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Abstract
The goal of this bachelor thesis is the implementation of a specific HDR tone mapping
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1 Introduction

For more than half a decade, the aim in the production of realistic computer graphics
has been to render virtual worlds which are as convincing as possible. This means that
they should evoke the same response in the viewer as it would in a real world scene.
As computational power becomes more easily available, resolutions and polygon counts
go up steadily. Yet to feel truly realistic, a virtual world cannot just consist of an
accumulation of realistically modeled objects, but rather the parts must also interact
with each other in a realistic manner.

Humans are used to moving through a world that is completely dictated by the laws
of physics. For that reason, it is easy for us to spot even the slightest divergence from
those laws. As a result, developers must stick to the laws of physics as much as possible
when simulating and rendering virtual worlds. As a matter of course, this also applies
to simulating lighting and illumination. This is why high dynamic range rendering has
become an essential tool in rendering realistic virtual worlds, as well as tone mapping,
which enables the results to be shown on conventional displays.

This thesis discusses the functional principles of these tools and discusses the imple-
mentation of a tone mapping operator by Irawan, Ferwerdam and Marschner.
This first chapter introduces the tone mapping problem, and what the aims of the

proposed solution are. Moreover, previous work on this topic is investigated. The second
chapter details how the human visual system perceives differences in brightness, and
which mechanisms are responsible for adaptation to different lighting conditions. The
third chapter explains the mode of operation of the operator proposed by Irawan et
al. The fourth chapter introduces a few prerequisites of graphics programming and
compute shaders. The fifth chapter goes into detail concerning the implementation of
the operator. Last but not least, the sixth chapter considers performance and further
refinements.
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1 Introduction

Figure 1.1: Left: a standard photo, as captured by a modern digital camera. Right:
an HDR photo generated by combining photos of various exposures, tone
mapped using the method described in this thesis. Note that in the image
on the right, there are details visible in the bright areas that are clipped to
white in the left image.

1.1 Dynamic Range

The luminance of a surface is the luminous intensity per unit area of light and is
typically measured in candela per square meter (cd/m2). The term dynamic range in
this thesis refers to the range from the lowest to the highest luminance value of a given
image. The range of luminances distinguishable by the human visual system spans
from approximately 10−6cd/m2 to 108cd/m2, which constitutes a total of 14 orders of
magnitude [Delvin 2002]. For example, a white piece of paper is more than a million
times brighter on a sunny day at noon than on a moonlit night. The visual system
cannot perceive the full visual range of luminances at the same time, but it can adapt
to different lighting conditions by means of multiple adaptation mechanisms, which will
be discussed in detail in Chapter 2.

In reality, the complete distinguishable range of luminances is almost never present at
the same time. Still, an ordinary scene can easily feature luminances that span 4 to 6
orders of magnitude [Reinhard et al. 2010:237]. Typical display devices have a dynamic
range which spans approximately 2 orders of magnitude [Reinhard et al. 2010:233]: see
Figure 1.2 for a visual comparison. Images that have a greater dynamic range than
2 orders of magnitude are usually referred to as having a high dynamic range (HDR).
Correspondingly, images and scenes which feature a lower dynamic range are referred to
as having a low dynamic range (LDR).
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1 Introduction

dynamic range of luminances. . .

14 orders of magnitude visible through adaptation

4 visible in a single view

2 displayable by a conventional monitor

Figure 1.2: Comparison of different dynamic ranges in orders of magnitude.

While LDR material is suitable for displaying directly on conventional LDR display
devices, HDR material can not be displayed directly on such devices, but instead must
be converted to match the dynamic range of the display device in question. This is a
lossy process called tone mapping. As the name suggests, the HDR values get mapped
to the LDR during tone mapping. The function responsible for this is called a tone
mapping operator (TMO). HDR display devices, that are capable of displaying HDR
material directly, will become more affordable and mature during the next few years,
but standard LDR display devices will continue to play a fundamental role in image
display in the foreseeable future.

1.2 Taxonomy of Tone Mapping Operators

Whenever a HDR scene must be displayed on a conventional display device, the need
for some sort of tone mapping remains. It is an integral part of digital camera systems,
and some of the methods used in computer graphics have been influenced by those used
in camera systems.
There are many different kinds of TMOs, which are often classified according to the

following properties. The first distinction is between global (also known as spatially
uniform or single-scale) and local (also known as spatially varying or multi-scale)
operators. While global operators apply the same mapping function across an entire
image, local operators aim to divide the image into segments of similar luminances and
apply separate, adjusted mapping functions to each of these. In this manner, local
operators can often reproduce more detail in both bright and dark parts of the image,
and they can also distort the sensation of differences in luminance across the image.

3



1 Introduction

A further distinction is made between static and dynamic TMOs. Static operators are
designed to process only single images. Dynamic operators take the course of time into
consideration and are therefore suitable for processing moving images. Some dynamic
operators are also capable of simulating adaptation to different light conditions over
time.

A third distinction can be made in accordance with the intent of the operator. Some
TMOs strive to produce pleasing images depending on personal preferences or artistic
goals (best subjective quality). Other TMOs are optimized to reproduce, as far as possible,
the original appearance of the image, including contrast, sharpness and colors of the scene,
properties which could get heavily distorted without the use of a proper TMO (scene
reproduction). These operators are sometimes referred to as tone reproduction operators.
Some operators take this a step further and also simulate limitations limitations of the
visual system (visual system simulators). These limitations include limited contrast
perception, glare or loss of color perception in dark conditions [Eilertsen et al. 2013].
The TMO used for the purposes of this thesis is a global, dynamic visual system

simulator.

1.3 Goals of the New Operator

The TMO that will be discussed in this thesis was developed by Irawan, Ferwerda and
Marschner in 2005, and is detailed in their publication Perceptually Based Tone Mapping
of High Dynamic Range Image Streams [Irawan et al. 2005].

The main aim of this operator is to accurately represent scene visibility, or, in other
words, to reproduce as much of the visible contrast and detail as possible. It includes
a detailed simulation of the adaptation state of the visual system and how it changes
over time. The authors consulted several psychophysical studies in order to model the
limitations of the visual system.
There are many applications which could benefit from this tone mapping method.

Lighting conditions in the simulation of architecture can be evaluated more accurately
than with a more simple TMO. In driving simulations the visibility of obstacles can
be displayed more realistically. The simulation of low vision can be useful in medical
simulations.
The goal of this thesis is to implement Irawan’s operator for a game engine. Game

engines traditionally achieve the highest graphical fidelity possible in real-time on
consumer hardware, which makes them a good fit for any 3D simulation which requires
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1 Introduction

a certain amount of visual realism. They have also become increasingly affordable and
often include support for virtual reality hardware, which is also of interest concerning
3D simulations.

1.4 Previous Work on This Topic

HDR rendering is already a well-established feature of 3D game engines and developers
are experimenting with more sophisticated tone mapping operators, often with impressive
results. These new operators often incorporate various effects of visual perception, or
try to mimic the behavior of film to achieve a more filmic appearance. However, very
fast performance speeds and a pleasing image appearance are also prioritized by all of
these operators.
Tone mapping operators that try to achieve a critical degree of perceptual realism

are less commonly found, and are less often implemented by popular game engines.
They are instead found in less flexible or less open 3D frameworks. No freely available
implementation of a global, dynamic visual system simulator was found for any of the
popular game engines; thus, such an implementation will be attempted in this thesis.

5



2 The Human Visual System

The visual system consists of the eye, notably including the retina, the optic nerve and
parts of the brain. The process of visual perception is a complex interplay between these
parts, that includes the interpretation of the stimulus, as well as the comparison to known
patterns and objects [Clifford et al. 2007]. Researchers have yet to fully understand the
inner workings of visual perception, and new findings are made regularly. This chapter
details the mechanisms of the visual system that are responsible for detecting differences
in light intensity, as they are assumed and modeled by Irawan et al. in their paper.

2.1 Contrast Perception

Although LDR images exhibit a narrower dynamic range and lower peak luminances,
they can still evoke a similar response in the observer as real HDR scenes. The reason
for this is that the visual system is more sensitive to relative rather than to absolute
luminances [Delvin 2002]. To understand how the impression of contrast forms, one has
to look at the way the visual system manages to cover a dynamic range that spans over
10 orders of magnitude.

2.2 Mechanisms of Visual Adaptation

The visual system adapts in part globally to the background intensity of a scene, which
can be approximated as the mean luminance of the whole field of vision, and in part
locally for the different areas of the retina.
A special area of the retina is the fovea. This is the part of the retina where visual

acuity is the highest, and the center of which is used to focus on objects [Hood and
Finkelstein 1986:5-5]. It is especially important to model the adaptation of this area
when predicting scene visibility.

The eyes are never completely at rest. Instead, they do semi-random movements at
any time and never fixate on a single point for more than 500 ms. This is called saccadic
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2 The Human Visual System

eye movements. Typically, it takes between 200 ms and 400 ms for the eye to fixate on
the next point [Hoffman and Baskaran 1995]. Therefore, the adaptation state is also
constantly changing and is usually less than optimal [Irawan et al. 2005]. The state
of the visual system not being optimally adapted is called maladaptation. The visual
system possesses multiple mechanisms that let it adapt to different lighting conditions.
These are detailed in the following subsections.

2.2.1 The Pupil

The first is probably also the most well-known. By opening or closing the circular
structure in the eye that is the iris, the size of the pupil changes, and thus, the amount of
light that enters the eye can be regulated. The size of the pupil varies between about 2
mm in bright conditions to 8 mm in the dark. This enables a reduction in light intensity
entering the eye by a factor of 16, which is not much considering the range of 10 billion
to 1 that the visual system is covering [Reinhard et al. 2010:239]. This is why the effects
of the pupil are not taken into account by Irawans TMO.

2.2.2 The Rod and Cone System

The human retina has two types of photoreceptors that are responsible for vision: Rods
and cones are dividing the high dynamic range that the visual system is covering into
two smaller ranges. Figure 2.1 illustrates this relationship. Rods are more sensible to
light and responsible for vision in dark conditions. The range of luminances they are
working in is called scotopic range. Cones are less sensible to light and work in normal
to bright conditions. This range is called photopic range. The photopic and scotopic
ranges overlap in a region that is referred to as the mesopic range. In the mesopic range,
both types of photoreceptors are active and working. Rods and Cones are individually
adapting to changing light conditions [Reinhard et al. 2010:240f]. Under bright light,
when rods are less sensitive than cones, the rods are referred to as being saturated.

Note that both curves of Figure 2.1 are flat at low luminance levels and become
log-linear over the range where the visual system adapts well. This range is referred to
as the Weber Range. In this range Weber’s Law applies, which states that the ratio of a
stimulus and the respective just noticeable difference (JND) is a constant.
There are three different kinds of cone cells, each for different wavelengths of light.

This way, cone cells enable color vision in the photopic range, while in the scotopic
range, with only rods active, we are unable to differentiate between colors.

7



2 The Human Visual System
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Figure 2.1: The just noticeable difference threshold for an always optimally adapted
visual system, as computed by the new implementation of the TMO. It
shows that at about 1 cd/m2, the cone system gets more sensitive than the
rod system. It takes over the task of contrast perception. At about 100
cd/m2 the rod system is saturated.
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Figure 2.2: The Response of dark-adapted rod cells to short exposures to various lumi-
nance values. [Reinhard et al. 2010:244]

2.2.3 Photopigment Depletion and Regeneration

Photoreceptor cells contain photopigments, that get broken down when they absorb
photons. These pigments enable the photoreceptors to fire a neural signal when exposed
to light. The pigments appear more bright after this process, which is why it is called
bleaching [Kaiser 2009]. Regeneration of photopigment is a relatively slow process that
takes longer for rod cells than for cone cells. A lower concentration of photopigment can
render photoreceptor cells less sensitive to light. But the role of photopigment depletion
in visual adaptation is not considered very big, as researchers have found that even after
long exposures to high luminances, the concentration of photopigment in cones is not
reduced significantly. Some researchers believe that, in the photopic range, nearly all of
the photopigment in rods is depleted, which would render them inoperable[Reinhard et al.
2010:243]. However, Irawan et al. worked with the assumption that after adaptation
the fraction of unbleached pigment is the same in rods as in cones [Irawan et al. 2005].
Regardless of this, the rod system is still saturated above the mesopic range in their
calculations.
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2 The Human Visual System

2.2.4 Neural Adaptation

Photoreceptor cells turn the absorbed light into neural responses. When measured
under the influence of short flashes of light of varying luminance, the responses form an
S-shaped plot as shown in Figure 2.2. This response curve can be approximated by the
following equation:

R(L, σ(La)) = Ln

Ln + σ(La)n
, (2.1)

where R is the photoreceptor response in relative units between 0 and 1. L is the
luminance the cell is flashed with. σ(La) is defined as the adaptation state when the
system is optimally adapted to luminance La. This is the semisaturation constant of
this equation and provides the luminance that causes a response of 50%. Finally, n
changes the sensitivity of the system, or in other words, the steepness of the curve, and
has a value generally between 0.7 and 1.0 [Irawan et al. 2005].

The Equation 2.1 was proposed by Naka and Rushton [Naka and Rushton 1966]. As
visible in the graph, photoreceptors respond logarithmically to increasing stimuli. In
the equation σ(La) controls the position of the curve on the horizontal intensity axis.
This is necessary, because the response curve is only log-linear in a narrow portion of
the dynamic range. The value of σ(La) mainly depends on two processes of neural
adaptation: fast and slow neural adaptation. These are modulations in the way the
signal is being processed, and their effect is comparable to the sensitivity or gain control
settings of modern cameras.

10



3 Data Flow of the New Operator

Recall that the goal of the new operator is to predict the visibility of details and
realistically simulate the limitations of the visual system. To accomplish this, the
authors built on the histogram adjustment method proposed by Ward et al., and
extended it with a new adaptation model which builds on the temporal dynamics of
visual adaptation as described by Pattanaik et al. [Ward-Larson et al. 1997][Pattanaik
et al. 2000]. This chapter details their approach. Figure 3.1 provides an overview of the
necessary steps.

3.1 Histogram Adjustment

This method was first described by Ward et al., and because of its similarity to histogram
equalization it was termed histogram adjustment. The key idea here is to use the
cumulative distribution function of the luminance histogram of an HDR image as the
mapping function. Compared to the typical S-shaped mapping functions which are
commonly used by TMOs, this allows for more fine-grained adjustments. For an example
see Figure 3.2. Here, the second row of diagrams shows the normalized cumulative
distribution functions of the histograms in the first row.
Using this technique, it is possible to use the available dynamic range of the output

image more efficiently. Luminances that are more prevalent in the image get assigned a
proportionally greater number of display luminances, while contrast in more sparsely
populated regions of the image’s histogram get compressed more heavily. This way, more
detail is preserved in the resulting image, and it is possible to convey the impression of
an over all higher contrast.
Since the fovea adapts to areas of approximately 1° of viewing angle, the operator

reduces the resolution of the input image until each pixel represents the mean luminance
of the area of one of those foveal points. The calculation of the mapping function is
continued with the resulting foveal image.
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3 Data Flow of the New Operator

IN

foveal image histogram trim and
redistribute

mapping
function

adaptation
luminance

adaptation
state TVIA

histogram
ceilings

OUT

Figure 3.1: Block diagram of the new operator as it was implemented for this thesis.

If h(bi) counts the number of foveal points that lie in histogram bin bi, the cumulative
histogram P (b), normalized by the total number of foveal points T , is defined as the
following [Reinhard et al. 2010:378]:

P (b) =
∑
bi<b

h(bi)/T (3.1)

To use P (b) as a mapping function and attain the log10 of the target display luminances,
one can use the following equation, where Ld(x, y) is the target display luminance at
position (x, y), Ld,max is the maximum display luminance, Ld,min is the minimum display
luminance and Lw(x, y) is the world luminance at position (x, y).

log(Ld(x, y)) = log(Ld,min) + (log(Ld,max) − log(Ld,min))P (log(Lw(x, y))) (3.2)

When just naïvely using this method, there is a high chance that contrast will be
exaggerated in some areas of the image, see the left side of Figure 3.2 for a demonstration
of this effect. For this reason, Ward et al. limited the slope of the mapping function to
the ratio of contrast visibility thresholds for the display and world luminances using a
threshold vs. intensity (TVI) function as it is pictured in Figure 2.1. This way, two world
luminances, which are not visibly different, will map to two display luminances which
are also not visibly different [Irawan et al. 2005]. The TVI function ∆L(La) takes an
adaptation level La, where La is the luminance value that the visual system is processing
and is optimally adapted to.
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3 Data Flow of the New Operator
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Figure 3.2: Left side: naïve histogram equalization, with TVIA ceilings included for
orientation. Right side: histogram adjustment method, trimmed with TVIA
ceilings as proposed by Irawan et al. Note that the left image exhibits
exaggerated contrasts in the area of the wooden door. In comparison, the
right image appears correct.
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3 Data Flow of the New Operator

dLd
dLw

≤ ∆L(Ld)
∆L(Lw) (3.3)

From this inequality Ward derives a constraint that will be used to trim the histogram
values, prior to calculating the cumulative distribution function [Ward-Larson et al.
1997].

h(bi) ≤ T

N
∗ log(Lw,max) − log(Lw,min)

log(Ld,max) − log(Ld,min) ∗ ∆L(Ldi)/Ldi

∆L(Lwi)/Lwi

, (3.4)

where N is the total number of histogram bins used, Lwi is the world luminance for
histogram bin bi and Ldi is the display luminance for histogram bin di. The value for N
can be chosen freely and does not need to be very high.
Ward simply truncates the histogram values that exceed this ceiling. This changes

the number of adaptation samples T and thereby changes the ceilings, creating a
nonlinear problem. Ward et al. solve this problem by iteratively truncating counts
and recomputing the ceilings until an arbitrary tolerance is reached [Ward-Larson et al.
1997].

Irawan et al. improve on this solution by redistributing the trimmed histogram counts
to other bins proportional to the existing counts, without exceeding the ceiling for those
bins. If not all trimmings can be redistributed this way, Irawan et al. distribute the rest
uniformly over empty bins, provided that there are any. This way, T does not change
during the process of constraining the histogram and the results of the TMO become
more consistent. If not all trimmings can be redistributed without exceeding the ceiling,
the input material is not HDR. See the next section for how this case is handled in
Irawan’s TMO.
Ward’s operator provides a technique to accurately predict the visibility of details.

However, because it uses the classic TVI function to constrain the visibility of contrast,
it works under the assumption that the visual system is optimally adapted to any
luminance value it processes, which is not realistic. Furthermore, Ward’s operator is
only optimised for single image processing and can yield inconsistent results when used
on continuous image streams.

3.2 Handling of Low Dynamic Range

When, after constraining the visibility of details, the dynamic range of the image does
not need to be compressed, we consider it to be LDR. When used on streams of moving

14



3 Data Flow of the New Operator
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Figure 3.3: Slices of the TVIA for several values of the adaptation luminance La, as
computed by the new implementation of Irawans operator. The lower
envelope of these curves is approximately the TVI pictured in Figure 2.1.

images, the main reason for Ward’s TMO to produce inconsistent results is that it does
not handle LDR material the same way as HDR material. Instead, it switches to a
completely different mode. As mentioned in the last section, to detect this case, Irawan
et al. check if the sum of all the ceilings is not less than T .

N∑
i=1

T

N
∗ log(Lw,max) − log(Lw,min)

log(Ld,max) − log(Ld,min) ∗ ∆L(Ldi)/Ldi

∆L(Lwi)/Lwi

≥ T (3.5)

In this case, Irawan et al. reduce log(Ld,max) − log(Ld,min) so that Equation 3.5 is
met exactly. This way, after redistribution, the sample count in each bin will be exactly
the ceiling for this bin. Afterwards, the operator needs to decide what part of the
available display dynamic range the image should occupy, since it does not span the full
display dynamic range. Irawan et al. compare the highest and lowest relative responses
generated by the world luminances and the display luminances to solve this problem.

3.3 The Threshold Vs. Intensity and Adaptation Function

To account for the range of adaptation states of the visual system, Irawan et al. replace
the TVI equation used in Ward’s operator by their own threshold vs. intensity and
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3 Data Flow of the New Operator

adaptation (TVIA) function ∆L(L, σ(La)). It takes a luminance and an adaptation
state, and it gives the JND for any combination of these. To find this function, they
consulted the Naka-Rushton Equation (2.1). The idea is that when there is a constant
∆R that is the just noticeable difference in receptor response, then a just noticeable
difference in luminance is:

R(L, σ(La)) + ∆R = (L+ ∆L(L, σ(La)))n

(L+ ∆L(L, σ(La)))n + σ(La)n
(3.6)

∆L(L, σ(La)) = σ(La)
(

R(L, σ(La)) + ∆R
1 − (R(L, σ(La)) + ∆R)

) 1
n

− L (3.7)

Equation 3.7 is Equation 3.6 rearranged.
As there cannot be a response values above 1, the operator has to check if R(L, σ(La))+

∆R > 1. In that case, the visual system reaches saturation and cannot discriminate any
higher luminance values, and therefore, the threshold is infinite. If R(L, σ(La))+∆R ≤ 1,
the operator can calculate the TVIA, see Equation 3.7. A few slices of this function are
plotted in Figure 3.3.

3.4 The Adaptation State σ

As already mentioned in Section 2.2.4, the function σ(La) shifts the response function of
the photoreceptors left and right along the horizontal axis. This way, luminances that
are close to σ(La) fall near the center of the response function, where it is the steepest,
and the required change in luminance to differ the response by ∆R is small. The bigger
the difference between L and σ(La), the higher the relative threshold.
To define the slope of σ(La) Irawan et al. take Equation 3.6 and look at the case

where L = La. Since ∆L(L, σ(L)) is exactly the known TVI function, the equation can
now be solved numerically for σ(La). As Irawan et al. put it:

Graphically, this calculation is equivalent to shifting the response func-
tion left and right until the difference between R(L, σ(L)) and R(L +
∆L(L, σ(L)), σ(L)) is exactly ∆R.

To account for the temporal dynamics of the different mechanisms of adaptation, the
authors split σ(La) into three factors, one for each of the major mechanisms: σb(La) for
photopigment bleaching, σn(La) for fast neural adaptation and σc(La) for slow neural
adaptation.
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3 Data Flow of the New Operator

σ(La) = σb(La) ∗ σc(La) ∗ σn(La) (3.8)

The relative portion of unbleached pigment p(L) follows the following formula [Hood
and Finkelstein 1986:5-42]:

p(L) = I0
I0 + L

(3.9)

The amount of signal transmitted by receptors is assumed to be proportional to
L ∗ p(L) [Irawan et al. 2005], which leads to

σb(La) = 1
p(La) (3.10)

Irawan et al. modeled the time course of pigment depletion and regeneration with the
following exponential decay function:

p = p(La) + (p0 − p(La)) ∗ e
−t

t0∗p(La) , (3.11)

where t is the time in seconds since the luminance changed from L0 to La and
the portion of unbleached pigment was p0. The value of the denominator t0 ∗ p(La)
determines the abruptness of the function. A different time constant t0 is used for
the rod and for the cone system [Irawan et al. 2005]. Because in bright surroundings
p(La) < 1, p increases slower than it decreases, just like pigment regeneration happens
slower than pigment depletion.
The adaptation values for fast neural adaptation σn(La) and slow neural adaptation

σc(La) are modeled by Irawan et al. through the following equations:

log(σn(La)) = 2.027L0.6406

L0.6406 + 5.8590.6406 + 0.01711 (3.12)

log(σc(La)) = 1.929L0.8471

L0.8471 + 10480.8471 + 0.01820 (3.13)

log(σn(La)) = 2.311L0.3604

L0.3604 + 5.8590.3604 − 2.749 (3.14)

log(σc(La)) = 1.735L0.9524

L0.9524 + 1.2770.9524 + 0.005684 (3.15)
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Figure 3.4: The steady-state adaptation state σ(La) for the rod and cone system, as
computed by the new implementation of the operator. The graph reflects the
fact that the two adaptation systems are each suited for a different dynamic
range of luminances, as the optimal case would be σ(La) = L for all L.

Equations 3.12 and 3.13 are for the cone system and Equations 3.14 and 3.15 are for
the rod system. To model the time course of the neural adaptation, Irawan et al. use
another exponential decay function:

L = La + (L0 − La) ∗ e
−t
t0 (3.16)

The steady-state adaptation state for rods and cones is plotted in Figure 3.4. These
two functions combined resemble the TVI function pictured in Figure 2.1. A few samples
of the resulting thresholds during dark adaptation over the course of time are plotted in
Figure 3.5.

3.5 Partial Adaptation

As mentioned in Section 2.2, the eyes are constantly doing saccadic movements. Adap-
tation times as short as a few milliseconds can already cause big differences in contrast
recognition. Because the foveal area of the visual system is very small, its position
over the image would have to be known at any time to correctly account for those
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Figure 3.5: The time course of dark adaptation, as computed by the new implementation
of the operator, for three different starting adaptation luminances. See the
legend for the exact values. The jump due to fast neural adaptation during
the first seconds is barely visible in this representation.

micro-adaptations. Since this is not feasible without extensive use of highly sophisticated
additional equipment, the more sensible solution for this factor is to simply assume an
average partial adaptation time.
Between frames, Irawan’s operator only keeps track of the adaptation state over the

average luminance of the image. But to account for partial adaptation, an individual
adaptation state is calculated for each world luminance, as if the observer started in
the average adaptation state and then adapted for a fixation time of tf to luminance L
[Irawan et al. 2005].
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4 Technical Fundamentals

This chapter provides the reader with the fundamentals of graphics programming and
compute shaders. Furthermore, the basics of the XYZ color space and the choice of
game engine are explained in this chapter.

4.1 Graphics Hardware

Rendering graphics requires the processing of large amounts of data. To accelerate
this, specialized graphics hardware has been introduced to the market in the 1990s. It
contains an additional processor that was termed graphics processing unity (GPU) by
the Nvidia Corporation [Varcholik 2014:8]. It complements the CPU in modern
computing devices.
CPUs are optimized to quickly execute tasks in sequence and are usually capable of

doing only a couple of things simultaneously. However, many graphics calculations can
be done in parallel. The GPU is designed to take advantage of this fact. While the CPU
is fast at doing things in sequence, GPUs are fast at doing the same task many times in
parallel. Programs that are executed on the GPU usually are referred to as shaders.
Graphics APIs define specific sequences of steps for rendering 3D graphics on the

screen. This is called the graphics pipeline and comprises stages for different kinds of
shaders [Varcholik 2014:9ff]. Tone mapping is done towards the end of this pipeline, after
rasterization, usually by means of one or more pixel shaders. This way, as many shaders
and effects as possible can benefit from the realistic dynamic range of luminances before
the TMO converts the image to LDR.

4.2 Parallel Programming and Compute Shaders

Prior to the 21st century, GPUs could only execute a fixed set of functions. Today, most
stages of the graphics pipeline are freely programmable. There is also the possibility
to use the GPU independently of the graphics pipeline for any kind of calculation by
means of so-called compute shaders. Such shaders have been used for this thesis.
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To take advantage of the capabilities of the GPU, parallel programming is required,
in contrast to the conventional sequential programming for the CPU. A compute shader
comprises one or more functions. These are called kernels.
GPUs contain one or more processing units. Nvidia termed these streaming multi-

processors (SM). SMs execute many instances of a kernel at a time in parallel. Each
instance is called a thread. Threads are processed in thread blocks or groups. The
maximum number of threads in a group depends on the hardware, as the groups need
to “fit into” the SMs. At the time of writing, this number typically is 1024 for modern
desktop computers [Varcholik 2014:545f].
When launching a kernel on the GPU, each thread gets assigned a thread ID and a

group ID. These IDs can have up to three dimensions for both threads and groups. The
way threads are divided among these dimensions can be freely chosen. Except for the
total number of threads and groups, this has no performance implications. The IDs
are visible to the threads themselves and can be used to assign different portions of
memory for each thread to process. Each thread has its own local memory and each SM
has a block of memory that is visible to all of its threads. This is called group shared
memory. In addition, there is global memory that is visible to all threads. These three
types of memory reside in the GPU. All data that needs to be processed first needs to
be transfered from the CPU to the GPU [Wilt 2013].
In general, the GPU code must be written in a way that lets the threads operate

as independently as possible. This means that they should not operate on the same
memory. This is not always possible. Since threads are not guaranteed to execute at
the same speed, multiple threads operating on the same memory would introduce race
conditions. As a solution, there are multiple ways for threads to be synchronized. One
is an API-specific synchronization function, which stops all threads within a group until
each of them has reached this function call. The other one is atomic operations which
guarantee that no two threads are accessing the same memory address at the same time
[Wilt 2013].

4.3 The XYZ Color Space

Most 3D environments internally represent color information as a combination of the
primary colors red, green and blue. This is called RGB color space and R, G and B are
called the tristimulus values of this color space. There are many different RGB color
spaces, each defining the primary colors and the available intensities a little differently.
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It is not possible to describe all colors observable by human vision in such a color space.
For this purpose, the Commission internationale de l’éclairage created the CIE XYZ
color space in 1931 [Greule 2015:76].

Since it contains all colors of the natural world, it is possible to describe any color
or color space within the XYZ color space independent of display device or medium.
An RGB color space is defined within the gamut of the XYZ space using an xW yW

chromaticity pair and a maximum luminance YW . It is possible to convert from
tristimulus color space to another using a 3 × 3 matrix transformation [Reinhard et al.
2010:34].

The tristimulus values of the XYZ color space are imaginary in the sense that they
cannot be generated by any light spectrum. The function for Y was designed to be
equal to the luminosity function which describes the typical perceived brightness of
different wavelengths, or spectral sensitivity. One can extract the color information, or
chromaticity, from the XYZ tristimulus values using the following equations [Greule
2015:79]:

x = X

X + Y + Z
(4.1)

y = Y

X + Y + Z
(4.2)

z = Z

X + Y + Z
= 1 − x− y (4.3)

Since z = 1 − x − y, only x and y need to be kept. These are the chromaticity
coordinates that form the CIE chromaticity diagram shown in Figure 4.1. Adding the
luminance information Y to the chromaticity coordinates yields the xyY color space. This
is widely used in TMOs. They take advantage of the fact that luminance information is
kept separate from chromaticity because most tone mapping operations happen only on
the luminance information.

4.4 The Graphics Framework

As mentioned before, the goal of this thesis was to implement a visibility predicting
TMO within a game engine because game engines traditionally archive the highest
fidelity 3D graphics in real time on a wide range of hardware configurations.

To decide which engine to use as the framework for the new real time implementation
of Irawans TMO, different aspects were considered. Support for HDR rendering is a
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Figure 4.1: The CIE xy chromaticity diagram. The curved edge represents all monochro-
matic wavelengths in nanometers and is called spectral locus. The straight,
lower edge represents all additive mixtures of short- and long-wave stimuli
and is called the purple line [Reinhard et al. 2010:32f].
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standard feature in most modern 3D engines. Another required feature is the possibility
of using custom pixel or compute shader code, written in Microsofts DirectX High-
Level Shader Language (HLSL), to allow for sufficient freedom and hardware access
for the implementation. It is beneficial if the engine is at a mature stage of development
and already has a large user base. This makes it easier to find documentation resources
and other aids when developing for the engine. It also broadens the circle of potential
beneficiaries. Three particularly widely used engines were examined more closely for this
thesis: CryEngine developed by Crytek, Unity developed by Unity Technologies
and Unreal Engine developed by epic games.
While the CryEngine delivers very convincing graphics, it only offers ways of

influencing the TMO via a GUI. Therefore, it would be a more involved process to
implement a custom TMO for this engine and source code access would be mandatory
for this.
More recently, both Unreal Engine and Unity have added support for custom

HLSL shaders in addition to standard tone mapping methods. The process of actually
writing and debugging a TMO turned out to be the most convenient in Unity. It
includes both a couple of example TMOs as well as sufficient documentation and support
for this task. For these reasons, Unity was chosen for the implementation.
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This chapter walks the reader through the specifics of this implementation of the TMO.
The source code for the C# Unity script and the HLSL compute shader code can be
found attached to this thesis.

Unity supports multiple languages for scripting. This implementation uses C# for its
Tonemapper class. The script’s computations are executed on the CPU. For calculations
on the GPU, a compute shader is used. Unity compute shaders are written in HLSL
syntax and have the file extension .compute. They need to contain #pragma compilation
directives in the beginning to declare which functions are compute shader kernels.

Unity compute shaders are invoked using the ComputeShader class provided by the
engine. It includes functions like SetBuffer to declare data that needs to be sent to
the GPU. To launch a kernel, the Dispatch function is used, which takes the index of
the kernel and the number of groups that should be launched for each of the three
dimensions as arguments.

Unity includes a range of standard assets. Among them is a utility class called
PostEffectsBase. This class can be extended to build full screen image post-processing
effects which can be attached to Components of the type Camera. An effect like this
only needs to provide an OnRenderImage function with two parameters of the type
RenderTexture, one for the source image and one for the resulting image.

An ImageEffectTransformsToLDR instruction exists to inform the engine about the fact
that the effect acts as a TMO for HDR images.

5.1 Color Space Conversion

On line 93, the first shader kernel is launched in the C# script. It uses one thread
per pixel of the source image. The vector containing the RGB information is of type
float4. It is multiplied by a 3 × 3 standard RGB to XYZ conversion matrix, specified
by the International Telecommunication Union [Reinhard et al. 2010:35]. Since
neither alpha nor depth values are used by the TMO, the fourth value of the vector may
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be dropped. Next, x and y are computed using Equations 4.1 and 4.2. The log 10 is
computed for the luminance values in preparation for the histogram adjustment.
The data is stored in three separate two-dimensional data structures of the type

RWTexture2D, typed with <float>. In DirectX terminology, this is called an unordered
access view (UAV) which allows for simultaneous read and write operations by multiple
threads, without the need for atomic operations. It is the most flexible when typed with
single-component 32-bit element types.

5.2 Reduction to Foveal Image

The second shader kernel follows immediately after the first. Here, the thread group
size is critical for the result. Like for the first kernel, one thread is used for each pixel of
the source image and each group covers a quadratic area that is NUM_THREADS_X wide.
This value has an impact on the performance, since it determines the resulting count of
histogram samples. Reasonable values are 16 or 32.
To avoid weighting calculations for non-full groups at the edges of the image, the

operator only uses full groups for the foveal image.
The kernel calculates the mean value for each group and stores it in a buffer of UAV type

RWStructuredBuffer for the following code to read out. This task is not feasible without
inter-thread communication. The HLSL function GroupMemoryBarrierWithGroupSync

is used for memory synchronization. The kernel works by first dividing the data by
the group size and copying it into a groupshared array. This is followed by a parallel
add-reduce algorithm.

5.3 Histogram Creation

All following steps until the final tone mapping are performed in the C# script, or in
other words, on the CPU. GPU code needs a certain amount of parallelism and data
throughput to be more time efficient than a sequential implementation [Konstantinidis
2014]. Since the operator only requires the histogram adjustment to be performed on the
reduced set of luminance values of the foveal image, the maximum number of parallel
computations possible is either limited to the sample count or the histogram bin count.
For an image resolution of 1920 × 1080 and a group height of 32 the sample count would
be (1920/32) ∗ (1080/32) = 2025. If this is enough to fully utilize the capacities of the
GPU is highly hardware dependent.
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rods cones
fast neural adaptation 0.15 0.08
slow neural adaptation 60.00 30.00

pigment bleaching 400.00 110.00

Figure 5.1: The different time constants t0 used in seconds

To create the histogram, the minimum and maximum luminance values need to be
known, as the histogram will be spanned between those. In the same for loop, the mean
luminance value is computed for adaptation modeling. The minimum luminance value
has a lower bound of 10−4cd/m2, as there needs to be a lower bound of human vision
[Reinhard et al. 2010:378].
In the next loop, the histogram bin values are computed. The number of histogram

bins does not need to be high for sufficient accuracy. This implementation uses a bin
count of N = 128.

5.4 TVIA Function and Adaptation State

On line 135, a separate function is used to update the adaptation values for the
various adaptation mechanisms, assuming the mean log luminance to be the background
luminance of the image. Unity provides a static variable Time.deltaTime which is the
time in seconds it took to complete the last frame. This is used as time parameter t in
Equations 3.11 and 3.16. The values used as time constants t0 can be found in Figure
5.1. Most of these are specified in Irawans paper. For slow neural adaptation it was
necessary to work with Figure 11 in the paper to approximate the values for t0 that
were used by Irawan et al.

In the for loop on line 142, the ceilings are computed using Equation 3.4 combined
with the TVIA Function 3.7. For each luminance value a new temporary adaptation
state is calculated in the calculateTVIA function, according to the set partial adaptation
time, which should be around 300ms, as this is roughly the average duration of saccadic
eye movements.
Depending on whether the rod or the cones are better adapted to the particular

luminance, calculateTVIA returns the JND threshold luminance for the respective
system. Subsequently, the implementation makes a small modification, in that it
slightly increases the threshold for the rods for luminances above 10cd/m2. This is
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to accommodate the fact that most sources state that the rod system is presumably
not active in normal to bright light conditions [Reinhard et al. 2010:243][Hood and
Finkelstein 1986:5-30].

Data from Walraven was used to calculate the Weber constant and the just noticeable
change in response ∆R [Walraven et al. 1993], since these values are not specified in
Irawans paper. The well documented TVI function ∆L(L)=̂∆L(L, σ(L)) is needed for
these calculations. For the Weber constant, one has to simply compute the ratio of the
luminance of a typical display device to the respective TVI value Ld/∆L(Ld). For the
just noticeable change in response ∆R Equation 2.1 is used and σ(L) = L for all L is
assumed. Then the difference between R(L,L) and R(L+ ∆L(L), L) is computed for a
range of luminance values. The smallest of those is used for ∆R [Irawan et al. 2005].
These calculations resulted in a value of 0.06 for the Weber constant and a value of
0.013 for ∆R.

5.5 Low Dynamic Range Detection and Handling

An intermediate result is kept during the process of calculating the ceilings to be able
to adjust log(Ld,max) − log(Ld,min) without completely recomputing the ceilings. On
line 156, the check for low dynamic range can be found. If it returns true, the display
dynamic range is recalculated to exactly meet the condition of Equation 3.5. Then the
ceilings are adjusted accordingly.
The next step is to decide what part of the display dynamic range the image should

allocate. To determine by how much the range needs to be reduced, the ratio of the
real and the modified display dynamic range is taken. Then the world dynamic range
is compared to the unmodified display dynamic range, to assess were to place the
luminances.

The following histogram adjustment step can be completely omitted in the LDR case.
Instead, the ceilings may be used as histogram for the cumulative distribution function
because, by definition, the redistributed histogram will always be equal to the adjusted
ceilings.

5.6 Histogram Adjustment

For histogram adjustment the histogram is trimmed in the first for loop. In the same
loop the sum of all ceilings of empty bins and the sum of all unmodified bin counts are
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computed. The latter value is used in the next step to redistribute the trimmed values
to untrimmed bins proportionally their initial values. If all untrimmed bins are filled
to their corresponding ceilings, the rest gets distributed over the empty bins, this time
proportionally to their respective ceilings.

5.7 Mapping Function and Tone Mapping

Obtaining the cumulative distribution function is trivial in sequential programming.
During this step, the relative dynamic range reduction is applied for the LDR case.
The resulting array defines the slope of the desired tone mapping function. It is

transferred to the GPU, where it is used in the third kernel. Here, the corresponding
histogram bins are computed. Values in between bins are interpolated linearly. In the
case of the Unity Engine, the target range of values for an LDR image is [0, 1]. The
results are normalized to fit this interval.
Finally, the luminance values are recombined with the chromaticity information and

converted back to Unitys RGB color space using the inverted standard RGB to XYZ
conversion matrix. The resulting texture is read out via the C# script and copied into
the destination texture.
This concludes the walkthrough of the new implementation. The image is now

converted to LDR and ready for further processing and finally being displayed on a
screen.
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6.1 Results

For the purpose of this thesis, the operator was tested with HDR photographs that
were generated by combining various exposures of the same scene into one file of the
.hdr radiance file format. Luminance values obtained this way can only be approxima-
tions, because no exact measuring hardware was used. The operator works best in an
environment with realistic, physically based lighting calculations.
Still, the resulting images are well suited to demonstrate the effects and benefits of

the TMO. It effectively maximizes the visibility of details in HDR scenes or limits it in
very dark or empty scenes. Because of its ability to boost the apparent contrast of an
image, the results for HDR scenes come out as visually pleasing. Overall, the resulting
images appear balanced and natural.
The operator’s modeling of adaptation and maladaptation is convincing, see Figure

6.2. Dark adaptation takes more time than light adaptation. The detailed reduction of
distinguishable differences in brightness in the case of maladaptation is a big strength of
the operator, and is rarely found even in visibility simulating tone mapping methods.
However, at the time of writing, a few artifacts can still be noticed with the state of

the implementation. In some cases, the switch between the HDR and the LDR case
can create a noticeable jump in image brightness. This happens when the operator is
not able to determine the correct range of display luminance values for the LDR image.
This problem is not trivially solvable when there is no guarantee for physically correct
luminance values in the source image.
Another source of flickering and other irregularities can be changing minimum and

maximum luminance values within the scene. Different kinds of interpolation of changes
in the mapping function are possible solutions to this problem. For example, the
calculation of the minimum, maximum and mean luminances could be weighted, so that
center pixels have more influence than those at the edges of the image. This way, very
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Figure 6.1: HDR door scene with histogram and ceilings in a steady adaptation state.

bright or very dark objects, entering the image from the sides, will not cause sudden
jumps in luminance mapping.

6.2 Performance Considerations

Performance is critical for real-time graphics programming and there likely is great
potential for performance optimization in the new implementation. Still, so far, all tests
indicated that it is already well suited for real-time application.
The operator was tested on a computer containing an Nvidia Geforce GT 640M

graphics card with 512 MB of graphics memory and an Intel Core i5-3335S CPU
with 4 processing units and a clock rate of 2.7 GHz. The tools provided by the engine
were used to measure performance. The TMO takes about 8 ms to render a 1920 × 1080
image. The number of histogram bins NUM_HISTOGRAM_BINS does not seem to have a
great impact on either the performance or the resulting images. Values between 32 and
256 worked well. The width of a thread block NUM_THREADS_X enables the best rendering
times at a value of 16 on this hardware configuration. Image resolution was found to
have a linear relation to rendering time, with the rendering time in milliseconds being
roughly 5 times the number of megapixels in the image.
Performance optimization of graphics code is a highly sophisticated process and

requires comprehensive knowledge of current graphics hardware. As described and
justified in Section 5.3, only parts of the operator were implemented using GPU code.
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Figure 6.2: Demonstration of dark adaptation over time using the door scene from
Figure 6.1 with the door closed. The system starts optimally adapted to the
scene with the door open. Top: resulting images after 0 seconds, 4 seconds
and 5 minutes of adaptation time. Middle: shapes of the respective ceilings.
Bottom: resulting mapping functions. Note that the mapping functions do
not reach the maximum value because the scene is LDR.
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But it is completely possible that another split of the different tasks between CPU and
GPU is more efficient on common hardware configurations.
Delegating the calculation of the minimum, maximum and mean luminances of

the foveal image, or even the histogram creation, over to the GPU could have a
positive performance impact. Since transferring data back and forth between CPU
and GPU poses a performance bottleneck, an implementation that works entirely on
the GPU could also be considered. Although, a parallel implementation of histogram
redistribution presumably would be much more complex. It would require a lot of
memory synchronization and utilize only a small part of the capacity of the GPU.

Overall, such involved tone mapping methods like the one by Irawan et al. will always
have a considerable performance impact compared to simple single kernel operators.

6.3 Further Refinements

This thesis focuses on the main task of a tone mapping operator: the redistribution
of luminance values. But since the TMO proposed by Irawan et al. is in fact a visual
system simulator, an all-encompassing version would include additional steps to model
even more effects of visual perception.

When simulating visual perception, an important effect is glare. It is caused by bright
light that is being refracted by small particles in the lens and vitreous body of the eye.
This reduces the perceived contrast in areas surrounding bright lights. The effect is
especially noticeable when the visual system is dark adapted. Since peak luminances
of standard LDR displays are not bright enough to trigger glare effects in the average
observer, such patterns are directly printed to the image to improve the perceived
realism. Because humans are so used to seeing glare effects around bright objects,
such an artificial version can have a considerable impact on the perceived brightness of
objects, which is a desirable property when seeking perceptual realism [Reinhard et al.
2010:367ff].
Other noteworthy effects are those of night vision. When the rods become the

dominating photoreceptors in the dark, their properties influence the way the images
are perceived. Because there are fewer rods present in the region of the fovea, visual
acuity drops when the cones stop operating at low light intensities [Greule 2015:66].
Furthermore, since rods alone are not able to discriminate colors, color vision is lost
in the dark. In addition, color perception in the mesopic range is different from the
photopic range, because blue photoreceptors are more sensitive to low luminance values
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than red and green photoreceptors [Greule 2015:64]. This also causes night scenes to
appear blueish. This fact can be utilized to create the impression of night and darkness,
despite the relatively high luminance of standard display devices.

These effects usually are applied in the context of tone mapping because access to the
HDR luminance information and the adaptation state is needed for their implementation.
A good report about these and other effects of visual perception, and how they can be
implemented for a game engine, can be found in the thesis by Hellsten [Hellsten 2007].

6.4 Conclusion

Overall, the TMO described by Irawan et al. proved to be a satisfying visibility simulation
tool that accounts for various effects of luminance perception. It works by modeling and
approximating mechanisms of visual perception. However, evaluating to what extent the
results meet their goal is a hard problem. The process of visual perception is not yet fully
understood and comprises more than just discrimination of luminance values. Hence,
mathematically modeling photochemical processes might not be the single best way to
achieve perceptual realism. From this point of view the complexity of the implemented
operator might not be fully justified and a more simple method might generate equally
realistic results.

In the long term, the ultimate way to realistically render virtual worlds lies with the
emerging HDR display devices. Prior to that, the operator implemented for this thesis
is a good fit for different purposes in realistic 3D rendering.
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