGGT (t′′)φφφT (tk−1, t
′′)dt′dt′′

(3.43)

If the system noise is white (3.11) applying E[www(t′)wwwT (t′′)] = AAASSSδ(t
′ − t′′) gives

QQQk−1 =

∫ tk

tk−τs
φφφ(tk−1, t

′)GGG(t′)AAASSSGGG
T (t′′)φφφT (tk−1, t

′′)dt′ (3.44)

The off diagonal elements of the matrix AAASSS are zero. As a further simplification the time
propagation over the transition matrix can be neglected resulting in the so-called Impulse
approximation [9, p.99].

QQQk−1 ≈ QQQ′k−1 = GGGk−1AAASSSGGG
T
k−1τs (3.45)

Another more accurate numerical approach to determine the discrete transition matrix φφφk
and system noise covariance matrix QQQk is the Van Loan method [15].

3.2.4 Backward Smoother

So far only the information of measurements prior to the time of the estimated state vector
has been used. Smoothing deals with the optimal estimation problem considering subse-
quent information in time. Mainly three types of smoothing techniques are applied depending
on the degree of real time requirements and purpose [8, p.241].

Fixed Point Smoother optimize the estimate for one point in time by using measurement
data before and after tfixed resulting in a function as a predictor for t < tfixed,a filter
for t = tfixed and a smoother for t > tfixed. The application is mainly the estimation of
initial conditions for stationary states e.g. the initial fine alignment of a precise inertial
navigation system by measuring the Coriolis-force [8, p.266].

Fixed-Interval Smoothers give the best smoothed estimate by evaluating all data in a de-
fined time-interval e.g. using the Rauch Tung Striebel (RTS)-algorithm [11]. They are
quite valuable for post-processing applications [8, p.244]. In this thesis an interval
smoother is implemented.

Fixed-Lag Smoothers are running in real-time giving an smoothed estimate using all mea-
surements of the time interval tstart ≤ tmeas ≤ test + ∆tlag [8, p.256]. The RTS-
algorithm is adaptable for this purpose. An even better approach is to augment the
state vector [xxxk] by a tuple of delayed state vector estimates [xxxk−1, xxxk−2, ...xxxk−N ].
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This leads to a form which can be processed by the previous derived Kalman algo-
rithm giving estimates in real time which will be sequentially optimized with further
measurements [3, p.214-216].

The RTS-algorithm starts after a complete run of a Kalman filter which has pro-
cessed measurements and stored the following vectors and matrices for each iteration:
xxx+
k , xxx

−
k , PPP

+
k , PPP

−
k , φφφk. When these information are available 3.46, 3.47 and 3.48 are pro-

cessed backwards from kN , kN−1...k0 noting that processing 3.48 is not required for the
smoothed estimate x̂xxsk.

Filter

Smoother

0

x̂xx+0

x̂xxs0

1

x̂xx+1

x̂xxs1

2

x̂xx+2

x̂xxs2

. . .

x̂xx+...

x̂xxs...

N − 1

x̂xx+N−1

x̂xxsN−1

N

x̂xx+N

x̂xx+N

Figure 3.9: Discrete fixed interval smoothing (inspired by [3, p.208])

AAAk =
PPP+
k φφφ

T
k

PPP−k+1

(3.46)

x̂xxsk = x̂xx+
k + AAAk(x̂xx

s
k+1 − x̂xx

−
k+1) (3.47)

PPP s
k = PPP+

k + AAAk(PPP
s
k+1 − PPP

−
k+1)AAATk (3.48)

3.3 Simple Example: One Dimensional Movement

After all these general definitions a simple example will demonstrate the effect of Kalman
filtering. Additionally the concept of error states is introduced.
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p(t)

v(t)
C2C1

Figure 3.10: One-dimensional rail vehicle with instruments

3.3.1 Setup Description

The movement of a straight forward driving rail vehicle can be described with one dimensional
equations, neglecting all kinds of friction.

dp(t)

dt
= v(t)

dv(t)

dt
= a(t)

(3.49)

Two complementary low-cost measurement systems are used:

• A Laser sends out a light impulse towards a mirror and starts a stopwatch simulta-
neously. A light-sensitive receiver detects the reflected signal and evaluates the time.
The distance to the mirror is calculated by multiplying the speed of light and the passed
time divided by two.
This technique is similar to the principle of ranging measurements of GPS-Receivers
and belongs to the category of position fixing instruments.

• A single accelerometer measures the force on one conducting plate which is mounted
with springs between two other plates. When the vehicle accelerates forward the in-
termediate plate will react inertially to the force defined by Newton’s laws of motion.
Therefore the gaps between the plates will vary temporally and likewise the capacities
C1, C2. Electric devices can detect the size of changed capacity which is analogue to
the acceleration. Due to temperature variations and fabrication inaccuracies the mid-
dle plate is constantly shifted to the left which is called bias. This results in a constant
acceleration error.
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An accelerometer is an inertial sensor and belongs to the class of Dead Reckoning
instruments [9, p.5] as it can only measure the change in position.

3.3.2 Concept of Error State Kalman Filter and Closed Loop
Approach

With the knowledge of previous sections one would probably choose the state variables
for this example as the position, velocity and acceleration connected by linear differential
equations of 3.49.

ẋxxtotal(t) =

ṗv̇
ȧ

 =

0 1 0
0 0 1
0 0 0


︸ ︷︷ ︸

FFF total

pv
a


︸︷︷︸
xxxtotal

+GGGtotal(t)wwwtotal(t) (3.50)

Additionally states describing the measurement system, in this case the accelerometer bias,
have to be modelled. A random walk model with very low noise input wbias, accounting
for offset drifts due to temperature changes, is able to model the bias characteristics in the
system.

ẋxxerror(t) =

 δṗδv̇
δḃa

 =

0 1 0
0 0 1
0 0 0


︸ ︷︷ ︸

FFF error

 δpδv
δba


︸ ︷︷ ︸
xxxerror

+

0 0
0 0
0 1


︸ ︷︷ ︸
GGGerror

[
wbias

]︸ ︷︷ ︸
wwwerror

(3.51)

Equation 3.50 and 3.51 can be combined to

ẋxxtotal(t) =

[
ẋxxtotal
ẋxxerror

]
=

[
FFF total 000

000 FFF error

] [
xxxtotal
xxxerror

]
+

[
GGGtotal 000

000 GGGerror

] [
wwwtotal
wwwerror

]
(3.52)

Integrating the acceleration and calculating the laser-distance leads to four measurements.

zzzacc(t) =

zpzv
za

 =
[
III3 III3

] [xxxtotal
xxxerror

]
+ vvvacc

zp,laser =
[
1 0 0 0 0 0

] [xxxtotal
xxxerror

]
+ vlaser

(3.53)

In doing so the movement would be described by a Gaussian random variable. Since its
random characteristic is constantly changing a manageable process for vehicle’s motion is
difficult to find. For this kind of situation the “Go Free” concept is useful: States can be
relieved of any assumption about their statistics if measurement redundancy is given (e.g.
complementary sensors). This can be done by boosting the noise covariance QQQ with a
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high amount of system noise for the total states [3, p.284-285]. Another approach with the
same effect is the Error-State Kalman filter which makes use of the differencing-out idea [3,
p.290].

The error system model is almost given by equation 3.51, which is a quarter of the matrix-
size compared to the total system. Instead of four there will be one measurement containing
only the error quantities.

δz = zp,laser − ẑp,acc = zp,laser − p̂ = ptrue + δplaser − (ptrue − δp) = δp+ δplaser (3.54)

Figure 3.11 visualises the new role of the accelerometer as a total state extension algorithm
(later called reference system) for the error state Kalman filter. This setting is more efficient
and can be more precise in case of non-linear systems compared to a total state Kalman
filter. Additionally the accelerometer solution won’t drift due to the closed loop corrections.

Error state
Kalman filter

Total state
algorithm

++

-

Corrections

ẑp,acc = p̂acc(t) = p(t)− δp(t)

δz =

δp(t) + δplaser(t) δp̂(t)

p̂(t) =

p(t)− δp(t) + δp̂(t)

zp,laser =

p(t) + δplaser(t)

Figure 3.11: Error state Kalman filter integration

The Kalman filter separates the error δp(t) of the accelerometer from the residual mea-
surement δz (later called measurement innovation) containing both errors. The system noise
must be extended by wnoise to consider the missing total state acceleration measurement
noise vacc which leads to the final error state system model.

δδδẋxx(t) =

 δṗδv̇
δḃa

 =

0 1 0
0 0 1
0 0 0


︸ ︷︷ ︸

FFF

 δpδv
δba


︸ ︷︷ ︸
δδδxxx

+

0 0
1 0
0 1


︸ ︷︷ ︸

GGG

[
wnoise
wbias

]
︸ ︷︷ ︸

www

(3.55)

zp,laser(t)− p̂−acc(t) =
[
1 0 0

]︸ ︷︷ ︸
HHH

xxx+ vvvlaser (3.56)
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3.3.3 Discrete algorithm

The continuous system 3.55 is transformed into its discrete counterpart by applying 3.26.

E[δδδxxxk] = δδδx̂xxk =

 δpkδvk
δbb,k

 =

1 τs 0
0 1 τs
0 0 1


︸ ︷︷ ︸

φφφk−1

 δpk−1

δvk−1

δba,k−1


︸ ︷︷ ︸

δδδx̂xxk−1

(3.57)

The laser-range equipment uses a low-cost components. Therefore the noise in the calcu-
lated position is large resulting in a standard deviation of σp = 100m.

δz−k = zp,k − p̂−k =
[
1 0 0

]︸ ︷︷ ︸
HHHk

δδδxxxkkk Rk = σ2
p (3.58)

The noise of the accelerometer from the data sheet is specified by RS,noise = 220 µg√
Hz

=

0.0022m/s
2

√
Hz

. In order to give the bias state some stochastic flexibility a tiny Root-PSD-level

RS,bias = 1µm/s
2

√
Hz

is assumed. This results in a very slow growing variance of the bias state
with respect to time to account for temperature drifts. With the impulse approximation (3.45)
the noise covariance matrix results in

QQQk−1 =

0 0 0
0 AS,noise 0
0 0 AS,bias

 τs AS = R2
S (3.59)

A flow chart diagram 3.12 is created combining all previous equations. Afterwards a script
processes sub sequentially all steps of the flow chart diagram. In this thesis Matlab is used
as the software environment, because it is quite efficient in programming matrices calcula-
tions.
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Figure 3.12: Flow chart diagram filter and smoother
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3.3.4 Monte-Carlo Simulation

Monte-Carlo simulations are especially helpful in testing stochastic algorithms that are diffi-
cult to analyse in their performance with direct mathematical methods. A statistical experi-
ment is artificially created by generating random sequences as inputs for the algorithm [3,
p.128].

First of all a deterministic trajectory serves as a reference. Out of theses reference data
combined with random sequences artificial measurements can be produced matching the
realistic sensor output as good as possible. Figure 3.13 shows the result for the noisy accel-
eration and laser-range measurements. The standard deviation for generating the Gaussian
noise out of unity white wu,k noise is calculated with 3.14.

zacc,k = aref,k + ba + wa,k wa,k = σawu,k = RS,noise

√
Bwu,k

zlaser,k = pref,k + ba + wp,k wp,k = σpwu,k
(3.60)

The bandwidth from the digital low-pass filter isB = 12.5Hz. A bias for the accelerometer is
chosen as ba = +0.5 m

s2
. The iteration frequency of the loop is fs = 1

τs
= 10Hz. This set-up

shall demonstrate the ability of a Kalman filter to generate an optimal result out of significantly
noisy position data. In addition the results of the backward smoother are presented in the
same plots.
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Figure 3.13: Results for laser and acceleration measurements

The Kalman filter and smoothing algorithm is started with an initial state covariance matrix
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of

PPP initial =

102 0 0
0 0.12 0
0 0 0.52

 (3.61)

Theoretically the Kalman filter is searching in the first steps for a rough estimate of the
state with large uncertainties. After this transient phase the estimates starts to swing around
their true values, but constantly minimizing their standard deviation, which has been the
purpose of the Kalman gain derivation. The filter will converge in a steady-state after some
time with the optimal achievable precision of the combined sensors if all parameters are
tuned correctly [8, p.437]. In cases of bad tuning or erroneous unexpected measurements
the filter possibly diverges and the state-estimate drifts away from their true value. Also
some states may be unobservable which is tested by the observability matrix for linear time-
invariant systems [8, p.62]. An additional advantage of the Kalman filter is to observe states
which are not directly accessible for measurement equipment.
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Figure 3.14: Position results for filter and smoother

For this example the results show the theoretical behaviour. The position estimates are
clearly better than the measured position (Figure 3.14). The standard deviation reaches a
value of 20 meter which is five times better compared to the laser-range with σ = 100 m.
Laser-range measurements are not able to give information about the short-time dynamics
of the vehicle. This lack of ability had been criticised in the introduction for GPS too. The
accelerometer’s ability to give true information is also limited due to its bias. The Kalman
filter does an remarkable job in solving this. The estimate of velocity (Figure 3.15) shows a
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Figure 3.15: Velocity results for filter and smoother
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Figure 3.16: Bias results for filter and smoother
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good accuracy after the transient phase nearly at the same time when the bias (Figure 3.16)
is observed.

The standard deviation matches in most cases the true error marked by the dotted line.
Thus, it is another credible and valuable information for the evaluation of data.

For the selected time interval the standard deviation of the bias reaches its steady state
and the bias is nearly perfectly determined.

The RTS-smoother is filtering the filtered data backwards again, which should lead to an
approximate performance improvement of factor 2. The standard deviations and true errors
(red lines) confirm this. Besides the results in time-domain are getting smoother (this is where
the name comes from) and correspond better with the real physical movement. Especially
in situations of signal outages from the range equipment smoother can dramatically improve
performance for those times.

3.3.5 Extended Kalman Filter

The Kalman filter algorithm is only working for linear systems. Since most physical connec-
tions are non-linear they have to be linearised [3]. The following derivation uses some ideas
of [3, p.250-251] and connects them to the architecture and notation throughout this thesis.

Recalling the general time varying model from 3.22 and neglecting the input control u(t),
nearly all physical models fit to this expression.

ẋxx(t) = fff(t, xxx(t)) +GGG(t)www(t)

zzz(t) = hhh(t, xxx(t)) + vvv(t)
(3.62)

Linearisation is achieved by truncating the Taylor expansion series after the first order.

f(x) = T (f(x), a) =
∞∑
n=0

f (n)(a)

n!
(x− a)n ≈ f(a) +

[
df(x)

dx

]
x=a

(x− a) (3.63)

A linearisation point a must be chosen which is further called reference trajectory xxx∗(t). This
reference trajectory may diverge from the true trajectory xxx(t). Thus,

xxx(t) = xxx∗(t) + ∆∆∆xxx(t); (3.64)

Substituting the true trajectory xxx(t) in 3.62 gives

ẋxx∗(t) + ∆∆∆ẋxx(t) = fff(t, xxx∗(t) + ∆∆∆xxx(t)) +GGG(t)www(t)

zzz(t) = hhh(t, xxx∗(t) + ∆∆∆xxx(t)) + vvv(t)
(3.65)
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Applying the Tailor series 3.63 leads to

ẋxx∗(t) + ∆∆∆ẋxx(t) ≈ fff(t, xxx∗(t)) +

[
fff(t, xxx)

dddxxx

]
xxx=xxx∗(t)

·∆∆∆xxx+GGG(t)www(t) (3.66)

zzz(t) ≈ hhh(t, xxx∗(t)) +

[
hhh(t, xxx)

dddxxx

]
xxx=xxx∗(t)

·∆∆∆xxx+ vvv(t) (3.67)

Splitting equation 3.66 results in two differential equations.

ẋxx∗(t) = fff(t, xxx∗(t)) (3.68)

∆∆∆ẋxx(t)︸ ︷︷ ︸
dddẋxx(t)

≈
[
fff(t, xxx)

δδδxxx

]
xxx=xxx∗(t)︸ ︷︷ ︸

FFF (t)

· ∆∆∆xxx︸︷︷︸
δδδxxx(t)

+GGG(t)www(t) (3.69)

Compared to the error state Kalman filter these equations look similar which indicates that
the differencing out idea and this version of the extended Kalman filter are related. Perform-
ing the linearisation in the error state differential equation 3.69 results in the same form as
(3.55).

δδδẋxx(t) = FFF (t) · δδδxxx+GGG(t)www(t) (3.70)

The extended Kalman filter is the same as the linearized Kalman filter except that the lin-
earisation takes place about the filter’s estimated trajectory and not a precompiled reference
trajectory [3, p.257]. Thus, the extended Kalman filter takes more of a risk as the linearisation
points are influenced by the measurement updates.

The total state equation 3.68 represents the algorithm which is working in the box "to-
tal state algorithm" in figure 3.11. The reference system works with non-linear equations
although the Kalman filter is linearised. The output of the reference system provides the
values for the trajectory xxx∗(t).

From (3.67) the same residual measurement can be derived as in (3.54) and (3.56).

δδδzzz(t) = zzz(t)− hhh(t, xxx∗(t)) ≈
[
hhh(t, xxx)

dddxxx

]
xxx=xxx∗(t)︸ ︷︷ ︸

HHH(t)

·∆∆∆xxx+ vvv(t) (3.71)

Taken all together the discrete algorithm has to be extended by a linearised system matrix
φφφk−1 and a measurement matrix HHHk.
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FFF k−1 =
dddfff(t, xxx)

dddxxx

∣∣∣∣
xxx=x̂xx+k−1

φφφk−1 ≈ eFFFk−1τs (3.72)

HHHk =
dddhhh(t, xxx)

dddxxx

∣∣∣∣
xxx=x̂xx+k−1

(3.73)

This is valid when the continuous non-linear equations are nearly constant for the propaga-
tion interval τs. A test is proposed in [9, p.120].

In 3.64 the true state has been defined as xxx(t) = xxx∗(t)+∆∆∆xxx(t). Therefore in the discrete
Kalman filter the predicted total estimate must be corrected as follows:

x̂xx+
k = x̂xx−k + δδδx̂xx+

k (3.74)

3.4 Summary

Different measurement equipment outputs noisy signals containing true information about
multiple quantities which are connected by physical relationships. A state space model is
a way to describe this mathematically while the states represent the true information which
have to be determined (3.1).

The Kalman filter assumes Gaussian distributed noise in the measurements and yields
an optimal solution for estimating those states. The errors of the estimates are described by
covariances. With the transition matrix the states and the covariances are propagated to the
time of validity of new measurement data. The Kalman gain leads to a sophisticated ratio of
these new measurements and the predictions in the updated states (3.2).

Inertial sensors provide reliable measurements with Gaussian noise and deterministic er-
ror characteristics. This makes them suitable for modelling in an error state system model
for predicting those errors in the integrated velocity and position solution. The Kalman filter
weights the error of this reference system solution against position fixing residual measure-
ments. As a consequence deterministic errors like the accelerometer bias becomes observ-
able and the accuracies of all states grow with time. The total states are outsourced in the
total state algorithm leading to a better efficiency (3.3.2).

The extended Kalman filter has been developed for working with non-linear differential
equations. Its derivation results in an error state system model where only the system ma-
trix for predicting the uncertainties and the measurement matrices must be linearised. The
total states can be processed with non-linear equations resulting in possible higher accuracy
(3.3.5).
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This chapter has been created with help of [9, p.24-78]. An orthogonal euclidean coordinate
frame has an origin ooo and three right handed perpendicular axes x, y, z. Navigation com-
prises the description of motion, orientation and position of an object ‘A’ relative to some
reference ‘B’(Figure 4.1). Therefore a coordinate frame α must be defined with respect to
a reference coordinate frame β. The position oooα is defined by relative coordinates rrrββα in
the reference frame and the axes by a rotation from the reference axes to the object axes in
terms of euler rotation angles ψψψ. The rotation is performed right handed where the thumb
points in the direction of the rotation axis and the bent fingers in positive rotation direction.
This is why an orthogonal frame has six degrees of freedom.

oooα = oooβ + rrrββα = oooβ +

∆xβ

∆yβ

∆zβ


βα

ψψψ =

φβαθβα
ψβα

 (4.1)

where the angles ψψψ are rotated in following sequence:

1. ψβα is the yaw angle describing the rotation around the zβ-axis (0 − 360◦) into the
intermediate βψ-frame.

2. θβα is the pitch angle describing the rotation around the yβψ-axis (0 − 180◦) into the
intermediate βθ-frame.

3. φβα is the roll angle describing the rotation about the xβθ-axis (0 − 360◦) and results
in the alignment of the frame α with respect to frame β.

The navigation quantity xmay be expressed with the resolving axes in the coordinate frame γ
in superscript and the specification about the relative frame connection βα in subscript re-
sulting in xγβα. As an example the relative velocity v of an object in frame α with respect to
the origin of frame β expressed in frame α is vαβα.

Rotations can be performed with a coordinate transformation matrix (CTM) CCCβ
α changing

the resolving axes of a 3 dimensional quantity xxx from frame α to frame β.

xxxβ = CCCβ
αxxx

α (4.2)
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yα
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vαβα

rββα

xα

xβ

Figure 4.1: Coordinate frames in 3 dimensions

The coordinate transformation matrix is given by the euler angles.

CCCβ
α =

1 0 0
0 cosφβα sinφβα
0 −sinφβα cosφβα


︸ ︷︷ ︸

Roll Rotation

cosθβα 0 −sinθβα
0 1 0

sinθβα 0 cosθβα


︸ ︷︷ ︸

Pitch Rotation

 cosψβα sinψβα 0
−sinψβα cosψβα 0

0 0 1


︸ ︷︷ ︸

Yaw Rotation

(4.3)

When θβα = π
2

the rotation about ψβα or φβα has the same effect, loosing one degree of
freedom (“Gimbal Lock”). A solution is the attitude expression with quaternions. Indeed it is
quite non-intuitive to work with them as they are four dimensional numbers. Since no street
has a slope of 90◦ a land-vehicle will never be in a situation with an angle of θβα = π

2
. Thus

euler angles are used in this thesis. Some important properties of the CTM are(
CCCβ
α

)T
= CCCα

β CCCγ
α = CCCγ

βCCC
β
α CCCβ

αCCC
α
β = III333 (4.4)

Often the small angle approximation is useful where [ψψψβα×] is the skew symmetric form of
the euler angles in radians.

CCCβ
α ≈

 1 ψβα −θβα
−ψβα 1 φβα
θβα −φβα 1

 = III333 − [ψψψβα×] ψψψαβ ≈ −ψψψβα (4.5)

A coordinate frame ‘A’ is defined relative to another reference frame ‘B’. Frame ‘B’ must
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be defined too. The last frame in this definition sequence one could think of is an inertial
frame.

4.1 Earth Centered Inertial Frame

A coordinate frame which is not accelerating or rotating with respect to the rest of the universe
is called inertial frame. When neglecting the rotation of the Earth around the Sun and the
galaxy an Earth centered intertial frame (ECI) with its origin in the center of mass is nearly
inertial (Figure 4.2).

1. The zi-axis is along the Earth’s axis of rotation to the true north.

2. The x- and y-axis lie within the equatorial plane, but do not rotate with the Earth.

3. The xi-axis points towards the vernal equinox. This is the direction to the Sun exactly
when the equatorial plane passes the center of the Earth orbital plane (ecliptic) around
the Sun which is the spring equinox of the northern hemisphere.

4. The yi-axis completes an right handed orthogonal frame.

Inertial sensor uses the ECI-frame as the reference frame. It is denoted by the symbol i.

xi

yi

zi

Spring

Summer Winter

Autumn

xi

yi

zi

xi

yi

zixi

yi

zi

Figure 4.2: Inertial frame definitions with Earth and Sun
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4.2 Earth Centered Fixed Frame

An Earth centered fixed frame (ECEF) is quite similar to the ECI-frame, except that it is
rotating with the Earth. Therefore

1. The ze-axis is along the Earth’s axis of rotation to the true north.

2. The x and y-axis lie within the equatorial plane rotating with the Earth.

3. The xe-axis points towards the intersection of the equatorial plane and the zero-
meridian at longitude 0◦.

4. The ye-axis completes a right handed orthogonal frame pointing towards the intersec-
tion of 90◦ east meridian with the equator.

The ECEF-frame is important for navigation as most users wants to know their position rela-
tive to the Earth. It is denoted by the symbol e.

4.2.1 Cartesian Position

The cartesian position reeb (b: body) in an ECEF-frame is defined by values for the compo-
nents xe,ye,ze. The resolving axis are independent. Thus, adding, substracting and trans-
forming positions is easily accomplished. Unfortunately the numbers are user-unfriendly, e.g.
the coordinate for Hamburg is xe = 3739.905 km, ye = 659.021 km and xe = 5107.222 km
and it is hard to imagine a position with such big numbers. This is why the ECEF-Position is
commonly used for navigation in space, but not for the surface of Earth.

4.2.2 Curvilinear Position

The shape of the Earth has nearly the form of an ellipsoid. This is why a standard ellipsoid
model has been introduced with the World Geodetic System in 1984 (WGS84). WGS84
was developed for the U.S. military and later used as the reference model in most GPS-
applications. An elliposid can be characterized by four parameters which are the equatorial
radius R0, the polar radius RP , the flattening factor f and the eccentricity e. For the WGS84
they are

R0 = 6378.137km RP = 6356.75231425km

f = 1/298.257223563 e = 0.0818191908425
(4.6)

Using this model as the reference a position on Earth is described by three coordinates
pppb = [Lb, λb, hb] (b: body) aligned with the axes of the navigation frame.



4 Coordinate Frames 45

ze

ye

xe

xi

yi

zn

xn

λb

yn

0◦

hb

WGS84 Ellipsoid

Lb

Figure 4.3: Inertial frame, Earth frame and navigation frame

1. Lb is the geodetic latitude defined by the angle of intersection of the normal from a
body to the ellipsoid with the equatorial plane. Every point on this normal line has the
same geodetic latitude.

2. λb is the longitude. When projecting the ellipsoid on the equatorial plane all points
have the same longitude lying on a radius line defined by the longitude angle. This
angle starts at 0◦ defined by the zero meridian at Greenwhich (London) and is positive
in the eastern hemisphere and negative in the western hemisphere.

3. hb is the geodetic height above the WGS84 ellipsoid and the mean sea level. Note
that sea level varies on the Earth due to gravitational anomalies. Therefore some
GPS-Receiver use local sea level of a simple geoid model as zero height for hb.
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The curvilinear position in decimal degrees and an accuracy of one meter for Hamburg is
pppb = [53.55108◦, 9.99368◦, 6 m] which is more user-friendly than the Cartesian-position.
This is why the curvilinear position is chosen throughout the next sections. Calculations are
always done with angles in radians.

4.2.3 Navigation Frame

The origin of the navigation frame is the location defined by the curvilinear position pb of the
inertial measurement unit in the vehicle.

1. The zn-axis is aligned with the vector of gravity, which is a combination of gravitational
force and centrifugal force. As a result the enhanced vector does not pass the center
of Earth.

2. The xn-axis is the line orthogonal from the z-axis to the north pole.

3. The yn-axis completes a right handed orthogonal frame pointing to the east.

With its directions it is often abbreviated as North-East-Down-frame (NED). For local navi-
gation the information about angles with respect to the navigation frame axes are especially
important. This is why angles in further Kalman filter modelling uses the NED-frame as the
reference-frame. It is denoted by the symbol n.

4.3 Sensor Frame and Body Frame

Both frames have the same origin as the navigation frame and are visualised in figure 4.4.
The sensor frame axes, denoted by superscript s, are defined by the measurement axes
of the inertial measurement unit (IMU) (Figure 5.3). The axes are aligned with the body
frame but the x,y,z-labels are interchanged. The body frame labels are commonly chosen as
follows:

1. The xb-axis points forward (roll) and equals the negative zs-axis.

2. The yb-axis points to the right (pitch) and equals the negative xs-axis.

3. The zb-axis points down (yaw) and equals the ys-axis.

The body frame is fundamental for the navigation as microelectromechanical system
(MEMS)-sensors have a fixed alignment with its axes. It is denoted by the symbol b.
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4.4 Rear Frame

The wheelspeed is measured at the rear-axis of the vehicle.

1. The yr-axis is along the vehicle axis to the right.

2. The xr axis points forward.

3. The zr axis completes a right handed orthogonal frame pointing downwards.

zs

ys

zs
xs

zb

xb

yb

xb

xr

zr

yr

xr

Figure 4.4: Sensor frame, body frame and rear frame (Top: Side view, Bottom: Plan view )
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The datalogger has been designed [33] and build by project BEEdeL and is already oper-
ating in the city of Hamburg. This chapter will present the specific information required for
developing the Kalman filter algorithm with its architecture and parameters.

Figure 5.1: Data logger box [13]

5.1 Vehicle Description

In Hamburg three different types of buses serve for public transportation. Their employment
depends primarily on the amount of people to transport. In this thesis data is only available
from the normal bus and the articulated bus. In urban areas the larger vehicles are commonly
chosen especially in times of high requests.

In 5.2 the red box indicates the place of the engine and differential. The blue box shows
the location where the data logger is installed. The green dot is the place of of the GPS-
antenna where the satellite-signals are received. The difference in position between the
logger and the antenna is accounted for with a lever arm of lbab ≈ [−0.5, 0, 0]m. The bus
size data is taken from [17, p.5].
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12.135m

18.125m

3.12m

2.55m

Figure 5.2: Normal bus and articulated bus

5.2 GPS-Receiver

After performance tests of three different modules on a urban route through hamburg the
SparkFun Venus GPS Module has been chosen [33, p.45-47]. The module delivers its
data with an UART interface sending two different National Marine Electronics Associa-
tion (NMEA)-messages ‘GGA’ and ‘RMC’ summarized in table 5.1.

The module evaluates multiple satellite range measurements internally(similar to the one
dimensional example) and generates a position information with at least 4 valid signals. An
internal Kalman filter is always enabled in selectable pedestrian or car mode smoothing the
position stream [28].
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Table 5.1: NMEA information[29]

Information Description

Position Longitude, latitude, height

GPS-Quality indicator

0 position fix unavailable
1 valid position fix, SPS mode
2 valid position fix, differential GPS mode
6 Estimated (dead reckoning) mode

Satellites used Number of satellites in use (0 - 12)
HDOP Indicator for quality of satellite geometry for horizontal positioning

(0.8 (best) - 99.9)
Time and date Universal Time Coordinated
Speed over ground Absolute speed in knots
Course over ground Clockwise angle between vector of north and vector of travel di-

rection (0 - 359.9◦)

Mode

N Data not valid
A Autonomous mode
D Differential mode
E Estimated (dead reckoning) mode

Hemisphere
Latitude hemisphere (north, south)
Longitude hemisphere (east, west)

5.3 Inertial Measurement Unit

The module Adafruit 10-DOF IMU Breakout (5.3) is used as the inertial measurement unit
(IMU) in the datalogger providing sensors for acceleration, angular rate, magnetic field, air
pressure and temperature measurements [33, p.52]. The following sections describe the
characteristics of each sensor.

Figure 5.3: Adafruit 10-DOF IMU Breakout Board [30]
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5.3.1 Accelerometer

The 3D-MEMS capacitive accelerometer ‘LSM303DLHC’ is a system-in-package including
a magnetometer which is analysed in section 5.3.3. It is manufactured by using specialised
micro-machining processes and capable of measuring linear acceleration along 3 perpendic-
ular axes in units of [g] [26, p.1,15], where 1 g equals 9.80665 m

s2
. The device belongs to the

pendulous type of MEMS(Micro-Electronic-Mechanical-System)-accelerometers. Alternative
technologies like vibrating beam or resonant sensors provide a higher accuracy [5, p.206].
The configuration which has been done in [32] leads to a measurement range of ±4g, a
sensitivity of 2 mg per least significant bit (LSB) and the output data rate (ODR) is 25 Hz.

Table 5.2: Accelerometer sensor characteristics

Characteristic Data sheet
Laboratory

Setting Data Sheet Setting Data Logger

Sensitivity ±2 mg ±2 mg ±2 mg
Range ±2 g ±2 g ±4 g
ODR 1344 Hz 1344 Hz 25 Hz

Bandwidth B ODR
9

= 150 Hz ODR
9

= 150 Hz ODR
9
≈ 3 Hz

Noise RS 220 µg√
Hz

325 µg√
Hz

2484 µg√
Hz

Bias σb ±60 mg < 60 mg(1)

Temperature bias ±0.5 mg/◦C x : ±0.142mg/◦C(1)

y : ±0.184mg/◦C(1)

z : ±1.914mg/◦C(1)

(1) ODR: 10 Hz

Due to technical limitations all accelerometer measurements are influenced by different
error sources. In MEMS-systems the bias bbba consists of a static initial offset and a dynamic
temperature dependent bias. Another source of error (up to 10% of the absolute measured
acceleration [9, p.155]) is caused by scale errors and misalignments of the axes described
with the scale- and cross coupling matrix MMMa. Electrical noise of the sensor matches ap-
proximately white noise wwwa. From the datasheet the noise density is 220 µg√

Hz
measured at

a configured range of ±2 mg and data rate of 1344 Hz noting that the noise density should
be independent of the data rate. The following equation shows how different sensor error
sources contribute mathematically to the measurements [9, p.160].

f̃ff
b

ib = bbba + (III3 +MMMa)fff
b
ib + wwwa (5.1)
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Laboratory tests

Lab experiments [14] can confirm the data sheet noise values for the same configuration in
table 5.2. The noise density is calculated withRS = σw√

B
(3.14). When configuring the setting

used in the data loggers the noise density is 10 times higher than expected. This is probably
due to the greater range of ±4mg or the internal filter does not limit the bandwidth to 3 Hz.
The analysis is part of further research because in this thesis only already recorded data is
processed.

The MEMS accelerometer is very sensitive for vibration induced errors. The vibration
of the temperature cabinet used for temperature experiments increases the noise by a fac-
tor of 7.

5.3.2 Gyroscope

The three axes angular rate sensor ‘L3GD20H’ is also manufactured with micro machining
processes. It measures the Coriolis force applied on moving mirco-meachanical elements
when rotating the sensor frame with respect to an inertial frame. The amount of force is
linearly related to the angular rate which the sensor outputs in units of dps (◦/s). In the data
logger the gyrsocope has been configured [32] with a range of ± 245 dps, a sensitivity of
8.75 mdps an output data rate of 94,7 Hz which is cut off by a low pass filter at 12.5 Hz.

Table 5.3: Gyroscope sensor characteristics

Characteristic Data sheet
Laboratory

Setting Data Sheet Setting Data Logger

Sensitivity ±8.75 mdps ±8.75 mdps ±8.75 mdps
Range ±245 dps ±245 dps ±245 dps
ODR 400 Hz 400 Hz 94.7 Hz

Bandwidth B 50 Hz 50 Hz 12.5 Hz

Noise RS 0.011 dps√
Hz

0.029 dps√
Hz

0.03 dps√
Hz

Bias σb ±25 dps(1) < 25 dps(2)

Temperature bias ±0.04 dps/◦C(1) ±0.027 dps/◦C(2)

(1) Range: 2000 dps (2) ODR: 12.5 Hz

The gyroscope exhibits also similar errors like the accelerometer. From the data sheet
[27] the static bias bbbgs can be up to ±25 dps at a range of 2000 dps. The dynamic bias bbbgd
is ±0.04 dps/◦C. For the noise wwwg a density of 0.011 dps/

√
Hz is given. Scale factor errors

and misalignments can occur in the same way as in MEMS accelerometers described by
MMM g. Additionally a force-dependent error is introduced with GGGg [9, p.160].

ω̃ωωbib = bbbg + (III3 +MMM ggg)ωωω
b
ib +GGGgfff

b
ib + wwwg (5.2)
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Laboratory tests

In lab experiments [14] twice the noise density has been measured compared to the data
sheet noise values in table 5.3. The higher amount of noise is caused by outliers which
are handled in section 5.3.6. In contrast to the accelerometer the noise density results are
independent of the data rate which confirms that the internal filters are working properly.
Additionally the MEMS gyroscope is more robust in vibration environment. The vibration of
the temperature cabinet induces only additional noise of factor 1.5.

5.3.3 Magnetometer

Moving electrical conducting fluids in the outer core of the Earth generates a magnetic field
(Dynamo theory). This field is vertical at the magnetic poles and is inclined at nearly 10 ◦ to
the rotational axis of the Earth. The SI unit of the magnetic flux density B is Tesla [T ]. The
Earth’s field density varies from 30 µT at the equator to 60 µT at the poles [9, p.218]. Due
to this small amount magnetometers often measure the density in units of Gauss [G] while
1 G equals 0.1 mT .

The outputs of a magnetometer are influenced by the factors in equation (5.3) [9, p.221].

m̃mmb
mb = bbbm + (III3 +MMMm)CCCb

n (mmmn
E +mmmn

A) + wwwm (5.3)

where

bbbm is the hard iron flux density from the magnetic structure of the vehicle including the
sensor offset.

MMMm is the scaling factor matrix for soft-iron effects produced by nearby materials that
distort the magnetic field. It is including the cross coupling sensor errors.

CCCb
n is the CTM from navigation frame to body frame (4.3).

mmmn
E is the geomagnetic flux density.

mmmn
A is the flux density from local magnetic anomalies.

wwwm is the random sensor noise.

With help of the measurements and knowledge about roll φnb and pitch θnb the yaw angle
ψmb can be calculated with (5.4).

ψ̃ψψmb = arctan2

[
−m̃b

m,y cos φ̂nb + m̃b
m,z sin φ̂nb,

m̃b
m,x cos θ̂nb + m̃b

m,y sin φ̂nb sin θ̂nb + m̃b
m,z cos φ̂nb sin θ̂nb

]
(5.4)
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The vector of magnetic flux density is not exactly aligned with the north vector due to the
inclination phenomena. Equation 5.5 corrects the angle for the navigation frame. The size of
the declination angle αnE depends on date and location (Table 5.4).

Table 5.4: Declination angle αnE calculated with the world magnetic model [6]

Location
Time-dependent declination angle αααnE

28.07.2015 28.07.2016 28.07.2017

London -0.8 ± 0.37 ◦ -0.65 ± 0.37 ◦ -0.5 ± 0.37 ◦

Hamburg 2.46 ± 0.38 ◦ 2.6 ± 0.38 ◦ 2.74 ± 0.38 ◦

Reykjavik, Island -14.39 ± 0.48 ◦ -14.12 ± 0.48 ◦ -13.86 ± 0.48 ◦

ψ̃ψψnb =ψ̃ψψmb + αnE (5.5)

5.3.4 Barometer

The barometric chip on the board is the ‘BMP180’ from Bosch. The characteristics are listed
in table 5.5. In [25] an algorithm for correcting the height measurements using the barometer

Table 5.5: Barometer BMP180 sensor characteristics

Characteristic Data sheet

Resolution output 0.01 hPa
Absolute accuracy 2 hPa (0− 65◦C)
Relative accuracy ± 0.12 hPa =̂ ± 1 m (25− 40◦C)

RMS noise in ultra high resolution
setting (conversion time 25.5 ms)

0.03hPa =̂ 0.25m

has been developed with the purpose of generating a height profile with respect to the height
of a startpoint. This height has been set to zero or obtained from a height database [25,
p.51,61]. In this thesis the purpose is to find the absolute offset of the pressure sensor
without external help by using information from all sensors in the Kalman filter algorithm.
The quality of GPS-height is be crucial for absolute information. In a multipath environment
an innovation filter (Section 6.3.7) is able to detect outliers of the GPS measurements.

For barometric pressure measurements in units of pascal [Pa] there is a relationship to
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the absolute height defined with the international barometric height formula [4].

hb =
Ts
kT

[
1−

(
pb
ps

)RkT
g0

]
+ hs =

Ts
6.5 · 10−3Km−1

[
1−

(
pb
ps

) 1
5.261

]
+ hs (5.6)

where

hb is the Geodetic height.

hs is the Geoid height.

pb is the measured air pressure.

Ts is the temperature on the surface of the ellipsoid.

kT = 6.5 · 10−3Km−1 is the atmospheric temperature gradient.

ps = 101.325kPa is the surface pressure for mean sea level.

R = 287.1Jkg−1K−1 is the gas constant.

g0 = 9.80665ms−2 is the average surface acceleration due to gravity.

Figures 5.4 visualizes the variation of pressure with respect to the height. Especially for
heights up to 1000m the function is approximately linear. Several models of Earth describe
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Figure 5.4: Variation of pressure with height

its shape. The model which includes all structures is called terrain. Because structures are
changing constantly this a volatile definition. Therefore the geoid model has been introduced.
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Substituting all structures with water but keeping the amount of gravity the water will distribute
to places with more gravity. This results in the shape of the geoid. The WGS84 geoid model
consists of 4.730.400 coefficients defining the geoid height. As a further simplification the
WGS84 ellipsoid model has been developed which is defined by only four parameters (4.6).
The geoid and elliposid height can differ up to 100m [9, p.64]. Figure 5.5 illustrates these
different kinds of height.

Terrain

Geoid

Ellipsoid

Orthometric height

Geoid height

Geodetic height

Hb

hG

hb

Figure 5.5: Height definitions, redrawn from [9, p.65]

5.3.5 Temperature

The barometer includes a temperature sensor with following characteristics:

• Resolution output 0.1 ◦C

• Absolute accuracy 2 ◦C (0-65◦C)

The bias of the gyroscope and accelerometer is drifting mainly due to changes in tempera-
ture. To get an idea about the impact, time intervals has been selected where the vehicle
is stationary and the door closed to reduce errors from moving passengers or bus tilts. For
each time interval the average values of the inertial sensors are calculated and stored in an
array. The results are illustrated in figure 5.6a and 5.7a. The figures on the right show a
direct comparison for the curves from temperature and one selected sensor axis.

In 5.6b the gyroscope z-axis is a clearly correlated with the temperature. This gives
some indication of possibility to compensate the drift by inversely scaling the gyroscope
measurements with the temperature curves.

The averaged accelerometer measurements have a obviously noisier character as the
vehicle is aligned slightly differently at each stop due to the variation of the street’s slope and
tilts of the bus. In this form the raw data is too noisy to show a correlation with the temper-
ature. Therefore the unequally time-spaced averages are resampled with Matlab to create
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Figure 5.6: Averaged gyroscope data when stationary (Body frame)

equally spaced data. Now these data can be smoothed out with an average filter which leads
to the curves in figure 5.7b. The accelerometer x-axis shows a weaker correlation to temper-
ature due to the mentioned disturbances but has also the potential for compensation.
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Figure 5.7: Averaged accelerometer data when stationary (Body frame)
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Based on the observations a linear relationship of the sensor bias drifts b and the temperature
T can be assumed. Thus,

b(T ) = c1 + c2T (5.7)

where

c1 is the offset between bias and temperature.

c2 is the scaling factor from the temperature curve to the bias.

A way to fit coefficients of a linear equation to two datasets is a least square fit described
in [21, p.13-15]. It minimizes the distance between the calculated b(T ) and the measured
biases b̃ which is called residual. For all measurements the linear connection is described by
the overdetermined system in (5.8).

T1 1
T2 1
...

...
Tn 1


[
c1

c2

]
≈


b̃1

b̃2
...
b̃n


AAA · ccc ≈ yyy

(5.8)

The residual is rrr = yyy −AAAccc. To get rid of different signed residuals the squared residual has
to be minimised. This leads to an optimal solution (5.9) for the coefficients in least square
sense [21, p.14]. [

ĉ1

ĉ2

]
= (AAATAAA)−1AAATyyy (5.9)

The offset c2 does not provide useful information as the absolute temperature offset and the
absolute sensor offset are totally independent. Therefore the inertial measurements ỹyy are
only corrected in a relative way with respect to the temperature.

ŷyy = ỹyy − ĉ2TTT (5.10)

Figure 5.8 shows the results of the compensation algorithm noting that the offset has been
added to achieve a better readability. The compensation for the gyroscope works excellent.
The accelerometer is also corrected but less accurate due to the mentioned disturbances.

Figure 5.9 sums up the coefficients to a series of datasets. Obviously the technique
generates more stable results for the gyroscope.
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ŷbib
Tfit
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Figure 5.8: Temperature compensated measurements (Body frame)
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Figure 5.9: Temperature coefficients from 10 datasets of one logger (Body frame)
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5.3.6 Outlier Detection and Rejection Algorithm

In datasets and also laboratory tests [14] the inertial sensor data stream contains high peaks.
In a stream of one axis the magnitude of these peaks is nearly always the same. The peaks
do not appear consecutively most likely. With this information an non-linear outlier-detection
and rejection algorithm is developed in Matlab, which filters for unrealistic slopes in the signal.
When the derived signal contains a negative followed by a positive peak or a positive peak
followed by a negative peak this is one of those outliers.

In figure 5.10 the red dots mark the points which are detected as outliers. The angular
rate for these points gets interpolated by averaging about the two adjacent values for each
case.

The algorithm is only implemented for the gyroscope. Outliers of the accelerometer are
difficult to distinguish from the noise peaks, because the noise is comparatively higher.
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Figure 5.10: Outlier of gyroscope

5.4 Odometry and Vehicle Constraint

The drive train delivers the power from the engine to the driving wheels. Therefore a trans-
mission converts the rotational speed of the engine to the average speed of all wheels on
the drive shaft. As the buses have a rear-wheel drive the average speed of the drive shaft is
adjusted by the differential for each of the rear wheels. This is especially important in curves
where rear-wheels are rotating at different rates [23, p.101-102].

In the bus a high precision rotational speed sensor (Model: KITAS 2170/2171) provides
a defined amount of pulses for each rotation of the drive shaft. An internal board computer
processes those signals and passes a prepared signal to the data logger. Four pulses are
generated for one meter distance [33, p.79]. The derivative of these odometry pulses with
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Figure 5.11: Drive train, drawing from [23, p.102]

respect to time gives the speed at the center of the rear axes. For a sampling time of τs =
0.1s the measurement has a maximum error of εO = 1.25m

s
.

The x-component of the rear velocity vector vvvrrr in figure 5.13 represents the odometry-
speed vodo. By assuming that the wheels do not slip or jump the y- and z-component of vvvrrr

are both zero which is known as land vehicle constraint [9, p.641-642]. In the next chapter
this property will be used as a velocity measurement.

To connect these measurements with the others the odometry velocity has to be known
at the place of the IMU. From physics the velocity vvv at a point rrr from the centre of a rotating
rigid body with angular velocity ωωω is defined by

vvv = ωωω × rrr (5.11)

In figure 5.13 this radius rrr is the lever arm lllbrb as the distance vector from the rear to the
position of the IMU. Therefore

vvvbeb − vvvber = ωωωbeb × lll
b
rb

vvvber = vvvbeb − ωωωbeb × lll
b
rb

(5.12)

The superscript b indicates the frame of the IMU called body frame. It has to be considered
that the rear frame and the body frame are aligned differently. A coordinate frame transfor-
mation (4.2) of 5.12 will result in the measured velocity vvvrer. The rotation rate of the Earth
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can be neglected.

vvvrer =

vodo0
0

 = CCCr
b

(
vvvbeb − ωωωbib × lll

b
rb

)
= CCCr

b

(
CCCb
nvvv

n
eb + ωωωbib × lll

b
br

) (5.13)

These equations are valid for the bi-articulated and normal bus.
The single-articulated bus measures the velocity at the trailor-axes. In this case equation

vbx

vbyvry = 0

vrx = vodo

vrz = 0

vbz
lbrb

Figure 5.13: Odometry with vehicle constraint
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5.13 is only valid for the velocity constraint components vry,er and vrz,er. In curves the as-
sumption of a rigid body prevents the usage of vodo. A trailer model in [23, p.293-298] may
be used to derive the relevant equations.

5.5 Door Signal

The state of the bus door (open or closed) is recorded. With this information a bus station
can be distinguished from other stops. It may be helpful in evaluating the pressure which is
changing when opening or closing the door.



6 Implementation

The one-dimensional example 3.3 illustrates the performance of Kalman filtering in a simple
way. Now the algorithm with its advantages is extended to our three-dimensional world for a
multi-sensor system to get the finest position accuracy based on all information. Considering
that the description of all sensor properties in Chapter 5 is used to build up a Kalman filter
model similar to the one dimensional case. On top the theoretical concept of the linearisation
technique from section 3.3.5 is applied.

6.1 Architecture

Architecture 6.1 enhances the idea of error states from the one dimensional example (Fig-
ure 3.11).

• The total state algorithm is replaced by a reference system called inertial navigation
system (INS). It consists of an accelerometer and a gyroscope. They give the infor-
mation of the earlier discussed definition of coordinate frames with their six degrees
of freedom. A strapdown algorithm processes those measurements and describes the
change of the body frame with respect to a navigation frame. Out of this the change
in velocity and position in three-dimensional space can be determined for short times.
The involved physical equations giving an exact solution are originally non-linear and
therefore have to be linearised.

• Instead of one, there are now three measurements from the GPS-Receiver, the barom-
eter and velocity constraint combined with odometer information. The equations re-
stricting the movement with information about the vehicle model are also non-linear
thus they must be linearised as well.

The GPS receiver generates its position autonomously. Including this as a position measure-
ment results in an architecture which belongs to the type Loosely Coupled Integration. If the
GPS pseudo range measurements (distances to each satellite) were used it would be called
Tightly Coupled Integration [5, p.412-415].
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Figure 6.1: Architecture

6.2 Strapdown Algorithm

This section is based on the great work of [9, p.163-216]. The idea is to transform the
specific force fff bib measured in the body frame into the reference frame by using the CTM
CCCn
b determined from the gyroscope data ωωωbib. After this the transformed fffnib updates the old

velocity and position information for the time interval τs, by applying physical equations of
motion. Four steps of figure 6.2 are required to perform this and each will be discussed
separately:

1. Alignment update

2. Transformation of the specific force

3. Velocity update

4. Position update

The approach is always to derive the differential equation and evaluating them discretised
in an optimal way.
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CCCnb (t)

vvvneb(t)

pppb(t)

Alignment
update

ωωωbib

Specific
force trans-
formation

fff bib

Velocity
update

Gravity model

Position
update

pppb(t+ τs)vvvneb(t+ τs)CCCnb (t+ τs)

fffnib
gggnb

Figure 6.2: Block diagram describing local-navigation-frame equations [9, p.176]

6.2.1 Alignment update

The time derivative of the of the CTM is [9, p.45-46]

ĊCC
n

b = CCCn
bΩΩΩb

nb ΩΩΩb
nb = ΩΩΩb

ib − ΩΩΩb
ie − ΩΩΩb

en (6.1)

The skew symmetric matrix form of the inertial angular velocity [ωωωbib×] is calculated as fol-
lows:

ΩΩΩb
ib = [ωωωbib×] = [ωωωbib×] =

 0 −ωbib,z ωbib,y
ωbib,z 0 −ωbib,x
−ωbib,y ωbib,x 0

 (6.2)

The Earth rate ΩΩΩn
ie describes the rotation of the Earth frame with respect to the inertial frame

resolved in navigation frame.

ΩΩΩn
ie = ωie

 0 sinLb 0
−sinLb 0 −cosLb

0 cosLb 0

 ωie ≈ 7.29 · 10−5 rad/s (6.3)
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The transport rate ΩΩΩn
en is caused by movements of the vehicle on Earth’s surface.

ΩΩΩn
en = [ωωωnen×] ωωωnen =

 vneb,E/(RE(Lb) + hb)

−vneb,N/(RN(Lb) + hb)

−vneb,E tan(Lb)/(RE(Lb) + hb)

 (6.4)

RN(Lb) =
R0(1− e2)

(1− e2sin2Lb)3/2
(6.5)

RE(Lb) =
R0√

1− e2sin2Lb
(6.6)

where:

RE(Lb): Geocentric radius of ellipsoid curvature

RN(Lb): Transverse radius of ellipsoid curvature

R0: Equatorial radius of ellipsoid WGS84 (4.6)

e: Eccentricity of ellipsoid WGS84 (4.6)

Integrating this by using an exponential approach (3.26) and truncating the power-series
expansion after the first order leads to [9, p.178]

CCCn
b (t+ τs) = CCCn

b (t)eΩΩΩbnbτs ≈ CCCn
b (t)(III3 + ΩΩΩb

ibτs)− (ΩΩΩn
ie(t) + ΩΩΩn

en(t))CCCn
b (t)τs (6.7)

In empiric tests the first order approximation has been insufficient, due to the fact that the
linearisation error is integrated twice for the position update: An update rate of 100 Hz with
a permanent angular rate of 280 ◦/s would cause an angle drift error of 1720

◦

hour
[9, p.184].

The error is only significant for the inertial angular rate ωωωbib. Therefore a higher order trun-
cation and substituting ΩΩΩb

ibτs with the skew symmetric matrix of the increment angle [αααbi×]
results in

eΩΩΩbibτs = e[αααbi×] =
∞∑
r=0

[αααbi×]r

r!
(6.8)

This can be effectively solved with the Rodrigues’ formula using similarities to the power
expansion series of sine and cosine [9, p.184].

e[αααbi×] = III3 +
sin |αααbib|2

|αααbib|
[αααbib×] +

1− cos |αααbib|
|αααbib|2

[αααbib×]2 (6.9)
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Together with the first order approximation for the Earth rate and transport rate, a more
precise alignment update is

CCCn
b (t+ τs) ≈ CCCn

b (t)e[αααbi×] − (ΩΩΩn
ie(t) + ΩΩΩn

en(t))CCCn
b (t)τs (6.10)

When αααbib is very small (< 1·10−8 rad/s), equation (6.7) is applied to avoid a division by zero.
The Earth rate and transport rate can be neglected as they are smaller than the sensitivity
of the angular rate sensor. For further applications of the algorithm with more precise inertial
sensors the equations are still implemented.

6.2.2 Transformation of Specific Force

The specific force transformation into the navigation frame is

fffnib = CCCn
b (t)fff bib (6.11)

The specific force measurement is an average over the time τs. The CTM should be averaged
too [9, p.171].

fffnib ≈
1

2
(CCCn

b (−) + CCCn
b (+)) fff bib (6.12)

6.2.3 Velocity Update

Differential equations of motion describe the velocity. Inertial acceleration is obtained by
adding an acceleration term due to gravitation to the specific force [9, p.171].

v̇vviib = aaaiib = fff iib + γγγiib(r
i
ib) (6.13)

The term results in the velocity resolved in ECI-frame. In vehicle navigation the velocity with
respect to the surface is of great interest. Thus the inertial velocity has to be transformed
into the rotating ECEF-frame, which adds Coriolis acceleration when moving on Earth, and
a centrifugal acceleration. The force of gravitation combined with the centrifugal force adds
up the amount of gravity.

v̇vveeb = fff eib + γγγiib(r
i
ib)− ΩΩΩe

ieΩΩΩ
e
ierrr

e
eb︸ ︷︷ ︸

gravity: gggeb(r
e
eb)

−2ΩΩΩe
ievvv

e
eb (6.14)

As the chosen frame of reference is the navigation frame, the velocity has to be transformed
again. A transport rate term is added describing the rotational rate of the navigation frame
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with respect to the ECEF-frame.

v̇vvneb = fffnib + gggnb (rrrneb)− (ΩΩΩn
en + 2ΩΩΩn

ie) vvv
n
eb (6.15)

For heights less than 10 km the gravity gggnb (rrrneb) can be approximated by [12, p.188-189]

gggnb (rrrneb) = gggnb (Lb, hb)

gnb,N = −8.08 · 10−9hb sin 2Lb

gnb,E = 0

gnb,D = g0(Lb)

(
1− 2

R0

[
1 + f(1− 2 sin2 Lb) +

ω2
ieR

2
0Rp

µ

]
hb +

3

R2
0

h2
b

) (6.16)

where

µ = 3.986004418 · 1014m3

s2
is the Earth’s gravitational constant with its WGS84 value.

g0(Lb) is the gravity at specific latitude on the ellipsoid’s surface and is approximated
by the WGS84 model [9, p.70]

g0(Lb) ≈ 9.7803253359
1 + 0.001931853 sinL2

√
1− e2 sinL2

m

s2
(6.17)

RP , R0, f are defined in (4.6) and ωie in (6.3)

The velocity update is then given through integrating (6.15).

vvvneb(t+ τs) ≈ vvvneb(t) + [fffnib + gggnb (Lb(t), hb(t))− (ΩΩΩn
en(t) + 2ΩΩΩn

ie(t)) vvv
n
eb(t)] τs (6.18)

6.2.4 Position Update

The origin of a navigation frame is defined by curvilinear coordinates for the purpose of
easier readability. The derivative of those coordinates can be written as a function of velocity
[9, p.61]. Thus,

L̇b =
vneb,N

RN(Lb) + hb

λ̇b =
vneb,E

(RE(Lb) + hb) cosLb

ḣb = −vneb,D

(6.19)
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Integrating 6.19 and neglecting the variations in RN(Lb), RE(Lb) and vvvneb leads to

hb(t+ τs) = hb(t)−
τs
2

(vneb,D(t) + vneb,D(t+ τs))

Lb(t+ τs) = Lb(t)+
τs
2

(
vneb,N(t)

RN(Lb(t)) + hb(t)
+

vneb,N(t+ τs)

RN(Lb(t)) + hb(t+ τs)

)
λb(t+ τs) = λb(t)+

τs
2

(
vneb,E(t)

[RE(Lb(t)) + hb(t)] cosLb(t)

+
vneb,E(t+ τs)

[RE(Lb(t+ τs)) + hb(t+ τs)] cosLb(t+ τs)

)
(6.20)

6.3 Extended Kalman Filter Implementation

The extended Kalman Filter is able to apply the advantages of linear Kalman filtering on
non-linear systems and measurements.

6.3.1 Reference System

The reference system processes measurements from an accelerometer (5.1) and a gyro-
scope (5.2). The main sources of error in a consumer-grade INS system are the static bias
and the system noise. Therefore a suitable Kalman filter is supposed to model these errors.
This can be done by selecting 15 error states.

xxxnINS =


δδδψψψnnb
δδδvvvneb
δδδpppb
δδδbbba
δδδbbbg

 (6.21)

In the strapdown algorithm the alignment update is performed with a coordinate transforma-
tion matrices rather than directly working with euler angles. Therefore a differential equation
for the error δδδψψψnnb has to be considered. The derivative of the angle is the angular rate. Tak-
ing the mean value from (5.2) is necessary to get rid of the noise. This gives the connection
of the modelled error state bbbg to the sensor measurement.

ψ̇ψψ
n

nb = CCCn
bE
[
ω̃ωωbib
]

= CCCn
b (bbbg + ωωωbib) (6.22)
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From (3.72) the partial derivatives with respect to the states lead to the linear error state
system matrix. Therefore

dψ̇ψψ
n

nb

dbbbg

∣∣∣∣∣
xxx=x̂xx

= ĈCC
n

b (6.23)

From (6.15) the derivative of velocity is given. Effects resulting from the transport rate, Cori-
olis force and Earth rate are neglected, as they are below the sensitivity of the sensors: The
gyroscope provides a resolution of 8.75mdps which exceeds Earth’s angular rate of 4.2mdps.
When moving at a speed 20m/s the Coriolis force applies an acceleration of up to 0.297mg
which is much smaller than the resolution of the accelerometer with 2mg.

v̇vvneb = fffnib + gggnb (Lb, hb)

= CCCn
b fff

b
ib + gggnb (Lb, hb)

(6.24)

The partial derivative of v̇vvneb with respect to bbba ic calculated using 5.1.

dv̇vvneb
dbbba

∣∣∣∣
xxx=x̂xx

=
dCCCn

b (bbbaaa + fff bib)

dbbba

∣∣∣∣∣
xxx=x̂xx

= ĈCC
n

b (6.25)

For the derivative with respect to ψψψnnb the true matrix CCCn
b is defined analogously to the true

state xxx = x̂xx+ δδδxxx (3.74).

CCCn
b = δδδCCCn

b ĈCC
n

b (6.26)

dv̇vvneb
dψψψnnb

∣∣∣∣
xxx=x̂xx

=
dδδδCCCn

b ĈCC
n

b fff
b
ib

dψψψnnb

∣∣∣∣∣
xxx=x̂xx

=
d(III3 − [δδδψψψnbn×])ĈCC

n

b fff
b
ib

dψψψnnb

∣∣∣∣∣
xxx=x̂xx

= − d[ĈCC
n

b fff
b
ib×]δδδψψψnnb
dψψψnnb

∣∣∣∣∣
xxx=x̂xx

= −[ĈCC
n

b f̂ff
b

ib×]

(6.27)
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For the position state the differential equation is given by (6.19). The partial derivatives for
ṗppb having a significant influence are

dL̇b
dvneb,N

∣∣∣∣∣
xxx=x̂xx

=
1

RN(L̂b) + ĥb
(6.28)

dλ̇b
dvneb,E

∣∣∣∣∣
xxx=x̂xx

=
1

(RE(L̂b) + ĥb) cos L̂b
(6.29)

dḣb
dvneb,D

∣∣∣∣∣
xxx=x̂xx

= −1 (6.30)

Finally the biases of the INS have to be modelled. In (5.8) an algorithm has been proposed
to get rid of the temperature dependent dynamic bias. Therefore only the static bias has to
be estimated which can described by a random constant.

ḃbbaaa = 000 (6.31)

ḃbbggg = 000 (6.32)

For some small inaccuracies of the temperature compensation algorithm and vibration in-
duced biases a small amount of noise is added to the constant at every iteration. This results
in a random walk driven by white noise.

These complex equations for the system matrix can be written in a compact form.

FFF INS =


0003 0003 0003 0003 ĈCC

n

b

−[ĈCC
n

b f̂ff
b

ib×] 0003 0003 ĈCC
n

b 0003

0003 T̂TT
p

rn 0003 0003 0003

0003 0003 0003 0003 0003

0003 0003 0003 0003 0003

 T̂TT
p

rn =


1

RN (L̂b)+ĥb
0 0

0 1

(RE(L̂b)+ĥb) cos L̂b
0

0 0 −1


(6.33)

The matrix T̂TT
p

rn is also useful for converting other small perturbations into curvilinear coordi-
nates e.g. standard deviations.

δδδpppb = T̂TT
p

rnδδδrrr
n
eb (6.34)

6.3.2 Aiding Sensors

The reference system is supported by measurements. The next sections present the con-
nections from the measured quantities to the states. Additionally some measurements may
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have unknown parameters in the measurements matrix which can be estimated by augment-
ing the system matrix with additional states.

GPS

The GPS-measurement is linearly connected to the position states. The lever arm of the
GPS sensor is neglected in the system model as it has a very weak influence [9, p.600].
Therefore,

HHHG,k =
[
0003 0003 III3 0003 0003

]
(6.35)

Barometer

From the barometer measurement absolute height is calculated using 5.6. Assuming the
function as linear for changes in height the bias of the barometer bB and the noise vB are
defined in units of meters rather than pascal. Therefore the measurement equation is

h̃B = h+ bB + wB (6.36)

The bias is unknown and has to be modelled in the Kalman filter as the state bB. The
initial uncertainty is given by the accuracy of the GPS-height while further changes depend
mainly on the weather. Figure shows the error in height calculated by the sensor after perfect
initialisation from the height database [31].
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Figure 6.3: Height drift of the barometer solution due to changing weather conditions

Two datasets provided by the meteorological institute in Hamburg[10] are evaluated con-
taining the pressure data for a static position of about 3 months in summer and winter. The
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auto-covariance in figures 6.4 and 6.5 is obviously exponentially correlated. After fitting equa-
tion (3.16) using the least square fit function ’lsqcurvefit’ in Matlab, the parameters for a
Gauss Markov process can be determined.

ḃB = − 1

τc,B
bB + σB

√
2

τc,B
wu(t) (6.37)

Obviously the standard deviations and the correlation times are changing between the sea-
sons. For the Kalman filter configuration the parameters are chosen as τc = 20000s and
σ = 60m because they are likely to perform very well in empiric tests.
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Figure 6.4: Gauss Markov parameters for height of pressure (Summer 2015)
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Figure 6.5: Gauss Markov parameters for height of pressure (Winter 2015/16)

Due to the linear connection the measurement matrix can be easily written down.

HHHB,k =
[
08 1 06 1

]
(6.38)
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The measurement equipment has to be corrected by rearranging equation 6.36.

ĥB = h̃B − bB (6.39)

Odometry and Velocity Constraint

Equation 5.13 describes the connection between the velocity of the body frame and the rear
frame.

vvvrer = CCCr
b

(
CCCb
nvvv

n
eb + ωωωbib × lll

b
br

)
Since the lever arm lllbbr and the alignment CCCr

b(ψψψ
b
br) are not exactly known this uncertainty

must be modelled in the Kalman filter with additional error states.

xxxO =

[
δδδψψψbbr
δδδlllbbr

]
(6.40)

The processes are modelled as a random constant. Thus, the system matrix becomes
zero.

FFFO =

[
0003

0003

]
(6.41)
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By defining CCCb
n = δδδCCCb

nĈCC
b

n (6.26) and using (4.5) the derivatives with respect to all significant
states are obtained.

dvvvrer
dψψψnnb

∣∣∣∣
xxx=x̂xx

=
dCCCr

b

(
CCCb
nvvv

n
eb + ωωωbib × lll

b
br

)
dψψψnnb

∣∣∣∣∣∣
xxx=x̂xx

=
dCCCr

b

(
δδδCCCb

nĈCC
b

nvvv
n
eb

)
dψψψnnb

∣∣∣∣∣∣
xxx=x̂xx

=
dCCCr

b

(
(III3 − [δδδψψψnnb×])ĈCC

b

nvvv
n
eb

)
dψψψnnb

∣∣∣∣∣∣
xxx=x̂xx

=
dCCCr

b

(
−[δδδψψψnnb×])ĈCC

b

nvvv
n
eb

)
dψψψnnb

∣∣∣∣∣∣
xxx=x̂xx

=
dCCCr

b

(
[ĈCC

b

nvvv
n
eb×]δδδψψψnnb)

)
dψψψnnb

∣∣∣∣∣∣
xxx=x̂xx

= ĈCC
r

b[ĈCC
b

nv̂vv
n
eb×]

(6.42)

dvvvrer
dvvvneb

∣∣∣∣
xxx=x̂xx

=
dCCCr

b

(
CCCb
nvvv

n
eb + ωωωbib × lll

b
br

)
dvvvneb

∣∣∣∣∣∣
xxx=x̂xx

= ĈCC
r

bĈCC
b

n (6.43)

dvvvrer
dbbbg

∣∣∣∣
xxx=x̂xx

=
dωωωbib × lll

b
br

dbbbg

∣∣∣∣∣
xxx=x̂xx

= − d[lllbbr×]ωωωbib
dbbbg

∣∣∣∣∣
xxx=x̂xx

= − d[lllbbr×](ω̂ωωbib + δδδbbbg)

dbbbg

∣∣∣∣∣
xxx=x̂xx

= −[̂lll
b

br×]

(6.44)

dvvvrer
dlllbbr

∣∣∣∣
xxx=x̂xx

= ĈCC
r

b[ω̂ωω
b
ib×] (6.45)

dvvvrer
dψψψbbr

∣∣∣∣
xxx=x̂xx

=
dCCCr

bvvv
b
er

dψψψbbr

∣∣∣∣
xxx=x̂xx

=
dδδδCCCr

bĈCC
r

bvvv
b
er

dψψψbbr

∣∣∣∣∣
xxx=x̂xx

=
d(III3 − [δδδψψψbbr×])ĈCC

r

bvvv
b
er

dψψψbbr

∣∣∣∣∣
xxx=x̂xx

=
d([ĈCC

r

bvvv
b
er×])δδδψψψbbr
dψψψbbr

∣∣∣∣∣
xxx=x̂xx

= [ĈCC
r

b v̂vv
b
er×]

(6.46)

HHHO,k =
[
ĈCC
r

b[ĈCC
b

nv̂vv
n
eb×] ĈCC

r

bĈCC
b

n 06 −[̂lll
b

br×] 0 ĈCC
r

b[ω̂ωω
b
ib×] [ĈCC

r

b v̂vv
b
er×]

]
(6.47)

In [1] a non-linear observability analysis shows that the roll angle of CCCr
b is unobservable.

Therefore the state φrb has to be neglected in state model or initialised with a very small
uncertainty. The latter is done in this thesis.

Zero Angular Rate Update

When the vehicle is standing still (stationary phase) no inertial rotation affects the gyroscope
neglecting effects from Earth’s rotation. Therefore the bias is directly observable. The Zero
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angular rate update is linear connected to the bias state bg. Thus,

HHHZ =
[
00012 III3

]
(6.48)

For post-processing an alternative is the application of a temperature compensation algo-
rithm (5.3.5). In this case stationary phases can be skipped completely. This has shown
more stable results than updates in stationary phases. These have sometimes disturbed the
state covariance matrix possibly leading to unstable results. Also the smoother algorithm
performs more accurate when the state covariance matrix does not change in stationary
phases. For real time applications an additional covariance matrix for stationary phases may
be considered.

6.3.3 Discrete system

The continuous matrix FFF is given by the reference system FFF INS and the extended states for
the measurement equipment FFFO and FFFB leading to the full system. The average from the
derivative ẋxx eliminates the noise-vector in following equation.

E [ẋxx] = E



δδδψ̇ψψ
n

nb

δδδv̇vvneb
δδδṗppb
δδδḃbba
δδδḃbbg

δδδψ̇ψψ
b

br

δδδl̇ll
b

br

δḃB


=



0003 0003 0003 0003 ĈCC
n

b 0006 0

−[ĈCC
n

b f̂ff
b

ib×] 0003 0003 ĈCC
n

b 0003 0006 0

0003 T̂TT
p

rn 0003 0003 0003 0006 0
0003 0003 0003 0003 0003 0006 0
0003 0003 0003 0003 0003 0006 0
0003 0003 0003 0003 0003 0006 0
0003 0003 0003 0003 0003 0006 0
03 03 03 03 03 06 − 1

τc,B


·



δδδψψψnnb
δδδvvvneb
δδδpppb
δδδbbba
δδδbbbg
δδδψψψbbr
δδδlllbbr
δbB


(6.49)

Equation (3.26) is used to transform the continuous system matrix FFF to the discrete transition
matrix φφφk−1.

φφφk−1 = eFFFk−1τs ≈ III + FFF k−1τs
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Applying (3.26) on (6.49) gives the discrete system matrix.

x̂xxkkk =



δδδψψψnnb
δδδvvvneb
δδδpppb
δδδbbba
δδδbbbg
δδδψψψbbr
δδδlllbbr
δbB


k

=



III3 0003 0003 0003 ĈCC
n

b τs 0003 0003 0

−[ĈCC
n

b f̂ff
b

ib×]τs III3 0003 ĈCC
n

b τs 0003 0003 0003 0

0003 T̂TT
p

rnτs III3 0003 0003 0003 0003 0
0003 0003 0003 III3 0003 0003 0003 0
0003 0003 0003 0003 III3 0003 0003 0
0003 0003 0003 0003 0003 III3 0003 0
0003 0003 0003 0003 0003 0003 III3 0

03 03 03 03 03 03 03 e
− 1
τc,B

τs


︸ ︷︷ ︸

φφφk−1

·



δδδψψψnnb
δδδvvvneb
δδδpppb
δδδbbba
δδδbbbg
δδδψψψbbr
δδδlllbbr
δbB


k−1

(6.50)

6.3.4 Initialisation

The initialisation process is restricted for stationary phases with a minimum resting time TS .
These phases can be found while evaluating the velocity of the odometer.

• The initial position is determined by averaging the GPS-results during the stationary
phase over time TS .

• The initial velocity is zero as the vehicle is detected stationary.

• The initial bias of the gyroscope bg is determined through averaging the angular rate
results. All non-zero values arise from the sensor offset or noise as the vehicle is
stationary. The noise is suppressed by averaging.

• The initial alignment of roll and pitch is achieved by evaluating the vector of gravity
measured by the accelerometer [9, p.198].

φnb = arctan2

[
−f bib,y,−f bib,z

]
θnb = arctan

 f bib,x√
f bib,y

2
+ f bib,z

2

 (6.51)

The accelerometer error δδδfff bib is included in this calculation. As a consequence the roll
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and pitch uncertainty becomes [9, p.198]

σφnb =
f bib,zδf

b
ib,y − f bib,yδf bib,z

f bib,y
2

+ f bib,z
2

σθnb =

(
f bib,y

2
+ f bib,z

2
)
δf bib,x − f bib,xf bib,yδf bib,y − f bib,xf bib,zδf bib,z(

f bib,x
2

+ f bib,y
2

+ f bib,z
2
)√

f bib,y
2

+ f bib,z
2

(6.52)

Most of δδδfff bib originates from the bias uncertainty σba . From the data sheet σba =
60 mg [26, p.11] and therefore the angle uncertainty for total horizontal alignment is
σθnb = σφnb = 3.4◦.

• The initial accelerometer bias ba can not be calculated due to the unknown alignment.
It is only observable during dynamical movement phases [3, p.344-345].

• The initial misalignment of the body frame to the rear frame accounts for an ideal
installation zero and therefore ψψψbbr = [0; 0; 0]◦.

• Section (5.1) leads to an initial lever arm from the body to the rear frame of approx-
imately lllbbr = [−7.5; 1; 2]m. Tests have shown that the Kalman filter converges to
these values when initialised to zero. The difference in size of the leverarm between
normal and articulated bus is therefore irrelevant for initial values.

• The bias of the barometer is initialised with the averaged height of the GPS signal of
the stationary phase.

For a determination error greater than ±2◦ the small angle approximation may become
invalid and the whole system unstable [9, p.595,619-620]. This situation is possible as
σθnb = σφnb = 3.4◦. Even more crucial is the initialisation of the yaw-angle which will be
done using the magnetometer.

Magnetometer Alignment

The output of the magnetometer is constantly disturbed by a soft iron scale factor Mm and a
hard iron offset bm(5.3). These errors may exceed the strength of the Earth’s magnetic field
(0.3 G). Therefore a calibration procedure is required to eliminate this error. The algorithm
proposed in [19] fits a sphere into multiple data points. Drawbacks are that this technique
estimates only the hard iron offset and needs distributed data points in all directions. A land-
vehicle performs only turns in horizontal alignment. Thus, this is not a stable approach as
tests with multiple datasets have shown.

In order to obtain a stable and accurate initial alignment a two-dimensional technique for
magnetometer calibration is developed in further steps. The idea is that a perfect calibrated
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Figure 6.6: Sphere fit of 5000 data points of magnetometer

magnetometer gives data points in form of an ideal circle centred in the origin of the sensor
frame when rotating about the z-axis (yaw). The dataset can be filtered for data points which
exceeds a yaw-rate threshold. This leads to a set of data points with equally distributed mag-
netometer measurements illustrated in figure 6.7a. Obviously the form is rather an ellipse
than a circle which indicates a soft iron effect. The fact that it is not centred in the origin of
the xy-plane which indicates a hard iron offset. An ellipse can be described mathematically
by five parameters in parametric form[16, p.11].[

x(t)
y(t)

]
=

[
x0

y0

]
+

[
cos(φ) −sin(φ)
sin(φ) cos(φ)

] [
a 0
0 b

] [
cos(t)
sin(t)

]
(6.53)

Another way to describe ellipses is the conic (Cartesian) form 6.54. It is faster to minimize
with linear least square methods than fitting directly to the parameter form [16, p.52].

0 = Ax2 +Bxy + Cy2 +Dx+ Ey + F (6.54)

In this thesis a Matlab script [7] fits data to the conic representation with least square methods
and converts the conic to the parameter form (Figure 6.7b). A direct least square method for
fitting data to an ellipse is presented in [20]. The calibration is done in following steps:
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1. Correcting the offset bbbm,xy =

[
x0

y0

]
illustrated in figure 6.7c.

2. Rotating the data into the elliptic frame by applying a 2D Rotation with

RRR(φ) =

[
cos(φ) −sin(φ)
sin(φ) cos(φ)

]
illustrated in figure 6.7d.

3. Scale elliptic data to circle data with scaling matrix S =

[
a 0
0 b

]
illustrated in figure

6.7e.

4. Rotating the data back into the body frame with RRR(φ)T illustrated in figure 6.7f.

From (5.3) the measurement resolved in a xy-plane is

m̃mmb
mb,xy = bbbm,xy + (III2 +MMMm)mmmb

mb,xy (6.55)

(6.56)

Rearranging leads to the corrected magnetometer measurements.

m̂mmb
mb,xy = (III2 +MMMm)−1(m̃mmb

mb,xy − bbbm,xy) (6.57)

= RRR(φ)TSSSRRR(φ)(m̃mmb
mb,xy − bbbm,xy) (6.58)

This calibration method does not correct the absolute values of the magnetometer measure-
ment. However, when calculating the yaw-angle from the measurement the absolute value
cancels out. Applying (5.4) and (5.5) leads to the tilt compensated yaw angle, noting that
only the x- and y-axis are calibrated by the elliptic technique. In the initialisation phase all
sampled magnetometer measurements are median averaged to eliminate the sensor noise
and possible outliers.
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Initial System Covariance

The choice for the initial uncertainties is critical to get the extended Kalman filter started. A
large PPP−0 combined with low measurement noise leads the state covariance matrix to fall from
a very large to a small value which could result in numerical problems. A way to prevent this
is a choosing a higher noise in the measurement-matrix RRRk for the first steps [3, p.259-260].
In this thesis the phase is called calibration phase. The choice for the initial uncertainties is
found in the characteristics of the sensor equipment and the vehicle.

• PPP−0 [ψψψnnb]: The uncertainty for roll φnnb and pitch θnnb angles originates from the ac-
celerometer offset which leads to the standard deviation σθnb = σφnb = 3.4◦ (6.52).
The uncertainty for the yaw angle ψnnb depends on the quality of magnetometer mea-
surements. From comparisons with the direction of streets and calibrated magnetome-
ter the uncertainty results in σψnnb = 3◦.

• PPP−0 [vvvnnb]: The vehicle is for sure stationary due to the accurate odometry signal. For
stability reasons σvvvnnb = 0.1 m

s
.

• PPP−0 [pppb]: The GPS-quality determines the initial uncertainty for the position. To give the
filter enough flexibility the uncertainties are chosen as σlat,long = 15m and σheight =
20m.

• PPP−0 [bbbaaa]: As visible on the datasheet the accelerometer has an initial static bias un-
certainty of σbbba = 60mg ≈ 0.5m

s2
[26]. The converged biases in tests confirm this

value.

• PPP−0 [bbbggg]: Due to the stationary phase the gyroscope bias is directly observable. There-
fore a small uncertainty σbbbggg = 0.5

◦

s
is chosen accounting for zero-angular-rate errors

due to bus tilts or passenger movement.

• PPP−0 [ψψψbbr]: The angle between body and rear frame has an estimated uncertainty of
σψψψbbr = 3◦. Tests with multiple datasets have shown that the yaw angle ψbbr does not
converge. To prevent instabilities the initial system covariance is set to zero. The same
applies for the unobservable roll angle φbbr.

• PPP−0 [lllrbr]: The lever arm has been estimated referring to the size of the vehicle in
5.1. To account for errors in this estimation the uncertainty is chosen as σlllrbr =
[0.5; 0.2; 0.2]m.

• PPP−0 [bB]: The uncertainty of the barometer is the same as the GPS-height uncertainty
resulting in σbB = 20m.
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6.3.5 System Noise

The system noise parameters are crucial for the development of error state covariances
PPP . With every iteration a specific amount of noise represented by the Q-Matrix is added
to the P-Matrix. A greater variance in the states leads the Kalman filter to more weight
in updates to the measurements than the reference navigation solution. In the following
sections the parameters for the discrete system noise covariance matrix Qk−1 (3.44) have to
be considered.

Gyroscope and Accelerometer Noise

The white system noise represents an inertial sensor noise and is the random input for the
system. Due to the equations of motion the sensor white noise gets integrated several times
similar to the random walk model of 3.1.5. With respect to time the variance in position
determined by the INS has a quadratic slope for the accelerometer noise and a cubic slope
for the gyroscope noise. An algorithm in Matlab calculates the standard deviation of the
sensors for each stationary phase with closed doors and takes the average. Applying (3.14)
with Bg = 12.5Hz for the gyroscope and Ba = 3Hz for the accelerometer leads to the
power spectral densities AS .

The results for several datasets of the same logger are illustrated in figure 6.8. The
noise in the Kalman filter is increased by a factor of 2.5 to account for vibrations caused
by the movement on the road and by the engine of the vehicle. The root noise densities RS

describing the inertial sensor noise, must be converted from the body to the navigation frame
as the resolving axis of the states are in the navigation frame.Rn

S,x

Rn
S,y

Rn
S,z

 = CCCn
b

RS,x

RS,y

RS,z

b (6.59)

Applying the impulse approximation and choosing the system noise distribution matrix as
GGGk−1 = III3 leads to the discrete system noise covariance for the velocity-state δδδvvvnnb and the
alignment-state δδδψψψnnb.

Qk−1,ψnb/v =

Rn
S,x 0 0

0 Rn
S,y 0

0 0 Rn
S,z

2

· τs (6.60)

Gyroscope and Accelerometer Bias

Since the temperature drift of the bias is compensated, the states bg and ba are theoretically
constant. To account for errors in the calibration algorithm and to ensure the system’s stability
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Figure 6.8: Average noise statistic determined from 10 datasets

some noise is added each iteration resulting in a random walk. The amount for this noise is
determined empirically to

• AnS,xyz[ba] ≈ 1 · 10−8 (m/s2)2

Hz
for the accelerometer bias.

• AnS,xyz[bg] ≈ 1 · 10−10 (rad/s)2

Hz
for the gyroscope bias.

Applying the impulse approximation and choosing the system noise distribution matrix as
GGGk−1 = III3 leads to the discrete system noise covariance for the gyroscope bias-state δbbbg
and the accelerometer bias-state δbbba.

Qk−1,bg/ba =

AnS,x 0 0

0 AnS,y 0

0 0 AnS,z

 · τs (6.61)

Lever arm and Body-Rear-Angles

The lever arm lllbbr and the body-rear-angles ψψψbbr are both considered as random constants.
For stability reasons the power spectral densities are

• AS,xyz[lllbbr] = 1 · 10−10m2

Hz
for the estimated lever arm

• AS,xyz[ψψψbbr] = 1 · 10−10 rad2

Hz
for the estimated body-rear-angle

Applying the impulse approximation and choosing the system noise distribution matrix as
GGGk−1 = III3 leads to the discrete system noise covariance for the lever arm state δlllbrb and
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the body-rear-alignment state δψψψbbr.

Qk−1,l/ψbr =

AnS,x 0 0

0 AnS,y 0

0 0 AnS,z

 · τs (6.62)

Barometer

In section 6.3.2 a Gauss Markov process describes the dynamics of barometer bias. A
weather model enabled the estimation of the standard deviation to σB = 60m with a corre-
lation time of τc,B = 20000s.

ḃB = − 1

τc,B︸ ︷︷ ︸
F

bB + σB

√
2

τc,B︸ ︷︷ ︸
G(t)

wu(t)

The system noise covariance matrix is analytically determined without approximations by
evaluating (3.44)[3, p.125]. From (3.24) the transition matrix is φ(tk−1, t

′) = e−F ·t
′
.

Qk−1,B =

∫ tk+τs

tk

φ(tk−1, t
′)G(t′)ASG(t′′)φ(tk−1, t

′′)dt′

=

∫ τs

0

σ2
B

2

τc,B
e
− 2
τc,B

t′

dt′

= − σ2
Be

2
τc,B

t′
∣∣∣τs
0

= σ2
B

(
1− e

2
τc,B

τs
) (6.63)

6.3.6 Measurement Noise

Measurement noise is the counterpart to system noise in the Kalman gain calculation. It is
represented by the measurement error covariance matrix RRR. A smaller value for RRR will bias
the updates in favour of the measurements.

GPS

The signal from the GPS-sensor is internally pre-processed by a Kalman filter. This results
in a correlated output which has to be accounted for with a lower update rate. In loosely cou-
pled integration intervals of 10 seconds are common for this kind equipment. An alternative
for such a cascaded filter strategy is a single-epoch position receiver without carrier smooth-
ing of the pseudo ranges [9, p.567]. Empirical experiments in this thesis have shown that
this update rate yields the best performance in combination with a smoother and innovation
filtering.
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Additionally the quality of the GPS signal depends on the number of satellites and
the geometry indicated by the HDOP-factor. The HDOP-value varies between 0.8-99
and specifies the multiplicative effect on positional measurement precision. From the
data sheet [29, p.2] an accuracy of 2.5m is given. Tests with a map as reference have
shown, that this precision is only achievable with a high number of satellites (>10), good
geometry values (<1.2) and no multipath effects. As a result a linear function (6.9)
has been developed returning a standard deviation depending on the mentioned condi-
tions. For the noisier height measurements twice this standard deviation is considered.
The NMEA protocol of the Venus-module provides information about the vertical dilution
of precision (VDOP) in the GSA-String but was not available in the recorded datasets.

σGPS(q, s, σmax, σmin) = q((σmin− σmax)s) (6.64)

where

q is the HDOP.

s is the number of satellite signals received by the GPS sensor

σmax is the standard deviation when 4 satellites are available and q = 1 and empirically
determined to 15m.

σmin is the standard deviation when 12 satellites are available and q = 1 and empiri-
cally determined to 1.5m.

Odometry

According to figure 5.12 the signal ṽ(t) is a combination of its true velocity and quantisation
noise. As the Kalman filter expects Gaussian white noise w(t) the quantisation noise has
to be classified in that way. “A good analogy is that you can fit a square peg into a round
hole if you make the hole sufficiently large” [9, p.88]. Its maximum error gives therefore a
rough estimate for a Gaussian standard deviation of σO,τs = εO = 1.25 m

s
at a bandwidth of

B = 10Hz. Applying (3.14) leads to a PSD of AS,O = 0.15625 (m/s)2

Hz
.

Practical experiments have shown that an odometry measurement update rate equal to
the system (inertial sensors) rate can result in unstable behaviour. This is justified with
the large quantisation steps. One solution to get rid of theses quantisation steps is a filter.
By making the assumption that ṽ(t) is ergodic for a short time interval τc = 0.5 sec, time
averaging gives the same result as ensemble averaging.

Average filtering for this short time is achieved by the convolution of the measurement
signal with respect to a suitable averaging window h(t) of length τc. In Matlab the function
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Figure 6.9: GPS standard deviation depending on satellite geometry and number of satellites

’filtfilt’ is used for zero-phase-shift filtering.

Continuous: y(t) = x(t) ∗ h(t) =

∫ ∞
−∞

x(τ) · h(t− τ)dτ (6.65)

Discrete: yn = xn ∗ hn =
∞∑

k=−∞

xkhn−k (6.66)

For this thesis two windows have been tested in figure 6.10. The Blackman window adds
more weight to the actual point in time. That way the window can be increased without being
affected of a higher correlation time τc. Practically no difference in Kalman filter performance
is detectable, thus for an easier analysis the rectangle is used. To fulfil the Kalman filter
condition of uncorrelated measurements the update interval must be at least equal to the
correlation time τc. The noise is also affected by the filter. The convolution of the continuous
white noise w(t) with the filter function h(t) results in

wτc(t) = w(t) ∗ h(t) =

∫ ∞
−∞

w(τ) · h(t− τ)dτ =

=

∫ ∞
−∞

w(τ) · 1

τc
rect(

t− τ
τc

)dτ =
1

τc

∫ t+ τc
2

t− τc
2

w(τ)dτ

(6.67)
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Figure 6.10: Filtered derivative of odometry signal

Then the new standard deviation is calculated by applying the variance operator (3.4).

σ2
O,τc = E[wτc(t)wτc(t)] = E[

1

τ 2
s

∫ t+ τc
2

t− τc
2

∫ t+ τc
2

t− τc
2

w(t′)w(t′′)dt′dt′′]

=
1

τ 2
s

∫ t+ τc
2

t− τc
2

∫ t+ τc
2

t− τc
2

E[w(t′)w(t′′)]dt′dt′′

=
1

τ 2
s

∫ t+ τc
2

t− τc
2

∫ t+ τc
2

t− τc
2

AS,Oδ(t
′ − t′′)dt′dt′′

=
1

τ 2
s

∫ t+ τc
2

t− τc
2

AS,Odt
′′ =

AS,O
τc

(6.68)

For a time interval τc = 0.2 sec this leads to a standard deviation of σO,τc = 0.88 m
s

.
The amount of noise for the velocity constraints is difficult to estimate. The suspension

system allows different velocities along the vertical direction at the rear frame and the IMU.
Sideslips will occur in curves exceeding a yaw rate threshold of 3

◦

s
[8, p.642]. The lineari-

sation introduces errors and the feedback loop for the estimated states might get unstable
with overly great restrictions. Therefore enough additional noise has to be modelled for
all three measurement axes. The final amount of this noise is determined empirically to
σO,e = [1.12 0.45 1.12]m

s
when τc = 0.5s. The measurement update rate is therefore

chosen as 2 Hz.
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Barometer

Out of the measured pressure the calculated height serves as a measurement for the Kalman
filter. Therefore the noise wB(t) is calculated in units of meter. Figure 6.11 shows the mean
values for multiple datasets in stationary phases.

1 2 3 4 5 6 7 8 9 10

Datasetsnumbers all from the same logger

0.27

0.275

0.28

0.285

0.29

0.295

0.3

σ
B
[m

]

σB Mean: 0.2812 m

Figure 6.11: Barometer noise in standard deviations at a datarate of 10 Hz

6.3.7 Adaptive Innovation Filtering

From (3.30) the measurement innovation is given as the difference of the measurement zzzk
and the estimated measurement ẑzz−k .

dddzzzk = zzzk − h(x̂xx−k )

= zzzk − ẑzz−k
(6.69)

Based on this information different faults in the measurements or the system state itself may
be detected.

Innovation Filtering

The measurements are expected to have a bounded uncertainty defined by the matrix RRR.
When a measured data point exceeds this bound by far, it is most likely an outlier which
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has to be rejected. This is achieved with a technique called innovation filtering. To get an
boundary which is independent of the absolute measured difference a normalization of the
innovation has been proposed in [9, p.707]. This is done with the covariance of innovation
CCCdddzzz,k in (6.71).

CCC−dddzzz,k = HHHkPPP kHHHk +RRRk (6.70)

y−k,j =
dz−k,j√
C−dz,k,j,j

j : row of measurement in innovation-vector (6.71)

By choosing a threshold of ymaxk,j = 3 theoretically 99,73 % of valid measurements (y−k,j ≤ 3)
passes the filter. In practice the threshold has to be determined empirically as the measure-
ments do not have an ideal Gaussian distribution [9, p.707].

In this thesis the innovation filter is implemented for the GPS-measurements. A threshold
of 2D-position ymaxk,λ,L = 3 and for the height yk,h = 1 are chosen to get rid of faulty GPS-data
through multipath effects. As the height information is a lot more erroneous than the 2D-
position data the value has been chosen even smaller. Test have shown that the algorithm
tends be more stable when selecting a minimum time ∆TGPS = 20 sec between innovation
rejections.

Innovation Sequence Monitoring

When the innovation rejection is repeatedly triggered, the fault is not likely to come from the
measurement but rather in a biased state estimate. This can be detected with a technique
called innovation sequence monitoring [9, p.709].

µkj =
1

N

k∑
i=k+1−N

y−k,j (6.72)

The length of the sequence window N and the threshold for µkj have to be determined
empirically in most cases. When the innovation is Gaussian distributed the standard devia-
tion falls with 1√

N
. Therefore a threshold in terms of standard deviation σdz−k,j would be [9,

p.710]

Tµkj =
σdz−k,j√
N

(6.73)

This kind of of system fault detection is implemented for the GPS-measurement. A window-
size of N = 10 is chosen as a compromise between reaction time of the sequence detection
and reliability. The threshold is estimated with (6.73) and empirically optimized to σdz−k,λL =
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10. Aiming at eliminating the biased state the state uncertainty has to be increased. This
is done by multiplying the QQQ by a factor during all iterations until the next update phase [9,
p.711-712]. The factor is tuned empirically to Qboost = 100.

6.4 Software Implementation

This section describes how the previously considered ideas are implement as an algorithm
in software. Matlab is used as the software environment.

6.4.1 Top level

The Top-level script starts further functions and scripts which are illustrated as modules in
figure 6.12. First of all a dataset has to be selected which can be processed for a restricted or
entire time interval of the raw data. Subsequently a preparation function converts the dataset
into a structure with common element names for later processing steps. The configuration
of the Kalman filter is completely excluded in a Matlab script for the purpose of loading
different settings. In the configuration script the temperature compensation (5.3.5) is done
and the noise levels are evaluated based on all data. The ’interval processing’-box filters and
smooths the data of the passed structure. It is described in more detail in following section.
Subsequently the processed data can be saved in a new file. For debugging and visual
results a Matlab-GUI has been developed illustrated in figure 6.13.

• It shows the coordinates in a plot with selectable Google-map types.

• Special points like bus stations or stops, curves, GPS updates and GPS rejections can
be marked up.

• When selecting a coordinate in data cursor mode the box displays additional selectable
information (inertial sensor data, all states, uncertainties etc.) for this point in time.

• The results of GPS, filter and smoother may turned on and off separately. If available
a reference trajectory can be added.

• Arrows can indicate the direction of travel for every coordinate of the filter results.

• At the top an overview of the configuration is given.

The script ‘Additional plots’ displays several important navigation quantities over the time
interval.
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Start

Select Dataset
and Interval

Dataset Preparation

Kalman Filter
Configuration

Kalman Filter In-
terval Processing

Save fused
Dataset GPS+

Viewer for
GPS+ Dataset

Additional Plots

Stop

Figure 6.12: Flow chart diagram top level
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Figure 6.13: GUI in Matlab
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6.4.2 Architecture: Interval Processing

Figure 6.14 gives an overview about the phases for fusing the data in the specified interval.
Arrows between boxes with a dotted line indicate the way of handling erroneous situations
e.g. faults in measurement data or instabilities of the algorithm.

Preparation The arguments of the function are structures for easier manageability. In a
loop with thousands of iterations, arrays have a noticeable faster access time than
structures (of factor 20), so all relevant information in the structures is allocated into
arrays. These arrays have the length of the time vector tttk and their first elements
corresponds to the time t0. The position in later matrices of states is defined with
variables, because a descriptive name is easier to comprehend than pure numbers.
Also all arrays get preallocated by the length of the interval for processing speed.

Error loop The idea is to catch every error occurring inside the loop. For example in cases of
erroneous data leading the filter to instability an error is thrown and the filter reinitialises
in the next stationary phase. The old processed data gets smoothed until the last
stationary point in time.

Initialisation The velocity derived from the odometry signal is used to search for the next
stationary phase. All skipped points in time are set to the initial state determined
in this stationary phase. The states and covariances get initialised as proposed in
section 6.3.4. The configuration elements of the structure are allocated to variables for
processing speed.

Filter loop The loop runs through all points in time starting with the first point after the
initialisation phase kstart. If no errors occur, the loop finishes at the defined end of the
time interval represented by kstop. The next section 6.4.2 describes the filter loop in
detail.

Smoother loop The smoother is realised the same way as in the one-dimensional example
3.12. All data points processed by the filter are filtered backwards to improve the
estimate of every state.

Save results This module saves the arrays used in the loops into an easier manageable
structure which is passed to the top-level script.
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Input
• time interval tttkkk
• raw data structure
• configuration

Preparation

Error Loop

Initialisation

Filter loop
k = kstart → kstop

Smoother loop
kS = kstop → kstart

Store results in structure
Output

• fused data struc-
ture

k = 1

kstart = kkkinit(end) + 1

Catch error and set
kstop = kkkstationary(end)

k == length(tttk)

k < length(tttk)

Figure 6.14: Architecture interval processing

Filter Loop

The modules of the filter loop in figure 6.15 are described separately.

Context detection Most of the further steps depend on vehicle’s kind of motion. First the
odometry information is used to differentiate between moving and stationary phase.

In the movement phase velocity and barometer updates are enabled.

Next it is divided into a curve phase, if a threshold of 4
◦

s
is exceeded. For an articu-

lated bus the rigid body assumption is invalid and the odometry information is down
weighted by increasing its variance in the measurement matrix. Also the GPS is ex-
plicitly disabled to capture high dynamic movements without discontinuities.

When moving straight forward the GPS signal is proved for validity by evaluating the
quality reported from the GPS-NMEA string.

During a stationary phase the vehicle does not move and the calculated position must
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stay at the same place for this time. Therefore the progress of Kalman filter loop is
paused by skipping the illustrated modules in figure 6.15. This leads to constant states
and covariances for the stationary phase which results in more realistic smoothed
positions in the time just before and after stationary phase. This has been observed
empirically. The door signal is evaluated to mark bus stations for later visualisation. In
further development the results of the gyroscope or calibrated accelerometer may be
analysed for bus tilts.

Update frequency The frequency of updates has been discussed in previous sections. A
modulo operation ensures the correct rate.

Navigation solution The strapdown algorithm from 6.2 is processed leading to a indepen-
dent reference system navigation solution in three-dimensional space. The GPS-signal
gets corrected for the lever arm to the place of the INS. The pressure measured by the
barometer leads to the height applying (5.6). At least the yaw angle resulting from the
magnetometer is calculated for later plots.

Propagation phase In this module the state covariance matrix PPP−k−1 gets propagated by the
transition matrix φφφk and the additional noise from the system noise covariance matrix
QQQk calculated with the impulse approximation (3.45).

Measurement phase The measurement matrix HHHk and the innovation vector dddzzz−k gets ex-
tended in stages depending on the update frequency, the results of innovation- and
innovation sequence filtering (6.3.7) and the context. All measurements from section
6.3.2 are evaluated and the R-Matrix is selected based on the considerations in sec-
tion 6.3.6. When the innovation sequence detects a biased state in position the Qboost

factor becomes 100 and operates in the next iterations of the propagation phase un-
til the innovation sequence stabilises. If the innovation sequence is triggered more
than a defined number Ntrigger,max the Q-boost method is most likely not able to sta-
bilise the system. Then an error is thrown which gets caught by the error loop and
the algorithm reinitialises in the next stationary phase. The threshold is chosen as
Ntrigger,max = 2 ·N where N is the window length (Section 6.3.7).

Update phase The Kalman gain is calculated by (3.39) and leads to the updates (3.2.3) for
the error states δδδxxx−k and the covariance PPP−k . In stationary cases this phase is skipped.

Correction phase The total states xxx−k gets updated by the error states δδδxxx−k in the same
way as in the one dimensional example.



6 Implementation 99

Filter loop
k = kstart → kstop

Context detection
Enable elments in update vector uuu depending on context

Update frequency
If update timer is not expired disable

corresponding element in update vector uuu

Navigation solutions
1. INS Strapdown algorithm
→ x̂xx−INS,k = f(x̂xx+

INS,k−1, ωωω
b
ib, fff

b
ib)

2. GPS → zzz1 = p̃ppb,k
3. Barometer → z2 = h̃B,k
4. Odometry/Land-Vehicle Constraint → zzz3 = ṽvvrer,k

Propagation phase
1. System noise covariance matrix QQQ′′′k = Qboost ·QQQk
2. Transition matrix φφφk−1

3. Predicted system covariance matrix
PPP−k = φφφkPPP

+
k−1φφφ

T
k +QQQ′′′k

Measurement phase for each solution i
If ui enabled do following steps:

1. Measurement matrices HHH i and RRRi
2. Measurement innovation dddzzzi = zzzi − hi(x̂xx−k )
3. GPS: Innovation sequence→ Qboost
4. GPS: Innovation filtering and rejection

Update phase
1. Kalman Gain KKKk

2. State δδδxxx+
k and covariance PPP+

k

Corrections
x̂xx+
k = x̂xx−k + δδδx̂xx+

k

Store fused data

when stationary
x̂xx+
k = x̂xx+

k−1

k = k + 1

Figure 6.15: Architecture filter loop
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6.4.3 Implementation Concept in C

For a real time solution the basic concept of the Matlab algorithm is portable to a C imple-
mentation on the Raspberry Pi. The following list sums up important differences in imple-
mentation:

1. A RTS-smoother is only available for post processing. In real time application a per-
manent fixed lag smoother (3.2.4) is an alternative.

2. The temperature compensation algorithm does not work in real time. Instead the zero-
angular-rate update to fulfil this task.

3. The noise levels have to be selected based on data in the past.

4. An elliptic magnetometer calibration can be done with data of the past as well.

5. In C the application of constants can improve performance and readability of the code
unlike Matlab which does not support a preprocessor functionality.

6. In real time processing the measurement data can directly be processed and does not
have to be stored. Therefore the update rate of the inertial sensors should be raised to
improve accuracy and reduce the noise of the sensors [14]. The results may be stored
to the same frequency of 10 Hz.

7. The Matlab build in functions have to be replaced with corresponding libraries in C.

6.5 Summary

The first section (6.2) provides the equations for using the gyroscope to change the resolving
axes of the accelerometer from the body frame to the navigation frame. The INS provides an
independent solution for velocity and position and is used as the reference system. Aiding
sensors like the GPS, Barometer and odometry in combination with a land-vehicle constraint
correct the navigation solution of the INS in an extended Kalman filter algorithm (6.3.2). The
noise configuration of the system (6.3.5) and the measurements (6.3.6) are discussed in an
analytical way which enables funded empirical optimisation of the individual parameters. For
the initialisation of the Kalman filter states several sensors provide solutions with restricted
accuracy which lead to the initial covariances(6.3.4). An adaptive innovation filter detects
erroneous data in GPS-measurements and the analysis of the innovation sequence enables
detection of biased states within the system (6.3.7). Finally an overview for the software
implementation in Matlab is given, containing flow charts. As well some ideas for further
realisation in C are presented (6.4). This includes a concept for a robust mechanism with
error handling (6.4.2).
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This Chapter shows the advantages of applying the developed Kalman filter algorithm on
real data demonstrated in different situations compared to the results from the GPS receiver.
Further the states which provide new information are analysed.

7.1 Reference

To give a statement about the accuracy a reference solution for every data point in time
is required. A navigation grade system is not available, thus other methods have to be
considered.

7.1.1 Height: Database Hamburg

A public database provides height information for the area of Hamburg [31]. The accu-
racy lies within ±7 cm and is sufficient for evaluating the estimated height from the algo-
rithm. The database is working with UTM coordinates (Universal Transverse Mercator co-
ordinate system). To get the reference height out of the estimated curvilinear coordinates
(latitude,longitude) an efficient and fast algorithm has been developed in Matlab.

7.1.2 Google Maps

For evaluating the accuracy of estimated latitude and longitude coordinates the google map
function for Matlab[2] serves as a benchmark. The basic idea to determine the true position
is that the bus is on the street. Another constraint can be achieved with the knowledge of the
direction of travel and that Germany has right-hand traffic. If there is only one lane left, the
position of the INS in the vehicle gives an additional advice where the bus has been. This
results in an accuracy up to approximately 1 m to the vertical of the street.

Drawbacks are that the position along the street to a given point in time is difficult to de-
termine. Combining the results of GPS, filter and smoother may lead to an accurate intuitive
guess. Therefore some procedural errors can occur. A way to avoid any assumptions about
the position along the street is to evaluate only the orthogonal distance from each point of
interest to the street. This strategy has not been done here but may be useful for further
investigations.
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A Matlab function is created where the estimated positions of GPS, filter and smoother
are selected with all points spaced in a defined distance in time (22,5 sec, v >5m/s). Each
interval is displayed like in figure 7.1 with some coordinates before and behind the position
of interest (round dot). Using the data cursor mode of Matlab a reference point is clicked
on the map where the INS most likely has been. This procedure is repeated 50 times for a
dataset to get some statistical data for a rough comparison between the results of GPS, filter
and smoother. Also the estimated accuracy of the covariance can be compared with the real
error.

Figure 7.1: Reference creation with Google Maps

7.2 Test with different GPS Qualities

The environment where the logger works changes due to multiple reasons:

• The placement of the components is slightly different when comparing the installation
in multiple buses. Especially the antenna might be placed in a way that the signal
quality gets restricted. Also deviations in alignment of the IMU in the data logger may
lead to various results with different quality.

• Refractions in ionosphere troposphere introduces an error in the pseudo range [9,
p.309]

• Receiver measurement error arises from radio frequency interference [9, p.310]
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• Small elevation angles of satellites leads to a larger impact of atmospheric delays.
Therefore the satellite geometry affects the accuracy in positioning indicated by the
DOP factor.

• The operational area crucial is for the influence of multipath effects resulting from build-
ings. In urban areas they occur much more frequently than in an environment with less
high buildings.

The performance of the algorithm is firstly evaluated in an environment with very good GPS
signal quality and no disturbances. This is a common approach to show that the developed
system is working correctly and no other measurements beside the GPS lead to an unstable
behaviour. Secondly an urban environment with medium signal quality and a lot of multipath
effects is chosen as this has been the area where the algorithm should lead to the best
improvements in position compared to the GPS.

7.2.1 Accurate GPS

The dataset from logger 3 with the highest average number of satellites (8.6) and the lowest
average dilution of precision (HDOP=1.1) value is chosen. The vehicle model is a not artic-
ulated bus. 18 hours of recorded data has been processed within 1000 sec in Matlab. The
results are presented in figure 7.2, which proves that the algorithm works stable over long
periods of time. The next sections analyse the accuracy of the filter and smoother.

Figure 7.2: Results of processing 18 hours of data
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Longitude and Latitude

The technique proposed in 7.1.2 is applied here. From the whole dataset an interval of 5000
sec is divided into multiple data points in time. Overall 50 coordinates are placed on the map
which leads to a dataset of true positions. The reference is subtracted from the results of
the GPS, filter and smoother. The statistical plots representing the true errors and estimated
standard deviations are described in further analysis. The test route in semi-urban area of
Hamburg is illustrated in figure 7.3.

Figure 7.3: Test route for true error and standard deviation calculation

GPS In 6.64 an equation has been developed which gives a rough estimate of the error in
the actual GPS-signal by evaluating the HDOP and number of satellites. Figure 7.4
confirms these considerations as the profile fairly matches the true errors. The equa-
tion (6.64) may be tuned to get rid of the offset between true error standard deviation
and estimated standard deviation. Combining the true standard deviation σe,L,GPS
and σe,λ,GPS the GPS has an overall accuracy of about five meters. The magnitude of
mean errors ēL,GPS and ēλ,GPS is below 0.4m which indicates that the assumptions of
zero mean noise in the measurements for the Kalman filter is right.
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|e|, ē = 0.398m σe = 4.46m

σGPS, σ̄GPS = 8.1m

Figure 7.4: GPS true error and standard deviation

Filter The calculated standard deviations σfilter in figure 7.5 seem to be overoptimistic as
the averaged true standard deviation is larger. This indicates that the configured pa-
rameters for measurement noise and system noise may be too small. Especially the
velocity measurement restricts the growth of estimated covariances between the large
update interval of the GPS. Thus, this noise variance σ2

vmeas should be empirically ad-
justed. From the data in the plots the filter does not improve the accuracy in position by
looking at the standard deviations. In return subsequent sections show that especially
the dynamics of the vehicle are captured more realistically.

Smoother By processing all filtered data backwards the smoother is able to improve the
accuracy in terms of standard deviation by factor 2 compared to the GPS. Also the
estimated standard deviations fits to the true errors. An accuracy of 2.5 meters can be
achieved with good GPS signal quality.
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Figure 7.5: Filter true error and standard deviation
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A good choice to compare the results from GPS, filter and smoother is a roundabout. When
plotting the entire dataset of 118 hours, the bus has been driven multiple times on this specific
intersection of roads. Figure 7.7 illustrates the performance of each method. The GPS
is hardly able to show the correct position of the bus around the roundabout. From the
statistics in figure 7.5 the filter is not expected to give a better position. But the dynamics are
represented more realistically. Finally the smoother outperforms the two other solutions. The
dynamics and the accuracy in position has clearly improved.

(a) GPS (b) Filter (c) Smoother

Figure 7.7: Roundabout

Height

GPS In figure 7.8 the height standalone solutions of the GPS and the barometer with height
formula (5.6) are illustrated compared to the true height of the database at the calcu-
lated smoother-position. Obviously both sensors produce worse results: The GPS has
a high standard deviation while the mean of the barometer shows a constant offset.
It is also worth noting that the mean error ēGPS is nearly zero which fulfils one of the
Kalman filter noise requirements. The estimated standard deviation σGPS = 16.5m
with the formula (6.64) is selected unrealistically high compared to the true deviation
σ̄GPS = 9.9m. Thus, the factor 2 in (6.64) has to be reduced to 1.5 for the height.

Filter and Smoother In figure 7.9 the results of combining this measurements in a Kalman
filter are illustrated. Obviously the fusion of the barometer and the absolute height of
the GPS works well.The performance improvement with the smoother is not as big as
for the longitude and latitude performance. In figure 7.10 both errors of the filter and
smoother are compared to the true errors. Overall the estimated standard deviation fits
to the true components. The filter yields an true accuracy of 2.2m while the smoother
does improve this up to 1.7m.
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7.2.2 Noisy GPS

A dataset from logger 9 installed in an articulated bus with medium number of satellites (6.95)
and low average HDOP (1.9) should challenge the abilities of the Kalman filter algorithm.
Figure 7.11 shows the raw GPS signal and the output of the algorithm of processing 9 hours
of data. Once more this proves the stability of the algorithm which has triggered its error loop
once for this dataset due to erroneous measurements at the start.

Figure 7.11: Results of processing data recorded in urban areas

Longitude and Latitude

Again the reference technique from 7.1.2 is applied on a dataset from an articulated bus for
an interval of 6000 seconds. The true positions are generated for 50 coordinates and which
lead to the true errors. The urban test route through the city of Hamburg is illustrated in figure
7.12.
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Figure 7.12: Test route for true error and standard deviation calculation

GPS The signal is disturbed by many multipath and bad geometry effects (Average satellites
5.46, average HDOP 2.5). Therefore equation 6.64 calculates the overall high standard
deviations σGPS as illustrated in figure 7.13. Except from some big outliers in the
beginning the profile of the calculated deviation matches the true error. By looking
at the standard deviation of the true error σe,L,GPS and σe,λ,GPS a total accuracy of
approximately 20m is achieved.

Filter In contrast to the undisturbed environment the filter improves the standard deviation
to σe = 11m in figure 7.14. This is nearly a factor 2 compared to the GPS. The true
error is also more similar to the estimated standard deviation of σfilter = 8 − 9m,
which indicates that the configured parameters are working more realistic in urban
area. The mean of the error tends to have a larger magnitude which is the result of
weak corrections from the disturbed and down weighted GPS measurements. Thus
the filter needs several updates to correct a false course. A smoother which doubles
the update could have a lot of potential for improvements.

Smoother As implied the smoother fixes those periods where the filter is corrected several
times. This is indicated by the mean error value ē that is close to zero in figure 7.15.
A true accuracy of σe = 4.1m is achieved and matches perfectly with the predicted
standard deviation of about σ̄smoother = 4.4m. Compared to the GPS this is an im-
provement of factor 5 in accuracy!

The previous statistics have described the accuracy with numbers. In order to provide a
visual impression about the reliability some exemplary areas are selected out of processing
the whole dataset. Figure 7.16 illustrates the advantages of combining the information of all



7 Results 112

0 10 20 30 40 50

Position

0

100

200

300

400

500

600

700
E
rr
or

[m
]

Latitude L, True error e = LGPS − Lmap
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Figure 7.13: GPS true error and standard deviation

sensors. Nearly all estimated and smoothed positions are correctly on the road, although the
GPS only provides an unreliable solution. The next graphic 7.17 shows that the dynamics in
curves are also captured in urban canyons where the GPS is totally disturbed by multipath
effects. The initialisation phase in figure 7.18 originating from the small dataset is remarkable
as well. The biased filter has some serious deviations from the true trajectory. The smoother
is able to correct those errors nearly completely.
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Figure 7.14: Filter true error and standard deviation
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Figure 7.16: High stability on straight roads
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Figure 7.17: Dynamics captured in curves

Figure 7.18: Initialisation phase
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Height

GPS In figure 7.19 the raw measurements are visualised. The calculated standard deviation
σGPS = 87.5m of the GPS is much higher than the true standard deviation of σe =
23.7m. This is justified by with the high offset ē = 17m. Obviously the GPS receiver
does not provide negative height values which leads to a single sided noise near sea
level. Of course this might be critical for the Kalman filter which expects zero-mean
noise. The results of the filter and smoother show the consequences. One way of a
correction might be to add artificial negative noise for those time at zero height.

Filter and Smoother The offset of the GPS-measurements is directly transported into the
results of the filter and the smoother in figure 7.20. The plots in 7.21 have an offset
of ēfilter = 13m and ēsmoother = 10.5m which correlates with the 16m of the GPS.
The estimated standard deviations σ̄filter = 4m and σ̄smoother = 2m correspond with
the true deviation of σe,filter = 3.9m and σe,smoother = 1.8m. That confirms that the
Kalman filter predicts correctly and only the artificial restriction of the GPS receiver
leads to the systematic error.
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Figure 7.19: Raw measurement data for height
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Figure 7.20: Error and standard deviation for filter and smoother

0 500 1000 1500 2000 2500 3000

Time [s]

0

5

10

15

20

25

m

True error e = hfilter − href

σfilter, σ̄filter=5.44m
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7.3 Robust Error Detection and Handling

The innovation filtering technique is working correctly most of the time. Figure 7.22 illustrates
those situations where the error in the GPS signal is large compared to the accuracy given
by the covariance of the kalman filter. This enables an adaptive threshold configuration for
areas with good and areas with noisy GPS quality.

(a) Area with accurate GPS quality (b) Area with noisy GPS quality

Figure 7.22: Successful innovating filtering

However, this technique has also some disadvantages. Figure 7.23 highlights a situation
where the rejection is successfully in the first place (cros at the top),but short time later the
GPS is being rejected incorrectly. This is the result of an optimistic tuning which constraints
the growth of the error covariance matrix so that the position measurement is not accepted.
The tuning of noise parameters and thresholds for innovation filtering is therefore a sensitive
balancing of false alarm rate and correct rejections [9]. Smaller noise parameters or thresh-
olds gives more weight to the reference system and measurements are rejected more likely.
When increasing the noise or thresholds, erroneous measurements passes more frequently.

Figure 7.23: Correct and false innovation filtering
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7.4 Smoothing GPS Outages

Sometimes the GPS is not able to provide any solution when moving through tunnels or
due to hardware issues. This results in outages of the GPS position although the vehicle
changes its position. Then the relative change in position is detected by the INS and the
velocity signal. The barometer still provides an absolute solution for the height.

Figure 7.24a highlights the case of a hardware issue. As soon as the outage begins, the
solution of the filter drifts away until the GPS gets its next position fix and the measurement
update corrects the error. This is a remarkable example for the ability of the smoother to im-
prove the position solution of the past. Regarding the outage-period the estimated accuracy
in figure 7.24b grows constantly for the filter and shrinks at the GPS-update. The smoother
is able to use this information to correct those filter estimates correspondingly to their covari-
ances. Figure 7.25 illustrates the drive through a tunnel where the GPS does not provide a
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Figure 7.24: Outage due to hardware issue

solution.
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(a) GPS, filter and smoother results
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Figure 7.25: Outage in a tunnel

7.5 Further Analysis of States

7.5.1 Biases

The gyroscope static bias is observed in the stationary initialisation phase. The static
accelerometer bias is estimated with help of the aiding measurements which are related
through the transition matrix and finally the Kalman gain. Figure 7.26 illustrates the change
of the biases with respect to time for the whole dataset of 7.2. The offset of the accelerome-
ter drifts slowly with growing temperature which indicates that the temperature compensation
algorithm (5.7) was not very effective. On the other hand the gyroscope offset is totally stable
thanks to the compensation.
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Figure 7.26: Temperature corrected bias progression

7.5.2 Alignment

The accuracy of alignment between the Earth and the vehicle is crucial for the performance
in positioning as the angle ψψψnnb determines the direction of acceleration resolved in navigation
frame in the strap down algorithm (Section 6.2). In further analysis the results for alignment
during the test route of section 7.2.1 are used.

For land-vehicles the yaw angle ψnb has the highest rate of change and is sufficient for
2D navigation. The accuracy given by the filter converges at σψfnb

= 1◦ and the smoother
doubles the performance to σψsnb = 0.5◦ illustrated in figure 7.27. The smoothed results can
be used as the reference for evaluating the accuracy of the magnetometer in section 7.5.2.

The change in pitch-angle θnb is caused by the slope of street. The estimated body-rear
pitch angle θbr enables an absolute calculation of the street’s slope. From figure 7.28 the
standard deviation of the filter lies within σfθnb = 0.25◦ and the smoother improves this up to
σsθnb = 0.12◦.

The roll angle in figure 7.29 is about φ̄nb ≈ 9◦ on average. For the purpose of drainage
streets (frame indicated by subscript s) have a cross slope of φns = 2.5◦ at least [22, p.226].
Thus, φnb represents a combination of this cross-slope and the misalignment of the IMU
within the bus. Changes in the roll angle originate from tilts and various cross slopes of
the roads. The accuracy yields the same as for the pitch angle estimation. The impact of
unrecognised tilts during stationary phases is not further investigated and is part of further
research. A combination of bias compensated accelerometer and gyroscope may be used
to record alignment in those phases.
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Figure 7.27: Yaw angle
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Figure 7.28: Pitch angle
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Figure 7.29: Roll angle
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Magnetometer Performance

In section 6.3.4 a 2D calibration algorithm has been developed. Now its ability to eliminate
the deterministic bias and scale factor errors of the magnetometer is tested. Figure 7.30
visualises the error statistics for the magnetometer yaw angle ψmagnb calculated with (5.5) by
using the accurate smoothed angle ψsnb as reference. Outliers with an angle above 15◦ are
rejected. The mean error ēmag = −0.198◦ lies within the uncertainty of the reference which
confirms an excellent calibration of the bias. As the diagram is symmetric also the soft iron
errors are eliminated successfully. Tests have shown that the noise of the magnetometer
leads to a standard deviation of σnoiseψmag

≈ 1◦. Therefore the local anomalies produce a
standard deviation of

σanomaliesψmag = σemag − σnoiseψmag ≈ 4◦ (7.1)

The initial uncertainty for the Kalman filter has been set to 3◦ in 6.3.4 which should be in-
creased to 4◦ to account for these anomalies while the noise gets averaged out. The rejected
outliers can lead to divergence in initialisation which is caught by the error loop of the algo-
rithm. The integration of the magnetometer as a measurement has been tested, but the
result were insufficient due to the local disturbances.
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Figure 7.30: Statistics calibrated magnetometer

7.5.3 Lever arm and Body-Rear-Frame Alignment

For testing the ability of the Kalman filter to observe the states of lever arm the initial values
are set to lbbr = [0 0 0]m. The bus is not articulated and from 5.2 the distance from the place
of the IMU to the rear axis is approximately lbbr ≈ [8 1 2]m. Therefore the initial uncertainty
is increased to σlbbr = [2 0.5 0.5]m. Figure 7.31 shows the largest part of the lever arm along

the bus which converges around l̂bbr,x = 7.9m which is in the expected range. The other
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parts of lever arms estimate to ŷb = 1.15m and ẑb = 2.1m which is also in the expected
range visualised in figure 7.32 and 7.33. As the constants do not change much the initial
value can be set to the converged results dependent of the vehicle model.
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Figure 7.31: Lever arm xb-axis
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Figure 7.32: Lever arm yb-axis

Similar the states describing the alignment in terms of Euler angles between the body
and rear frame are in the state vector. It has been noted in section 6.3.2 that the roll angle
φbr is unobservable. Thus the initial uncertainties for this angle is set to zero while the pitch
θbr and yaw ψbbr are estimated with an initial uncertainty of σθbr = σψbr = 1◦. All angles are
initialised to ψψψbbr = [0 0 0]◦ as this is the ideally expected alignment in the bus. In figure 7.34
the angle θbr converges to−0.1◦ which confirms the expectations. The yaw angle converges
very slowly in figure 7.35 to ψ̂br ≈ 0.4◦. This weak observability may be justified with slow
vertical velocities between the rear and body frame as the slope of street does not change
quickly (dynamic dependent observability [9, p.105]).
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Figure 7.33: Lever arm zb-axis
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Figure 7.34: Pitch-alignment body and rear frame
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Figure 7.35: Yaw-alignment body and rear frame



8 Conclusion

8.1 Summary

Figure 8.1: Improvements for example travel route of introduction

The introduction of the thesis described the purpose of improving the accuracy and reliability
of positioning up to 2m. The disturbed GPS-signal in figure 1.1 illustrated especially the
multi-path effects in urban canyons.

As a result of all previous considerations and calculations the derived algorithm is able
to eliminate those GPS-errors in figure 8.1. The white arrow indicates the direction of travel
and it is visible that the required lane accuracy is given. In order to achieve a statistical
statement for the precision of sensor data fusion, usually the results of a navigation grade
system serves as the reference. Since this kind of system was not available, a visual map
matching technique has been developed and applied for two datasets in good and poor
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GPS signal environment. Especially the smoother yields a remarkable accuracy under good
GPS conditions of σsmoother=2.5m (σfilter=7m, σGPS=5m) and in poor GPS environment
of σsmoother=4m (σfilter=11m, σGPS=20m). The forward filter does improve the accuracy
only for the urban area. Due to the correlation of the GPS module’s output and to fulfil the
requirement for uncorrelated measurements in the Kalman filter, the update rate is set to
an interval of 10 seconds. The limited performance of the filter is caused by the sensor
noise which leads to an unavoidable drift in accuracy when no position update is made. The
smoother is able to correct those drifts very effectively. Even large GPS outages of several
minutes were successfully compensated (Section 7.4).

The height estimation is assisted by a barometer which is integrated using a Gauss-
Markov model to account for pressure changes caused by the weather. Statistical data of
the pressure measured over a period of three month enabled the calculation of realistic
parameters. As a result a height accuracy of 1.7m with good GPS quality is achieved. The
GPS module does not output negative values, thus at sea level the height noise is not zero
mean. This leads to an offset in the measurements which is transported directly into the
estimates.

An odometry information together with a vehicle-constraint has been integrated as an
assisting velocity measurement. These information are transformed from the rear axis frame
of the vehicle to the body frame of the IMU through a large lever arm (about 8m) and potential
misalignment. The size of the lever arm is effectively estimated. The misalignment could only
be observed for the pitch angle.

Beside the position, the Kalman filter provides also accurate estimates for the velocity and
alignment in three dimensions.

For all states information about accuracy is provided. The variance of the smoother re-
sembles the errors of the map’s matching technique and the height database. This proves
that the variances are in a realistic range and can be taken into account in further evalua-
tion.

The dynamic bias of the accelerometer and especially of the gyroscope is removed by
a scaling technique with temperature curves. Therefore only the static biases have to be
observed by the Kalman filter which yields a higher stability for those states.

For the positioning performance of land-vehicles a good initial estimate of the yaw angle
is significant to guarantee a short duration of the transient phase and system stability. A
calibrated magnetometer is able to achieve this. Hence a two-dimensional elliptic calibration
procedure eliminates the magnetometer’s bias and scale factor effectively.

8.2 Further Research

The algorithm is implemented for post processing with Matlab. The basic structure of the
algorithm can be used to develop a real time solution on the data logger. Section 6.4.3
highlights the conceptual differences in implementation with C-Code compared to Matlab.
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The actual data logger configuration leads to a higher noise than would be expected from
the data sheet noise density. A high data rate combined with a suitable low pass filter realised
in C code could reduce the noise drastically for the accelerometer. The causes for outliers
have have to be further investigated as they can lead to system instabilities.

Many parameters are determined empirically. These may be optimised in further tests.
Different settings for the update rate of GPS measurements and the measurement noise pa-
rameters for the velocity constraint have the greatest influence on performance. The usage
of the NMEA-String ’GCA’ of the Venus module contains a vertical dilution of precision fac-
tor. This information would enable a more realistic setting for the GPS-height measurement
noise.

The innovation filter technique can be implemented for all other measurements to avoid
erroneous data.

An automatic tuning approach would be to create a significant amount of reference points
through the map matching technique. Then the parameters could be tuned with brute force
methods to minimise the error between the reference coordinates and estimates correspond-
ing to the reference time of those points.

A new GPS receiver with shorter correlation times (single epoch receiver) would enable
a smaller update interval which reduces the drift time of the INS and therefore could improve
the real time filter accuracy. With a higher update rate also additional errors of the IMU
are likely to become observable like scale factors which introduces an error of up to 10%
for MEMS-sensors. Also GPS receiver providing access to the measured pseudo ranges
would lead to a more accurate solution in tightly coupled integration strategy [9, p.567-573].
Furthermore with uncorrelated signals the innovation based adaptive estimation methods
(IAE) can estimate the parameters for the system noise or measurement noise autonomously
[9, p.124-125]. This approach was not successful in this thesis due to the low update rate
and high correlated GPS measurements.
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