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Kurzzusammenfassung
Der Gesamtgeräuschpegel von Fahrzeugen ist in den letzten Jahren kontinuierlich gesunken.
Durch diesen reduzierten Geräuschpegel ist die Maskierung von Komponentengeräuschen
häu�g nicht mehr gewährleistet und die akustische Auslegung gewinnt in der Fahrzeugent-
wicklung immer mehr an Bedeutung. Jedoch sind akustische Tests in der Regel sehr zeitintensiv,
teuer und besonders in frühen Entwicklungsphasen sehr aufwändig. Deswegen werden immer
häu�ger mit Hilfe von Simulationen sogenannte Auralisierungen durchgeführt- d.h. Simu-
lationsmethoden werden verwendet, um Geräusche, unabhängig von Experimenten, hörbar
zu machen. In diesem Zusammenhang wird in dieser Arbeit eine Methode entwickelt, um
dynamische (FE-)Simulationen im Zeitbereich mit einer Auralisierungs-Methode hörbar zu
machen. Dazu können die meisten der kommerziellen FE-Software-Pakete verwendet werden.
Die erzeugten Daten der Simulation werden mit einem, in der Arbeit programmierten Skript
und mit Hilfe von Signalverarbeitungsverfahren zu einem hörbaren Ergebniss verarbeitet.
Um gute Rechnenzeiten des Skripts zu gewährleisten, werden Vereinfachungen wie z.B. das
Prinzip der Modalen Superposition oder das Huygensche Prinzip verwendet. Im Laufe dieser
Arbeit wird diese Methode auf einige Beispiele angewendet und mit Hilfe eines Experiments
validiert. Die Ergebnisse der Beispiele und insbesondere der Validierung sind sehr vielverspre-
chend bezüglich der realitätsnähe, der einfachen Anwendung der Methode und der kurzen
Berechnungszeit.
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Abstract
Mitigation of interfering noises (e.g. rattling) have become evident in the development of
cars due to the continuous reduction of car noise levels in the last years and the resulting
masking e�ect reduction. Therefore, the acoustic requirements for every part of a car have
become more important. Physical acoustic tests are time consuming, complex, expensive and
in early development phases it is often not possible due to the lack of a prototype. Through the
latter reasons simulation tools for the evaluation of acoustic characteristics can be a promising
alternative. In this work a procedure is developed to make transient dynamic simulation data
audible. The simulation results, which can be generated with most of the commercial FE
software, will be processed to an audible result by an auralization method. For an enhanced
computational performance simpli�cations like modal superposition and Huygens’ Principle
are applied. Within this work, the method has been positively validated by a comparison of
simulation to experimental results. The positive validation, combined with the computational
e�ciency, makes the developed auralization method a promising alternative for the acoustic
evaluation of new designs.



Acknowledgements

First of all, I would like to thank my thesis advisor Prof. Dr. Gun-
nar Gäbel of the Hamburg University of Applied Science. The door to
Prof. Gäbel’s o�ce was always open whenever I had a question about
my research or writing. He consistently allowed this paper to be my
own work, but steered me in the right direction whenever he thought I
needed it.

I would also like to thank my second thesis advisor and industrial men-
tor Enno Witfeld. He continuously supported my work and helped me
with a lot of essential discussions to �nd the right direction.

Furthermore I would like to thank Dr. Zhen Wu for his generous sup-
port in all manners. He shared his extensive knowledge about acoustics
and dynamic simulations with me and supported me in the develop-
ment of this method.

Thanks to the whole ES/EE department of Autoliv with a special thank
to Dr. Burkhard Eickho�, Dr. Peter Blohme, Christian Kapsalis and Pe-
ter Szigeti.

Thanks to everyone involved in this project for the great display of in-
terest in the topic.



Contents

Abstract iii

Acknowledgements v

List of Figures vii

List of Tables ix

List of Symbols and Abbreviations x

1 Introduction 1

2 Fundamentals of Acoustics 2
2.1 What is Sound? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Huygens’ Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Human Hearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Psychoacoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Acoustic Simulation Methods 9

4 Discrete-Time Signal Processing 13
4.1 Fourier Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 DC-Blocking �lter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Transient Acoustic Simulations with Auralization 26
5.1 Method to Auralize Transient Dynamic Simulation Data . . . . . . . . . . . . 26
5.2 Cantilever . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 Ball Drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4 Vibraphone Bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4.2 Simulation and Auralization . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4.3 Boundary Element Simulation . . . . . . . . . . . . . . . . . . . . . . . 58
5.4.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Conclusion 63

Bibliography 64

vi



List of Figures

2.1 Huygens principle of wave propagation (Huygens 1690, p. 19) . . . . . . . . . 4
2.2 The anatomy of the human ear (The Art of Hearing 2014) . . . . . . . . . . . . 6
2.3 Equal-loudness contours acoording to ISO EN 226:2003 (2014) . . . . . . . . . 7

3.1 The simulation methods FEM and BEM (Gaul et al. 2003) . . . . . . . . . . . . 10
3.2 The direct (left) and indirect (right) BEM (according to Siemens AG (2017)) . . 10
3.3 A BEM simulation of a vibraphone bar carried out with the software ’LS-DYNA’ 11

4.1 A continuous signal (line) sampled at every ∆ second to a discrete signal (dots) 13
4.2 De�nition of a linear system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 The amplitude of the acoustic sensitivity (FRF) . . . . . . . . . . . . . . . . . . 15
4.4 The decomposition of a periodic signal (left) with harmonic sinusoidal waves

(right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.5 The waterfall plot depicts the relationship between the time- and frequency

domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.6 The frequency spectrum of sin(2πx) + 1

2 sin(6πx) . . . . . . . . . . . . . . . . 16
4.7 Fourier Series applied on square wave . . . . . . . . . . . . . . . . . . . . . . . 17
4.8 Frequency spectrum of applied Fourier Series on square wave . . . . . . . . . 18
4.9 The convolution of a rectangular pulse from the time- to frequency domain . . 19
4.10 Aliasing in the time domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.11 Fourier transformation of a continuous signal (according to Shin & Hammond

2007, p. 127) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.12 Fourier transformation of a sampled sequence, fs > 2fh (according to Shin &

Hammond 2007, p. 127) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.13 Fourier transformation of a sampled sequence, fs < 2fh (according to Shin &

Hammond 2007, p. 127) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.14 Anti-Aliasing �lter (according to Shin & Hammond 2007, p. 130) . . . . . . . . 24
4.15 Ideal- (left) and real (right) Anti-Aliasing �lter (according to Agilent Technolo-

gies 2012, p. 31) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.16 DC-Blocking �lter with a=0,95 applied on data curve with high- and low-

frequency components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1 Auralization method for data from transient dynamic simulation . . . . . . . . 27
5.2 The principle of modal superposition: the result displacement consists of modal

components (according to Kalny (2013)) . . . . . . . . . . . . . . . . . . . . . . 27
5.3 In�uence of number of modes when using modal superposition principle com-

pared to an implicit calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

vii



List of Figures

5.4 Discretization for dynamic simulation (left), surface mesh (center) and the �nal
mesh (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.5 The inverse-square law (according to UdK Berlin (1998)) . . . . . . . . . . . . 32
5.6 Sound radiation characteristics (according to Will (2017)) . . . . . . . . . . . . 33
5.7 Bu�ering of a sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.8 Distribution of samples for bu�ering . . . . . . . . . . . . . . . . . . . . . . . 35
5.9 Schematic model of a cantilever . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.10 Discretized model of cantilever for transient simulation (left), for auralization

(center) and its exploded view (right) . . . . . . . . . . . . . . . . . . . . . . . 36
5.11 First �ve eigenmodes of the cantilever . . . . . . . . . . . . . . . . . . . . . . . 37
5.12 In�uence of included modes on cantilever motion . . . . . . . . . . . . . . . . 38
5.13 How to create a stereo sound? . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.14 Analyse of four di�erent acoustic meshes of the cantilever (mesh sensitivity) . 39
5.15 In�uence of the mesh size on the time domain signal . . . . . . . . . . . . . . 40
5.16 In�uence of the mesh size on the frequency domain signal . . . . . . . . . . . 41
5.17 Simulation model of ball drop example . . . . . . . . . . . . . . . . . . . . . . 42
5.18 Exploded view of the structure and the surface mesh . . . . . . . . . . . . . . 43
5.19 Tetrahedral mesh of the ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.20 The vibraphone (Lone Star Percussions 2016) . . . . . . . . . . . . . . . . . . . 44
5.21 A standing wave of the fundamental frequency in an one-end-open tube (Russel

2012) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.22 The vibraphone bar with resonator analysed in this work . . . . . . . . . . . . 46
5.23 The resonator without the vibraphone bar . . . . . . . . . . . . . . . . . . . . 46
5.24 The dimensions of the vibraphone (side view) . . . . . . . . . . . . . . . . . . 47
5.25 The vibraphone in the acoustic lab (left) and its on-center excitation (right) . . 48
5.26 The measured force of the impact hammer . . . . . . . . . . . . . . . . . . . . 49
5.27 The measured signal of the vibraphone in the time domain (left) and in the

frequency domain (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.28 Waterfall plot of an on- and o�-center excitation . . . . . . . . . . . . . . . . . 51
5.29 The oscillation of a damped system . . . . . . . . . . . . . . . . . . . . . . . . 52
5.30 The damping of the vibraphone . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.31 Simulation model of vibraphone bar . . . . . . . . . . . . . . . . . . . . . . . . 54
5.32 Bottom view of simulation model of vibraphone bar . . . . . . . . . . . . . . . 54
5.33 Eigenmodes of vibraphone bar . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.34 In�uence of number of included modes on the body motion . . . . . . . . . . 55
5.35 The time domain signal ouput of the auralization of the vibraphone bar motion

in the time domain (left) and in the frequency domain (right) . . . . . . . . . . 57
5.36 The vibraphone simulation model (Boundary Element Method) . . . . . . . . 58
5.37 The sound propagation of the vibraphone bar at 880Hz . . . . . . . . . . . . 59
5.38 The spectrum of the �eld point (30 cm above the bar) . . . . . . . . . . . . . . 60
5.39 The frequency domain representation of the experiment and the auralized sound 61
5.40 The frequency domain representation of the experiment, the auralized sound

and the BEM simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

viii



List of Tables

5.1 Calculation time when using modal superposition . . . . . . . . . . . . . . . . 28
5.2 Mesh properties of cantilever model . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Computation time of cantilever model . . . . . . . . . . . . . . . . . . . . . . . 41
5.4 Mesh properties of the ball drop model . . . . . . . . . . . . . . . . . . . . . . 42
5.5 Computation time of ball drop model . . . . . . . . . . . . . . . . . . . . . . . 44
5.6 Mesh properties of vibraphone bar model . . . . . . . . . . . . . . . . . . . . . 54

ix



List of Symbols and Abbreviations

Latin Symbols

Aw Amplitude of wave
A Area of surface element in m2

a Filter coe�cient for DC-Blocking �lter
an Amplitude and phase of sine wave
a0 Mean value of signal
b Width of rectangular pulse in the time domain
bn Amplitude and phase of cosine wave
c Sound velocity in m/s2

ccritical Critical damping
cd Damping
ERPabsolute Equivalent radiated power in W
ERPρ Equivalent radiated power density in W/m2

F Force in N
f Frequency in Hz
fc Cut-o� frequency in Hz
fh Nyquist frequency in Hz
fs Sampling frequency in Hz
g Gravity in m/s2

H(f) Frequency Response Function
htotal Height of vibraphone in m
hresonator Height of resonator in m
I Impedance in W/m2

Ifp Impedance at �eld point in W/m2

k Wavenumber
ks Spring sti�ness in N/m
L Length of resonator in m
m Mass in kg
n Index number of frequency (n=0,1,2,...,n)
~n Unit vector normal
p Sound pressure in Pa
pmax Maximum sound pressure in Pa
prms E�ective (rms) sound pressure in Pa
pfp Sound pressure at �eld point in Pa
ps Sound pressure of surface element in Pa

x



List of Symbols and Abbreviations

prms,fp E�ective (rms) pressure at �eld point in Pa
prms,s E�ective (rms) pressure of source in Pa
r Radius in m
rs−fp Distance between surface element and �eld point in m
T, Tp Time of one period in s
t Time in s
tbar Thickness of vibraphone bar in m
twall Thickness of resonator wall in m
V(r,t) Kirchho�’s integral theorem
vn Surface normal velocity in m/s
~v Velocity vector in m/s
Wfp Acoustic power at �eld point in W
Ws Acoustic power of one surface element in W
wtotal Width of vibraphone in m
X(f) Fourier series in frequency domain
X(k) Discrete Fourier Transformation of a �nite length in frequency domain
x(n) Discrete Fourier Transformation of a �nite length in time domain
x(t) Fourier series in time domain
z Speci�c or characteristic acoustic impedance (wave resistance) in Pa · s/m

Greek and Other Symbols

∆ Time interval in s
ζ Damping ratio
λ Wave length in m
ρ Density of air m3/kg
%(t) Envelope function
Φ Velocity potential
ϕ Angle of sound radiation in rad
ω Angular frequency in 1/s
ωn Natural angular frequency in 1/s
ωw Resonance angular frequency in 1/s
∇2 Laplace operator

xi



List of Symbols and Abbreviations

Abbreviations

BC Before Christ
BEM Boundary Element Method
DFB Deformable Rigid Body
DFT Discrete Fourier Transform
DOF Degrees Of Freedom
FEM Finite Element Method
FFT Fast Fourier Transformation
FRF Frequency Response Function
FT Fourier Transformation

xii



1 Introduction

Increased customer expectations of acoustics have been addressed to the automotive industry
in the last decades which have led to extensive acoustic research and development of e.g.
quieter engines and optimized sound absorptions. These e�orts result in a signi�cant reduction
of the overall sound level which eliminates acoustic masking e�ects and interfering noises of
parts are not covered any longer. In order to increase customer comfort, interfering noises
in the vehicle interior need to be avoided and to realize this the acoustic behaviour of every
part needs to match the design requirements. Therefore, it is of key importance to evaluate a
real sound in order to get an acoustic feeling of a certain situation. A common traditional way
to detect acoustically problematic areas of cars is to perform experiments. Though acoustic
experiments are expensive, time consuming and the required parts are often not available in
early development stages. Therefore, it is promising to increase the utilization of auralization
techniques. Auralization describes methods to generate sound from discrete numerical data.
Discrete data can be generated with dynamic simulations and made audible with an auralization
technique. This gives the possibility to analyse in an e�cient way the acoustic e�ects of design
changes in e.g. the geometry of a part. (Oppenheim et al. 2008); (Vorländer 2008)

At the market a handful of commercial software packages are available to perform acoustic
simulations with auralization but either the software is inherently expensive or very complex.
Therefore, such software packages are not as often used as e.g. deformable FE simulation
methods, which are more a�ordable and more known. In this context, this work presents
an approach to make transient simulations with an auralization technique audible. For the
transient simulation can be used most of the commercial FE software and the developed
auralization technique is performed by scripts with signal processing tools.

The next chapter presents an overview of acoustics and explains the applied acoustic theory
within this work.
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2 Fundamentals of Acoustics

The word ”acoustic” comes from the Greek word akoyein and means ”to hear”. It is the science
of sound and its propagation. In one of the �rst known scienti�c discussions on acoustics the
ancient Greek philosopher Pythagoras analysed the sound impression of stringed instruments
in 550 BC. Aristotle �gured out later, that sound is a compression and a decompression of
air. Around the year zero, Roman architects applied their basic understanding in architectural
acoustics to build theatres. In the mid of the 16th century, Galileo Galilei dealt with vibrations
and postulated that body vibrations generate waves. From this time the research in acous-
tics has increased rapidly through e.g. Newton’s mathematical description of waves, Lord
Rayleigh’s postulation of sound theory1 or Helmholtz’s general mathematical description of
waves. Furthermore, the electri�cation, especially induced by Ohm, Faraday and Henry, in-
creased and simpli�ed acoustic research due to various analogies between both �elds. With the
burgeoning electri�cation new acoustic technologies got invented, e.g. telegraph techniques
or the telephone by Bell and Edison. In the 20th century a new level of precision of acoustic
technologies was reached especially through intensi�ed research in war time. During the �rst
quarter of the 20th century an application was developed to detect ultrasonic waves in air and
water. Ultrasonic sonic waves describe the frequency range above the human hearing range of
20000 Hz. Especially for medical purposes ultrasonic technologies are very useful. In the early
life of a human being a hearing range from 16 Hz to 20000 Hz is normal but the upper level
decreases with age. Frequencies below 16 Hz are called infrasound. Acoustic science covers
only the human hearing range and is further discussed in the next chapters. (Rossing 2014);
(Blauert 2005); (Mach 1919)

2.1 What is Sound?

From the early stages it was known that sound propagates somehow from one point to another.
Aristotle postulated that sound propagates through a motion of air. Later, in the 16th century,
Galileo Galilei stated that sound waves are generated by vibrations and it has become evident

1The Theory of Sound is a textbook from Lord Rayleigh and is still used.
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2 Fundamentals of Acoustics

that sound propagates by waves in the form of pressure �uctuations. (Rossing 2014); (Mach
1919)

Nowadays, sound is considered to be a mechanical wave in an elastic medium similar to
Galileo Galilei’s expectation. In liquids and gases, sound propagates in longitudinal waves
or so-called ”compression waves” because compression stress can be transmitted only (no
shear stress). In the latter wave type the particle displacement is parallel to the direction of
wave propagation. In solids sound can propagate in longitudinal or transverse waves or in a
combination of both. The particle displacement in transverse waves is perpendicular to the
direction of wave propagation. (Rossing 2014); (Eichler 2014)

The mathematical description of an acoustic wave propagating in gases or liquids is based
on hydrodynamic relations of state changes by relating pressure, particle velocity and density.
Since sound propagates by small state changes only, a wave equation can be derived for small
changes of states to describe sound �elds as a function of time and space. Equation 2.1 shows
such a wave equation for the sound pressure p, where∇2 describes the Laplace operator2, c
the phase velocity and t the time.

1

c2

∂2p

∂t2
−∇2p = 0, (2.1)

Based on equation 2.1 an expression for the velocity �eld can be derived by introducing a
change in density ρ but writing the wave equation as a function of the velocity potential Φ

is most convenient (see equation 2.2) because Φ allows a direct calculation of pressure and
velocity. (Lerch et al. 2009); (Eichler 2014)

1

c2

∂2Φ

∂t2
−∇2Φ = 0 (2.2)

Additional to pressure and velocity changes, for the analysis of acoustic behaviour it is
of key importance to consider the wave propagation, here historically named as Huygens’
Principle.

2.2 Huygens’ Principle

In 1678 in France, the Dutch mathematician and scientist Christiaan Huygens (*1629 – †1695)
�nishes his �rst version of Traité de la lumière (engl. Treatise on Light). This work is the �rst

2The Laplace di�erential scalar operator can be applied to vector or scalar �elds: ∇2 = ∂2/(∂x2) + ∂2/(∂y2) +
∂2/(∂z2). (Lerch et al. 2009)

3



2 Fundamentals of Acoustics

mathematical theory of light. During the following 12 years he continuously discusses and
improves the content with scientists of the Royal Academy of Science and publishes the treatise
in 1690. (Huygens 1690)

Figure 2.1: Huygens principle of wave propagation (Huygens 1690, p. 19)

For the �rst time in this textbook Huygens considers light to be a wave and outlines the
rectilinear wave propagation of point sources. By means of �gure 2.1 Huygens depicts that
every point of a wave front is the initial point of a new wavelet, whose envelope creates a new
wave front with the same frequency and phase as the previous wave. (Huygens 1690); (Veselov
2002)

Precisely, point "A" is a point source, which creates the spherical wave front "H-I". According
to Huygens’ Principle any point of this wave front is the initial point of a wavelet, whose
envelope represents the new wave front "D-F". Later, in 1816 the French physicist and engineer
Augustin Jean Fresnel (*1788 – †1827) describes di�raction on edges and apertures with
Huygens’ Principle by including the superposition principle for the amplitudes of the secondary
waves. The result of his work is known as Huygens Fresnel Principle. (Veselov 2002)

However, Huygens and Fresnels theories do not describe properly wave propagation in
free space, especially because of the negligence of backward waves. The German physicist
and physician Hermann L.F. von Helmholtz (*1821 – †1894) is the �rst to take backward
waves for longitudinal, monochromatic3 waves into account in the so-called Helmholtz wave
equations. Helmholtz wave equations are partial di�erential equations, which expresses a
time-independent form of the wave equation (equation 2.1):

∇2 ·Aw + k2 ·Aw = 0, (2.3)

3A monochromatic wave consists of a narrow band of wavelengths.

4



2 Fundamentals of Acoustics

where ∇2 describes the Laplace Operator, Aw the amplitude and k the wavenumber4. (Born
& Wolf 2003); (Eichler 2014)

Later, the German physicist Gustav Kirchho� (*1824 – †1887) enhances Helmholtz theory
for longitudinal waves further to a more general theory of wave propagation by using Maxwell-
Equations5 and Green’s identities6 to describe mathematically exact the Huygens Fresnel
Principle of wave propagation in the so-called Kirchho�’s integral theorem7. (Miller 2010);
(Wrobel 2002)

V (r, t) =
1

4π

∫
S

{
[V ]

δ

δn

(
1

s

)
− 1

cs

δs

δn

[
δV

δt

]
− 1

s

[
δV

δn

]}
dS, (2.4)

Equation 2.4 shows the Kirchho�’s integral8 for non-monochromatic waves. This equation
is commonly used to calculate sound in the far �eld at an arbitrary point. Schönwald (2010);
Goodman (2005); Born & Wolf (2003)

However, knowing the wave propagation and the pressure or velocity change in a certain
situation is not enough to describe and evaluate acoustic behaviour. Additionally, it is necessary
to consider the anatomy and the hearing capabilities of the human ear as well.

2.3 Human Hearing

A human ear consists basically of an outer ear, a middle ear and an inner ear (see �gure
2.2). Firstly, pressure changes (sound) from the environment are captured by the outer ear
depending on frequency and direction. Secondly, the middle ear transfers the sound from outer
ear to inner ear and basically, it �xes the impedance and the ear drum responses frequency
dependent. Thirdly, the inner ear transforms the mechanical wave into stimuli, which are
distributed to the sensory cells.

This transformation happens in the so-called basilar membrane, a part of the cochlea.
Furthermore, the mechanical properties of the cochlea varies in the length (uncoiled state)
due to the change of its thickness from 1/6 mm to 1/2 mm. This is why di�erent frequencies
excite di�erent areas and amplitudes of the Cochlea. This behaviour is summarized in the

4The wave number is the quotient of angular frequency ω and speed of light c: k = ω /c.
5The Maxwell-Equations are four partial di�erential equations, which describe the behaviour of electric and

magnetic �elds.
6Green’s identities are named after the British mathematical physicist George Green (*1793 – †1841) and it is

known as conclusion of the divergence theorem. It consists of three derivative and integral vector identities.
7The Kirchho�’s integral theorem is sometimes refereed as Fresnel-Kirchho� integral theorem.
8For further information to Kirchho�’s integral theorem and its derivation is refereed to Goodman (2005) and

Born & Wolf (2003).
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Figure 2.2: The anatomy of the human ear (The Art of Hearing 2014)

travelling wave theory, which says that the hearing capabilities of the human ear are frequency
dependent. Moreover, the perception of acoustic waves in the sensory cells depends not only on
frequency but also on di�erent sound pressure levels, which is illustrated in the equal-loudness
contours (see �gure 2.3). The y-axis represents the sound pressure level in dB and the x-axis
shows the frequency in Hz. (Wendt 2016)

Generally, the frequency dependency of the sound pressure level is the foundation for evalu-
ated acoustic measurements: the A-weighting is a commonly used �lter in acoustic measuring
techniques and represents the sensed sound pressure level of humans depending on frequency.
(ISO EN 226:2003 2014); (Wendt 2016)

However, a pure analysis of acoustic curves is often not a targeted approach to analyse
acoustic behaviours because not all characteristics can be captured. Therefore, it is often
convenient to evaluate sounds by humans through listening in order to get information of
how humans feel about certain sounds. This approach is summarized in the acoustic discipline
psychoacoustics.
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Figure 2.3: Equal-loudness contours acoording to ISO EN 226:2003 (2014)

2.4 Psychoacoustics

Psychoacoustic assessments are mainly used to investigate the human sound impressions.
Generally, acoustic waves act as stimuli on the basilar membrane which, transforms stimuli
into human perceptions. The properties of an acoustic wave can be clearly de�ned with
physical quantities. In comparison the human perception is subjective and di�ers from human
to human and is therefore di�cult to determine. According to DIN 55350-11:2008-05 (2008)
sound quality is de�ned as satisfaction of the expectations. That means that humans expect
certain sounds in certain situations, e.g. a sound when buckling up: this sound generates
safety feelings for humans and is expected. In case of a silent buckling up, customers will not
be satis�ed. Furthermore, altering sound emissions and thus sound impressions of e.g. cars
o�ers a possibility to communicate the product value: a low-frequency dull door closing sound
seems more high-quality than a tinny sound with higher frequency. Furthermore, the feeling
of comfort correlates strongly with undisturbed communication abilities at higher velocities.
Therefore, assessments to determine sound impressions with clear de�ned evaluation criteria
like ”Zwicker” or the ”Annoyance Index” are carried out. For each evaluation criteria several
perception variables are de�ned in order to evaluated the entire sound impression. (Zeller
2012); (Braess & Sei�ert 2013)
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Traditionally psychoacoustic researches and generally acoustic studies are done with experi-
ments and assessments. Nowadays, techniques are available to make speci�c situations audible
by using simulations in order to avoid running expensive and time consuming experiments. In
this context, the next chapter shows commercial acoustic simulation techniques.
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3 Acoustic Simulation Methods

This chapter presents an overview of methods and software packages for acoustic simulations.
These numerical simulation approaches can be grouped by their domain: time or frequency. The
time domain is widely used for e.g. deformation calculation and regarding acoustics, the time
domain is especially a good choice if the target is to provide audible results (auralization). The
frequency domain is usually a good choice if frequency information and system characterisitics
are needed. Most of the commercial software companies o�er di�erent software packages
depending on the speci�c problem for simulating in the time- or frequency domain, whereby
in the �eld of acoustics, the most widely used methods are the so-called Finite Element Method
(abbr. FEM) and the Boundary Element Method (abbr. BEM). FEM and BEM are commonly used
i.a. for acoustic calculations because many traditional structure solvers include these methods
e.g. the software ’Abaqus’ (FEM) from ’Dassault Systèmes’ or ’LS-DYNA’ (FEM and BEM) from
’Livermore Software Technology Corporation’. These methods are based on classical dynamic
simulations and use traditionally the frequency domain. In case of the BEM the so-called
Sommerfeld radiation condition1 is automatically satis�ed, that means that the exterior domain
does not need to be meshed. (Huang & Cui 2013); (Vorländer 2008); (Chandler-Wilde & Langdon
2007); (Dassault Systèmes 2017)

On the right hand side of �gure 3.1 is depicted that an air volume (the area between boundary
and body) of BEM simulations are not necessarily meshed. This is bene�cial regarding the
meshing time compared to the acoustic FEM (left hand side), where the whole �eld has to be
discretized.

However, FEM simulations are often used to visualize the wave propagation in the medium
and BEM simulation are more commonly performed to calculate the behaviour at the boundary
points only, or in the so-called indirect BEM simulations at single boundary points, which can
be advantageous for a fast meshing procedure. Figure 3.2 depicts on the right hand side an
indirect BEM simulation, which can calculate interior and exterior problems in the so-called

1Arnold Sommerfeld (*1868 – †1951) was a German theoretical physicist. He discovered the condition of radiation
for scalar �elds by satisfying the Helmholtz equation (see equation 2.3). With Sommerfeld’s approach the
Helmholtz equation can be solved uniquely. For further information about Sommerfeld’s radiation is referred
to Ammari (2008).
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Figure 3.1: The simulation methods FEM and BEM (Gaul et al. 2003)

open and closed domain. Whereas a direct BEM simulation (left hand side) is used for closed
domains only, that means either for interior or exterior problems. (Chandler-Wilde & Langdon
2007); (Huang & Cui 2013)

Figure 3.2: The direct (left) and indirect (right) BEM (according to Siemens AG (2017))

Also the Finite Element Method has advantages compared to BEM especially regarding
calculation time, because the matrices are not fully populated and they do not need to be
reformed at each frequency. However, both methods have advantages and disadvantages and
which method is bene�cial depends on the speci�c problem. (Chandler-Wilde & Langdon 2007)

A BEM simulation of a vibraphone bar has been carried out within this work with ’LS-DYNA’
which is illustrated in �gure 3.3. The vibraphone (blue) is a musical instrument, which basically
consist of a bar and a resonator. It is usually excited in the middle point on the top of the bar
by a mallet. The mesh above the vibraphone depicts the �eld at 880 Hz with the unit sound
pressure level in decibel (dB). According to �gure 3.2, this is an indirect BEM simulation due to
the open domain. For more detailed information about this BEM simulation it is referred to
chapter 5.4.3.

The frequency domain simulation methods FEM and BEM can be used to calculate e.g.
the sound pressure level as function of frequency at a �eld point. Furthermore, they can be
used to visualize the sound propagation of a body (see �gure 3.3). Nowadays, it is becoming
more evident to generate realistic audible sound from simulation data instead of analysing
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Figure 3.3: A BEM simulation of a vibraphone bar carried out with the software ’LS-DYNA’

frequency curves. In this context, auralization describes the process of making numerical data
from simulations audible. This technique simpli�es acoustic studies because it is possible to
listen to close to reality synthesized sounds and to evaluate its characteristics according to
the psychoacoustics (see chapter 2.4). Thus, auralization together with psychoacoustics build
a strong tool to analyse acoustics of a product or a part before a prototype has been build.
It is especially suitable to analyse acoustics regarding customer comfort. Since auralization
happens mostly in the time domain it is more convenient to perform simulations directly in
the time domain and not in the frequency domain. Whereupon, a convolution of data from the
frequency domain to the time domain is possible but such universe transformations are valid
for small changes in the energy level only, which mostly do not occur in acoustic problems (see
chapter 4.1). Therefore, it is more common to simulate directly in the time domain in order to
avoid a problematic transformation. E.g. the software ’LMS Virtual.Lab’ from Siemens o�ers
to simulate acoustic BEM or FEM in the time domain and to visualize sound propagation in
time. However, these two time domain methods are usually performed for small frequency
ranges only due to the large computational e�ort. Therefore these methods are not suitable for
auralization purposes. A more common approach to generate sound from simulation is to track
each ray: ’Ray Acoustics’ from ’Siemens’ represents a ray tracing method, which is performed
in the time domain. This allows to calculate sound propagation in a range of frequencies up to
18000 Hz in the far �eld, whereby the calculation follows the track of each ray of sound while
re�ection, absorption etc. is taken into account. Furthermore, ray tracing simulations are often
supported by FEM and BEM in order to e.g. pre-calculate the radiation characteristics of the
sources properly. (Siemens AG 2017); (Vorländer 2008)
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In this chapter a brief overview of the wide range of acoustic simulation methods and its
combination has been presented. The shown methods represent the fundamental basis of
many acoustic simulation methods and its commercial use. The software companies often
combine di�erent simulation methods in order to use the advantage of each technique, e.g. the
combination of FEM or BEM methods with the ray tracing technique. This approach is in line
with the objective of this work: on the basis of structural dynamic simulation data a kind of
ray tracing method is to develop to make simulation data audible, whereby the support of BEM
simulations is to estimate. To develop an own procedure has advantages compared to most
commercial software packages: on the one hand side buying expensive acoustic software can
be avoided and on the other hand side the use of structural dynamic simulation data enlarges
huge advantages because this data is existing in most technical developments anyway, or
otherwise it can be created with the common dynamic simulation tools.

In order to process numerical simulation by an auralization method, it is important to take
signal processing into account, which is discussed in the next chapter.
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4 Discrete-Time Signal Processing

Signal processing has a long history from the 17th century, when scientists and engineers
started working intensively on functions with continuous variables and di�erential equations.
A continuous (or analogue) function is characterized by an uncountable domain through a
continuously changing variable. Most of the natural incidents (e.g. temperature change or
seismic measurements) are described by a continuous-time signal. First from the upgrowth of
computer technologies in the 1950s it was of key importance to impose a sampling procedure
on the continuous signals in order to make data processable by computers. Figure 4.1 depicts
the di�erence between a continuum and a discrete time signal. A digital signal (or sequence) is
built upon a set of discrete values, where time is sampled at every ∆ seconds. (Do et al. 2012);
(Agilent Technologies 2012)

∆

tM
ag

ni
tu

de

Figure 4.1: A continuous signal (line) sampled at every ∆ second to a discrete signal (dots)

The availability of computer provides an extraordinary advantage for data processing in
terms of �exibility: as one of the pioneers, in the early 1950s, oil companies used digital discrete-
time signal processing tools and stored seismic data on magnetic tapes for later processing.
From this moment the role of signal processing has expanded signi�cantly in a wide range
of �elds from specialized military systems, telecommunication systems, space explorations,
medicine technologies, industrial applications and video and photo editing. (Do et al. 2012);
(Agilent Technologies 2012); (Chen 2007)
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Signal processing describes a procedure used on measured data. A signal carries physical
information like temperature, acceleration or pressure. On these information a series of steps
or operations will be applied, so-called processing, to modify, manipulate or transform the
signal by a system to make data better understandable, interpretable and processable without
changing desired characteristics. Basically, signal processing tools are used when it seems
di�cult to extract information from a signal through direct observations. (Shin & Hammond
2007); (Do et al. 2012); (Agilent Technologies 2012)

A common way to describe the process of a signal processing task is by using system block
diagrams. Figure 4.2 depicts the relation between activator x(t) (or independent variable) and
response function y(t) (or dependent variable). (Shin & Hammond 2007)

System h(t)
x(t) y(t)

Figure 4.2: De�nition of a linear system

The activator represents the input signal, which is processed in a linear system h(t) in order
to calculate y(t). Mathematically, the system above can be expressed by y(t)=h(t) · x(t), where
the dot is the convolution integration. (Shin & Hammond 2007)

In order to understand a system more in detail, it is often recommended to analyse the
input-output relationship of x(t) and y(t). Therefore, a common way to identify a system, is to
use the frequency information of x(t)->X(f) and y(t)->Y(f) in order to calculate the Frequency
Response Function (abbr. FRF) H(f), which represents in acoustics the so-called acoustical
sensitivity:

H(f) =
Y (f)

X(f)
. (4.1)

The great advantage of FRF is that di�erent tests of a linear system can be easily compared
with each other. Basically, H(f) is a complex quantity and consists therefore of real and
imaginary components, which can be separately depicted in the amplitude (real) and the phase
(imaginary) diagram. Figure 4.3 depicts the real part1 of H(f) of an experimental run with a
force as input to excite a system and a measured sound pressure level in dB at one certain
point in the �eld as output. Therefore, the magnitude of this FRF is de�ned by sound pressure
level/force in the frequency domain. The two peaks indicate the resonance frequencies of the
system. (Shin & Hammond 2007); (Oppenheim et al. 1989)

1For this work the phase diagram does not provide more comprehensibility and is therefore not depicted.
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Figure 4.3: The amplitude of the acoustic sensitivity (FRF)

The most traditional way to observe a signal is over time (in the time domain). Nevertheless,
it is often challenging to understand and to interpret signals in this domain. Moreover, it is
of key importance to change the perspective and transform a signal from the time domain to
the frequency domain. A common transformation to convolute signals is to use the Fourier
Transformation (abbr. FT).

4.1 Fourier Transformation

In 1807 Jean Baptiste Joseph Fourier, a French mathematician and physician, postulates that an
in�nite linear combination of harmonic waves can build up any periodic signal. To give an
illustration, �gure 4.4 shows on the left hand side a harmonic wave sin(2πx) + 1

2 sin(6πx),
which consists of the two harmonics on the right hand side.

sin(2πx) + 1
2 sin(6πx)

sin(2πx)
1
2 sin(6πx)

Figure 4.4: The decomposition of a periodic signal (left) with harmonic sinusoidal waves (right)
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The harmonic waves are illustrated by sin(ωt+ϕ0), whereω describes the angular frequency
with

ω = 2πf =
2π

T
(4.2)

and ϕ0 the phase, which is zero in this example. Hence, knowing the harmonic composition
of a signal and applying equation 4.2 allows an easy detection of the frequency components:
the dashed curve on the right hand side of �gure 4.4 (sin(2πx)) has an angular frequency of
ω = 2π, that means a frequency of f1= ω / 2 π = 2 π / 2 π = 1 Hz. Thus, the dotted curve (1/2
sin(6πx)) has a frequency of f2=3 Hz. Figure 4.5 illustrates the frequencies and their time
domain information in a so-called waterfall plot.
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f1 sin(2πx)

f2
1
2 sin(6πx)

.

.

sin(2πx) + 1
2 sin(6πx)

Figure 4.5: The waterfall plot depicts the relationship between the time- and frequency domain

As depicted, each harmonic component of a signal represents one frequency contained in
the signal. Rotating the view on the plot of �gure 4.5 to frequency as x-axis and magnitude as
y-axis will lead to the following discrete frequency spectrum:
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Figure 4.6: The frequency spectrum of sin(2πx) + 1
2 sin(6πx)
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Basically, a frequency spectrum provides deeper information compared to the signal in the
time domain: it is used to analyse the behaviour of a system in order to identify its intrinsic
frequency characteristics. (Agilent Technologies 2012); (Do et al. 2012); (Shin & Hammond
2007)

Real measured signals are generally much more complex than the example above (see �gure
4.4). For this reason, it is not feasible to identify the frequency components manually. To
transform more complex signals, Fourier has developed methods to convolute a signal from the
time domain to the frequency domain and inverse. These methods are based on the introduced
concept of decomposing a signal into a sum of "simpler" components. The �rst way to get the
frequency information of a signal is by applying the Fourier Series. Equation 4.3 shows the
Fourier Series for a continuous periodic signal with the period length Tp,

x(t) =
a0

2
+
∞∑
n=1

[
ancos

(
2πnt

Tp

)
+ bnsin

(
2πnt

Tp

)]
, (4.3)

where a0 / 2 determines the mean value of the signal. The amplitude and phase of each
sine and cosine wave is represented by an and bn, respectively. Furthermore, the fundamental
frequency is f1 = 1 / Tp and the other frequencies are concerning n=1,2,... multiples of this.
Figure 4.7 depicts the partial sums of the applied Fourier Series on a square wave, where a0=0,
an=0 and bn= 2 / (n π)) · (1-cos(nπ)). It can be observed, that just sine waves and odd functions
have to be considered to build up this square wave. (Shin & Hammond 2007)
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4
π [sin(ω1t)]
4
π

[
sin(ω1t) + 1

3sin(3ω1t)
]

4
π

[
sin(ω1t) + 1

3sin(3ω1t) + 1
5sin(5ω1t)

]
Figure 4.7: Fourier Series applied on square wave
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In this context Gibbs’2 Phenomenon states that there will be a signi�cant error in the vicinity
of a discontinuity when applying Fourier Series on a function. In other words, it does not
matter how many partial terms are applied in equation 4.3, there will still be an error. This can
easily be observed, for instance, on the shown square wave example: as depicted, the linear
combination of sine waves is not su�cient to represent the square waves properly. In the
vicinity of the discontinuities of the linear combinations an overshoot will appear. (Shin &
Hammond 2007); (Do et al. 2012); (Agilent Technologies 2012)

Applying a basic Fourier Series on a function leads to a discrete spectrum because the
frequencies are only multiplies of the smallest chosen frequeny or the fundamental frequency.
Figure 4.8 shows the spectrum of the square wave with a distance between the frequencies
of f=1 / Tp. Furthermore, the frequencies of all even functions are zero due to bn= 2 / (n π)
(1-cos(nπ)). (Shin & Hammond 2007)

1
Tp

2
Tp

3
Tp

4
Tp

5
Tp

6
Tp

f

b n

Figure 4.8: Frequency spectrum of applied Fourier Series on square wave

However, the behaviour of most real signals are not characterized by discrete spectra but
rather by continuous frequency spectra. Hence, Fourier has extended the Fourier Series to
convolute time series into a continuous frequency domain. Therefore, it is convenient to take
the complex form of the Fourier Series by using e±j2πf into account in order to derive the
continuous Fourier Integrals (or the true Fourier Transforms) which may be expressed by:

x(t) =

∫ ∞
−∞

X(f)e−j2πftdf and X(f) =

∫ ∞
−∞

x(t)e−j2πftdt. (4.4)

2Josiah Willard Gibbs (*1839 – †1903) was an American scientist.
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This procedure is called Fourier Transformation (abbr. FT). For instance, �gure 4.9 shows a
transformation of a rectangular pulse function from the time to frequency domain by applying
the Fourier Integral:

X(f) =

∫ ∞
−∞

x(t)e−j2πftdt =

∫ b

−b
ae−j2πftdt =

2absin(2πfb)

2πfb
. (4.5)

The solved integral function in the frequency domain is called sinc function and generally
de�ned by sin(x)/x. Sinc functions are symmetric to the y-axis and lima→∞ sin(a)/a asymp-
totically tends to zero. The sinc function shown on the right hand side of �gure 4.9 represents
the spectrum of a rectangular pulse with a width in time of 2b, depicted on the left hand side
of �gure 4.9, which results in a �rst zero crossing of 1/(2b) in the frequency domain. (Shin &
Hammond 2007); (Oppenheim et al. 1989); (Do et al. 2012)

-b b
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1
2b
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2ab

f

X(f)

Figure 4.9: The convolution of a rectangular pulse from the time- to frequency domain

However, this approach is considered for continuous functions. For digital data processing it
is, as mentioned, indispensable to have discrete data points. In this context another approach
to the so-called Fourier Transform (see equation 4.4), namely the Discrete Fourier Transform
(abbr. DFT), may be used. The DFT can be derived from the continuous Fourier Transform with
the steps described in the following sentences. First a discrete time series can be considered.
According to equation 4.4, the area under the curve can be determined for a continuous series.
For a discrete signal this can be done by using a sum function coupled with the time interval
between samples to calculate separately the area of each time interval in order to sum all
areas up. A summation from minus in�nity to plus in�nity would take in�nite time. Hence, a
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limitation of the transform is important. This leads to the Discrete Fourier Transformation of a
�nite length (or periodic) sequence:

x(n) =
1

N

N−1∑
k=0

X(k)ej(2π/N)nk and X(k) =

N−1∑
k=0

x(n)e−j(2π/N)nk, (4.6)

where x(n) is the discrete signal representation of the sampled points n, N the total amount
of sampled points n, X(k) the discrete frequency domain representation with f=k/ (N ∆ ) and
∆ describing the time step or the time interval. It is notable to see the relationship of Discrete
Fourier Transformation X(k) and Fourier Transformation of a sampled sequence3 Xe2jπf∆

(Shin & Hammond 2007):

X(k) = Xe2jπf∆ (4.7)

The main di�erence between FT and DFT lays within the representation in the frequency
domain. The Fourier Transformation of a sampled sequence generates a continuous spectrum in
comparison to the Discrete Fourier Transformation, where the spectrum is calculated at discrete
data points. Therefore, it is questionable why DFT is used instead of FT. The most persuasive
argument for using DFT is the computation time. In this context, Karl Friedrich Gauss (*1777
– †1855), German mathematician and physician, invented an algorithm to interpolate the
trajectories of asteroids. This algorithm, nowadays so-called Fast Fourier Transformation (abbr.
FFT), was rediscovered in 1965 by Cooley and Tukey4 and is capable to transform data from the
time- to frequency domain (or inverse) in a very e�ective manner. FFT based on the idea that
N is a multiple of two, whereby it allows certain symmetries and can reduce consequently the
number of calculation by decomposing the computation of a DFT into smaller DFTs. (Shin &
Hammond 2007); (Do et al. 2012); (Agilent Technologies 2012); (Tan & Jiang 2008); (Oppenheim
et al. 1989); (Goodman 2005)

These smaller DFTs are applied successively on the signal in order to calculate the DFT
block wise. The signal data of one small DFT is called time record. Thereby, the fundamental
requirement of the Fourier Transformation is to have an amplitude of zero in the beginning
and the ending of the time record. This is normally not ful�lled and therefore a so-called
window with zero amplitudes in the start and end points is applied. The window function
should always be chosen carefully concerning the character of a certain signal in order to
capture all signal components. Therefore, the time records are mostly overlapped to avoid

3The Fourier Transformation of a sampled sequence can be derived from the continuous Fourier Integrals (see
equation 4.4 The detailed derivation is shown in (Shin & Hammond 2007).

4James W. Cooley and John Tukey were American mathematicians.
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4 Discrete-Time Signal Processing

loosing information. One of the most common window types are Hamming-, Hann- or the
based cosine-window. (Shin & Hammond 2007); (Do et al. 2012); (Agilent Technologies 2012);
(Oppenheim et al. 1989)

Considered the fact that the frequency domain is discrete when FFT is used, it is important
to choose the right time interval (∆) for the speci�c problem in order to obtain a representative
frequency spectrum. Therefore, sampling can be necessary to change the amount of data per
unit time prior to a FFT.

4.2 Sampling

Sampling of data is a fundamental method of Digital Signal Processing. Historically, it represents
the bridge between analogue and digital data. Nowadays, sampling procedures are widely used
to alter the amount of samples of a signal. Thereby, the main purpose of sampling is to archive
a reasonable sampling rate fs for a speci�c problem. In other words, the amount of data per
unit time depends strongly on the speci�c objective. To give an illustration for the wide range
of sampling rates: a television works normally with a sound (sampling) rate of about fs=48000
Hz and a video frame (sampling) rate of about fs=100 Hz (frames/s). That means that the
requirements for these two purposes di�er concerning the hearing and vision capabilities of
humans. In order to understand this behaviour it is important to take the sampling theorem
into account. Harry Nyquist (*1889 – †1976), an American electronic engineer, postulates in
1928 at �rst that the sampling rate of a digital signal should be two times greater or equal to
the highest frequency containing a continuous signal to capture all signal information. It may
be expressed as:

fs ≥ 2fh. (4.8)

21 years after Nyquists discovery, Claude Shannon, the so-called "father of information
theory", proved the theorem. Nowadays, it is known as Nyquist-Shannon sampling theorem.
(Shin & Hammond 2007); (Do et al. 2012); (Agilent Technologies 2012)

All things considered, it seems that a sampling rate for audio of fs=2fh=2 · 20000 Hz = 40000
Hz should be su�cient for the human hearing range (16 Hz- 20000 Hz). This is partly true, but
the last decades have shown that a sound rate around 50000 Hz is a better choice according to
the relation of quality and data usage5. Furthermore, sampling rates above 50000-60000 Hz do

5Certainly, the �lter techniques are not able to cut o� the frequency at one speci�c point, but rather in a frequency
band. Therefore, the highest frequency has to be naturally above 2fh.
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not provide better sound qualities. However, especially from old western movies, the so-called
stagecoach e�ect is known: the wheels seem to turn backwards when going forward. That is
happening due to the fact of low sampling rates and is called aliasing. Figure 4.10 depicts the
e�ect of aliasing in the time domain. It can be seen, that for a representative discretization the
sampling rate needs to be su�ciently large.
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Figure 4.10: Aliasing in the time domain

Therefore, the Shannon-Nyquist sampling theorem of the dashed graph in the example
is not ful�lled because the sampling frequency is less than 2fh. However, this frequency
dependency of aliasing can be better seen in the frequency domain: Figure 4.11 shows a Fourier
Transformation of a continuous signal with the condition X(f) = 0 for | f | > fh. The contour of
the frequency content is illustrated as triangle. (Shin & Hammond 2007); (Do et al. 2012)

−fh fh f

X(f)

Figure 4.11: Fourier transformation of a continuous signal (according to Shin & Hammond
2007, p. 127)

The sampling rate may be expressed as,

fs =
1

∆
, (4.9)
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where ∆ describes the time interval. This relation coupled with the sampling theorem fs ≥
2 fh leads to the folding frequency:

fh ≤
1

2∆
or fh ≤

fs
2
. (4.10)

According to chapter 4.1 it is known that the Fourier Transformation of a sampled sequence
can be expressed as ∆X(f) or ∆X(ej2πf∆), which is illustrated with fs > 2fh in Figure 4.12.
Thereby, the highest frequency of the signal fh is called Nyquist frequency and fs/2=1/(2 ∆) is
the folding frequency. The folding frequency describes the frequency between two subsequent
frequency samples. (Shin & Hammond 2007); (Tan & Jiang 2008)

− 1
∆ − 1

2∆
−fh fh 1

2∆
1
∆

f

∆Xs(e
j2πf∆)

Figure 4.12: Fourier transformation of a sampled sequence, fs > 2fh (according to Shin &
Hammond 2007, p. 127)

Figure 4.13 represents the case of fs < 2 fh. That indicates, that the Shannon-Nyquist
theorem is not ful�lled and aliasing can occur.

− 1
∆
−fh 1

2∆
fh 1

∆
f

∆Xs(e
j2πf∆)

Figure 4.13: Fourier transformation of a sampled sequence, fs < 2fh (according to Shin &
Hammond 2007, p. 127)

Thus, the frequency functions in X(f) are shifted closer together and overlap in higher
frequency areas, which results in a distortion of the frequencies: higher frequencies are not
distinguishable from lower ones, which is called aliasing. In other words, sampled frequencies
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4 Discrete-Time Signal Processing

higher than Nyquist frequency will be interpreted as lower frequency (see �gure 4.10). There-
fore, it is of key importance to know the highest frequency of the signal in order to de�ne the
right sampling rate. Yet the highest frequency of signals is not known and this is why it is
recommended to reduce the bandwidth before sampling. A common procedure, depicted in
�gure 4.14, is to apply a low-pass �lter, the so-called anti-aliasing �lter and do the sampling
procedure afterwards. (Shin & Hammond 2007)

Anti-aliasing �lter H(f) Sampling
x(t) x(n)

Figure 4.14: Anti-Aliasing �lter (according to Shin & Hammond 2007, p. 130)

Low pass �lters ramp down high frequencies amplitudes above the cut-o� frequency fc.
Figure 4.15 depicts on the left hand side an ideal low pass �lter. In this case the highest
frequency is equal to the cut-o� frequency (fh=fc). On the right hand side of �gure 4.15 is
shown that a real �lter has a transition band from fc to fh in which the �lter gain rises from 0
to maximum. (Shin & Hammond 2007)

−fc = −fs fc = fs

0

f

H(f) Filter gain in dB

−fh −fc fc fh

0

f

H(f) Filter gain in dB

Figure 4.15: Ideal- (left) and real (right) Anti-Aliasing �lter (according to Agilent Technologies
2012, p. 31)

In conclusion, the only way to avoid aliasing is to apply an Anti-Aliasing �lter. A sampled
signal is no longer an exact signal representation but it can be close to reality depending
on chosen distance of samples. The appropriate sampling rate is of key importance: too
high sample rates are not recommended and a too low one leads to aliasing. Therefore an
optimal rate must be found according to the application. Furthermore, sampling can be used
for down- and upsampling. That means the amount of data points, which represents a curve
can be increased or decreased. An upsampling procedure can be advantageous for a smoother
representation of the signal, whereby downsampling procedures are used to delete unnecessary
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4 Discrete-Time Signal Processing

data, when a lower amount of points can depict the curve details in the requirements as well
as the original signal.

Generally, it can be distinguished between three di�erent �lter types: a high pass-, a
bandpass- and a low-pass �lter. Band-pass �lters let all frequencies within a de�ned band pass.
Low-pass �lters reject high frequency components above the cut-o� frequency fc. High-pass
�lters reject low frequency components from zero up to a de�ned number. The next chapter
deals with a type of a high-pass �lter: the DC-Blocking �lter.

4.3 DC-Blocking filter

A DC-Blocking �lter is a typical high-pass �lter. The DC denotes that the DC-Blocking
�lter is used to remove constant frequency components of a signal. It works by combining
di�erentiation and re-integration. Therefore, a �lter coe�cient between zero and one has to
be determined to identify the amount of desired removal of signal components. A common
value is a=0,99. It can be de�ned by trial and error but more persuasive is to determine a by its
relation to the cut-o� frequency (see chapter 4.2 and de Freitas (2007)).

Figure 4.16 shows an applied DC-Blocking �lter on a signal with a=0,95. The original signal
(black) consists of low frequency and high frequency components. As depicted the DC blocked
signal (blue) is exempted from the low frequency component. (de Freitas 2007); (O’Brien et al.
2001)

t

M
ag

ni
tu

de

Original data
Applied DC-Blocking �lter on original data

Figure 4.16: DC-Blocking �lter with a=0,95 applied on data curve with high- and low-frequency
components

In the next chapter, the prior discussed theory is used to developed the method of auralization
and its application.
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5 Transient Acoustic Simulations with
Auralization

Transient simulations deal with dynamic problems in the time domain. This kind of simulation
is advantageous for auralization tasks because auralization happens in the time domain and
not in the frequency domain (see chapter 3). Whereupon, it is possible with inverse Fourier
Transformation to convolute data from the frequency domain to the time domain (see chapter
4.1) but such an universe transformation is valid for small changes in the energy level only, for
so-called stationary or quasi-stationary cases. Therefore, it is more convenient for auralization
purposes, where normally high energy �uctuations occur, to simulate directly in the time
domain to prevent the loss of relevant information through transformations.

In the following section a procedure is illustrated to auralize data from simulation.

5.1 Method to Auralize Transient Dynamic Simulation Data

The method developed and utilized in this work to make transient simulation data audible is
illustrated in �gure 5.1 and is based on the approach of O’Brien et al. (2001). The �rst column
of �gure 5.1, from discretization to node output, represents the transient dynamic simulation
part.

In the �rst step a part has to be discretizised. In case of small deformation and linear
problems the calculation time can be reduced by using modal-based methods instead of explicit
or implicit dynamic simulation techniques. In this context the natural mode shapes, the so-
called eigenmodes, are determined in a modal analysis to be included in a deformable rigid
body simulation (abbr. DFB). DFB simulations are generally rigid body simulations with a
superimposed linear modal response on the basis that every natural movement of a structure
can be expressed as a sum of the response of each mode (see �gure 5.2). In contrast the sti�ness-
and mass matrix of explicit or implicit methods are calculated based on a set of elements. Using
a set of modes instead of a set of elements leads to a considerable reduction of degrees of
freedom (abbr. DOF) and thereby to a high computational e�ciency. Basically, modal methods
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like modal superposition approximate the structural response by using a linear combination of
pre-computed mode shapes.

Discretization

Modal
analysis

Deformable
rigid body
simulation

Node
output

Low pass
�lter

Sampling

Surface
pressure

DC-
blocking

�lter

Sound
pressure at
�eld point

Bu�ering

prms (t)

Audible
result

Figure 5.1: Auralization method for data from transient dynamic simulation

Figure 5.2: The principle of modal superposition: the result displacement consists of modal
components (according to Kalny (2013))

Ideally, using the complete set of eigenmodes gives an exact response of the structure,
i.e. the more modes are included, the more accurate are the results: �gure 5.3 depicts a
cutout of the force excitation of a cantilever motion1 with di�erent numbers of included
eigenmodes compared to the implicit result and table 5.1 depicts the corresponding calculation

1Displacement measured at the excitation point.
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time. (Blitzenbauer, Franz, Schulz & Mlekusch 2005); (Maker & Benson 2003); (Blitzenbauer,
Franz & Schweizerhof 2005)
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Figure 5.3: In�uence of number of modes when using modal superposition principle compared
to an implicit calculation

Table 5.1: Calculation time when using modal superposition
Included modes Calculation time in min

(16 CPU, 0,8 GB RAM)

1 3
2 4
5 5

Implicit 26

The deformable rigid body simulation is performed with a quadratic element mesh: �gure
5.4 illustrates a discretized can for a crushing simulation with the used quadratic mesh shown
on the left hand side. It is important that the discretization of the mesh represents the real
design as well as desired in order to give adequate eigenmode results. Additionally, in order
to auralize the motion later, a triangular mesh on the surface (center of �gure 5.4) with no
in�uence to the deformable rigid body simulation is adapted to the existing nodes. On the right
hand side of �gure 5.4 the combined quadratic mesh for the calculation of the eigenmodes
and the triangular surface mesh for the auralization procedure is shown. In other words, the
cylindrical part of the can is additionally meshed by triangular elements in order to output
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5 Transient Acoustic Simulations with Auralization

its surface motion for the auralization. From experiences of life it is known that the largest
deformation of a can happens in the cylindrical part because the material in the top and bottom
are usually sti�er. Thus, the major part of the sound is emitted by the cylindrical part. For
computational e�ciency it is of key importance to choose the sound-emitting surfaces for
the auralization wisely. At the end of the dynamic simulation part, an output �le is created
containing node coordinates, displacements and velocities of the surface mesh, which will be
processed in the next steps. Basically, the dynamic simulation part can be done with most
commercial FE-software packages.

Figure 5.4: Discretization for dynamic simulation (left), surface mesh (center) and the �nal
mesh (right)

The second column of �gure 5.1 deals with data �ltering. In order to get high quality results
it is important to apply two �lters. At �rst a sampling procedure needs to be used to generate
an audio signal with a common sampling rate of 44100 Hz or 48000 Hz. As mentioned in
chapter 4.2, to sample data it is important to apply a low pass �lter initially to reduce the
frequency band in order to sample the data up- or down with consideration of Nyquist-Shannon
sampling theorem (see equation 4.8). With the sampled signal the pressure on the surface can
be calculated. When assuming a plane wave2 of the element sound radiation and neglecting
viscous shear stresses, the acoustic pressure of the �uid adjacent to each element of the surface
mesh, may be expressed by:

p = z~v · ~n, (5.1)

where z is the speci�c or characteristic acoustic impedance (wave resistance), which can be
written as z = ρ·c. In this context the air density ρ is ρ = 1.21 kg/m3 at 20◦C and 1 atm, and

2A plane wave is a wave with parallel and equally spaced (a wavelength apart) planes normal to propagation
direction.
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the wave speed is c = 343 m/s (Halliday et al. 2002). This leads to an acoustic impedance of z =
1.21 kg/m3· 343 m/s = 415 Pa · s/m. Furthermore ~n is the unit vector normal to the surface
element to detect the direction of distribution in order to calculate the velocity v in normal
direction. The pressure p is calculated for each time step and each surface element. It expresses
the pressure �uctuation adjacent to the surface in normal direction.

Afterwards the DC-Blocking �lter (chapter 4.3) is applied to remove constant components
of the signal: e.g., an object moving through an environment with a constant velocity, a
constant pressure occurs in front of it, which results in an o�set of the pressure amplitude.
A DC-Blocking �lter removes such undesired components. Furthermore, the application
of the DC-Blocking can be avoided by the usage of relative coordinates, the so-called local
coordinates, where pressure �uctuations only and therefore no constant values appear: by
using local coordinates in the latter example the constant velocity has no in�uence on the
pressure change because the coordinate system is moving with the velocity of the object.

As mentioned, the application of �lters can improve the quality of the result. In this context
it is important to analyse the system initially and to �nd a suitable sampling rate for the certain
problem. Furthermore, within this work it becomes evident that with increasing model size,
the sampling rate needs to be reduced in order to decrease the simulation time and to avoid
huge output �les.

In the next step, the sound pressure is calculated at a given point in the �eld. Therefore the
pressure of all elements for each time step are summed up according to Huygens’ Principle
(see chapter 2.2). Thus, the wavelets of the point sources of the elements are treated as initial
points for a new wave front, which is represented by the envelope of all wavelets. In order to
calculate the wave propagation of this envelope to an arbitrary point, the equivalent radiated
power density3 of one element may be considered:4

ERPρ =
1

2
ρc · vn(r)2, (5.2)

where ρ de�nes the �uid density, c the sound velocity and vn(r) the normal velocity on the
surface with a distance of r from the source. The equivalent radiated power density ERPρ
describes the acoustic intensity ERPρ = I of any point with the distance of r to the source for

3Generally, ERP ρ is a complex quantity and depends on the distance (real part) r and the frequency (imaginary
part) f. However, the auralization is happening in the time domain depending on the distance r and therefore
the frequency (imaginary part) is not relevant in this work and therefore not further mentioned.

4All values in equations denote maximum values to simplify the reading. E�ective values are written with indexed
rms (root mean square) e.g. prms. Note: prms = pmax/

√
2

30



5 Transient Acoustic Simulations with Auralization

far �elds and high-frequencies starting from approximately 500 Hz. Introducing the impedance
z=ρ·c=p/v equation 5.2 can be rewritten as:

ERPρ = I =
1

2
zvn(r)2 =

zp(r)2

2z2
=
p(r)2

2z
=
prms(r)

2

z
, (5.3)

where p denotes pressure and v velocity. Furthermore it is useful to take the absolute
equivalent radiated power ERPabsolute of one surface element into account:

ERPabsolute =
1

2
ρc

∫
A
vn(r)2 dA. (5.4)

The ERPabsolute relates the acoustic power Ws of the source (surface element) as follows:

Ws = ERPabsolute =

∫
A
Is dA = IsA, (5.5)

where Is is the sound intensity of the source and A the area of the surface element. Combining
equation 5.3 and 5.5 allows to express the power of the sound source as follows:

Ws =
p2
s

2z
A. (5.6)

Furthermore, the power of the �eld point Wfp may be expressed as:

Wfp =

∮
A
Ifp dA = Ifp4πr

2, (5.7)

where Wfp is the power of the spherical wave �eld around the �eld point and r the distance
between sender and receiver. This relation is commonly expressed as:

I =
W

4πr2
, (5.8)

in the so-called inverse-square law: the intensity is inverse proportional to constant/r2,
because the power W is constant. Figure 5.5 illustrates the inverse-square law with a section of
a spherical wave. The sound power constantly propagates from the source S with an increasing
area. Thus, the amount of power per unit area (intensity) is decreasing.

Furthermore, the power equation of the �eld point (equation 5.7) combined with the equiva-
lent radiated power density (equation 5.3) leads to the following expression:

Wfp =
p2
fp

2z
4πr2. (5.9)
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Figure 5.5: The inverse-square law (according to UdK Berlin (1998))

In this context, it is practical to assume a free sound propagation (no damping and no
re�ection) in order to achieve a power balance between the surface element and the �eld point
with Ws = Wfp (equation 5.6 and 5.9):

prms,fp =
prms,s
2
√
πr
·
√
A. (5.10)

Furthermore, it is of key importance to consider the spatial arrangement of a surface element
and the �eld point in order to consider the directional pattern. This de�nes the amount of
the acoustic wave, which is emitted from one surface element to the �eld point. Figure 5.6
shows exemplary di�erent directional patterns in polar coordinates, where the black vertical
line represents one element oscillating in horizontal direction with the velocity v.

Thereby, depending on the speci�c case, di�erent directional patterns can occur. The
continuous black curve depicts the radiation characteristics of an acoustic dipole, whose main
lobe can be described as ±cos(ϕ) function. A piston radiator5 propagates sound within a
small lobe (dotted curve) and a speaker at 63 Hz (dashed curve) generates a wider and more
di�us sound propagation than a dipole. Furthermore, the directional patterns for speakers
change at di�erent frequencies. Generally can be said: the higher the frequency, the smaller the
lobe and thus, the higher the amount of lobes. Subsequently, the sound propagation strongly
dependents on the system and the frequency band of the signal. According to O’Brien et al.
(2001) and Kinsler et al. (2000) cos(ϕ) is a useful approximation for the main lobe of the
frequency-dependent function for �at elements. Basically, the cos(ϕ) function means that the
pressure �uctuation of each element is weighted concerning the direction of propagation: the
closer the angle of the �eld point to 180◦ or 0◦, the larger the amount of transmitted pressure.
In other words, the larger the angle between the surface normal and the �eld point, the smaller

5A piston radiator emits small wavelength waves compared to its size.
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Figure 5.6: Sound radiation characteristics (according to Will (2017))

the amount of depending pressure. In order to consider the sound directional characteristics a
cos(ϕ) in normal direction to the surface elements is added to equation 5.10:

prms,fp =
prms,s
2
√
πr
·
√
A · cos(ϕ). (5.11)

However, the equation above is a rough approximation to calculate the pressure from a
source to a �eld point but during this work this equation showed comprehensible results and is
generally very promising regarding computational time compared to more detailed equations
e.g. Kirchho�’s integral theorem (see equation 2.4). Furthermore from O’Brien et al. 2001 it
is known, that similar approximation functions from image rendering are already used for
auralization purposes. (John H. Lienhard IV and John H. Lienhard V 2008); (Wendt 2016);
(Wiechmann & Hiller 2011)

With equation 5.11, the pressure in each time step at the �eld points can be calculated. In
this context it is important to consider the propagation delay in order to create a realistic sound

33



5 Transient Acoustic Simulations with Auralization

because naturally, waves from surface elements closer to the �eld point reach the �eld points
faster than the ones from more distant. This behaviour can be considered by:

delay =
rs−fp
c

, (5.12)

where rs−fp is the distance between the surface element and �eld point and c the sound
velocity. Therefore, the audio samples will be stored in an one-dimensional bu�er according to
their occurring time plus delay. In this context it is unlikely that a sample meets an exact time
point of the sampling rate. Moreover the samples are mostly in between two sampling points
and the value of the sample has to be added somehow to the bu�er. Figure 5.7 illustrates a
sample (black dot) with the calculated time t=3.4 and a certain amplitude. The next sampling
points are 3 and 4. Thereby the value of the sample has to be added to a bu�er, either into
bu�er 3 or 4. It seems convenient to round the calculated time of the sample to the nearest
entry in the bu�er. In this case the value of the sample would go into bu�er 3 and would be
added up to the value of c.

f(x) = 1√
2πσ2

e
(x−µ)2

2σ2

cn+1 = cn +
∫ 3

2 f(x)dx

dn+1 = dn +
∫ 4

3 f(x)dx

en+1 = en +
∫ 5

4 f(x)dx

a b c d e f g h i j k l ...

0 1 2 3 4 5 6 7 8 9 10 11 12
t

Figure 5.7: Bu�ering of a sample

However, in case t would be t=3.5 the value of the sample would be added up to the value of
d. Thus, a small variance of time in�uences the bu�er number enormously. In other words,
especially, the high probability that more samples are accidentally closer to a certain sampling
point results in local maxima and therefore in artifacts, unpleasant buzzing sounds and a kind
of saw-tooth wave in the generated sound (see �gure 5.8). Therefore, it is practical to use a
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two-sample-wide Gaussian distribution f(x) to split the value of the sample into three parts for
three sampling points of the bu�er (see �gure 5.8). The area under a Gaussian distribution
is always 1. That means that the value of the sample can easily be multiplied by the integral
from two following samples. The hatched area under the Gaussian on the left between 2 and
3 represents the portion of the value of the sample which will be added to c, the integral
from 3 to 4 to d and the remaining part of the value to e. In this context �gure, 5.8 depicts
the di�erence between distributing the samples by Gaussian and rounding the samples to
the closest sampling point. The curve of an applied rounding function shows the mentioned
saw-tooth components with high amplitudes, whereas the curve with Gaussian distribution
indicates a smooth characteristic.
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Figure 5.8: Distribution of samples for bu�ering

After bu�ering, the e�ective sound pressure is determined for each time step according to its
delay. In the last step the pressure will be transformed into an audible result. A common audio
format for this purpose is the wave format. Normally, the amplitude of wave �les is within a
range of -1 to 1. Therefore, it is necessary to normalize the audio signal to avoid clipping6 in
order to transform it into a wave �le. For stereo sound the pressure of two �eld points can be
calculated and added for each ear as left and right channel together.

The method described in this section has been applied in several examples as described the
following sections.

6Clipping describes the cut o� in the time domain above a certain amplitude, which leads to distortions of the
signal.
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5.2 Cantilever

A classical cantilever is a beam or plate excited by a force on one side and restrained at the
opposite side in all degrees of freedom. Figure 5.9 depicts schematically the cantilever used in
this work.

Figure 5.9: Schematic model of a cantilever

According to the auralization method described in the previous chapter (see �gure 5.1), the
�rst step is to discretize the cantilever for the simulation. Figure 5.10 illustrates the model of
the cantilever: the cantilever is restrained at one end in all DOF and on the other end forces are
applied in three nodes (see left hand side). The forces are applied for a very short time in the
beginning of the simulation to excite the cantilever into a swinging motion with the objective
to make this oscillation audible. The right hand side of �gure 5.10 shows the exploded view of
the cantilever with the quadratic structure mesh at the bottom and the triangular surface mesh
at the top.

Figure 5.10: Discretized model of cantilever for transient simulation (left), for auralization
(center) and its exploded view (right)

In order to improve the method and develop scripts for this procedure a computationally
cheap and simpli�ed model of a cantilever is used, which consists of 48 nodes, 30 quadratic
shell elements for the structure mesh and therefore of 60 triangles for the surface mesh (see
table 5.2).

In the following next step, the eigenmodes have to be determined to include them in a
deformable rigid body simulation. Therefore, it is of key importance to analyse the in�uence
of the modes initially in order to detect the lowest amount of modes, which can represent
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Table 5.2: Mesh properties of cantilever model
Structure Surface

Nodes 48 48
Elements 30 60

the structural motion. Figure 5.11 shows the �rst �ve eigenmodes and its original position
(dashed).

Figure 5.11: First �ve eigenmodes of the cantilever

It is reasonable to assume, that a uniformly applied force at one end of the cantilever leads
primarily to a �rst mode motion (n=1). Therefore, to see the in�uence of more excited modes,
the values of the outer forces in the used model are half as high as the middle force (see
�gure 5.10). Figure 5.12 illustrates a cutout of the displacement7 of di�erent numbers of
included modes compared to the implicit calculation. It can be observed, that after the �rst
amplitude, which represents the displacement of the force excitation, all curves quickly overlay.
This means, that after the excitation the in�uence of upper modes are negligible because the
cantilever moves in a pure �rst mode. Therefore, the di�erent values of the forces a�ect the
movements directly in the excitation time only because the sti� response of the small amount
of elements eliminate immediately any other kinds of mode shapes in the free motion.

However, �ve modes are included in the deformable rigid body simulation of the cantilever
due to the high accuracy during the excitation time with a very limited computational e�ort.
During the simulation the displacement and velocity is recorded for each node of the surface
mesh in each time step. Then the sampling procedure can be applied. Afterwards, the surface
pressure of each element is calculated. The DC-Blocking �lter does not have to be applied
in this model because constant motion does not occur and therefore constant pressure is not
generated.

In the next step, the pressure change at a selected �eld point can be made audible. Figure
5.13 depicts exemplary the creation of a stereo sound. Therefore the pressure �uctuations at
two �eld points for both ears have to be calculated: a line is used from the center point of

7The displacement is measured at the middle force node.
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Figure 5.12: In�uence of included modes on cantilever motion

the human head (black dot) towards the cantilever in order to create two �eld points (small
black dots) for both ears perpendicular from the center point with a approximated distance
of ± 10 cm. The calculated pressure time series of both ear points are joined together as left-
and right channel. This stereo sound of the cantilever motion can be found in the attachment
’Cantilever.m4a’.

Figure 5.13: How to create a stereo sound?

Furthermore, in a next step, this example is used to analyse the in�uence of the element
size of the surface mesh on the audible result. As mentioned, the surface mesh is used for the
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auralization procedure only and does not in�uence the FE simulation: basically, it is used to
de�ne independently the sound emitting surfaces from the structure mesh in order to track
the motion of its nodes. Figure 5.14 shows four di�erent surface meshes of the cantilever: on
the top, the mesh of the carried out cantilever auralization is depicted (see �gure 5.10), which
represents a �ne mesh and is used as reference for the two rougher meshes below and the only
acoustic meshed tip of the cantilever at the bottom.

Figure 5.14: Analyse of four di�erent acoustic meshes of the cantilever (mesh sensitivity)

Figure 5.15 shows the generated sound with the di�erent mesh sizes in the time domain:
it can be noticed, that the amplitude decreases with a rougher mesh. This happens because
this auralization approach sums the surface pressure of all elements, which means the more
elements are used, the higher the sound pressure: this method is not developed to predict the
amplitude precisely but moreover to determine the time dependent variation of the sound
pressure signal. In other words, this method should calculate the characteristics of the sound
with an approximated amplitude: at the end of the auralization procedure a wave �le is
generated, which basically consists of normalized values between -1 and 1. Therefore, the
amplitude of this sound can be adjusted manually by the playback sound level of the playing
device (e.g. computer).
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Figure 5.15: In�uence of the mesh size on the time domain signal

In order to evaluate the sound characteristics more in detail, �gure 5.16 represents the spectra
of the time domain signals in a range from 0 Hz to 1000 Hz. The peaks at 440 Hz indicates a
resonance frequency of the cantilever. Furthermore, all curves have slightly di�erent ampli-
tudes due to varying amplitudes in the time domain. However, the curves show very similar
progresses and even the curve 4 with the meshed tip only represents a similar spectrum. This
similarities illustrate, that the mesh size is not really relevant for the sound characteristics apart
from the amplitudes, but this method is, as mentioned, not developed to predict the amplitude
in detail. Therefore, it is convenient regarding the calculation time of the auralization procedure
to concentrate more on the sound characteristics and use rougher meshes. Furthermore, ac-
cording to the result of mesh 4 it is possible to discretize the most relevant sound emitting areas
only in order to get almost as accurate results as with a complete surface mesh. However, for
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more complex parts it can be sophisticated to determine the most relevant sound emitting areas.

Figure 5.16: In�uence of the mesh size on the frequency domain signal

Scripts were developed within the cantilever example in ’HyperMath’ and ’Scilab’ to au-
tomatize the application of the auralization method: the ’HyperMath’ script automatically
processes the simulation results from the node output to the bu�ered pressure time series
at the �eld point (see �gure 5.1). The ’scilab’ script converts the pressure into a sound �le.
In this context the following table shows the computational e�ort of the simulation and the
auralization process:

Table 5.3: Computation time of cantilever model
Simulation Auralization
(16 CPU, 0,8 GB RAM) (2 CPU, 12 GB RAM)

Time in min 5 1

The applied auralization method on a cantilever motion shows promising results. However,
adequate experimental data for comparison is not available and therefore it can not be evaluated
how close the results are to reality. Nevertheless, a swinging metal can be imagined from the
sound, but, as mentioned, a substantial statement can not be made. For a more convincing
veri�cation, a second example known from life and easy to replicate is used: a sound of a ball
dropping on a surface.
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5.3 Ball Drop

In this chapter a simulation of a dropping ball on a surface has been made audible according to
the auralization method in �gure 5.1. Figure 5.17 shows the simulation model, which consists
basically of a plane and a ball. A gravitational �eld is applied with g=9,81 m/s2.

Figure 5.17: Simulation model of ball drop example

The ball is initialized with a horizontal velocity in order to generate a line of drops on
di�erent locations on the plane. Furthermore, the plane is �xed in all degrees of freedom in
all corners illustrated with black quadratic elements. This simple case is promising for the
veri�cation of the auralization method because it is possible to assess if the generated sound is
realistic. Furthermore, it is a very limited e�ort to replicate the chosen case in an experiment.

Figure 5.18 illustrates the mesh of the plane in an exploded view: the structure mesh (at the
bottom) consists of quadratic elements and the surface mesh is depicted in triangles. Moreover,
the ball consists of tetrahedron elements, which is visualized in �gure 5.19. Table 5.4 shows
more detailed information about the parts and its elements and nodes.

Table 5.4: Mesh properties of the ball drop model
Structure of plane Surface of plane Ball

Nodes 3690 1681 3166
Elements 1760 3200 14159
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Figure 5.18: Exploded view of the structure and the surface mesh

Figure 5.19: Tetrahedral mesh of the ball

Furthermore, the plane is designed as deformable rigid body with 20 superimposed modes,
which can represent frequencies up to approximately 7800 Hz. The ball is simulated as rigid
body because its elastic deformations are very small compared to the elastic deformation
of the plane. Thus, not only the deformation of the ball is neglected but also its emitting
sound. This simpli�es the model and decreases the simulation time without loosing signi�cant
information. The sampling rate for the node output is 20000 Hz to cover frequencies regarding
Shannon-Nyquist sampling theorem up to 10000 Hz, which is su�cient for the occurring
frequencies. Furthermore, within this example the low-pass �lter and the sampling is used to
up sample the signal to 22500 Hz in order to investigate the up sampling capabilities of the
script. In the next steps, the surface pressure is calculated. The DC-Blocking �lter does not
need to be applied because of no occurrence of a constant pressure in the signal (no constant
motion). Then the pressure �uctuations are determined at a speci�c �eld point and bu�ered
afterwards. The generated sound is located in the attachment ’BallDrop.mp4’. Table 5.5 shows
the calculation time of this model:
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Table 5.5: Computation time of ball drop model
Simulation Auralization

(16 CPU, 0,8 GB RAM) (2 CPU, 12 GB RAM)
Time in h 6 18

The generated audio signal and especially the ball rolling on the surface sounds very realistic.
Nevertheless, it can not be quanti�ed how close the results are to reality and therefore, a system
with a speci�c characteristic and a measurable sound is used in the next example in order to
compare the auralized sound with experimental data.

5.4 Vibraphone Bar

A vibraphone a musical percussion instrument with a playing range of three octaves.

Figure 5.20: The vibraphone (Lone Star Percussions 2016)

The main elements of a vibraphone, as illustrated in �gure 5.20, are a supporting stand,
di�erent metal (vibraphone-) bars with resonators and a damper. The damper can be excited
with a paddle. Once the damper is activated, felt pads are pressed against the bars which can
damp their vibration. The bars are excited by mallets. Each of the bars has another fundamental
frequency according to its length. Furthermore, this vibraphone has tube resonators, which
are located vertically under each bar in order to amplify the sound of the speci�c fundamental
frequency of the bar above. The resonators have an open end towards the bar and a closed end
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on the other side and are therefore often referred to as one-end-open tubes. A vibrating bar
emits a relevant amount of pressure waves into the one-end-open tube. At the closed end the
waves get re�ected and move back towards the opening. Thereby, each resonator is designed
to amplify the fundamental frequency of the bar above. This is realized by di�erent lengths
of the resonators in order to generate so-called standing waves inside of the tubes (see �gure
5.21). The phenomenon of standing waves can be described by two waves moving with the
same frequency and amplitude in opposite directions into each other, which overlay and form
one ampli�ed wave. This overlaid wave has so-called nodes or stationary points, where the
amplitude is always 0 and all the other points of the wave have constant amplitudes. In the
case of the vibraphone: the wave from the bar emits into the resonator and is re�ected on the
lower side, whereby the incoming and the re�ected wave overlay.

Figure 5.21: A standing wave of the fundamental frequency in an one-end-open tube (Russel
2012)

Generally, the resonator length L and the wave length λ may be expressed for an one-end-
open tube by:

L = (2n+ 1)
λ

4
, (5.13)

where n describes the ampli�ed mode number with n = 0,1,2,3,... . In the case of the
vibraphone the fundamental frequency n=0 should be ampli�ed, which leads to the following
expression:

L =
λ

4
. (5.14)

This means, that the length of the resonator should be a quarter of the wave length to
amplify the fundamental frequency: �gure 5.21 depicts horizontally a half section view of
such a standing wave of the fundamental frequency in the resonator. In order to amplify the
di�erent fundamental frequencies of the bars, the resonator length varies depending on the
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wave length of the fundamental frequency of the bar (see �gure 5.20). (Baader 2002); (Wendt
2016)

Within this work only one bar with a resonator of the vibraphone is used. Figure 5.22
shows the used vibraphone bar and its resonator. It is designed to generate the tone a2 with a
fundamental frequency of 880 Hz. In order to amplify the fundamental frequency, the resonator
of this type of vibraphone has a rectangular cross section. This does not change the properties
signi�cantly compared to the mentioned circular cross section but it is just more practical for
single vibraphone bars because it does not need any additional attachments to stay upright.

Figure 5.22: The vibraphone bar with resonator analysed in this work

Figure 5.23 shows the resonator and its three openings. On the top of the resonator are two
pins to �x the position of the bar relative to the resonator. Furthermore, the bar is positioned
on four rubber supporting points.

Figure 5.23: The resonator without the vibraphone bar
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In the following sentences the properties of the used vibraphone are evaluated. Figure
5.24 shows the dimensions: total height htotal=8,1 cm, total width wtotal = 16,9 cm and bar
thickness tbar=0,5 cm. Furthermore, the height of the resonator is hresonator = 7,0 cm and its
wall thickness is twall=0,2 cm.

Figure 5.24: The dimensions of the vibraphone (side view)

The standing wave is oriented in vertical direction, that means, according to equation
5.13, that the height of the resonator should be 4 times smaller than the wave length of the
fundamental frequency. The wave length λ may be calculated by using its relation to sound
velocity c and the frequency f:

λ =
c

f
. (5.15)

The sound velocity is roughly c = 343 m/s at 1 atm and 20◦C (Halliday et al. 2002). That
means for the fundamental frequency of f = 880 Hz, that λ880Hz = c/f = (343 m/s) / (880 Hz)
= 0,38978 m = 38,978 cm. According to equation 5.13 the amplifying mode number can be
calculated with:

n = 2
hresonator − 2twall

λ
− 1

2
= 2

(0, 07− 2 · 0, 002)m

0, 38978m
− 1

2
= −0, 1613 (5.16)

As expected, the value of n is close to zero. Thus, the fundamental frequency of the vibra-
phone will be ampli�ed.

For further information: the value of n is not exactly zero because the real height of the
resonator does not completely match the theoretical height for amplifying the fundamental
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frequency. The theoretical height of the resonator is htheoretical,resonator = 0,25 ·λ880Hz =
0,25 · 0,38978 m = 0,0975 m = 9,475 cm. The di�erence between the real height and theoreti-
cal height for amplifying the fundamental frequency of the vibraphone is hresonator- 2twall -
htheoretical,resonator = 7,00 cm - 0,40 cm - 9,475 cm = -2,875 cm. This length di�erence occurs
because the theoretical height calculation does not consider e�ects of the pressure wave when
passing the openings. Therefore the real resonator height di�ers from the calculated value. The
determination of the real height of the resonator in combination with the appropiate distance
between the top of the resonator and the bottom of the vibraphone bar can be determined
by experiments or with further calculations with the so-called end-correction. For further
information about the end-correction is refered to Chen-Yih (1996) and Liljencrants (2006).

In the next chapter the acoustics of the vibraphone are experimentally investigated.

5.4.1 Experiment

The vibraphone experiment is performed in a semi-anechoic acoustic chamber. The left hand
side of �gure 5.25 shows the vibraphone bar with its resonator in the chamber. A microphone
is placed 30 cm above the bar in order to measure the pressure change over time.

Figure 5.25: The vibraphone in the acoustic lab (left) and its on-center excitation (right)

The vibraphone bar is excited by an impact hammer in the middle (on-center) of the bar (see
right hand side of �gure 5.25). The impact hammer is used to measure the excitation force over
time. This excitation characteristic is especially important for the simulation input to generate
an excitation as close to the experimental value as possible. Figure 5.26 depicts the measured
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excitation forces of three experiments. It can be seen that e.g experiment 3 has more than one
peak. That means, that the excitation of the bar by the hammer happens more than one time.
This occurs i.a. due to the planar shape of the impact hammer tip, because this tip touches
naturally more than one point (planar contact). An optimal shape, as usually used in music,
would be a spherical tip in order to create a point contact only. As depicted, the �rst force peak
of each curve varies due to the manual excitation in a range from approximately 10 N to 30 N.
However, the exact values are not important because in this work the impact hammer is used
to identify the characteristics only. Therefore, the �rst peaks were evaluated to average the
excitation force and the depending time, respectively: the following characteristic are used
within the simulations: Fexcitation=18,0 N with a duration time of texcitation=0,5 ms.
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Figure 5.26: The measured force of the impact hammer

Figure 5.27 represents the results of the �rst 10 s of the experiment: the left hand side depicts
the normalized sound pressure in the time domain, which shows from the normalized pressure
of 1, -1 to almost 0 at the end of the curve a clear damping characteristic. Furthermore, after
the high excitation peak in the beginning, the time domain signal decreases and then increases
again. This e�ect occurs supposedly due to the mentioned tip of the impact hammer: after the
excitation, the hammer tip remains naturally for a short time on the bar with its full circular
area because the user can not remove the hammer immediately. During this time, the bar
can not move freely because it is pressed more into the constraints (more damping), which
decreases the amplitude of motion. After removing the hammer, the bar is more released
from the constraints (less damping) and the natural movement of the bar takes place, which
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results in a small amplitude increasing. For a simpli�ed comparison of the experiment and the
simulations this e�ect is neglected and only the ’released’ motion is compared.

Figure 5.27: The measured signal of the vibraphone in the time domain (left) and in the fre-
quency domain (right)

On the right hand side, �gure 5.27 shows its frequency spectrum obtained by FFT from
the time domain signal. The spectrum shows a range from 100 Hz to 1000 Hz only because
the validation of the simulations and the experiment is going to happen in this range in
order to especially evaluate the depiction of the fundamental frequency8. According to the
discussed vibraphone theory, this curve shows the very pure fundamental frequency of 880 Hz
because the speci�c constraints of the bar allow mainly the motion of the fundamental mode,
which leads to a possible negligence of all the upper modes: In addition, �gure 5.28 depicts
a waterfall plot of an on-center excitation (left hand side) and an o�-center excitation (right
hand side): it illustrates according to the theory of the vibraphone, that in case of the on-center
excitation, a very pure fundamental frequency is excited and damped out over time. The
o�-center excitation shows along to the fundamental frequency more frequency components
in the beginning, which are according to its design soon damped out and a pure fundamental
frequency is remaining.

In the next step another important information, the damping, is extracted from the experi-
ment to provide the value for the simulation set up. Basically, damping describes the energy
dissipation properties of a system under stress. Moreover damping characterises the decay of

8This spectrum is used in chapter 5.4.4 to validate the realism of the simulation method.
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Figure 5.28: Waterfall plot of an on- and o�-center excitation

oscillations after an excitation. In this context, it is useful to consider the equation of motion
of a 1 DOF system, which may be expressed by:

mẍ+ cdẋ+ ksx = 0, (5.17)

where x represents the position and its derivatives (velocity, acceleration), m is the mass of
the system, cd the damping and ks the spring constant. The damping is commonly expressed
as the damping ratio ζ :

ζ =
cd

ccritical
, (5.18)

where ccritical is the critical damping of the system:

ccritical = 2m
√
km. (5.19)

The ccritical describes the quickest approach of the movement to zero amplitude. In other
words, the critical damping of the vibraphone means, when the bar gets excited it moves
from the initial position to the maximum displacement. After returning to the initial position
the motion stops. This means, that the motion is already completely damped out after a half
oscillation. This behaviour would be visible at a damping ratio of ζ = 1 (critical damping). A
system is overdamped when the approach to zero is slower (ζ > 1). An underdamped system (ζ
< 1) is characterised by a damped oscillating motion. ζ = 0 describes an continuously oscillating
system with the same amplitude and without any damping. Figure 5.29 presents the di�erent
damping cases over time.
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Figure 5.29: The oscillation of a damped system

This means in case of the vibraphone that the damping decays the oscillating motion within
the time, whereby the slope of the envelope of the time domain curve describes the damping.
In order to express the damping value, the envelope of the time domain curve can be analysed
by means of the so-called Hilbert Transformation.

Figure 5.30: The damping of the vibraphone

The Hilbert Transformation is often applied to show a signal di�erently in one domain
(mostly time domain), in comparison to the Fourier Transformation, which is mainly used
to transform a signal from one domain to another domain. For further information about
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the Hilbert Transformation it is referred to Guicking (2016). Within this work, the Hilbert
Transformation is used to calculate the envelope of the time domain function: the black curve
in �gure 5.30 shows a cutout of the decaying pressure signal of the vibraphone in the time
domain. The red curve is the signal which has been processed with the Hilbert Transformation,
the so-called envelope of the time domain function. It can be seen, that the envelope %(t)

consists of oscillating components and a decay function. This behaviour may be expressed by:

%(t) = X0cos(ωwt+ ϕ0)e−ζωnt, (5.20)

where the e−ζωnt describes the decay of the oscillations with the slope of ζ (damping ratio).
In order to calculate this slope, on the right hand side �gure 5.30 shows the natural logarithm
applied on the equation 5.20, which leads to the following expression:

ln(%(t)) = ln(X0cos(ωwt+ ϕ0))(−ζωnt). (5.21)

In the next step, the oscillating motion cos(ωwt+ϕ0) may be neglected by applying a linear
�t on equation 5.21: the slope of the �tted curve describes the damping ratio ζ . In this example
a damping ratio of ζ = 0,0001441 of the vibraphone bar is determined, which means that the
vibraphone has a small damping. (Norton & Karczub 2003)

In the next chapters the experiment is replicated in simulations with di�erent methods and
made audible by auralization. In the last chapter the simulation and experimental results are
compared.

5.4.2 Simulation and Auralization

In this chapter the auralization method developed within this work (see �gure 5.1) is applied
on the vibraphone bar to mimic the experiment depicted in the previous chapter. On the left
hand side, �gure 5.31 shows the simulation model of the vibraphone bar. Basically, it consist of
a vibraphone bar, a force and four constraints (see �gure 5.32). The force is applied according
to the experiment.

Furthermore, this simulation model is depicted without resonator because the auralization
method does not take re�ecting waves into account. Therefore, the function of the resonator
can not be used within the simulation model. However, the resonator only ampli�es the
sound pressure level and does not change its time dependent variation of the sound pressure
characteristics. As mentioned previously, the auralization method is not developed to calculate
the exact amplitudes but rather to determine the time dependent variation of the sound pressure
signal. In other words, the negligence of the resonator is a necessary and convenient step
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Figure 5.31: Simulation model of vibraphone bar

for the transient simulation in order to additionally decrease the computation time without
changing any relevant characteristics for the method. In the �rst step of the auralization
method the part gets discretized. Figure 5.31 shows the exploded view of the structure- and
the surface mesh of the vibraphone bar model with the following characteristics:

Table 5.6: Mesh properties of vibraphone bar model
Structure Surface

Nodes 2907 969
Elements 1772 1768

Furthermore, �gure 5.32 shows the bottom view of the bar which is �xed in z-direction in all
four constraints (black crosses) because the bar of the real vibraphone lays on four soft rubber
elements, which enormously increases the damping of these points compared to other points.

Figure 5.32: Bottom view of simulation model of vibraphone bar

Therefore, as simpli�cation, the small vertical motion of the constraints of the real bar is
assumed to be 0 within this simulation model due to reducing the computational e�ort. In the
second step, a modal analysis is applied on the discretized bar to determine the eigenmodes.
Figure 5.33 depicts the �rst �ve eigenmodes of the vibraphone bar and its original position
(dashed). It can be seen, that the mode shapes do not show any motion in the area close to the
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constraints due to the discussed restriction of the perpendicular motion of the bar. Furthermore,
on the left hand side of �gure 5.33, the �rst eigenmode of the vibraphone bar is depicted: this
describes the motion of the bar at the fundamental frequency of 880 Hz and is therefore the
dominant shape for the sound generation.

Figure 5.33: Eigenmodes of vibraphone bar

However, according to the principle of superposition more modes need to be included to
reproduce the real body motion in the model (see �gure 5.2). In this context, �gure 5.34
shows the spectrum of the vertical displacement in the middle point (force exciting point)
of the vibraphone bar. The normalized vertical displacement is shown on the y-axis because
the absolute values of the displacement regarding frequencies are not relevant in this work.
Furthermore, both axis are depicted in a logarithmic scale. For illustration purposes two curves
are depicted: the dashed curve shows the frequency characteristics of 100 included modes and
the continuous curve of 4 included modes. First, the amplitudes of both curves at 880 Hz are
consistent with the theory of vibraphones because, as mentioned, vibraphones are designed to
generate a tone of the fundamental frequency only (in this case 880 Hz).
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Figure 5.34: In�uence of number of included modes on the body motion
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Second, it can be seen, that the curve including more modes is smoother and without any
�uctuations compared to the curve with less modes. I.e. the curve with 4 included modes
reveals additional frequency components, which can results into a whirring noise in the sound
signal. Basically, these characteristics con�rm the theory that every motion consists of a
summation of proportions of many modes and this means in case of a less amount of modes,
that the motion can not precisely be calculated because the in�uence of the upper modes is
missing. The inclusion of more modes will enhance accuracy. The generated sounds with
di�erent numbers of included modes are located in the attachment ’Vibraphone-4Modes.m4a’
and ’Vibraphone-100Modes.m4a’.

Within this work the deformable rigid body simulation of the vibraphone is performed
with 100 included modes because the generated sound is comprehensible with a very pure
fundamental frequency of the bar. In addition, these amount of modes leads to an acceptable
calculation time of 85 min.

Furthermore, the damping in the simulation model is de�ned according to the measured
damping ratio of ζ = 0,000144 in the experiment (see chapter 5.4.1). The calculated damping
ratio is considered as modal damping for all modes in the simulation model. In the next steps,
the node output �le of the vibraphone simulation is used in the auralization procedure. In this
context, the auralization of the vibraphone signal does not di�er from the ones in previous
chapters and is therefore not described in detail here. Nevertheless, a few comments to the
auralization of the vibraphone bar will be presented in the following sentences. A DC-Blocking
�lter is not needed in this model because no constant motion occurs. As illustrated in the
previous examples, in the last steps, the sound pressure is determined at a given �eld point,
bu�ered and �nally converted into an audible result. The generated sound �le is located in the
attachment ”Vibraphone.m4a”.

In �gure 5.35 the results of the auralization procedure are presented and on the left hand
side the time domain result is depicted. The y-axis is shown as normalized pressure from -1 to
1 in a time interval from 0 to 5.0 s. It can be seen, that the time domain signal decreases very
purely due to the damping.

However, in order to get more information of the generated sound, the time domain signal is
transformed into frequency domain with a pure Fast-Fourier-Transformation as illustrated on
the right hand side of �gure 5.35. According to the validation, the frequency range is depicted
from 100 Hz to 1000 Hz. Furthermore, a pure FFT is a transformation into the frequency
domain without an applied window function in order to avoid interfering in�uences and to
understand the real frequency characteristics. Furthermore, a FFT without a window leads to
tiny mistakes when the time domain signal, like in this case, is not 0 at the start and end point
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Figure 5.35: The time domain signal ouput of the auralization of the vibraphone bar motion in
the time domain (left) and in the frequency domain (right)

of the transformation. These mistakes lead to the wave characteristics of the frequency curve,
which can be seen especially in the front frequency area. Nevertheless, in order to compare the
simulation to the experiment, it is of key importance to create curves with the same procedure
and always as pure as possible. Therefore, all spectra for comparison are transformed without
any applied window function. Besides that, the curve is very smooth with a clear amplitude
at the fundamental frequency (880 Hz) of the vibraphone bar. Furthermore, in the frequency
range from 590 Hz to 850 Hz some di�ering small peaks can be noticed. These peaks are a
result of a large time step because the simulation is performed with an explicit calculation,
which means that the time steps is not constant over time. For instance, a chosen time step of
an explicit simulation of 1,00 s can be performed by the software as 0,99 s or 1,01 s. In general,
choosing an explicit simulation is a good choice regarding calculating performance but its
created data is burdensome to process due to the diverting time steps: the signal processing
of the auralization method requires and expects a uniform time step. That means, the script
assumes, that the previously chosen time step is true and does not take its real tiny di�erences
into account. Therefore, within the auralization procedure, these time step di�erences are
neglected, which lead to small mistakes in terms of these peaks. In order to decrease these
mistakes a smaller time step can be used or the output sampling rate can be increased. In
the example of the vibraphone bar, the output sampling rate is increased to 40000 Hz from
fs ≥ 2000 Hz9, in order to decrease the time step mistake as much as possible. In conclusion,

9According to chapter 4 an output sampling rate of fs ≥ 2000 Hz should be su�cient to cover all vibraphone
frequencies up to 1000 Hz.
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although these small peaks are not audible in this example, it can be in other cases: in next
examples, it is of key importance to avoid the occurrence of additional frequency components
by using a small time step or a high output sampling rate. Alternatively can be used implicit
simulations.

This chapter shows how to simulate and auralize a musical instrument. The generated sound
and the spectrum present comprehensible results. Especially the spectrum shows promising
results, which are close to the theory of the vibraphone. In the next chapter the Boundary
Element Method will be used to replicate the experiment. The validation of both simulation
techniques and the experiment is presented in the last section of this chapter.

5.4.3 Boundary Element Simulation

The Boundary Element Simulation of the vibraphone bar is used within this work for additional
validation purposes only. The objective is to evaluate, whether veri�cations of the transient
acoustic simulation method can be done by using another simulation technique like the
Boundary Element Method. For this reason, the BEM model is brie�y explained: �gure 5.36
depicts the simulation model. The components are: the vibraphone bar and the resonator.
Furthermore, the �eld is meshed in order to calculate the sound propagation.

Figure 5.36: The vibraphone simulation model (Boundary Element Method)
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The resonator is designed with a hard walled sound characteristics. I.e. the walls have a
high impedance in order to re�ect all incoming waves, which is close to reality and therefore
convenient as simpli�cation. In this BEM simulation, a so-called steady state simulation is
used, which describes a simulation method in the frequency domain only with an equilibrium
state (stationary process) and without any time dependency, whereby the mass and energy are
always balanced. This method is chosen because it is independent from time: this is bene�cial
for the validation in the frequency domain because it is easier to understand the calculation
results when no transformation within the solver is carried out. Therefore, at �rst the force
and the damping from the experiment have to be transformed manually into the frequency
domain by using FFT in order to include these values in the steady state simulation.

Figure 5.37 presents the sound pressure level in dB of the vibraphone bar at 880 Hz. Moreover,
it represents the radiation characteristics of the bar: at the bottom of the sound �eld, the sound
pressure level depicts amplitudes above the openings of the resonator and minimums above
the constraints because of almost no motion occurrence in this area. However, more relevant
is the wider radiation characteristic, which is according to the dipole characteristics (see
�gure 5.6) assumed to be circular within the auralization procedure: it turns out to be a very
reasonable assumption for the vibraphone bar. However, in case of other bodies, other radiation
characteristics can occur but in this context, BEM simulations can support to calculate the
sound radiation characteristics in order to use this information in the auralization procedure
of the transient simulation.

Figure 5.37: The sound propagation of the vibraphone bar at 880Hz
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Furthermore, the simulation is performed in a frequency range from 800 Hz to 1000 Hz
to depict the area around the fundamental frequency and reduce calculation time10. Figure
5.38 shows the spectrum of the �eld point located 30 cm above the bar11. It depicts a smooth
curve with a clear amplitude at the fundamental frequency (880 Hz). This curve is used for the
validation.

Figure 5.38: The spectrum of the �eld point (30 cm above the bar)

In the next chapter the experiment and simulation results are compared.

5.4.4 Validation

In this chapter, the frequency characteristics of the auralized transient simulation, the BEM
simulation and the experiment are compared in the area around the fundamental frequency.
As review, the y-axis is depicted as the normalized sound pressure because the auralization
method determines the sound characteristics with an approximation of the amplitude only.
The spectra of the experiment and the auralization method are transformed by FFT12 from the
decaying time domain signal after the excitation, in the time range from 2 s to 5 s in order
to avoid in�uences of the di�erent force excitations: in the simulation model, the excitation
happens by one force (single point force) only, whereby in the experiment a planar contact
occurs due to the geometry of the tip of the impact hammer. This can lead to other frequency
10BEM simulations calculate each frequency individually, which leads to long calculation times for a large frequency

range.
11The location is depicted in �gure 5.37 as black dot.
12As mentioned, all FFT are done without an application of a window function in order to avoid window in�uences.
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components in the excitation time, but after the excitation, the vibraphone bar swings in
its fundamental frequency and eliminates other frequency components. Therefore it is con-
venient to use the decaying part of the sound to enable a better evaluation of the applied method.

Now to the comparison of the curves: �rst, �gure 5.39 depicts the frequency domain curves
of the experiment and the generated sound from the transient simulation. It can be noticed
that both curves are close to each other in all areas. Especially the area of the fundamental
frequency (880 Hz) shows a close coincidence. The small di�erence of both curves in the
frequency range from 100 Hz to approximately 450 Hz is negligible because the magnitudes
are far below human hearing range. Furthermore, the hearing comparison of both sound �les
indicate no real di�erence for non-experts (see attachment: ’Vibraphone-Auralization.m4a’
and ’Vibraphone-Experiment.m4a’).

Figure 5.39: The frequency domain representation of the experiment and the auralized sound

Second, �gure 5.40 presents both simulation results compared to the experiment in a range
from 800 Hz to 1000 Hz in order to show closer the area of the fundamental frequency and
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to depict the BEM result13. It can be seen that all three curves are close to each other with
a clear fundamental frequency at 880 Hz. Furthermore, it is worth to mention, that both
simulation curves are very close in all areas. This o�ers promising veri�cations possibility of
the auralization technique by using BEM.

Figure 5.40: The frequency domain representation of the experiment, the auralized sound and
the BEM simulation

The frequency curve of the auralized sound is very close to the experimentally determined
quantities. It can be concluded that the applied auralization method is a suitable technique
to generate a synthesized sounds of a vibraphone bar. Furthermore, it can be assumed that
similar problems can be solved in the same accurate manner.

13The BEM simulation is performed in a range from 800 Hz to 1000 Hz only.
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6 Conclusion

Based on known approaches from literature, within this work an approach is developed which
is able to transfer numerical simulation results from commercial FE simulations into audible
results (auralization). This approach �nally generates audio results at given �eld points. For
better performance simpli�cations like e.g. the modal methods and Huygens’ Principle are
taken into account.

In order to evaluate the developed approach, this work presents several examples with its
application: the �rst example of the cantilever was used to evaluate the application of the
method in a �rst attempt and to develop scripts. This example presented promising results
especially regarding the quality of the generated audio �le and its calculation time. However, a
swinging metal can be assumed from the audio �le but it was not possible to evaluate this in
detail because no data from experiments was available. Therefore, in a next step an example
with a known and easy to replicate sound was used: a ball dropping on a surface. This example
showed comprehensible audible results. Especially the sound of the rolling ball on the table
was very promising. After these two examples, it was of key importance to be able to quantify
how close the results are to reality. In this context, the vibraphone was selected for the valida-
tion. Therefore, the carried out experiment in the acoustic chamber was compared with the
generated sound by the developed method and for further veri�cations with the Boundary
Element simulation. All three results were very close to each other, which indicates that the
method is, especially for similar problems, close to reality.

In conclusion of this work, the method shows reasonable and promising results for the
selected examples. Furthermore, the method has a good performance according to the prepro-
cessing (creation of model) and the calculation time of the script through its simpli�cations.
For further developments it is recommended to apply the method to more complex parts to
identify its industrial usability. For some models, it can be useful to de�ne a more complex
approach with e.g. taking wave re�ection and transmission into account. Furthermore, it is
recommended to integrate other simulation techniques e.g. BEM for more complex radiation
problems as support for better results.
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