

Fernando García Llorente

Implementation of a reading meter-bus data
program and system, using a Raspberry Pi

Bachelor Thesis

Faculty of Engineering and Computer Science
Department of Information and
Electrical Engineering

Fakultät Technik und Informatik
Department Informations- und
Elektrotechnik

Fernando García Llorente

Implementation of a reading meter-bus data

program and system, using a Raspberry Pi

Bachelor Thesis based on the examination and study

regulations for the Bachelor of Engineering degree programme

Information Engineering

at the Department of Information and Electrical Engineering

of the Faculty of Engineering and Computer Science

of the University of Applied Sciences Hamburg

Supervising examiner: Prof. Dr.-Ing. Franz Schubert

Second examiner: M. Eng. Peter Lorenzen

Day of delivery March 20th 2017

Fernando García Llorente

Title of the Bachelor Thesis

Implementation of a reading meter-bus data program and system, using a

Raspberry Pi

Keywords

Meter Bus, MBus, Raspberry Pi, Python, Wrapper, HTML, CSS, LibMBus,

Library, PyCharm, C, Programming Language, RS232, Serial, Converter,

GPIO, jQuery, JavaScript

Abstract

This thesis describes the first steps of the improvement of a heat transfer

station in the CC4E building in Hamburg, in order to make this station a

smarter station than it is.

To achieve that improvement in this thesis, the station is made accessible

from any part of the building using low cost components, while this is done

using the same programming language that is already used by the

engineers of the center, as well as a program that allows the maximum

flexibility and manageability possible to achieve such an outcome.

To achieve this flexibility and manageability using the same programming

language, it’s created an own whole Wrapper that englobes up to 5

different programming languages.

Also, the hardware components are expensive, so a deep research in the

functionality of the system is made to start developing an own hardware

system that will allow to reduce the cost considerably.

This thesis is also made as the first step of a further development, so

another’s future researchers of the C4DSI can continue improving the

smart heat transfer station.

Fernando García Llorente

Thema der Bachelorarbeit

Implementierung eines Programmes zum Auslesen eines Meter-Bus mit

einem Raspberry Pi.

Stichworte

Meter Bus, MBus, Raspberry Pi, Python, Wrapper, HTML, CSS, LibMBus,

Library, PyCharm, C, Programming Language, RS232, Serial, Converter,

GPIO, jQuery, JavaScript

Kurzzusammenfassung

Diese Arbeit beschreibt die ersten Schritte der Verbesserung einer

Wärmeübertragungsstation im CC4E-Gebäude in Hamburg, um diese

Station zu einer intelligenteren Station zu machen.

Um diese Verbesserung in dieser Arbeit zu erreichen, wird die Station von

jedem Teil des Gebäudes mit kostengünstigen Komponenten zugänglich

gemacht, während dies mit der gleichen Programmiersprache erfolgt, die

bereits von den Ingenieuren des Zentrums verwendet wird. Um ein

solches Ergebnis zu erreichen wird außerdem wird ein Programm

verwendet, das eine maximale Flexibilität und Verwaltbarkeit ermöglicht.

Um diese Flexibilität und Verwaltbarkeit mit der gleichen

Programmiersprache zu erreichen, entsteht ein eigener Wrapper, der 5

verschiedene Programmiersprachen umfasst.

Da die Hardwarekomponenten sehr teuer sind, wird die minimale

Funktionalität ermittelt, um ein eigenes Hardwaresystem zu entwickeln,

das es erlaubt, die Kosten erheblich zu reduzieren

Diese Thesis wird auch als erster Schritt Einer weiteren Entwicklung

gemacht, so dass weitere zukünftige Forscher des C4DSI die intelligente

Wärmeübertragungsstation weiter verbessern können.

Acknowledgment

First, and most important, I would like to thank the big support given by the

M. Eng. Peter Lorenzen, who has followed all the steps made during the

development of this thesis, as well as for his availability and patience to try

to solve the doubts that I was arising along the research.

Also, I would like to thank the Prof. Dr.-Ing. Franz Schubert for giving me

the chance to research in such an important research center as is the

CC4E, with all the new and sophisticate equipment that it has.

I don’t want to forget to express my gratitude to the Informatic Engineer

David González, who gave me a lot of useful information about the

different programming languages and helped me learning a lot of these

ones. Finally, I would like to thank to the entire C4DSI team for the long-

term willingness to ask questions and for the warm welcome they have

given to me, despite not knowing German. Specially to Ina, Sebastian and

Matthias.

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

6

Content

Introduction ... 10

MOTIVATIONS .. 10

APPROACH .. 11

TECHNICAL BASICS ... 12

Meter Bus Protocol .. 12

Rs-232 .. 13

Raspberry Pi ... 14

Goal Diagrams .. 16

Preparatory work .. 18

OPERATING SYSTEM .. 18

CONFIGURING INTERNET .. 19

INSTALLING LIBRARIES AND UPDATING ... 20

libmbus ... 21

SERIAL PORT CONNECTION ... 27

RECEIVING FIRST MBUS DATA... 30

CONNECTING RPI TO PYCHARM .. 34

Software concepts ... 37

LIBRARIES .. 37

CTypes .. 38

Wrapper ... 38

SOFTWARE IMPLEMENTATION .. 39

readingData.py .. 39

webServer.py ... 45

webPage.html ... 47

SOFTWARE VALIDATION ... 50

Hardware concepts ... 52

HARDWARE IMPLEMENTATION AND VALIDATION... 53

First Checking .. 55

Second Checking ... 58

Third Checking .. 59

SOFTWARE VALIDATION WITH THE HARDWARE ... 61

ADDITIONAL HARDWARE IMPLEMENTATION.. 64

Evaluation .. 66

OUTLOOK ... 66

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

7

Conclusion .. 67

References .. 68

Appendix ... 71

Declaration ... 72

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

8

Figures

Figure 1 – Main diagram of Goal 1. [1] [2] [3] [4] [5] ... 12

Figure 2 - A male DB-9 connector viewed from the front. [9] 14

Figure 3 – Raspberry Pi 1 Model B revision 1.2. [11].. 15

Figure 4 – GPIO RPi Pins. [13] ... 15

Figure 5 – Detailed diagram of the previous heat meter station. 16

Figure 6 – Main detailed diagram of Goal 1. ... 16

Figure 7 – Main detailed diagram of Goal 2. ... 17

Figure 8 – Main detailed diagram of Goal 3. ... 17

Figure 9 – Main Components to run a RPi [14] ... 18

Figure 10 – Installing Raspbian .. 18

Figure 11 - etc/network/interfaces .. 19

Figure 12 – etc/resolv.conf .. 19

Figure 13 – etc/init.d/networking restart ... 19

Figure 14 – sudo apt-get update ... 20

Figure 15 – sudo apt-get upgrade ... 21

Figure 16 – wget ... 22

Figure 17 – wget file ... 22

Figure 18 – unzip ... 23

Figure 19 – unzip file ... 23

Figure 20 – sudo apt-get install libtool automake ... 23

Figure 21 – autoheader && aclocal && libtoolize ... 24

Figure 22 – configure ... 24

Figure 23 – configure (2) .. 24

Figure 24 – configure files .. 25

Figure 25 – sudo make ... 25

Figure 26 – sudo make install .. 26

Figure 27 – Location of the installed library .. 26

Figure 28 – sudo ln -s .. 26

Figure 29 – USB-RS232 converter diagram. ... 27

Figure 30 – Digitus USB 1.1 serial converter. [3] ... 27

Figure 31 - ls -l /dev/ttyUSB0. .. 27

Figure 32 – New connection in Tera Term. .. 28

Figure 33 – Configuring connection in Tera Term. ... 28

Figure 34 – Configuring the serial port connection in Tera Term. 29

Figure 35 – Message received in RPi terminal from Tera Term. 29

Figure 36 - Message received in Tera Term from RPi Terminal. 29

Figure 37 – First assembled system. .. 30

Figure 38 – mbus-serial-scan -b 2400 /dev/ttyUSB0. .. 31

Figure 39 – mbus-serial-request-data -b 2400 /dev/ttyUSB0 0. 32

Figure 40 – PuTTY interface. ... 33

Figure 41 – RPi login through PuTTY. ... 33

Figure 42 - Connecting RPi to PyCharm. ... 34

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

9

Figure 43 - Connecting RPi to PyCharm (2). ... 35

Figure 44 - Connecting RPi to PyCharm (3). ... 35

Figure 45 – mkdir pythonProjects. .. 36

Figure 46 - Connecting RPi to PyCharm (4). ... 36

Figure 47 - Connecting RPi to PyCharm (5). ... 36

Figure 48 – Main detailed diagram of the code. .. 39

Figure 49 – Main detailed diagram of the readingData.py file. 40

Figure 50 – Main detailed diagram of the webServer.py file. 45

Figure 51 – Main detailed diagram of the webServer.py file. 48

Figure 52 – Main detailed diagram of Goal 2 (2). ... 50

Figure 53 – readingData.py PyCharm running .. 50

Figure 54 – Web Page Running. ... 51

Figure 55 – Converter 1 diagram circuit. [32] ... 52

Figure 56 – Converter 2 diagram circuit.. 53

Figure 57 – MAX3232 diagram. [35] ... 54

Figure 58 – Circuit 1 built. ... 54

Figure 59 – Circuit 1 ready to be checked. .. 55

Figure 60 – Oscilloscope screenshot 1. .. 56

Figure 61 – Voltage levels RS232. [8] .. 57

Figure 62 – Voltage levels TTL/CMOS. [37] .. 57

Figure 63 – Circuit 1 ready to be checked 2. ... 58

Figure 64 – Oscilloscope screenshot 2. .. 59

Figure 65 – Oscilloscope screenshot 3. .. 60

Figure 66 – Command line ttyAMA0 UART enabled. .. 61

Figure 67 – Main detailed diagram of Goal 3 (2). ... 62

Figure 68 – Implementation of the Goal 3. ... 62

Figure 69 – Final receiving data. .. 63

Figure 70 – Final receiving data (2).. 63

Figure 71 – Circuit 2 built. ... 64

Figure 72 – Converter circuit 2 built. .. 65

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

10

Introduction

Continuing the explanation of the abstract, the aim of this thesis is to develop a smart

station board that can be able to read a meter and then convert the data sent by this

meter into data that can be read by a Raspberry Pi. Also, this data must be shown in any

of the computers that englobes the network of the CC4E.

Also, the converter used to read the data can be replace by a new designed circuit, so

the total circuit will be much cheaper and can reduce considerably the cost of future

heat transfer stations.

MOTIVATIONS

The motivations that have led me to develop this project have not been few. The fact of

being in one of the leading countries in engineering and one of the largest and most

advanced cities, such as Hamburg, is motivation enough.

In addition, the opportunity to develop my research at the Hamburg Energy Efficiency

and Renewable Energy Competence Center, which belongs to the University

"Hochschule für Angewandte Wissenschaften Hamburg" (HAW), makes it very exciting

and profitable to research with good engineers at my side and in very good facilities.

Perfect conditions to research.

The barrier of the language and the fact that engineers here are specialists in different

branches of engineering than mine is just another motivation to continue improving in

my preparation as an engineer. The fact that I can help in a big project and the possibility

that my small research project will help the future students that will realize their thesis here,

is the best preparation to become a good engineer in the future.

Finally, the fact that I had no previous experience with the protocols and the languages

that I use in my project, makes it more difficult but also made me more motivated.

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

11

APPROACH

To do the project as efficient as possible, 3 mains goals are exposed. Three main steps of

the research that will help to do a better research. These three goals are the main

structure of the thesis.

GOAL 1

The first goal is to implement and test all the new components of the system, in

order to read the data that comes from the meter in a monitor, all using a meter

bus library. A lot of research is needed in this goal to start correctly the project:

knowing how the RPi, MBus protocol and RS232 protocol works; installing the

software needed in the RPi and computer; and connecting, testing, and looking

for as much information as possible in order to implement it in the best way

possible.

GOAL 2

Once the first goal is done, the main goal comes. This is the main goal because

a lot of work is needed. With the system working correctly, creating and

implementing a Python Wrapper in the Raspberry Pi that uses the same library to

read the data sent from the meter and do whatever is wanted with the data, is

the most difficult and main work of all the project. Also, some preparatory work is

needed: developing the skills in Python, JavaScript, HTML, CSS; studying and

understanding how the library works and prepare correctly the Raspberry Pi to

work with the implemented Wrapper.

GOAL 3

With Goal 1 and Goal 2 complete, the main work of the project is done. However,

some parts of the system can be improved in order to save some money in the

future. Also, using the USB port to read the data is not the best solution. Replacing

successfully the USB-RS232 converter by another designed circuit is the third goal

of this thesis.

To do that, the RPi has some GPIO Pins that can be used instead of the USB ports,

and a new designed circuit in between is needed. Building, testing and

implementing a new designed circuit are one of the main tasks of the

implementation of the circuit. Also, configuring the Raspberry Pi to use correctly

the GPIO pins to send and receive the information is another subtask of this last

goal.

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

12

TECHNICAL BASICS

Some technical basics are explained in this part of the project. In the figure 1 it is

described the main diagram of the goal 1, which is explained previously, with the images

of the real components used in this project and with the protocols used in the process.

The meter used is an “Integral-V UltraLite” model made by Allmess, whose datasheet can

be found in the reference 1. The physical data is measured by this meter and sent to the

converter using the Meter Bus protocol. This data is converted into data that can be sent

using the RS232 protocol by the “MBus 10 Converter” made by TechBase, whose

datasheet can be found in the reference 2.

This data is received by the Raspberry Pi using a RS232-USB Converter. This RPi uses a

monitor connected through an HDMI cable in order to be able to see the shell command

lines of the RPi.

METER
MBUS

CONVERTER

RS232
CONVERTER

RASPBERRY
PI

MONITOR

MBUS RS232 USB HDMI

Figure 1 – Main diagram of Goal 1. [1] [2] [3] [4] [5]

Meter Bus Protocol

MBus is a standard that allows reading the data of certain types of meters. This protocol

is made for using it with only two wires, which makes it very profitable.

When the information is requested from the meter, it delivers the data collected to a

common master, such as in this case is the Raspberry Pi which is connected to all the

meters in the same building.

The wired Meter Bus has a bus topology where the common master mentioned above

can communicate with up to 250 slaves. This communication of the master with the slaves

happens thanks to some voltage changes, from 24V to 36V, while the communication of

the slave with the master happens through current changes, from 1mA to 1.5mA.

Meter Bus devices can use a speed between 300 bauds and 38400 bauds. Most meters

use 2400 bauds, as is the case of the meter used in this project.

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

13

Wired M-Bus differentiates between five different frame types:

 SND_NKE (send link reset)

 SND_UD (send user data)

 REQ_UD1 (request user data 1)

 REQ_UD2 (request user data 2)

 RSP_UD (respond user data)

But the most common message is the request/response service in which the common

master sends a REQ_UD2 frame addressed to a specific slave, such as a meter, and it

responds with the RSP_UD message. This last message is the one containing the

measurement data of the moment in which the request was made.

The REQ_UD2 frame contains only the primary address of the slave to be read, which

occupies 1 byte. This main address is explained below.

Primary Addressing

The primary address occupies only a single byte, and that allows values between 0 and

255.

Addresses from 1 to 250 are assigned to the slaves.

The other addresses have special purposes:

 0 is used by unconfigured slaves.

 251 and 252 are reserved.

 253 indicates that secondary addressing is being used.

 254 and 255 are broadcast addresses.

[6] [7]

Rs-232

“In telecommunications, RS-232 is a standard for serial data transmission. It is commonly

used in computer serial ports. The standard defines the electrical characteristics and the

time of the signals, the meaning of the signals, and the physical size and pinout of the

connectors.” [8]

In the figure 2 it’s possible to see how the Pin Outs are distributed physically, and in the

table 1 every pin is described.

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

14

RS-232 Pin Outs (DB-9)

Figure 2 - A male DB-9 connector viewed from the front. [9]

DTE Pin Assignment (DB-9) DCE Pin Assignment (DB-9)

1 DCD Data Carrier Detect 1 DCD Data Carrier Detect

2 RxD Receive Data 2 TxD Transmit Data

3 TxD Transmit Data 3 RxD Receive Data

4 DTR Data Terminal Ready 4 DSR Data Set Ready

5 GND Ground (Signal) 5 GND Ground (Signal)

6 DSR Data Set Ready 6 DTR Data Terminal Ready

7 RTS Request to Send 7 CTS Clear to Send

8 CTS Clear to Send 8 RTS Request to Send

9 RI Ring Indicator 9 RI Ring Indicator

Table 1 – DB-9 Pin Assignment [9]

Raspberry Pi

The RPi is a board computer with the size of a wallet. All models have a Broadcom System

on a chip (SoC), which includes a central processing unit (CPU) compatible with ARM

and a graphics processing unit on chip.

The RPi model used in this project is the Raspberry Pi 1 Model B revision 1.2 which has 512

MB of Ram, two USB ports and 100 MB of Ethernet port.

 [10]

In the figure 3 it is described every component of the hardware of the Raspberry Pi.

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

15

Figure 3 – Raspberry Pi 1 Model B revision 1.2. [11]

GPIO

General-Purpose Input/Output is a generic pin on a computer board, in this case on the

Raspberry Pi; whose behavior is controllable by the user.

GPIO pins do not have a predefined purpose and are not used by default.

[12]

In the figure 4 it’s described every pin of the RPi that it is used in this project.

Figure 4 – GPIO RPi Pins. [13]

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

16

Goal Diagrams

Some diagrams are made in order to understand better the three main goals of this thesis,

and in order to create a more detailed explanation.

First of all, in the figure 5 is represented the diagram of how the heat transfer station was

working before the start of this thesis. The meter and the MBus are the same models used

in this project, whose datasheets can be found in the references 1 and 2. As explained

before this meter sends the physical data measured using MBus protocol, using voltage

levels between 24 and 36 volts. It also uses current levels between 1 and 1.5 milliamps.

This data is received by the converter in order to send the data using RS232 that uses

voltage levels between 3 and 15 volts. In this first diagram is the PLC the one who reads

the data and send it to the computer through TCP.

Mbus 10

TECHBASEIntegral-V
UltraLite

ALLMESS

24-36 V

1-1.5 mA

Tx

Rx

GND

3-15 V
MBus

METER
MBUS

CONVERTER

COMPUTER

DATA

PLC

RS232 TCP

Figure 5 – Detailed diagram of the previous heat meter station.

In the figure 6 is represented the diagram of the goal 1. In this goal the PLC is replaced

for the Raspberry Pi and a RS232 converter needed to connect the RPi to the converter.

This connection is made through a serial RS232 cable, and using one of the 2 USB ports of

the RPi. The RPi needs a monitor in order to see the shell command line of the Linux

software installed on it, and this connection is made through and HDMI cable.

As it can be seen at the top of the RPi of this diagram, this Linux software uses a Meter

Bus library called libmbus, that makes the reading of the MBus data possible.

RS232 - USB
Mbus 10

TECHBASEIntegral-V
UltraLite

ALLMESS

24-36 V

1-1.5 mA

Tx

Rx

GND

3-15 V

0-3.3 V

MBus

USB HDMI

METER
MBUS

CONVERTER

RASPBERRY
PI

MONITOR

DATA

RS232
CONVERTER

Library libmbus

Figure 6 – Main detailed diagram of Goal 1.

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

17

In the figure 7 the diagram of the goal 2 is represented. The only main difference between

this diagram and the diagram of the figure 6 is the implementation of a Python Wrapper,

that will allow not only read the MBus data but also make possible to do more things with

this data apart from reading it.

RS232 - USB
Mbus 10

TECHBASEIntegral-V
UltraLite

ALLMESS

24-36 V

1-1.5 mA

Tx

Rx

GND

3-15 V

0-3.3 V

MBus

USB HDMI

METER
MBUS

CONVERTER

RASPBERRY
PI

MONITOR

DATA

RS232
CONVERTER

Python
Wrapper

Figure 7 – Main detailed diagram of Goal 2.

And finally, the goal 3 diagram is represented in the figure 8. In this diagram the

connection between the converter and the Raspberry Pi is completely changed. Instead

of using the USB port of the RPi, the GPIO pins are used, and a little circuit between the

converter and the GPIO pins is developed. This circuit allow to convert the high-level

voltages that comes out from the converter to voltages levels that the GPIO pins of the

Raspberry Pi allows.

RS232 - GPIO
Mbus 10

TECHBASEIntegral-V
UltraLite

ALLMESS

24-36 V

1-1.5 mA

Tx

Rx

GND

3-15 V

0-3.3 V

MBus

GPIO HDMI

METER
MBUS

CONVERTER

RASPBERRY
PI

MONITOR

DATA

RS232 CIRCUIT
CONVERTER

Python
Wrapper

Figure 8 – Main detailed diagram of Goal 3.

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

18

Preparatory work

To configure the Raspberry Pi, you need to do some changes in to the software files but

first of all you need the necessary components to do that. These components are shown

in the figure 9.

Figure 9 – Main Components to run a RPi [14]

OPERATING SYSTEM

The recommended operating system to use with the Raspberry Pi is called Raspbian,

which is a version of GNU/Linux, designed specifically to work well with the Raspberry Pi.

In the figure 10 there are 4 screenshots made during the installation process of the

Raspberry Pi used for this project. After waiting some minutes, the Raspberry Pi is ready to

start.

Figure 10 – Installing Raspbian

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

19

CONFIGURING INTERNET

Using an Ethernet cable, it is possible to connect the Raspberry Pi to the network of the

workplace: the CC4E. But to do that, some steps are needed first.

Using the shell command line, or terminal, 3 files of the system must be modified. First of

all, the file “interfaces”, located in: “/etc/network/”, using the command: “sudo nano

/etc/network/interfaces”. See figure 11.

Figure 11 - etc/network/interfaces

With this file, the IP address, the netmask, the gateway, and the DNS are set in order

connect to the network of the building. So, this RPi is the only device in the whole center

with that IP address.

Then the file “resolv.conf” located in the folder “/etc” must be modified using the same

command: “sudo nano /etc/resolv.conf” so the file looks like the file in the figure 12.

Figure 12 – etc/resolv.conf

Where the nameserver 141.22.192.100 is the preferred DNS server, and the nameserver

141.22.192.101 is the alternate DNS server.

Then, a restart of the network must be done to apply correctly all the changes, using the

command: “sudo /etc/init.d/networking restart”. See figure 13.

Figure 13 – etc/init.d/networking restart

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

20

INSTALLING LIBRARIES AND UPDATING

The function of the Raspberry Pi is to read the information using the Meter Bus protocol.

So, a library for this protocol is needed to read the information coming from the meter.

This library has a lot of functions and files that are needed in order to extract the data

correctly from the meter.

After setting up the internet connection, updating the packages must be done using the

command “sudo apt-get update”. This command downloads the package lists from the

repositories and updates them to get information on the newest versions of packages

and their dependencies. The screenshot of the process done during this process is shown

in the figure 14.

Figure 14 – sudo apt-get update

Also, an upgrade of the packages is highly recommended, using the command “sudo

apt-get upgrade”. Which this one lasts for almost one hour in the Raspberry Pi 1 Model B.

See figure 15.

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

21

Figure 15 – sudo apt-get upgrade

Then, some steps are needed to install correctly the library. The library that is used in this

project is the one called libmbus, developed by rSCADA. The description of this library

and how it is installed in the RPi of this project, is explained below.

libmbus

This is an open source library. This kind of software is free distributed and developed. It is

focused more on the practical benefit, the access to the source code. It’s possible to

modify the source of the software without license restrictions.

The main function of the libmbus library is to perform the communication with the Meter

Bus slaves and to encode and decode Meter Bus data. The last version of the library

developed by rSCADA dates from 2012 and allows the connection through Meter Bus

gateways with TCP and Serial interfaces. In this project, only the Serial interface is used.

One of the main reasons why this library is the chosen one is the fact that it also presents

the data in an easy XML format. This characteristic allows to simplify a lot the delivery of

the MBus data in the Raspberry Pi, and it’s easier to work with that kind of format.

[15]

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

22

The commands used to install correctly the libmbus library in to the Raspberry Pi of this

project are the next ones:

 “wget https://github.com/rscada/libmbus/archive/master.zip”, this command

downloads the zip file containing the library in the actual folder. See figures 16

and 17.

Figure 16 – wget

Figure 17 – wget file

 The command “unzip master.zip” creates a zip file in the actual folder. See figures

18 and 19.

https://github.com/rscada/libmbus/archive/master.zip

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

23

Figure 18 – unzip

Figure 19 – unzip file

 “sudo apt-get install libtool automake”, see figure 20.

Figure 20 – sudo apt-get install libtool automake

 Then, inside the folder libmbus-master, using “cd libmbus-master/”, the command

“autoheader && aclocal && libtoolize –ltdl –copy –force && auto make –-add-

missing –copy && autoconf” is executed. This commands includes some

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

24

commands in only one. The screenshot of the process done during this project is

shown in the figure 21.

Figure 21 – autoheader && aclocal && libtoolize

 After this, the library has to be configured. To do that, and inside the folder

libmbus-master, it is run the command “/configure”, and some files are created

inside the folder. This command use to require like half an hour, the process done

during this process is shown in the figures 22, 23 and 24.

Figure 22 – configure

Figure 23 – configure (2)

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

25

Figure 24 – configure files

 Finally, is time to install the library. The commands “sudo make” and “sudo make

install” must be executed in this order, inside the folder libmbus-master. These

commands also require a “large” amount of time. The execution process done

during this project is shown in the figure 25, 26 and 27.

Figure 25 – sudo make

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

26

Figure 26 – sudo make install

Figure 27 – Location of the installed library

But, in the case of this project one problem is faced. At the time to run the library, this one

problem is found: “Error while loading shared libraries: libmbus.so.0: cannot open shared

object file: No such file or directory”. That means that the directory where the Raspberry

Pi is trying to find the file is not correct. To solve this problem, only the command “sudo ln

-s /usr/local/lib/libmbus.so0 /usr/lib/libmbus.so.0” is needed. See figure 28.

Figure 28 – sudo ln -s

This command creates a link between the actual position of the file and the position

where the file is expected to be.

[16] [17] [18]

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

27

SERIAL PORT CONNECTION

“The serial port is a low-level way to send data between the Raspberry Pi and another

computer.” [19]

First of all, it has to be proven that there is a connection between the RPi and a Computer

using the USB-RS232 converter. The figure 29 shows the USB-RS232 converter diagram.

RASPBERRY PI
USB – RS232USB

Port
RS232
Port

COMPUTER

Figure 29 – USB-RS232 converter diagram.

The USB-RS232 converter used in this project is the Digitus USB 1.1. Its datasheet can be

found in the web page linked in the reference 3. See Figure 30.

Figure 30 – Digitus USB 1.1 serial converter. [3]

In the RPi, it is needed to be a member of the dialout group to access this port. To check

this the command “ls -l /dev/ttyUSB0” is used. See figure 31.

Figure 31 - ls -l /dev/ttyUSB0.

Where c means character device, the root can 'read,write', the dialout group can

'read,write' and everyone else cannot access it.

In this project the Terminal Emulation Program called GNU Screen will be used, and

before using it, it must be installed with the command:

sudo apt-get install screen

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

28

 And then it can be executed using the command:

screen /dev/ttyUSB0 9600

With “/dev/ttyUSB0” the port name is indicated, and with “9600” the baud rate between

them. At the same time, in the computer, the program called Tera Term is run in this

project, that allows to send information between the computer and the Raspberry Pi. See

figure 32.

Figure 32 – New connection in Tera Term.

Then, after selecting the correct COM Port, the connection should be configured. In the

case of the test of this project the connection is configured like it’s shown in the figure 33

and 34.

Figure 33 – Configuring connection in Tera Term.

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

29

Figure 34 – Configuring the serial port connection in Tera Term.

This is the configuration that the both Raspberry Pi have, so in the Tera Term program it

must be the same.

Then, when something is written in the Tera terminal it is shown in the RPi terminal, that is

using the program GNU Screen. See figure 35.

Figure 35 – Message received in RPi terminal from Tera Term.

And of course, if something is written in the RPi terminal, it’s shown in the Tera Term

terminal. See figure 36.

Figure 36 - Message received in Tera Term from RPi Terminal.

[20]

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

30

RECEIVING FIRST MBUS DATA

In this part of the project the first connection between all components of the goal 2 is

made, as it can be shown in the figure 37. The meter is connected to the converter while

this converter is fed by a power supply, and the converter is connected through a RS232

cable to the USB-RS232 converter. The RPi has connected the USB-RS232 converter, the

Ethernet cable, the power supply and of course the SD card that contains the software.

The address of the meter used in this project is 0, because it is tested with an unconfigured

meter. And as it was explained before, the unconfigured meters have address 0.

Figure 37 – First assembled system.

After connecting everything and double-checking that everything is correctly

connected it can be tested. Is the time to check the results, the library that was installed

before can be used. To do that the PuTTY program is used, a program that allow to

access the shell command line of the RPi thanks to the Ethernet cable, as it’s explained

below.

With the command “mbus-serial-scan” typed on the shell command line of the RPi and

the words “-b 2400 /dev/ttyUSB0” just after is it possible to get the information of how

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

31

many meters are connected in the network. These last words mean that the scan is made

over serial connection, the debug mode is deactivated, the baud rate is 2400 bauds and

the connection is made over the serial port ttyUSB0.

This command activates some functions defined in the library that was installed before,

and checks every address possible to find every slave connected to the network. From 0

to 250 address, a slave is found on the address 0, so all is correct because it’s only

connected one, and the meter used in this project is unconfigured. The execution done

in this project is shown in the figure 38.

Figure 38 – mbus-serial-scan -b 2400 /dev/ttyUSB0.

Then, in order to receive the Meter Bus data, the command “mbus-serial-request-data”

is used with the 2400 baud rate and the address of the MBus device “-b 2400 /dev/ttyUSB0

0”, as it’s shown in the figure 39.

[15]

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

32

Figure 39 – mbus-serial-request-data -b 2400 /dev/ttyUSB0 0.

The PuTTY program that is used in the project allow access to the RPi from another

computer through the network. Through SSH protocol it’s possible to access its shell. See

figure 40.

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

33

Figure 40 – PuTTY interface.

And after introducing the user and the password of the Raspberry Pi, it’s possible to

control everything of the device. For example, it can be asked for the information of the

internet configuration using the command “ifconfig”. See figure 41.

Figure 41 – RPi login through PuTTY.

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

34

CONNECTING RPI TO PYCHARM

PyCharm software offers a lot of possibilities. One of them is creating Python files for the

RPi remotely. But to do that some steps are required.

First of all, inside the PyCharm software, going to “Tools -> Deployment -> Configuration”,

and adding the name of the new server is needed to control and deploy the project files

through SFTP. Then on “File -> Settings” adding a remote project interpreter must be done:

The correct interpreter is selected and the next parameters are configured in this project:

 Host: 141.22.122.233

 Port: 22

 User: pi

 Password: raspberry

 Python interpreter: “/usr/bin/python/python3.4”

The screenshot made during the configuration of the PyCharm software in this project is

shown in the figure 42.

Figure 42 - Connecting RPi to PyCharm.

Then, if it is wanted to test that everything works fine, a little Python code can be created

in the PyCharm program. See figure 43.

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

35

Figure 43 - Connecting RPi to PyCharm (2).

Going to “Tools -> Deployment -> Configuration” and entering the next parameters is

needed, in order to create a server where the code can be run. See figure 44.

 Host: 141.22.122.233

 Port: 22

 User: pi

 Password: raspberry

Figure 44 - Connecting RPi to PyCharm (3).

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

36

But first, a new folder in the Raspberry Pi must be created to be able to do the next step.

In this project, it’s found in the directory “/home/pi/” called “pythonProjects”. See figure

45.

Figure 45 – mkdir pythonProjects.

With that, the Mappings configuration can be done, as is shown in the figure 46.

Figure 46 - Connecting RPi to PyCharm (4).

Then, uploading the file to the RPi is the last step, in “Tools->Deployment->Upload to

RPi_Server”. And finally, the Python file can be found in the RPi just in the folder was

created before. See figure 47.

Figure 47 - Connecting RPi to PyCharm (5).

After all these steps, all the work place is configured, working and ready to start creating

a program for the C4DSI.

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

37

Software concepts

In order to make the Meter Bus data obtained from the meter accessible from all the

computers of the CC4E it is needed to create program that is able to not only read but

extract, modify and send the data obtained by the master.

As explained before, the master receives the data from the slave, where in this project

the master is the Raspberry Pi and the slave is the meter. But this data is represented as a

text in the shell command of the RPi and it shows the data in one exactly moment, not

through the time.

Creating an own Wrapper is one of the most difficult solutions, but it allows to learn and

control a lot. With this solution, up to 5 different programming languages are used and it

is required to understand the performance of the libmbus library that was created by

rSCADA, tot all the library but most of his files and folders.

LIBRARIES

Despite having previously commented on the library used in this project, it’s necessary to

understand a little better what a library is for the development of this project.

A library is a collection of resources used by programs, usually to develop software. These

resources can include configuration data, code, classes, values, or type specifications,

among others. If it is wanted to write a top-level program, a library can be used to make

system calls instead of implementing those system calls repeatedly.

The program calls the library through a language mechanism. What distinguishes the call

to a library instead of being to another function in the same program, is the way the code

is organized in the system.

The library code is distributed in such a way that it can be used by several programs,

while the code that is part of a program is written to be used only within that program.

Most compiled languages have a standard library, although programmers can also

create their own custom libraries.

[21]

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

38

CTypes

It’s also important to explain what CTypes, because it is used several times in the

programming code. CTypes is a module capable of calling in a language to routines or

make use of services written in another type of language.

It allows loading dynamic libraries and calling C functions. In the case of this project it’s

used to interact with external C code, which is the code in which the libmbus library of

rSCADA is written

This library is loaded using the "ctypes.CDLL" function. After loading the library, functions

inside the library can already be used as regular Python calls.

[22] [23]

Wrapper

This concept has been mentioned some few times in this document. In programming,

Wrapper is a program or script that makes possible the running of another program.

“Wrapper libraries consist of a thin layer of code which translates a library's existing

interface into a compatible interface. Library Wrappers translates the interface of the

library into a compatible interface.” [24]

[25]

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

39

SOFTWARE IMPLEMENTATION

In this project 3 different main are built to implement the server in the Raspberry Pi. Three

files that interacts between them using up to 5 different programming languages. In the

next diagram, shown in the Figure 48, it’s possible to see how they are structured and

named.

Raspberry PiRaspberry Pi

3
 f

il
e

s
 a

n
d

 1
 m

a
in

 l
ib

ra
ry

3
 f

il
e

s
 a

n
d

 1
 m

a
in

 l
ib

ra
ry

Python, C, JavaScript, HTML, CssPython, C, JavaScript, HTML, Css

webServer.py

libmbus.clibmbus.c

webPage.html
readingData.py

HTTP

CTypes

C

Python

Python

JavaScript

HTML

Css

Graph

Figure 48 – Main detailed diagram of the code.

All the complete code can be found on the attached data of the thesis.

readingData.py

Is important to start explaining this file first because it’s the file used to extract the data

from the meter using the libmbus library. This file contains 363 lines, 5 imports, 15 class

definitions and 5 functions. All the imports and class definitions are needed to use the

functions of the libmbus library.

This file is the Wrapper created for this project, that interacts with the most important and

needed functions of the libmbus library, using Python code and interacting with the C

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

40

code used in the library using CTypes. In the figure 49 it’s possible to see an overview of

the 5 functions.

readingData.pyreadingData.py

P
yt

h
o
n

 C
o

d
e

P
yt

h
o
n

 C
o

d
e

class mBusWrapper:class mBusWrapper:

def connect(self):

def read(self):

def

disconnect(self):

def _init_(self)

def getValue:

Loads the library

Defines the baud rate, address and serial path

Handshakes with the Meter

Sets baud rate and asks for the frame

Calls ‘read’ function and return the string obtained

Creates an empty Meter Bus frame

Stores on the empty frame the received data

Returns the data as a string in XML format

Ends the connection with the meter

Extracts one specific value from the XML Meter

Bus data

Figure 49 – Main detailed diagram of the readingData.py file.

The functions used in the Wrapper, as well as in the other two files, are needed to make

possible the goal 2 exposed at the start of this document. The explanation of the code is

made trying to comment only the most important code lines.

 Def _init_(self):

Inside the mBusWrapper class, this one is the first function that is executed when the class

is loaded. It defines the variables that makes possible the communication with the meter

of this project and loads the C library libmbus using CTypes. The serial path needs to be

encoded to be used correctly by the C library.

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

41

class mBusWrapper:

 def __init__(self):

 self.myLib = ctypes.cdll.LoadLibrary("/usr/local/lib/libmbus.so")

 self.baudRate = 2400

 self.address = 0

 self.serialPath = "/dev/ttyUSB0"

 self.utfSerialPath = self.serialPath.encode('utf-8')

 Def connect(self):

Also inside the mBusWrapper class, the handshake between the Raspberry Pi and the

meter is done by this function. This function is executed only when is called by the

webServer.py file.

First, the type of data that the C function “mbus_connect_serial” needs and returns, must

be set. This is very important to interact correctly with the meter. With the next lines, it is

said that the given data to the function is a pointer of type char and the result is a pointer

of type ‘mbus_handle’.

 def connect(self):

 self.myLib.mbus_connect_serial.argtype = ctypes.POINTER(ctypes.c_char)

 self.myLib.mbus_connect_serial.restype = ctypes.POINTER(mbus_handle)

It’s also important to know what a pointer is, because there are a lot of pointers used in

the Wrapper. “In computer science, a pointer is a programming language object,

whose value refers to, or “points to”, another value stored elsewhere in the computer

memory using its memory address.” [26]

The type of data ‘mbus_handle’ and all the other types of data used by the libmbus

library, are defined at the start of the file as a class. “A class is an extensible program-

code-template for creating objects, providing initial values for state (member variables)

and implementations of behavior (member functions or methods).” [27]

The result pointer of type ‘mbus_handle’ that the handshake between the RPi and the

meter has given by the C function “mbus_connect_serial” is stored in the variable

‘handleValue’.

 self.handleValue = self.myLib.mbus_connect_serial(self.utfSerialPath)

From this data, it is needed to extract only the Serial value, because the library is made

for 2 ways of connection, Serial and TCP. In the case of this project only the Serial value

is needed. This is done using the pointer of type ‘mbus_handle’ from before.

 handleSerialValue = self.handleValue.contents.m_serial_handle

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Computer_memory
https://en.wikipedia.org/wiki/Computer_memory
https://en.wikipedia.org/wiki/Memory_address
https://en.wikipedia.org/wiki/Object_(object-oriented_programming)
https://en.wikipedia.org/wiki/Member_variable
https://en.wikipedia.org/wiki/Method_(computer_programming)

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

42

So, it’s kept only the handshake serial value given by the previous C function. In this case,

the ‘self’ before the value is not needed because this variable won’t be used outside the

connect function.

Once the hand shake is made, baud rate must be set following the same rules explained

before. All inside the same function, using the C function “mbus_serial_set_baudrate”

defined in the C library and the previous handle serial value extracted.

 self.myLib.mbus_serial_set_baudrate.argtypes =

[ctypes.POINTER(mbus_serial_handle),ctypes.c_int]

 self.myLib.mbus_serial_set_baudrate.restype = ctypes.c_int

 intSerialSetBaudRate =

self.myLib.mbus_serial_set_baudrate(handleSerialValue, self.baudRate)

And now the Raspberry Pi can ask for the MBus frame, the main goal of this file.

 self.myLib.mbus_send_request_frame.argtypes =

[ctypes.POINTER(mbus_handle), ctypes.c_int]

 self.myLib.mbus_send_request_frame.restype = ctypes.c_int

 intSendRequestFrame =

self.myLib.mbus_send_request_frame(self.handleValue, self.address)

The libmbus C library made by rSCADA contains a lot of functions for the protocol Meter

Bus, but in this project only a few of them are needed. These ones are the needed for the

purposes of this project. This functions has been chosen after studying all the files of the

library and understanding how the library code works.

With the study of the Meter Bus protocol and the C library has been possible to make this

Wrapper in Python, also studying how Python and CTypes works.

With the ‘int’ variable returned by the previous function it is only known if the connection

is successfully, but the meter knows that the data is wanted, so the conversation has been

made.

Now the next function is called inside the class mBusWrapper, that obtains the

information from the meter.

 vals = self.read()

And this function returns a string with the Meter Bus data in XML format.

 return vals

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

43

 Def read(self):

This function is called by the connect function explained before, and its main goal is to

extract the data from the meter. To do that first 2 empty variables of type ‘mbus_frame’

and ‘mbus_frame_data’ are created.

 def read(self):

 mBusFrameExample = mbus_frame()

 mBusFrameDataExample = mbus_frame_data()

First, the “mbus_serial_set_baudrate” C function needs to be called. This function returns

an ‘int’ type that if its 0 means that everything worked correctly, after applying some

functions of the C library.

This C function needs the handle value from the previous hand shake connection, and a

pointer to the empty Meter Bus frame created before.

 self.myLib.mbus_recv_frame.argtype = [ctypes.POINTER(mbus_handle),

ctypes.POINTER(mbus_frame)]

 self.myLib.mbus_recv_frame.restype = ctypes.c_int

 emptyFramePointer = ctypes.addressof(mBusFrameExample)

 intReceivedFrame = self.myLib.mbus_recv_frame(self.handleValue,

emptyFramePointer)

This next C function needs the same address (pointer) of the empty Meter Bus frame and

the pointer of the empty MBus frame example, so it can store the Meter Bus frame inside.

If everything works fine it will return a 0, and the MBus data will be stored in the address

given.

 self.myLib.mbus_frame_data_parse.argtype =

[ctypes.POINTER(mbus_frame), ctypes.POINTER(mbus_frame_data)]

 self.myLib.mbus_frame_data_parse.restype = ctypes.c_int

 emptyFrameDataPointer = ctypes.addressof(mBusFrameDataExample)

 intMBusDataParse = self.myLib.mbus_frame_data_parse(emptyFramePointer,

emptyFrameDataPointer)

Now this data is required in XML format so it can read, understood and extracted the

exact data that it’s wanted from all the MBus data. To do that the C function from the

libmbus library it’s called using CTypes, the same method used before, giving now to the

function only the address (pointer) of the frame MBus data. So, it can know where the

data is stored.

 self.myLib.mbus_frame_data_xml.argtype =

ctypes.POINTER(mbus_frame_data)

 self.myLib.mbus_frame_data_xml.restype = ctypes.c_char_p

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

44

 charPointerMBusDataXML =

self.myLib.mbus_frame_data_xml(emptyFrameDataPointer)

It is important to say that the result type of the function must be ‘c_char_p’, because this

is used for pointing to a null terminated string, if not the function doesn’t work. The result

of the previous C function will be the address of all the XML Meter Bus data.

Now the data must be decoded in order to be used correctly as a string by the Wrapper.

 charMBusDataXML = charPointerMBusDataXML.decode('utf-8')

 return charMBusDataXML

 Def getValue(self, xml, id):

Function used by the webServer.py file, that extract the exact data that it’s wanted for

the project, from the whole XML string. This function uses objectify, imported at the start

of the file, which allows you to extract data from XML.

 def getValue (self, xml, id):

 mBusData = objectify.fromstring(xml)

 value = mBusData.DataRecord[id].Value

 return value

The number or the word extracted from the whole XML data is stored in the value

variable.

 Def disconnect(self):

Used for ending the communication between the Raspberry Pi and the meter, using the

previous handle value, so it knows which connection ends:

 def disconnect(self):

 self.myLib.mbus_disconnect.argtype = ctypes.POINTER(mbus_handle)

 self.myLib.mbus_disconnect.restype = ctypes.c_int

 intMBusDisconnect = self.myLib.mbus_disconnect(self.handleValue)

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

45

webServer.py

This one is the main file. This is the entry point and the one who works with all the files. It’s

starting an endless server that is constantly expecting for requests. This file contains 138

lines, 3 imports, 1 class and 2 functions. In the figure 50 it’s possible to see an overview of

the file.

webServer.pywebServer.py

P
yt

h
o

n
 C

o
d

e
P

yt
h

o
n

 C
o

d
e

from readingData import mBusWrapperfrom readingData import mBusWrapper

def runServer():

def do_GET(self):

Creates an endless server that waits for incoming HTTP

requests

Manage the incoming HTTP request received by

the server and provides the XML data and the web

page, depending on the type of request

Uses the readingData.py file in order to get the XML data

and sends the webPage.html file

Figure 50 – Main detailed diagram of the webServer.py file.

As it can be seen in the diagram of the previous figure 50, this file is importing the previous

explained class mBusWrapper from the file readingData.py, and uses it in the code.

from readingData import mBusWrapper

mbus = mBusWrapper()

It has only one execution line of code, which executes the main function of this file.

runServer()

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

46

 Def runServer():

The main function that runs the HTTP server forever, until it’s stopped manually.

def runServer():

 server_address = ('', PORT)

 server = HTTPServer(server_address, simpleHTTPServerRequestHandler)

 try:

 server.serve_forever()

 except KeyboardInterrupt:

 print('\n^C received, shutting down the web server')

 server.socket.close()

To create the server, the library ‘http.server’ is used. It is given to 2 parameters, the server

address and a class created before in the code, as it can be seen in the previous code.

from http.server import BaseHTTPRequestHandler, HTTPServer

This server is created for listening uninterruptedly for incoming HTTP requests from other

PC’s of the CC4E building, so with this method the PC’s can ask for the data obtained by

the Raspberry Pi using the HTTP protocol. The port is defined before which is not the

default port for HTTP. Usually is 80 but on the Raspberry Pi ports under 1024 needs a root

access, so the 8080 port is used.

The class “simpleHTTPServerRequestHandler” is inheriting the class defined by the library

and overwriting the ‘do_GET’ method in order to use it correctly for the purposes of this

project, as it can be seen in the code below.

 Def do_GET(self):

This function is allocated in the class that it is mentioned before. Its main function is to

handle the incoming HTTP requests from the PC’s that wants to access to the data given

by the Raspberry Pi.

class simpleHTTPServerRequestHandler(BaseHTTPRequestHandler):

 def do_GET(self):

 if self.path == "/":

 self.send_response(200)

 self.send_header('Content-type', 'text/html')

 self.end_headers()

 f = open(curdir + sep + "webPage.html", 'rb')

 self.wfile.write(f.read())

 f.close()

 elif self.path == "/all":

 self.send_response(200)

 self.send_header('Content-type', 'text/xml')

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

47

 self.end_headers()

 values = mbus.connect()

 values = str(values)

 mbus.disconnect()

 values = values.encode('utf-8')

 self.wfile.write(values)

 elif self.path == "/volume-flow":

 self.send_response(200)

 self.send_header('Content-type', 'text')

 self.end_headers()

 VOLFLOW = 4

 xml = mbus.connect()

 value = str(float(mbus.getValue(xml, VOLFLOW))/10.0)

 mbus.disconnect()

 value = value.encode('utf-8')

 self.wfile.write(value)

Depending of the HTTP request received, this function is doing different things. The first

one “/” if someone writes the IP address of the Raspberry Pi and the 8080-port, sends an

HTML file to the navigator that requested that, and the navigator applies all the functions

that the HTML file contains. This file is explained later in this document.

With the second case “/all” if someone writes the IP address of the Raspberry Pi and the

8080-port followed by the word ‘all’, the server sends to that PC all the XML file extracted

from the meter but without the HTML file. Only the XML text file.

In the third case an exact value of the XML is extracted and sent as a text, also without

sending the HTML file, only the XML text value. In the previous code the ID4 of the XML file

is shown, but there are also the IDs 5 and 6 used in this project.

webPage.html

This file contains 3 different languages: HTML, CSS and JavaScript. The first one is defining

the structure and the contents inside the web page while the CSS defines the visual style

of the page. The JavaScript contains the programming code of the web.

On the HTML, there are created 3 empty labels, which ones will contain the 3 graphs that

are created below.

In the figure 51 it’s possible to see an overview of the file.

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

48

webPage.htmlwebPage.html
<

/
h
tm

l>
<

/
h
tm

l>
<html><html>

Defines the structure of the web page using HTML

 Defines the style of the web page using CSS

Defines the structure of the web page using HTML

 Defines the style of the web page using CSS

Creation and definition of the 3 chartsCreation and definition of the 3 charts

Function

requestData():

Sends a HTTP request to the server to get XML

Meter Bus data, extracts and print the data in the

3 graphs created before

Figure 51 – Main detailed diagram of the webServer.py file.

With the JavaScript code, 3 objects are defined that contains 3 charts that are created

thanks to the HighChart import made before in the HTML code.

These ones contain things like the title, axis, or series. Also, contains a call to a function

that will control later that all the 3 graphs are loaded before adding values to the graphs.

This function is only called when the constructor (the library) finishes building the object.

Before the definition of the charts, a jQuery function is used in order to make sure that all

the HTML code is ready in the navigator. This jQuery function is represented by the $

symbol and is loaded before in the HTML code, as well as the HighChart import.

 function requestData() {

This is the main function of this file, is written in JavaScript and is the one that prints the

graphs with the data taken from the server.

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

49

This function prints extracts and print the data into the 3 graphs defined before in the

code.

function requestData() {

 $.ajax({

 url: '/all',

 success: function(xml) {

 var volumeFlow = parseFloat(xml.querySelectorAll("DataRecord

Value")[4].firstChild.textContent);

 var flowTemperature = parseFloat(xml.querySelectorAll("DataRecord

Value")[5].firstChild.textContent)/10.0;

 var returnTemperature =

parseFloat(xml.querySelectorAll("DataRecord

Value")[6].firstChild.textContent)/10.0;

 var now = new Date().getTime();

 volFlowChart.series[0].addPoint([now, volumeFlow], true,

volFlowChart.series[0].data.length > 20);

 flowTempChart.series[0].addPoint([now, flowTemperature], true,

flowTempChart.series[0].data.length > 20);

 retTempChart.series[0].addPoint([now, returnTemperature], true,

retTempChart.series[0].data.length > 20);

 // call it again after one second

 setTimeout(requestData, 1000);

 }

 });

}

Request data function uses the jQuery library and Ajax, the technique that allows to

make possible that webpages actualize themselves without having to download all the

page again, automatically.

Inside this function, an “/all” HTTP request is made to the server. And when the data has

been received correctly, the next function “function(xml)” is called.

Them, the needed values are extracted from the XML data and sets into the Y axis of

each corresponding graph. Also, a time is set for the X axis, the same for the 3 graphs,

and the printing of the values inside the graphs is made.

This function is also important because it calls itself every one second, actualizing the

graphs.

The last line makes all the process explained start again. It makes the whole process start

since the start. All the whole process.

Endless until it the user closes the navigator.

[28] [29] [30]

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

50

SOFTWARE VALIDATION

Some screenshots were taken during the several tests of the developing of this thesis. The

next screenshots shown in this part of the project, shows the final result when all the code

is working correctly.

These screenshots are taken on windows, in a computer of the CC4E building and using

the PyCharm software. The software is run while in the heat meter station the Raspberry

Pi the whole system explained in the goal 2 is connected and working. See figure 52.

RS232 - USB
Mbus 10

TECHBASEIntegral-V
UltraLite

ALLMESS

24-36 V

1-1.5 mA

Tx

Rx

GND

3-15 V

0-3.3 V

MBus

USB HDMI

METER
MBUS

CONVERTER

RASPBERRY
PI

MONITOR

DATA

RS232
CONVERTER

Python
Wrapper

Figure 52 – Main detailed diagram of Goal 2 (2).

Also, some videos were taken, in order to see more detailed and in first person how the

whole programming server works. This videos are attached in the CD of this project.

In the next figure, it can be seen the screenshot validations of the working Wrapper,

defined in the readingData.py file. The screenshot is taken when only the readingData.py

has been written. See figure 53.

Figure 53 – readingData.py PyCharm running

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

51

In the next screenshot, it can be seen how the final web page looks like after all the 3 files

are written. This is how the web page looks like running. See figure 54.

Figure 54 – Web Page Running.

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

52

Hardware concepts

The last goal of this project is to replace successfully the previously explained RS232-USB

converter made by Digitus, in order to make the system as cheaper as possible.

To replace this converter the GPIO pins from the Raspberry Pi are used, so it’s not need

to use the USB port anymore. The exactly pins used are the UART pins 14 and 15 for

transmitting and receiving data, respectively.

“A universal asynchronous receiver/transmitter, UART, is a computer hardware device

for asynchronous serial communication in which the data format and transmission

speeds are configurable. The electric signaling levels and methods (such as differential

signaling, etc.) are handled by a driver circuit external to the UART.” [31]

In the case of this project the external circuit that the definition of UART is talking about is

the circuit built for this project and it is explained below. In the next figure 55 it can be

seen a diagram of this circuit.

Figure 55 – Converter 1 diagram circuit. [32]

Also, as an extra goal, in this project it’s built another circuit trying to replace the most

expensive part of the system, the Meter Bus converter made by TechBase. The circuit

design is extracted from the official documents, in this case the UNE-EN 1434-3 Spanish

rule, edited and printed by AENOR, the Spanish association of normalization and

https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Asynchronous_serial_communication
https://en.wikipedia.org/wiki/Differential_signaling
https://en.wikipedia.org/wiki/Differential_signaling

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

53

certification. In the next figure 56 it can be seen a diagram of the circuit, extracted from

the official PDF named before.

Figure 56 – Converter 2 diagram circuit.

The implementation and validation of the hardware concepts are made at the same

time. It must be made before connecting everything in order to not damage the devices

or the components of the circuit.

The software validation with the hardware implemented is also done, but after all the

implementation and hardware validations.

HARDWARE IMPLEMENTATION AND VALIDATION

To do the goal 3, a level converter is built in a protoboard using some components, as it

is shown in the previous figure 55. The info of how to build a level converter from serial to

TTL/CMOS can be extracted from the references [33] and [34], or from the official

datasheet [35]. This is the circuit that the UART definition is mentioning, as said before.

The circuit is composed by 5 capacitors of 0.1μF each one and one MAX3232 CPE

transceiver. In the figure 57 it’s possible to see the name of every pin of the transceiver

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

54

and its internal circuit, figure extracted from the official datasheet that can be also found

in the reference [35].

Figure 57 – MAX3232 diagram. [35]

With all this information, the circuit is built in a protoboard as it can be seen in the figure

58 and after double checking everything it is prepared to be tested by an oscilloscope

to check its behavior. From now on this circuit will be called circuit 1.

Figure 58 – Circuit 1 built.

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

55

First Checking

The power supply it’s providing +3.3 volts to the pins 16 and 11 of the MAX3232, Vcc

and T1IN respectively. The transceiver needs to be fed with that voltage level. The

ground is connected to the same ground of the circuit, pin 15. See figure 59.

Figure 59 – Circuit 1 ready to be checked.

The channel 1 of the oscilloscope, in the case of this project with a strong blue color, is

connected to the same ground of the power supply and the circuit, and at the same

time to the pin 11, T1IN. The channel 2, soft blue color, is connected to the pin 14 of the

MAX3232, which is the T1OUT.

With this connection, it is tried to see how the circuit is acting when the data is coming

from the Raspberry Pi to the RS232 serial cable that goes to the Meter Bus converter.

The result provide by the oscilloscope is shown in the figure 60.

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

56

Figure 60 – Oscilloscope screenshot 1.

In this previous figure 60 it can be seen how the input is 3.3v, the strong blue line seen in

the figure. The same that our power supply is giving us, a constant value along the time.

That’s exactly what is going inside T1IN, as explained before, and this represents the data

sent from the Raspberry Pi.

In the line marked with a soft blue color, it can be seen the result that represents the signal

after going through the transceiver. The level voltage has been increased a little bit more

than 5 volts. This voltage is negative because in the internal circuit of the transceiver it

goes through an inverter, as it can be seen in the previous MAX3232 diagram.

“In digital logic, an inverter or NOT gate is a logic gate which implements logical

negation.” [36] When the input bit is a ‘0’, the inverter returns a ‘1’; and when the input

bit is a ‘1’ it returns a ‘0’.

This circuit is in the middle of a digital communication between the Raspberry Pi and the

meter. The bit ‘0’ and the bit ‘1’ used sent by the RPi are interpreted different by the

RS232 protocol. This transceiver MAX3232 is used because in RS232 it’s represented as a

bit ‘0’ the signals with voltage levels between +3V and +15V; and as a bit ‘1’ for the

voltage levels between -3V and -15V. See figure 61.

https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/Logical_negation
https://en.wikipedia.org/wiki/Logical_negation

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

57

Figure 61 – Voltage levels RS232. [8]

It’s also necessary explain the TTL/CMOS voltage levels. Every input voltage signal

between 2V and 5V (or 3.3V in the case of the RPi) is considered as a bit ‘1’; while every

input voltage signal between 0V and 0.8V is considered as a bit ‘0’. See figure 62.

Figure 62 – Voltage levels TTL/CMOS. [37]

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

58

Also, the Raspberry Pi always sends an output signal level of at least 2.7V, not less, for the

bit ‘1’; and it sends outputs signals not higher than 0.4V for the bit ‘0’.

As it is said previously, the output voltage seen in the oscilloscope is approximately -5v.

That means that to an incoming signal of +3.3V the transceiver MAX3232 is sending a

signal with a voltage level of -5V. That also means that in the RS232 the reading of this

signal it is a bit ‘1’. Correct according that for the Raspberry Pi, a signal of 3.3V means a

‘1’ as well.

Second Checking

After this first checking is time to check the same but with a waveform generator. The

cable that was providing voltage to the T1IN is removed, and instead of that a new cable

is connected in the same position, that is also connected to the waveform generator.

This new signal has +3.3V of amplitude and +1.25V of offset. This offset is added to try to

have more than +2V in the high part of the signal. If the offset is not set the signal will be

between -1.65V and +1.65V.

 The new circuit setup can be checked in the figure 63 and the result can be seen in the

figure 64.

Figure 63 – Circuit 1 ready to be checked 2.

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

59

Figure 64 – Oscilloscope screenshot 2.

The output signal has the same voltage level as before, -5V approximately, when the

incoming signal is higher than +2V.

And it has also +5V approximately when the incoming signal level is lower than +0.4V. The

figure is modified a little bit to see more clear when a bit ‘1’ or a bit ‘0’ are sent.

Also, is interesting to comment the little delay in terms of time in the output signal when

the voltage changes. This delay is called Slew Rate, and can be found on the

specifications of the MAX3232 transceiver ([35]). “The Slew Rate is defined as the

change of voltage per unit of time.” [38]

Third Checking

After this second checking, it’s also possible to see with more detail the Slew Rate and

add into the graph of the oscilloscope a third signal.

In this third checking a connection between the pins 13 and 14 is made, so the same

output signal of before is now going into the transceiver into the R1IN pin, the pin for the

incoming RS232 signals.

The third channel of the oscilloscope is connected into the same ground of the circuit as

the other two channels, and into the pin 12, the R1OUT. The result of the oscilloscope can

be checked in the figure 65.

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

60

Figure 65 – Oscilloscope screenshot 3.

It must be remarked that the volts per division of the graph in the second and third signals

has been reduced, so in comparison with the first signal they are bigger than they are

supposed to be. This is made because in this case these two last signals are the ones to

be analyzed.

This new third signal in pink color, is the result of introducing the previous output signal

(soft blue color) into the R1IN pin of the transceiver (R1IN is the pin for incoming RS232

signals) and checking with the oscilloscope what is happening in the output, the R1OUT

pin.

It can be seen how the voltage changes the same as the second check made before,

but this time in the inverse process, from RS232 to TLL/CMOS.

For an incoming signal of approximately -5V, the output signal has a +3V level

approximately. In terms of digital communication that represents a bit ‘1’, as explained

before.

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

61

SOFTWARE VALIDATION WITH THE HARDWARE

Before checking the previous circuit with all the system and with the all programming

code created for this project, some few steps must be followed to configure correctly

the Raspberry Pi.

The Raspberry Pi GPIO 14 and 15 pins are used by default only for access into the shell

command of the RPi. It is needed to change that in order to use them to interact with

the meter.

First, in the command shell of the RPi, is it advisable running the command ‘ls /dev’ to

check if the port ‘/dev/ttyAMA0’, that corresponds to the pins used in this project to

interact with the meter (UART pins), is on the list. Also, a good checking is running the

command ‘ls -la /dev/ttyAMA0’, because the result shown by this must show that is it

possible to write and read using this port.

To change all of this in this project, the command “sudo nano /boot/config.txt” is run,

and the last line is changed. Instead of ‘enable_uart=0’, the 0 is changed for a 1

(‘enable_uart=1’).

In the next cutout screenshot shown in the figure 66 it can be seen all the commands

results needed to make sure that the GPIO pins can be used for the purposes of this

project.

Figure 66 – Command line ttyAMA0 UART enabled.

As explained in the previous software validation, this screenshots are taken on windows

in a computer of the CC4E building using the PyCharm software. The software is run while

in the heat meter station the Raspberry Pi and the whole system explained in the goal 3

is connected and working. See figure 67 and 68.

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

62

RS232 - GPIO
Mbus 10

TECHBASEIntegral-V
UltraLite

ALLMESS

24-36 V

1-1.5 mA

Tx

Rx

GND

3-15 V

0-3.3 V

MBus

GPIO HDMI

METER
MBUS

CONVERTER

RASPBERRY
PI

MONITOR

DATA

RS232 CIRCUIT
CONVERTER

Python
Wrapper

Figure 67 – Main detailed diagram of Goal 3 (2).

Figure 68 – Implementation of the Goal 3.

The GPIO pins used are the 14 and 15, the UART. Also, the 3.3v pin is used to feed the

circuit. The Tx cable of the MBus 10 converter is connected to the Rx of the Raspberry Pi,

and the Rx of the converter to the Tx of the RPi.

In the next figures, it can be seen the screenshots validations of the working complete

project, with all the software and hardware working. The screenshot of the web page

running is not added because the result is the same as before, but the web page with

the hardware implementation and with the graphs actualizing itself every one second

can be watch also in the videos attached in the CD.

See figures 69 and 70.

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

63

Figure 69 – Final receiving data.

Figure 70 – Final receiving data (2).

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

64

ADDITIONAL HARDWARE IMPLEMENTATION

It this project, it is also attempt to replace the Meter Bus converter made by TechBase,

as explained before following the UNE-EN 1434-3 Spanish rule, an official document.

The diagram circuit can be checked in the previous figure 56. The circuit is double

checked, making sure that everything is correctly connected. After connecting it into

the main circuit of our project, the Raspberry Pi is detecting something connected in the

‘/ttyAMA0’ port, but the data is not received correctly.

This circuit is called circuit 2 in this project. In the next figures 71 and 72 it is shown how the

circuit is built and the test in the stand of the CC4E building.

Figure 71 – Circuit 2 built.

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

65

Figure 72 – Converter circuit 2 built.

The circuit is fed with +15v and -15v as it can be seen in the bottom of the previous figure.

The outputs of the Meter Bus are connected to the inputs of the circuit, and the output

of the circuit is connected to the output of our circuit 1 built before.

With the RPi correctly working and the circuit 1 correctly working as well, the RPi detects

something connected but is not able to detect any meter connected.

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

66

Evaluation

The main goals proposed at the beginning of this project have been achieved, not

without some difficulty. It has been possible to create a program in Python code that

allows reading the data, and that data can be obtained from any part of the building

where the project is made: the CC4E. This data is also readable in a very clear and

dynamic way, showing not only an instant data, but also all the data over time,

uninterruptedly.

In addition, the previous PLC has been successfully replaced by a Raspberry Pi, which

offers many more possibilities for the future and it is also way cheaper, and the small

circuit between the same and the meter has tested successfully.

What has not been done despite trying, is replacing the expensive Meter Bus converter,

with a much more complex circuit than the previous one, but that would have saved a

lot of money at the station. The circuit seems to work properly and both the meter and

the Raspberry Pi are not affected by it, but more investigation is needed in order to see

if it is just a Software problem.

OUTLOOK

The project can continue in several ways. The RPi offers a world of possibilities with which

to investigate more about how to make the station a much more dynamic and

intelligent.

In addition, the circuit that has not been successfully replaced can be tried again,

starting from the bases and the initial investigation carried out in this project. With all the

research and verification made in this document it is easy for a next person to continue

from this work.

Another possible would be to replace the small circuit implemented in the protoboard

by a printed circuit, more robust, with which it can be fixed in a place of the building.

Also, the meter in the CC4E is unconfigured, so the program can be modified and used

with a configured meter, that provides real data. With this change the code can improve

a lot. Another possible way to improve the code is adding some features to the web

page, or asking to the client for the parameters of the meter that it is request, so is the

user the ones who asks for it.

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

67

Conclusion

This thesis improves a previous heat transfer station allocated in the CC4E building, in the

city of Hamburg, in order to make this station a smarter station.

To achieve that, the station has been made accessible from any part of the building

using low cost components, and it uses the same programming language that used by

the engineers of the center.

The components used in order to save as much money possible has been a Raspberry Pi

and one own designed circuit. Also, the code inside the RPi is a program that allows the

flexibility and manageability, and allows the possibility to improve the program a lot.

This thesis is also made as the first step of a further development, so another’s future

researchers of the C4DSI can continue improving the smart heat transfer station.

It is a great beginning of a project that can become very beautiful and exciting. With the

bases that are established on this thesis, great progress can be made.

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

68

References

[1] "DataSheet Meter," 16 03 2017. [Online]. Available:

http://www.allmess.de/fileadmin/multimedia/alle_Dateien/DB_P0014_Int

egral-V_UltraLite_TS1015.pdf.

[2] "DataSheet MBus Converter," 16 03 2017. [Online]. Available:

http://energycare.dk/wp-content/uploads/2014/05/ENERGYCARE-

CONVERTER-TECHBASE-MBus10_v2_eng.pdf.

[3] "Digitus Converter," 16 03 2017. [Online]. Available: http://www.digitus-

professional.com/it/products/computer-accessories-and-

components/computer-accessories/serial-and-parallel-adapter/da-

70155-1/.

[4] "Raspberry Pi WebPage," 16 03 2017. [Online]. Available:

https://www.raspberrypi.org/blog/raspberry-pi-2-on-sale/.

[5] "Monitor Photo," 16 03 2017. [Online]. Available:

https://pixabay.com/en/photos/monitor/.

[6] "Meter Bus Info," 16 03 2017. [Online]. Available:

https://en.wikipedia.org/wiki/Meter-Bus.

[7] "MBus User Guide," 16 03 2017. [Online]. Available:

https://www.openmuc.org/m-bus/user-guide/.

[8] "RS232 Wikipedia," 16 03 2017. [Online]. Available:

https://en.wikipedia.org/wiki/RS-232.

[9] "RS232 Info," 16 03 2017. [Online]. Available:

https://www.commfront.com/pages/3-easy-steps-to-understand-and-

control-your-rs232-devices.

[10] "Raspberry Pi modelB Web Page," 16 03 2017. [Online]. Available:

https://www.raspberrypi.org/products/model-b/.

[11] "Raspberry Pi Wikipedia," 16 03 2017. [Online]. Available:

https://en.wikipedia.org/wiki/Raspberry_Pi.

[12] "GPIO Wikipedia," 16 03 2017. [Online]. Available:

https://en.wikipedia.org/wiki/General-purpose_input/output.

[13] "GPIO UART Pins," 16 03 2017. [Online]. Available:

http://www.sustainablenetworks.org/CIS508/?page_id=1585.

[14] "Raspberry Pi Guide," 16 03 2017. [Online]. Available:

https://www.raspberrypi.org/learning/software-guide/.

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

69

[15] "libmbus rSCADA Web Page," 16 03 2017. [Online]. Available:

http://www.rscada.se/libmbus/.

[16] "Library Install RPi," 16 03 2017. [Online]. Available: http://www.raspberrypi-

spy.co.uk/2012/05/install-rpi-gpio-python-library/.

[17] "Install libmbus Library Web Page," 16 03 2017. [Online]. Available:

http://bends.se/?page=anteckningar/automation/m-bus/libmbus.

[18] "MBus Domotiga Project," 16 03 2017. [Online]. Available:

https://www.domotiga.nl/projects/domotiga/wiki/M-Bus.

[19] "RPI Serial info," 16 03 2017. [Online]. Available:

http://elinux.org/RPi_Serial_Connection.

[20] "RPI Serial Connection," 16 03 2017. [Online]. Available:

http://elinux.org/RPi_Serial_Connection#Console_serial_parameters.

[21] "Library Wikipedia," 16 03 2017. [Online]. Available:

https://en.wikipedia.org/wiki/Library_(computing).

[22] "Ctype WikiBooks," 16 03 2017. [Online]. Available:

https://en.wikibooks.org/wiki/Python_Programming/Extending_with_ctype

s.

[23] "Ctypes Wikipedia," 16 03 2017. [Online]. Available:

https://en.wikipedia.org/wiki/Dynamic-link_library.

[24] "Wrapper Wikipedia," 16 03 2017. [Online]. Available:

https://en.wikipedia.org/wiki/Wrapper_library.

[25] "Wrapper Definition," 16 03 2017. [Online]. Available:

http://searchmicroservices.techtarget.com/definition/wrapper.

[26] "Pointer Definition," 16 03 2017. [Online]. Available:

https://en.wikipedia.org/wiki/Pointer_(computer_programming).

[27] "Class Definition," 16 03 2017. [Online]. Available:

https://en.wikipedia.org/wiki/Class_(computer_programming).

[28] "Ajax Definition," 16 03 2017. [Online]. Available:

https://es.wikipedia.org/wiki/AJAX.

[29] "HighCharts Web Page," 16 03 2017. [Online]. Available:

http://www.highcharts.com/.

[30] "JQuery Web Page," 16 03 2017. [Online]. Available: https://jquery.com/.

[31] "UART Wikipedia," 16 03 2017. [Online]. Available:

https://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter

.

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

70

[32] "MAX3232 Diagram," 16 03 2017. [Online]. Available:

http://s288.photobucket.com/user/ninexunix/media/Max3232.png.html.

[33] "GPIO Circuit Info," 16 03 2017. [Online]. Available:

http://elinux.org/RPi_Serial_Connection#Console_serial_parameters.

[34] "Circuit 1 Info," 16 03 2017. [Online]. Available:

http://codeandlife.com/2012/07/01/raspberry-pi-serial-console-with-

max3232cpe/.

[35] "MAX3232 DataSheet," 16 03 2017. [Online]. Available:

http://www.alldatasheet.com/datasheet-

pdf/pdf/73152/MAXIM/MAX3232CPE.html.

[36] "Inverter Gate Info," 19 03 2017. [Online]. Available:

https://en.wikipedia.org/wiki/Inverter_(logic_gate).

[37] "TTL Logic Levels," 16 03 2017. [Online]. Available:

https://learn.sparkfun.com/tutorials/logic-levels/ttl-logic-levels.

[38] "Slew Rate Definition," 16 03 2017. [Online]. Available:

https://es.wikipedia.org/wiki/Slew_rate.

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

71

Appendix

This Bachelor Thesis contains an appendix of program listings, hardware

descriptions etc. on a CD (disk or supplementary booklet). This Appendix is

deposited with Prof. Dr. Eng. Franz Schubert.

 Fernando García Llorente | DAS CENTER FOR DEMAND SIDE INTEGRATION (C4DSI)

72

Declaration

I declare within the meaning declare within the meaning of part 16(5) of the

General Examination and Study Regulations for Bachelor and Master Study

Degree Programmes at the Faculty of Engineering and Computer Science and

the Examination and Study Regulations of the International Degree Course

Information Engineering that: this Bachelor Thesis has been completed by

myself/ourselves independently without outside help and only the defined

sources and study aids were used. Sections that reflect the thoughts or works of

others are made known through the definition of sources

Hamburg, 20. March 2017

Signature _______________________

	Introduction
	Motivations
	Approach
	TECHNICAL BASICS
	Meter Bus Protocol
	Primary Addressing

	Rs-232
	Raspberry Pi
	GPIO

	Goal Diagrams

	Preparatory work
	OPERATING SYSTEM
	CONFIGURING INTERNET
	INSTALLING LIBRARIES AND UPDATING
	libmbus

	SERIAL PORT connection
	Receiving first MBus data
	Connecting rpi to pycharm

	Software concepts
	LIBRARIES
	CTypes
	Wrapper

	SOFTWARE IMPLEMENTATION
	readingData.py
	webServer.py
	webPage.html

	SOFTWARE VALIDATION

	Hardware concepts
	HArdware implementation AND VALIDATION
	First Checking
	Second Checking
	Third Checking

	Software validation with the hardware
	ADDItional HARDWARE IMPLEMENTATION

	Evaluation
	Outlook

	Conclusion
	References
	Appendix
	Declaration

