
Bachelorthesis
Daniel Lachmann

Streamlining the Process of creating and viewing
Illustrated Technical Manuals: Development of an

ergonomic Java Application

Fakultät Technik und Informatik Faculty of Engineering and Computer Science

Daniel Lachmann

Streamlining the Process of creating and viewing
Illustrated Technical Manuals: Development of an

ergonomic Java Application

Bachelorthesis eingereicht im Rahmen der Bachelorprüfung
im Studiengang Mechatronik
an der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer : Prof. Dr.Ing. Thomas Frischgesell
Zweitgutachter : Prof. Dr.Ing. Randolf Isenberg

Abgegeben am 2. September 2016

Daniel Lachmann

Thema der Bachelorthesis
Entwicklung einer Java Anwendung zur Vereinfachung des Erstellens und der Ver-
wendung von illustrierten technischen Anleitungen

Stichworte
Technische Dokumentation, Montageanleitung, Inbetriebnahme, Wartung

3

Kurzzusammenfassung

Thema

Das Ziel der Arbeit ist es, das Erstellen strukturierter Dokumentation zu technischen
Vorgängen, wie z.B. Montage, Inbetriebnahme oder Wartungsanleitungen zu erleich-
tern. Es wird eine Betriebssystem-übergreifend verwendbare Software entwickelt,
welche mit Hilfe einer Webcam zunächst serielle technische Abläufe in Bild, Text und
Reihenfolge dokumentieren kann. Das Format entspricht einer digitalen Bildergalerie,
in welcher zu jedem Bild zusätzliche Informationen wie z.B. ein beschreibender Text
hinzugefügt werden kann.

Umfang der Arbeit

Der Stand der Technik bzgl. der Erstellung von Anleitungen soll auf Schwachstellen
untersucht werden. Aufbauend auf den der Entwickleridee zugrundeliegenden Basis-
funktionen (Aufnehmen einer Bilderserie mit Text zu jedem Bild) werden unter Be-
rücksichtigung der vorangegangenen Analyse sinnvolle Features erarbeitet, um das
Produkt der Arbeit über den Stand der Technik zu heben. Die erarbeiteten Funktionen
werden bzgl. des voraussichtlichen Umsetzungsungsaufwands und ihres Anwender-
nutzens bewertet, und ein im Zeitrahmen realistisches Feature-Set für die Version 1.0
der Anwendung ausgewählt. Anschliessend werden die ausgewählten Features in die
Software integriert, und das fertige Programm anhand praktischer Beispiele getes-
tet. Die Anwendungsbereiche sollen sowohl mechanische als auch elektrotechnische
Montage, sowie Wartung und Inbetriebnahme technischer Systeme umfassen. Insbe-
sondere soll mindestens ein Anwendungsfall die Inbetriebnahme eines vom PC an-
gesteuerten Gerätes beinhalten, wobei neben den physikalischen Anschlüssen auch
die Verbindungsherstellung mit der steuernden Software dokumentiert wird. Die aus
den Tests resultierenden Anleitungen werden ausgewertet und mit dem zuvor charak-
terisierten Stand der Technik bezüglich ihrer Stärken und Schwächen verglichen.
Die zur Herstellung der Anwendung verwendeten Software-Tools und Ressourcen
werden beschrieben, und der Prozess der Softwareentwicklung dokumentiert.

Einschränkungen

Bei der Entwicklung im Rahmen der Bachelorarbeit liegt der Fokus auf der Doku-
mentation von Gegenständen, welche auf einem oder im nahen Umfeld eines PC-
Arbeitsplatzes untergebracht werden können. Weiterhin werden sollen Testgegen-
stände ausreichend gross sein, um ohne Vergrösserungsobjektive von einer Web-
cam erfasst werden zu können. Es ist vorgesehen, dass mit der entwickelten Anwen-
dung vornehmlich papierlose Dokumentation erstellt wird. Trotzem wird eine export-
Funktion in ein gängiges Format (PDF oder HTML) bei der Feature-Auswahl berück-
sichtigt werden.

4

Daniel Lachmann

Title of the paper
Streamlining the Process of creating and viewing Illustrated Technical Manuals: De-
velopment of an ergonomic Java Application

Keywords
Technical Documentation, Assembly Manual, Commissioning, Maintenance

5

Abstract

Topic

The aim of this thesis is to make creating documentation for assembly, commissioning
and maintenance of technical devices less time consuming and more ergonomical.
To achieve this, an open-source, platform-independent software application will be
developed. The basic functionality of the software will cover the capture of images
via webcam and their arrangement in an image gallery format, with a text description
attached to each image. The software will also have a read-only mode of operation to
allow the viewing of documentation files.

Scope

The state of the art regarding the creation of relevant types of technical documenta-
tion will be analysed and its strengths and weaknesses identified. Using the results
of this analysis, new features and changes to the initial concept shall be derived with
the goal of matching the established processes’ strengths, while eliminating as many
weaknesses as possible. The features and changes identified will be evaluated re-
garding their usefulness for the documenter or reader vs. their predicted implementa-
tion time-cost. Based on the evaluation and existing time constraints, a feature set will
be selected for integration into the base application, which will define the capabilities
of the first published version of the software.
Following the implementation of the new feature set, the application will undergo prac-
tical testing. All three use-cases described above shall be integrated into the tests.
At least one test shall document the procedure of commissioning a PC-controlled de-
vice, including the control-software setup.
The process of creating documentation for the testcases shall be documented and
critically compared to the state of the art. The documentation created during the tests
shall be analyzed from the documentation-users perspective, and compared to man-
uals created through traditional means. A rough outline for future development of the
software shall be presented.
The tools and resources used in the creation of the software will be documented and
the process of the software development summarized.

Constraints

During this thesis the focus shall be documentation of items which can fit onto or
closely beside a PC-equipped worktop, and are sufficiently large to be captured by a
webcam without the need for additional optics. The intention is to keep the documen-
tation process paper-free wherever possible. Nevertheless, an export functionality
(e.g. to .PDF or HTML) to enable printing of the documentation shall be considered
during the feature-selection process.

6

Contents

List of Tables 9

List of Figures 10

1 Introduction 11

2 State of the Art 14
2.1 Selection of Sources . 14
2.2 Literature Review . 14

3 Analysis 20
3.1 Viewpoint: Creator of Illustrated Technical Documentation 20

3.1.1 Evaluation of the State of the Art . 20
3.1.2 The Documentation Process to consider during the Design Phase . . 22
3.1.3 Conclusion . 24

3.2 Viewpoint: User of Illustrated Technical Documentation 24
3.2.1 Evaluation of the State of the Art . 24
3.2.2 Using the Documentation . 26
3.2.3 Conclusion . 26

4 Developing the Application Concept 28
4.1 The Initial Concept . 28

4.1.1 Envisioned Use-Cases . 28
4.1.2 Software . 28
4.1.3 Hardware . 30

4.2 Proposed Additional Features . 32
4.2.1 Additional Features gained from Reviewed Literature 32
4.2.2 Additional Features conceived during the Prototype Design Phase . . 32
4.2.3 Evaluating the Features . 35
4.2.4 Composing the Feature-Sets . 36

4.3 Selection of a Feature-Set for Implementation 41
4.4 The Software-Engineering Process: some points of interest 41

4.4.1 Designing the GUI . 41

Contents 8

4.4.2 Designing the Gallery . 43
4.4.3 Capturing Images with the Camera 46
4.4.4 Designing the Stop Motion Pictures 47
4.4.5 Saving the Gallery . 48
4.4.6 Making the Project- and Application Settings Available to all Classes . 50

5 Software Development 51
5.1 Language and Tools . 51

5.1.1 The Java Programming Language 51
5.1.2 GUI Framework . 52
5.1.3 Setting up Eclipse JDT with e(fx)clipse Plugin 53
5.1.4 SceneBuilder 2.0 . 53

5.2 Software Libraries . 54
5.2.1 Criteria . 54
5.2.2 Webcam Capture API . 54
5.2.3 Apache Commons Library . 55

5.3 Summary of the implementation Process 56
5.3.1 Successfully implemented Features 56
5.3.2 Discarded Features . 56

6 Testing and Evaluation 59
6.1 Objective & Outline . 59
6.2 Summary of the Test . 59

7 Conclusion 62
7.1 Personal Development . 62
7.2 Plans for the Future . 63

Bibliography 65

Appendix 67

Glossary 135

List of Tables

5.1 Comparison of Webcam Capture APIs . 55

List of Figures

4.1 The first detailed conceptual sketch of the system in use. 31
4.2 Selected features are providing a balance between user- and documenter-

orientation. 37
4.3 Selected features focus on information collection and structuring. 38
4.4 Ideal case for implementation without time constraints. 39
4.5 Selected features focus on features not available in other free tools, such as

word-processors and graphics utilities . 40
4.6 The features of Feature-Set 4, grouped in the GUI structure given by the per-

spectives . 42
4.7 A small example subset of the GUI specification 43
4.8 The inheritance structure of the gallery items. 45
4.9 The interaction between main application thread (represented by the gallery

browser controller) and camera thread. 47
4.10 The hierarchy of gallery items during the saving procedure. 49

5.1 Overview of the implemented and the discarded features 57

7.1 The initial design of the draft mode’s layout 82
7.2 The sub controller operating within the draft mode 83
7.3 The initial design of the refine mode’s layout 84
7.4 The sub controllers operating within the refine mode 85
7.5 The initial design of the view mode’s layout 86

1 Introduction

Illustrated Technical Manuals have become a necessary attachment to new products devel-
oped in the industry as well as in the open-source and open-hardware communities. No
product can be shipped without instructions on how to assemble and commission it. Yet, the
process of documenting even simple procedures like the step-by-step assembly of a machine
can be very time-consuming for the documenter. The reasons for this are, among others, the
multitude of tools required (Camera, Notepad, Dictaphone) which all need to be operated
separately and their output joined into a coherent, well structured manual.

The organisation of information has been developed to the point where larger companies
contain all information about their product families and sub-variants in one Content Man-
agement System. This allows them to create a manual for a new product from existing
text-blocks, which are already proofread and translated into all target languages, thereby
avoiding the cost of having to write and translate each complete manual into all languages
everytime some part of the text is changed. Even though these tools only provide the means
for data organisation, as opposed to data creation, they provide a benefit for large multi-
national companies. Smaller companies and freelance individuals do usually not have the
budget to aquire and operate a CMS. Also, smaller entities are less likely to need to sup-
ply their documentation in many languages, so a CMS may add more complication than
improve the status quo. The end result is, that small-scale enterprises still have to create
and organize their documentation manually. The same is true for the growing community
of open technology contributors on the internet. Many good ideas get published online for
everyone to use, but without even nearly adequate documentation. This can be attributed
to the fact that making a decent-looking, readable manual from scratch is indeed a tough,
time-consuming job.

When creating the draft of an instruction manual, the information for each step has to be
recorded. The information then has to be grouped in a way that all components (images,
text notes, audio notes, etc.) can be clearly seen to belong to a specific step as opposed
to another. Retaining all details relevant to a specific step in the assembly process across
different media requires strong organisational skill on the documenter’s part, and manual
grouping and naming of all the images, text-notes and audio snippets creates considerable
overhead for a seemingly simple thing like writing an instruction manual. Anyone who pro-
ductively participated in a technical project during work, studies or internships was likely

1 Introduction 12

required to create documentation for the people who might use the result of their work. Usu-
ally this documentation consists of images, bullet points and unstructured text hastily thrown
together in an office program and exported to pdf. Also, company-internal projects such as
inhouse-developed testing facilities are at risk to be documented that way, if not at risk to
remain undocumented.

Motivation

The reasons for the lack of adequate technical documentation are manyfold, one of them
being the time-cost and complexity of the micromanaging involved in the writing of instruc-
tion manuals. Having been on the receiving end of unsatisfactory documentation and likely
having produced my share of it, I consider the documentation process a good candidate
for optimisation. Using software to take over the micromanaging of files and the control of
hardware tools such as camera, notepad and voice-recorder seems to be a promising and
as-of-yet untaken direction for improvement of the status quo in technical documentation.

Goals

The main goal of the software shall be to provide an open-source tool for documenting tech-
nical processes with images and text. The focus of this thesis will be on the subjects of
assembly, maintenance and commissioning of both hardware and software. The software
aims to reduce the workload of the documenter by providing a structure for all relevant data
and taking over the micromanagement of filenames and locations. Furthermore, the software
will unite the functions of dedicated camera (using a USB webcam), dictaphone and possibly
camcorder in one interface. The documentation will be saved in an accessible format which
allows e.g. the images captured to be edited with graphic editing software if necessary. The
software will also serve as a viewer for this form of multimedia documentation. Further fea-
tures will be developed based on the evaluation of the current state of the art in the field of
technical documentation, and a functionally sound feature set selected. At the conclusion of
this thesis, the version 1.0 of the software will be published, which will serve as a basis for
further development.

Restrictions

The software will be developed based on an initial prototype created during the prepara-
tion time for this thesis. The prototype enables the user to capture images via a webcam
connected to the documenter’s PC, and contain them in a format structurally resembling an
image gallery where each image has a dedicated text annotation attached to it. If more than

1 Introduction 13

one webcam is connected to the PC, the software provides the means to select a specific
one. The emphasis in terms of features to be developed during this thesis is strongly on the
documentation of one specific process at the time, e.g. the maintenance of a carburettor, the
assembly of a robot arm, the commissioning of an industrial machine.

Not considered during this thesis are features and functions related to project-management
above the lowest process level. Each documentation will be for one specific task, such as
the process of disassembling a component, replacing worn out parts, and reassembling it.
Reusability or sharing of documentation components between projects is explicitly not the
focus of this thesis. Versioning shall also not be considered in this thesis, although saving
all projects in common text and image formats would offer possibility to use versioning tools
such as SVN. The created documentation-projecs will only support one language (presum-
ably english, although nothing hinders the user to use other languages for text and image
titles), but the structures to support future implementation of multi-language capability shall
be integrated in the design phase if there is time.

2 State of the Art

2.1 Selection of Sources

The documentation technology, literature and standards which are reviewed in this chapter
qualify as relevant if they are in whole or in part focusing on the creation of step-by-step
documentation for technical processes. The emphasis has to be on the content creation and
structuring, not just on management of content created in third party tools. Exemplary of
the latter are, e.g., Content Management Systems which only govern the text and images
created with a multitude of standard tools such as rich text editors, 3D CAD applications and
graphic modification tools. Such systems are outside the scope of this thesis as described in
1.

To evaluate the state of the art, the following media will be considered:

• Books about the principles of technical documentation, theoretical as well as instruc-
tional ones

• Standards and Guidelines from industrial organisations such as DIN, VDI and VDMA

• Existing manuals of state-of-the-art technology

2.2 Literature Review

Instruction manuals can be created in many different ways. Tools of arbitrary complexity
exist for Arranging information as desired by the technical writer, but the actual creation of
information (Text, Annotating pictures with arrows and numbers and the like) is still done in
dedicated standard software like MS- or Open-Office and drawing tools from MS Paint to
Adobe Photoshop.

The challenges in creating Illustrated Technical Documentation remain manyfold, despite the
availability of commercial Content Management Systems and ubiquity of computers at the
workplace. According to (Piehl, 2002, p. 89) the most essential criterions for users of techni-
cal documentation are simplicity, structure and order of information as well as the proximity

2 State of the Art 15

of relevant information to the current text location. In (Juhl, 2015, p. VII) essentially the
same notion is formulated from the documenters perspective; Documentation should contain
as much as necessary, as little as possible and be as clearly structured as possible. The
Phases of the creation of an instruction manual are outlined by Hahn (1996):

1. Gather Facts, draft

2. Integrate Facts, extend

3. Refine Facts, polish

4. Assure Quality, test

Whether or not a piece of documentation can be understood does not just depend on its
factual accuracy and good structure. (Hahn, 1996, p. 49) names precision, completeness
of instructions, and the careful consideration of the target audience as essential points to
consider. The target audience needs to be defined at the beginning of the creation process,
to make sure the information is presented in a way which is readable for them. If a technical
manual contains several chapters intended for different target audiences, e.g. a chapter on
how to operate the machine intended for the instructed machine operator, and a chapter
detailling maintenance intended for the trained maintenance technician, each chapter should
have the target audience defined at its beginning (Hahn, 1996, p. 63).

Most manuals use a combination of text and images to make the instruction more clear for
the reader. In such cases where two media are used, one medium takes the lead role and
the other one is used as a supplement (Piehl, 2002, p. 137). The lead medium should be
recognized as such by the reader, and should ideally be placed in the location where the
reader will look first, which for europeans used to reading left-to-right and top-to-bottom is
at the (upper) left in horizontally arranged documents, with the supplemental medium on the
right, or at the top with the supplemental medium below in vertically arranged documents
(Piehl, 2002, p. 137). (Juhl, 2015, p. 291) also points out the importance of considering the
habitual reading direction. One interesting point was made in (Hahn, 1996, p. 97): The au-
thor recommends a 2-column layout for illustrated manuals, and suggests that Europeans
are primarily text-readers, and as such the text information should be put on the left to be
seen first, while Americans are picture-readers, who need the image as the lead-medium on
the left of the page. Furthermore, he stated that he expected the European habit to slowly
change to picture-reader behavior in the next 20 years. Note that Hahn (1996) was published
about 20 years ago. The importance of combining instructional text with illustrations is em-
phasized throughout the reviewed literature. (Piehl, 2002, p. 134) explains that combinations
of text and images present partially redundant information to the reader, which is encoded
in two different ways (visual and textual), making lossless recollection at a later point more
likely.

2 State of the Art 16

A critical part of creating technical documentation is to make sure there is no loss of key
information between fact research (e.g. the documenter going through the motions of a
machine to get a feeling for the procedure) and the writing of the manual. One way to
record all information down to spontaneous ideas which the documenter only gets during the
handling of the product and later forgets, is to use a personal audio recorder (Hahn, 1996,
p. 54). During the familiarising phase with the product, the documenter can also record all his
thoughts as a video with audio track, to be able to store all visual and verbal key information
about the process quickly without having to stop and use his hands to write a note (Hahn,
1996, p. 55). Another advantage of bringing a photo or video camera during the initial fact-
collection phase is according to (Hahn, 1996, p. 134), that concept pictures of the machine
and its controls can be taken from the perspectives of which the documenter intends to have
renderings or line drawings made by professional illustrators at a later point.

Regarding the instructional texts in technical manuals, (Juhl, 2015, p. 179) strongly recom-
mends to use clearly structured text in the place of bigger blocks of plain text containing sev-
eral instructions. Bullet-point lists or enumerations are recommended for their inherent clarity
(one list item constitutes one instruction), which makes them readable as well as searchable
(Juhl, 2015, p. 179). In KUKA Roboter GmbH (2015), bullet-point list are used to present
instructions hierarchically (two levels) in a readable way. The lower hierarchy is marked
by differently coloured bullets and through indentation. For marking lower-level sectioning
of the instructions by topic, sub-headlines or marginalia can be used (Juhl, 2015, p. 179).
Marginalia are also useful for providing one-sentence summaries of a section or paragraph
to allow the reader to recapitulate a section quickly (Juhl, 2015, p. 179). In KUKA Roboter
GmbH (2015), marginalia are used as informal sub-headers as well as captions for some of
the tables, while other tables are not captioned at all. Guidelines for textual formulations in
technical manuals are provided by (Hahn, 1996, p. 40ff):

• Sentences should be as short as 13 words

• Active verbs should be used throughout the instructions

• Command form should be used for the instructions

• One comma per sentence, always a colon before a list or a summary

• Terminology should be kept consistent

• Abbreviations should be explained right away or in a glossary

Furthermore, (Juhl, 2015, p. 109) suggests that repetition of the instructions in the header
above an instruction set can help the reader find sections relevant for him, and remember
the instructions better. In KUKA Roboter GmbH (2015), instructions presented as bullet-
points are preceeded by a short header sentence, which serves as a sub-header and helps
the reader to find out whether the following section is relevant for her. Tables are named in

2 State of the Art 17

(Juhl, 2015, p. 179) as the most structured and neat way to access and compare information.
Tables are particularly useful for presenting technical specifications of a product, like exem-
plified in (Juhl, 2015, p. 253). One thing which can be criticised in KUKA Roboter GmbH
(2015) is, that tables are not consistently captioned and at no point assigned a unique num-
ber code to help communication between readers trying to coordinate themselves. Some
tables are captioned using marginalia, while some are placed under a corresponding image
with the image number and caption positioned between the image and the table, which the
skimming reader will see as a link between the two entities (KUKA Roboter GmbH (2015)).
Yet some tables remain formally unconnected to surrounding instructions or text, leaving it
up to the reader to connect relevant information.

An interesting point about optimal image size in manuals consisting of text and illustrations
is made in (Piehl, 2002, p. 110): The image should be 7cm by 5cm at a viewing distance
of 25cm, to enable the viewer to take in all important details at a glance. According to Piehl
(2002), smaller pictures would obscure details, while much larger pictures require the eyes
to wander too much to take in all important details effectively.

Linking features in the illustration to the instruction text can be achieved in different ways:

1. Components can be marked by numbers and referred to in instructional text by these
numbers in brackets, whenever the concerning component is named (Juhl, 2015,
p. 103). This works well in situations where one component is referenced by instruc-
tional text at times of the procedure, and does not require the numbering on the illus-
tration to follow any particular rule.

2. In situations where an illustration is used to introduce components to the user, they
can be marked by numbers and referred to by an enumerated list, with each list item’s
position number corresponding to a number on the illustration, followed by the compo-
nent’s name and ideally a short description. This works well in KUKA Roboter GmbH
(2015), and requires that the components are numbered starting from 1.

3. The component names can also be written on the illustration, and e.g. linked by lines
to their respective component. Then, the components can be referred to by their name
only, not requiring a position number (Juhl, 2015, p. 140). In (Juhl, 2015, p. 71) it is
suggested that using only numbers in the image makes it easier to find components
referenced in the instruction text, because numbers are more searchable than words.

There are also several ways of linking the position numbers in an illustration to specific com-
ponents:

1. Components can be marked by numbers which are directly placed on the feature, so
no connecting lines are required. (Juhl, 2015, p. 85). This works very well in KUKA
Roboter GmbH (2015) in situations where illustrations are not too crowded.

2 State of the Art 18

2. If the illustration contains adequate whitespace, position numbers can also be placed
there as not to obscure the product rendering. The numbers can then be linked to
the product components using thin lines (Juhl, 2015, p. 70). In KUKA Roboter GmbH
(2015) this creates very readable illustrations with minimal obfuscation of the product
rendering.

According to (Juhl, 2015, p. 71), numbering in images should start with the number 1 placed
at the 12o’ clock position in the image. The same is mentioned in (Hahn, 1996, p. 72),
with the addition that numbering should continue on clockwise, and that only those compo-
nents referenced in the accompanying instructions should receive a number. (Hahn, 1996,
p. 72) also states that it makes sense to use different component names in the instructions
than used on the BOM, as long as the naming is kept consistent throughout the manual,
if parts of the target audience might not understand the internally used names. Numbered
Bi-directional arrows can be used in illustrations to denote the order in which several cables
need to be connected between two devices as portrayed in (Juhl, 2015, p. 129). In KUKA
Roboter GmbH (2015), bi-directional arrows labeled with textual shortcuts are used to illus-
trate the directional loads in the robot arm, with straight arrows being used for forces along
arm components and arrows connected by a curved line for tourque in the robot’s joints.
Regarding visual annotations in illustrations, (Piehl, 2002, p. 121) points out that illustrations
should not be overloaded and care has to be taken that annotation types are not confused,
e.g. similar arrows should not be used to signify movement of a lever and to point out areas
of danger. For creating fault-analysis instuctions, both tables and flowcharts can be used
effectively, according to (Juhl, 2015, p. 265)

Regarding safety, (Juhl, 2015, p. 22-24) recommends to follow the pattern provided by DIN
EN 82079-1 for their completeness of relevant information. (Hahn, 1996, p. 113, p. 120) also
states the importance of not just telling the user what he shouldn’t do, but also specify exactly
where the dangerous part is located, what could happen (worst case) and why, and through
which measures it can be prevented from happening. In KUKA Roboter GmbH (2015), most
warning labels are boxes embedded in the instruction text-flow, which are labeled with a
warning sign (black and yellow triangle with an exclamation mark) and some unstructured
text about possible hazards. This form of a warning does not make the severity very clear to
the user, and the unstructured text hinders comprehension and retention severely, and does
not invite the user to carefully study the content. Both DIN EN 82079-1 and ANSI Z535.6
require a chapter called Safety, which contains all general warnings about a product if it is
not perfectly safe (Juhl, 2015, p. 22-24). When using warnings in text and pointing out the
parts of the product the warning is about in an illustration, care should be taken to keep the
colours consistent between the two media, because a warning text in grey may not intuitively
get associated with red circles or arrows in the picture (Piehl, 2002, p. 105). Colours should
be used consistently throughout a document; when selecting colours for any text component

2 State of the Art 19

(warning, information, headlines, etc.), the pre-exisiting habits of the target audience should
be taken into consideration (Piehl, 2002, p. 126).

The quality of an instruction manual can be reviewed using checklists provided by DIN EN
82079-1 (Juhl, 2015, p. 364). If the manual contains a lot of information, or if different parts
of it are intended for different audiences, it is useful to include a section at the beginning
which outlines the intended way of use for the instruction manual (Juhl, 2015, p. 199). For
thick printed manuals, cut-out tabs for separating chapters on the right side of the pages
have proven a useful navigational aid for the reader (Juhl, 2015, p. 209). Lastly, (Juhl, 2015,
p. 348) emphasizes that a manual has to be presented on an appropriate medium, meaning
that an assembly manual for a new PC should be included in paper, while the manual for an
office-software can be provided in digital form since the user of the software definitely has a
working pc on hand when operating the product.

While reviewing the literature, there were a few instances where the future of technical docu-
mentation was discussed. (Juhl, 2015, p. 298) notes that there is no useful standard regard-
ing the format of electronic manuals, stating the commonly used .PDF is not qualified as such
because it is conceptually similar to the paper form and does not embrace the possibilities re-
garding flexibility of structure and multimedia content offered by modern computer techology.
(Juhl, 2015, p. 355) describes the possibility for new standards of information presentation to
emerge over the next years, and frames the optimisation of presentation structures and in-
struction creation methos and tools as a task for the near future. As mentioned before, Hahn
(1996) predicted in 1996, the changing of the user habit from text-reader to image reader
would occur over the next twenty years at the time of writing. In KUKA Roboter GmbH
(2015), the information accompanying images is always located below the image, indicating
that the image has become the lead medium.

3 Analysis

3.1 Viewpoint: Creator of Illustrated Technical
Documentation

3.1.1 Evaluation of the State of the Art

If the advice from the reviewed literature was followed by every technical writer, Illustrated
Technical Documentation would not be a field requiring many improvements. The concepts
presented are clearly formulated and, where necessary, backed up by information from other
scientific fields like e.g. psychology.

The main challenge a technical writer faces is therefore not to think of a good manual struc-
ture or how to make safety warnings stick in the reader’s memory, it is to:

1. Find the available information regarding the creation of illustrated manuals

2. Find time to actually read it and reflect on it, which may be difficult if employers do not
pay for the time they spend learning their job

3. Apply it in their local context

4. Defend themselves against criticism that documentation process is going too slow,
because thorough documentation will cost more time

This became very apparent during the review of the practical example manual. While the
layout looked good at first glance, the little things such as some tables lacking a label and any
references in text and the unstructured text in warning labels are crucial when it comes to the
evaluation of a manual’s quality. Tables which do not have a label can hinder communication
between users of the manual, e.g. saying ’The table after the second paragraph on page 5’
is less precise than saying ’Table 1-3 on page 5’. Unstructured text with a warning black-and-
yellow triangle beside it is not readable, because the reader gets worried about what might
go wrong and has trouble focusing on the text well enough to get the actual information at
the first try.

3 Analysis 21

One problem which arises during the creation of Illustrated Technical Manuals is, that it
requires the help of many software- and hardware tools which all need to be operated sepa-
rately and their output joined together more or less manually in a meaningful way. Notes can
be taken on paper or an electronic device with touchscreen or keyboard. Audio drafts can be
recorded on the ubiquitous mobile phones, they can also capture image and video material
if the documented product is of appropriate size and well lit.

The files generated are thus stored on the devices with an automatically generated name,
often a timestamp of some sort. In some situations, the preview on the small screen of
a handheld mobile device may not be sufficient to judge whether the image is suitable, so
several images may have to be taken and saved for later review on a PC screen. When
the documenter wishes to get the files, he needs to connect the mobile device to a pc, copy
all the files manually, and then start sorting. The sorting process takes time, because all
the images have to be evaluated and the most appropriate ones chosen. The image files
will then have to be renamed following a pattern the documenter can recognize later, e.g.
’step5_componentXY’ and the unsuitable pictures moved elsewhere as backup. The audio
and video files may be fewer in number, but cannot be reviewed thoroughly at increased
replay speeds and therefore also take time to sort out.

Next, the drafted text has to be cleaned up and structured in a text editing tool, and the
appropriate accompanying images / video clips identified. The images may then need to
be annotated to connect them to the text, e.g. with position numbers or arrows, which may
require a separate tool. The text has to be double checked to ensure no labeled item in the
image remains unreferenced in text and vice versa. Many of the text-structure guidelines
put forth by the authors of the reviewed literature are very specific to the field of writing doc-
umentation, so established word-processing software will not provide automated means to
check them. Writing in short command form may trigger an office-software’s warnings that
sentences are incomplete but it will not underline a sentence because it is longer than 13
words and uses more than one comma. This effectively means the writer of technical docu-
mentation in industrial context can not rely on assistive technology which has been taken for
granted by school students writing their homework for over a decade. Also, while it is techi-
cally possible to use a compact device like a personal or company-issued smartphone for
recording audio, pictures and video, such devices are restricted in some companies because
of security concerns. In such companies, the documenter would be thrown back to dicta-
phone, digital photo camera and possibly a separate digital camcorder, further increasing
the number of tools required by up to 2.

This rundown still does not include the possibility that the illustrations may be created by a
dedicated office in the company, or even given out to external contractors which complicates
things by another few steps of due process.

3 Analysis 22

All reviewed theoretical literature has pointed out to some degree the problems technical
writers face during their everyday work:

• Time pressure, because the documentation (which can often only be created when the
product is effectively ready) is the only thing standing in the way of the launch

• Lack of support because documentation teams are considered costly, unwanted ne-
cessities in some companies

• The dependency on other parts of the company which are generally very busy with
their own work (Engineering for understanding / trying out the product, e.g. marketing
because they have illustrators on hand)

• If a check of their work turns up a problem, the other (busy) colleagues from engi-
neering and illustration need to be involved again, offering great potential for working
overtime

The key weakness of the current state of the art can therefore be described as a lack of
convenience for the documenter, which has adverse effects on the documentation the reader
receives. The challenges of the documenter can be summarised by phases as described in
2.2. Also, there is no common truly multimedia-capable format established, which lets the
documenter use still images, audio recordings or video clips (e.g. animations) where it makes
didactic sense, as well as allowing closely linked structured textual annotation. This could,
in theory, be programmed in HTML, but manually doing so would not solve the workflow
problems and add another layer of complexity.

3.1.2 The Documentation Process to consider during the Design
Phase

Phase 1: Gather Facts

The fact-gathering phase is roughly the same for all products. The product is analysed by the
technical writer, possibly under guidance from an engineer who developed the product, and
time is limited between other responsibilities these employees have. Here, the documenter
needs a toolkit that lets her capture the facts with minimum distraction and time consumption
on the side.

The types of information which need to be picked up during this phase are:

• Pictures and Video of the machine or its components

• Audio, mainly for quick notes regarding points where special attention needs to be
payed.

3 Analysis 23

• Required components and tools for each step

• Additional parameters or restrictions

The potential for losing even small packets of information should be kept as low as possible,
because any inaccuracy or wrong understanding will affect the documentation quality for the
rest of the process, and if discovered late, can be very costly to correct. The tookit should
also allow immediate naming and organisation of the recorded materials to avoid the need
to rename the files using the file explorer later, and to make finding specific components
easy. The draft of the documentation should be saved in common file formats to ensure
compatibility down the road (External editing of images, text translation, CMS).

Phase 2: Integrate Facts

In this phase, the documenter needs to add information such as warnings about possible
dangers as well as the specification of the user group. Furthermore, audio notes need to
be transcribed to text and video clips for the multimedia version of the manual need to be
cut to size. Ergo, the documenter needs to go through the draft manual, review all drafted
information and transcribe it to text where necessary. Pictures take may need to be replaced
with renderings (if the company style guide requires it) of the same perspective, and an-
notated with e.g. position numbers, arrows, or other highlighting elements. References to
other chapters have to be included where necessary, or information made redundant where
referencing does not make sense. Ideally, the manual is given out to be proofread by the
development staff at the end of this phase. This requires a format which they can easily read
and annotate if mistakes are found.

Phase 3: Refine Facts

The refinement phase ideally produces the finished version of the documentation, as in-
tended. Any corrections from the proof-reading round in phase 2 should be integrated. In
certain cases, a quick-reference manual can be added for the frequent users who only need
keywords and do not wish to flip through all the pages again and again.

Phase 4: Assure Quality

In this phase, the manual is given a final check using the checklist provided by e.g. DIN
EN 82079-1. If all checks are passed, the manual should then be tested on a group of
people who should meet the requirements of the target audience as closely as possible.
Overqualified people are just as useless in this case as the underqualified. If any problems

3 Analysis 24

turn up during the live tests, solutions can be found and integrated. If everything has been
worked out and there are no more issues, the piece of technical documentation can be
published.

3.1.3 Conclusion

The theoretical state of the art is well developed and the basic criteria for high quality in tech-
nical documentation have not changed much in recent times, with the notable exception of
other media becoming available. Yet, the documentation quality described in the theoretical
literature is not easily achieved in practice.

The first two phases as described in 3.1.2 are the ones where the techology stack of the
documenter is most diverse and where the necessity to micromanage every single aspect
(e.g. renaming a few dozens or hundreds of images) slows down the process considerably.
Those two phases are the ones where a software tool as proposed in this thesis will be of the
greatest benefit. By providing an appropriate structural template for the relevant types of doc-
umentation and assistive functions to integrate some of the otherwise more time-consuming
elements in a quick and well-structured manner, the process of creating Illustrated Techni-
cal Manuals can be improved. This should lead to increased workplace-ergonomy for the
documenter, as well as more concise and well-structured documentation for the user. The
integration of video clips and audio will have to be carefully considered, since inclusion of
such information makes the manual essentially unprintable. Nevertheless, the option to do
so shows great promise considering the rising availability of computing devices at the work-
place.

In essence, providing guiding functions for the documenter, so she can focus more on con-
cise formulation instead of needing to check the handbook for good layouts of e.g. warning
labels, will benefit the reader of the instruction manual.

3.2 Viewpoint: User of Illustrated Technical
Documentation

3.2.1 Evaluation of the State of the Art

In most situations where a person needs instructions on how to assemble, commission or
repair a technical device, a paper manual will be the easiest to handle intuitively. There are
some reasons for this:

3 Analysis 25

• Paper and its analogues have been the go-to medium for written words for a few mil-
lenia, ever since stone and clay plates went out of fashion

• Paper does not require a replay medium (if light is to be taken for granted)

• It is reasonably durable as long as it is not submerged in water or set alight

• It can be made to contain several types of information: Formatted or unformatted Text,
Pictures, Formulas, etc.

On one hand, the combination of text and pictures on the paper medium has proven to be at
least adequate in getting instructions across, although the level of adequacy depends greatly
on the structure and formulations of the text and the quality of the illustration. On the other
hand, paper has several shortcomings which have only become apparent with the rise of
digital media:

• It can not display moving pictures, which in a time where products are increasingly
complicated may be to the detriment of the readers understanding

• It can not contain sound samples, e.g. warning tones a product might sound out, sam-
ples of product health indicators (sound of a healthy engine vs. sound of crankshaft
bearing damage) or spoken instructions

• The manual’s structure is rigid once printed. There is no convenient way to follow
references as in digital formats, where a click on a reference navigates the user to the
referenced chapter, page and paragraph

• Searching can only be done by reading through all the text, or through an index which
needs to be compiled by the documenter

• Paper does not allow editing, so if even a small error is detected post print, it has to be
reprinted in full and the faulty prints discarded

• Paper manuals for consumer products are often misplaced because they are sec-
ondary to the user until a problem occurs. A digital file can be hosted online by the
manufacturer and redownloaded whenever it’s needed

Many of the shortcomings have not been apparent for long enough to be a problem for
people, since most people using instruction manuals today were already using them before
the ubiquity of ever-present multimedia capable devices. Also, If the text instructions do not
adequately describe a complex action, it is easier to attest the writer a lack of talent than
to realize that an animation could have made all the difference, but could not be included
because of the distribution medium.

3 Analysis 26

3.2.2 Using the Documentation

When opening the instruction manual for a specific taks, e.g. maintenance of a product com-
ponent, the reader needs to be confronted with the essential information first:

• Definition of the intended audience, to be able to judge if the process can be conducted
by herself or if specially trained personnel needs to be called in for the job.

• General, well formatted safety instructions regarding the process

• A list of materials (tools, product components) needed to perform the operation; also,
information about the number of people needed

• A register explaining the terminology used

A sort of index needs to exist, preferrably in a form that can be studied at any point without
leaving the current page. In digital media it is paramount that the index provides navigation
links. The instructions need to be easily readable and well structured, as described in 2.2. At
any point in the manual the connections of a table, chart or picture need to be clearly linked
to a specific text section. Each step has to start with the requirements regarding tools and
parts needed. A subsection of the manual needs to have a short, concise conclusion at the
end, which summarizes what has been achieved. If referencing other parts of the manual
is necessary, the reader should be supplied with a means to quickly find the concerning
information, work through it, and return to the initial location where the reference was placed.
The lead medium has to be positioned where the reader will see it first.

3.2.3 Conclusion

Traditional manuals made of paper are a usable form of documentation if they are well-
made. They have clear advantages when it comes to long-term reliability because they do not
require a power-source to be read, and high-quality paper prints can retain their information
for long periods of time (decades to centuries) if stored correctly. The handling of printed
information is second nature to most people working today, so as long as the structure of the
manual is clear users will generally find the desired information.

Nevertheless, a multimedia manual running on a computer (mobile or stationary) can bring
several advantages for the reader:

• While voice recognition for whole sentences is still tricky (see the so-called AI helpers
on mobile phones), interpretation of a limited set of voice commands is already easily
integrated in an offline application; this can free up the hands of the user to do her work,
because she can be enabled to flip the pages of the manual through voice command

3 Analysis 27

• Digital text is searchable by algorithms, the user looking for a keyword can easily list
all available occurrences

• A digital manual does not need a rigid page-by-page structure, it may offer different
ways to group the existing information at the click of a button, reducing the amount of
redundant information

• A digital manual can contain text and images, as well as video and audio recordings
where applicable.

• For multi-language manuals, the display language can be chosen right after opening
the manual, and pages in languages which the reader does not need are not displayed,
decreasing the amount of unnecessary information which may distract the reader.

• References to other chapters / pages can be implemented as a clickable link to navi-
gate to the specific information; navigating back can be done via a reverse-button as it
is common in modern file- as well as web-browsers.

• While paper manuals are often printed in greyscale for cost reasons, there is no reason
for this restriction in digital media since displays of computers can be expected to
display colours; this increases the possibilities regarding the annotations of images as
well as the clarity of digital photos used as illustrations.

All of these possible improvements in terms of ergonomy for the reader come at the price of
a potentially significant difference in information density and clarity between the multimedia
version and the printed version of the manual. This problem can be attributed to the current
time being one of shifting paradigms, where people either stick with the old, embrace the
new without looking back, or arrange themselves somewhere in-between and accept having
to make compromises on both fronts.

4 Developing the Application Concept

4.1 The Initial Concept

4.1.1 Envisioned Use-Cases

The problem that led to the conception of this documentation software was the lack of a
suitable tool to document step-by-step processes quickly enough to warrant its use for a non-
recurring task. Primary trigger was the need to completely disassemble a set of constant-
pressure carburators, clean them in an ultrasonic bath and put them back together the way
they were.

For such an undertaking, using a smartphone to take pictures appeared to be a feasible
solution. The drawback was, that pictures on the phone have no context attached, and they
cannot easily be given filenames. Additionally, holding spring-loaded parts in position while
taking a picture is a risky undertaking, as well as a potential health hazard if no eye-protection
is worn.

While the task was completed without the software tool, it did confirm that applications for
such a tool exist.

Further development of the idea led to the isolation of three primary use-cases:

• assembly manuals

• commissioning and operations manuals

• maintenance manuals

4.1.2 Software

The concept to capture information in a gallery-like format (essentially a bi-directionally
traversable list of information items) was part of the initial conception of the project. Orig-
inally, the concept was envisioned for hobbyists and contributors of the open-source and

4 Developing the Application Concept 29

open-hardware communities, and use by commercial entities was not considered at all ex-
cept for the most rudimentary drafting purposes. For that reason, the initial concept was
more focused on features which would make the use of the application more convenient for
the documenter, e.g.:

(Features wich were not discarded until the selection process are labeled by their identifica-
tion number in brackets which matches them to the indices in A-1 - Considered Features)

• A PDF Export function was conceived early on, as there needed to be a way to read
the created documentation on any system without installing the software first. [1]

• Controlling the GUI via voice commands when reading or creating the documentation,
such as: [2]

– Navigating forward and back through the gallery by saying the respective words

– Commanding the camera to take a snapshot or record a video

• Recording audio draft and saving it to file for replaying at a later point, enabling a
manual transcription by the documenter. [3]

• Alternatively to [3], ecording the audio and using a Speech-To-Text engine to create
the first draft of the instruction text from it. [4]

• Add two sets of intstructions to one project, so an assembly manual and it’s counterpart
are inseparable. [5]

• Graphical annotations to the pictures were also considered as a feature. [6] This
includes enumerating items on the picture using numbers, highlighting them with a
coloured frame, and possibly inserting text.

– For the integrated solution, an algorithm can make sure that there is a reference
in the text for any enumerated item on the picture.

– The graphical annotations do not need to be merged with the image, but kept on
separate layers to enable editing at any time.

• Filtering webcam images in a way that made them look like line-drawings, to make the
images visually simpler and improve printability.

• A tag-based search function, where each slide is annotated by the documenter with
keywords about the contained information, which can then be searched by the reader.
[9]

• For importing images from the filesystem, the idea of using links was considered: [13]

– The image will be re-loaded from the specified file in the filesystem at startup,
and saved in the project directory only to make the project transferable.

4 Developing the Application Concept 30

– If the base image is modified (e.g. re-rendered in case of a rendering, or anno-
tated with arrows) the image in the Gallery is automatically be kept up to date.

– The image in the project directory is loaded only when the original link becomes
invalid.

• Creating reversible manuals for simple assemblies, where only the assembly needs to
be documented. The order of slides in the Gallery can then be swiched at the click of
a button, and the same documentation can be used for disassembly as well. [36]

• Feature [6] was also considered in a reduced form, where only enumerations can be
added and are merged with the picture permanently. [37]

• Enabling the documenter to record video clips with the webcam and add them to a
slide instead of or parallel to a still image. To preserve printability the documenter
must be forced to select a suitable still picture as a printed replacement for the video
[40].

4.1.3 Hardware

The initial concept also contained optional external hardware besides webcam, such as a
foot-switch and a touch- or button-pad which provides access to the buttons of the gallery
without the need for a keyboard or mouse. The main reason for deciding cross-platform
portability to be a cornerstone of the development, was the idea that the application could
be run on some of the available ARM-based one-board micro PCs. This would enable the
development of a portable documentation tool, by just adding a battery, an arm-mounted
touchscreen and a head-mounted webcam to the microcomputer. Such a portable docu-
mentation system was conceived to find application in the documentation of e.g. damage
in large machines which need to be entered by humans to assess their state of repair, or
motor vehicles. Nevertheless, the primary application was from the beginning to install the
system on a desk or workbench, where e.g. a new product would be assembled for testing
and documentation purposes. The process could then be captured without the needs for
external notes or any delay between action and writing, where small crucial details may get
lost.

The first realism-oriented concept-drawing 4.1 contains:

• The workdesk

• A Large screen mounted at the back of the desk for viewing the documentation

4 Developing the Application Concept 31

Figure 4.1: The first detailed conceptual sketch of the system in use.

• The webcam, mounted on a flexible arm like e.g. a desk lamp for flexible positioning
and a steady camera (Ideally combined with working light, to have additional illumina-
tion on the subject assembly whenever needed).

• A Keyboard, used for writing the textual annotation

• A Mouse for operating the software

• A Touchpad which gives quick-access to the most important functions (e.g. forward,
back, take snapshot, record audio, play audio)

• A Footswitch for taking pictures while positioning the subject with both hands in front
of the camera

4 Developing the Application Concept 32

4.2 Proposed Additional Features

4.2.1 Additional Features gained from Reviewed Literature

Some additional feature ideas could be derived from the reviewed literature, and some exist-
ing ones expanded:
(Features are labeled by their identification number in brackets which matches them to the
indices in A-1 - Considered Features)

• Importing tables (html or cvs) into the annotation text [16] was primarily inspired by
(Juhl, 2015, p. 253)

• Create an automated text analysis tool which checks the text for formatting consistent
with (Hahn, 1996, p. 40) [25]

• Force well-structured warnings and notices by providing templates, which cannot be
inserted unless filled out [35], this was described by (Juhl, 2015, p. 37 ff) in detail

• Sub-component of [37] taken from the style suggestions by Piehl (2002), Juhl (2015),
and Hahn (1996): Add position numbers with optional lines, arrange automatically
starting from 12o’clock.

• Manual to the Manual [38]: Provide the reader with instructions on how to use the
manual while he reads it. (Juhl, 2015, p. 199)

• Quick-access tabs for chapters [39]: Use tabbed pages for manuals with a high page-
count, as found e.g. in thick catalogs and phone books. This idea was taken from
(Juhl, 2015, p. 209) and applied to the software application context: Dynamically gen-
erate quick-access tabs (in the form of buttons) which lead to the beginning of each
chapter. Present them at an easy-to-see location.

• Video Capture [40] was also proposed in (Hahn, 1996, p. 55) as a possibility for future,
multi-media capable documentation formats.

4.2.2 Additional Features conceived during the Prototype Design
Phase

• Slides for special purposes, e.g. displaying only a table, only text, or only a picture /
video [7]

• Saving the project in a single file (e.g. .zip) as opposed to using a directory as a project
container [8]

4 Developing the Application Concept 33

• Portable mode: include an option for a portable mode, where all the application data
is saved in the application root to enable startup from e.g. a USB drive [10]

• Watermarks for images: include the option to impress a company logo on to every
slide’s image, to prevent unauthorized re-use [11]

• Product Variants: Make one manual project capable of supporting several variants
of a product, by separating the shared slides from variant-specific ones and facilitate
switching between variants via e.g. a dropdown menu [12]

• Project setup wizard: when a new project is started, require the user to put in the most
important information about it, e.g. type of the manual, author’s name, and the name
of the documented product [14]

• Saving hooks: Create options in the settings manual which lets the user set require-
ments which will be checked before the project can be saved [15]:

– Require all slides to have a title

– Require all slides to have a description text

– Require all slides to have an image

– Require all slides to be tagged

• Facilitate the creation of a title-slide, which contains all the relevant information on the
project as defined in the project settings [17]

• Facilitate the creation of chapters, by inserting special slides which contain a chapter
title, chapter number, author and other relevant information [18]

• Enable slides to contain different combinations of information types, such as footnotes,
advance organizer, etc., and automatically hide all unused features in view mode [19]

• HTML Generation: Compile the project into HTML-based format and store in the
project directory everytime the project is saved. This makes sure the most recent
version of the manual can be viewed at any given time an any webbrowser, without the
need for specific software [20]

• Toolbox: Add an extra input field on every slide which lets the documenter list the tools
required for each step. These can then be automatically compiled accross the project
and displayed [21]

• GIF enabled slides: Provide a way to capture and replay stop-motion images such as
the .GIF format. [22]

• Safety chapter: Create a dedicated chapter or slide at the beginning of a manual to
present general warnings and notices before the instructions start [23]

4 Developing the Application Concept 34

• BOM Import: Allow importing of a BOM and enumerate all components mentioned
throughout the manual according to their part number (require matching of a part-
number when a component is to be enumerated, as opposed to letting the documenter
choose a number freely) [24]

• Glossary: Create a glossary analogous to toolbox function [26]

• Tooltip Box: Add a dedicated box in the UI which shows context-sensitive information
such as guidelines on formulating instructions while the documenter is typing instruc-
tion text, what to consider when formulating warnings, etc. [27]

• Selective features: analogous to 19, but manually switch features on and off in editing
mode [28]

• Layout retention: Save relative sizes of panels (text, image, toolbox) as defined in the
editing mode, to give the documenter more control over the layout of the final manual
and make it possible to set an emphasis on certain components. [29]

• Perspectives: Instead of an edit and a view mode, offer three "perspectives" on the
information [30]:

– Draft Mode: For quick and complication-free recording of information, without
regard for formatting

– Refine Mode: For making the information collected in the draft phase presentable
and well structured, and adding other important elements such as tables, warn-
ings, etc.

– View Mode: The documentation reader’s perspective on the documentation.
Contains the same information as defined in Refine Mode, without any editing
functionality

• Navigation History: build in a backtracking-button like found in webbrowsers, which
also reverses jumps through the manual done e.g. via the slide list [31]

• User annotations: Let the users write notes for every slide in view mode. Retain
through save / load and display on demand [32]

• Image Frames: Automatically give an image a coloured border if the annotation text
contains a warning. Set colour according to the highest warning level present, e.g.
orange for "WARNING" and red for "DANGER" [33]

• Tabbed slides: Equip each slide with tabs to switch between image, tools, BOM, and
other additional information [34]

4 Developing the Application Concept 35

• References to other chapters: Provide a mechanism to insert hyperlink-like references
to an annotation text of one slide, which when clicked navigates to the referenced slide
[41]

4.2.3 Evaluating the Features

A total of 41 features (see A-1 - Considered Features for the original table) were drafted for
consideration, and analyzed regarding five criteria:

1. A feature’s dependency on other features in the list

2. A feature’s incompatibility with other features in the list

3. The expected time needed for implementing the feature (this was based on previous
experiences and a quick analysis of the complexity of the required tools)

4. To signify how big of a positive impact on the application a feature affects, a relative
value was assigned:

• 1: May occasionally save a few seconds or add some convenience

• 2: May save a few seconds regularly or add some convenience or redundant
information

• 3: Is a regular time-saver or adds valuable information or convenience in certain
context

• 4: Drastically saves time in certain contexts, adds generally valuable information
or general convenience

• 5: One instance of Level 4 combined with at least one instance of Level 3

The value for the reader of the documentation as well as the creater of the documen-
tation were identified, and the higher one of the two was chosen. While this value
was not calculated, the features with the highest impact and the ones with the lowest
impact were identified, and the others categorized in-between.

5. The proposed features were given one of the following categories:

• Documenter-Ergonomy: Functions which make life easier for the documenter

• Documenter-Function: Features which help the documenter store information
more appropriately

• Reader-Ergonomy Functions which make life easier for the reader

4 Developing the Application Concept 36

• Readerformat: Functions which make information more clear for the reader, or
which add (redundant) information

• Software: Affects SW internals, mainly

• Quality, Data Safety: Features not related to documentation, but to ensure a
smooth documentation procedure without trapfalls

• Versatility: Increase the number of situations in which the Software can be used

4.2.4 Composing the Feature-Sets

From the list of proposed features, four feature-sets were created, each with a different focus.
A combined implementation-time of around 120h per set was defined as a common baseline
to keep the feature-sets comparable.

Figure 4.2 represents an attempt to create a feature set which gives equal benefits to the
documenter and the reader of the documentation. This set contains all the necessary com-
ponents for creating a simple production manual:

• Warnings can be specified, making is suitable for documenting most devices

• Tables can be inserted, e.g. to include a BOM or a technical specification table for a
machine

• Longer manuals can be kept accessible by utilising the tag search function

• The finished manual can be exported to the easily printable .pdf format, guaranteeing
the compatibility of created documentation with the outside world.

The colour-coded numbers state the priority for implementation.

Figure 4.3 provides the documenter with all the features which help giving a documentation
accessible structure. Tables, warnings, videos and graphical annotations can be added,
as well as special purpose title- and chapter slides. The toolbox and tags allow storing
of additional information which can be searched, and the chapter-tabs feature allows quick
navigation to the desired information regardless of how long the documentation is.

The third feature set (Fig. 4.4) is special in that is presents an ideal case. For this set, the
time-constraint was disregarded, and a compatible selection of features put together to serve
as an optimal reference.

4 Developing the Application Concept 37

Figure 4.2: Selected features are providing a balance between user- and documenter-
orientation.

4 Developing the Application Concept 38

Figure 4.3: Selected features focus on information collection and structuring.

4 Developing the Application Concept 39

Figure 4.4: Ideal case for implementation without time constraints.

4 Developing the Application Concept 40

Figure 4.5: Selected features focus on features not available in other free tools, such as
word-processors and graphics utilities

For the fourth feature set (4.5), the balance between documenter- and reader-related fea-
tures was disregarded. Instead, the features deemed least likely to be available in external
tools were selected. This lead to the image annotations being dropped, since there are
several free tools available to edit an image, insert numbers, arrows and other highlights.
Features which are not kommonly known to be available, such as a warning-label creator or
a tool which enables convenient recording of stop-motion images via webcam, are favoured.
These features are complemented by tagging functions as well as support for tables and
multimedia elements (audio and video). The pdf-export function completes the set in terms
of real-world compatibility.

4 Developing the Application Concept 41

4.3 Selection of a Feature-Set for Implementation

The selection of a suitable set was done by picking a focus. At the beginning, the driving
idea was to integrate as many features for the convenience of the documenter and user as
possible. During the process of grouping features together in sets (see: 4.2.4) it became
clear that with the approach that was selected, the third option would offer a wholesome
documentation experience. However, since its projected implementation time is 218h, which
is almost 100h above the allocated time budget, it was not a realistic choice. The solution was
found in the fourth set. The graphical feature highlighting alone had an estimated time cost of
24h, yet similar capability could be found in freely available snipping tools. From a software-
engineering point of view, reinventing the wheel is rarely considered a good solution. The
main reason is that if a tool exists which does the job and has been tested, making use of
the tool has several advantages over creating a parallel solution:

• No time is spent on concept work

• No time is spent on implementation (besides perhaps some necessary surrounding
code to integrate the external solution well)

• No time is spent on testing and debugging. This is perhaps the biggest factor, as
debugging can take longer than all the preceeding stages together.

Thus, the fourth solution was determined to fulfill the roles which could least likely be fulfilled
by free third-party software:

• Organizing the collected information in a quick and efficient way

• Offering direct processing of the drafted information to create a presentable manual

• Facilitating information retrieval through keyword-search and shortcut functions

• Facilitating the distribution of the manual in a common format (pdf)

4.4 The Software-Engineering Process: some points of
interest

4.4.1 Designing the GUI

The choice to start with the design of the Graphical User Interface (GUI) was made, because
having the visual reference in the development environment during the application logic de-

4 Developing the Application Concept 42

sign reduces the risk of forgetting to implement a component. For laying out the discreet
User Interface (UI) compontents each feature would consist of, such

Figure 4.6: The features of Feature-Set 4, grouped in the GUI structure given by the
perspectives

The most basic component of the chosen feature set is the perspectives feature, which effec-
tively separates gallery browser, the central part of the application’s GUI, into three distinct
views. This is illustrated in Figure 4.6, which gives an overview of the first two levels of the
GUI hierarchy. Additionally, there is the root layout to be considered, which defines the win-
dow frame of the application and the top menu bar which hosts e.g. the File-menu, Settings
menus and the application help menu.

Figure 4.10 presents a small section of the lower hierarchy of the GUI. Note that all the
subtopics presented in Figure 4.6 contain definitions of their subcomponents down to the
level presented in Figure 4.10.

The advantage of using a mindmapping tool for the development of the GUI is, that progress
visualisation is possible by adding a pie-style progress indicator to each element and period-
ically updating them as progress is made.

4 Developing the Application Concept 43

Figure 4.7: A small example subset of the GUI specification

To model the GUI, a mockup was created of each principal mode (Draft, Refine, View).

The layout of the gallery browser in draft mode can be found in B-1 - GUI Mockups for Draft
Mode. The text on the individual elements is secondary in this case, the main purpose of
such an exercise is to get a an impression of whether a GUI is overly crowded, and if the
features are arranged in an accessible way.

The layout of the gallery browser in refine mode can be found in B-2 - GUI Mockups for
Refine Mode, and for view mode in B-3 - GUI Mockups for View Mode.

4.4.2 Designing the Gallery

Visualizing the application logic before implementation is a crucial step towards building a
working application. Not every little detail requires modeling prior to implementation, since
modeling all trivial things would slow down the development process considerably without
providing measurable benefit. However, modeling procedures where timing and order are

4 Developing the Application Concept 44

critical, such as saving or loading a project with all it’s components, helps to reduce the time
needed for debugging considerably.

The gallery is an entity which contains one or more gallery items (called slides) in a an array
list, and has a defined state determined by the currently active slide. By passing an index to
the gallery, the gallery item from that index will become the new current item. The current
item can be extracted from the gallery by the application, and it’s information (image, text,
audio...) loaded into the gallery browser to be displayed and manipulated by the user.

Gallery slides can represent instruction-steps, but they can also represent e.g. a title slide,
which has different requirements than a slide intended for instructions.

Generally, all slide types have the same basic functional requirements (all slide types have
an annotation object attached, for example), but need their own extra features.

4 Developing the Application Concept 45

Figure 4.8: The inheritance structure of the gallery items.

4 Developing the Application Concept 46

Figure 4.8 presents the inheritance tree of all gallery slides, and shows the features imple-
mented by each slide type. All the way on top is the gallery which owns one or more gallery
items. All heirs of the gallery item class are accepted by the gallery, since inheritance is a
strictly hierarchical concept, and a class derived from another will be accepted both in places
where its specific class is required, and in places where the superclass (the ancestor) is re-
quired. The current item from the gallery is given to the gallery browser, which distributes the
contained information (image, text, tags, etc.) among its GUI elements. When information
is edited in the gallery browser, e.g. if the text in the annotation box is altered, the gallery
browser copies these changes to the current slide immediately. When a navigation button
is pressed or a jump via the slide list initiated, all the information in the browser is passed
to the current slide once more before exchanging the data in the GUI with the data from the
new current slide. Since Java objects are passed by reference, the current slide does not
need to be copied back into the slide list. Rather, the item stays referenced by the slide list
when passed to the gallery browser, and all changes made to the current slide in the gallery
browser affect the same item as in the slide list.

This is an advantage in the case of the documentation software, but has to be taken into
consideration at times as the notion of passing a variable by copying it tends to be taken
for granted. Not being aware of the implications of a pass-by-reference system can create
errors in the program which are very difficult to locate.

4.4.3 Capturing Images with the Camera

When a picture is being taken, the camera is first activated to provide a steady stream of
images (like a video stream). The user then has time to position the subject of the docu-
mentation or the camera according to his needs, and then take a snapshot via clicking on a
button, which stops the camera stream, retains the last image and passes it to the current
slide.

The camera stream is generated by taking a snapshot every 33ms (at high resolutions the
interval is longer due to the limitations of CPU and camera) and then passing it on to the
gallery browsers image view. If this was done by the main application thread, starting the
camera would occupy the thread and the GUI would stop responding.

The solution to this, is to start a separate thread which uses the camera to take the pictures
periodically and load them into the image view.

The application thread is free to manage asynchronous events from the GUI, such as cap-
turing the click of the snapshot-button while the camera thread is running.

The camera thread is then interrupted by the application thread, and after running its last
cycle it can be disposed of.

4 Developing the Application Concept 47

Figure 4.9: The interaction between main application thread (represented by the gallery
browser controller) and camera thread.

4.4.4 Designing the Stop Motion Pictures

For the feature number 22 (labeled "Stop Motion Capture" in Fig. ??), the idea to employ
the common .gif format was abandoned early, as the JavaFX specification explicitly supports
the .gif format, but only as still image. The solution was to use regular single images for
each frame, contain them in a class which contains a list and a cyclic counter (meaning the
counter is reset when it’s value reaches the size of the list), as well as a method to get the
next image in the list, which returns the image at the current counter-position and increases
the counter by ine, so the next retrieval attempt will yield the next image.

4 Developing the Application Concept 48

This image container class (SlideStopMotion in Fig. 4.8 is an heir of the class SlidePic, which
is the default container for images owned by a slide. While the base class only contains one
image at a time, SlideStopMotion can contain any number of images. To facilitate replay,
the image view element of the gallery browser checks the type of the picture everytime the
gallery browser passes it a new one. If the new picture is a simple SlidePic, the image view
controller will simply set the static picture in its viewport. If the new picture is a SlideStop-
Motion, the image view controller will start a new thread which gets the next image from the
SlideStopMotion object in fixed intervals. The length of the intervals can be set within the
application settings.

Through this approach, it is also possible to record a stop motion image and open it for
editing later, e.g. replace individual frames or add more frames to the series.

4.4.5 Saving the Gallery

To save a large number of items which may each contain different constellations of data, such
as the gallery which may contain slides with text only, with image abd text, or with stop-motion
images attached, it makes sense to confine the save- and load logic to the slides themselves.
The base class of all items in the gallery, the class GalleryItem, contains the logic to save the
annotation text as well as the tags. All classes that inherit from GalleryItem simply override
GalleryItem’s save method, implement the code to save their respective features to the file
system, and then explicitly call the superclass’ save-method.

This mechanism enables a distant heir of GalleryItem to focus only on saving its own unique
attributes, call its ancestor’s class’ save method afterwards, and be sure that all other infor-
mation in the slide is saved.

4 Developing the Application Concept 49

Figure 4.10: The hierarchy of gallery items during the saving procedure.

4 Developing the Application Concept 50

4.4.6 Making the Project- and Application Settings Available to all
Classes

One challenge arising during the development of a complex software is the need to have
certain operational constants and variables which are accessible to many different classes
in many different contexts.

For example, by giving the logic for saving the gallery’s data to the GalleryItem class, this
class must have a way of determining where the project directory is located on the filesystem,
to be able to specify the path where e.g. the image should be saved.

This is achieved by using the Singleton pattern. A singleton is a class, which can only
be instantiated once within a given system. Instead of every object creating its own settings
object, which would need to be updated manually, every object needing access to the settings
gets a reference to the same settings object.

If one class manipulates the singleton, all others can instantly see the change.

E.g. the path of a project may be set though a directory chooser mechanism in the root-
layout, but the GalleryItem will save its data at the specified location the next time the project
is saved.

5 Software Development

5.1 Language and Tools

5.1.1 The Java Programming Language

One of the goals of the project was from the start, to keep the software as portable to different
platforms as possible. The Java language offers the concept of Write Once, Run Anywhere,
which means the source code does not have to be compiled for specific operating systems
or hardware platforms. Instead, it is compiled once into a specific format (Java Bytecode)
and then executed inside the Java Runtime Environment. Therefore, a java program can
be run on any platform for which a JRE exists, which range from all common desktop OSs
to mobile devices, embedded devices, and large non-desktop computing systems such as
servers (Oracle (2016b)). This makes it stand out among other compiled languages like C
and its derivatives, which need to be compiled for specific platforms. The basic tools required
to make and run java applications (Compiler, JRE) are free for personal and commercial use,
and are supported by free IDEs like Eclipse or Netbeans. As opposed to most programming
languages, a lot of specific functionality (e.g. image manipulation, GUI development) is di-
rectly integrated into the java standard and supported by Oracle, which ensures portability
retention across all supported systems. For functionality not provided with the official java
release, there are numerous third party libraries (free as well as commercial ones) for many
specific applications available online. Furthermore, the development of the java platform is
ongoing and expanding, making the language a future-proof choice for applications which
will be undergoing periodical improvement over a potentially long product life-cycle. Since
the intention of this work is to create a first published version of software which will be useful
in a subset of all technical documentation situations, but also to act as the basis for further
development after the conclusion of this thesis, the Java language was selected because of
the unique qualities described above.

5 Software Development 52

5.1.2 GUI Framework

There are several GUI-building frameworks available for the java language. Oracle currently
provides official support for two: Swing and the newer JavaFX.

Swing GUIs are coded in Java (for which the NetBeans IDE provides a WYSIWYG editor),
which can be manually edited by the developer.

In JavaFX, the software developer can choose at any point to implement a GUI element
completely or partially in java code, or create it using the SceneBuilder 2.0 tool supplied by
Oracle, which provides a drag&drop interface for creating a GUI description in the FXML for-
mat. The JavaFX GUI is organized in the JavaFX Scene Graph (an excellent overview of the
JavaFX architecture can be found at Oracle (2016c)), which is implemented as a tree struc-
ture consisting of nodes. The root node can be seen as the basic canvas on which the GUI
is rendered, and its children are nodes which may respectively own various arrangements of
nodes (e.g. controls such as buttons) which are displayed when appropriate. Each node in
the JavaFX Scene Graph can have zero or more children and must have exactly one parent.
The nodes in the JavaFX Scene Graph can be linked to the application logic through event-
handler methods, and nodes requiring dynamic configuration at runtime (e.g. text boxes) can
be created in code and linked to the respective GUI element. For example, most software
buttons only react to a simple left-click of the mouse. In JavaFX, the button does not need
to be created in java code by the developer - instead, the button is created in FXML and its
event attribute (in this case the event of a mouse click) linked to a specific method (called an
event handler method).

The FXML description of a Graphical User Interface is loaded at compile time, and only then
turned into java code. This decoupling of the Graphical User Interface and the underlying
application logic has the advantage of keeping the code leaner and easier to maintain, be-
cause only elements which get manipulated at runtime have to be coded. For those, only
the changes have to be written in java code, while their initial state (size, colour, enabled /
disabled) can still be declared in FXML.

Because both JavaFX and Swing are supported actively by Oracle, the newer JavaFX has
been designed for compatibility with Swing. This is important in the case of a third party
library offering a specialized functionality only being available for one of the toolkits, but
needed in an application which has been coded in the other. An image processing library
which uses the Swing Image class can still be used in the context of an application written
in JavaFX. Whenever the image variable is passed from one toolkit to the other, it can sim-
ply be converted to the respective format using utility functions provided as part of the Java
API. JavaFX is portable to all potentially relevant platforms for this project (Windows/Linux
PC, Mac, ARM), and since it is newer, likely to be supported further into the future than

5 Software Development 53

Swing. The modernisations regarding development concepts (separation of GUI and appli-
cation logic) and its acceptance by industrial development groups as a stable solution lead
to the conclusion that JavaFX will be used as the main toolkit during this project.

The reason why third party GUI toolkits (e.g. GTK+) were eliminated from serious consid-
eration for this project is, that they are not as inherently portable as the officially Oracle-
supported toolkits. Also, since both JavaFX and Swing are built into current java distributions,
their integration does not have to be handled by the developer, decreasing the likelyhood of
time-costly resource-linking problems during the development phase, the resolution of which
brings no benefit other than the ability to proceed as planned behind schedule.

5.1.3 Setting up Eclipse JDT with e(fx)clipse Plugin

Oracle is officially supporting two well-established free Integrated Development Environ-
ments: NetBeans and Eclipse. Eclipse has been chosen because of good operational experi-
ence from previous projects, although both IDEs are equally suitable for Java development.

This section will serve as the setup documentation for the Eclipse IDE and the plugins nec-
essary to develop a JavaFX application.

The process of setting up the Eclipse IDE is well documented on the website of The Eclipse
Foundation (2016a) Different pre-packed versions of Eclipse can be downloaded for e.g.
different languages or tasks, although plugins for other languages can always be added and
removed later. For developing a Java application, The Eclipse Foundation (2016b) is the
recommended version to download.

After setting up the IDE, the JavaFX plugin named e(fx)clipse has to be installed. This
can be downloaded and installed using the plugin wizard integrated into eclipse. Detailed
instructions of the installation process of the plugin is made available at BestSolution.at EDV
Systemhaus GmbH (2016).

5.1.4 SceneBuilder 2.0

SceneBuilder 2.0 is a WYSIWYG Graphical User Interface layout tool for use in conjuction
with the JavaFX toolkit. By using SceneBuilder 2.0 the developer avoids having to write the
whole GUI in Java code or FXML manually, thereby reducing the amount of code poten-
tially requiring maintenance or debugging. Modifying an existing design also becomes more
intuitive when the items can be placed and resized by mouse, as opposed to coding their
arrangement manually and having to visualise the layout by studying the code. The appli-
cation is distributed separately from JavaFX and e(fx)clipse, but it is possible to start it from

5 Software Development 54

inside the Eclipse GUI by right-clicking on an FXML file and selecting the option [Open in
SceneBuilder 2.0].

The instructions on how to install SceneBuilder 2.0 can be found at Oracle (2016a)

5.2 Software Libraries

5.2.1 Criteria

Any API considered for use in this project has to conform to the following requirements:

• It must be freely accessible, preferably open-source

• It must be published under a license which does not restrict commercial use

• It must work without an internet connection if it is not an optional feature of the appli-
cation. Non-Optional are any features needed for picture taking, creating, saving and
loading a documentation project.

• It must be under active development or supported as a final product

• It shall not affect the portability of the application to the intended platforms: Windows,
Linux, Mac, ARM

5.2.2 Webcam Capture API

The Java programming language does not offer a native API for connecting to and using we-
bcams, therefore a third party library had to be found for this purpose. The specific selection
criteria for this API are:

• It must support selection of a specific USB-Webcam if several are connected

• It must support detecting listing available webcams

• It must support the capture of still images, or video from which still images can be
extracted

• It must allow the user to change the camera’s resolution

5 Software Development 55

Table 5.1: Comparison of Webcam Capture APIs

API Name Webcam
Selec-
tion

Webcam
Listing

Capture
of Still
Images

Allows
setting
Resolu-
tion

License

JavaCV V1.1 Yes No Yes Yes Apache License
2.0 Or GNU-
GPL Version 2
Bytedeco (2015)

OpenCV V3.10 Yes No Yes Yes 3-clause BSD
License OpenCV
(2016)

Webcam Capture
API V0.3.11

Yes Yes Yes Yes The MIT License
Firyn (2015)

The three APIs which were found to be conforming to the the criteria in 5.2.1 were compared
regarding the criteria set in 5.2.2. As presented in Table 5.1 only one of the APIs provided the
functionality to scan for available cameras and present them in a list. The API by Firyn (2016)
does not require additional dependencies and supports all functionality required during this
project. For integration into the documentation software, the Webcam Capture API V0.3.11
will be implemented behind a generic interface to allow easy switching to another API at a
later point, if a more suitable one becomes available.

5.2.3 Apache Commons Library

Java does not provide functionality to delete whole directory trees includeing all contained
files, which is an important feature for saving a new version of a project in an exisiting location.
The necessary functions are available in compliance with the criteria set under 5.2.1 from
Apache Software Foundation (2016).

5 Software Development 56

5.3 Summary of the implementation Process

5.3.1 Successfully implemented Features

The perspective-oriented user interface was successfully implemented. Most features such
as Stop-Motion capture, title and chapter slides, the tagging system and table import as well
as the warning label generator were implemented without any significant problems.

The audio draft feature proved more difficult than initially expected, because the audio file
could only be created at recording time, and from then on has to be managed by its owning
slide in a way it does not get lost when e.g. the slide is changed to a differen index. Fur-
thermore, the member-method of the JavaFX Media class, which was supposed to get the
duration of the recorded audio clip never returned a value until the point when the audio clip
was overwritten. If a clip was recorded for 3s, and the recording stopped, the get-duration
method was supposed to update a label in the audio player controller. Instead, the displayed
value remained "0" until the recorder was started to record another audio draft. Then, the
label was suddenly updated with the 3second duration from the just-discarded clip. Those is-
sues resulted in an implementation time for this feature which was several times of its initially
projected 6h.

During the implementation of the PDF export feature, a problem was discovered: The Apache
Foundation’s PDFBox needed plain text as input, but the text from the rich text editor in the
refine-tab is HTML-based. A possible solution may have been to pass the html text through
two separate conversion APIs, but success was deemed unlikely since the HTML code may
suffer from impurities caused by the import of external tables and warnings.

Since a printable form was determined necessary, the HTML variant was chosen. This
proved much easier to implement, and through strategic use of pagebreaks is able to pro-
duce a printable version of the manual (See C - The Software Manual for the manual created
for the software, with the software).

5.3.2 Discarded Features

Some features could not be implemented due to a shortage of time. The time shortage was
not only caused by difficulties during the implementation, but also during the deployment of
the software package.

The Video Capture function was not implemented beyond the GUI elements (which have
been removed from the now final version of the software). The main reason for this is its con-
ceptual similarity with the audio draft. The audio draft is, in principle, a very simple feature.
Yet when it came to implementing it, features like exporting the entire project to HTML took

5 Software Development 57

less time than getting the audio draft into usable condition. Since the time originally alotted
for the implementation phase had already been exceeded by 3 weeks, due to difficulties with
the audio draft, thread-synchronisation and the deployment of the application, it was decided
to drop the feature from the V1.0 of the application, and keep it for consideration for the next
release.

The Safety Chapter feature became obsolete during the development. The reason was, it
was found that the functionality could easily be covered by the existing features, namely by
unsing the regular chapter slide in combination with regular gallery slides which are filled
with the relevant warnings.

The automatically coloured frames for images of warning-equipped slides had to be dropped
due to a shortage of time.

The saving hooks were determined to be a relatively unimportant feature and therefore
dropped in favour of an extra function: A button to open the current slide’s image in the
system’s default editor for e.g. adding highlights.

Figure 5.1: Overview of the implemented and the discarded features

5 Software Development 58

The Figure 5.1 shows the result of the implementation phase: The Features with a green
check have been implemented, the ones with a red X have been dropped.

6 Testing and Evaluation

6.1 Objective & Outline

The objective of the testing is to determine stability of the software’s features as well as the
user-friendlyness of the interface. Originally the software was meant to be tested against
three different testcases. Due to a severely extended implementation and commissioning
phase, there was no time to test the software on external subjects. However, the software has
been successfully used to create a user-manual for itself, which was subsequently embedded
in the application and can be loaded via the help-function.

During the course of the manual’s creation, all the software’s features were tested. The
self-documentation shall therefore serve as the basis of the evaluation.

6.2 Summary of the Test

The application performed well. The interface proved usable in its current configuration, and
the draft as well as refine-mode features all proved to have their use. Through managing
the information structure in the background, the documenter can focus on collecting the
information and, after getting used to the UI, quickly file it in the right location.

Whether the produced manual is of high quality remains in the documenters hands, since
functions which actively guide the user are not extensive.

Guidelines on good writing are available in the form of tooltips, which appear when the mouse
cursor hovers over a control element. Many controls in the gallery browser have been fitted
with tooltips, but it remains up to the user to read them.

For a documenter who knows the rules for making good manuals, the software provides the
necessary means and streamlines the process considerably.

One feature stood out in particular during the test: The function to open a slide’s image in
the operating system’s default editor was an idea which was added after the principal feature
selection. The reason this extra feature was added despite being short on time was, that this

6 Testing and Evaluation 60

feature actually only required one GUI-element and approximately 10 lines of straightforward
code, and did not require lengthy debugging. Opening an image externally, editing it, and re-
inserting it into the documetation project via the clipboard quickly became a routine task, and
proved to be quite ergonomical for the reason that the complete cycle of opening, editing and
reinserting the image does not require handling any file-chooser menus or concering oneself
with the images location in the local filesystem at all.

The Stop-Motion image function proved useful breaking longer sequences of actions into
several frames. From the text, the reference to a highlight in a frame of the stop motion
image can then be made by stating the frame number and the highlight in question. The
decision to implement this selfmade solution after determining that using the .GIF format
was not natively available in JavaFX also had the added benefit of keeping the image series
easily editable.

The capability of the JavaFX HTML-Editor which is used in the refine tab, proved very ad-
equate at formatting the instructions with e.g. different levels of headings, bullet points or
enumerations. One small caveat is, that the numbers used for enumerated lists cannot be
printed in bold while keeping the rext plain. This would have increased the clarity of the
enumerated lists.

Comparing to the manual used as an example for the state of the art (KUKA Roboter GmbH
(2015)), the manuals produced by this software can be considered on a similar level when
it comes to clarity and structure, providing the documenting person can provide those. Two
distinct advantages of the manuals produced by the developed software are:

• Warnings are allways structured to the point where the text is, at the very least, sep-
arated into the underlying topics and cannot be one long, badly readable paragraph.
Even bullet lists and enumerations can be inserted into the warnings and notices post-
generation.

• Tables cannot be inserted without having an identifier as well as a caption text.

The total length of the Application’s manual is 47 pages, and it makes use of separation of
topics by using chapter slides. Due to the different colour-scheme used for chapter slides in
the index list, the feature of generating extra quick-access links for each chapter becomes
mostly obsolete.

The Title slide is useful to state the purpose of the manual, and to present a logo or a picture
of the product.

The tagging system works well, and can be used to find information quickly after learning its
basic principles.

Exporting a manual to printable HTML works, condition is that the relevant section of the
manual was read and its advice adhered to.

6 Testing and Evaluation 61

The audio draft function works, but due to a lack of situations during the test, where the
documenter needed to keep his hands free, it was only used for the sake of testing it.

Furthermore, the automatic resizing of the GUI elements depending on a slide’s content
makes the experience more lean, since the part of the manual which contains the information
is always filling the screen.

Overall, the result of the test was positive.

Refer to C - The Software Manual for the print version of the application’s manual.

7 Conclusion

7.1 Personal Development

During the course of this thesis, a great many things were learned.

For one: Making a software from a prototype into something akin of a product, which can be
given to others without having to worry about them having a bad user experience, takes a lot
of fine-tuning and more time than initially anticipated.

Second: The amount of time needed for adjusting the frameworks of a project is easily
underestimated. After debugging, the deployment of the software so it could be run from
outside of the Eclipse IDE was planned to take place within an hour. It took about two
days of trying until the resources were found both when starting the application during the
development in the IDE, and after it was deployed in .jar and .exe format.

The planned tests for mechanical assembly, commissioning and maintenance could not be
conducted and included in this thesis due to previously mentioned shortage of time as a
result of difficulties during the implementation and deployment phase. While this may affect
the quality and thoroughness of this thesis from the reader’s point of view, I stand by the
decision to allocate the necessary time to turn the software into a usable product to the
detriment of the testing and evaluation phase, which was changed from three planned cases
of documentation to one single case that was not previously intended to be used as an
example.

The reason why the priorities were picked this way is, that a software which does not work
will not be useful to anyone. After committing the better part of a year to learning the basics
and some more advanced functions of the Java programming language, designing a basic
prototype as a feasibility study on which the software developed during the thesis could be
based, and committing fully to the methodical development of a software product after the
thesis was registered officially, the notion of publishing a well-documented but unfinished or
unusable end-result was not considered an acceptable conclusion of my bachelor’s study.

My overall personal verdict, however, is a positive one. The application works, and it is not
just a reasonably stable prototype but a working system which can be used, even if some
rough edges may still be present. During the creation of the software’s manual, which was

7 Conclusion 63

created by using the software itself, several bugs were discovered which were subsequently
fixed and their function verified. The usability of the applications primary functions were
confirmed during the creation of its own user manual.

7.2 Plans for the Future

The software, which has been named ManuMaker owing to the fact that it is meant for,
colloquially speaking, making manuals, will be published under the GNU GPL license.

The intention is to build a user base by introducing the software on internet platforms fre-
quented by the target user groups, and open a bugtracking service for the project to give the
users the chance to log issues they discover. Using feedback from the users, the current
version will be refined further and problems fixed, as time is available. Participation in the
continued development of ManuMaker by the users will be encouraged though publication of
the project on a source hosting platform.

Furthermore, the following features are planned for being added to the current version:

• The file- and directory-paths which are used internally are currently based on Windows
standard. The first order of business will be to make the paths system-independent or
at least deploy versions of the software which work under Linux and Mac operating
systems

• A new mode will be added to the GUI, which will provide optimized controls for touch-
screen devices, to enable the full-featured use of the application on e.g. tablet com-
puters. This will enable the use of a camera-equipped tablet as a documentation tool
for larger subjects, e.g. industrial machinery components which cannot be extracted
and placed on a desktop

• The option to automatically list the required parts and tools on dedicated slides at the
beginning of a documentation

• Making the export function more versatile and adding options such as page-
orientation, and placing two or more slides on one page (for documentation with short
instructions)

• The GUI-behaviour and possibly the arrangement of some components will be opti-
mized based on user-feedback and my own experience gathered from using the soft-
ware

• The handling of the audio draft will be streamlined

7 Conclusion 64

• Compiling the gallery in a second HTML-based form which makes use of links to nav-
igate from one slide to the next will be considered. This is meant to be generated
everytime the main project is saved, to always have an up-to-date portable version of
the documentation on hand, which can be shared and viewed in any web-browser

• If there are users who require the application output to be localized, a language-setting
option will be considered if contributors can be found for the translations

Meanwhile, the next version (V2.0) will be designed and developed, which will focus on
making the user-experience more smooth and adding some of the features which could not
be added to the current version due to time constraints, such as perhaps voice-control for
basic functions (navigation, camera operation).

The speech-to-text feature is also a major point of interest, but for the moment I intend to
keep the software offline-only, and currently available and free to use STT engines need the
internet to function properly.

Finally, my primary motivation for developing this software as a bachelor’s thesis project is,
to conclude my studies with a useful contribution to at least a subset of our society. My
hope is, that the software developed during this thesis will improve life for the people who are
developing and publishing freely accessible tools and products for the benefit of others, by
making the process of documenting the functions of a product less bothersome and maybe
even enjoyable.

Bibliography

[Apache Software Foundation 2016] APACHE SOFTWARE FOUNDATION: FileUtils
(Commons IO 2.4 API). 2016. – URL https://commons.apache.org/
proper/commons-io/javadocs/api-release/index.html?org/
apache/commons/io/package-summary.html. – Accessed on: 2016-06-
03

[BestSolution.at EDV Systemhaus GmbH 2016] BESTSOLUTION.AT EDV SYSTEMHAUS

GMBH: e(fx)clipse - JavaFX Tooling and Runtime for Eclipse and OSGi. 2016. –
URL https://www.eclipse.org/efxclipse/install.html. – Accessed
on: 2016-06-30

[Bytedeco 2015] BYTEDECO: javacv LICENSE.txt at master bytedeco/javacv GitHub.
june 2015. – URL https://github.com/bytedeco/javacv/blob/master/
LICENSE.txt. – Accessed on: 2016-06-03

[Firyn 2015] FIRYN, Bartosz: Update LICENSE.txt sarxos/webcam-capture@9827348
GitHub. april 2015. – URL https://github.com/sarxos/webcam-capture/
commit/982734884c1c197fe2443eb366f538a739197334. – Accessed on:
2016-06-03

[Firyn 2016] FIRYN, Bartosz: Webcam Capture in Java. 2016. – URL http:
//webcam-capture.sarxos.pl/. – Accessed on: 2016-06-02

[Hahn 1996] HAHN, Hans P.: Technische Dokumentation leichtgemacht. Muenchen :
Hanser, 1996. – OCLC: 75763969. – ISBN 978-3-446-18178-6

[Juhl 2015] JUHL, Dietrich: Technische Dokumentation. Berlin, Heidelberg : Springer
Berlin Heidelberg, 2015. – URL http://link.springer.com/10.1007/
978-3-662-46865-4. – Accessed on: 2016-06-05. – ISBN 978-3-662-46864-7 978-
3-662-46865-4

[KUKA Roboter GmbH 2015] KUKA ROBOTER GMBH: KR AGILUS sixx Montagean-
leitung. march 2015

[OpenCV 2016] OPENCV: OpenCV license | OpenCV. 2016. – URL http://opencv.
org/license.html. – Accessed on: 2016-06-03

https://commons.apache.org/proper/commons-io/javadocs/api-release/index.html?org/apache/commons/io/package-summary.html
https://commons.apache.org/proper/commons-io/javadocs/api-release/index.html?org/apache/commons/io/package-summary.html
https://commons.apache.org/proper/commons-io/javadocs/api-release/index.html?org/apache/commons/io/package-summary.html
https://www.eclipse.org/efxclipse/install.html
https://github.com/bytedeco/javacv/blob/master/LICENSE.txt
https://github.com/bytedeco/javacv/blob/master/LICENSE.txt
https://github.com/sarxos/webcam-capture/commit/982734884c1c197fe2443eb366f538a739197334
https://github.com/sarxos/webcam-capture/commit/982734884c1c197fe2443eb366f538a739197334
http://webcam-capture.sarxos.pl/
http://webcam-capture.sarxos.pl/
http://link.springer.com/10.1007/978-3-662-46865-4
http://link.springer.com/10.1007/978-3-662-46865-4
http://opencv.org/license.html
http://opencv.org/license.html

Bibliography 66

[Oracle 2016a] ORACLE: 1 Installing JavaFX Scene Builder (Release 2).
2016. – URL https://docs.oracle.com/javase/8/scene-builder-2/
installation-guide/jfxsb-installation_2_0.htm. – Accessed on:
2016-06-30

[Oracle 2016b] ORACLE: Oracle JDK 8 and JRE 8 Certified System Configura-
tions. 2016. – URL http://www.oracle.com/technetwork/java/javase/
certconfig-2095354.html#os. – Accessed on: 2016-06-09

[Oracle 2016c] ORACLE: Understanding the JavaFX Architecture (Release
8). 2016. – URL https://docs.oracle.com/javase/8/javafx/
get-started-tutorial/jfx-architecture.htm. – Accessed on: 2016-06-
30

[Piehl 2002] PIEHL, Jona: Gebrauchsanleitungen optimal gestalten: ueber sinnvolle und
verstaendliche Gestaltung. Berlin : Springer, 2002 (X.media.press). – OCLC: 248490043.
– ISBN 978-3-540-42619-6

[The Eclipse Foundation 2016a] THE ECLIPSE FOUNDATION: 5 Steps to Install
Eclipse. 2016. – URL https://eclipse.org/downloads/index.php?
show_instructions=TRUE. – Accessed on: 2016-06-30

[The Eclipse Foundation 2016b] THE ECLIPSE FOUNDATION: Eclipse IDE for Java De-
velopers. 2016. – URL http://www.eclipse.org/downloads/packages/
eclipse-ide-java-developers/mars2. – Accessed on: 2016-06-30

https://docs.oracle.com/javase/8/scene-builder-2/installation-guide/jfxsb-installation_2_0.htm
https://docs.oracle.com/javase/8/scene-builder-2/installation-guide/jfxsb-installation_2_0.htm
http://www.oracle.com/technetwork/java/javase/certconfig-2095354.html#os
http://www.oracle.com/technetwork/java/javase/certconfig-2095354.html#os
https://docs.oracle.com/javase/8/javafx/get-started-tutorial/jfx-architecture.htm
https://docs.oracle.com/javase/8/javafx/get-started-tutorial/jfx-architecture.htm
https://eclipse.org/downloads/index.php?show_instructions=TRUE
https://eclipse.org/downloads/index.php?show_instructions=TRUE
http://www.eclipse.org/downloads/packages/eclipse-ide-java-developers/mars2
http://www.eclipse.org/downloads/packages/eclipse-ide-java-developers/mars2

Appendix

A

A-1 - Considered Features

Bibliography 81

Enumerated references for the table above (numbers are printed in bold, in 2nd or 3rd
column from the left):

1. also found in: (Juhl, 2015, p. 253)

2. (Hahn, 1996, p. 40)

3. also found in: (Juhl, 2015, p. 37 ff)

4. also found in: Juhl (2015), Hahn (1996), Piehl (2002)

5. (Juhl, 2015, p. 199)

6. (Juhl, 2015, p. 209)

7. also found in: (Hahn, 1996, p. 55)

Bibliography 82

B

B-1 - GUI Mockups for Draft Mode

Figure 7.1: The initial design of the draft mode’s layout

Bibliography 83

Figure 7.2: The sub controller operating within the draft mode

Bibliography 84

B-2 - GUI Mockups for Refine Mode

Figure 7.3: The initial design of the refine mode’s layout

Bibliography 85

Figure 7.4: The sub controllers operating within the refine mode

Bibliography 86

B-3 - GUI Mockups for View Mode

Figure 7.5: The initial design of the view mode’s layout

Bibliography 87

C - The Software Manual

User Manual

for

ManuMaker

Version:

1.0

Intended Readers:

Users of the ManuMaker
application

Development Context:

This application was developed as
part of a bachelor's thesis at the
University of Applied Sciences in
Hamburg (HAW Hamburg)

Author(s):

Daniel Lachmann

Manual Revision:

1.0.1

Publisher:

HAW Hamburg Contact:

Email:
manumaker.dev@gmail.com

Berliner Tor 21
20099 Hamburg
Germany

Chapter 1:

Introduction

Intended
Readers:

All users of the ManuMaker application

Author(s):
Daniel Lachmann

Publisher:

HAW Hamburg Contact:

Email:
manumaker.dev@gmail.com

Berliner Tor 21
20099 Hamburg
Germany

Page 3

Terminology

Page 4

Intended Use

Page 5

Limitations

Page 6

Summary of the Available Features

Page 7

Resizing the views

Chapter 2:

Settings

Intended
Readers:

All users of the ManuMaker application

Author(s):
Daniel Lachmann

Publisher:

HAW Hamburg Contact:

Email:
manumaker.dev@gmail.com

Berliner Tor 21
20099 Hamburg
Germany

Page 9

Opening the Application Settings

Page 10

Application Settings: Camera

NOTICE

The resolutions presented in the camera resolution settings are not
necessarily supported by your webcam. The webcam API used in ManuMaker
does not yet support querying the webcam for supported resolutions at HD
level.

This appears to be a safe-failing feature, as all tested cameras defaulted to
standard VGA resolution when an unsupported resolution was selected.

If you select a high resolution and the camera doesn't seem to have adopted
it, the likely cause is that the selected resolution is not supported.

Page 11

Application Settings: Shortcuts

Page 12

Application Settings: General

Page 13

Project Settings: Mandatory Fields

1.
2.

Page 14

Project Settings: Optional Fields

1.
2.
3.
4.
5.
6.
7.
8.

9.
10.

Chapter 3:

Using the Draft Tab

Intended
Readers:

All users of the ManuMaker application

Author(s):
Daniel Lachmann

Publisher:

HAW Hamburg Contact:

Email:
manumaker.dev@gmail.com

Berliner Tor 21
20099 Hamburg
Germany

Page 16

Setting the Slide Title

1.
2.
3.
4.

Page 17

Adding an Image to a Slide

Page 18

Navigating forward

Page 19

Inserting a Slide

Page 20

Slide List (1) - Basics

Page 21

Slide List (2) - Colour Codes

Page 22

Adding a Stop Motion Picture

Frame 1 Frame 2

Page 23

Opening Images in an External Editor

Page 24

Audio Draft

NOTICE

You can store ONE audio clip per slide.
If you wish to overwrite the existing one, just click on (1) again
and confirm that you wish to discard the existing audio clip

Page 25

Removing Slides or Components

NOTICE

Components and slides are permanently removed. There is no mechanism to get them
back, once deleted.

Page 26

Tag List

Page 27

Toolbox

Page 28

Parts List

Chapter 4:

Using the Refine Tab

Intended
Readers:

All users of the ManuMaker application

Author(s):
Daniel Lachmann

Publisher:

HAW Hamburg Contact:

Email:
manumaker.dev@gmail.com

Berliner Tor 21
20099 Hamburg
Germany

Page 30

Loading the Draft Text into the Refine Tab

Frame 1 Frame 2

Frame 3

Page 31

Adding a Title Slide

1.
2.
3.
4.

Page 32

Adding a Chapter Slide (1)

1.
2.
3.

Page 33

Adding a Chapter Slide (2)

1.
2.

3.
4.

5.

Page 34

Inserting a Notice or Warning

Page 35

Inserting a Table into the Annotation Text

Page 36

Example Table

Chapter 5:

Using the View Tab

Intended
Readers:

All users of the ManuMaker application

Author(s):
Daniel Lachmann

Publisher:

HAW Hamburg Contact:

Email:
manumaker.dev@gmail.com

Berliner Tor 21
20099 Hamburg
Germany

Page 38

Summary

Page 39

Search Function

Frame 1 Frame 2

Page 40

Search Filters

Page 41

Compiling the Toolbox

Frame 1 Frame 2

Page 42

Compiling the Parts List / BOM

Frame 1 Frame 2

1.

2.

Chapter 6:

Exporting the Project to Printable HTML
Format

Intended
Readers:

All users of the ManuMaker application

Please Note:
ManuMaker has been made with the
intention to create a documentation
format which takes advantage the digital
medium.
Yet, for the moment, the need to print
documentation on paper is still there, so
adding an export feature to make the
manuals printable was mandatory, from
the perspective of usability.
However, not all documentation created
with ManuMaker is automatically
printable.
This chapter will provide some guidelines
on how to create printable documentation
in ManuMaker.

Author(s):
Daniel Lachmann

Publisher:

HAW Hamburg Contact:

Email:
manumaker.dev@gmail.comBerliner Tor 21

20099 Hamburg
Germany

Page 44

Fundamentals of the Export Function

Page 45

Exporting a Documentation Project

Frame 1 Frame 2

Page 46

Guidelines for Printable Documentation (1): Export
Templates

Page 47

Guidelines for Printable Documentation (2): Page
Size

Glossary

API Application Programming Interface. 52, 54, 55

application logic Coded functionality of a program which is not visible to the user, but which
is responsible for processing information (e.g. input from a GUI) and passing it on (e.g.
to a GUI) . . 53

BOM Bill Of Materials. 18

CMS Content Management System. 11, 14

FXML XML-variant used by JavaFX to describe GUIs. 52–54

GUI Graphical User Interface. 8, 10, 41–43, 46, 51–54

IDE Integrated Development Environment. 53

IDE Integrated Development Environment. An IDE combines all tools necessary to write a
software program (Editor, Compiler, ...). 51

JavaFX Java toolkit for GUI applications. 52, 53

JavaFX Scene Graph The underlying structure of the JavaFX GUI elements. 52

JRE Java Runtime Environment. 51

Oracle Owner and publisher of the standard Java platform. 51–53

OS Operating System of a Computer. 51

SceneBuilder 2.0 WYSIWYG GUI design tool provided for JavaFX. 8, 52–54

UI User Interface. 42

Glossary 136

WORA Write Once, Run Anywhere. 51

WYSIWYG "What You See Is What You Get": The notion of designing a UI by visually ar-
ranging interface components on a mockup application window, which then gets trans-
lated to code in the underlying language. 52, 53

Versicherung über die Selbstständigkeit

Hiermit versichere ich, dass ich die vorliegende Arbeit im Sinne der Prüfungsordnung nach
§16(5) APSO-TI-BM ohne fremde Hilfe selbstständig verfasst und nur die angegebenen Hilfs-
mittel benutzt habe. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen
habe ich unter Angabe der Quellen kenntlich gemacht.

Hamburg, September 2, 2016
Ort, Datum Unterschrift

	List of Tables
	List of Figures
	1 Introduction
	2 State of the Art
	2.1 Selection of Sources
	2.2 Literature Review

	3 Analysis
	3.1 Viewpoint: Creator of Illustrated Technical Documentation
	3.1.1 Evaluation of the State of the Art
	3.1.2 The Documentation Process to consider during the Design Phase
	3.1.3 Conclusion

	3.2 Viewpoint: User of Illustrated Technical Documentation
	3.2.1 Evaluation of the State of the Art
	3.2.2 Using the Documentation
	3.2.3 Conclusion

	4 Developing the Application Concept
	4.1 The Initial Concept
	4.1.1 Envisioned Use-Cases
	4.1.2 Software
	4.1.3 Hardware

	4.2 Proposed Additional Features
	4.2.1 Additional Features gained from Reviewed Literature
	4.2.2 Additional Features conceived during the Prototype Design Phase
	4.2.3 Evaluating the Features
	4.2.4 Composing the Feature-Sets

	4.3 Selection of a Feature-Set for Implementation
	4.4 The Software-Engineering Process: some points of interest
	4.4.1 Designing the GUI
	4.4.2 Designing the Gallery
	4.4.3 Capturing Images with the Camera
	4.4.4 Designing the Stop Motion Pictures
	4.4.5 Saving the Gallery
	4.4.6 Making the Project- and Application Settings Available to all Classes

	5 Software Development
	5.1 Language and Tools
	5.1.1 The Java Programming Language
	5.1.2 gui Framework
	5.1.3 Setting up Eclipse JDT with e(fx)clipse Plugin
	5.1.4 scb

	5.2 Software Libraries
	5.2.1 Criteria
	5.2.2 Webcam Capture API
	5.2.3 Apache Commons Library

	5.3 Summary of the implementation Process
	5.3.1 Successfully implemented Features
	5.3.2 Discarded Features

	6 Testing and Evaluation
	6.1 Objective & Outline
	6.2 Summary of the Test

	7 Conclusion
	7.1 Personal Development
	7.2 Plans for the Future

	Bibliography
	Appendix
	Glossary

