

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Bachelorarbeit

Finn Wulbrand

Auswirkungen einer Stützstrebe auf die Flügelmasse und die Flugleistungen am Beispiel der ATR 72-600

Fakultät Technik und Informatik Department Fahrzeugtechnik und Flugzeugbau Faculty of Engineering and Computer Science Department of Automotive and Aeronautical Engineering

Finn Wulbrand

Auswirkungen einer Stützstrebe auf die Flügelmasse und die Flugleistungen am Beispiel der ATR 72-600

Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung

im Studiengang Flugzeugbau am Department Fahrzeugtechnik und Flugzeugbau der Fakultät Technik und Informatik der Hochschule für Angewandte Wissenschaften Hamburg

Erstprüfer/in: Prof. Dr.-Ing. Dieter Scholz, MSME Zweitprüfer/in : Prof. Dr.-Ing. Dipl.-Kfm. Markus Linke

Abgabedatum: 14.11.2016

Kurzreferat

Deutsch:

Die vorliegende Arbeit untersucht die Annahme nach Torenbeek, nach der die Flügelmasse pauschal um 30 % abnimmt, wenn der Flügel durch eine Stützstrebe entlastet ist.

Am Deutschen Zentrum für Luft- und Raumfahrt (DLR) wurde ein Rechenverfahren entwickelt, mit dem es möglich ist, die Flügelmasse bei verschiedenen Strebenwinkeln näherungsweise zu berechnen. Dieses Verfahren wird ausführlich vorgestellt und anschließend in eine Excel-Datei implementiert.

Anschließend wird mit ebendieser Datei die Flügelmasse der ATR 72-600 bei verschiedenen (hypothetischen) Strebenwinkeln ermittelt und auch die theoretischen Auswirkungen einer Stützstrebe auf die Flugleistungen untersucht.

Zum Schluss wird das Prinzip der virtuellen Kräfte angewendet, um die Rechenergebnisse der DLR-Methode zu verfizieren bzw. zu optimieren.

English:

This thesis analyzes Torenbeek's assumption that a strut-braced wing has 30 % less weight compared to the same wing without strut.

At the Deutsches Zentrum für Luft- und Raumfahrt (DLR), they developed a method to approximately calculate the wing weight at different strut angles. This method will be presented and afterwards implemented into an Excel-file.

The file will then be used to calculate the wing weight of the ATR 72-600 at different (hypothetical) strut angles. Furthermore, the effects of these different strut configurations on the performance of the aircraft will be considered.

Finally, the principle of virtual forces will be applied to verify and/or optimize the results found with the DLR method.

Auswirkungen einer Stützstrebe auf die Flügelmasse und die Flugleistungen am Beispiel der ATR 72-600

Aufgabenstellung zur Bachelorarbeit

Hintergrund

In der Forschungsgruppe AERO (Aircraft Design and Systems Group) an der HAW Hamburg unter der Leitung von Prof. Dr.-Ing. Dieter Scholz, MSME wurde im Rahmen des Leuchtturmprojekts "Airport 2030", Arbeitspaket 4.1 "Evolutionäre Flugzeugkonfigurationen" der sogenannte "Smart Turboprop" entwickelt. Beim Entwurf dieses Flugzeugs wurden dieselben Anforderungen gestellt wie an den Airbus A320. Auf Kurz- und Mittelstrecken weist der Smart Turboprop im Vergleich zum A320 ein Einsparpotential von bis zu 17 % bei den direkten Betriebskosten (DOC) auf; Kraftstoff könnte bis zu 36 % eingespart werden [Scholz 2014].

Aufgabe

Beim Entwurf des Smart Turboprops wurde die Annahme nach Torenbeek getroffen, dass sich das Flügelgewicht durch Anbringung einer Stützstrebe um 30 % reduziert. Dieser Wert ist unabhängig vom Strebenwinkel. Gegenstand dieser Arbeit ist es, diese Annahme zu überprüfen. Dazu soll eine Methode zur Berechnung der Masse abgestrebter Tragflügel, entwickelt von Gabriel Pinho Chiozzotto, Ingenieur am Deutschen Zentrum für Luft- und Raumfahrt (DLR), vorgestellt und in Microsoft Excel implementiert werden. Die Excel-Datei soll anschließend genutzt werden, um erreichbare Gewichtseinsparungen zu berechnen.

Die Ergebnisse sollen in einem Bericht dokumentiert werden. Bei der Erstellung des Berichts sind die entsprechenden DIN-Normen zu beachten.

Erklärung

Ich versichere, dass ich diese Bachelorarbeit ohne fremde Hilfe selbstständig verfasst und nur die angegebenen Quellen und Hilfsmittel benutzt habe. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich gemacht.

Firm Wulbrand 14.11.2016

Datum

Unterschrift

Inhalt

Bildy	verzeichnis	6			
Tabe	ellenverzeichnis	8			
Liste der Symbole					
Liste	e der Abkürzungen	11			
1	Einleitung	14			
1.1	Motivation	14			
1.2	14				
1.3	Aufbau der Arbeit	14			
2	Beschreibung der Methode	16			
2.1	Generelle Funktionalität	16			
2.2	Beschreibung der Flugzeuggeometrie	17			
2.3	27				
2.4	Ermittlung der Flügellasten	33			
2.5	2.5 Dimensionierung des Flügel-Biegetorsionskastens				
2.6	2.6 Ermittlung der Strebenkraft				
2.7	Dimensionierung der Strebe	43			
2.8	Einbeziehung statischer aeroelastischer Effekte	44			
2.9	Ermittlung der Massen der Flügelkomponenten	48			
3	Implementierung der Methode in Microsoft Excel	50			
3.1	Tabellenblatt "Geometry"	50			
3.2	Tabellenblatt "Aircraft Loads"	51			
3.3	Tabellenblatt "Wing Loads"	53			
3.4	Tabellenblatt "Wing Box Sizing"	56			
3.5	Tabellenblatt "Strut Loads"	59			
3.6	Tabellenblatt "Strut Sizing"	61			
3.7	Tabellenblatt "Static Aeroelasticity"	61			
3.8	Tabellenblatt "Weights and Volumes"	64			
3.9	3.9 Tabellenblatt "Convergence"				

4.1	Technische Daten der ATR 72-600	67
4.2	Massenverringerung bei verschiedenen Strebenwinkeln	68
4.3	Einfluss des Strebenwinkels auf die Gleitzahl	71
4.4	Auswirkungen auf andere Flugleistungsparameter	74
4.5	Diskussion und Einordnung der Ergebnisse	82
E		0.4
5	Nachdimensionierung mit Hilfe des PVK	84
5.1	Ableitung des mechanischen Modellsystems	84
5.2	Ermittlung der Schnittlastverläufe im 0-System	87
5.3	Ermittlung der Schnittlastverläufe im 1-System	95
5.4	Berechnung der lokalen Verformungsgrößen	99
5.5	Vergleich der inneren Lasten	101
5.6	Flügelmasse mit den PvK-Schnittgrößen	106
6	Zusammenfassung	114
7	Ausblick	115
8	Literaturverzeichnis	116

Bildverzeichnis

Bild 1: Modell des Smart Turboprops aus [Scholz 2014]	14
Bild 2: Lösungssystematik als Nassi-Shneidermann-Struktogramm	16
Bild 3: Definition der Flügelgeometrie nach [Chiozzotto 2015]	17
Bild 4: Definition der Referenzpunktlage	
Bild 5: charakteristische Vorderkantenpositionen	
Bild 6: Veränderung der Vorderkantenposition durch Pfeilung und Zuspitzung	
Bild 7: benetzte Flügelfläche	
Bild 8: Lasten am Flugzeug	
Bild 9: BTK als Balken im lokalen Koordinatensystem	
Bild 10: Schnittgrößen am negativen Schnittufer	
Bild 11: Definition der BTK-Größen aus [Chiozzotto 2015]	
Bild 12: BTK-Aufteilung in Teilflächen	
Bild 13: bemaßter BTK	
Bild 14: tragendes Hohlprofil in der Strebe	
Bild 15: Eingabe der globalen Flugzeuggeometrie	
Bild 16: Flügelspezifikation	
Bild 17: Koeffizienten der Flügeltiefenverlaufsfunktion	
Bild 18: Koeffizienten der Flügelvorderkantenverlaufsfunktion	
Bild 19: Massen, Geschwindigkeiten und Atmosphärenparameter	
Bild 20. AC- und CG-Berechnung	52
Bild 21. Berechnung des Auftriebsanstiegs nach Pratt	52
Bild 22. Berechnung der 1g- und A-Lasten	52
Bild 23 [•] Lastfalldaten	53
Bild 24 [.] Ouerruderausschlagsdaten	53
Bild 25. Flügeldickenverlaufsfunktion	53
Bild 26. Vorderholmverlaufsfunktion	53
Rild 27. Hinterholmverlaufsfunktion	54
Bild 28. Übersichtsmaske für die Flügellasten-Berechnung in jedem Lastfall	54
Bild 29. streifenweise Flügellasten und Massenkontrollfeld	54
Bild 30: Aeroelastikdaten Streifennosition/-breite Profiltiefen-/Ouerruderdaten	55
Rild 31: Profiltiefe Rolldaten aeroelastische Ergebnisse	55
Bild 37: Schnittgrößen	56
Rild 33: Massenermittlung aus Luftlasten	56
Bild 34 [.] Daten zum BTK-Material	57
Bild 35: lastfallrelevante Materialdaten	57
Bild 36: BTK-Ausmaße und Kraftflüsse	57
Bild 37: Berechnung der Gurtnlattendicke	58
Bild 38: Beulsnannungen Designvariablen und Steg- und Rinnendicken	50 58
Bild 30: Massen der BTK-Komponenten und BTK-Innenraumvolumen	58 58
Bild 10: Streifennositionen	
Bild 41: Elächenträgheitsmomente der BTK Schnitte	
Bild 42: Zähler und Nenner zur Berechnung der Strebenreaktion	
Dild 42. Zamer und Neimer zur Berechnung der Strebenreaktion	
Bild 11: Ermittlung der maximalan Strahanvartikalraaktion	
Bild 15: Strebenguerschnittsdaten	01 61
Dild 16: Strahanwanddiaka	
Dild 47: Vooffizionton der Elementfunktionen	01 42
Dild 49. gofiilte Metain mit Zeilen und Snelteninformetienen	
Bild 48: geruilte Matrix mit Zellen- und Spalteninformationen	

Bild 49: Funktionsaufstellung	
Bild 50: Struktureinflusskoeffizient am Strebenstreifen	
Bild 51: Hilfsgrößen	
Bild 52: gefüllte Matrix [ec]	63
Bild 53: gefüllte Matrix [dy]	63
Bild 54: gefüllte Matrix [A]	64
Bild 55: gefüllter Vektor {1 _{st} }	64
Bild 56: Aufschlagsprozente und Sekundärstrukturmassen	65
Bild 57: Massenermittlung	65
Bild 58: Volumenermittlung	65
Bild 59: Iteration des MTOW	
Bild 60: Konvergenzsteuermaske	
Bild 61: Auszug aus dem Wikipedia-Artikel zur ATR 72 [Wikipedia]	67
Bild 62: BTK innerhalb des Flügelschnitts der ATR 72-600 von [airfoiltools]	69
Bild 63: Rollreibung während des Startlaufs der ATR 72-600	77
Bild 64: Luftwiderstand während des Startlaufs der ATR 72-600	78
Bild 65: Modellsystem	
Bild 66: Anzahl der Lager- und Zwischenreaktionen am Modellsystem	
Bild 67: PvK-Ersatzsystem	86
Bild 68: Anzahl der Lager- und Zwischenreaktionen am Ersatzsystem	86
Bild 69: "0"-System	
Bild 70: "1"-System	
Bild 71: Aerodynamische Lasten	88
Bild 72: Trägheitslasten	89
Bild 73: Freikörperbild des Balkens	90
Bild 74: freigeschnittener Balken im 1-System	95
Bild 75: Freischnitt des abgestrebten Balkenteils im 1-System	97
Bild 76: Normalkraftverlauf nach dem PvK	
Bild 77: Querkraftverlauf nach dem PvK	103
Bild 78: Biegemomentenverlauf nach dem PvK	104
Bild 79: Torsionsmomentenverlauf nach dem PvK	105

Tabellenverzeichnis

Tabelle 1: Lastfälle gemäß [Chiozzotto 2015]	
Tabelle 2: Iterationsergebnisse	71
Tabelle 3: Massenverringerung und Tankvergrößerung	71
Tabelle 4: Gleitzahlen mit Strebe	74
Tabelle 5: Reichweiten mit Strebe	75
Tabelle 6: Mindestgeschwindigkeiten mit Strebe	76
Tabelle 7: Startrollstrecken mit Strebe	82
Tabelle 8: Flächenträgheitsmomente (FTM) des Flügel-BTK	
Tabelle 9: 0-Normalkräfte in der Flügelstruktur	
Tabelle 10: 0-Querkräfte in der Flügelstruktur	93
Tabelle 11: 0-Biegemomente in der Flügelstruktur	94
Tabelle 12: 0-Torsionsmomente in der Flügelstruktur	95
Tabelle 13: 1-Normalkräfte in der Flügelstruktur	97
Tabelle 14: 1-Querkräfte in der Flügelstruktur	
Tabelle 15: 1-Biegemomentenverlauf	99
Tabelle 16: Querkraftverlauf nach dem PvK	103
Tabelle 17: Biegemomentenverlauf nach dem PvK	104
Tabelle 18: Torsionsmomentenverlauf nach dem PvK	105
Tabelle 19: Wanddicken gegen Knicken	107
Tabelle 20: Wanddicken gegen Beulen	109
Tabelle 21: Wanddicken gegen Torsion	110
Tabelle 22: Wanddicken gegen Biegung	111
Tabelle 23: maximale Wanddicken	112
Tabelle 24: fertigungsgerechte maximale Wanddicken	112

Liste der Symbole

С	Profiltiefe, Flügeltiefe, Beiwert, Hilfsgröße
t	Profildicke, Flügeldicke, Dauer
FS	relative Vorderholmposition
RS	relative Hinterholmposition
у	Entfernung, Länge
Λ	Pfeilung
i,j	Laufindex
b	Breite, Spannweite, Achsenabschnitt, Verbrauch
θ	Winkel
h	Höhe, Flughöhe
L	Strebenlänge, Auftrieb, Abstand
S	Flügelfläche, Strebenkraft
λ	Zuspitzung, Hilfsgröße
x	Entfernung, Länge, Grad der statischen Unbestimmtheit
т	Steigung, Masse
v	Flügeltiefe, Geschwindigkeit
u	Überstand, Vertikalgeschwindigkeit
Δ	Differenz, Zuwachs
d	Differential
arphi	Pfeilung
Т	Temperatur
ρ	Dichte
а	Schallgeschwindigkeit, Beschleunigung
М	Machzahl, Biegemoment
κ	Isentropenexponent, Schubkorrekturfaktor
R	spezifische Gaskonstante, Reichweite, Festigkeit
F	Kraft, Hilfsfunktionswert
q	dynamischer Druck, Schubfluss, Hilfsgröße
g	Erdbeschleunigung
n	Lastvielfaches, Normalkraftfluss, Anzahl mechanischer Teilsysteme
α	Anstellwinkel, Hilfsgröße
Κ	Abminderungsfaktor, Korrekturfaktor
μ	Massenverhältnis, Querkontraktionszahl, dynamische Viskosität, Wirkungsgrad,
	Reibungskoeffizient
$C_{L\alpha}$	Anstieg des Auftriebsbeiwerts
f	Hilfsgröße
l	Länge
β	Prandtl'scher Kompressibilitätsfaktor
BTL	Höhenleitwerkskraft

G	Gewichtskraft, Schubmodul
11	Limit Load
\hat{p}	Rollrate
δ	Querruderausschlagwinkel
τ	Tiefenverhältnis, Schubspannung
k	lokaler Korrekturfaktor, Hilfskoeffizient, Beulfaktor
Q	Querkraft
Ν	Normalkraft
е	Exzentrizität, Euler'sche Zahl, Oswald-Faktor
w	Breite
σ	Normalspannung
Ε	Elastizitätsmodul, Strukturflexibilitätskoeffizient, Gleitzahl
Ζ	Hilfsgröße
SF	Sicherheitsfaktor
Ι	Flächenträgheitsmoment
U	Umfang
S	Strecke, Summand
V	Vertikalkraft, Volumen
Ζ	Verschiebung, Hilfskoeffizient, Anzahl der Zwischenreaktionen
Α	aerodynamischer Einflusskoeffizient, Querschnittsfläche, Lagerkraft
С	Struktureinflusskoeffizient
η	Entfernung in y-Richtung
В	Hilfsgröße
IAS	angezeigte Geschwindigkeit der Luft
TAS	wahre Geschwindigkeit der Luft
Re	Reynoldszahl
p	Hilfsgröße
D	Diskriminante
r	Anzahl der Lagerreaktionen

Liste der Abkürzungen

LRA	Lastreferenzachse
BTK	Biegetorsionskasten
r,R	an der Symmetrieebene
f, F	am Rumpfanschluss
k, K	am Kink
t,T	an der Flügelspitze
st	Strebe
LE	Flügelvorderkante
SMC	mittlere geometrische Flügeltiefe
МАС	mittlere aerodynamische Flügeltiefe
ref	vom Referenzpunkt aus
и	untere Integrationsgrenze
0	obere Integrationsgrenze
x	zu x(y) gehörig
С	zu $c(y)$ gehörig
25	an der 25-%-Linie
Α	Manöver, um A
С	Reiseflug
D	Sturzflug, Luftwiderstand
МО	maximaler Betriebszustand
MTOW	maximale Abflugmasse
MZFW	maximale Flugzeugmasse bei leerem Tank
ISA	in der Internationalen Standardatmosphäre
0	Ausgangszustand
L	Auftrieb
Pratt	nach Pratt
Ricciardi	nach Ricciardi
g	bei Böeneinwirkung
el	aeroelastisch
AC	Neutralpunkt
wf	Flügel-Rumpf-Kombination
W	Flügel
fn	Rumpfnase
wet	benetzt
CG	Schwerpunkt
1g	bei 1g, im unbeschleunigten Zustand
Δ	zusätzlich
t	vom AC des Höhenleitwerks zum AC des Flügels
Ζ	vertikal

aero	aerodynamisch
inertia	trägheitsinduziert
sch	nach Schrenk
ell	elliptisch
ail	Querruder
wing	Flügel
fuel	Treibstoff
Т	Torsion
S	Haut
stringer	Stringer, Längssteife
buck	bei einsetzendem Beulen
сотр	Verbundwerkstoff
x	in x-Richtung
у	in y-Richtung, um die y-Achse
r	Rippe
strength	bei einsetzendem Festigkeitsversagen
zul	zulässig
е	äquivalent, verschmiert
NO	nicht optimal
W	Steg
rib	Rippe
covers	Gurte
webs	Stege
С	Überlappung
caps	Überlappung
ges	gesamt
eigen	Eigenanteil
Steiner	Steiner-Anteil
SMP	Schubmittelpunkt
S	Schwerpunkt, Schub
т	eingeschlossen
min	minimal
тах	maximal
erf	erforderlich
box	Biegetorsionskasten
total	insgesamt
Tank	Tank
alt	vorher, ursprünglich
пеи	nachher, nach Veränderungen
ТО	beim Start
rot	beim Rotieren
Roll	beim Rollen

RR	Rollreibung
flaps	bei ausgefahrenen Klappen
gear	bei ausgefahrenem Fahrwerk
ind	induziert
load	Gesamtlast
Н	horizontal
V	vertikal
Knick	bei einsetzendem Knicken
OGP	Obergurtplatte
UGP	Untergurtplatte
SP	Stegplatte
p	bei Druck
PvK	Prinzip der virtuellen Kräfte
PML	Profilmittellinie

1 Einleitung

1.1 Motivation

Gesucht wird ein Verfahren, mit dem es möglich ist, bereits im Rahmen der Projektphase des Flugzeugentwurfs in guter Näherung die Masse der Struktur eines Flügels mit Stützstrebe zu berechnen. Diese Erkenntnisse können weitergehend genutzt werden, um den Entwurf des "Smart Turboprop" zu optimieren.

Bild 1: Modell des Smart Turboprops aus [Scholz 2014]

1.2 Ziele der Arbeit

Die Arbeit "Conceptual Design Method for the Wing Weight Estimation of Strut-Braced Wing Aircraft" von Gabriel Pinho Chiozzotto [Chiozzotto 2015] beschreibt eine Methode, mit der es möglich ist, die Masse von Flügel und Strebe eines abgestrebten Flügels bereits im frühen Entwurfsstadium abzuschätzen. Dabei werden auch aeroelastische Effekte mit einbezogen.

Diese Methode soll in eine Excel-Datei implementiert und danach verwendet werden, um erzielbare Gewichtseinsparungen zu berechnen.

1.3 Aufbau der Arbeit

Die Arbeit führt zunächst theoretisch in die Methode von Chiozzotto ein und zeigt dann eine mögliche Implementierung in Microsoft Excel auf. Diese Excel-Datei wird im Anschluss für Studien an der ATR 72-600 genutzt. Zum Schluss stelle ich eine Möglichkeit vor, das Rechenmodell nach Chiozzotto zu erweitern. Die Einteilung gliedert sich wie folgt:

- Kapitel 2 Hier wird der Leser in die Methode von Gabriel Pinho Chiozzotto nach [Chiozzotto 2015] zur Berechnung der Flügelmasse eines Flügels mit Stützstrebe eingeführt.
- Kapitel 3 Hier wird knapp erläutert, wie die Implementierung der Methode aus Kapitel 2 in Microsoft Excel umgesetzt wurde.

- Kapitel 4 Hier wird die Methode von Chiozzotto an der ATR 72-600 praktisch angewendet, um erzielbare Masseneinsparungen zu berechnen. Ferner werden die Flugleistungsparameter Gleitzahl, Reichweite, Startrollstrecke und Mindestgeschwindigkeit für die untersuchten Strebenwinkel bestimmt.
- Kapitel 5 Hier wird die tragende Struktur nach Kapitel 4 einer Nachdimensionierung mit dem Prinzip der virtuellen Kräfte unterzogen und die Auswirkungen auf die Flugleistungsparameter untersucht.

2 Beschreibung der Methode

Von Gabriel Pinho Chiozzotto, Ingenieur am Deutschen Zentrum für Luft- und Raumfahrt (DLR), wurde 2015 im CEAS-Paper Nr. 46 eine Methode vorgestellt, mit der es möglich ist, die Masse eines abgestrebten Flügels bereits im Rahmen der Entwurfsphase innerhalb der Projektphase des Flugzeugentwurfs zu berechnen. Dabei werden auch aeroelastische Effekte modelliert, die bei Flügeln großer Streckung, was üblicherweise eine Folge der Abstrebung ist, eine große Rolle spielen [Chiozzotto 2015].

2.1 Generelle Funktionalität

Die vorliegende Methode besteht aus drei Lösungsschleifen: direkt, konvergent und optimierend [Chiozzotto 2015].

Bild 2: Lösungssystematik als Nassi-Shneidermann-Struktogramm

Die direkte Lösungsschleife besteht aus einer nicht-iterativen Berechnung mit angenommener Flügelmasse ohne aeroelastische Korrekturen [Chiozzotto 2015].

In der konvergenten Lösungsschleife wird die direkte Lösungsschleife solange wiederholt, bis eingegebene Flügelmasse und berechnete Flügelmasse sowie eingegebener Auftriebsgradient und aeroelastisch korrigierter Auftriebsgradient übereinstimmen [Chiozzotto 2015].

In der optimierenden Lösungsschleife werden Leichtbau-Parameter des Flügels variiert, wie z.B. die Rippenteilung oder das Verhältnis von Hautdicke zu Hautdicke plus Stringerhöhe, und mit der konvergenten Lösungsschleife für die variierten Parameter das Gewichtsoptimum gefunden [Chiozzotto 2015].

Die direkte Lösungsschleife als Grundlage der konvergenten und der optimierenden Lösungsschleife besteht aus den 8 Stationen

- 1. Beschreibung der Flugzeuggeometrie,
- 2. Ermittlung der Flugzeuglasten,
- 3. Ermittlung der Flügellasten,
- 4. Dimensionierung des Flügel-Biegetorsionskastens,
- 5. Ermittlung der Strebenkraft,
- 6. Dimensionierung der Strebe,
- 7. Einbeziehung statischer aeroelastischer Effekte und
- 8. Ermittlung der Massen der Flügelkomponenten [Chiozzotto 2015].

In den folgenden Unterkapiteln wird jede Station gesondert erläutert.

2.2 Beschreibung der Flugzeuggeometrie

Der Flügel besteht aus drei Abschnitten, begrenzt durch vier Stationen: Abschnitt 1 verläuft von der Symmetrieebene (Station 1) bis zum Rumpfanschluss (Station 2), Abschnitt 2 vom Rumpfanschluss bis zum Kink (Station 3) und Abschnitt 3 vom Kink zur Flügelspitze (Station 4). Flügelgrößen an der Symmetrieebene bekommen den Index "r" ("root", englisch für "Wurzel"), am Rumpfanschluss ein "f" ("fuselage attachment", englisch für Rumpfanschluss), am Kink ein "k" und an der Flügelspitze ein "t" ("tip", englisch für "Spitze"). Per Definition soll die Strebe am Kink an den Flügel angeschlossen sein. An allen vier Stellen werden die Profilparameter

- Profiltiefe *c*_i
- relative Profildicke $(t/c)_i$
- Position des Vorderholms FS_i
- Position des Hinterholms RS_i
- Entfernung zur Symmetrieebene y_i

definiert. Die Mittellinie zwischen FS(y) und RS(y) definiert die Pfeilung Λ_{LRA} des Flügels und wird als Lastreferenzachse bezeichnet, kurz "LRA". Sie liegt damit im Schwerpunkt sowie Schubmittelpunkt des rechteckigen Flügel-Biegetorsionskastens (BTK). Die Pfeilung der Strebe entspricht der Pfeilung des Flügels. Der Ursprung der y-Achse liegt auf der Symmetrieebene [Chiozzotto 2015].

Bild 3: Definition der Flügelgeometrie nach [Chiozzotto 2015]

Für die Rumpfbreite b_f gilt:

$$b_f = 2y_f \tag{2-1}$$

Der Strebenwinkel θ_{st} ergibt sich aus der Position des Kinks und der Rumpfhöhe h_f :

$$\theta_{st} = \arctan\left(\frac{h_f \cos \Lambda_{LRA}}{y_{st} - y_f}\right)$$
(2-2)

Aus dem Strebenwinkel θ_{st} und der Rumpfhöhe h_f folgt die Strebenlänge L:

$$L = \frac{h_f}{\sin \theta_{st}} \tag{2-3}$$

Ein weiterer einzugebender Parameter ist die Spannweite *b* des Flugzeugs. Es gilt:

$$b = 2y_t \tag{2-4}$$

Aus den eingegebenen Parametern können weitere wichtige Funktionen bzw. Größen zur Charakterisierung der Flügelgeometrie abgeleitet werden:

- Flügelfläche *S*
- Flügelstreckung Λ
- Flügelzuspitzung λ
- Verlauf der Flügeltiefe c(y)
- Verlauf der relativen Flügeldicke (t/c)(y)
- Verlauf der Vorderholmposition *FS*(*y*)
- Verlauf der Hinterholmposition *RS*(*y*)
- Verlauf der Flügelvorderkante $x_{LE}(y)$
- Länge der mittleren geometrischen Flügeltiefe (SMC) c_{SMC}
- Länge der mittleren aerodynamischen Flügeltiefe (MAC) c_{MAC}
- Position des MACs in Flugzeuglängsrichtung x_{MAC}

Bei den Verlaufsfunktionen handelt es sich um lineare Funktionen.

2.2.1 Flügelfläche, Flügelstreckung und Flügelzuspitzung

Die Flügelfläche *S* setzt sich aus den Flächen der drei Abschnitte zusammen. Für die Fläche von Abschnitt 1 gilt:

$$S_1 = \frac{1}{2}(c_r + c_f)y_f$$
(2-5)

Für Abschnitt 2 folgt:

$$S_2 = \frac{1}{2}(c_f + c_k)(y_k - y_f)$$
(2-6)

Für Abschnitt 3 gilt:

$$S_3 = \frac{1}{2}(c_k + c_t)(y_t - y_k)$$
(2-7)

Damit gilt für die gesamte Flügelfläche:

$$S = 2(S_1 + S_2 + S_3) \tag{2-8}$$

Der Faktor 2 berücksichtigt die Symmetrie.

Für die Flügelstreckung Λ gilt:

$$\Lambda = \frac{b^2}{S} \tag{2-9}$$

Für die Flügelzuspitzung λ gilt:

$$\lambda = \frac{c_t}{c_r} \tag{2-10}$$

2.2.2 Verlauf der Flügeltiefe

Für jeden der drei Abschnitte lässt sich eine Funktion y-Position \rightarrow Flügeltiefe aufstellen. Somit lässt sich die Flügeltiefe an jeder beliebigen Stelle des Flügels berechnen.

2.2.2.1 Flügeltiefenverlauf zwischen Symmetrieebene und Rumpfanschluss

Für die Steigung in Abschnitt 1 gilt:

$$m_1 = \frac{c_f - c_r}{y_f} \tag{2-11}$$

An der Stelle $y = y_f$ entspricht die Flügeltiefe $c(y = y_f) = c_f$. Daraus ergibt sich die Bestimmungsgleichung für den Achsenabschnitt b_1 :

$$c_f = \frac{c_f - c_r}{y_f} y_f + b_1 \tag{2-12}$$

Umstellen ergibt:

$$b_1 = c_r \tag{2-13}$$

Damit gilt im Abschnitt 1:

$$c_1(y) = \frac{c_f - c_r}{y_f} y + c_r \tag{2-14}$$

2.2.2.2 Flügeltiefenverlauf zwischen Rumpfanschluss und Kink

Für die Steigung im Abschnitt 2 gilt:

$$m_2 = \frac{c_k - c_f}{y_k - y_f}$$
(2-15)

An der Stelle $y = y_k$ entspricht die Flügeltiefe $c(y = y_k) = c_k$. Daraus ergibt sich die Bestimmungsgleichung für den Achsenabschnitt b_2 :

$$c_k = \frac{c_k - c_f}{y_k - y_f} y_k + b_2 \tag{2-16}$$

Umstellen ergibt:

$$b_2 = c_k - \frac{c_k - c_f}{y_k - y_f} y_k \tag{2-17}$$

Damit gilt im Abschnitt 2:

$$c_2(y) = \frac{c_k - c_f}{y_k - y_f} (y - y_k) + c_k$$
(2-18)

2.2.2.3 Flügeltiefenverlauf zwischen Kink und Flügelspitze

Für die Steigung im Abschnitt 3 gilt:

$$m_3 = \frac{c_t - c_k}{y_t - y_k}$$
(2-19)

An der Stelle $y = y_t$ entspricht die Flügeltiefe $c(y = y_t) = c_t$. Daraus ergibt sich die Bestimmungsgleichung für den Achsenabschnitt b_3 :

$$c_t = \frac{c_t - c_k}{y_t - y_k} y_t + b_3$$
(2-20)

Umstellen ergibt:

$$b_3 = c_t - \frac{c_t - c_k}{y_t - y_k} y_t \tag{2-21}$$

Damit gilt im Abschnitt 3:

$$c_3(y) = \frac{c_t - c_k}{y_t - y_k} (y - y_t) + c_t$$
(2-22)

2.2.3 Verlauf der relativen Flügeldicke

Für jeden der drei Abschnitte lässt sich eine Funktion y-Position \rightarrow relative Flügeldicke aufstellen. Somit lässt sich die relative Flügeldicke an jeder beliebigen Stelle des Flügels berechnen. Die linearen Funktionen entsprechen formal denen für die Flügeltiefe. Es gilt:

$$(t/c)(y) = \begin{cases} \frac{(t/c)_f - (t/c)_r}{y_f} y + (t/c)_r & [0 \le y < y_f] \\ \frac{(t/c)_k - (t/c)_f}{y_k - y_f} (y - y_k) + (t/c)_k & [y_f \le y < y_k] \\ \frac{(t/c)_t - (t/c)_k}{y_t - y_k} (y - y_t) + (t/c)_t & [y_k \le y \le y_t] \end{cases}$$
(2-23)

2.2.4 Verlauf der Holmpositionen

Äquivalent zu den linearen Funktionen für die Flügeltiefe und die relative Flügeldicke ergibt sich für den Verlauf der Vorderholmposition:

$$FS(y) = \begin{cases} \frac{FS_f - FS_r}{y_f} y + FS_r & [0 \le y < y_f] \\ \frac{FS_k - FS_f}{y_k - y_f} (y - y_k) + FS_k & [y_f \le y < y_k] \\ \frac{FS_t - FS_k}{y_t - y_k} (y - y_t) + FS_t & [y_k \le y \le y_t] \end{cases}$$
(2-24)

Äquivalent zu den linearen Funktionen für die Flügeltiefe, die relative Flügeldicke und den Verlauf der Vorderholmposition ergibt sich für den Verlauf der Hinterholmposition:

$$RS(y) = \begin{cases} \frac{RS_f - RS_r}{y_f} y + RS_r & [0 \le y < y_f] \\ \frac{RS_k - RS_f}{y_k - y_f} (y - y_k) + RS_k & [y_f \le y < y_k] \\ \frac{RS_t - RS_k}{y_t - y_k} (y - y_t) + RS_t & [y_k \le y \le y_t] \end{cases}$$
(2-25)

2.2.5 Verlauf der Flügelvorderkante

Hierzu wird als Referenz zunächst die Entfernung x_{ref} vom globalen Ursprung in der Flugzeugnase bis zur Flügelvorderkante in der Symmetrieebene benötigt. Sie ist ein Eingangsparameter in die Berechnung und entspricht dem Achsenabschnitt im Abschnitt 1.

Bild 4: Definition der Referenzpunktlage

Der Punkt O in Bild 4 ist der Ursprung des globalen Flugzeugkoordinatensystems, der Punkt R die Position der Flügelvorderkante auf der Symmetrieebene. Somit entspricht x_{ref} der Strecke \overline{OR} .

2.2.5.1 Vorderkantenpositionen von Rumpfanschluss, Kink und Flügelspitze

Zunächst werden einige spezielle Vorderkantenpositionen definiert. Dafür werden die Punkte $R(x_{ref}|0), F(x_F|y_F), K(x_K|y_K)$ und $T(x_T|y_T)$ benötigt.

Bild 5: charakteristische Vorderkantenpositionen

Für die Vorderkantenverlaufsfunktionen werden noch die Abstände x_F , x_K und x_T benötigt. Im Abschnitt 1 beträgt die Flügelpfeilung 0°. Somit gilt:

$$\Delta x_{R \to F} = \frac{c_r - c_f}{2} \tag{2-26}$$

Damit folgt für x_F :

$$x_F = x_{ref} + \frac{c_r - c_f}{2}$$
(2-27)

In den Abschnitten 2 und 3 wird die Flügelpfeilung durch Λ_{LRA} definiert. Zusätzlich spitzt sich der Flügel zu. Allgemein gilt:

$$x_{i+1} = x_i + \Delta x_{i \to i+1} \tag{2-28}$$

Die geometrischen Zusammenhänge sind in Bild 6 dargestellt.

Bild 6: Veränderung der Vorderkantenposition durch Pfeilung und Zuspitzung

Es gilt:

$$\tan \Lambda_{LRA} = \frac{u}{\Delta y} \tag{2-29}$$

Ferner:

$$v_i = c_i \left(1 - \frac{FS_i + RS_i}{2} \right) \tag{2-30}$$

Aus dem Ansatz

$$v_1 + u = \Delta x + v_2 \tag{2-31}$$

folgt dann:

$$\Delta x = \Delta y \tan(\Lambda_{LRA}) + c_1 \left(1 - \frac{FS_1 + RS_1}{2}\right) - c_2 \left(1 - \frac{FS_2 + RS_2}{2}\right)$$
(2-32)

Daraus folgt dann für $\Delta x_{F \to K}$:

$$\Delta x_{F \to K} = (y_k - y_f) \tan(\Lambda_{LRA}) + c_f \left(1 - \frac{FS_f + RS_f}{2}\right) - c_k \left(1 - \frac{FS_k + RS_k}{2}\right)$$
(2-33)

Für $\Delta x_{K \to T}$ gilt:

$$\Delta x_{K \to T} = (y_t - y_k) \tan(\Lambda_{LRA}) + c_k \left(1 - \frac{FS_k + RS_k}{2}\right) - c_t \left(1 - \frac{FS_t + RS_t}{2}\right)$$
(2-34)

Damit ergeben sich die vier charakteristischen Vorderkantenpositionen:

$$x_R = x_{ref} \tag{2-35}$$

$$x_F = x_{ref} + \Delta x_{R \to F} \tag{2-36}$$

$$x_K = x_{ref} + \Delta x_{R \to F} + \Delta x_{F \to K} \tag{2-37}$$

$$x_T = x_{ref} + \Delta x_{R \to F} + \Delta x_{F \to K} + \Delta x_{K \to T}$$
(2-38)

2.2.5.2 Vorderkantenverlauf zwischen Symmetrieebene und Rumpfanschluss

Für die Steigung im Abschnitt 1 gilt:

$$m_1 = \frac{x_F - x_R}{y_f}$$
(2-39)

An der Stelle $y = y_f$ entspricht die Vorderkantenposition $x(y = y_f) = x_F$. Daraus ergibt sich die Bestimmungsgleichung für den Achsenabschnitt b_1 :

$$x_F = \frac{x_F - x_R}{y_f} y_f + b_1 \tag{2-40}$$

Umstellen ergibt:

$$b_1 = x_R \tag{2-41}$$

Damit gilt im Abschnitt 1:

$$x_1(y) = \frac{x_F - x_R}{y_f} y + x_R \tag{2-42}$$

2.2.5.3 Vorderkantenverlauf zwischen Rumpfanschluss und Kink

Für die Steigung im Abschnitt 2 gilt:

$$m_2 = \frac{x_K - x_F}{y_k - y_f}$$
(2-43)

An der Stelle $y = y_k$ entspricht die Vorderkantenposition $x(y = y_k) = x_K$. Daraus ergibt sich die Bestimmungsgleichung für den Achsenabschnitt b_2 :

$$x_{K} = \frac{x_{K} - x_{F}}{y_{k} - y_{f}} y_{k} + b_{2}$$
(2-44)

Umstellen ergibt:

$$b_2 = x_K - \frac{x_K - x_F}{y_k - y_f} y_k \tag{2-45}$$

Damit gilt im Abschnitt 2:

$$x_2(y) = \frac{x_K - x_F}{y_k - y_f}(y - y_k) + x_K$$
(2-46)

2.2.5.4 Vorderkantenverlauf zwischen Kink und Flügelspitze

Für die Steigung im Abschnitt 3 gilt:

$$m_3 = \frac{x_T - x_K}{y_t - y_k} \tag{2-47}$$

An der Stelle $y = y_k$ entspricht die Vorderkantenposition $x(y = y_t) = x_T$. Daraus ergibt sich die Bestimmungsgleichung für den Achsenabschnitt b_3 :

$$x_T = \frac{x_T - x_K}{y_t - y_k} y_t + b_3 \tag{2-48}$$

Umstellen ergibt:

$$b_3 = x_T - \frac{x_T - x_K}{y_t - y_k} y_t \tag{2-49}$$

Damit gilt im Abschnitt 3:

$$x_3(y) = \frac{x_T - x_K}{y_t - y_k} (y - y_t) + x_T$$
(2-50)

2.2.6 Länge der mittleren geometrischen Flügeltiefe (SMC)

Die mittlere geometrische Flügeltiefe (englisch "standard mean chord") definiert sich zu:

$$c_{SMC} = \frac{S}{b} \tag{2-51}$$

2.2.7 Länge der mittleren aerodynamischen Flügeltiefe (MAC)

Die mittlere aerodynamische Flügeltiefe (englisch "mean aerodynamic chord") definiert sich zu:

$$c_{MAC} = \frac{2}{S} \int_{0}^{\frac{b}{2}} c^{2}(y) \, dy \tag{2-52}$$

Da die Flügeltiefe in den drei Abschnitten unterschiedlich definiert ist, wird das Integral summandenweise zerlegt:

$$c_{MAC} = \frac{2}{S} \left(\int_{0}^{y_f} c_1^2(y) dy + \int_{y_f}^{y_k} c_2^2(y) dy + \int_{y_k}^{y_t} c_3^2(y) dy \right)$$
(2-53)

Exemplarisch soll die allgemeine Lösung des einzelnen Integrals demonstriert werden:

Integral =
$$\int_{y_u}^{y_o} (my+b)^2 \, dy = \int_{y_u}^{y_o} (m^2y^2 + 2mby + b^2) \, dy$$
 (2-54)

Integrieren führt zu:

$$Integral = \left[\frac{m^2}{3}y^3 + mby^2 + b^2y + C\right]_{y_u}^{y_o}$$
(2-55)

Auflösen ergibt:

$$Integral = \frac{m^2}{3}(y_o^3 - y_u^3) + mb(y_o^2 - y_u^2) + b^2(y_o - y_u)$$
(2-56)

2.2.8 Position des MACs in Flugzeuglängsrichtung

Es gilt:

$$x_{MAC} = \frac{2}{S} \int_{0}^{\frac{b}{2}} x(y)c(y)dy$$
 (2-57)

Auch hier erfolgt eine summandenweise Zerlegung des Integrals entsprechend der Abschnitte:

$$x_{MAC} = \frac{2}{S} \left(\int_{0}^{y_f} x_1(y)c_1(y)dy + \int_{y_f}^{y_k} x_2(y)c_2(y)dy + \int_{y_k}^{y_t} x_3(y)c_3(y)dy \right)$$
(2-58)

Exemplarisch soll die allgemeine Lösung des einzelnen Integrals demonstriert werden:

Integral =
$$\int_{y_u}^{y_o} (m_x y + b_x)(m_c y + b_c) dy$$
 (2-59)

Ausmultiplizieren ergibt:

$$Integral = \int_{y_u}^{y_o} (m_x m_c y^2 + (m_x b_c + b_x m_c) y + b_x b_c) dy$$
(2-60)

Damit folgt:

$$Integral = \left[\frac{m_x m_c}{3} y^3 + \frac{m_x b_c + b_x m_c}{2} y^2 + b_x b_c y + C\right]_{y_u}^{y_o}$$
(2-61)

Auflösen ergibt:

$$Integral = \frac{m_x m_c}{3} (y_o^3 - y_u^3) + \frac{m_x b_c + b_x m_c}{2} (y_o^2 - y_u^2) + b_x b_c (y_o - y_u)$$
(2-62)

2.2.9 Zusammenhang zwischen LRA-Pfeilung und Flügelpfeilung

Innerhalb eines trapezförmigen Flügels gilt gemäß [Scholz 1999]:

$$\tan \varphi_{25,i} = \tan(\varphi_{LE}) - \frac{1-\lambda}{\Lambda(1+\lambda)}$$
(2-63)

$$\varphi_{LE} = \arcsin\left(\tan(\Lambda_{LRA}) + \frac{c_1}{\Delta y_i} \left(1 - \frac{FS_1 + RS_1}{2}\right) - \frac{c_2}{\Delta y_i} \left(1 - \frac{FS_2 + RS_2}{2}\right)\right)$$
(2-64)

Bei einem Doppeltrapezflügel kann die Pfeilung unter Berücksichtigung der Spannweitenanteile gemittelt werden:

$$\bar{\varphi}_{25} = \frac{\varphi_{25,1} \Delta y_1 + \varphi_{25,2} \Delta y_2}{\Delta y_1 + \Delta y_2}$$
(2-65)

2.3 Ermittlung der Flugzeuglasten

2.3.1 Lastfälle

Tabelle	e 1: Lastfälle	gemäß [Chi	iozzotto 2015]

Fall	Masse	TAS	Machzahl	Lastvielfaches	Beschreibung
MA+	MTOW	VA	je nach Flughöhe	2,50	Langsamflug- manöver
MD+	MTOW	VD	je nach Flughöhe	2,50	Schnellflugmanöver
G+	MZFW	VC	M _{MO}	laut Pratt	aufwärtige Böe
М-	MTOW	VC	M _{MO}	-1,00	Negativmanöver
G-	MZFW	VC	M _{MO}	laut Pratt	abwärtige Böe
Bump	MTOW	0	0	1,67	maximaler Landestoß
1g	(MTOW+MZFW)/2	VC	M _{MO}	1,00	Ermüdung
R+	MTOW	VC	M _{MO}	1,67	Querruderausschlag
R-	MTOW	VC	M _{MO}	0,00	Querruderausschlag

Das Flugzeug wird in der Methode 9 verschiedenen Lastfällen (Tabelle 1) ausgesetzt. Die dabei auftretenden Lasten mit ihren zugehörigen Lastvielfachen in der Struktur entsprechen Limit Load nach SKO-Richtlinien. Die Treibstoffmasse in jedem Lastfall entspricht der Differenz aus Lastfall-Masse zum MZFW [Chiozzotto 2015].

2.3.2 Berechnung atmosphärischer Parameter

Die Berechnung der Lastfälle MA+ und MD+ kann bei einer beliebigen Flughöhe durchgeführt werden. Dazu muss die Dichte und Temperatur in Abhängigkeit der Atmosphärenhöhe definiert werden. Da die Methode voraussichtlich hauptsächlich auf niedrigfliegende Turboprops angewendet werden wird, beschränke ich mich auf die Beschreibung der Verhältnisse in der Troposphäre, also bis zu einer Höhe von 11 km, in der die Temperatur linear mit der Höhe abfällt.

Der Temperaturgradient in der Internationalen Standardatmosphäre (ISA) beträgt per Definition -6,5 °C/km [Hakenesch]. Damit gilt:

$$T(h) = T_0 - \frac{6.5 \, K}{1000 \, m} h \tag{2-66}$$

Die Bodentemperatur T_0 beträgt in der ISA 288,15 K, was 15 °C entspricht. Für die Dichte gilt:

$$\rho(h) = \rho_0 \left(\frac{T(h)}{T_0}\right)^{\frac{g}{(0,0065 \, K/m)R} - 1}$$
(2-67)

2.3.3 Definition der Auslegungsgeschwindigkeiten

Die Geschwindigkeitswerte, die in die Berechnung eingehen, sind stets die Werte der wahren Luftgeschwindigkeit, englisch "true air speed" (TAS). Die maximale Reisegeschwindigkeit v_c entspricht der Geschwindigkeit v_{MO} , die zur maximalen Reiseflugmachzahl M_{MO} gehört [Chiozzotto 2015]:

$$v_c = v_{MO} \tag{2-68}$$

Dabei ergibt sich v_{MO} aus der Schallgeschwindigkeit, die von der Temperatur und damit der Flughöhe abhängig ist:

$$v_{MO}(h) = a(h)M_{MO}$$
(2-69)

Für die Schallgeschwindigkeit gilt:

$$a(T) = \sqrt{\kappa R T} \tag{2-70}$$

Einsetzen von Gleichung (2-66) führt zu:

$$a(h) = \sqrt{\kappa R \left(T_0 - \frac{6.5 K}{1000 m} h \right)}$$
(2-71)

Damit folgt:

$$v_{MO}(h) = M_{MO} \sqrt{\kappa R \left(T_0 - \frac{6.5 K}{1000 m} h \right)}$$
(2-72)

Für die Sturzfluggeschwindigkeit v_D gilt nach [Chiozzotto 2015]:

$$v_D = v_C + 0.07 \sqrt{\kappa R \left(T_0 - \frac{6.5 K}{1000 m} h \right)}$$
(2-73)

Die Manövergeschwindigkeit v_A ist diejenige Geschwindigkeit, zu der ein Auftriebsbeiwert von 1,3 gehört [Chiozzotto 2015]. Aus der Definition des dynamischen Auftriebs

$$F_L = c_L q S = \frac{1}{2} c_L \rho S v^2 = mg$$
 (2-74)

folgt damit im Lastfall MA+:

$$v_A = \sqrt{\frac{2m_{MTO}g}{1,3\rho(h)S}} \tag{2-75}$$

2.3.4 Definition der Auslegungsmachzahlen in den Lastfällen MA+ und MD+

Es gilt im Lastfall MA+:

$$M_{MA+}(h) = \frac{v_A}{a(h)} \tag{2-76}$$

Und im Lastfall MD+:

$$M_{MD+}(h) = \frac{v_D}{a(h)}$$
 (2-77)

2.3.5 Berechnung der Lastvielfachen in den Böenlastfällen G+ und G-

Nach Pratt gilt:

$$n_{Pratt} = 1 \pm \Delta n_{Pratt} \tag{2-78}$$

Eine Böe u strömt in vertikaler Richtung und bewirkt dadurch eine Änderung des Anstellwinkels [**Ricciardi 2011, Handojo 2015**]:

$$\Delta \alpha = \arctan\left(\frac{u}{v}\right) \tag{2-79}$$

Die Böe hat nach CS-25.335 eine Stärke von 25,6 m/s [Chiozzotto 2015]. Dies bewirkt einen Auftriebsanstieg ΔF_L :

$$\Delta F_L = \frac{1}{2} \rho S c_L v^2 \Delta \alpha \tag{2-80}$$

Nach Ricciardi beträgt der hieraus resultierende Anstieg des Lastvielfachen:

$$\Delta n_{Ricciardi} = \frac{\Delta F_L}{mg} \tag{2-81}$$

Der so berechnete Anstieg des Lastvielfachen modelliert das Flugzeug als starren Körper und vernachlässigt aeroelastische Effekte. Um diese mit einzubeziehen, wird ein Böenabminderungsfaktor K_q eingeführt und es gilt:

$$\Delta n_{Pratt} = K_g \Delta n_{Ricciardi} \tag{2-82}$$

Dabei ist der Böenabminderungsfaktor definiert durch:

$$K_g = \frac{0.88\mu_g}{5.3 + \mu_g} \tag{2-83}$$

Die Größe μ_g ist das dimensionslose Massenverhältnis

$$\mu_g = \frac{2m_{MZF}}{\rho S c_{SMC} C_{L\alpha}} \tag{2-84}$$

[Ricciardi 2011, Handojo 2015]. Damit gilt im Lastfall G+:

$$n_{G+} = 1 + \Delta n_{Pratt} \tag{2-85}$$

Und im Lastfall G-:

$$n_{G-} = 1 - \Delta n_{Pratt} \tag{2-86}$$

2.3.6 Berechnung des Auftriebsgradienten bei den Böenlastfällen

Es gilt nach [Chiozzotto 2015]:

$$C_{L\alpha} = K_{el} \frac{2\pi\Lambda}{2 + \sqrt{4 + \Lambda^2 (1 - M_{MO}^2) \left(1 + \frac{tan^2 \Lambda_{LRA}}{1 - M_{MO}^2}\right)}}$$
(2-87)

Dabei ist K_{el} ein aeroelastischer Korrekturfaktor. In der direkten Lösungsschleife wird er zu 1 gesetzt. In der konvergenten Lösungsschleife wird er beginnend mit 1 in jedem Durchlauf aus den Werten des vorherigen Durchlaufs berechnet [Chiozzotto 2015].

2.3.7 Berechnung der Neutralpunktlage der Flügel-Rumpf-Kombination

Nach [Torenbeek 1976] gilt:

$$\left(\frac{x_{AC}}{c_{MAC}}\right)_{wf} = \left(\frac{x_{AC}}{c_{MAC}}\right)_{w} + \Delta f_1 \left(\frac{x_{AC}}{c_{MAC}}\right)_{w} + \Delta f_2 \left(\frac{x_{AC}}{c_{MAC}}\right)_{w} = \overline{x}_{AC,wf}$$
(2-88)

Dabei gilt für die Neutralpunktlage des Flügels:

$$\left(\frac{x_{AC}}{c_{MAC}}\right)_{w} = \frac{x_{MAC} + 0.25c_{MAC}}{c_{MAC}} = \frac{x_{MAC}}{c_{MAC}} + 0.25 = \overline{x}_{AC,w}$$
(2-89)

2.3.7.1 Korrekturterm für zusätzlichen Rumpfauftrieb

Für den Korrekturterm für zusätzlichen Rumpfauftrieb gilt nach [Torenbeek 1976]:

$$\Delta f_1 \left(\frac{x_{AC}}{c_{MAC}}\right)_w = -\frac{1.8}{\left(\frac{dc_L}{d\alpha}\right)_{wf}} \frac{b_f h_f l_{fn}}{Sc_{MAC}}$$
(2-90)

Dabei gilt für den Auftriebsgradienten der Flügel-Rumpf-Kombination:

$$\left(\frac{dc_L}{d\alpha}\right)_{wf} = K_I \left(\frac{dc_L}{d\alpha}\right)_w \tag{2-91}$$

Bei näherungsweise kreisrunden Rümpfen mit einem Verhältnis von Rumpfbreite zu Spannweite von unter 20 % gilt nach **[Torenbeek 1976]** ferner:

$$K_{I} = \left(1 + 2.15\frac{b_{f}}{b}\right)\frac{S_{wet}}{S} + \frac{\pi b_{f}^{2}}{2\left(\frac{dc_{L}}{d\alpha}\right)_{w}S}$$
(2-92)

Bild 7: benetzte Flügelfläche

Die benetzte Flügelfläche S_{wet} ist der Teil der Flügelfläche, der sich außerhalb des Rumpfes befindet, und entspricht der schraffierten Fläche in Bild 7. Sie berechnet sich zu:

$$S_{wet} = S - (c_f + c_r)y_f$$
 (2-93)

Für den Auftriebsgradienten eines ungepfeilten Flügels gilt nach [Torenbeek 1976]:

$$\left(\frac{dc_L}{d\alpha}\right)_w = \frac{2\pi}{\beta + \frac{2}{\Lambda}\frac{1+2\lambda}{1+\lambda}}$$
(2-94)

Die Verwendung dieser Formel ist zulässig, da Turboprops in der Regel geringe bis keine Pfeilung aufweisen. Dabei ist

$$\beta = \sqrt{1 - M^2} \tag{2-95}$$

der Prandtl'sche Kompressibilitätsfaktor, der die Effekte kompressibler Strömungen berücksichtigt [Torenbeek 1976].

2.3.7.2 Korrekturterm für Auftriebsverlust durch den Rumpf im Flügel

Für den Korrekturterm für Auftriebsverlust durch den Rumpf im Flügel gilt nach **[Torenbeek 1976]**:

$$\Delta f_2 \left(\frac{x_{AC}}{c_{MAC}}\right)_w = \frac{0.273}{1+\lambda} \frac{b_f}{c_{MAC}^2} \frac{c_{SMC}(b-b_f)}{b+2.15b_f} tan\Lambda_{25}$$
(2-96)

Auch hier darf das Verhältnis von Rumpfbreite zu Spannweite 20 % nicht überschreiten [Torenbeek 1976].

2.3.8 Schwerpunktlage als Anteil vom MAC

Es gilt nach [Bislins 2013]:

$$\overline{x}_{CG} = \frac{x_{CG} - x_{MAC,w}}{c_{MAC}}$$
(2-97)

2.3.9 Berechnung des Auftriebs

Am Flügel wirkt der Auftrieb L_W und am Höhenleitwerk der Auftrieb *BTL*, der für gewöhnlich abwärts gerichtet ist. Zusätzlich greift im Schwerpunkt die Gewichtskraft *G* an [Chiozzotto 2015].

Bild 8: Lasten am Flugzeug

Beide Auftriebskräfte bestehen aus einem 1g-Teil und einem Δ -Teil. Es gilt

$$BTL = BTL_{1g} + BTL_{\Delta} \tag{2-98}$$

$$L_W = L_{W,1g} + L_{W,\Delta} \tag{2-99}$$

nach [Chiozzotto 2015]. Die einzelnen Anteile berechnen sich zu

$$BTL_{1g} = -\frac{mg(\overline{x}_{AC,wf} - \overline{x}_{CG})}{\frac{l_t}{c_{MAC}} - \overline{x}_{AC,wf} + 0.25}$$
(2-100)

$$BTL_{\Delta} = -\frac{(n_Z - 1)mg(\bar{x}_{AC,wf} - \bar{x}_{CG})}{\frac{l_t}{c_{MAC}} - \bar{x}_{AC,wf} + 0.25}$$
(2-101)

$$L_{W,1g} = mg - BTL_{1g} (2-102)$$

$$L_{W,\Delta} = (n_Z - 1)mg - BTL_{\Delta} \tag{2-103}$$

nach [Chiozzotto 2015].

2.4 Ermittlung der Flügellasten

Die Flügellasten setzen sich zusammen aus aerodynamischen und trägheitsinduzierten Kräften. Sie werden streifenweise ermittelt [Chiozzotto 2015]. An jedem Streifen *i* gilt damit

$$ll_i = ll_{aero,i} + ll_{inertia,i} \tag{2-104}$$

nach [Chiozzotto 2015].

2.4.1 Berechnung der Schrenk-Flügeltiefe

Die Schrenk-Flügeltiefe ist der arithmetische Mittelwert zwischen tatsächlicher Flügeltiefe und der Flügeltiefe eines Flügels mit elliptischem Grundriss mit derselben Flügelfläche wie der betrachtete Flügel **[Hakenesch]**:

$$c_{sch}(y) = \frac{c(y) + c_{ell}(y)}{2}$$
(2-105)

Mit

$$c_{ell}(y) = \frac{4S}{\pi b} \sqrt{1 - \left(\frac{2y}{b}\right)^2}$$
 (2-106)

[Hakenesch] folgt:

$$c_{sch}(y) = \frac{c(y)}{2} + \frac{2S}{\pi b} \sqrt{1 - \left(\frac{2y}{b}\right)^2}$$
(2-107)

2.4.2 Berechnung der aerodynamischen Flügellasten

An jedem Streifen gilt für die lokale Strecken-Flügellast (Limit Load) [Chiozzotto 2015]:

$$ll_{aero,i} = \frac{c_{sch,i}}{K_I S} L_{W,1g} + \frac{k_{el,i}}{K_{el}} \frac{c_i}{K_I S} L_{W,\Delta} + \frac{\rho(h)}{2} v^2 (c_{sch,i} c_{l\hat{p}} \hat{p} + c_{sch,i} c_{l\delta,i} \delta)$$
(2-108)

Empfohlen für die dimensionslose Rollrate \hat{p} ist ein Wert von 0,07 rad/1. Um Strömungsablösungen am Ruder auszuschließen, sei der maximale Querruderausschlagwinkel δ -15° [Chiozzotto 2015].

Für die Querruder-Gradienten gilt nach [Chiozzotto 2015]:

$$c_{l\delta,i} = \left(\frac{dc_L}{d\alpha}\right)_w \left(-\tau + k_{ail}\left(-\frac{2}{\pi}\left(\sqrt{\tau(1-\tau)} + \arcsin(\sqrt{\tau})\right) + \tau\right)\right)$$
(2-109)

$$c_{l\hat{p}} = \frac{\cos^{3} \Lambda_{LRA}}{\beta} k_{ail} \left(-2\sqrt{\tau (1-\tau)^{3}} \right)$$
(2-110)

Dabei ist k_{ail} ein Querrudereffektivitätsfaktor und sollte einen Wert von 0,75 aufweisen. Ferner ist

$$\tau = \frac{c_{ail}}{c} \tag{2-111}$$

das lokale Tiefenverhältnis von Querrudertiefe zu Flügeltiefe [Chiozzotto 2015].

Als Kontrollrechnung kann die Flugzeugmasse aus den aerodynamischen Flügellasten berechnet werden. Bei infinitesimal kleiner Einteilung des Flügels in Abschnitte Δy muss gelten:

$$n_Z mg = 2 \sum_{0}^{\frac{b}{2}} ll_{aero,i} \Delta y_i$$
(2-112)

Da der Auftrieb nur stellenweise berechnet wird, gilt näherungsweise:

$$m \approx \frac{2\sum_{0}^{\frac{b}{2}} ll_{aero,i} \Delta y_i}{n_z g}$$
(2-113)

Je mehr Stellen zur Auftriebsberechnung herangezogen werden, desto genauer wird der berechnete Wert für die Masse.
2.4.3 Berechnung der trägheitsinduzierten Flügellasten

Für die trägheitsinduzierten Flügellasten gilt nach [Chiozzotto 2015]:

$$ll_{inertia,i} = -\frac{c_i^2 \left(\frac{t}{c}\right)_i}{2\sum_0^{b/2} c_i^2 \left(\frac{t}{c}\right)_i \Delta y_i} n_z g(m_{wing} + m_{fuel})$$
(2-114)

Die Formel berücksichtigt also den Effekt der Massenentlastung durch Treibstoff im Flügeltank sowie die Masse der Flügelstruktur.

2.5 Dimensionierung des Flügel-Biegetorsionskastens

2.5.1 Innere Flügellasten

Bis zum Strebenanschluss lassen sich die Schnittgrößen innerhalb der Flügelstruktur mit der Gleichgewichtsbedingung aus den äußeren Lasten berechnen, das System ist also statisch bestimmt. Nimmt man die Lagerung des Flügel-Biegetorsionskastens (BTK) am Rumpf als feste Einspannung an, so ist das System aus Flügelabschnitt bis zum Strebenanschluss zusammen mit der Strebe ein statisch unbestimmtes System. Zur genauen Berechnung der Schnittgrößenverläufe muss also auch die Steifigkeitsverteilung bekannt sein. Diese ist in diesem Schritt jedoch nicht gegeben, die Flächenmomente lassen sich erst nach der erfolgten Dimensionierung berechnen [Chiozzotto 2015].

Eine konservative Annahme nach Chiozzotto ist, dass Querkraft, Biegemoment und Torsionsmoment zwischen Rumpfanschluss und Strebenanschluss konstant sind und den Werten am Strebenanschluss entsprechen. Ferner soll auf den Flügel durch die Strebe keine Druckkraft ausgeübt werden, die Schnittgröße Normalkraft soll also im gesamten Flügel null sein. Auch diese Annahme ist konservativ, da hierdurch vernachlässigt wird, dass die durch die Strebe hervorgerufene Normalkraft im Biegetorsionskasten die Normalkraftflüsse, die durch das Biegemoment induziert werden, kompensiert [Chiozzotto 2015].

Da Querkraft und Torsionsmoment innerhalb des abgestrebten Flügelteils konstant sein sollen, wird auch der Einfluss von Triebwerksgewicht und -schubkraft vernachlässigt, da sich Triebwerke üblicherweise nah am Rumpf befinden und man daher davon ausgehen darf, dass die Strebe weiter außen am Flügel angeschlossen sein wird als das Triebwerk positioniert ist.

Die Schnittgrößen, die auf diese Weise nach Chiozzotto gewonnen werden, werden in Kapitel 5 mit "den wahren" Schnittgrößen verglichen, die mit dem Prinzip der virtuellen Kräfte berechnet werden.

2.5.2 Bestimmung der Schnittgrößenverläufe

Die Schnittgrößen werden streifenweise ermittelt, entsprechend der streifenweisen Ermittlung der Flügelstreckenlasten. Der Flügel-Biegetorsionskasten (BTK) wird als Balken angenommen, der links fest eingespannt ist. Die Einspannung befindet sich am Strebenanschluss [Chiozzotto 2015].

Bild 9: BTK als Balken im lokalen Koordinatensystem

Die Streifenbreite Δy_i sei innerhalb eines Abschnitts konstant. Der Schnitt soll immer mittig innerhalb eines Streifens erfolgen. Das Freikörperbild sieht dann am negativen Schnittufer so aus:

Bild 10: Schnittgrößen am negativen Schnittufer

In horizontaler Richtung lautet die Kräftebilanz:

$$-N_i = 0 \tag{2-115}$$

Damit gilt für die Normalkraft:

$$N_i = 0 \tag{2-116}$$

In vertikaler Richtung gilt für die Kräftebilanz:

$$-Q_i - ll_i \frac{\Delta y_i}{2} - ll_{i+1} \Delta y_i = 0$$
 (2-117)

Damit gilt für die Querkraft:

$$Q_i = -ll_i \frac{\Delta y_i}{2} - ll_{i+1} \Delta y_i \tag{2-118}$$

Allgemein formuliert gilt:

$$Q_i = -\Delta y_i \left(\frac{ll_i}{2} + \sum_{j=i+1}^{y_t} ll_j \right)$$
(2-119)

Die Momentenbilanz um die Schnittstelle lautet:

$$+M_i - ll_i \frac{\Delta y_i}{2} \times \frac{\Delta y_i}{4} - ll_{i+1} \Delta y_i \Delta y_i = 0$$
(2-120)

Damit folgt für das Biegemoment:

$$M_{i} = \Delta y_{i}^{2} \left(ll_{i+1} + \frac{ll_{i}}{8} \right)$$
(2-121)

Allgemein formuliert gilt:

$$M_{i} = \Delta y_{i}^{2} \left(\frac{ll_{i}}{8} + \sum_{j=i+1}^{y_{t}} (j-i) ll_{j} \right)$$
(2-122)

2.5.3 Bestimmung des Torsionsmomentenverlaufs

Für das Torsionsmoment M_{Ti} um einen Streifen gilt:

$$M_{Ti} = \Delta y_i \left(\frac{e_i ll_{aero,i}}{2} + \sum_{j=i+1}^{y_t} e_j ll_{aero,j} \right)$$
(2-123)

Dabei ist die Exzentrizität *e* der Abstand vom Neutralpunkt des Profilschnitts durch die Streifenmitte zum Schubmittelpunkt und damit Schwerpunkt des BTK. Der Neutralpunkt des Profilschnitts liegt bei 25 % der Profiltiefe, der Schwerpunkt des BTK genau mittig innerhalb des BTK. Damit gilt:

$$e(y) = \left(\frac{FS(y) + RS(y)}{2} - 0,25\right)c(y)$$
(2-124)

Da die Trägheitslasten $ll_{inertia,i}$ alle im Schwerpunkt des BTK angreifen, haben sie keine Auswirkung auf das Torsionsmoment. Vielmehr spielen hier lediglich die Luftlasten $ll_{aero,i}$ eine Rolle.

2.5.4 Definition der BTK-Größen

Der BTK ist ein rechteckiger Hohlquerschnitt mit Längssteifen ("stringers") innerhalb der Gurtplatten. Die Bemaßung bezieht sich auf die Profilmittellinie (PML). Die LRA entspricht der Schwerachse. Die beiden Gurtplatten haben die "verschmierte" Dicke t_e ("e" für "equivalent thickness"), die Stegplatten die Dicke t_w ("w" für "web", zu Deutsch "Steg") [Chiozzotto 2015].

Bild 11: Definition der BTK-Größen aus [Chiozzotto 2015]

Für das Verhältnis k_s von Hautdicke zu Hautdicke plus Stringerhöhe gilt nach [Chiozzotto 2015]:

$$k_s = \frac{t_s}{t_s + t_{stringer}} \tag{2-125}$$

Die BTK-Höhe ergibt sich durch einen Höhenreduktionsfaktor von 0,9 und der lokalen Flügeldicke:

$$h_i \approx 0.9t_i \tag{2-126}$$

Die BTK-Breite ergibt sich aus den relativen Position von Vorderholm und Hinterholm sowie der lokalen Flügeltiefe:

$$w_i = (RS_i - FS_i)c_i \tag{2-127}$$

2.5.5 Berechnung von Gurt- und Stegdicken des BTK

Zur Berechnung der Wanddicken sind die Normalkraft- und Schubflüsse erforderlich, die sich aus den Schnittgrößen sowie den Ausmaßen des BTK ergeben.

Für den Normalkraftfluss gilt nach [Chiozzotto 2015]:

$$n_i = SF \frac{M_i}{h_i} \tag{2-128}$$

Für den Schubfluss infolge Torsion gilt nach [Chiozzotto 2015]:

$$q_i = SF \frac{M_{Ti}}{2w_i h_i} \tag{2-129}$$

Die Dimensionierung erfolgt sowohl gegen Stabilitätsversagen als auch gegen Festigkeitsversagen. Der größte ermittelte Wert ist dann die gesuchte Dicke.

2.5.5.1 Berechnung der Gurtplattendicke gegen Stabilitätsversagen

Es gilt nach [Chiozzotto 2015]:

$$t_{e,buck,i} = \frac{n_i}{w_i \sigma_{buck,i}} \tag{2-130}$$

Die lokale Beulspannung berechnet sich nach [Chiozzotto 2015] zu:

$$\sigma_{buck,i} = k_{comp} F(k_s) \sqrt{\frac{|n_i|}{w_i L_r}} E_{x0}$$
(2-131)

Die Hilfsgröße $F(k_s)$ berücksichtigt die Auswirkung verschiedener Stringertypen auf die Beulspannung. Nach Farrar gilt [Chiozzotto 2015]:

$$F(k_s) = 0.9(1 - 0.00617e^{5.0449k_s})$$
(2-132)

Dabei ist *e* die Euler'sche Zahl. Für den verbundwerkstoffspezifischen Faktor k_{comp} gilt [Chiozzotto 2015]:

$$k_{comp} = 0.725Z^{\frac{1}{4}} \tag{2-133}$$

Die Hilfsgröße Z ergibt sich aus den Materialdaten des Laminats [Chiozzotto 2015]:

$$Z = \frac{E_x}{E_{x0}^2} \frac{\pi^2}{6(1 - \mu_{xy}\mu_{yx})} \left(\sqrt{E_x E_y} + \frac{\mu_{xy} E_y}{2} + \frac{\mu_{yx} E_x}{2} + 2(1 - \mu_{xy}\mu_{yx})G_{xy} \right)$$
(2-134)

2.5.5.2 Berechnung der Gurtplattendicke gegen Festigkeitsversagen

Bei einer Aluminiumplatte gilt nach [Chiozzotto 2015]:

$$t_{e,strength,i} = \frac{\sqrt{\left(\frac{n_i}{w_i}\right)^2 + 3\left(\frac{q_i}{k_s}\right)^2}}{\sigma_{zul}}$$
(2-135)

Für eine Verbundwerkstoffplatte gilt nach [Chiozzotto 2015]:

$$t_{e,strength,i} = max\left(\frac{n_i}{w_i\sigma_{zul}}; \frac{q_i}{k_s\tau_{zul}}\right)$$
(2-136)

2.5.5.3 Berechnung der Gurtplattendicke

Der vorher berechnete maximale Wert für die Gurtplattendicke wird noch mit Optimierungsvariablen multipliziert und es gilt nach [Chiozzotto 2015]:

$$t_{e,i} = k_{e,i} k_{NO,e,i} \max(t_{e,buck,i}; t_{e,strength,i})$$
(2-137)

Im Normalfall haben alle Optimierungsvariablen den Wert 1 [Chiozzotto 2015].

2.5.5.4 Berechnung der Stegdicke

Für die Stegdicke gilt nach [Chiozzotto 2015]:

$$t_{w,i} = k_{w,i} k_{NO,w,i} \frac{SF}{0.8\tau_{zul}} \left(\frac{|Q_i|}{2h} + \frac{|M_{Ti}|}{2wh} \right)$$
(2-138)

2.5.5.5 Berechnung der Rippendicke

Für die Dicke der Rippenwand gilt nach [Chiozzotto 2015]:

$$t_{rib,w,i} = k_{NO,rib,i} SF \frac{ll_{aero,i} L_r cos \Lambda_{LRA}}{h \tau_{zul}} + 0,003h$$
(2-139)

Für die Dicke der Rippe-Gurt-Überlappung gilt nach [Chiozzotto 2015]:

$$t_{rib,c,i} = 2k_{NO,rib,i}SF \frac{ll_{aero,i}L_r w_i cos \Lambda_{LRA}}{8\tau_{zul}h_i^2}$$
(2-140)

2.5.6 Berechnung der Masse des BTK

Für die Masse der Gurtplatten gilt nach [Chiozzotto 2015]:

$$m_{covers} = 4\rho_{covers} \left(\sum_{0}^{y_f} \left(t_{e,i} w_i \Delta y_i \right) + \sum_{y_f}^{\frac{b}{2}} \left(t_{e,i} w_i \frac{\Delta y_i}{\cos \Lambda_{LRA}} \right) \right)$$
(2-141)

Für die Masse der Stegplatten gilt nach [Chiozzotto 2015]:

$$m_{webs} = 4\rho_{webs/ribs} \left(\sum_{0}^{y_f} \left(t_{w,i} h_i \Delta y_i \right) + \sum_{y_f}^{\frac{b}{2}} \left(t_{w,i} h_i \frac{\Delta y_i}{\cos \Lambda_{LRA}} \right) \right)$$
(2-142)

Für die Masse der Rippenwandplatten gilt nach [Chiozzotto 2015]:

$$m_{ribs,webs} = 2 \frac{\rho_{webs/ribs}}{L_r} \left(\sum_{0}^{y_f} \left(t_{rib,w,i} w_i h_i \Delta y_i \right) + \sum_{y_f}^{\frac{b}{2}} \left(t_{rib,w,i} w_i h_i \frac{\Delta y_i}{\cos \Lambda_{LRA}} \right) \right)$$
(2-143)

Für die Masse der Rippe-Gurt-Überlappungen gilt nach [Chiozzotto 2015]:

$$m_{ribs,caps} = 2 \frac{\rho_{webs/ribs}}{L_r} \left(\sum_{0}^{y_f} \left(t_{rib,c,i} w_i h_i \Delta y_i \right) + \sum_{y_f}^{\frac{b}{2}} \left(t_{rib,c,i} w_i h_i \frac{\Delta y_i}{\cos \Lambda_{LRA}} \right) \right)$$
(2-144)

Damit folgt für die Rippenmasse nach [Chiozzotto 2015]:

$$m_{ribs} = m_{ribs,webs} + m_{ribs,caps} \tag{2-145}$$

2.5.7 Berechnung der Flächenträgheitsmomente des BTK

Für nachfolgende Berechnungen müssen die Flächenmomente 2. Ordnung des BTK bekannt sein.

Bild 12: BTK-Aufteilung in Teilflächen

2.5.7.1 Berechnung der Flächenträgheitsmomente um y

Das Flächenträgheitsmoment um y setzt sich zusammen aus einem Eigenanteil I_i und einem Steiner-Anteil $I_{Steiner,i}$:

$$I_{ges,i} = I_{eigen,i} + I_{Steiner,i}:$$
 (2-146)

Für Rechteck 1 gilt der Eigenanteil:

$$I_{eigen,y,1,i} = \frac{t_{e,i}^3 (w_i + t_{w,i})}{12}$$
(2-147)

Der Steiner-Anteil für Rechteck 1 lautet:

$$I_{Steiner,y,1,i} = \frac{h_i^2 t_{e,i} (w_i + t_{w,i})}{4}$$
(2-148)

Für Rechteck 2 gilt der Eigenanteil:

$$I_{eigen,y,2,i} = \frac{\left(h_i - t_{e,i}\right)^3 t_{w,i}}{12}$$
(2-149)

Der Steiner-Anteil für Rechteck 2 verschwindet, da sich der Flächenschwerpunkt direkt auf der y-Achse befindet.

Bild 13: bemaßter BTK

Es folgt für die Flächenträgheitsmomente des BTK um y:

$$I_{y,i} = \frac{1}{2} \left(\frac{t_{e,i}^3 (w_i + t_{w,i})}{3} + h_i^2 t_{e,i} (w_i + t_{w,i}) + \frac{(h_i - t_{e,i})^3 t_{w,i}}{3} \right)$$
(2-150)

2.5.7.2 Berechnung der Torsionsträgheitsmomente

Allgemein gilt für das Torsionsträgheitsmoment nach der 2. Bredt'schen Formel:

$$I_T = \frac{4A_m^2}{\oint_0^U \frac{ds}{t(s)}}$$
(2-151)

Daraus folgt für die Torsionsträgheitsmomente des BTK:

$$I_{Ti} = \frac{4(w_i h_i)^2}{2\frac{h_i - t_{e,i}}{t_{w,i}} + 2\frac{w_i + t_{w,i}}{t_{e,i}}} = \frac{2w_i^2 h_i^2}{\frac{h_i - t_{e,i}}{t_{w,i}} + \frac{w_i + t_{w,i}}{t_{e,i}}}$$
(2-152)

2.6 Ermittlung der Strebenkraft

In diesem Schritt ist die Steifigkeitsverteilung des Flügels bereits bekannt. Nimmt man die Strebe vereinfacht als dehnstarren Stab an, so lässt sich näherungsweise die vertikale Komponente der Strebenkraft in dem statisch unbestimmten System bestimmen [Chiozzotto 2015]. Es gilt nach [Chiozzotto 2015]:

$$V_{st} \approx -\frac{z_w(y = y_{st})}{z'_{st}(y = y_{st})}$$
 (2-153)

Dabei ist $z_w(y = y_{st})$ die vertikale Verschiebung eines äquivalenten freitragenden Flügels und $z'_{st}(y = y_{st})$ die Verdrehung der Strebe infolge einer virtuellen $\overline{1}$ -Kraft am Strebenende [Chiozzotto 2015]. Es gilt nach [Chiozzotto 2015]:

$$z_w(y = y_{st}) = \sum_{y_f}^{y_{st}} \Delta y_i^2 \frac{M_i}{E I_{y,i}}$$
(2-154)

$$z'_{st}(y = y_{st}) = \frac{1}{\cos \Lambda_{LRA}} \sum_{y_f}^{y_{st}} \Delta y_i^2 \frac{y_{st} - y_i}{EI_{y,i}}$$
(2-155)

Für die Strebenkraft folgt:

$$F_{st} = \frac{V_{st}}{\sin \theta_{st}} \tag{2-156}$$

Die maximale Strebenkraft bzw. die maximale vertikale Komponente der Strebenkraft aus allen 9 Lastfällen ist die endgültige Strebenkraft, mit der die Strebe dimensioniert wird **[Chiozzotto 2015]**.

2.7 Dimensionierung der Strebe

Die Strebe ist wie der Flügel aufgebaut: ein rechteckiges Hohlprofil ist umgeben von einer aerodynamischen Verkleidung [Chiozzotto 2015].

Bild 14: tragendes Hohlprofil in der Strebe

Die Strebe wird ausschließlich gegen Stabilitätsversagen ausgelegt. Bis zur Bruchlast ist kein Knicken oder Beulen erlaubt [Chiozzotto 2015]. Für die erforderliche Biegesteifigkeit gilt nach [Chiozzotto 2015]:

$$EI_{erf} = SF \frac{V_{st,max}}{\sin \theta_{st}} \frac{L^2}{\pi^2}$$
(2-157)

Daraus ergibt sich die umlaufend konstante verschmierte Wanddicke des Hohlprofils in der Strebe nach [Chiozzotto 2015]:

$$t_{e,st} = \max\left(2\frac{EI_{erf}}{E_{st}w_{st}h_{st}^2}; \frac{t_{min,st}}{k_{s,st}}\right)$$
(2-158)

Die Masse der Strebenrippen wird mit 15 % der Masse der Gurt- bzw. Stegplatten angenommen [Chiozzotto 2015]. Für die Masse der tragenden Strebenstruktur folgt nach [Chiozzotto 2015]:

$$m_{st,box} = 2,3\rho_{st} \left(2\left(w_{st}t_{e,st} + \frac{h_{st}t_{e,st}}{2}\right) \right) L$$
(2-159)

Analog zu den Flächenträgheitsmomenten des Flügel-Biegetorsionskastens ergeben sich die Flächenträgheitsmomente der tragenden Strebenstruktur:

$$I_{y,st} = \frac{t_{e,st}^3 \left(w_{st} + t_{e,st} \right)}{6} + \frac{\left(h_{st} - t_{e,st} \right)^3 t_{e,st}}{6} + \frac{t_{e,st} \left(w_{st} + t_{e,st} \right) \left(h_{st} + t_{e,st} \right)^2}{2}$$
(2-160)

$$I_{z,st} = \frac{\left(w_{st} + t_{e,st}\right)^3 t_{e,st}}{6} + \frac{t_{e,st}^3 \left(h_{st} - t_{e,st}\right)}{6} + \frac{\left(h_{st} - t_{e,st}\right) t_{e,st} \left(w_{st} + t_{e,st}\right)^2}{2} \quad (2-161)$$

$$I_{T,st} = 2 \frac{w_{st}^2 h_{st}^2 t_{e,st}}{w_{st} + h_{st}}$$
(2-162)

2.8 Einbeziehung statischer aeroelastischer Effekte

Durch die Abstrebung kann der Flügel schlanker ausgelegt werden, d. h. die Streckung steigt. Ferner kann die tragende Flügelstruktur aufgrund der Entlastung durch die Strebe weniger massiv dimensioniert werden, d. h. die Formsteifigkeit des Flügels ist niedriger. Dies erfordert jedoch eine aeroelastische Analyse des Flügels bereits während der Vordimensionierung, zu der die vorgestellte Methode gehört [Chiozzotto 2015].

Daher sollen statische aeroelastische Effekte vereinfacht in Form einer Analyse der aeroelastischen Lastverteilung berücksichtigt werden [Chiozzotto 2015].

Der globale Korrekturfaktor K_{el} ergibt sich nach [Chiozzotto 2015] aus:

$$K_{el} = \frac{\sum (cc_{l,\alpha})_i \Delta y_i}{\sum (cc_{l,\alpha}^r)_i \Delta y_i}$$
(2-163)

Der Nenner bleibt in der konvergenten Lösungsschleife konstant, nur der Zähler verändert sich.

Die lokalen Korrekturfaktoren $k_{el,i}$ ergeben sich nach [Chiozzotto 2015] aus:

$$k_{el,i} = \frac{\left(cc_{l,\alpha}\right)_i}{\left(cc_{l,\alpha}^r\right)_i} \tag{2-164}$$

Sie sind an jeder Station anders, was die Auftriebsverteilung, korrigiert um aeroelastische Effekte, modelliert. Auch hier bleibt der Nenner konstant, nur der Zähler verändert sich. Es gilt nach [Chiozzotto 2015]:

$$\left(cc_{l,\alpha}^{r}\right)_{i} = c_{i} \frac{2\pi\Lambda}{2 + \sqrt{4 + \Lambda^{2}(1 - M^{2})\left(1 + \frac{tan^{2}\Lambda_{LRA}}{1 - M^{2}}\right)}}$$
(2-165)

Der Wert $(cc_{l,\alpha})_i$, wird im Folgenden ermittelt.

2.8.1 Aerodynamische Einflussmatrix

Die aerodynamische Einflussmatrix [A] ist eine Diagonalmatrix [Chiozzotto 2015]. Die Elemente der Hauptdiagonalen berechnen sich nach [Chiozzotto 2015] zu:

$$A_{y\eta} = \frac{1}{K_{el} \left(c c_{l,\alpha}^r \right)_i} \tag{2-166}$$

2.8.2 Struktureinflussmatrix

Die Struktureinflussmatrix [C] ist eine symmetrische Matrix und besteht aus vier Einzelmatrizen [Chiozzotto 2015]. Wegen der Symmetrie sind nur drei davon zu berechnen [Chiozzotto 2015]:

$$[C] = \begin{pmatrix} [C^{\theta\theta}] & [C^{\theta z}] \\ [C^{z\theta}] & [C^{zz}] \end{pmatrix}$$
(2-167)

2.8.2.1 Untermatrix für Durchbiegung infolge Querkraft

Die Untermatrix $[C^{zz}]$ modelliert die Durchbiegung des Flügels aufgrund von Querkräften [Chiozzotto 2015]. Die Funktion zur Berechnung ihrer Elemente lautet nach [Chiozzotto 2015]:

$$C^{zz}(y,\eta) = \int_{y_f}^{y_t} \frac{(\eta - y)(y - \lambda)}{E I_y(y) cos^2 \Lambda_{LRA}} d\lambda$$
(2-168)

Dabei werden die *y*-Koordinaten zeilenweise angeordnet und die η -Koordinaten spaltenweise. Es handelt sich um die jeweiligen Positionen der Stationen am Flügel [Chiozzotto 2015].

Die Zählerfunktion lässt sich auch schreiben als:

$$(\eta - y)(y - \lambda) = \lambda^2 - (\eta + y)\lambda + \eta y$$
(2-169)

Numerische Integration nach der Hilfsvariablen λ führt also auf eine Funktion mit drei Summanden:

$$C^{zz}(y,\eta) = s_{zz,1} - s_{zz,2}(\eta + y) + s_{zz,3}\eta y$$
(2-170)

Für die Hilfsfaktoren gilt:

$$s_{zz,1} = \frac{1}{E \cos^2 \Lambda_{LRA}} \sum_{y_f}^{y_t} \frac{\Delta y_i^3}{I_{y,i}}$$
(2-171)

$$s_{zz,2} = \frac{1}{E\cos^2\Lambda_{LRA}} \sum_{y_f}^{y_t} \frac{\Delta y_i^2}{I_{y,i}}$$
(2-172)

$$s_{zz,3} = \frac{1}{E\cos^2\Lambda_{LRA}} \sum_{y_f}^{y_t} \frac{\Delta y_i}{I_{y,i}}$$
(2-173)

2.8.2.2 Untermatrix für Verdrehung infolge Torsionsmoment

Die Untermatrix $[C^{\theta\theta}]$ modelliert die Verdrehung des Flügels aufgrund von Torsionsmomenten **[Chiozzotto 2015]**. Ihre Elementfunktion lautet nach **[Chiozzotto 2015]**:

$$C^{\theta\theta}(y,\eta) = \int_{y_f}^{y_t} \left(\frac{\cos \Lambda_{LRA}}{GI_T(y)} + \frac{\sin \Lambda_{LRA}}{EI_y(y)} \right) d\lambda$$
(2-174)

Numerische Integration führt auf:

$$C^{\theta\theta}(y,\eta) = \frac{\cos\Lambda_{LRA}}{G} \sum_{y_f}^{y_t} \left(\frac{\Delta y_i}{I_{T,i}}\right) + \frac{\sin\Lambda_{LRA}}{E} \sum_{y_f}^{y_t} \left(\frac{\Delta y_i}{I_{y,i}}\right)$$
(2-175)

Alle Elemente sind hier also gleich.

2.8.2.3 Untermatrix für Verdrehung infolge Querkraft

Die Untermatrix $[C^{\theta z}]$ modelliert die Verdrehung des Flügels aufgrund einer exzentrisch angreifenden Querkraft [Chiozzotto 2015]. Ihre Elementfunktion lautet nach [Chiozzotto 2015]:

$$C^{\theta z}(y,\eta) = C^{z\theta}(y,\eta) = -\int_{y_f}^{y_t} \frac{(\eta - \lambda)}{EI_y(y) \cos \Lambda_{LRA}} d\lambda$$
(2-176)

Das Ergebnis der Integration ist eine Funktion der Form:

$$C^{\theta_Z}(y,\eta) = s_{\theta_{Z,1}}\eta + s_{\theta_{Z,2}}$$
(2-177)

Die Hilfsfaktoren ergeben sich zu:

$$s_{\theta z,1} = -\frac{1}{E \cos \Lambda_{LRA}} \sum_{y_f}^{y_t} \frac{\Delta y_i}{I_{y,i}}$$
(2-178)

$$s_{\theta z,2} = -\frac{1}{E \cos \Lambda_{LRA}} \sum_{y_f}^{y_t} \frac{\Delta y_i^2}{I_{y,i}}$$
(2-179)

2.8.3 Strukturflexibilitätsmatrizen

Für die Strukturflexibilitätsmatrix [*E*] gilt nach [Chiozzotto 2015]:

$$[E] = \left(\left[C^{\theta z} \right] + \left[C^{\theta \theta} \right] [ec] \right) [dy]$$
(2-180)

Für die Strukturflexibilitätsmatrix [*E'*] gilt nach [Chiozzotto 2015]:

$$[E'] = \left(\left[C^{zz} \right] + \left[C^{\theta z} \right] \left[ec \right] \right) [dy]$$
(2-181)

Dabei ist [ec] eine Diagonalmatrix, deren Hauptdiagonalelemente die Abstände von Neutralpunkt zu Lastreferenzachse in jedem Streifen sind. Die Matrix [dy] ist ebenfalls eine Diagonalmatrix, deren Hauptdiagonalelemente die Streifenbreite Δy_i jedes Streifens enthält [Chiozzotto 2015].

2.8.4 Hilfsgrößen

Für die folgenden Berechnungen werden noch einige Hilfsgrößen nach [Chiozzotto 2015] benötigt:

$$c_{s} = -\frac{L}{E_{st}A_{st}} = -\frac{L}{2E_{st}t_{e,st}(2t_{e,st} + h_{st} + w_{st})}$$
(2-182)

$$c_T = -\frac{L}{EI_{z,st}cos^2\Lambda_{LRA}sin^2\theta_{st} + EI_{x,st}sin^2\Lambda_{LRA} + GI_{T,st}cos^2\Lambda_{LRA}cos^2\theta_{st}}$$
(2-183)

$$B = (C_{ss}^{zz} - c_s) (C_{ss}^{\theta\theta} - c_T) - (C_{ss}^{\theta z})^2$$
(2-184)

$$B_{T1} = -\frac{C_{SS}^{ZZ} - c_S}{B}$$
(2-185)

$$B_{T1'} = B_{S1} = \frac{C_{SS}^{\theta z}}{B}$$
(2-186)

$$B_{S1\prime} = -\frac{C_{SS}^{\theta\theta} - c_T}{B}$$
(2-187)

2.8.5 Korrekturmatrix zur Strukturflexibilitätsmatrix

Die Matrizen [E] und [E'] sind am freitragenden Flügel formuliert. Um die Strebenreaktion mit in das aeroelastische Modell zu bringen, wird eine Korrekturmatrix eingeführt [Chiozzotto 2015]:

$$[K_E] = [K_{ET}] + [K_{ES}]$$
(2-188)

$$[K_{ET}] = [C^{\theta\theta}] \{1_{st}\} \{1_{st}\}^T ([E]B_{T1} + [E']B_{T1'})$$
(2-189)

$$[K_{ES}] = [C^{\theta z}] \{1_{st}\} \{1_{st}\}^T ([E]B_{S1} + [E']B_{S1'})$$
(2-190)

Dabei ist $\{1_{st}\}$ ein Spaltenvektor mit einer 1 bei dem Streifen, an den die Strebe angeschlossen ist, die restlichen Elemente sind gleich Null [Chiozzotto 2015].

2.8.6 Berechnung der neuen Auftriebsverteilung

Es gilt nach [Chiozzotto 2015]:

$$([A] - q[E_K]) \{ cc_{l,\alpha} \} = [1]$$
(2-191)

Dabei ist [1] eine Diagonalmatrix mit nur Einsen auf der Hauptdiagonalen, die restlichen Elemente sind Nullen [Chiozzotto 2015].

Umgestellt folgt nach [Chiozzotto 2015]:

$$\{cc_{l,\alpha}\} = ([A] - q[E_K])^{-1}$$
(2-192)

Dabei gilt für den dynamischen Druck:

$$q = q(h) = \frac{\rho(h)v^2(h)}{2}$$
(2-193)

2.9 Ermittlung der Massen der Flügelkomponenten

Für Aluminiumplatten ist ein Aufschlag von 5 % anzunehmen, für Gurt- und Rippenplatten aus Verbundwerkstoff 8 % und 9 % für Stegplatten aus Verbundwerkstoff. Für die Montage der Strebe sind 15 % als Aufschlag anzunehmen. Um Vereinfachungen bei der analytischen Berechnung von Massen innerhalb der Methode Rechnung zu tragen, sind diese mit 10 % zu beaufschlagen [Chiozzotto 2015].

Für die sekundäre Flügelstruktur (Beplankung, Klappen, Ruder, Vorflügel, Winglets, Triebwerksaufhängungen, ...) gilt nach [Chiozzotto 2015]:

$$m_{sec} = m_{MTO}^{0.518} S^{0.492} \tag{2-194}$$

Für die sekundäre Struktur der Strebe (Verkleidung) gilt nach [Chiozzotto 2015]:

$$m_{sec,st} = 2.3\rho_{st} \left(2.1L(c_{st} \cos \Lambda_{LRA} - w_{st})t_{min,st} \right)$$
(2-195)

Für die Masse des Flügel-BTK aus Aluminium gilt nach [Chiozzotto 2015]:

$$m_{box} = 1,1(1,05m_{covers} + 1,05m_{webs} + 1,05m_{ribs})$$
(2-196)

Für die Masse des Flügel-BTK aus Verbundwerkstoffen gilt nach [Chiozzotto 2015]:

$$m_{box} = 1,1(1,08m_{covers} + 1,09m_{webs} + 1,08m_{ribs})$$
(2-197)

Für das gesamte Flügelgewicht gilt damit nach [Chiozzotto 2015]:

$$m_{wing,total} = m_{wing} + m_{st} = m_{box} + m_{sec} + m_{box,st} + m_{sec,st}$$
(2-198)

Für einen Flügel mit einem Strebenwinkel von quasi 90°, d. h. ohne Strebe, gilt:

$$m_{wing,total} = m_{wing} \tag{2-199}$$

3 Implementierung der Methode in Microsoft Excel

Die in Kapitel 2 beschriebene Methode mit den dargelegten Formeln soll in das Tabellenkalkulationsprogramm Microsoft Office Excel implementiert werden. Der Aufbau der Datei wird in diesem Kapitel beschrieben.

Da die Luftfahrt in hohem Maße international ausgerichtet ist, ist die Excel-Datei größtenteils in englischer Sprache geschrieben. Die Symbole für die mathematischen Größen entsprechen größtenteils den Symbolen, die Chiozzotto in seiner Abhandlung verwendet.

Zellen, die gelb hinterlegt sind, enthalten Informationen, meistens Text. Hier sollen vom Benutzer keine Eingaben gemacht werden. Zellen, die grün hinterlegt sind, sind Eingabefelder, in die Werte vom Benutzer eingetragen werden sollen. Orange hinterlegte Zellen sind Ergebnisfelder, in denen Rechenergebnisse aufgrund der gemachten Eingaben dargestellt werden. Hier darf vom Benutzer nichts eingegeben werden, um die dahinterliegenden Formeln nicht zu zerstören!

Der Flügel ist in insgesamt 34 Streifen zerlegt, davon 17 auf jeder Seite. Der Abschnitt 1 von der Symmetrieebene bis zum Rumpfanschluss ist 1 Streifen und bekommt den Index A. Der Abschnitt 2 vom Rumpfanschluss bis zum Kink ist in 8 Streifen zerlegt und von B bis I nummeriert. Der Abschnitt 3 vom Kink bis zur Flügelspitze ist ebenfalls in 8 Streifen zerlegt und von J bis Q nummeriert. Die Strebe ist am Streifen J angeschlossen.

span width	b	m	36,00
fuselage width	bf = 2yf	m	2,00
fuselage height	hf	m	3,00
fuselage nose length	lfn	m	3,00
sweep angle of LRA	ALRA	o	0,0
leading edge to engine	XLEE	m	2,00
symmetry plane to engine	ySPE	m	4,00
strut attachment at wing kink!	yst = yk	m	9
strut angle	Ost	o	20,6
strut length	L	m	8,54
wingarea	S	m²	72,0
aspect ratio	AR	1	18,0
taper ratio	lambda	1	1,00
nose to wing aerodynamic center	xACwing	m	20,50
nose to wing leading edge (at MAC)	xMACwing	m	20,00
wing mean aerodynamic chord	MACwing	m	2,00
wing mean geometric chord	SMCwing	m	2,00
average sweep angle of 25 % line	Λ25	0	0,0
nose to wing leading edge (at root)	xref	m	20,00
nose to center of gravity	xCG	m	21,00

3.1 Tabellenblatt "Geometry"

Bild 15: Eingabe der globalen Flugzeuggeometrie

In diesem Tabellenblatt wird die Geometrie des Flugzeugs spezifiziert. Links befindet sich eine Dateneingabemaske, in der globale Geometriedaten des Flugzeugs (Spannweite, Rumpflänge, ...) eingegeben werden. Oben rechts befindet sich eine Eingabemaske zur Definition der Flügelgeometrie.

			Station 1	Station 2	Station 3	Station 4
			wing root at symmetry plane	fuselage attachment	wing kink	wing tip
			i = r	i = f	i = k	i = t
local chord	ci	m	2,00	2,00	2,00	2,00
front spar position	FSi	% of chord	25	25	25	25
rear spar position	RSi	% of chord	75	75	75	75
airfoil thickness ratio	(t/c)i	%	12	12	12	12
distance from symmetry plane	yi	m	0	1	9	18

Weiter unten links werden die Koeffizienten der Flügeltiefenverlaufs- und Flügelvorderkantenverlaufsfunktion berechnet und dargestellt.

chord gradient in section 1	m1	1	-1,000	
chord intercept in section 1	b1	m	4,000	
c1(y) = m1 x y + b1	from root to fuselage attac			
chord gradient in section 2	m2	1	-0,111	
chord intercept in section 2	b2	m	3,111	
c2(y) = m2 x y + b2	from fuse	lage attachmen	t to kink	
chord gradient in section 3	m3	1	-0,125	
chord intercept in section 3	b3	m	3,250	
c3(y) = m3 x y + b3	from kink to tip			

Bild 17: Koeffizienten der Flügeltiefenverlaufsfunktion

LE position gradient in section 1	m1	1	1,000
LE position intercept in section 1	b1	m	20,000
x1(y) = m1 x y + b1	from roo	t to fuselage atta	achment
LE position gradient in section 2	m2	1	0,028
LE position intercept in section 2	b2	m	20,972
x2(y) = m2 x y + b2	from fuse	elage attachmen	t to kink
LE position gradient in section 3	m3	1	0,031
LE position intercept in section 3	b3	m	20,938
x3(y) = m3 x y + b3	from kink to tip		

Bild 18: Koeffizienten der Flügelvorderkantenverlaufsfunktion

3.2 Tabellenblatt "Aircraft Loads"

Hier werden die am Flugzeug wirkenden Lasten ermittelt. Oben links werden Massen, Geschwindigkeiten und Atmosphärenparameter eingegeben und berechnet. Direkt darunter wird die relative Lage des Flugzeugneutralpunkts sowie des Flugzeugschwerpunkts ermittelt. Noch tiefer befindet sich die Berechnung des Auftriebsanstiegs in den Böenlastfällen nach Ricciardi und Pratt. Mittig werden die 1g- und die Δ -Lasten in den 9 verschiedenen Lastfällen ermittelt. Die Lastfälle selbst werden oben rechts dargestellt.

maximum take-off weight	MTOW	kg	49.812				
maximum zero fuel weight	MZFW	kg	36.800				
maximum operating Mach number	MMO	1	0,51				. 4
(true) maneuver speed in altitude	VA(h)	kt	258,9	km/h	479,4	m/s	133,2
(true) cruise speed in altitude	VC(h)	kt	309,6	km/h	573,3	m/s	159,3
(true) dive speed in altitude	VD(h)	kt	352,0	km/h	652,0	m/s	181,1
density on ground	rho0	kg/m³	1,225				
temperature on ground	то	°C	15,0	K	288,15		
isentropic exponent	k	1	1,4				
specific gas constant	Ri	J/(kgxK)	287,1				
altitude	h	ft	23.000	m	7.010	max.	11 km!
temperature in altitude	T(h)	°C	-30,6	K	242,6		
speed of sound in altitude	a(h)	km/h	1.124	m/s	312,3		
density in altitude	rho(h)	kg/m³	0,589		0		

Bild 19: Massen, Geschwindigkeiten und Atmosphärenparameter

aerodynamic center position	ACwb	% of MAC	21,1			
center of gravity position	CG	% of MAC	50,0			
distance from ACwing to ACtail	lt	m	24,0			
correction by fuselage lift	deltaf1 x (xAC/MAC)	1	-0,039	%	-3,9	+ AC to tail
correction by wing lift loss in fuselage	deltaf2 x (xAC/MAC)	1	0,000	%	0,0	- AC to nose
wetted wing area	Snet	m²	68,0			
lift gradient of wing + fuselage	(dcL/dalpha)wf	1/rad	5,781	π/rad	1,840	
lift gradient of wing	(dcL/dalpha)w	1/rad	5,386	π/rad	1,714	
correction factor for wing lift loss	KI	1	1,073			

Bild 20: AC- und CG-Berechnung

mittlere Flügeltiefe	cquer	m	2,00	
Massenverhältnis	μg	1	6,422	mit dem ae CLalpha von G+
Massenverhältnis	μg	1	6,422	mit dem ae CLalpha von G-
Abminderungsfaktor	Kg	1	0,481	mit dem μg von G+
Abminderungsfaktor	Kg	1	0,481	mit dem µg von G-
Böenstärke	vböe	m/s	25,6	
Betrag der Anstellwinkeldifferenz	deltaalpha	0	9,1	
Auftriebsdifferenz	deltaL	N	550.138	mit dem ae CLalpha von G+
Auftriebsdifferenz	deltaL	N	550.138	mit dem ae CLalpha von G-

Bild 21: Berechnung des Auftriebsanstiegs nach Pratt

Single Loads								
case	LW,1g	LW,delta	BTL1g	BTLdelta				
	N	N	N	N				
MA+	476.929	715.393	11.727	17.591				
MD+	476.929	715.393	11.727	17.591				
G+	352.344	258.199	8.664	6.349				
M-	476.929	-953.857	11.727	-23.454				
G-	352.344	-258,199	8.664	-6.349				
bump	476.929	319.542	11.727	7.857				
1g	414.636	0	10.195	0				
R+	476.929	319.542	11.727	7.857				
R-	476.929	-476.929	11.727	-11.727				

Bild 22: Berechnung der 1g- und ∆-Lasten

	Load Cases									
case	aircraft mass	design speed	Mach number	load factor	safety factor	LW	BTL	effective wing loading	description	
	kg	m/s	1	1	1	N	N	kg/m²		
MA+	49.812	146,0	0,43	2,50	1,5	1.192.321	29.318	1.730	low speed maneuver	
MD+	49.812	181,1	0,58	2,50	1,5	1.192.321	29.318	1.730	high speed maneuver	
G+	36.800	159,3	0,51	1,73	1,5	610.543	15.013	886	positive gust	
M-	49.812	159,3	0,51	-1,00	1,5	-476.929	-11.727	-692	negative maneuver	
G-	36.800	159,3	0,51	0,27	1,5	94.146	2.315	137	negative gust	
bump	49.812	0,0	0,00	1,67	1,5	796.471	19.584	1.155	bump on ground	
1g	43.306	159,3	0,51	1,00	1,0	414.636	10.195	601	fatigue case	
R+	49.812	159,3	0,51	1,67	1,5	796.471	19.584	1.155	steady roll rate	
R-	49.812	159,3	0,51	0,00	1,5	0	0	0	steady roll rate	

Bild 23: Lastfalldaten

3.3 Tabellenblatt "Wing Loads"

Hier werden aus den Geometriedaten und Flugzeuglasten die Flügellasten ermittelt.

maximum operating speed in altitude	VMO	kt	310	km/h	573	m/s	159,3
non-dimensional roll-rate	p^	rad	0,07	0	4,0		
maximum aileron deflection	δmax	o	-15	rad	-0,262	π x rad	-0,083
aileron effectiveness factor	kail	1	0,75				
correction factor for wing lift loss	KI	1	1,073				
wing area	S	m²	72,0				
wing mass (initial)	mwing	kg	5.000				

Bild 24: Querruderausschlagsdaten

airfoil thickness to chord ratio gradient in section 1	m1	1/m	0,000	
airfoil thickness to chord ratio intercept in section 1	b1	1	0,120	
(t/c)1(y) = m1 x y + b1	from root to fuselage attachment			
airfoil thickness to chord ratio gradient in section 2	m2	1/m	0,000	
airfoil thickness to chord ratio intercept in section 2	b2	1	0,120	
(t/c)2(y) = m2 x y + b2	from fuselage attachment to kink			
airfoil thickness to chord ratio gradient in section 3	m3	1/m	0,000	
airfoil thickness to chord ratio intercept in section 3	b3	1	0,120	
(t/c)3(y) = m3 x y + b3	from kink to tip			

Bild 25: Flügeldickenverlaufsfunktion

front spar position gradient in section 1	m1	1/m	0,000		
front spar position intercept in section 1	b1	1	0,250		
FS1(y) = m1 x y + b1	from root to fuselage attachment				
front spar position gradient in section 2	m2	1/m	0,000		
front spar position intercept in section 2	b2	1	0,250		
FS2(y) = m2 x y + b2	from fu	selage attachm	nent to kink		
front spar position gradient in section 3	m3	1/m	0,000		
front spar position intercept in section 3	b3	1	0,250		
FS3(y) = m3 x y + b2	from kink to tip				

Bild 26: Vorderholmverlaufsfunktion

rear spar position gradient in section 1	m1	1/m	0,000			
rear spar position intercept in section 1	b1	1	0,750			
RS1(y) = m1 x y + b1	from root to fuselage attachment					
rear spar position gradient in section 2	m2	1/m	0,000			
rear spar position intercept in section 2	b2	1	0,750			
RS2(y) = m2 x y + b2	from fus	from fuselage attachment to kink				
rear spar position gradient in section 3	m3	1/m	0,000			
rear spar position intercept in section 3	b3	1	0,750			
RS3(y) = m3 x y + b2	from kink to tip					

Bild 27: Hinterholmve	erlaufsfunktion
-----------------------	-----------------

	1g wing lift		LW,1g	N	476.929				
	additional win	g lift	LW,delta	N	715.393				
	wing mass (cho	osen)	mwing	kg	2.293				
	fuel mass		mfuel	kg	13.012				
	load factor		nz	1	2,50				
Lood Cosos MAL	initial	aeroelastic offects	Kel	1	1				
	calculated	factor	Kel	1	1,142				
LUau Case. MA+	chosen	Tactor	Kel	1	1,142				
	aerodynamic	wing lift coefficient	CLalpha	1/rad	5,386	π/rad	1,714		
	aeroelastic	derivative	CLalpha	1/rad	6,152	π/rad	1,958		
	Mach number at altitude		M	1	0,43				
	design speed	design speed		m/s	146	km/h	526	kt	284
	dynamic pressure		q	Pa	6.272				

Bild 28: Übersichtsmaske für die Flügellasten-Berechnung in jedem Lastfall

Control: m [kg]		aerodynamic	inertia relief wing
44.320		wing loading	loading
49.812		llaero,i	llinertia,i
		N/m	N/m
Section 1	А	0	-10.427
	В	32.519	-10.427
	С	32.470	-10.427
	D	32.396	-10.427
Continue D	E	32.296	-10.427
Section 2	F	32.170	-10.427
	G	32.016	-10.427
	н	31.831	-10.427
	1	31.615	-10.427
	J	31.339	-10.427
	К	31.005	-10.427
	L	30.611	-10.427
Cardian 2	М	30.146	-10.427
Section 5	N	29.587	-10.427
	0	38.377	-10.427
	Р	36.665	-10.427
	Q	26.632	-10.427

Bild 29: streifenweise Flügellasten und Massenkontrollfeld

local ae	roelastic effe	ects factor	section	section	local	local	sect	tion	local aileron	local
initial	calculated	chosen	width	center	Schrenk chord	chord	posi	tion	chord	chord ratio
kel,i	kel,i	kel,i	deltayi	yî	cschi	ci	from	to	caili	τί
1	1	1	m	m	m	m	% of ha	lf-span	m	1
1	0,000	0,000	1	0,5	2,27	2,00	0,0	5,6	0,00	0,00
1	1,142	1,142	1,00	1,50	2,27	2,00	5,6	11,1	0,00	0,00
1	1,142	1,142	1,00	2,50	2,26	2,00	11,1	16,7	0,00	0,00
1	1,142	1,142	1,00	3,50	2,25	2,00	16,7	22,2	0,00	0,00
1	1,142	1,142	1,00	4,50	2,23	2,00	22,2	27,8	0,00	0,00
1	1,142	1,142	1,00	5,50	2,21	2,00	27,8	33,3	0,00	0,00
1	1,142	1,142	1,00	6,50	2,19	2,00	33,3	38,9	0,00	0,00
1	1,142	1,142	1,00	7,50	2,16	2,00	38,9	44,4	0,00	0,00
1	1,142	1,142	1,00	8,50	2,12	2,00	44,4	50,0	0,00	0,00
1	1,142	1,142	1,13	9,56	2,08	2,00	50,0	56,3	0,00	0,00
1	1,142	1,142	1,13	10,69	2,02	2,00	56,3	62,5	0,00	0,00
1	1,142	1,142	1,13	11,81	1,96	2,00	62,5	68,8	0,00	0,00
1	1,142	1,142	1,13	12,94	1,89	2,00	68,8	75,0	0,00	0,00
1	1,142	1,142	1,13	14,06	1,79	2,00	75,0	81,3	0,00	0,00
1	1,142	1,142	1,13	15,19	1,68	2,00	81,3	87,5	0,80	0,40
1	1,142	1,142	1,13	16,31	1,54	2,00	87,5	93,8	0,80	0,40
1	1.142	1.142	1.13	17.44	1.32	2.00	93.8	100.0	0.00	0.00

Bild 30: Aeroelastikdaten, Streifenposition/-breite, Profiltiefen-/Querruderdaten

local airfoil thickness to chord	local aileron derivative due to roll rate	local aileron derivative due to aileron deflection	local rigid lift coefficient derivative multiplied by local chord	local lift coefficient derivative multiplied by local chord
(t/c)i	clp^,i	cldelta,i	(ccl,alpha^r)i	(ccl,alpha)i
1	1/rad	1/rad	m/rad	m/rad
0,120	0,000	0,000	10,77	
0,120	0,000	0,000	10,77	12,30
0,120	0,000	0,000	10,77	12,30
0,120	0,000	0,000	10,77	12,30
0,120	0,000	0,000	10,77	12,30
0,120	0,000	0,000	10,77	12,30
0,120	0,000	0,000	10,77	12,30
0,120	0,000	0,000	10,77	12,30
0,120	0,000	0,000	10,77	12,30
0,120	0,000	0,000	10,77	12,30
0,120	0,000	0,000	10,77	12,30
0,120	0,000	0,000	10,77	12,30
0,120	0,000	0,000	10,77	12,30
0,120	0,000	0,000	10,77	12,30
0,120	-0,488	-3,559	10,77	12,30
0,120	-0,488	-3,559	10,77	12,30
0,120	0,000	0,000	10,77	12,30

Bild 31: Profiltiefe, Rolldaten, aeroelastische Ergebnisse

local shear	local bending	local torsion	local	local front	local rear
load	moment	moment	excentricity	spar position	spar position
SLRAi	MLRAi	TLRAi	ei	FSi	RSi
N	Nm	Nm	m	m	m
-180.555	985.056	-268.529	0,50	0,50	1,50
-180.555	985.056	-268.529	0,50	0,50	1,50
-180.555	985.056	-268.529	0,50	0,50	1,50
-180.555	985.056	-268.529	0,50	0,50	1,50
-180.555	985.056	-268.529	0,50	0,50	1,50
-180.555	985.056	-268.529	0,50	0,50	1,50
-180.555	985.056	-268.529	0,50	0,50	1,50
-180.555	985.056	-268.529	0,50	0,50	1,50
-180.555	985.056	-268.529	0,50	0,50	1,50
-180.555	985.056	-268.529	0,50	0,50	1,50
-157.216	768.698	-233.460	0,50	0,50	1,50
-134.287	578.807	-198.801	0,50	0,50	1,50
-111.841	414.962	-164.625	0,50	0,50	1,50
-89.971	276.662	-131.026	0,50	0,50	1,50
-63.471	163.319	-92.796	0,50	0,50	1,50
-32.990	74.227	-50.584	0,50	0,50	1,50
-9.115	20.510	-14.980	0,50	0,50	1,50

Bild 32: Schnittgrößen

Ai	Ages	m
N	N	kg
0	1.086.940	44.320
32.519		
32.470		
32.396		
32.296		
32.170		
32.016		
31.831		
31.615		
35.257		
34.880		
34.438		
33.914		
33.286		
43.175		
41.248		
29.961		

Bild 33: Massenermittlung aus Luftlasten

3.4 Tabellenblatt "Wing Box Sizing"

Hier wird der Flügel-Biegetorsionskasten dimensioniert.

material shear allowable	Fmat,s	MPa	220				
skin to skin + stringer thickness ratio	ks	1	0,86	0,400,86			
ply longitudinal modulus	Ex0	MPa	70.000				
laminate longitudinal modulus	Ex	MPa	45.000				
laminate transversal modulus	Ey	MPa	27.000				
shear modulus	Gxy	MPa	17.000				
Poisson's ratio in x-y-direction	μху	1	0,32				
Poisson's ratio in y-x-direction	μух	1	0,28				
wing box height reduction factor	r	1	0,9				
ribs spacing	Lr	m	0,5000	cm	50,00	mm	500,0
composite factor	kcomp	1	0,769				
composite auxiliary factor	Z	1	1,268				
Farrar effectivity	F(ks)	1	0,475				
density of covers	rhoc	kg/m³	2.700,0	t/m³	2,70		
density of ribs and webs	rhow	kg/m³	2.700,0	t/m³	2,70		

Bild 34: Daten zum BTK-Material

safety factor	SF	1	1,5	
material tensile allowable	Fmat,t	MPa	360	Load Case: MA+
wing box weight	mbox	kg	3.082	
	D	1105	1 0 11 1	

Bild 35: lastfallrelevante Materialdaten

		local wing	local wing	local normal	local shear flow
		box width	box height	load on cover	due to torsion
		wi	hi	Pi	Qi
		m	m	N	N/mm
Section 1	A	1,00	0,22	6.840.664	-932
	В	1,00	0,22	6.840.664	-932
	С	1,00	0,22	6.840.664	-932
	D	1,00	0,22	6.840.664	-932
Section 2	E	1,00	0,22	6.840.664	-932
	F	1,00	0,22	6.840.664	-932
	G	1,00	0,22	6.840.664	-932
	н	1,00	0,22	6.840.664	-932
	3	1,00	0,22	6.840.664	-932
	1	1,00	0,22	6.840.664	-932
	К	1,00	0,22	5.338.178	-811
	L	1,00	0,22	4.019.495	-690
2	M	1,00	0,22	2.881.678	-572
Section 3	N	1,00	0,22	1.921.264	-455
	0	1,00	0,22	1.134.162	-322
	Р	1,00	0,22	515.464	-176
	Q	1,00	0,22	142.428	-52

Bild 36: BTK-Ausmaße und Kraftflüsse

local smeared cover	local primary chosen	local smeared cover	local smeared cover thickness	maximum of strength	local smeared cover thickness for	local smeared cover thickness for
thickness	smeared cover thickness	thickness against	for strength (aluminum)	composite thicknesses	strength (composite, bending)	strength (composite, torsion)
tei	max(te,buck;te,strength)	te,buck,i	te,strength,Al,i	tmax,strength,comp	te,strength,comp,bend,i	te,strength,comp,tor,i
mm	mm	mm	mm	mm	mm	mm
19,70	19,70	0,02	19,70	19,00	19,00	4,93
19,70	19,70	0,02	19,70	19,00	19,00	4,93
19,70	19,70	0,02	19,70	19,00	19,00	4,93
19,70	19,70	0,02	19,70	19,00	19,00	4,93
19,70	19,70	0,02	19,70	19,00	19,00	4,93
19,70	19,70	0,02	19,70	19,00	19,00	4,93
19,70	19,70	0,02	19,70	19,00	19,00	4,93
19,70	19,70	0,02	19,70	19,00	19,00	4,93
19,70	19,70	0,02	19,70	19,00	19,00	4,93
19,70	19,70	0,02	19,70	19,00	19,00	4,93
15,51	15,51	0,02	15,51	14,83	14,83	4,28
11,81	11,81	0,01	11,81	11,17	11,17	3,65
8,62	8,62	0,01	8,62	8,00	8,00	3,02
5,91	5,91	0,01	5,91	5,34	5,34	2,40
3,63	3,63	0,01	3,63	3,15	3,15	1,70
1,74	1,74	0,01	1,74	1,43	1,43	0,93
0.49	0.49	0.00	0.49	0.40	0.40	0.27

Bild 37: Berechnung der Gurtplattendicke

local buckling allowable	design variable	non-optimal factor	design variable	non-optimal factor for webs	non-optimal factor for ribs	spar webs smeared thickness	ribs webs smeared thickness	ribs caps smeared
Fb,i	ke,i	kNO,e,i	kw,i	kNO,w,i	kNO,rib,i	twi	trib,w,i	trib,c,i
MPa	1	1	1	1	1	mm	mm	mm
357,4	1	1	1	1	1	8,86	0,65	0,00
357,4	1	1	1	1	1	8,86	1,16	0,36
357,4	1	1	1	1	1	8,86	1,16	0,36
357,4	1	1	1	1	1	8,86	1,16	0,36
357,4	1	1	1	1	1	8,86	1,16	0,36
357,4	1	1	1	1	1	8,86	1,16	0,36
357,4	1	1	1	1	1	8,86	1,15	0,36
357,4	1	1	1	1	1	8,86	1,15	0,36
357,4	1	1	1	1	1	8,86	1,15	0,35
357,4	1	1	1	1	1	8,86	1,14	0,35
315,7	1	1	1	1	1	7,71	1,14	0,35
273,9	1	1	1	1	1	6,57	1,13	0,34
231,9	1	1	1	1	1	5,45	1,12	0,34
189,4	1	1	1	1	1	4,36	1,11	0,33
145,5	1	1	1	1	1	3,08	1,25	0,43
98,1	1	1	1	1	1	1,65	1,23	0,41
51,6	1	1	1	1	1	0,48	1,07	0,30

Bild 38: Beulspannungen, Designvariablen und Steg- und Rippendicken

covers mass	webs mass	ribs mass	wing box volume
mcoversi	mwebs,i	mribs,i	Vbox,i
kg	kg	kg	m³
212,81	20,67	1,51	0,195
212,81	20,67	3,56	0,195
212,81	20,67	3,55	0,195
212,81	20,67	3,55	0,195
212,81	20,67	3,54	0,195
212,81	20,67	3,53	0,195
212,81	20,67	3,52	0,195
212,81	20,67	3,51	0,195
212,81	20,67	3,50	0,195
239,41	23,25	3,92	0,219
188,40	20,23	3,89	0,224
143,54	17,25	3,87	0,228
104,73	14,31	3,83	0,232
71,84	11,44	3,79	0,235
44,10	8,09	4,41	0,238
21,10	4,33	4,29	0,241
5,97	1,25	3,58	0,242

Bild 39: Massen der BTK-Komponenten und BTK-Innenraumvolumen

3.5 Tabellenblatt "Strut Loads"

Hier wird die Axialkraft der Strebe berechnet.

longitudinal elasticity modulus	Ex0	MPa	70.000
strut position	yst	m	9
position of strip B	уВ	m	1,50
position of strip C	уC	m	2,50
position of strip D	уD	m	3,50
position of strip E	уE	m	4,50
position of strip F	уF	m	5,50
position of strip G	уG	m	6,50
position of strip H	уН	m	7,50
position of strip I	yl	m	8,50

Bild 40: Streifenpositionen

		area moment of inertia around
Load Case: MA+		x-axis of local wing box section
		lxxi
		mm^4
	В	484.450.569
	С	484.450.569
	D	484.450.569
contion 2	E	484.450.569
section 2	F	484.450.569
	G	484.450.569
	н	484.450.569
	1	484.450.569
	J	484.450.569
	к	378.060.679
	L	287.291.557
continu 2	М	210.006.579
section 3	N	144.902.378
	0	89.640.268
	Р	43.217.989
	Q	12.250.086

Bild 41: Flächenträgheitsmomente der BTK-Schnitte

area moment of inertia	area moment of inertia	summands of counter	summands of
around x-axis of rectangle 1	around x-axis of rectangle 2		denominator
lxx1	lxx2	MLRAi/Ixxi	(yst-yi)/lxxi
mm^4	mm^4	Nm/mm^4	m/mm^4
6.286.391	4.065.761	0,002033346	1,54815E-08
6.286.391	4.065.761	0,002033346	1,34173E-08
6.286.391	4.065.761	0,002033346	1,13531E-08
6.286.391	4.065.761	0,002033346	9,28887E-09
6.286.391	4.065.761	0,002033346	7,22468E-09
6.286.391	4.065.761	0,002033346	5,16049E-09
6.286.391	4.065.761	0,002033346	3,09629E-09
6.286.391	4.065.761	0,002033346	1,0321E-09
6.286.391	4.065.761		
2.705.402	4.065.907		
1.040.421	3.898.474		
344.476	3.568.990		
92.329	3.092.465		
16,270	2.336.686		
1.156	1.318.946		
46	202.001		

Bild 42: Zähler und Nenner zur Berechnung der Strebenreaktion

area moment againt torsion	included area of local	summand 1 of	summand 2 of
of local wing box section	wing box section	denominator	denominator
Ji	Ami	summand 1	summand 2
mm^4	m²	1	1
1.272.069.410	0,216	22	51
1.272.069.410	0,216	22	51
1.272.069.410	0,216	22	51
1.272.069.410	0,216	22	51
1.272.069.410	0,216	22	51
1.272.069.410	0,216	22	51
1.272.069.410	0,216	22	51
1.272.069.410	0,216	22	51
1.272.069.410	0,216	22	51
1.025.405.906	0,216	26	65
802.532.011	0,216	31	85
603.312.155	0,216	38	117
427.937.172	0,216	48	170
270.280.271	0,216	69	276
132.030.724	0,216	130	577
37.467.960	0,216	453	2.037

Bild 43: Torsionsträgheitsmomente

vertical strut reaction in Load Case MA+	Sst	N	-246.264
vertical strut reaction in Load Case MD+	Sst	N	-231.118
vertical strut reaction in Load Case G+	Sst	N	-134.156
vertical strut reaction in Load Case M-	Sst	N	109.741
vertical strut reaction in Load Case G-	Sst	N	-21.784
vertical strut reaction in Load Case Bump	Sst	N	-116.531
vertical strut reaction in Load Case 1g	Sst	N	-64.510
vertical strut reaction in Load Case R+	Sst	N	-116.324
vertical strut reaction in Load Case R-	Sst	N	25.073
maximum vertical strut reaction	Sst,max	N	-246.264

Bild 44: Ermittlung der maximalen Strebenvertikalreaktion

3.6 Tabellenblatt "Strut Sizing"

Hier wird die tragende Struktur der Strebe dimensioniert.

strut material longitudinal elasticity modulus	Est	Pa	70.000.000.000	MPa	70.000
strut material shear elasticity modulus	Gst	Pa	40.000.000.000	MPa	40.000
strut material density	rhost	t/m³	2,70		
strut chord	cst	m	0,50	maximum m	2,00
strut box width	wst	m	0,30	smaller than m	0,50
strut box height	hst	m	0,10		
strut minimum skin thickness	tmin,st	mm	1,00	1,00 mm1,50 mm	
strut skin to skin + stringer thickness ratio	ks,st	1	0,5		
maximum vertical strut reaction	Sst,max	N	-246.264		
strut equivalent cover thickness	te,st	mm	2,00		
strut box mass	mst,box	kg	74,3		
strut section area	Ast	m²	0,0016		
strut included section area	Ast,m	m²	0,0300		
strut area moment of inertia around local x-axis	lxx,st	m^4	0,00000346		
strut area moment of inertia around local z-axis	Izz,st	m^4	0,00001812		
strut area moment of deviation	Jst	m^4	0,3000		
strut flexibility coefficient for torsion	cT	Nm	-0,000000008		
strut flexibility coefficient for shear	cS	N/m	-0,000000755		
strut area moment of inertia around local x-axis of rectangle 1	lxx1	m^4	0,00000000201		
strut area moment of inertia around local z-axis of rectangle 1	Izz1	m^4	0,000004590601		
strut area moment of inertia around local x-axis of rectangle 2	lxx2	m^4	0,000000156865		
strut area moment of inertia around local z-axis of rectangle 2	Izz2	m^4	0,00000000065		

Bild 45: Strebenquerschnittsdaten

	required stiffness	equivalent cover thickness	equivalent cover thickness 1	equivalent cover thickness 2
	(El)req	te,st	te,st,1	te,st,2
	Nmm ²	mm	mm	mm
maximum of all load cases	7,78136E+12	2,00	0,00	2,00

Bild 46: Strebenwanddicke

3.7 Tabellenblatt "Static Aeroelasticity"

Hier werden aeroelastische Effekte modelliert.

wing box material	l shear modulu	5	G	MPa 40.000		
	deflection du	e to vertical fo	rce: Czz (y, η)	torsion due to torsion moment: C00 (y, $\eta)$	torsion due force: C	e to vertical θz (y, η)
	summand 1	summand 2	summand 3		summand 1	summand 2
	s1	s2	s3	СӨӨ (у, ŋ)	s1	s2
	m/N	1/N	1/(Nm)	1/(Nm)	1/(Nm)	1/N
Load Case MA+	2.997.714	2.690.846	2.418.075	1.421.866	-2.418.075	-2.690.846
Load Case MD+	3.184.069	2.858.115	2.568.378	1.502.654	-2.568.378	-2.858.115
Load Case G+	5.510.870	4.948.232	4.448.110	2.650.885	-4.448.110	-4.948.232
Load Case M-	5.115.493	4.607.338	4.155.645	2.477.045	-4.155.645	-4.607.338
Load Case G-	91.178.009	81.350.689	72.615.293	42.226.647	-72.615.293	-81.350.689
Load Case Bump	5.893.757	5.294.009	4.760.900	2.767.935	-4.760.900	-5.294.009
Load Case 1g	18.550.000	16.640.395	14.942.968	8.719.399	-14.942.968	-16.640.395
Load Case R+	5.899.148	5.298.892	4.765.332	2.770.449	-4.765.332	-5.298.892
Load Case R-	17.232.224	15.591.457	14.132.997	9.119.549	-14.132.997	-15.591.457

Bild 47: Koeffizienten der Elementfunktionen

[nB	nC	nD	nF	nE	nG	nH	nl	nl	nK	nl	nM	nN	nΟ	nP	nQ
		1.50	2.50	3,50	4.50	5.50	6,50	7.50	8,50	9.56	10.69	11.81	12.94	14.06	15.19	16.31	17.44
yB	1,50	365.844	1.302.111	2.238.378	3.174.644	4.110.911	22.537.678	5.983.445	6.919.711	7.914.495	8.967.795	10.021.095	11.074.395	12.127.695	13.180.995	14.234.295	15.287.595
yC	2,50	1.302.111	4.656.453	8.010.795	11.365.137	14.719.479	35.564.322	21.428.163	24.782.505	28.346.494	32.120.128	35.893.763	39.667.398	43.441.033	47.214.668	50.988.302	54.761.937
уD	3,50	2.238.378	8.010.795	13.783.212	19.555.630	25.328.047	48.590.965	36.872.882	42.645.299	48.778.493	55.272.462	61.766.432	68.260.401	74.754.371	81.248.340	87.742.310	94.236.279
γE	4,50	3.174.644	11.365.137	19.555.630	27.746.122	35.936.615	61.617.608	52.317.600	60.508.093	69.210.492	78.424.796	87.639.100	96.853.404	106.067.709	115.282.013	124.496.317	133.710.621
yF	5,50	4.110.911	14.719.479	25.328.047	35.936.615	46.545.183	74.644.252	67.762.319	78.370.887	89.642.490	101.577.129	113.511.768	125.446.407	137.381.046	149.315.685	161.250.324	173.184.963
уG	6,50	5.047.178	18.073.821	31.100.464	44.127.108	57.153.751	87.670.895	83.207.038	96.233.681	110.074.489	124.729.463	139.384.437	154.039.411	168.694.384	183.349.358	198.004.332	212.659.305
уH	7,50	5.983.445	21.428.163	36.872.882	52.317.600	67.762.319	100.697.538	98.651.756	114.096.475	130.506.488	147.881.797	165.257.105	182.632.414	200.007.722	217.383.030	234.758.339	252.133.647
yl	8,50	6.919.711	24.782.505	42.645.299	60.508.093	78.370.887	113.724.181	114.096.475	131.959.269	150.938.487	171.034.130	191.129.774	211.225.417	231.321.060	251.416.703	271.512.346	291.607.989
γJ	9,56	7.914.495	28.346.494	48.778.493	69.210.492	89.642.490	127.564.990	130.506.488	150.938.487	172.647.486	195.633.485	218.619.484	241.605.483	264.591.481	287.577.480	310.563.479	333.549.478
yК	10,69	8.967.795	32.120.128	55.272.462	78.424.796	101.577.129	142.219.964	147.881.797	171.034.130	195.633.485	221.679.860	247.726.236	273.772.611	299.818.986	325.865.362	351.911.737	377.958.112
γL	11,81	10.021.095	35.893.763	61.766.432	87.639.100	113.511.768	156.874.937	165.257.105	191.129.774	218.619.484	247.726.236	276.832.988	305.939.740	335.046.491	364.153.243	393.259.995	422.366.747
yМ	12,94	11.074.395	39.667.398	68.260.401	96.853.404	125.446.407	171.529.911	182.632.414	211.225.417	241,605,483	273.772.611	305.939.740	338.106.868	370.273.997	402.441.125	434.608.254	466.775.382
yN	14,06	12.127.695	43.441.033	74.754.371	106.067.709	137.381.046	186.184.885	200.007.722	231.321.060	264.591.481	299.818.986	335.046.491	370.273.997	405.501.502	440.729.007	475.956.512	511.184.017
yO	15,19	13.180.995	47.214.668	81.248.340	115.282.013	149.315.685	200.839.858	217.383.030	251.416.703	287.577.480	325.865.362	364.153.243	402.441.125	440.729.007	479.016.888	517.304.770	555.592.652
уP	16,31	14.234.295	50.988.302	87.742.310	124.496.317	161.250.324	215.494.832	234.758.339	271.512.346	310.563.479	351.911.737	393.259.995	434.608.254	475.956.512	517.304.770	558.653.028	600.001.286
yQ.	17,44	15.287.595	54.761.937	94.236.279	133.710.621	173.184.963	230.149.806	252.133.647	291.607.989	333.549.478	377.958.112	422.366.747	466.775.382	511.184.017	555.592.652	600.001.286	644.409.921

Bild 48: gefüllte Matrix mit Zeilen- und Spalteninformationen

Czz (y, η)	gleich	2.997.714	minus	2.690.846	mal	(ŋ+y)	plus	2.418.075	mal	ŋy
m/N	C. C. C.	s1		s2		1. Contraction		s3		01305

Bild 49: Funktionsaufstellung

	Czz,ss	gleich	172.647.486	m/N
B	ild 50: Struk	tureinflussk	oeffizient am Str	rebenstreifer

В	1/N ²	-4,20865E+14
BS1	N	6,13348E-08
BS1'	N/m	3,37844E-09
BT1	Nm	4,1022E-07
BT1'	N	6,13348E-08

Bild 51: Hilfsgrößen

	[ec]																
		ηB	ηC	ηD	ηE	ηF	ηG	ηH	ŋl	ŋJ	ηK	ηL	ηM	ηN	ηO	ηP	ηQ
		1,50	2,50	3,50	4,50	5,50	6,50	7,50	8,50	9,56	#####	#####	#####	*****	#####	#####	####
yВ	1,50	0,50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
yC.	2,50	0	0,50	0	0	0	0	0	0	0	0	0	0	0	0	0	0
уD	3,50	0	0	0,50	0	0	0	0	0	0	0	0	0	0	0	0	0
уE	4,50	0	0	0	0,50	0	0	0	0	0	0	0	0	0	0	0	0
yF	5,50	0	0	0	0	0,50	0	0	0	0	0	0	0	0	0	0	0
уG	6,50	0	0	0	0	0	0,50	0	0	0	0	0	0	0	0	0	0
уH	7,50	0	0	0	0	0	0	0,50	0	0	0	0	0	0	0	0	0
yl	8,50	0	0	0	0	0	0	0	0,50	0	0	0	0	0	0	0	0
yJ	9,56	0	0	0	0	0	0	0	0	0,50	0	0	0	0	0	0	0
уK	#####	0	0	0	0	0	0	0	0	0	0,50	0	0	0	0	0	0
уL	#####	0	0	0	0	0	0	0	0	0	0	0,50	0	0	0	0	0
yМ	####	0	0	0	0	0	0	0	0	0	0	0	0,50	0	0	0	0
yN	#####	0	0	0	0	0	0	0	0	0	0	0	0	0,50	0	0	0
yО	#####	0	0	0	0	0	0	0	0	0	0	0	0	0	0,50	0	0
уP	#####	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,50	0
yQ	####	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,50

Bild 52: gefüllte Matrix [ec]

	[dy]																
		ηB	ηC	ηD	ηE	ηF	ηG	ηH	ηI	ηJ	ηK	ηL	ηM	ηN	ηO	ηP	ηQ
		1,50	2,50	3,50	4,50	5,50	6,50	7,50	8,50	9,56	#####	#####	####	****	#####	#####	#####
yВ	1,50	1,00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
уC	2,50	0	1,00	0	0	0	0	0	0	0	0	0	0	0	0	0	0
уD	3,50	0	0	1,00	0	0	0	0	0	0	0	0	0	0	0	0	0
уE	4,50	0	0	0	1,00	0	0	0	0	0	0	0	0	0	0	0	0
yF	5,50	0	0	0	0	1,00	0	0	0	0	0	0	0	0	0	0	0
yG	6,50	0	0	0	0	0	1,00	0	0	0	0	0	0	0	0	0	0
уH	7,50	0	0	0	0	0	0	1,00	0	0	0	0	0	0	0	0	0
yl	8,50	0	0	0	0	0	0	0	1,00	0	0	0	0	0	0	0	0
yJ	9,56	0	0	0	0	0	0	0	0	1,13	0	0	0	0	0	0	0
yК	#####	0	0	0	0	0	0	0	0	0	1,13	0	0	0	0	0	0
yL	#####	0	0	0	0	0	0	0	0	0	0	1,13	0	0	0	0	0
yМ	####	0	0	0	0	0	0	0	0	0	0	0	1,13	0	0	0	0
yN	*****	0	0	0	0	0	0	0	0	0	0	0	0	1,13	0	0	0
yО	*****	0	0	0	0	0	0	0	0	0	0	0	0	0	1,13	0	0
уP	#####	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,13	0
yQ	#####	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,13

Bild 53: gefüllte Matrix [dy]

	[A]																
		ηВ	ηC	ηD	ηE	ηF	ηG	ηH	ŋł	ղյ	ηK	ղԼ	ηM	ηN	ηO	ηP	ηQ
		1,50	2,50	3,50	4,50	5,50	6,50	7,50	8,50	9,56	#####	####	####	#####	####	#####	#####
yВ	1,50	0,08	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
уC	2,50	0	0,08	0	0	0	0	0	0	0	0	0	0	0	0	0	0
уD	3,50	0	0	0,08	0	0	0	0	0	0	0	0	0	0	0	0	0
уE	4,50	0	0	0	0,08	0	0	0	0	0	0	0	0	0	0	0	0
yF	5,50	0	0	0	0	0,08	0	0	0	0	0	0	0	0	0	0	0
уG	6,50	0	0	0	0	0	0,08	0	0	0	0	0	0	0	0	0	0
yН	7,50	0	0	0	0	0	0	0,08	0	0	0	0	0	0	0	0	0
уI	8,50	0	0	0	0	0	0	0	0,08	0	0	0	0	0	0	0	0
уJ	9,56	0	0	0	0	0	0	0	0	0,08	0	0	0	0	0	0	0
уК	#####	0	0	0	0	0	0	0	0	0	0,08	0	0	0	0	0	0
уL	####	0	0	0	0	0	0	0	0	0	0	0,08	0	0	0	0	0
yМ	#####	0	0	0	0	0	0	0	0	0	0	0	0,08	0	0	0	0
yN	#####	0	0	0	0	0	0	0	0	0	0	0	0	0,08	0	0	0
γO	#####	0	0	0	0	0	0	0	0	0	0	0	0	0	0,08	0	0
уP	#####	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,08	0
yQ	#####	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,08

Bild 54: gefüllte Matrix [A]

	{1st}	<u>e</u>
yВ	1,50	0
yC	2,50	0
yD	3,50	0
уE	4,50	0
уF	5,50	0
уG	6,50	0
yН	7,50	0
yl	8,50	0
yJ	9,56	1
yК	#####	0
уL	#####	0
yМ	#####	0
γN	#####	0
yО	#####	0
yР	#####	0
yQ.	#####	0

Bild 55: gefüllter Vektor {1_{st}}

3.8 Tabellenblatt "Weights and Volumes"

Hier werden die Massen und Innenraumvolumina von Flügel und Strebe berechnet.

assembly factor for covers and ribs		%	5
assembly factor for webs		%	9
overall allowance factor		%	10
wing secondary structure weight	msec	kg	2.223
strut secondary structure weight	msec,st	kg	22

Bild 56: Aufschlagsprozente und Sekundärstrukturmassen

	wing box weight	wing secondary structure weight	strut box weight	strut secondary structure weight	total wing weight
	mbox	msec	mbox,st	msec,st	mtotalwing
21	kg	kg	kg	kg	kg
MA+	3.572	2.223	82	22	5.900
MD+	3.398	2.223	82	22	5.725
G+	1.906	2.223	82	22	4.233
M-	1.591	2.223	82	22	3.918
G-	328	2.223	82	22	2.655
Bump	1.758	2.223	82	22	4.085
1g	651	2.223	82	22	2.979
R+	1.755	2.223	82	22	4.082
R-	385	2.223	82	22	2.712

Bild 57: Massenermittlung

			MA+	MD+	G+	M-	G-	Bump	1g	R+	R-
inside wing box volume (initial)	Vbox, initial	m³	3,610	3,624	3,740	3,763	3,865	3,753	3,839	3,753	3,860
inside strut box volume (initial)	Vbox,st,inital	m³	0,250	0,250	0,250	0,250	0,250	0,250	0,250	0,250	0,250
wing box ribs volume	Vribs	m³	0,004	0,004	0,003	0,002	0,003	0,003	0,003	0,003	0,002
strut box ribs volume	Vribs,st	m³	0,037	0,037	0,037	0,037	0,037	0,037	0,037	0,037	0,037
inside wing box volume	Vbox	m³	3,607	3,620	3,737	3,761	3,862	3,749	3,837	3,750	3,857
inside strut box volume	Vbox,st	m ³	0,212	0,212	0,212	0,212	0,212	0,212	0,212	0,212	0,212

Bild 58: Volumenermittlung

Zur Berechnung der Innenraumvolumina werden zunächst die Innenraumvolumina ohne Berücksichtigung der Rippen in der Flügel- und Strebenstruktur ermittelt. Für das initiale Innenraumvolumen des BTKs gilt:

$$V_{box,initial} = \sum_{0}^{b/2} (h_i - t_{e,i}) (w_i - t_{w,i}) \Delta y_i$$
(3-1)

Für das initiale Innenraumvolumen des tragenden Kastens innerhalb der Strebe gilt:

$$V_{box,st,initial} = (h_{st} - t_{e,st})(w_{st} - t_{e,st})L$$
(3-2)

Das Rippenvolumen innerhalb des BTK wird folgendermaßen ermittelt:

$$V_{ribs} = \sum_{0}^{b/2} (h_i - t_{e,i}) (w_i - t_{w,i}) t_{rib,w,i}$$
(3-3)

Das Volumen der Rippen innerhalb der Strebe wird mit 15 % des Innenraumvolumens in der Strebe nach Gleichung (3-2) angenommen:

$$V_{ribs,st} = 0,15V_{box,st,initial} \tag{3-4}$$

Für das Innenraumvolumen des BTK gilt abschließend:

$$V_{box} = V_{box,initial} - V_{ribs} \tag{3-5}$$

Für das Innenraumvolumen des Streben-BTK gilt abschließend:

$$V_{box,st} = V_{box,st,initial} - V_{ribs,st}$$
(3-6)

3.9 Tabellenblatt "Convergence"

Hier wird der Iterationsprozess der konvergenten Lösungsschleife gesteuert.

original maximum take-off weight	MTOW0	kg	56.000	
new maximum take-off weight	MTOWcalc	kg	53.209	Load Case MA+
new maximum take-off weight	MTOWcalc	kg	57.125	Load Case MD+
new maximum take-off weight	MTOWcalc	kg	55.633	Load Case G+
new maximum take-off weight	MTOWcalc	kg	55.318	Load Case M-
new maximum take-off weight	MTOWcalc	kg	54.055	Load Case G-
new maximum take-off weight	MTOWcalc	kg	55.485	Load Case Bump
new maximum take-off weight	MTOWcalc	kg	54.379	Load Case 1g
new maximum take-off weight	MTOWcalc	kg	55.482	Load Case R+
new maximum take-off weight	MTOWcalc	kg	54.112	Load Case R-
maximum take-off weight chosen	MTOWchosen	kg	49.812	Sealand Market

Bild 59: Iteration des MTOW

			Load Case	e MA+						
wing mass (initial)	mwing	kg	5.000							
wing mass (calculated)	mwing	kg	5.796							
wing mass (chosen)	mwing	kg	2.293					local aer	oelastic effe	cts factor
load case weight	m	kg	49.812					initial	calculated	chosen
load case weight calculated	mcalc	kg	44.320					kel,i	kel,i	kel,i
load case weight difference	deltamrel	% of m	-11					1	1	1
total wing weight without strut	mtotalwing,0	kg	8691	to be	calculated firs	t!	J	1	1,142	1,142
total wing weight (wing + strut)	mtotalwing	kg	5.900				к	1	1,142	1,142
initial	appropriation offects	Kel	1	1,000			L	1	1,142	1,142
calculated	factor	Kel	1	1,142			м	1	1,142	1,142
chosen	Tactor	Kel	1	1,142			N	1	1,142	1,142
aerodynamic	wing lift coefficient	CLalpha	1/rad	5,386	π/rad	1,714	0	1	1,142	1,142
aeroelastic	derivative	CLalpha	1/rad	6,152	π/rad	1,958	Р	1	1,142	1,142
							0	1	1,142	1,142

Bild 60: Konvergenzsteuermaske

4 Studien an der ATR 72-600

Die vorgestellte Methode zur Berechnung der Flügelmasse bei Abstrebung soll exemplarisch an der ATR 72-600 angewendet werden. In einem ersten Schritt wird die Flügelmasse des freitragenden Flügels am real existierenden Flugzeug bestimmt. Anschließend wird für eine hypothetische ATR 72-600 mit Strebe die Flügelmasse bei verschiedenen Strebenwinkeln ermittelt und der Einfluss auf Flugleistungsparameter betrachtet und diskutiert.

Der Einfluss von Triebwerksgewicht und Triebwerksschub bleibt bei der Auslegung unberücksichtigt, weil diese beiden äußeren Kräfte bei den meisten Strebenkonfigurationen die Schnittgrößen aufgrund der Vereinfachungen des Chiozzotto-Modells (siehe Kapitel 2.5.1) nicht beeinflussen. Ferner wird nur der Lastfall MD+ (Schnellflugmanöver) betrachtet, da hierbei die größten Lasten auftreten und er ohne weitere Überprüfung als dimensionierend angenommen wird.

4.1 Technische Daten der ATR 72-600

Die ATR 72 ist ein Kurzstreckenverkehrsflugzeug mit Turboprop-Antrieb des französischen Herstellers "Avions de Transport Régional" **[Wikipedia]**.

Zur Konstruktion findet sich in [Wikipedia] folgender Eintrag:

Konstruktion [Bearbeiten | Quelltext bearbeiten]

Die ATR 72 ist die um 4,5 m gestreckte Version der ATR 42. Wie diese ist sie mit zwei Turboprop-Triebwerken ausgestattet. Neben dem verlängerten Fluggastraum wurden auch die Tragflächen vergrößert. Da sich in den Tragflächen die Tanks des Flugzeugs befinden, hat die ATR 72 auch einen größeren Tank und damit eine höhere Reichweite. Ein Hilfstriebwerk ist nicht vorhanden, stattdessen kann das rechte Triebwerk am Boden weiterlaufen, denn sein Propeller kann ausgekuppelt und gebremst und damit stillgelegt werden. Durch die Länge der ATR 72 hinter dem Hauptfahrwerk neigt sie zur Hecklastigkeit, was bei der Beladung am Boden zum Kippen der Maschine nach hinten führen kann. Dieses tritt vor allem bei falscher Beladung und beim gesammelten Nach-hinten-laufen der Fluggäste auf. Damit das Flugzeug nicht komplett nach hinten auf das Heck fallen kann, wird am Boden eine kurze Stütze unter dem Heck angebracht, die dieses auffängt.

Bild 61: Auszug aus dem Wikipedia-Artikel zur ATR 72 [Wikipedia]

Technische Daten der ATR 72-600 [FLUG REVUE]:

Maximale Passagierkanazität	74
Besatzung	2
Antrieb:	- 2 x PW 127M
Rumpflänge:	27,17 m
Kabinenlänge:	19,21 m
Kabinenhöhe:	1,91 m
Kabinenbreite:	2,57 m
Spannweite:	27,05 m
Flügelfläche:	$61,00 \text{ m}^2$
Leermasse:	13.010 kg
Maximale Startmasse:	22.800 kg
Maximale Landemasse:	22.350 kg
Maximale Nutzlast:	7.790 kg
Treibstoffkapazität:	5.000 kg bzw. 6.370 L
Maximale Reiseflugmachzahl:	0,55 (nach [ATR 1999])
Startstrecke:	1.333 m

1.067 m
7.620 m
1.185 km

Technische Daten des PW 127M [FLUG REVUE]:

Startleistung:	2.148 kW
Masse:	481 kg

4.2 Massenverringerung bei verschiedenen Strebenwinkeln

4.2.1 Berechnung der Flügelmasse der ATR 72-600

Um später die Verringerung der Flügelmasse und damit der Flugzeugmasse bestimmen zu können, muss zunächst die Ausgangsflügelmasse bekannt sein. Daher wird diese im ersten Schritt nach Chiozzotto berechnet. Dazu wird der Kink, an dem die Strebe an den Flügel angeschlossen ist, sehr nah (< 0,1 cm) an den Rumpfanschluss des Flügels positioniert, sodass der resultierende Strebenwinkel fast 90° beträgt. Ferner wird statt des realen Flügels ein rechteckiger Ersatzflügel der durchgehenden Flügeltiefe von 2,303 m betrachtet, was dem MAC des Originalflügels entspricht [ATR 1999]. Daraus folgt abweichend von den Angaben im FLUG-REVUE-Artikel eine Flügelfläche von 62,3 m², mit der im Folgenden gerechnet wird. Der betrachtete Lastfall ist der Lastfall MD+ (Schnellflugmanöver).

4.2.1.1 Geometriedaten

Aus dem Flughandbuch der ATR 72-600 **[ATR 1999]** entnimmt man eine Rumpfbreite von 2,87 m und eine Rumpfhöhe von 2,63 m.

Für die Rumpfnasenlänge gilt nach [Scholz 1999]:

$$l_{fn} \approx 1.7 \sqrt{b_f h_f} \tag{4-1}$$

Damit folgt für die ATR 72-600:

$$l_{fn} \approx 1.7\sqrt{2.87 \ m \times 2.63 \ m} = 4.67 \ m \tag{4-2}$$

Die relative Profildicke des Flügels beträgt 14,5 % bei 25,4 % der Flügeltiefe **[airfoiltools]**. Die Pfeilung der 25-%-Linie des Außenflügels beträgt 3°, der Innenflügel ist ungepfeilt **[ATR 1999]**. Daraus ergibt sich eine mittlere Pfeilung von 2,06°:

$$\bar{\varphi}_{25} = \frac{0^{\circ} \times \left(5,24 \ m - \frac{2,87 \ m}{2}\right) + 3^{\circ} \times \left(\frac{27,05 \ m}{2} - 5,24 \ m\right)}{5,24 \ m - \frac{2,87 \ m}{2} + \frac{27,05 \ m}{2} - 5,24 \ m} = 2,06^{\circ}$$
(4-3)

Die Trennebene zwischen Außen- und Innenflügel (Kink) befindet sich etwa 5,24 m von der Symmetrieebene entfernt mittig im Rumpf **[ATR 1999]**.

Die relative Lage von Vorderholm und Hinterholm des Flügel-BTKs des Rechenmodells wird über das Tankvolumen festgelegt. Dieses beträgt 6,37 m³ beim Originalflugzeug und entspricht

dem Innenraumvolumen des BTK. Der Innenflügel erstreckt sich vom Rumpfanschluss bis zum Kink und der Außenflügel vom Kink bis zur Flügelspitze. Es gilt:

$$V_{Tank} \approx 0.7(t/c)(RS - FS)(b - b_f)c_{MAC}^2$$
(4-4)

Die Formel vernachlässigt das in den BTK-Innenraum ragende Teilvolumen der BTK-Platten sowie das Volumen der Rippen. Daher liefert sie stets etwas zu große Werte, die berechneten Volumina werden vereinfachte Volumina genannt. Der Faktor 0,7 ist der Höhenreduktionsfaktor des BTKs. Er entspricht dem Verhältnis von BTK-Höhe zu Profildicke.

Bild 62: BTK innerhalb des Flügelschnitts der ATR 72-600 von [airfoiltools]

Für eine konstante Vorderholmposition von 8 % sowie eine konstante Hinterholmposition von 57 % ergibt sich mit oben genannten Werten ein vereinfachtes Tankvolumen von 6,378 m³. Dieser Wert liegt sehr nah an 6,37 m³, woraus sich vermuten lässt, dass die gewählten Holmpositionen vergleichbar mit denen der ATR 72-600 sind. Nach der ersten Iteration der Ausgangsflügelmasse werden die Holmpositionen, falls erforderlich, noch korrigiert, um vergleichbare Tankvolumina zu erhalten.

Der Referenzpunkt R liegt in Flugzeuglängsrichtung 11,24 m entfernt von der Flugzeugnase.

4.2.1.2 Angaben zu Lasten und Geschwindigkeiten

Der Schwerpunkt liege bei 50 % MAC und damit bei 12,39 m. Das MTOW sei 22,8 t. Die maximale Reiseflugmachzahl betrage 0,55. Der Hebelarm von der 25-%-Linie des Tragflügels zur 25-%-Linie des Höhenleitwerks betrage 13,00 m. Dann liegt der Neutralpunkt der Flügel-Rumpf-Kombination bei 17,2 % MAC.

Der maximale Querruderausschlagwinkel betrage -15° (nach unten), die dimensionslose Rollrate betrage 0,07 bei einer Querrudereffektivität von 0,75.

Das Flugzeug fliege auf der maximalen Reiseflughöhe von 25.000 ft, was 7.620 m entspricht. Dadurch sind die Zustandsgrößen der Luft festgelegt.

4.2.1.3 Angaben zu Material und Bauweise

Als tragendes Material sei vereinfacht ein Aluminiumwerkstoff der Dichte 2,7 t/m³, der Zugfestigkeit 360 MPa und der Scherfestigkeit 208 MPa eingesetzt. Der Zugmodul des Werkstoffs betrage 70 GPa und der Schubmodul 40 GPa.

Der Rippenabstand betrage 1,00 m bei einem Verhältnis von Hautdicke zu Hautdicke plus Stringerhöhe von 0,5.

4.2.1.4 Iteration der Ausgangsflügelmasse

Die Iteration wird im Blatt "Convergence" durchgeführt. Oben wird zunächst das MTOW von 22.800 kg als Rechenmasse ausgewählt ("chosen"). Anschließend wird die im vorherigen Durchlauf berechnete Flügelmasse, danach die lokalen aeroelastischen Korrekturfaktoren (beginnend bei 1) und dann der globale aeroelastische Korrekturfaktor (beginnend bei 1) eingegeben. Diese Prozedur wird solange wiederholt, bis das Flügelgewicht (Zelle E37) sich nicht mehr ändert. Mit den gegebenen Daten kommt man nach der ersten vollständigen Iteration auf ein Ausgangsflügelgewicht (Zelle E37) von 2.735 kg.

Das Tankvolumen beträgt dann 6,206 m³. Das Originalflugzeug hat aber eine Tankkapazität von 6,37 m³. Demnach ist der Tank des Rechenmodells um 0,164 m³ bzw. 2,6 % zu klein. Aus diesem Grund wird die Hinterholmposition um 1 % nach hinten, also auf 58 %, verschoben und die Iteration wiederholt. Das vereinfachte Tankvolumen beträgt dann nämlich 6,508 m³, was einer Differenz von 0,130 m³ zu dem vorherigen vereinfachten Tankvolumen von 6,378 m³ entspricht. Die neue Ausgangsflügelmasse beträgt dann 2.741 kg. Dies entspricht einem Anteil von etwa 21 % des gesamten Leergewichts. Das Tankvolumen beträgt dann 6,336 m³, was einem Fehler von etwa einem halben Prozent zum Tankvolumen des Originalflugzeugs entspricht. Diese Abweichung liegt also unterhalb von 1 % und ist damit akzeptabel.

4.2.2 Berechnung der Massenverringerung durch Abstrebung

Das Ausgangsflügelgewicht von 2.741 kg wird in Zelle E24 im Blatt "Convergence" eingegeben. Es soll untersucht werden, wie sich nach Chiozzotto die Masse der Flügel-Strebe-Kombination bei verschiedenen Strebenpositionen verändert. Die Halbspannweite minus die halbe Rumpfbreite (also die Rumpfanschlussposition) sei die Ausgangsposition 0 %, die Flügelspitze sei die Endposition 100 %. Dazwischen wird in 10-%-Schritten der Strebenanschluss in Richtung der Flügelspitze verschoben. Die Iteration gleicht dabei der Iteration zur Bestimmung der Ausgangsflügelmasse, jedoch muss zusätzlich vor jedem Durchlauf das MTOW angepasst werden (Zelle E12). Am Schluss wird das Flügel-Strebe-Gewicht aus Zelle E43 abgelesen.

Die Strebenverkleidung habe eine Sehnenlänge von 50 cm, der tragende Kasten in der Strebe habe eine Breite von 30 cm und eine Höhe von 10 cm (relative Dicke daher etwa 22 %). Das Verhältnis von Hautdicke zu Hautdicke plus Stringerhöhe betrage auch hier 0,5. Die minimale Hautdicke betrage 1,00 mm.

Man erhält folgende Ergebnisse:
Strebe	Masse	Tankvolumen = Ir	inenraumvolumen
Anschlussposition	Flügel + Strebe	Flügel	Strebe
%	kg	m ³	m ³
0,05 (ohne Strebe)	2.741	6,336	0,000
10	2.660 (-3,0 %)	6,344	0,144
20	2.529 (-7,8 %)	6,358	0,177
30	2.378 (-13,3 %)	6,376	0,222
40	2.206 (-19,5 %)	6,398	0,273
50	2.055 (-25,1 %)	6,418	0,327
60	1.904 (-30,6 %)	6,439	0,383
70	1.769 (-35,5 %)	6,459	0,440
80	1.658 (-39,5 %)	6,476	0,498
90	1.578 (-42,4 %)	6,489	0,556
99,95	1.527 (-44,3 %)	6,498	0,614

Tabelle 2: Iterationsergebnisse

Aus den Daten ergibt sich ferner:

Tabelle 3: Massenverringerung und Tankvergrößerung

Strebe		MTOW Verringerung		Tanlı Vararößamına	
Winkel	Länge	MIOw-verringerung		rank-vergroberung	
o	m	kg	% von 22,8 t	L	% von 6,37 m ³
65,3	2,89	-82	-0,4	+153	+2,4
47,4	3,57	-214	-0,9	+200	+3,1
35,9	4,48	-364	-1,6	+263	+4,1
28,5	5,50	-536	-2,4	+336	+5,3
23,5	6,59	-687	-3,0	+410	+6,4
19,9	7,72	-838	-3,7	+487	+7,6
17,3	8,86	-973	-4,3	+564	+8,9
15,2	10,02	-1.084	-4,8	+639	+10,0
13,6	11,19	-1.164	-5,1	+710	+11,1
12,3	12,37	-1.215	-5,3	+777	+12,2

4.3 Einfluss des Strebenwinkels auf die Gleitzahl

Durch die Strebe sinkt die Masse des Flugzeugs bei gleichzeitigem Anstieg des Luftwiderstands.

4.3.1 Beiwerte der ATR 72-600 im Reiseflug

Laut **[Niță 2008]** beträgt die Gleitzahl der ATR 72 im Reiseflug 17,0. In der Reiseflughöhe von 25.000 ft beträgt die Luftdichte in der internationalen Standardatmosphäre 0,549 kg/m³. Eine Machzahl von 0,55 entspricht dann einer wahren Geschwindigkeit von 331,1 kt (170,3 m/s) bzw. einer angezeigten Geschwindigkeit von 221,7 kt:

$$IAS = TAS \sqrt{\frac{\rho(h)}{\rho_0}} = 331,1 \ kt \times \sqrt{\frac{0,549 \ kg/m^3}{1,225 \ kg/m^3}} = 221,7 \ kt \tag{4-5}$$

Für den Auftriebsbeiwert folgt dann:

$$c_L = \frac{2mg}{\rho Sv^2} = \frac{2 \times 22.800 \ kg \times 9.81 \ N/kg}{0.549 \ kg/m^3 \times 62.3 \ m^2 \times (170.3 \ m/s)^2} = 0.4510$$
(4-6)

Nach

$$E = \frac{c_L}{c_D} \tag{4-7}$$

folgt daraus für den Beiwert des Gesamtluftwiderstands:

$$c_D = \frac{c_L}{E} = \frac{0,4510}{17,0} = 0,0265 \tag{4-8}$$

4.3.2 Veränderung der Beiwerte durch die Strebe

Durch die Massenverringerung sinken der Auftrieb und damit der induzierte Luftwiderstand. Gleichzeitig steigen der Reibungswiderstand und der Druckwiderstand des Flugzeugs durch die Strebe. Der Interferenzwiderstand wird im Rahmen dieser Arbeit vernachlässigt. Die neue Gleitzahl ergibt sich dann nach:

$$E_{neu} = \frac{c_{L,alt} - \Delta c_L}{c_{D,alt} - \Delta c_{D,ind} + \Delta c_{D,Reib} + \Delta c_{D,Druck}}$$
(4-9)

Der Auftriebsbeiwert vermindert sich um:

$$\Delta c_L = \frac{\Delta m}{m} c_{L,alt} \tag{4-10}$$

Der Beiwert des induzierten Widerstands ändert sich um:

$$\Delta c_{D,ind} = \frac{\Delta c_L}{\pi \Lambda e} = \frac{\Delta c_L}{11,7 \times 0.85 \times \pi} = \frac{\Delta c_L}{9,945\pi}$$
(4-11)

Bei dünnen Profilen gilt in erster Näherung, dass sich der Gesamtwiderstand zu 90 % aus dem Reibungswiderstand und zu 10 % aus dem Druckwiderstand zusammensetzt:

$$c_{D,Reib} \approx 0.9 c_{D,Profil} \tag{4-12}$$

$$c_{D,Druck} \approx 0.1 c_{D,Profil} \tag{4-13}$$

Daraus folgt:

$$c_{D,Druck} \approx \frac{c_{D,Reib}}{9} \tag{4-14}$$

Der Reibungswiderstand wird näherungsweise über das Modell der dünnen Platte ermittelt. Hierzu muss zunächst die Reynoldszahl berechnet werden:

$$Re = \frac{\rho v l}{\mu} \tag{4-15}$$

Für die dynamische Viskosität gilt die Formel von Sutherland:

$$\mu = \mu_0 \frac{T_0 + 120 K}{T + 120 K} \sqrt{\left(\frac{T}{T_0}\right)^3}$$
(4-16)

Auf 25.000 ft herrscht eine Temperatur von -34,5 °C bzw. 238,6 K. Daraus folgt:

$$\frac{\mu}{10^6} = 18,27 \ Pa \times s \times \frac{288,15 \ K + 120 \ K}{238,6 + 120 \ K} \sqrt{\left(\frac{238,6 \ K}{288,15 \ K}\right)^3} = 15,67 \ Pa \times s \tag{4-17}$$

Die Lauflänge entspricht vereinfacht der Tiefe der Strebenverkleidung. Damit folgt für die Reynoldszahl:

$$Re = \frac{\rho v l}{\mu} = 10^6 \times \frac{0.549 \, kg/m^3 \times 170.3 \, m/s \times 0.5 \, m}{15.67 \, Pa \times s} \approx 3 \times 10^6 \tag{4-18}$$

Nach Prandtl gilt dann:

$$c_{D,Reib} \approx \frac{0,074}{\sqrt[5]{Re}} - \frac{8700}{Re} = \frac{0,074}{\sqrt[5]{3 \times 10^6}} - \frac{8700}{3 \times 10^6} \approx 0,00085$$
(4-19)

Da die Strebe von beiden Seiten umströmt wird, muss der Reibwiderstandsbeiwert noch verdoppelt werden; er beträgt also letztendlich 0,0017. Daraus folgt ein Druckwiderstandsbeiwert von 0,00019. Der Beiwert des Gesamtwiderstands der Strebe beträgt daher 0,00189. Für den Gesamtwiderstand der Strebe gilt dann:

$$F_{D,Strebe} = 2c_{D,Strebe} \frac{\rho v^2}{2} c_{st} L$$
(4-20)

Nach dem Einsetzen der Werte erhält man folgenden linearen Zusammenhang:

$$F_{D,Strebe}(L) = 15 N/m \times L \tag{4-21}$$

Der Strebenwiderstand muss dann noch auf die Flügelfläche bezogen werden:

$$\Delta c_{D,Reib} + \Delta c_{D,Druck} = \frac{2F_{D,Strebe}(L)}{\rho v^2 S} \approx \frac{3}{10^5 m} L$$
(4-22)

Dann ergibt sich für die Gleitzahl mit Strebe:

$$E_{neu} \approx \frac{c_{L,alt} \left(1 - \frac{\Delta m}{m}\right)}{c_{D,alt} - \frac{\Delta m}{m} c_{L,alt}} + \frac{3}{10^5 m} L$$

$$(4-23)$$

Mit den berechneten Werten aus Tabelle 3 erhält man:

Tabelle 4: Gleitzahlen mit Strebe				
Strebenanschluss	Gleitzahl	MTOW		
%	1	kg		
0,05	17,0	22.800		
10	16,9	22.718		
20	16,9	22.586		
30	16,8	22.436		
40	16,7	22.264		
50	16,7	22.113		
60	16,6	21.962		
70	16,5	21.827		
80	16,4	21.716		
90	16,4	21.636		
99,95	16,4	21.585		

Die Gleitzahl nimmt also leicht ab, im Maximum um 3,5 %, je weiter die Strebe in Richtung der Flügelspitze angebracht wird.

4.4 Auswirkungen auf andere Flugleistungsparameter

In diesem Abschnitt soll der Einfluss der Strebe auf verschiedene Flugleistungsparameter untersucht werden.

4.4.1 Reichweite

Nach Breguet gilt für Flugzeuge mit Propellerantrieb:

$$R = \frac{E}{\mu b_P g} \ln\left(\frac{m_{TO}}{m_{TO} - m_{fuel}}\right) \tag{4-24}$$

Dabei gilt:

$$m_{fuel} = \rho_{fuel} V_{Tank} \tag{4-25}$$

Die Dichte des Treibstoffs beträgt dabei 0,785 kg/L. Aus den Daten der ATR 72-600 wird der wirkungsgradkorrigierte spezifische Treibstoffverbrauch berechnet:

$$\mu b_P = \frac{E}{Rg} \ln\left(\frac{m_{TO}}{m_{TO} - m_{fuel}}\right) \tag{4-26}$$

Einsetzen ergibt:

$$\mu b_P = \frac{17,0}{1.185.000 \, m \times 9,81 \, N/kg} \ln\left(\frac{22.800 \, kg}{22.800 \, kg - 785 \, kg/m^3 \times 6,37 \, m^3}\right) \tag{4-27}$$

$$\mu b_P = 3.62 \times 10^{-7} kg/Nm \tag{4-28}$$

Damit folgt:

$$R = \frac{E \times \ln\left(\frac{m_{TO}}{m_{TO} - m_{fuel}}\right)}{3,62 \times 10^{-7} \, kg/Nm \times 9,81 \, N/kg}$$
(4-29)

Man erhält folgende Werte:

Tabelle 5: Reichweiten mit Strebe				
Strebenanschluss	Reichweite Reichweitenerhöhung		enerhöhung	
%	km	km	% von 1.185 km	
10	1.219	+34	+2,9	
20	1.235	+50	+4,3	
30	1.254	+69	+5,9	
40	1.276	+91	+7,7	
50	1.299	+114	+9,6	
60	1.322	+137	+11,5	
70	1.344	+159	+13,4	
80	1.364	+179	+15,1	
90	1.383	+198	+16,7	
99,95	1.398	+213	+18,0	

Die Reichweite nimmt also moderat zu, je weiter die Strebe in Richtung der Flügelspitze angeschlossen ist.

4.4.2 Mindestgeschwindigkeit

Für die ATR 72-600 mit Klappen auf 15° gilt in der ISA auf Meereshöhe eine Rotiergeschwindigkeit von 109 kt bzw. 56,1 m/s bei 22.800 kg Abfluggewicht **[ATR 1999]**. Dies entspricht einem Auftriebsbeiwert von:

$$c_{L,TO} = \frac{2mg}{\rho S v_{rot}^2} = \frac{2 \times 22.800 \ kg \times 9.81 \ N/kg}{1.225 \ kg/m^3 \times 62.3 \ m^2 \times (56.1 \ m/s)^2} = 1.8624$$
(4-30)

Damit folgt für die Mindestgeschwindigkeit bzw. Rotiergeschwindigkeit:

$$v_{rot} = \sqrt{\frac{2mg}{1,8624\rho S}} = 0,3715 \frac{m/s}{\sqrt{kg}} \times \sqrt{m}$$
 (4-31)

Es ergibt sich folgende Wertetabelle:

Strebenanschluss	Mindestgeschwindigkeit bzw. Rotiergeschwindigkeit		
%	m/s	km/h	kt
10	56,0	202	109
20	55,8	201	109
30	55,7	200	108
40	55,4	200	108
50	55,2	199	107
60	55,1	198	107
70	54,9	198	107
80	54,8	197	106
90	54,6	197	106
99,95	54,6	197	106

Tabelle 6: Mindestgeschwindigkeiten mit Strebe

Die Mindestgeschwindigkeit nimmt minimal ab, im Maximum um 2,5 %, je weiter die Strebe in Richtung der Flügelspitze positioniert wird.

4.4.3 Startrollstrecke

Der Startlauf sei vereinfacht als gleichförmig beschleunigte Bewegung, beginnend aus der Ruhelage, angenommen. Für einen solchen Bewegungsvorgang gilt:

$$v^2 = 2as \tag{4-32}$$

Umgestellt folgt für den Anwendungsfall Startlauf:

$$s_{Roll} = \frac{v_{rot}^2}{2a} \tag{4-33}$$

Für die Beschleunigung gilt nach dem 2. Newton'schen Axiom:

$$a = \frac{F}{m} \tag{4-34}$$

Die Masse entspricht vereinfacht dem MTOW. Die in horizontaler Richtung auf das Flugzeug wirkende Kraft setzt sich zusammen aus dem Triebwerksschub, der Rollreibung und dem Luftwiderstand:

$$F = F_S - F_{RR} - F_D \tag{4-35}$$

Der Schub sei vereinfacht als konstant angenommen. Er beträgt laut **[Jessen 2009]** beim PW127 etwa 37 kN. Für die Rollreibung gilt:

$$F_{RR} = \mu \left(mg - \frac{1}{2} \rho c_{L,TO} S v^2 \right) \tag{4-36}$$

Sie ist also nicht konstant, sondern vielmehr proportional zum Geschwindigkeitsquadrat. Selbiges gilt für den Luftwiderstand:

$$F_D = \frac{1}{2} \rho c_{D,TO} S v^2$$
 (4-37)

Weil diese Abhängigkeit die Berechnung der Startrollstrecke erheblich verkompliziert, werden stattdessen die mittlere Rollreibung und der mittlere Luftwiderstand für die Rechnung herangezogen. Die mittlere Rollreibung tritt bei der mittleren Rollreibungsgeschwindigkeit auf:

$$\bar{F}_{RR} = F_{RR}(\bar{v}_{RR}) \tag{4-38}$$

Der mittlere Luftwiderstand tritt bei der Geschwindigkeit des mittleren Luftwiderstands auf:

$$\bar{F}_D = F_D(\bar{v}_D) \tag{4-39}$$

Die mittleren Geschwindigkeiten ergeben sich aus einem Energievergleich. Bei der mittleren Geschwindigkeit wurde von der korrespondierenden Kraft genau die Hälfte der für den Startlauf erforderlichen Arbeit geleistet. Sie sind für jede Strebenanschlussposition unterschiedlich und müssen vorher berechnet werden.

Bild 63: Rollreibung während des Startlaufs der ATR 72-600

Bild 64: Luftwiderstand während des Startlaufs der ATR 72-600

Die senkrechten Geraden markieren die jeweilige mittlere Geschwindigkeit. Für die Bestimmungsgleichungen beider Werte gilt:

$$A_1 = A_2 \tag{4-40}$$

$$\int_{0}^{\bar{v}_{RR}} \mu \left(mg - \frac{1}{2} \rho c_{L,TO} S v^2 \right) dv = \int_{\bar{v}_{RR}}^{v_{rot}} \mu \left(mg - \frac{1}{2} \rho c_{L,TO} S v^2 \right) dv$$
(4-41)

$$\int_{0}^{\bar{v}_{W}} \frac{1}{2} \rho c_{D,TO} S v^{2} dv = \int_{\bar{v}_{W}}^{v_{rot}} \frac{1}{2} \rho c_{D,TO} S v^{2} dv$$
(4-42)

In den folgenden zwei Unterkapiteln werden die mittlere Rollreibungsgeschwindigkeit und die Geschwindigkeit des mittleren Luftwiderstands exemplarisch für die (originale) ATR 72-600 berechnet. Darauf folgt eine Auswertung der Startrollstrecke des Originalflugzeugs sowie für verschiedene Strebenwinkel.

4.4.3.1 Mittlere Rollreibungsgeschwindigkeit

Die Integrandenfunktion ist eine inhomogene quadratische Funktion:

$$f(v) = z - kv^2 \tag{4-43}$$

Dabei gilt für die Hilfskoeffizienten:

$$z = \mu mg = 0.01 \times 22.800 \ kg \times 9.81 \ N/kg = 2.237 \ N \tag{4-44}$$

$$k = \frac{\mu}{2}\rho c_{L,TO}S = \frac{0.01}{2} \times 1,225 \ kg/m^3 \times 1,8624 \times 62,3 \ m^2 = 0,7107 \ kg/m \tag{4-45}$$

Der Rollreibungskoeffizient sei zu 0,01 angenommen. Dieser Wert entspricht einem Lkw-Gummireifen auf Asphalt. Die Gleichung lautet dann:

$$\int_{0}^{\bar{v}_{RR}} (z - kv^2) dv = \int_{\bar{v}_{RR}}^{v_{rot}} (z - kv^2) dv$$
(4-46)

Integrieren liefert:

$$\left[zv - \frac{k}{3}v^3 + C\right]_0^{\bar{v}_{RR}} = \left[zv - \frac{k}{3}v^3 + C\right]_{\bar{v}_{RR}}^{v_{rot}}$$
(4-47)

Man erhält eine kubische Gleichung:

$$2z\bar{v}_{RR} - \frac{2}{3}k\bar{v}_{RR}^3 - zv_{rot} + \frac{1}{3}kv_{rot}^3 = 0$$
(4-48)

Umformen ergibt:

$$\bar{v}_{RR}^3 - 3\frac{z}{k}\bar{v}_{RR} + \frac{3}{2}\frac{z}{k}v_{rot} - \frac{v_{rot}^3}{2} = 0$$
(4-49)

Auf diese umgeformte kubische Gleichung kann die Cardanische Lösungsformel angewendet werden, um die Unbekannte zu bestimmen:

$$p = \frac{3\left(-3\frac{z}{k}\right)}{3} = -3\frac{z}{k} = -3 \times \frac{2.237 N}{0.7107 \, kg/m} = -9.443 \, Nm/kg \tag{4-50}$$

$$q = \frac{3}{2} \frac{z}{k} v_{rot} - \frac{v_{rot}^3}{2} = \frac{3\left(\frac{2.237 N}{0.7107 \frac{kg}{m}}\right)}{2} \times 56.1 \frac{m}{s} - \frac{\left(56.1 \frac{m}{s}\right)^3}{2} = 176.591 \frac{m^3}{s^3}$$
(4-51)

Dann gilt für die Diskriminante:

$$D = \left(\frac{p}{3}\right)^3 + \left(\frac{q}{2}\right)^2 = \left(\frac{176.591 \ m^3/s^3}{2}\right)^2 - \left(\frac{9.443 \ m^2/s^2}{3}\right)^3 = -2.3 \times 10^{10} \frac{m^6}{s^6} \quad (4-52)$$

Eine negative Diskriminante bedeutet, dass die kubische Gleichung drei verschiedene reelle Lösungen hat. Daher wird der trigonometrische Lösungsansatz verwendet. Hierzu muss zunächst noch ein Hilfswinkel bestimmt werden:

$$\varphi = \arccos\left(-\frac{q}{2\sqrt{\left(\frac{|p|}{3}\right)^3}}\right) = \arccos\left(-\frac{176.591 \frac{m^3}{s^3}}{2\sqrt{\left(\frac{|-9.443 Nm/kg|}{3}\right)^3}}\right) = 120^\circ \quad (4-53)$$

Dann folgt:

$$\bar{v}_{RR,i} = 2\cos\left(\frac{\varphi}{3} + (i-1) \times 120^{\circ}\right) \sqrt{\frac{|p|}{3}}$$
 (4-54)

Als Lösungen ergeben sich:

$$\bar{v}_{RR,1} = 86,0 \, m/s = 310 \, km/h = 167 \, kt$$
 (4-55)

$$\bar{v}_{RR,2} = -105.4 \, m/s = -379 \, km/h = 205 \, kt \tag{4-56}$$

$$\bar{v}_{RR,3} = 19,5 \, m/s = 70 \, km/h = 38 \, kt$$
 (4-57)

Die einzige realistische Lösung sind 19,5 m/s:

$$\bar{v}_{RR} = 19,5 \, m/s$$
 (4-58)

4.4.3.2 Geschwindigkeit des mittleren Luftwiderstands

Die Integrandenfunktion ist eine homogene quadratische Funktion:

$$f(v) = cv^2 \tag{4-59}$$

Dabei gilt für den Hilfskoeffizienten:

$$c = \frac{1}{2}\rho c_{D,TO}S\tag{4-60}$$

Der Widerstandsbeiwert während des Startlaufs setzt sich folgendermaßen zusammen:

$$c_{D,TO} = c_{D,0} + \Delta c_{D,flaps} + \Delta c_{D,gear} + c_{D,ind}$$
(4-61)

Dabei gilt:

$$c_{D,0} = 0.02 \tag{4-62}$$

$$\Delta c_{D,flaps} = 0.05 c_{L,TO} - 0.055 = 0.05 \times 1.8624 - 0.055 = 0.0381$$
(4-63)

$$\Delta c_{D,gear} = 0.015 \tag{4-64}$$

$$c_{D,ind} = \frac{c_{L,TO}^2}{\pi \Lambda e} = \frac{1,8624^2}{\pi \times 11,7 \times 0,7} = 0,1348$$
(4-65)

Damit folgt:

$$c_{D,T0} = 0.02 + 0.0381 + 0.015 + 0.1348 = 0.2079$$
(4-66)

Daraus ergibt sich:

$$c = \frac{1}{2} \times 1,225 \ kg/m^3 \times 0,2079 \times 62,3 \ m^2 = 7,93 \ kg/m \tag{4-67}$$

Die Integralgleichung lautet dann:

$$\int_{0}^{\overline{\nu}_{W}} cv^{2}dv = \int_{\overline{\nu}_{W}}^{\nu_{rot}} cv^{2}dv$$
(4-68)

Auflösen und vereinfachen liefert:

$$\bar{v}_D = \frac{v_{rot}}{\sqrt[3]{2}} = \frac{56,1 \, m/s}{\sqrt[3]{2}} = 44,5 \, m/s = 160 \, km/h = 86 \, kt \tag{4-69}$$

4.4.3.3 Berechnung der Startrollstrecke der ATR 72-600

Die mittlere Rollreibung und der mittlere Luftwiderstand können jetzt ermittelt werden:

$$\bar{F}_{RR} = z - k\bar{v}_{RR}^2 = 2.237 N - 0.7107 kg/m \times (19.5 m/s)^2 = 1.967 N$$
(4-70)

$$\bar{F}_D = c\bar{v}_D^2 = 7,93 \ kg/m \times (44,5 \ m/s)^2 = 15.703 \ N$$
 (4-71)

Damit folgt für die mittlere das Flugzeug beschleunigende Kraft während des Startlaufs:

$$\overline{F} = 2 \times 37.000 \, N - 1.967 \, N - 15.703 \, N = 56.330 \, N \approx 56 \, kN \tag{4-72}$$

Für die konstante Beschleunigung gilt dann:

$$a = \frac{\bar{F}}{m_{TO}} = \frac{56.330 N}{22.800 kg} = 2,47 m/s^2$$
(4-73)

Daraus berechnet sich die Startrollstrecke der ATR 72-600 bei ebener Bahn und Windstille zu:

$$s_{Roll} = \frac{(56,1 \ m/s)^2}{2 \times 2,47 \ m/s^2} = 637 \ m \tag{4-74}$$

Die Startlaufdauer kann auch ermittelt werden:

$$t_{Roll} = \frac{v}{a} = \frac{56.1 \, m/s}{2.47 \, m/s^2} \approx 23 \, s \tag{4-75}$$

Sowohl eine Startrollstrecke von 637 Metern als auch eine für den Startlauf benötigte Zeit von 23 Sekunden sind sehr realistische Werte.

4.4.3.4 Startrollstrecke bei verschiedenen Strebenwinkeln

Durch die Strebe erhöht sich der Druckwiderstandsbeiwert und der Reibungswiderstandsbeiwert. Der Beiwert des induzierten Widerstands bleibt jedoch konstant, da sich der Auftriebsbeiwert in Startkonfiguration durch die Strebe nicht verändert.

$$c_{LTO} = 1,8624$$
 (4-76)

Für den Gesamtwiderstandsbeiwert gilt:

$$c_{D,TO} = c_{D,TO,alt} + \Delta c_{D,Reib} + \Delta c_{D,Druck} = 0,2079 + \frac{3}{10^5 m}L$$
(4-77)

Der Gesamtwiderstandsbeiwert ist also für jede Strebenlänge anders. Man erhält folgende Wertetabelle:

Tubelle 7. Start Olisitecken mit Sirebe				
Strebenanschlussposition	Startrollstrecke			
%	m			
10	632			
20	624			
30	614			
40	603			
50	594			
60	585			
70	576			
80	570			
90	565			
99,95	562			

Tabelle 7: Startrollstrecken mit Strebe

Die Startrollstrecke nimmt also etwas ab, je weiter die Strebe in Richtung der Flügelspitze angeschlossen wird.

4.5 Diskussion und Einordnung der Ergebnisse

Die Rechnungen zeigen, dass sich die Applikation einer Strebe zum Abstützen des Flügels durchaus lohnt. Dabei scheint das flugmechanische Optimum bei einem Strebenanschluss direkt an der Flügelspitze zu liegen. Die beste Gleitzahl nimmt dann zwar um fast 4 % ab, jedoch wird dieses Manko durch die gleichzeitige Verringerung der Masse der Flugzeugstruktur um etwa 5 % bei 12 % Tankvergrößerung mehr als kompensiert. Die Reichweite steigt so um 18 %, was mehr als 200 km entspricht, und die Startrollstrecke reduziert sich um etwa 12 % auf 562 m.

Diese gegenüber der originalen ATR 72-600 verbesserten Werte sind jedoch in der Realität nicht erreichbar. Sie kommen zustande durch den Ansatz Chiozzottos bei der Berechnung der Schnittgrößen innerhalb des statisch unbestimmt gelagerten Flügelabschnitts zwischen Rumpfanschluss und Strebenanschluss. In diesem Abschnitt sind nach Chiozzotto die Schnittgrößen konstant und entsprechen im Rechenmodell genau den Schnittgrößen am Strebenanschluss, die noch allein über die Gleichgewichtsbedingungen ermittelt werden können. Mangels Steifigkeitsverteilung stellt dies die einzige Möglichkeit dar, konservative

Werte für die Schnittlasten in der Flügelstruktur zu erhalten.

Dieses Vorgehen birgt jedoch ein Problem. An der Flügelspitze sind die Schnittgrößen gleich Null. Ist die Strebe daher in unmittelbarer Nähe der Flügelspitze an den Flügel angeschlossen, so ist im Rechenmodell der gesamte Flügel nahezu unbelastet. Aufgrund dessen liefert eine Dimensionierung auf dieser Datenbasis natürlich extrem niedrige Wanddicken. Dieser systematische Fehler liefert dann sehr niedrige Flügelmassen. In der Realität wäre ein derart ausgelegter Flügel stark unterdimensioniert, da die Auftriebskraft viel größere Lasten in der Flügelstruktur induzieren würde als diese aufnehmen könnte.

Folglich gibt es eine maximale Strebenanschlussposition, ab deren Überschreitung das Rechenmodell nach Chiozzotto zu Unterdimensionierung der Flügelstruktur führt. Diese Position lässt sich jedoch leider nicht pauschal berechnen, da sie von der Steifigkeitsverteilung und den äußeren Lasten abhängt. Jedoch lassen sich Rechenergebnisse der Chiozzotto-Methode im Anschluss in einem iterativen Prozess mit Hilfe des Prinzips der virtuellen Kräfte (PvK) korrigieren.

Dazu werden auf die nach Chiozzotto dimensionierte Flügelstruktur erneut die in Kapitel 2.4 berechneten Flügellasten aufgebracht und mit Hilfe des PvK die Schnittgrößen in der gesamten Flügelstruktur ermittelt. Mit diesen Werten wird die Dimensionierung wiederholt ("Nachdimensionierung"). Dies wiederholt man solange mit den jeweils zu berechnenden Flügellasten nach Kapitel 2.4 bis sich die Geometrie der Flügelstruktur nicht mehr ändert. Das Ergebnis ist dann verifiziert und kann für weitergehende Rechnungen belastbar verwendet werden.

Im Kapitel 5 wird eine 1-fache Nachdimensionierung exemplarisch für eine Strebenanschlussposition von 50 % an der ATR 72-600 durchgeführt.

5 Nachdimensionierung mit Hilfe des PvK

Die tragende Flügelstruktur einer ATR 72-600 mit einer Strebe bei 50 % soll einmalig nachdimensioniert werden. Betrachtet wird erneut der Lastfall MD+, somit kann mit den Daten der vorherigen Kapitel weitergearbeitet werden. Nach der Chiozzotto-Methode beträgt das Gewicht der gesamten Tragfläche inklusive Strebe 2.055 kg. Pro Flügel ergeben sich demnach gerundet 1.028 kg. Die Strebenkraft beträgt etwa 183 kN. Die Formsteifigkeitsverteilung entspricht folgender Tabelle (Daten aus dem Tabellenblatt "Strut Loads"):

Index	Position	Streifenbreite	FTM um y-Achse	FTM gegen Torsion
	yi	Δy_i	I _{yi}	I _{Ti}
	m	m	$\rm mm^4$	mm ⁴
Α	0,72	1,44	117.425.360	338.560.705
В	1,81	0,76	117.425.360	338.560.705
С	2,57	0,76	117.425.360	338.560.705
D	3,32	0,76	117.425.360	338.560.705
Е	4,08	0,76	117.425.360	338.560.705
F	4,84	0,76	117.425.360	338.560.705
G	5,59	0,76	117.425.360	338.560.705
Н	6,35	0,76	117.425.360	338.560.705
Ι	7,10	0,76	117.425.360	338.560.705
J	7,86	0,76	117.425.360	338.560.705
K	8,61	0,76	90.105.816	266.215.118
L	9,37	0,76	66.558.637	201.434.752
Μ	10,12	0,76	46.720.169	144.661.766
Ν	10,88	0,76	30.545.936	96.472.628
0	11,64	0,76	17.590.896	56.207.245
Р	12,39	0,76	8.086.625	25.910.345
Q	13,15	0,76	2.147.212	6.874.389

Tabelle 8: Flächenträgheitsmomente (FTM) des Flügel-BTK

5.1 Ableitung des mechanischen Modellsystems

Der reale Flügel wird durch folgendes mechanisches System modelliert:

Bild 65: Modellsystem

Bis zum Rumpfanschluss wirken Luft- und Trägheitslasten, innerhalb des Rumpfes wirkt lediglich das dem Manöverlastvielfachen entsprechende Eigengewicht der Flügelstruktur. Die Einspannung befindet sich an der Symmetrieebene. Das System ist 1-fach statisch überbestimmt, wie folgende Rechnung zeigt:

$$x = r + z - 3n = 5 + 2 - 3 \times 2 = 1 \tag{5-1}$$

Bild 66: Anzahl der Lager- und Zwischenreaktionen am Modellsystem

Um das PvK anwenden zu können, muss der Grad der statischen Unbestimmtheit null sein. Daher wird die Einspannung durch ein Festlager ersetzt, um das ein äußeres Moment wirkt. Das Ersatzsystem sieht dann so aus:

Bild 67: PvK-Ersatzsystem

Für den Grad der statischen Unbestimmtheit gilt dann:

$$x = r + z - 3n = 4 + 2 - 3 \times 2 = 0 \quad \Rightarrow statisch \ bestimmt! \tag{5-2}$$

Bild 68: Anzahl der Lager- und Zwischenreaktionen am Ersatzsystem

Für das "0"-System gilt dann:

Bild 69: ,, 0"-System

Im "1"-System wirkt ein Moment vom Betrage 1 um das Festlager bei A:

Bild 70: "1"-System

5.2 Ermittlung der Schnittlastverläufe im 0-System

Für die Ermittlung der Schnittgrößen seien drei Bereiche definiert:

Bereich 1:	0	\leq	У	\leq	Уf
Bereich 2:	Уf	<	у	\leq	Yst
Bereich 3:	y _{st}	<	у	\leq	y _t

5.2.1 Position der Resultierenden aller aerodynamischen Lasten

Die Resultierende der aerodynamischen Einzellasten geht durch den Flächenschwerpunkt der von den Lasten aufgespannten Fläche. Zur Berechnung der spannweitigen Koordinate y gilt daher:

$$y_{aero} = \frac{1}{\sum_{0}^{y_t} ll_{aero,i} \Delta y_i} \sum_{0}^{y_t} y_i ll_{aero,i} \Delta y_i$$
(5-3)

Die aerodynamischen Lasten entnimmt man dem Blatt "Wing Loads":

aerodynamic
wing loading
llaero,i
N/m
0
20.138
20.020
19.889
19.742
19.581
19.403
19.208
18.994
16.680
16.436
16.158
15.851
15.491
19.961
19.027
13 782

Bild 71: Aerodynamische Lasten

Daraus folgt:

$$\sum_{0}^{y_t} ll_{aero,i} \Delta y_i = 219.403 N$$
 (5-4)

$$\sum_{0}^{y_t} y_i ll_{aero,i} \Delta y_i = 1.584.414 Nm$$
 (5-5)

Damit gilt für die Position der Resultierenden der aerodynamischen Lasten:

$$y_{aero} = \frac{1.584.414 Nm}{219.403 N} = 7,22 m \tag{5-6}$$

5.2.2 Position der Resultierenden aller Trägheitslasten

Äquivalent zur Bestimmung der Position der Resultierenden der aerodynamischen Lasten wird die Position der Resultierenden der Trägheitslasten ermittelt:

$$y_{inertia} = \frac{1}{\sum_{0}^{y_t} ll_{inertia,i} \Delta y_i} \sum_{0}^{y_t} y_i ll_{inertia,i} \Delta y_i$$
(5-7)

Mit den Werten aus dem Blatt "Wing Loads"

inertia relief wing
loading
llinertia,i
N/m
-2.981
-2.981
-2.981
-2.981
-2.981
-2.981
-2.981
-2.981
-2.981
-2.981
-2.981
-2.981
-2.981
-2.981
-2.981
-2.981
-2.981

Bild 72: Trägheitslasten

folgt:

$$y_{inertia} = 6,76 m \tag{5-8}$$

5.2.3 Position der Resultierenden aller Flügellasten

Die Position der Resultierenden der gesamten Flügellasten ergibt sich als gewichteter Mittelwert aus den beiden Einzelpositionen:

$$y_{load} = \frac{y_{aero} \left| \sum_{0}^{y_t} ll_{aero,i} \right| + y_{inertia} \left| \sum_{0}^{y_t} ll_{aero,i} \right|}{\left| \sum_{0}^{y_t} ll_{aero,i} \right| + \left| \sum_{0}^{y_t} ll_{aero,i} \right|}$$
(5-9)

Einsetzen der Werte liefert:

$$y_{load} = \frac{7,22 \ m \times |290.343 \ N/m| + 6,76 \ m \times |-50.663 \ N/m|}{|290.343 \ N/m| + |-50.663 \ N/m|} = 7,15 \ m \tag{5-10}$$

5.2.4 0-Lagerreaktionen am Festlager A und 0-Strebenkraft

Für die Flügel-Streckenlast gilt:

$$q(y) = ll_{aero}(y) + ll_{inertia}(y)$$
(5-11)

Der den Flügel repräsentierende Balken wird freigeschnitten:

Bild 73: Freikörperbild des Balkens

Die Momentenbilanz um den Lagerpunkt A lautet:

$$y_{load} \int_{0}^{y_t} q(y) dy - y_{st} S^{(0)} sin(\theta_{st}) = 0$$
 (5-12)

Umformen ergibt die Strebenkraft:

$$S^{(0)} = \frac{y_{load}}{y_{st}sin(\theta_{st})} \sum_{0}^{y_t} (ll_{aero,i} + ll_{inertia,i}) \Delta y_i$$
(5-13)

Einsetzen liefert:

$$S^{(0)} = \frac{7,15 \, m}{7,48 \, m \times \sin(23,5^{\circ})} \times 179.084 \, N = 429.300 \, N \tag{5-14}$$

Die Kräftebilanz in vertikaler Richtung lautet:

$$A_V^{(0)} - \int_0^{y_t} q(y)dy + S^{(0)}sin(\theta_{st}) = 0$$
(5-15)

Daraus folgt die vertikale Lagerkraft:

$$A_{V}^{(0)} = \sum_{0}^{y_{t}} (ll_{aero,i} + ll_{inertia,i}) \Delta y_{i} - S^{(0)} sin(\theta_{st})$$
(5-16)

Einsetzen liefert:

$$A_V^{(0)} = 179.084 N - 429.300 N \times sin(23,5^\circ) = 7.901 N$$
(5-17)

Für die Lagerkraft lässt sich auch schreiben:

$$A_V^{(0)} = \left(1 - \frac{y_{load}}{y_{st}}\right) \sum_0^{y_t} \left(ll_{aero,i} + ll_{inertia,i}\right) \Delta y_i$$
(5-18)

Die Kräftebilanz in horizontaler Richtung lautet:

$$A_{H}^{(0)} - S^{(0)} \cos(\theta_{st}) = 0$$
(5-19)

Umstellen liefert die horizontale Lagerkraft:

$$A_{H}^{(0)} = S^{(0)} cos(\theta_{st})$$
(5-20)

Einsetzen liefert:

$$A_{H}^{(0)} = 429.300 \, N \times \cos(23.5^{\circ}) = 393.694 \, N \tag{5-21}$$

5.2.5 0-Balkennormalkraft

Die Strebe übt eine Druckkraft auf den Flügel in den Bereichen 1 und 2 aus. Die Normalkraft ist also konstant und entspricht der horizontalen Komponente der Strebenkraft bzw. der horizontalen Lagerkraft in A. Daher gilt:

$$N_{1,2}^{(0)} = -A_H^{(0)} = -S^{(0)} \cos(\theta_{st}) = -393.694 \ N \tag{5-22}$$

Im Bereich 3, also außerhalb des Strebenanschlusses, ist der Flügel axial unbelastet, hier beträgt die Normalkraft daher null:

$$N_3^{(0)} = 0 N \tag{5-23}$$

Man erhält folgende Wertetabelle:

Position	0-Normalkraft
m	N
0,72	-393.694
1,81	-393.694
2,57	-393.694
3,32	-393.694
4,08	-393.694
4,84	-393.694
5,59	-393.694
6,35	-393.694
7,10	-393.694
7,86	0
8,61	0
9,37	0
10,12	0
10,88	0
11,64	0
12,39	0
13,15	0

Tabelle 9: 0-Normalkräfte in der Flügelstruktur

5.2.6 0-Querkraftverlauf

Der Querkraftverlauf wird analog der Vorgehensweise in Kapitel 2.5.2 bestimmt.

Im Bereich 3 gilt:

$$Q_{3,i}^{(0)} = -\Delta y_i \left(\frac{ll_{aero,i} + ll_{inertia,i}}{2} + \sum_{j=i+1}^{y_t} (ll_{aero,j} + ll_{inertia,j}) \right)$$
(5-24)

Infinitesimal vor dem Strebenanschluss beträgt die Querkraft daher:

$$Q_3^{(0)}(y \approx y_{st}) = -82.765 \, N \tag{5-25}$$

Am Strebenanschluss gibt es einen Querkraftsprung um die vertikale Komponente der Strebenkraft.

$$\Delta Q^{(0)} = S^{(0)} \sin(\theta_{st}) = 429.300 \, N \times \sin(23.5^{\circ}) = 171.183 \, N \tag{5-26}$$

Daher folgt kurz hinter dem Strebenanschluss:

$$Q_2^{(0)}(y = y_{st}) = Q_3^{(0)}(y \approx y_{st}) + \Delta Q^{(0)}$$
(5-27)

Einsetzen der Werte liefert:

$$Q_2^{(0)}(y = y_{st}) = -82.765 N + 429.300 N \times sin(23,5^\circ) = 88.418 N$$
 (5-28)

Für die Bereiche 1 und 2 gilt:

$$Q_{1,2}^{(0)}(y) = 88.418 N - \sum_{y_{st}}^{y} (ll_{aero,i} + ll_{inertia,i}) \Delta y_i$$
(5-29)

Es ergibt sich folgende Wertetabelle:

Tubelle 10. 0-Querkrujie in der Flugeistruktur				
Position	0-Querkraft			
m	Ν			
0,72	-10.039			
1,81	-5.695			
2,57	7.225			
3,32	20.051			
4,08	32.771			
4,84	45.376			
5,59	57.852			
6,35	70.187			
7,10	82.368			
7,86	-77.590			
8,61	-67.331			
9,37	-57.269			
10,12	-47.428			
10,88	-37.839			
11,64	-26.697			
12,39	-14.222			
13,15	-4.081			

Tabelle 10: 0-Querkräfte in der Flügelstruktur

5.2.7 0-Biegemomentenverlauf

Den Biegemomentenverlauf erhält man analog zur Vorgehensweise in Kapitel 2.5.2. Im Bereich 3 gilt:

$$M_{3,i}^{(0)} = \Delta y_i^2 \left(\frac{ll_i}{8} + \sum_{j=i+1}^{y_t} (j-i) \left(ll_{aero,i} + ll_{inertia,i} \right)_j \right)$$
(5-30)

Durch die Strebe erfährt der Momentenverlauf am Strebenanschluss einen Knick. Das Biegemoment infinitesimal vor dem Strebenanschluss ergibt sich zu:

$$M_{3}^{(0)}(y \approx y_{st}) = \Delta y_{i}^{2} \sum_{j=i}^{j=i+7} \left(j - \frac{i}{2}\right) \left(ll_{aero,j} + ll_{inertia,j}\right) = 251.211 Nm$$
(5-31)

Im Bereich 1 und 2 gilt:

$$M_{1,2,i}^{(0)} = \Delta y_j^2 \left(\frac{ll_i}{8} + \sum_{j=i+1}^{j=n} \left((j-i) \left(ll_{aero,j} + ll_{inertia,j} \right) - \frac{n_{i \to J} S^{(0)} sin(\theta_{st})}{\Delta y_j} \right) \right)$$
(5-32)

Man erhält folgende Wertetabelle:

Desition	Diagonant
Position	Biegemoment
m	Nm
0,72	-6.436
1,81	-17.177
2,57	-11.718
3,32	3.432
4,08	28.195
4,84	62.482
5,59	106.196
6,35	159.231
7,10	221.470
7,86	220.919
8,61	166.184
9,37	119.129
10,12	79.595
10,88	47.406
11,64	22.704
12,39	7.312
13,15	771

Tabelle 11: 0-Biegemomente in der Flügelstruktur

5.2.8 0-Torsionsmomentenverlauf

Der Torsionsmomentenverlauf wird analog der Vorgehensweise in Kapitel 2.5.3 ermittelt. Da die Strebe an der Lastreferenzachse angreift, induziert die Strebenkraft keinen Gegentorsionsmoment. Es gilt daher:

$$M_{T,1,2,3,i}^{(0)} = \left(\frac{e_i l l_{aero,i} \Delta y_i}{2} + \sum_{j=i+1}^{y_t} e_j l l_{aero,j} \Delta y_j\right)$$
(5-33)

Man erhält folgende Wertetabelle:

Position	Torsionsmoment
m	Nm
0,72	89.860
1,81	89.860
2,57	83.423
3,32	77.025
4,08	70.672
4,84	64.369
5,59	58.120
6,35	51.930
7,10	45.806
7,86	40.088
8,61	34.779
9,37	29.555
10,12	24.424
10,88	19.399
11,64	13.716
12,39	7.468
13,15	2.209

Tabelle 12: 0-Torsionsmomente in der Flügelstruktur

5.3 Ermittlung der Schnittlastverläufe im 1-System

5.3.1 1-Lagerreaktionen am Festlager A und 1-Strebenkraft

Bild 74: freigeschnittener Balken im 1-System

Die Momentenbilanz um den Lagerpunkt A lautet:

$$\bar{1} - \bar{S}^{(1)} \sin(\theta_{st}) y_{st} = 0$$
(5-34)

Daraus folgt die virtuelle Strebenkraft:

$$\bar{S}^{(1)} = \frac{1}{\sin(\theta_{st})y_{st}} \tag{5-35}$$

Einsetzen liefert:

$$\bar{S}^{(1)} = \frac{1}{\sin(23,5^\circ) \times 7,48 \, m} = 0,3353 \, 1/m \tag{5-36}$$

In horizontaler Richtung lautet die Kräftebilanz:

$$\bar{A}_{H} - \bar{S}^{(1)} \cos(\theta_{st}) = 0 \tag{5-37}$$

Daraus folgt die virtuelle horizontale Lagerkraft:

$$\bar{A}_H = \bar{S}^{(1)} cos(\theta_{st}) = \frac{1}{tan(\theta_{st})y_{st}}$$
(5-38)

Einsetzen liefert:

$$\bar{A}_{H} = \frac{1}{\tan(23,5^{\circ}) \times 7,48 \, m} = 0,3075 \, 1/m \tag{5-39}$$

In vertikaler Richtung gilt:

$$\bar{A}_{V} + \bar{S}^{(1)} sin(\theta_{st}) = 0$$
(5-40)

Daraus folgt für die virtuelle vertikale Lagerkraft:

$$\bar{A}_V = -\bar{S}^{(1)}sin(\theta_{st}) = -\frac{1}{y_{st}}$$
(5-41)

Einsetzen liefert:

$$\bar{A}_V = -\frac{1}{7,48\,m} = -0,1337\,1/m \tag{5-42}$$

5.3.2 1-Balkennormalkraft

Die Strebe übt eine Druckkraft auf den abgestrebten Flügelteil aus, daher gilt dort für die Balkennormalkraft:

$$\overline{N}_{1,2}^{(1)} = -\overline{A}_H = -0,3075 \ 1/m \tag{5-43}$$

Der Balkenteil außerhalb der Strebe ist kräftefrei, daher gilt hier:

$$\bar{N}_3^{(1)} = 0 \ 1/m \tag{5-44}$$

Man erhält folgende Wertetabelle:

Position	1-Normalkraft
m	1/m
0,72	-0,3075
1,81	-0,3075
2,57	-0,3075
3,32	-0,3075
4,08	-0,3075
4,84	-0,3075
5,59	-0,3075
6,35	-0,3075
7,10	-0,3075
7,86	0
8,61	0
9,37	0
10,12	0
10,88	0
11,64	0
12,39	0
13,15	0

Tabelle 13: 1-Normalkräfte in der Flügelstruktur

5.3.3 1-Querkraftverlauf

Der abgestrebte Teil des Balkens wird an einer Stelle y freigeschnitten:

Bild 75: Freischnitt des abgestrebten Balkenteils im 1-System

In vertikaler Richtung gilt:

$$\bar{A}_V + \bar{Q}_{1,2}^{(1)} = 0 \tag{5-45}$$

Damit gilt für die Querkraft im abgestrebten Balkenteil:

$$\bar{Q}_{1,2}^{(1)} = -\bar{A}_V \tag{5-46}$$

Einsetzen ergibt:

$$\bar{Q}_{1,2}^{(1)} = -\bar{A}_V = -(-0,1337\,1/m) = 0,1337\,1/m \tag{5-47}$$

Der Balkenteil außerhalb der Strebe ist unbelastet, daher gilt:

$$\bar{Q}_3^{(1)} = 0 \ 1/m \tag{5-48}$$

Man erhält folgende Wertetabelle:

Position	1-Querkraft	
m	1/m	
0,72	0,1337	
1,81	0,1337	
2,57	0,1337	
3,32	0,1337	
4,08	0,1337	
4,84	0,1337	
5,59	0,1337	
6,35	0,1337	
7,10	0,1337	
7,86	0	
8,61	0	
9,37	0	
10,12	0	
10,88	0	
11,64	0	
12,39	0	
13,15	0	

Tabelle 14: 1-Querkräfte in der Flügelstruktur

5.3.4 1-Biegemomentenverlauf

Für die Momentenbilanz um den Lagerpunkt A gilt infinitesimal vor dem Strebenanschluss:

$$\bar{1} + \bar{M}_{1,2}^{(1)} - \bar{Q}_{1,2}^{(1)} y_{st} = 0$$
(5-49)

Daraus folgt:

$$\bar{M}_{1,2}^{(1)} = \bar{Q}_{1,2}^{(1)} y_{st} - \bar{1} = \frac{1}{y_{st}} y_{st} - 1 = 0$$
(5-50)

Infinitesimal vor dem Lagerpunkt A gilt für die Momentenbilanz:

$$\bar{1} + \bar{M}_{1,2}^{(1)} = 0 \tag{5-51}$$

Für das Biegemoment um den Lagerpunkt gilt daher:

$$\bar{M}_{1,2}^{(1)} = -1 \tag{5-52}$$

Das virtuelle Biegemoment nimmt also linear von -1 beim Lagerpunkt auf 0 beim Strebenanschluss ab. Im Balkenteil außerhalb der Abstrebung gilt:

$$\bar{M}_3^{(1)} = 0 \tag{(5-53)}$$

Tabelle 15. T-Blegemomentenvertauj		
Position	1-Biegemoment	
m	1	
0,72	-0,9041	
1,81	-0,7576	
2,57	-0,6566	
3,32	-0,5556	
4,08	-0,4546	
4,84	-0,3536	
5,59	-0,2525	
6,35	-0,1515	
7,10	-0,0505	
7,86	0	
8,61	0	
9,37	0	
10,12	0	
10,88	0	
11,64	0	
12,39	0	
13,15	0	

Daraus ergibt sich folgende Wertetabelle:

Tabelle 15: 1-Biegemomentenverlauf

5.3.5 1-Torsionsmomentenverlauf

Im 1-System entsteht kein Torsionsmoment, daher gilt:

$$\bar{M}_{T,1,2,3}^{(1)} = 0 \tag{5-54}$$

5.4 Berechnung der lokalen Verformungsgrößen

5.4.1 Aufstellen der PvK-Gleichung

Nach dem Arbeitssatz gilt für die lokalen Verformungsgrößen:

$$\alpha_{01} = \int_{0}^{y_t} \frac{N^{(0)} \overline{N}^{(1)}}{EA} dy + \int_{0}^{y_t} \frac{Q^{(0)} \overline{Q}^{(1)}}{\kappa GA} dy + \int_{0}^{y_t} \frac{M^{(0)} \overline{M}^{(1)}}{EI_y} dy + \int_{0}^{y_t} \frac{M_T^{(0)} \overline{M}_T^{(1)}}{GI_T} dy$$
(5-55)

$$\alpha_{11} = \int_{0}^{y_t} \frac{\left(\overline{N}^{(1)}\right)^2}{EA} dy + \int_{0}^{y_t} \frac{\left(\overline{Q}^{(1)}\right)^2}{\kappa GA} dy + \int_{0}^{y_t} \frac{\left(\overline{M}^{(1)}\right)^2}{EI_y} dy + \int_{0}^{y_t} \frac{\left(\overline{M}^{(1)}_T\right)^2}{GI_T} dy$$
(5-56)

Nach dem Prinzip der virtuellen Kräfte gilt ferner die Verträglichkeitsbedingung:

$$0 = \alpha_{01} + M_A \alpha_{11} \tag{5-57}$$

Daraus folgt für das statisch unbestimmte Einspannmoment am Punkt A:

$$M_A = -\frac{\alpha_{01}}{\alpha_{11}}$$
(5-58)

Für die Schnittgrößenverläufe im realen Flügel gilt dann nach dem Superpositionsprinzip:

$$N_i = N_i^{(0)} + M_A \overline{N}_i^{(1)}$$
(5-59)

$$Q_i = Q_i^{(0)} + M_A \bar{Q}_i^{(1)}$$
(5-60)

$$M_i = M_i^{(0)} + M_A \overline{M}_i^{(1)}$$
(5-61)

$$M_{T,i} = M_{T,i}^{(0)} + M_A \overline{M}_{T,i}^{(1)}$$
(5-62)

Auch die Strebenkraft ergibt sich zu:

$$S = S^{(0)} + M_A \bar{S}^{(1)} \tag{5-63}$$

In den folgenden vier Unterkapiteln werden alle vier Schnittgrößen sowie die Strebenkräfte gekoppelt.

5.4.2 Kopplung der Normalkräfte

$$\alpha_{N01} \int_{0}^{y_t} \frac{N^{(0)} \overline{N}^{(1)}}{EA} dy = \frac{1}{E} \sum_{0}^{y_t} \frac{N_i^{(0)} \overline{N}_i^{(1)}}{A_i} \Delta y_i$$
(5-64)

$$\alpha_{N01} = 1.395.666.850 \times 10^{-12} \tag{5-65}$$

$$\alpha_{N11} = \int_{0}^{y_t} \frac{\left(\overline{N}^{(1)}\right)^2}{EA} dy = \frac{1}{E} \sum_{0}^{y_t} \frac{\left(\overline{N}^{(1)}_i\right)^2}{A_i} \Delta y_i$$
(5-66)

$$\alpha_{N11} \approx 1.090 \times 10^{-12} \ \frac{1}{Nm} \tag{5-67}$$

5.4.3 Kopplung der Querkraftverläufe

$$\alpha_{Q01} \int_{0}^{y_t} \frac{Q^{(0)}\bar{Q}^{(1)}}{\kappa G A} dy = \frac{6}{5G} \sum_{0}^{y_t} \frac{Q_i^{(0)}\bar{Q}_i^{(1)}}{A_i} \Delta y_i$$
(5-68)

Da das BTK-Profil ausschließlich aus Rechtecken zusammengesetzt ist, wird ein Schubkorrekturfaktor von 5/6 verwendet.

$$\alpha_{Q01} = 95.176.836 \times 10^{-12} \tag{5-69}$$

$$\alpha_{Q11} = \int_{0}^{y_t} \frac{\left(\bar{Q}^{(1)}\right)^2}{\kappa G A} dy = \frac{6}{5G} \sum_{0}^{y_t} \frac{\left(\bar{Q}^{(1)}\right)^2}{A_i} \Delta y_i$$
(5-70)

$$\alpha_{Q11} = 433 \times 10^{-12} \ \frac{1}{Nm} \tag{5-71}$$

5.4.4 Kopplung der Biegemomentenverläufe

$$\alpha_{M01} = \int_{0}^{y_t} \frac{M^{(0)} \overline{M}^{(1)}}{E I_y} dy = \frac{1}{E} \sum_{0}^{y_t} \frac{M_i^{(0)} \overline{M}_i^{(1)}}{I_{y,i}} \Delta y_i$$
(5-72)

$$\alpha_{M01} = -6.187.795.059 \times 10^{-12} \tag{5-73}$$

$$\alpha_{M11} = \int_{0}^{y_t} \frac{\left(\bar{M}^{(1)}\right)^2}{EI_y} dy = \frac{1}{E} \sum_{0}^{y_t} \frac{\left(\bar{M}^{(1)}\right)^2}{I_{y,i}} \Delta y_i$$
(5-74)

$$\alpha_{M11} = 302.718 \times 10^{-12} \ \frac{1}{Nm} \tag{5-75}$$

5.4.5 Kopplung der Torsionsmomentenverläufe

Da im 1-System kein Torsionsmoment wirkt, entfällt der zum Torsionsmoment gehörende Term komplett.

5.4.6 Kopplung der Strebenkräfte

$$\alpha_{S01} = \int_{0}^{y_t} \frac{S^{(0)}\bar{S}^{(1)}}{EA} dy = \frac{S^{(0)}\bar{S}^{(1)}}{EA_{st}} L$$
(5-76)

$$\alpha_{S01} = 8.424.389.646 \times 10^{-12} \tag{5-77}$$

$$\alpha_{S11} = \int_{0}^{y_t} \frac{\left(\bar{S}^{(1)}\right)^2}{EA} dy = \frac{\left(\bar{S}^{(1)}\right)^2}{EA_{st}} L$$
(5-78)

$$\alpha_{S11} = 6.617 \times 10^{-12} \ \frac{1}{Nm} \tag{5-79}$$

5.5 Vergleich der inneren Lasten

Aus den lokalen Verformungsgrößen ergibt sich das Einspannmoment:

$$M_A = -\frac{\alpha_{N01} + \alpha_{Q01} + \alpha_{M01} + \alpha_{S01}}{\alpha_{N11} + \alpha_{Q11} + \alpha_{M11} + \alpha_{S11}}$$
(5-80)

Einsetzen liefert:

$$M_A = -\frac{3.727.438.273 \times 10^{-12}}{310.859 \times 10^{-12} \ 1/(Nm)} = -11.991 \ Nm \tag{5-81}$$

Mit dem statisch überzähligen Einspannmoment können die wahren Schnittgrößenverläufe superponiert werden.

5.5.1 Strebenkraft

Es gilt:

$$S = 429.300 N - 11.991 Nm \times 0.3353 1/m = 425.279 N$$
(5-82)

Nach der Chiozzotto-Methode beträgt die Strebenkraft 183.303 N. Die mit dem PvK ermittelte Strebenkraft weicht damit um 132 % von diesem Wert ab.

5.5.2 Balkennormalkraft

Im abgestrebten Flügelteil gilt:

$$N_{1,2} = -393.694 N - 11.991 Nm \times (-0,3075 1/m) = -390.007 N$$
(5-83)

Nach Chiozzotto ist der Flügel im gesamten Bereich normalkraftfrei. Nach dem PvK ist dies jedoch nur im Flügelteil außerhalb der Abstrebung zutreffend:

$$N_{3} = 0 N - 11.991 Nm \times 0 1/m = 0 N$$
(5-84)

0

0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(5-84)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

-100

-200

-300

-400

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500

-500
-50

Bild 76: Normalkraftverlauf nach dem PvK

Abstand von der Symmetrieebene in m

5.5.3 Querkraftverlauf

Tubelle 10. Querkrujiveriduj nach dem 1 VK	
Position	Querkraft
m	N
0,72	-11.642
1,81	-7.298
2,57	5.622
3,32	18.448
4,08	31.168
4,84	43.773
5,59	56.249
6,35	68.584
7,10	80.765
7,86	-77.590
8,61	-67.331
9,37	-57.269
10,12	-47.428
10,88	-37.839
11,64	-26.697
12,39	-14.222
13,15	-4.081

Tabelle 16: Querkraftverlauf nach dem PvK

Bild 77: Querkraftverlauf nach dem PvK

Nach Chiozzotto beträgt die Querkraft betragsmäßig maximal etwa 77,6 kN. Dies liegt jedoch an der von mir gewählten Aufteilung des Außenflügels in "nur" 8 Streifen. Bei einer unendlich feinen Diskretisierung läge der Maximalwert bei 82,8 kN. Mit dem PvK beträgt der betragsmäßige Maximalwert 88,4 kN, was einer Abweichung von 6,8 % von 82,8 kN sowie 13,9 % von 77,6 kN entspricht.

5.5.4 Biegemomentenverlauf

Tubene 17. Diegemomentenverlauf nach dem 1 VK	
Position	Biegemoment
m	Nm
0,72	4.405
1,81	-8.093
2,57	-3.845
3,32	10.094
4,08	33.646
4,84	66.721
5,59	109.224
6,35	161.048
7,10	222.075
7,86	220.919
8,61	166.184
9,37	119.129
10,12	79.595
10,88	47.406
11,64	22.704
12,39	7.312
13,15	771

Tabelle 17: Biegemomentenverlauf nach dem PvK

Bild 78: Biegemomentenverlauf nach dem PvK

Nach dem PvK beträgt das maximale Biegemoment 250,1 kNm. Es wirkt in unmittelbarer Umgebung des Strebenanschlusses. Die Chiozzotto-Methode liefert einen Maximalwert von 220,9 kNm. Dies liegt jedoch auch an der von mir gewählten Aufteilung des Außenflügels. Bei einer unendlich feinen Diskretisierung würden ebenso 250,1 kNm herauskommen.

Torsionsmoment Position Nm m 0,72 89.860 1,81 89.860 2,57 83.423 3,32 77.025 70.672 4,08 4,84 64.369 5,59 58.120 51.930 6,35 7,10 45.806 7,86 40.088 8,61 34.779 9,37 29.555 10,12 24.424 19.399 10,88 13.716 11,64 12,39 7.468 2.209 13,15

Tabelle 18: Torsionsmomentenverlauf nach dem PvK

Der Maximalwert nach der Chiozzotto-Methode liegt bei meiner Diskretisierung bei 40,1 kNm, bei unendlich feiner Diskretisierung läge er bei 44,9 kNm. Mit dem PvK erhält man 89,9 kNm, was einer Abweichung um 124 % zu 40,1 kNm bzw. um 100 % zu 44,9 kNm entspricht.

5.6 Flügelmasse mit den PvK-Schnittgrößen

Die mit dem Prinzip der virtuellen Kräfte ermittelten Schnittgrößen sollen genutzt werden, um den Flügel-BTK und den Streben-Hohlkasten zu dimensionieren. Die endgültige Wanddicke ist der Maximalwert aller Einzeldimensionierungen gegen alle betrachteten Versagensarten. Der Sicherheitsfaktor soll bei allen Dimensionierungen 1,5 betragen. Die Rippenmasse sei äquivalent zur Chiozzotto-Methode durchgehend mit 15 % der Masse von Gurt- und Stegplatte zusammen angenommen.

5.6.1 Wanddicke gegen Stabilitätsversagen

Der Flügel-BTK ist durch die Normalkraft und das Biegemoment anfällig gegen Knicken sowie gegen Beulen. Eine Dimensionierung gegen Biegedrillknicken entfällt im Rahmen dieser Arbeit. Die einzelnen BTK-Abschnitte seien als allseitig gelenkig gelagert angenommen.

5.6.1.1 Wanddicke gegen Euler-Knicken

Nach Euler gilt für die Knickkraft:

$$F_{Knick} = \frac{\pi^2 E I_y}{l_{Knick}^2} \tag{5-85}$$

Mit den gegebenen Randbedingungen folgt:

$$F_{Knick,i} = \pi^2 E \frac{I_{y,i}}{L_r^2}$$
(5-86)

Die Knickkraft muss größer sein als die vorhandene Kraft, damit kein Knicken auftritt:

$$F_{Knick,i} > F_{vorhanden,i} \tag{5-87}$$

Mit gegebener Sicherheit folgt:

$$F_{Knick,i} = 1,5F_{vorhanden,i} \tag{5-88}$$

Für das erforderliche Flächenträgheitsmoment gilt dann:

$$I_{y,erf,i} = \frac{1.5|N_i|L_r^2}{\pi^2 E}$$
(5-89)

Einsetzen liefert:

$$I_{y,erf,i} = \frac{1,5|-390.007 N| \times (1,00 m)^2}{\pi^2 \times 70.000 MPa} = 846.771 mm^4$$
(5-90)

Dabei sei angenommen, dass stets gilt:

$$I_{y,i} < I_{z,i} \tag{5-91}$$

Das Flächenträgheitsmoment um die z-Achse braucht demnach nicht untersucht zu werden, da
es stets größer als dasjenige um die y-Achse ist. Aus dem Flächenträgheitsmoment nach Formel (2-150) entnimmt man den Zusammenhang der Gurtplatten- und Stegplattendicken:

$$t_{w,i} = \frac{6I_{y,i} - w_i t_{e,i}^3 - 3h_i^2 w_i t_{e,i}}{t_{e,i}^3 + 3h_i^2 t_{e,i} + (h_i - t_{e,i})^3}$$
(5-92)

Die gewichtsoptimale Kombination von Gurtplatten- und Stegplattendicke wird über die Querschnittsfläche des BTK berechnet:

$$A_i = 2w_i t_{e,i} + 2h_i t_{w,i} \tag{5-93}$$

Dazu wird die Funktion

$$A_{i} = 2w_{i}t_{e,i} + \frac{12I_{y,i}h_{i} - 2h_{i}w_{i}t_{e,i}^{3} - 6h_{i}^{3}w_{i}t_{e,i}}{t_{e,i}^{3} + 3h_{i}^{2}t_{e,i} + (h_{i} - t_{e,i})^{3}}$$
(5-94)

in Excel geplottet und die zum Minimum gehörigen Wanddicken tabellarisch iterativ ermittelt. Bei einer Gurtplattendicke von 0,0278 mm ist die Stegplattendicke mit 0,0006 mm gerade noch positiv. Die Querschnittsfläche des BTK beträgt dann 64 mm². Diese Lösung ist jedoch unpraktikabel. Gurtplatte und Stegplatte sind gleich dick bei einer Wanddicke von 0,0261 mm. Dann beträgt die Querschnittsfläche 72 mm². Man erhält also folgende Wertetabelle:

Position	erforderliche	erforderliche
	Gurtplattendicke	Stegplattendicke
m	mm	mm
0,72	0,0261	0,0261
1,81	0,0261	0,0261
2,57	0,0261	0,0261
3,32	0,0261	0,0261
4,08	0,0261	0,0261
4,84	0,0261	0,0261
5,59	0,0261	0,0261
6,35	0,0261	0,0261
7,10	0,0261	0,0261
7,86	0	0
8,61	0	0
9,37	0	0
10,12	0	0
10,88	0	0
11,64	0	0
12,39	0	0
13,15	0	0

Tabelle 19: Wanddicken gegen Knicken

5.6.1.2 Wanddicke gegen lokales Beulen

Auf die Obergurtplatte wirkt ein Druckkraftfluss infolge Normalkraft und Biegemoment von:

$$n_{x,OGP,i} = 1.5 \left(\frac{|N_i|}{w_i} + \frac{M_i}{h_i w_i} \right)$$
(5-95)

Für die Beulspannung der Obergurtplatte [Flüh 2003] gilt:

$$\sigma_{Beul,OGP,i} = kE \frac{t_{e,i}^2}{w_i^2}$$
(5-96)

Der Beulfaktor sei vereinfacht mit 4 angenommen. Mit

$$\sigma_{Beul,OGP,i} = \frac{n_{x,OGP,i}}{t_{e,i}}$$
(5-97)

folgt für die Obergurtplattendicke:

$$t_{e,OGP,erf,i} = \sqrt[3]{\frac{1,5\left(|N_i|w_i + \frac{M_iw_i}{h_i}\right)}{4E}}$$
(5-98)

An der Untergurtplatte gilt:

$$n_{x,UGP,i} = 1.5 \left(\frac{|N_i|}{w_i} - \frac{M_i}{h_i w_i} \right)$$
(5-99)

Daraus folgt:

$$t_{e,UGP,erf,i} = \sqrt[3]{\frac{1,5\left(|N_i|w_i - \frac{M_iw_i}{h_i}\right)}{4E}}$$
(5-100)

Zu beachten ist, dass nur positive Druckkraftflüsse beulkritisch sein können!

Für den Druckkraftfluss auf die Stegplatten gilt:

$$n_{x,SP,i} = 1.5 \frac{|N_i|}{h_i} \tag{5-101}$$

Daraus folgt:

$$t_{e,SP,erf,i} = \sqrt[3]{\frac{1,5|N_i|w_i}{4E}}$$
(5-102)

Man erhält folgende Wertetabelle:

D '4'	erforderliche	erforderliche	erforderliche
Position	Obergurtplattendicke	Untergurtplattendicke	Stegplattendicke
m	mm	mm	mm
0,72	0,1240	0,1200	0,2087
1,81	0,1183	0,1256	0,2087
2,57	0,1203	0,1237	0,2087
3,32	0,1264	0,1172	0,2087
4,08	0,1357	0,1043	0,2087
4,84	0,1469	0,0775	0,2087
5,59	0,1591	0	0,2087
6,35	0,1719	0	0,2087
7,10	0,1848	0	0,2087
7,86	0,1648	0	0
8,61	0,1499	0	0
9,37	0,1341	0	0
10,12	0,1173	0	0
10,88	0,0987	0	0
11,64	0,0772	0	0
12,39	0,0529	0	0
13,15	0,0250	0	0

Tabelle 20: Wanddicken gegen Beulen

5.6.2 Wanddicke gegen Scherfestigkeitsversagen

Der Flügel-BTK ist dem exzentrisch angreifenden Auftrieb ausgesetzt. Dadurch wird in der Struktur ein Torsionsmoment induziert. Nach der 1. Bredt'schen Formel gilt für den konstanten Schubfluss innerhalb geschlossener Hohlprofile:

$$q = \frac{M_T}{2A_m} \tag{5-103}$$

Für die zulässige Schubspannung gilt in erster Näherung:

$$\tau_{zul} = \frac{R_p}{\sqrt{3}} \tag{5-104}$$

Die Schubspannung ergibt sich aus dem Schubfluss und der Wanddicke:

$$\tau = \frac{q}{t} \tag{5-105}$$

Daraus folgt für die Gurtplatten- und Stegplattendicken:

$$t_{e,i} = t_{w,i} = \frac{3\sqrt{3}M_{T,i}}{4w_i h_i R_p}$$
(5-106)

Es ergibt sich folgende Wertetabelle:

Position	Plattendicke
m	mm
0,72	1,2260
1,81	1,2260
2,57	1,1382
3,32	1,0509
4,08	0,9642
4,84	0,8782
5,59	0,7930
6,35	0,7085
7,10	0,6250
7,86	0,5469
8,61	0,4745
9,37	0,4032
10,12	0,3332
10,88	0,2647
11,64	0,1872
12,39	0,1019
13,15	0,0301

Tabelle 21: Wanddicken gegen Torsion

5.6.3 Wanddicke gegen Zugfestigkeitsversagen

Ein positives Biegemoment beansprucht eine Gurtplatte auf Zug. Die dabei auftretenden Normalspannungen berechnen sich zu:

$$\sigma_x(z) = \frac{|M|}{I_y} z \tag{5-107}$$

Für die Dimensionierung sind die Maximalwerte ausschlaggebend, daraus folgt:

$$\sigma_{max,i} = \frac{|M_i|h_i}{2I_{y,i}} = \frac{R_p}{1.5}$$
(5-108)

Umstellen nach dem Flächenträgheitsmoment liefert:

$$I_{y,i} = \frac{|M_i|h_i}{2\sigma_{max,i}} = \frac{3|M_i|h_i}{4R_p}$$
(5-109)

Äquivalent zu dem Vorgehen in Kapitel 5.6.1.1 wird hieraus die umlaufend gleiche Gurt- sowie Stegplattendicke gefunden. Dazu wird Formel (5-92) unter Anwendung der Cardanischen Formel nach der Wanddicke umgestellt. Unter Verwendung von

$$p_i = \frac{h_i^3 + 3h_i^2 w_i}{w_i} - \frac{3h_i^4}{w_i^2}$$
(5-110)

$$q_i = \frac{2h_i^6}{w_i^3} - \frac{h_i^5 + 3h_i^4 w_i}{w_i^2} - \frac{6I_{y,i}}{w_i}$$
(5-111)

$$D_i = \left(\frac{p_i}{3}\right)^3 + \left(\frac{q_i}{2}\right)^2$$
(5-112)

folgt für die Wanddicke:

$$t_i = \sqrt[3]{-\frac{q_i}{2} + \sqrt{D_i}} + \sqrt[3]{-\frac{q_i}{2} - \sqrt{D_i}} - \frac{h_i^2}{w_i}$$
(5-113)

Man erhält folgende Wertetabelle:

Position	Plattendicke
m	mm
0,72	0,0659
1,81	0,1188
2,57	0,0562
3,32	0,1495
4,08	0,4970
4,84	0,9847
5,59	1,6110
6,35	2,3737
7,10	3,2706
7,86	3,2540
8,61	2,4495
9,37	1,7570
10,12	1,1745
10,88	0,6998
11,64	0,3353
12,39	0,1080
13,15	0,0114

Tabelle 22: Wanddicken gegen Biegung

Ferner wird auch die Strebe durch die Strebenkraft auf Zug beansprucht. Es gilt:

$$A_{st} = 1.5 \frac{S}{R_p} = 2(h_{st} + w_{st})t_{st}$$
(5-114)

Daraus folgt die umlaufend konstante Wanddicke der Strebe:

$$t_{st} = \frac{3S}{4(h_{st} + w_{st})R_p}$$
(5-115)

Einsetzen liefert:

$$t_{st} = \frac{3 \times 425.279 \,N}{4(100 \,mm + 300 \,mm) \times 360 \,MPa} = 2,2150 \,mm \tag{5-116}$$

5.6.4 Flügelmasse mit PvK-Schnittgrößen

Die maximale Wanddicke jedes Streifens ist die endgültige Wanddicke. Es ergibt sich:

Position	maximale Obergurtplattendicke	maximale Untergurtplattendicke	maximale Stegnlattendicke
m	mm	mm	mm
0,72	1,2260	1,2260	1,2260
1,81	1,2260	1,2260	1,2260
2,57	1,1382	1,1382	1,1382
3,32	1,0509	1,0509	1,0509
4,08	0,9642	0,9642	0,9642
4,84	0,9847	0,9847	0,9847
5,59	1,6110	1,6110	1,6110
6,35	2,3737	2,3737	2,3737
7,10	3,2706	3,2706	3,2706
7,86	3,2540	3,2540	3,2540
8,61	2,4495	2,4495	2,4495
9,37	1,7570	1,7570	1,7570
10,12	1,1745	1,1745	1,1745
10,88	0,6998	0,6998	0,6998
11,64	0,3353	0,3353	0,3353
12,39	0,1080	0,1080	0,1080
13,15	0,0301	0,0301	0,0301

Tabelle 23: maximale Wanddicken

Unter Beachtung der Fertigung des BTK wird eine minimale Hautdicke von 1,00 mm festgelegt. Ferner werden alle ermittelten Wanddicken auf ,5 bzw. ,0 aufgerundet. Dann erhält man:

Desition	maximale	maximale	maximale
POSITION	Obergurtplattendicke	Untergurtplattendicke	Stegplattendicke
m	mm	mm	mm
0,72	1,5	1,5	1,5
1,81	1,5	1,5	1,5
2,57	1,5	1,5	1,5
3,32	1,5	1,5	1,5
4,08	1,0	1,0	1,0
4,84	1,0	1,0	1,0
5,59	2,0	2,0	2,0
6,35	2,5	2,5	2,5
7,10	3,5	3,5	3,5
7,86	3,5	3,5	3,5
8,61	2,5	2,5	2,5
9,37	2,0	2,0	2,0
10,12	1,5	1,5	1,5
10,88	1,0	1,0	1,0
11,64	1,0	1,0	1,0
12,39	1,0	1,0	1,0
13,15	1,0	1,0	1,0

Tabelle 24: fertigungsgerechte maximale Wanddicken

Für die Strebenwanddicke erhält man so analog 2,5 mm. Für die Masse des BTK der gesamten Tragfläche gilt dann:

$$m_{BTK} = 1,15 \times 4\rho \sum_{0}^{y_t} t_i (w_i + h_i) \Delta y_i$$
 (5-117)

Es ergibt sich eine Masse von 61,5 kg. Zusammen mit der Masse der sekundären Flügelstruktur nach Formel (2-194) ergibt sich für die Flügelmasse:

$$m_{wing} = m_{BTK} + m_{MTO}^{0,518} S^{0,492}$$
(5-118)

Näherungsweise ermittelt man das neue MTOW aus dem alten MTOW nach Chiozzotto sowie der Differenz der Massen des BTKs. Die benötigten Werte liest man aus dem Tabellenblatt "Weights and Volumes" ab.

$$m_{MTO} = m_{MTO,alt} - \left(m_{BTK,alt} - m_{BTK,neu}\right)$$
(5-119)

Einsetzen liefert:

$$m_{MTO} = 22.114 \, kg - (615 \, kg - 61,5 \, kg) = 21.561 \, kg \tag{5-120}$$

Damit folgt:

$$m_{wing} = 61,5 \, kg + (21.561 \, kg)^{0,518} \times (62,3 \, m^2)^{0,492} = 1.403 \, kg \tag{5-121}$$

Für die Masse der BTKs beider Streben gilt:

$$m_{st} = 4.6\rho t_{st} (w_{st} + h_{st})L \tag{5-122}$$

Einsetzen liefert:

$$m_{st} = 81,8 \, kg$$
 (5-123)

Für die Masse der Strebenstruktur gilt unverändert ein Wert von 17 kg, den man "Weights and Volumes" (Zelle K6) entnehmen kann. Damit folgt für die Gesamtmasse des Tragwerks, also Flügel und Strebe auf beiden Seiten zusammen, ein Wert von:

$$m_{ges} = 1.403 \, kg + 82 \, kg + 17 \, kg = 1.502 \, kg \tag{5-124}$$

Das sind 553 kg (-26,9 %) weniger als nach Chiozzotto. Das wirkliche MTOW beträgt damit 21.561 kg. Die Gleitzahl sinkt um 1,2 % auf 16,5, die Startrollstrecke sinkt um 1,5 % auf 585 m und die Reichweite legt mit 1.321 km um 1,7 % zu. Die Prozentwerte beziehen sich auf den Wert nach der Chiozzotto-Methode.

Die in diesem Kapitel vorgestellte Nachdimensionierung muss so oft wiederholt werden, bis sich die Wanddicken des BTKs nicht mehr ändern, da sich mit der veränderten Geometrie auch die Lastverteilung in der Struktur und damit die Dimensionierungsgrundlage ändert.

6 Zusammenfassung

In dieser Arbeit wurde ein Verfahren zur Berechnung der Flügelmasse strebengestützter Tragflügel vorgestellt, in dem neben aerodynamischen Lasten und Trägheitslasten auch aeroelastische Effekte modelliert werden. Durch Annahmen konnte das mechanische Modellsystem als statisch bestimmt beschrieben werden. Die Anwendung des in Excel programmierten Verfahrens wurde an der ATR 72-600 für Studien zu verschiedenen Strebenwinkeln angewendet. Hier kam heraus, dass sich die Flugleistungen durch eine Stützstrebe und den damit verbundenen Masseneinsparungen um bis zu 18 % (Reichweite) gegenüber dem Originalflugzeug verbessern. Diese Ergebnisse sind jedoch etwas zu optimistisch; sie kommen zustande durch das Vereinfachen des statisch unbestimmten Teils des mechanischen Modells. Eine Berücksichtigung des statisch unbestimmt gelagerten Flügelabschnitts mit Hilfe des Prinzips der virtuellen Kräfte korrigiert die verbesserten Masseneinsparungen und Flugleistungen nachträglich.

7 Ausblick

Um die mit der Chiozzotto-Methode berechneten Massenverringerungen zu verifizieren, können nachträglich FEM-Analysen durchgeführt werden. Dabei können zusätzlich die Flattereigenschaften untersucht werden. Die aeroelastische Analyse nach Chiozzotto verzichtet hierauf, um die Methode mathematisch einfach zu halten.

Bei der Dimensionierung werden nur die Spannungen betrachtet, nicht jedoch die Verformungen. Jede angreifende Last verformt jedoch die elastische Struktur, was wiederum die Lastverteilung beeinflussen kann. So könnte es beispielweise sein, dass der Flügel durch das Torsionsmoment derart verdreht wird, dass der Einstellwinkel im Flug signifikant ansteigt, was sich auf die Auftriebsverteilung auswirkt. Des Weiteren könnte auch der V-Winkel des Flügels ungewollt stark ansteigen, was sich auf die Stabilitätseigenschaften des Flugzeugs auswirkt. Die Auswirkungen der Verformungen sollten also näher untersucht werden.

Bei den Reichweitenberechnungen gehe ich davon aus, dass neben dem Volumen innerhalb des Flügel-BTK auch das Volumen innerhalb des Streben-BTK genutzt wird. Um dies in der Realität ausnutzen zu können, muss der Tank innerhalb der Strebenstruktur konstruiert werden. Dabei muss insbesondere darauf eingegangen werden, wie der Treibstoff optimal zum Triebwerk gepumpt werden kann.

Um die Veränderung der Aerodynamik zu untersuchen, wären Windkanalexperimente geeignet. Hier sollte insbesondere die Messung des Gesamtwiderstands im Fokus stehen. Auf diese Weise wird auch der Interferenzwiderstand berücksichtigt, den ich in meinen Rechnungen vernachlässigt habe. Das Windkanalmodell könnte ausreichend genau Rapid-Prototyping-Verfahren hergestellt werden. Dabei sollte darauf geachtet werden, dass die Rauhigkeitswerte des Modells mit den Rauhigkeiten "echter" Flugzeugaußenhaut gut übereinstimmen.

Die von mir demonstrierte Nachdimensionierung mit dem PvK berücksichtigt nicht die aeroelastischen Effekte, die in der Dimensionierung nach Chiozzotto berücksichtigt werden. Eine Implementierung der aeroelastischen Analyse in die Nachdimensionierung würde für noch bessere Ergebnisse sorgen.

Zu guter Letzt lässt sich die Genauigkeit der berechneten Werte steigern, indem man die Diskretisierung des Rechenmodells erhöht.

8 Literaturverzeichnis

airfoiltools	http://airfoiltools.com/airfoil/details?airfoil=atr72sm-il, Stand 12.10.2016	
ATR 1999	ATR 72, Flight Crew Operating Manual, 1999	
Bislins 2013	http://walter.bislins.ch/blog/index.asp?page=Berechnung%3A+Mittlere +Aerodynamische+Fl%FCgeltiefe+(MAC), Stand 13.11.2016	
Chiozzotto 2015	CHIOZZOTTO, Gabriel Pinho: Conceptual Design Method for the Wing Weight Estimation of Strut-Braced Wing Aircraft, CEAS, Paper Nr. 46, 2015	
Flüh 2003	FLÜH, Hans J. und SEIBEL, Michael: <i>Strukturkonstruktion</i> , Skript zur Vorlesung, HAW Hamburg, Hamburg, 2003	
FLUG REVUE	http://www.flugrevue.de/zivilluftfahrt/flugzeuge/atr-72-600/469487, Stand 12.10.2016	
Hakenesch	HAKENESCH, Peter R.: <i>Aerodynamik des Flugzeugs</i> , Skript zur Vorlesung, Version 2.4	
Handojo 2015	HANDOJO, V. H. und KLIMMEK, T.: <i>Böenlastanalyse der vorwärts gepfeilten ALLEGRA-Konfiguration</i> , Göttingen, 2015	
Jessen 2009	JESSEN, Benjamin: Integration eines Moduls zur Bild eines Propellertriebwerks in das Flugzeugentwurfsprogramm PrADO, Projekt, HAW Hamburg, Hamburg, 2009	
Niță 2008	NIȚĂ, Mihaela Florentina: <i>Aircraft Design Studies Based on the ATR</i> 72, Projektarbeit, HAW Hamburg, Hamburg, 2008	
Ricciardi 2011	RICCIARDI, Anthony P.: Utility of Quasi-Static Gust Loads Certification Methods for Novel Configurations, Master Thesis, Blacksburg, 2011	
Scholz 1999	SCHOLZ, Dieter: Skript zur Vorlesung Flugzeugentwurf, HAW Hamburg, Hamburg, 1999	
Scholz 2014	SCHOLZ, Dieter und JOHANNING, Andreas: <i>Smart Turboprop – A Possible A320 Successor</i> , Toulouse, HAW Hamburg, 2014	
Torenbeek 1976	TORENBEEK, Egbert: Synthesis of subsonic airplane design, Delft University Press, 1976	
Wikipedia	https://de.wikipedia.org/wiki/ATR_72, Stand 12.10.2016	
Allgemein bekannte Formeln des Flugzeugentwurfs sind Scholz 1999 entnommen.		

Allgemein bekannte Formeln der Festigkeitsberechnung sind Flüh 2003 entnommen.