
Master Thesis
Raphael Hiesgen

Redesigning the Network Layer for Distributed Actors in CAF

Fakultät Technik und Informatik
Studiendepartment Informatik

Faculty of Engineering and Computer Science
Department of Computer Science

Raphael Hiesgen

Redesigning the Network Layer for Distributed Actors in CAF

Masterarbeit eingereicht im Rahmen der Masterprüfung

im Studiengang Master Informatik
am Department Informatik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Thomas C. Schmidt
Zweitgutachter: Prof. Dr. Michael Köhler-Bußmeier

Eingereicht am: December 8, 2016

Raphael Hiesgen

Thema der Arbeit
Redesigning the Network Layer for Distributed Actors in CAF

Stichworte
Verteilte Systeme, Aktormodell, Nebenläu�gkeit

Kurzzusammenfassung
Das Aktormodell baut auf transparenter Nachrichtenübermittlung und einem starken Feh-
lermodell auf. Es verspricht Skalierbarkeit über nebenläu�ge Kerne und verteilte Knoten.
Hochverteilte Systeme, die skalierbar auf Anwender oder Verarbeitungsanforderungen abge-
stimmt sind, können von dem hohen Abstraktionsniveau von Aktoren pro�tieren. Das C++
Actor Framework (CAF) ist eine native Implementierung des Aktormodell, die einen e�zien-
ten Nachrichtenaustausch beinhaltet. In dieser Arbeit analysieren wir die Verteilungsschicht
in CAF mit dem Ergebnis, dass unterschiedliche Leistungsgarantien in lokalen und verteil-
ten Umgebungen die geforderte Verteilungstransparenz beeinträchtigen. Wir diskutieren die
Aspekte Zuverlässigkeit, Erreichbarkeit und Bindung an ein Transportprotokoll im Kontext
der Aktorkommunikation, bevor Garantien für die Kommunikation im CAF abgeleitet werden.
Auf dieser Grundlage schlagen wir eine Neugestaltung der CAF-Netzwerkschicht vor. Diese
erlaubt den Austausch von Transportprotokollen, de�niert eine konsistente Auswahl von
Garantien für Nachrichtenübertragung zwischen Aktoren und entfernt Routing-Fähigkeiten
aus dem CAF-Overlay. Die Erweiterung der CAF-Netzwerkschicht um UDP bietet eine erste
Bewertung der Funktionalität und ebnet den Weg für eine vollständige Implementierung des
vorgeschlagenen Designs.

Raphael Hiesgen

Title of the paper
Redesigning the Network Layer for Distributed Actors in CAF

Keywords
Distributed systems, actor model, concurrency

Abstract
The actor model o�ers network transparent message passing and a strong failure model. It
promises scalability over concurrent cores and distributed nodes. Highly distributed systems
designed to scale with users or processing demands can bene�t from its high level of abstraction.
The C++ Actor Framework (CAF) is a native implementation of the actor model with an
e�cient message passing layer. In this work, we examine the actor communication in CAF
and �nd distribution transparency to be impacted by varying guarantees for concurrency and
distribution. The aspects of reliability, reachability and transport binding are reconsidered in
the context of actor communication before deriving guarantees for the communication in CAF.
To address these di�erences, we propose a redesign of the CAF network layer. This introduces
exchangeable transport protocols, de�nes a consistent set of guarantees for message passing
between actors and removes routing capabilities from the CAF overlay. The augmentation of
the CAF network layer with UDP provides a �rst assessment of the functionality and paves
the way for a complete implementation of the proposed design.

Contents

1 Introduction 1

2 The Actor Model of Computation 4
2.1 Actors for Concurrency and Distribution . 4
2.2 Native Actors in C++ . 5
2.3 Application Domains . 6

3 Problem Space 8
3.1 Access Control . 8
3.2 E�ciency . 9
3.3 Flow and Congestion Control . 9
3.4 Identi�ers . 10
3.5 Routing and Forwarding . 10
3.6 Scalable Communication . 11
3.7 Message Transport . 12
3.8 Usability . 12

4 Core Aspects & Related Work 14
4.1 Components . 14
4.2 Reliability . 15

4.2.1 Message Delivery Guarantees . 16
4.2.2 Message Ordering . 23
4.2.3 Reliable Monitoring of Remote Actors 27
4.2.4 Discussing Reliability Guarantees for CAF 32

4.3 Rendezvous and Reachability . 33
4.3.1 Related Work . 35
4.3.2 Managing Distribution in CAF . 36
4.3.3 Reachability & Rendezvous on the Internet 37
4.3.4 Discussion . 37

4.4 Security . 39
4.5 Scalability . 40
4.6 Transport Binding . 42

4.6.1 Discussion . 44

5 Designing a Network Stack for CAF 46
5.1 The CAF Overlay Network . 47

5.1.1 Routing in the Overlay . 48

v

Contents

5.1.2 Routing in the Underlay . 49
5.1.3 Discussion . 50

5.2 Data Flow in the CAF Network Stack . 51
5.3 Application Programming Interface . 53
5.4 Designing the CAF Network Stack . 55

5.4.1 Design Considerations . 57
5.5 Software Design . 58
5.6 Discussion . 63

6 Implementation 65
6.1 URIs . 65
6.2 Middleman Adaption . 66
6.3 Enable UDP Communication . 67

6.3.1 Datagram Event Handlers . 68
6.3.2 Datagram Broker Servants . 71
6.3.3 Datagram Processing in the BASP Broker 73

6.4 Discussion . 75

7 Evaluation 78
7.1 Unit Tests . 78
7.2 Testing Functionality . 80
7.3 Discussion . 81

8 Conclusion & Outlook 82

vi

List of Tables

6.1 The components handling TCP and UDP communication in CAF. 68

vii

List of Figures

4.1 Architecture of an actor system build with CAF. 15
4.2 Message delivery between distributed actors. 18
4.3 FIFO ordered messaging that violate causal order. 24

5.1 Two simple communication scenarios between CAF actors. 47
5.2 A distributed actors system that does not build a full mesh network. 48
5.3 Data exchanged between CAF components in the network layer 51
5.4 Composition of the CAF network stack deploying TCP and UDP. 56
5.5 Introducing URIs to the middleman. 59
5.6 The relation between the high level scribe and the low-level stream. 60
5.7 Protocol policies extend the functionality of a “raw” transport protocol. 61

viii

Listings

5.1 Using URIs instead of host and port arguments. 53
5.2 Introducing a template argument to adjust messaging guarantees. 55

6.1 URI creation in CAF. 66
6.2 The public interface of the URI class. 67
6.3 A datagram acceptor receives a datagram. 69
6.4 A datagram stream received a datagram. 70
6.5 A datagram stream sends a datagram. 71
6.6 The new_endpoint callback of the datagram doorman. 71
6.7 Datagram related message types handled by brokers. 72
6.8 The BASP broker handles received data. 74
6.9 The BASP broker handles contact from remote nodes. 75

7.1 Testing UDP related functionality of the BASP broker. 79

ix

1 Introduction

The actor model and its implementations have recently received much attention. Actor systems
promise transparent concurrency and distribution by combining message passing with a strong
failure model. The demand for scalable system rises across the industry.

Data centers process large amounts of data to extract information near realtime while
backend servers for massive multiplayer online games scale with with the number of active
players to provide �uent interaction between player across the world. Scaling down to low-end
devices, the Internet of Things (IoT) is steadily growing and collecting data in cloud backends.
The IoT spans a distributed system that consist of low-powered embedded hardware produced
at minimal costs. Network and synchronization primitives are often hand-crafted, leaving room
for errors that are hard to correct after deployment. A common characteristic among these
applications is a highly distributed environment that necessitates scalability with the number
of participants. The actor model addresses this need and o�ers a high level of abstraction to
design and develop scalable applications.

Developers for all environments can bene�t from well-tested and robust frameworks that
enable application development at a high abstraction level and allows a focus on the application
logic instead of re-inventing low-level communication and synchronization primitives. Viewing
actors a scalable solution to design and develop distributed systems, frameworks have to address
the various deployment environments and their respective network characteristics.

The C++ Actor Framework (CAF) [1] is a lightweight implementation of the actor model
in modern C++. It combines a high level API with an e�cient message passing layer. Much
work has been put into the implementation of a scalable scheduler and robust message passing
interfaces that allow type checking at compile time. The network stack of the framework and
the application layer protocol used to manage distributed CAF nodes mostly evolved with the
evolving demands. The requirements for communication in distributed CAF-based systems
have not yet been de�ned. Thus, there is no set of guarantees to rely on for actor-to-actor
communication. As an essential component for distribution, the design and capabilities of the
network stack a�ect general behavior of applications and in�uence scalability.

1

1 Introduction

The current network stack is tightly coupled to TCP and relies on the transport protocol for
its messaging guarantees. Like in most actor systems, the behavior of CAF under distribution
di�ers from local concurrency. For example, message passing to remote actors is unreliable
while messages are reliably delivered to local actors. In general, reliability in distributed
systems is a major source of complexity and much harder to achieve than in local regimes.
There is a need to address these discrepancies and de�ne the communication requirements in
distributed actor systems. Thereafter, a set of guarantees for actor communication in CAF can
be derived and documented clearly. These considerations provide the opportunity to examine
not only reliability but include general messaging aspects such as security, reachability and
transport bindings.

Transport bindings especially, should �t their deployment scenario. While TCP is the domi-
nant protocol throughout the Internet, HTTP tunnels and WebRTC can enable communication
between nodes hidden behind �rewalls and NATs. Scaling to high performance environments,
technologies such as In�niBand enable high throughput in closely coupled clusters. On the
other end of the scale, constrained environments depend on specialized standards such as
6LoWPAN or CoAP over UDP to address lossy networks. Choosing a transport protocol is a
trade o� between the scope of services a protocol o�ers in contrast to lightweight and e�cient
data exchange. Simply deploying the protocol that o�ers the most guarantees is not a viable
solution. While constrained environments might not be able to handle the messages sizes
or network load, other application might require low-latency and would rather loose mes-
sages than wait for retransmits. This tradeo� further motivates the need for an exchangeable
transport layer to address scalability as well as dynamic deployment.

In this work, we reconsider communication aspects of distributed actor systems using the
C++ Actor Framework as an application domain. In search for enhanced transparency, we
question whether a lightweight system can provide the same behavior for distributed as for
concurrent scenarios. There is much to gain from such a system. Developing, testing and
arguing about the behavior of the system become much easier if its behavior does not depend
on the deployment. Many guarantees are cheap to establish locally, but vastly increase in cost
when network communication is introduced. A weaker requirement would be the detection
deviating behavior by the runtime system. While not as strong a guarantee, developers would
be made aware of deviating behavior.

This thesis is organized as follows. Chapter 2 introduces the actor model and presents the
C++ Actor Framework, a native implementation with a focus on scalability and e�ciency.
Subsequently, Chapter 3 discusses the challenges that arise from designing and implementing
a distributed systems that scales at large. The aspects reliability, reachability, scalability and

2

1 Introduction

security are discussed in detail in Chapter 4, including related work such as standard solutions
and contributions from other actor systems. An extended design of the CAF network stack is
proposed in Chapter 5 before discussing an implementation in Chapter 6. Chapter 7 presents
tests of the newly integrated network components. Finally, a conclusion is drawn in Chapter 8.

3

2 The Actor Model of Computation

With the advent of multicore machines and cloud computing, the actor approach has gained
momentum over the last decade. In this environment, scalability and fault-toleranency are
important traits. This section presents the actor model in general before it discusses a speci�c
implementation of the actor model, the C++ Actor Framework [1] which is the foundation of
this thesis.

2.1 Actors for Concurrency and Distribution

The actor model de�nes entities called actors. Actors are concurrent, isolated entities that
interact via message passing. They use unique identi�ers to address each other transparently
in a distributed system. In reaction to a received message, an actor can, (1) send messages to
other actors, (2) spawn new actors and (3) change its own behavior to process future messages
di�erently. These characteristics lead to several advantages. Since actors can only interact via
message passing, they never corrupt each others state and avoid race conditions by design.

The operation to create new actors is called spawn. It is often used to distribute workload,
e.g., in a divide and conquer approach. An actor divides a problem and spawns new actors to
handle the subproblems concurrently. Thereby, the created actors can divide and distribute
their problems further.

To detect and propagate errors in local as well as distributed systems, actors can monitor
each other. When a monitored actor terminates, the runtime environment sends a message
containing the exit reason to all monitoring actors. A stronger coupling of lifetime relations
can be expressed using bidirectional links. In a linked set of actors, each actor will terminate
with the same error code as its links. As a consequence, links form a (sub-) system in which
either all actors are alive or have failed collectively. This allows developers to re-deploy failed
parts of the system at runtime and prohibits invalid or intermediate states.

Hewitt et al. [2] proposed the actor model in 1973 as part of their work on arti�cial intelli-
gence. Later, Agha formalized the model in his dissertation [3] and introduced mailboxing for
processing actor messages. He created the foundation of an open, external communication [4].
At the same time, Armstrong took a more practical approach by developing Erlang [5].

4

2 The Actor Model of Computation

Multiple actor-based languages have been developed in the last decades. A typical example
is the Erlang programming language introduced by Armstrong [5]. It was designed to build
distributed system that run without downtime and originally targeted telephony applications.
Actors are included in Erlang in the form of processes of the same characteristics as actors.
Erlang provided the �rst de-facto implementation of the actor model, despite using a di�erent
vocabulary. Scala is a programming language that includes actors as part of its standard
distribution through the Akka framework [6]. It o�ers object oriented as well as functional
programming and runs in Java virtual machines (JVM).

2.2 Native Actors in C++

The C++ Actor framework (CAF) [7] combines the bene�ts of native program execution with
a high level of abstraction. The best known implementations of the actor model, Erlang and
Akka, are both implemented in languages that rely on virtual machines. In contrast, CAF is
implemented in C++ and thus compiles to in native code. C++ is used across the industry
from high performance computing installations running on thousands of computing nodes
all the way down to systems on a chip. With CAF, we propose a C++ framework to �ll the
gap between the high level of abstraction o�ered by the actor model and an e�cient, native
runtime environment.

Following the tradition of the actor model, actors are created using spawn. The function
takes a C++ functor or class and returns a handle to the created actor. Hence, functions are
�rst-class citizens and developers can choose whether they prefer an object-oriented or a
functional software design. Per default, actors are sub-thread entities scheduled cooperatively
using a work-stealing algorithm [8]. This results in a lightweight and scalable actor imple-
mentation that does not rely on system-level calls, e.g., required when mapping actors to
threads. Uncooperative actors that require access to blocking function calls can still be bound
to separate threads by the programmer to avoid starvation.

Unlike other implementations of the actor model, CAF di�erentiates between addresses and
handles. The former is used for operations supported by all actors such as monitoring. The
latter is used for message passing and restricts messages to the speci�ed messaging interface
in case of strongly typed handles, or allows any kind of message in case of untyped handles.
Access to local and remote actors is transparent. There is no di�erentiation between them on
the API level, thus hiding the physical deployment at runtime.

Actors can communicate asynchronously by using send or synchronously by using request
. While the runtime does not block in both cases, request lets the user synchronize two

5

2 The Actor Model of Computation

actors. When sending such a message, a message handler can be set to handle the response.
Then, the sending actor waits until a response is received before processing other incoming
messages. Alternatively, a timeout can be speci�ed to return to the previous behavior if no
response is received. In case of errors, e.g. when the receiver is no longer available or does not
respond, an error message will be sent to the sender and cause it to exit unless a custom error
handler is de�ned.

Messages are bu�ered in the mailbox of the receiver in order of arrival before they are
processed using the designated behavior. A behavior in our system consists of a set of message
handlers. These may include a message handler that is triggered if no other message arrives
within a declared time frame. Actors are allowed to dynamically change their behavior at
runtime using become to change to a new behavior or unbecome to return to the previous
one.

C++ is a strongly typed language that performs static type checking. Building upon this, it
is only natural to provide similar characteristics for actors. With typed actors, CAF provides a
convenient way to specify the messaging interface in the type system itself. This enables the
compiler to detect type violations at compile time and to reject invalid programs. In contrast,
untyped actors allow for a rapid prototyping and extended �exibility. Since CAF supports both
kinds of actors, developers can choose which to use for which occasion.

CAF has been compared against other actor implementations [9], namely Erlang, the Java
frameworks SALSA Lite [10] and ActorFoundry (based on Kilim [11]), the Scala toolkit and
runtime Akka [6] and Charm++ [12]. Metrics that were considered are (1) actor creation
overhead, (2) sending and processing time of message passing implementations, (3) memory
consumption for several use cases. Furthermore, a (4) a benchmark from the Computer
Language Benchmarks Game was picked up. The results showed that CAF displays consistent
scaling behavior, minimal memory overhead and very high performance.

2.3 Application Domains

Any application meant to scale with the available resources can bene�t from implementation
in the actor model. A prerequisite is a problem that can be divided into enough independent
tasks to bene�t from a high amount of parallelization. Prominent examples are applications
that scale with user demand, e.g., the backend servers of massive multiplayer online games
(MMOs)—as seen in �rst commercial implementations—as well as applications that bene�ts
from scalability over many cores and nodes to optimize throughput such as data processing
applications. VAST (Visibility Across Space and Time) [13, 14] is a network forensic tool build

6

2 The Actor Model of Computation

with CAF to processes large amounts of network events and allow interactive queries from
users.

The Internet of Things (IoT) consists of very di�erent hardware, but faces similar changes
in synchronization and distribution. Instead of capable nodes with many cores, it deploys
large distributed systems. Emerging Internet standards enable this huge number of embedded
machines to interconnect and cooperate—and raise the challenge of building suitable software
environments that provide scalability, reliability, and security at an e�cient level. Since
traditional programming and runtime environments are too heavy-weight for this constrained
environment, many developers fall back to low-level, hardware-speci�c programming. As
a result, code is barely portable, because network communication and synchronization are
hand-crafted. This approach inherently has a high complexity and many sources of errors. The
actor model o�ers a suitable approach to developing software for this environment. It provides
a high abstraction level to program concurrent systems and includes network transparent
message passing, as well as an error model designed for distributed systems [15, 16]. Ongoing
e�orts to port CAF to the friendly embedded OS RIOT [17] will ease its deployment in IoT
environments.

The processing power of modern many core hardware such as graphics processing units
(GPUs) or coprocessors is increasingly available for general-purpose computation. The seamless
way of actor systems to addresses concurrent and distributed programming makes it an
attractive approach to integrate these architectures. CAF o�ers access to these specialized
devices in form of OpenCL-enabled actors. This type of actors o�ers a high level interface for
accessing any OpenCL device without leaving the actor paradigm. Integrated into the runtime
environment, they extend transparent message passing in distributed systems to heterogeneous
hardware [18].

7

3 Problem Space

The network stack of CAF is a central part of the framework and naturally a�ects the systems
behavior in a distributed environment. Built from many individual components, the stack has a
large design space, ranging from identi�ers for individual actors over the protocol used for the
communication to security considerations. This chapter discusses a few challenges to consider
throughout this work.

3.1 Access Control

Deploying an actor system with a public interface allows messaging from arbitrary endpoints.
Using the API function remote_actor, a remote runtime can connect to a published actor
and start interacting with the system. While typed actor interfaces de�ne messages related to
the application logic, management messages are handled by the runtime environment and can
be sent independent of the application logic. This way, malevolent systems can spawn new
actors to hog resources or simply kill running actors.

Not all environments have a need for access control. There are three di�erent scenarios to
consider, di�ering in the trust relations of the nodes and network. If nodes and network are
trusted, access control is not a big concern (precluding compromise of the system). Example
scenarios are tightly coupled clusters or servers that interact via a private network interface.

A distributed system of controlled and trusted nodes can rely on an untrusted network
for communication. Access control is required to prevent untrusted nodes from joining
the distributed system. This can be achieved through a transport protocol that provides
authentication such as TLS [19] or DTLS [20]. Instead of integrating such functionality into
CAF, implementation should be left to domain specialists. Standard libraries o�er a robust and
maintained basis for integration into the framework.

Lastly, a system in which neither the network nor its nodes can be trusted requires more
than authentication. An example is a public API to interact with a service that is open to third
party clients. In addition to authentication, these cases require the runtime environment to
discard malicious management messages and thus prevent the creation and termination of local
actors. Basically, access to a public service should be restricted to its intended use. CAF allows

8

3 Problem Space

the creation of actors called brokers that expose a limited API over a di�erent protocol. For
example, a broker could o�er a REST API based on HTTP and forward valid request as actor
messages internally. While this adds implementation and processing overhead, the interface
cleanly separates internal from public messaging.

3.2 E�iciency

E�ciency is not a goal addressed by a single component but factors into the whole implemen-
tation. However, key-components with an ine�cient implementation can massively impact
the performance of the whole system. A premier example is the location-transparent access
to actors when sending messages. This essential primitive of the actor model should have
minimal overhead in the local while supporting end-to-end actor communication thought
the global Internet. Optimizing inter-actor communication in the network requires e�cient
handling of addressing and meta-data.

Processing overhead a�ects e�ciency as much as memory management. Naturally, actors
should exhibit a small memory footprint to allow running thousands or millions in parallel.
When required, the runtime should make use of the available memory and scale out accordingly.
E�ciency further concerns overhead for object access and interactions, e.g., when enqueuing
messages into the mailbox of an actor or when interacting with handles of local and remote
actors. With regard to the network stack, e�cient organization is required for handling message
content, sockets and potential bu�ers.

3.3 Flow and Congestion Control

Actors provide a scalable approach to processing large amounts of data. Since their communi-
cation is asynchronous by design, actors can send any amount of messages to other actors.
An imbalance between average processing time and the rate in which new messages arrive
can lead congestion and bu�er over�ows. Flow and congestion control address this problem.
While algorithms to manage message �ow and congestion are not a new topic in general and
are often considered with regard to network protocols, a mapping and implementation for
actor communication provides a few challenges. By design, actors do not have a feedback
channel to communicate their workload to senders.

Relying on asynchronous message passing in concurrent as well as distributed settings,
congestion and �ow control are not only a problem for the network stack in CAF, but should
be considered as a general addition to CAF actors. When using a transport protocol that is

9

3 Problem Space

�ow controlled such as TCP, the runtime might take information from the network layer into
account when addressing communication with remote actors.

Challenges concern the creation of a feedback channel between actors, especially in scenarios
that include multiple—or even changing—senders. Moreover, the reaction of an actor to �ow
control messages is not straight forward and strongly dependent on its behavior.

3.4 Identifiers

Unambiguous identi�ers for actors and nodes which are valid among all participating nodes
simplify network transparent communication. Knowledge of such an identi�er should be
enough to address an actor with a message or to spawn a new actor on a node. Identi�ers
are implementation-dependent and can be represented as human-readable names, randomly
generated bytes or encode location information. Using an identi�er to encode identity and
location imposes a duality on the identi�er as it determines not only who and actor is, but also
where it is located which may impact scalability and mobility.

Mobility is not an essential characteristic of actors and only o�ered by some implementations.
A major challenge for mobile actors is maintaining operation continuity during mobility
handover. This requires mobility-transparent access to actors for both messaging and error
propagation without message loss, unbound delays or bu�ering requirements. In general,
moving an actor between nodes requires either a lookup service that keeps track of an identi�er
to location mapping—introducing a signi�cant operational overhead to all interactions—or
identi�ers that are updated on all remote nodes—introducing challenges on how to handle
messages sent during the update process. These challenges are con�ned to mobility support,
which CAF does not o�er.

3.5 Routing and Forwarding

Network transparent messaging between actors in a distributed system can be enabled in
various ways. CAF builds an overlay between its nodes which (per default) establishes commu-
nication between nodes only when required. For the purpose of this discussion, a neighboring
nodes can exchange messages directly, i.e., without the need to rely a message over another
node in the overlay. For actors on neighboring nodes, network transparent messages passing is
easily achieved as the runtime environments can exchange messages directly. Nodes can learn
the identi�ers of actors on non-neighboring nodes as actor identi�ers can be shared freely in
messages. The runtime environment is responsible for maintaining the transparency in these

10

3 Problem Space

cases. Routing messages to the destination node can be handled in the overlay established by
CAF or be left to the underlay network.

To enable routing in the overlay, each node could maintain a routing table and forward
messages that do not address a local actor accordingly. While this introduces a dynamic
topology, a node may act as a bottleneck if multiple nodes use it as a communication gate-
way. Management of routes in the presence of node failure introduces additional complexity.
Providing ordering or delivery guarantees over intermediate nodes requires support from the
runtime environment event if transport protocols already implement them.

Relying on routing in the underlay requires maintenance of the overlay topology. Nodes
that reference actors of each other need to build a neighbor relationship. An advantage of
underlay routing is that error handling and changes in the underlay topology are handled by
the network. Moreover, standardized transport protocols deliver messages between neighbors
and allow the runtime environment to rely on their guarantees, such as ordering or congestion
control.

3.6 Scalable Communication

Communicating with peers in a distributed actor system requires a peer-wise state consisting
of proxies for remote actors, state for message transport such as connections or addresses
information, as well as failure detectors to monitor the liveliness or neighbors. Targeting
scalability, state that scales with the number of actors should be avoided while state that scales
with the number of peers should be considered carefully. An example is communication that
requires message bu�ers to restore order or implement retransmits. While some state cannot
be prevented (e.g., identi�ers and sockets), uncontrolled peer-wise state can heavily impact
scalability and thus performance. While providing upper bounds can limit state requirements,
it requires handling associated failures such as full bu�ers. Working on the network layer, it
should be considered how peer management can be implemented e�ciently and how state can
be minimized. In this context, the routing considerations from Section 3.5 should be mentioned.
A reactive approach to building routing tables or neighbor relations can prevent the runtime
environment from maintaining unused state. Managing the lifetime of distributed state is a
challenge as it requires synchronization to propagate errors and prevent diverging state.

11

3 Problem Space

3.7 Message Transport

The current network layer of CAF is strongly coupled to TCP and inherits reliability guarantees
for delivery and ordering for message passing. Moreover, the connection management of TCP
is utilized to track the liveliness of connected nodes. In addition to guarantees, a transport
protocol can provide deployment-speci�c adaption such as HTTP tunneling and WebRTC to
enable connectivity in restricted environments.

Decoupling the runtime environment of CAF from a speci�c transport protocol widens its
application domains and allows deployment-speci�c adaption. This is not only applicable
to restricted environment, but addresses IoT scenarios where UDP and CoAP are important
as well as performance driven system by enabling the use of In�niBand. A challenge when
exchanging the transport layer is decoupling the guarantees inherited from a speci�c protocol
from the guarantees CAF provides for the communication between actors.

Throughout the Internet, communication security is addressed by transport layer addi-
tions, majorly TLS and DTLS. Opening CAF to an exchangeable transport layer eases the
incorporation of secure messaging into the framework.

The guarantees for message transport in current actor systems often diverge between
concurrent and distributed scenarios. For example, ordering of messages is often weakened
from causal ordering in a concurrent scenario to FIFO or no ordering in distributed systems.
Similar observations can be made for message delivery. This disparity impacts portability of
applications as behavior might change with deployment.

3.8 Usability

CAF provides a high level of abstraction to developers while managing concurrency and
distribution e�ciently. Part of this abstraction is a high-level interface that reduces the
complexity compared to the low-level interfaces of threading and networking. While simple
tasks are easy to build with these low-level APIs, a scalable and e�cient system depends on
correct synchronization and careful resource management. The default con�guration of CAF
should enable developers to build scalable applications for concurrent and distributed systems.
Developers that build larger or more complex systems should be able to con�gure CAF to
�t their application. Adding new features to CAF should keep its setup complexity low and
allow “out of the box” usage for developers that want to get started with CAF while exposing
con�guration options for advanced use cases.

In general, CAF aims to keep its core components dependency-free to allow building CAF
with only a standard C++ compiler. Components with external dependencies can be enabled

12

3 Problem Space

at compile time. Currently CAF o�ers an alternative networking backend that is based on
Boost.Asio library 1 as well as the integration of OpenCL into the framework. Enabling these
components at compile time keeps the overhead for standard uses slim while o�ering specialized
functionality when desired.

1http://www.boost.org/doc/libs/ (Accessed October 2016)

13

http://www.boost.org/doc/libs/

4 Core Aspects & Related Work

Reliability, reachability, security and scalability are the core aspects of communication in
distributed systems. These terms are often used but lack a clear de�nition. To de�ne the
objectives of communication in out actor system, each term is examined and de�ned in the
context of this work.

This chapter starts with a brief overview over the components of CAF that are involved
in communication. Thereafter, each section discusses a core aspect in detail, considering the
solution space as well as the implications on the behavior of CAF. Related work is included in
this discussion as well as the practices of other actor systems.

4.1 Components

Delivering a message to another actor involves several components which should be named to
ease the discussion later on. Figure 4.1 shows an overview over a distributed system with two
CAF nodes. Each node has multiple actors that exchange messages with actors on a local or
remote node. Each node has its own runtime environment (RE) with a message passing layer, a
middleman, a scheduler and an optional wrapper for GPGPU computations. REs communicate
using the Binary Actor System Protocol (BASP) as an application layer protocol.

Behavior The behavior of an actor is implemented by users of the framework and de�nes how an
actor processes messages. Actors can change their behavior at runtime. After an actor
dequeues a message from its mailbox, it matches it against the handlers of its current
behavior. A handler extracts the content of the message and o�ers it for processing.

Actor Each actor has a message bu�er—called mailbox—which contains received messages that
have not been processed. It can be accessed by the actor in order, sorted by arrival time
or priority. Depending on the implementation, the mailbox size can be �xed or only
limited by the available system memory. Furthermore, actors o�er an interface to send
messages to other actors via the send or request calls. Messages for local actors can
be enqueued into the destination mailbox directly, while messages to remote actors are
passed through the runtime environment.

14

4 Core Aspects & Related Work

LegendNode

CAF Runtime

Node

CAF Runtime

Network Layer

CAF Runtime

Host System
Socket API Thread API

Middleman
with Brokers

Cooperative
Scheduler

Message Passing Layer

Binary Actor System Protocol (BASP)

GPU

OpenCL

GPGPU
Wrapper

Mailbox

Actor

References

Figure 4.1: Architecture of an actor system build with CAF.

RE The runtime environment is an intermediate application layer between actors and the
operating systems. It schedules actors and has a middleman (MM) that is responsible
for communicating with other CAF nodes. The brokers of the MM manage network
connections. They read chunks from the network bu�er via the socket API and deserialize
the raw bytes into messages. The RE may store messages temporarily before enqueueing
them into the mailboxes of local actors.

Network Messages are transported from the application endpoint of the receiver over the network.
Its interface is the protocol API of the operating system. Naturally, this component is
not used for the communication between actors in the same RE.

Note, that the involved components di�er for local and remote scenarios. Since actors can
enqueue messages directly into the mailboxes of local actors, messages do not need to pass
through the RE or be transported over the network. Although, the RE is still responsible for
scheduling actors, it does not store or reference their messages.

4.2 Reliability

The design aspects of our protocol that relate to reliability are delivery guarantees for messages
between actors, message ordering as well as monitoring remote actors. Each aspect has di�erent
levels of assurances that vary in strength as well as in operational overhead. In addition to
laying out options and examining their characteristics, related work will be considered.

15

4 Core Aspects & Related Work

4.2.1 Message Delivery Guarantees

Message delivery speci�es how a sent message reaches the intended destination. This section
explores di�erent delivery assurances and takes a look at messaging in di�erent contexts such
as other actor implementations. Providing reliability adds complexity and state to each actor-
to-actor communication. Our goal is to provide guarantees that do not add much operational
overhead to simple cases, but provide strong enough guarantees to �t the most common
use cases. Developers should be able to rely on the default implementation, but have the
opportunity to implement stronger guarantees for special cases.

As reliability is not a clearly de�ned characteristic in the context of message delivery in
actor systems, we start o� with a look at related work, before examining how messages are
passed through the framework and what challenges we face to provide reliable delivery.

Related Work

Akka delivers messages unreliably with at-most-once semantics per default [21], i.e., a message
is delivered either once or not at all to the destination mailbox. Included in the framework is a
solution for at-least-once delivery in form of a persistence module which additionally allows
actors to recover their state after a crash. Erlang is named as an inspiration for defaulting to
weak delivery guarantees as it successfully uses a similar approach.

Armstrong de�ned message passing in Erlang “[. . .] to be unreliable with no guarantee of
delivery” in his thesis [see 22, page 22]. The additional e�ort required to write applications that
can handle unreliable message passing furthers scalability and increases robustness against
errors. A later publication [5] goes into more detail on the topic and states that the reliability
of message passing is dependent on the reliability of TCP. However, TCP itself is not enough
to guarantee delivery to an actor. Errors in the RE can occur after a messages was accepted at
the application endpoint, but before it was passed on. An example for this type of failure in a
simple distributed Erlang setup is provided by Svensson et al. [23].

Microsoft released Orleans [24], an implementation of the actor model that targets clusters.
It hides most of the distribution and error handling from developers. Failed actors are detected
by the runtime and redeployed transparently before delivering a message. The RE favors
availability over consistency when redeploying actors and accepts temporary inconsistencies
such as actors performing redundant calculations. Per default, messages are exchanged with
maybe delivery guarantees to avoid the associated costs in every message exchange. However,
at-least-once delivery can be enabled, which retransmits messages until the receipt is acknowl-

16

4 Core Aspects & Related Work

edged 1. Since the runtime does not detect duplicates, using at-least-once delivery requires
developers to handle duplicates in their implementation.

The article “Nobody Needs Reliable Messaging” [25] analyzes reliability in the context of
SOA, Web Services and REST. It argues that reliability requires conformation on the application
layer which makes an implementation on a lower layer redundant. A similar conclusion is
drawn for duplicate message detection, e.g., a duplicate order in an online market would lead
to the same messages with di�erent sequence numbers on the transport layer. Related to this
discussion, Saltzer at al. [26] explore the implications of end-to-end communication. Without
knowledge of higher layers it might be tempting to provide more functionality than needed.
While functionality can be implemented on top of communication systems, in some cases it
may be bene�cial to implement partial functionality on lower levels to enhance the overall
performance. As a result, the assumption that avoiding redundancy improves performance
should be viewed with care.

In his dissertation Agha argues the guarantee of communications delivery should be modeled
as it eases the reasoning about the system [see 3, Section 2.4.1]. However, he notes that the
bu�ers required for the communication are limited by nature which makes it impossible to
ensure delivery in all cases.

The Message Delivery Process

Figure 4.2 depicts the process of sending a message to a remote actor. It shows two nodes, each
with an instance of the CAF runtime environment (RE) which includes a middleman, an actor
and a proxy of the remotely running actor.

A message addressed to a remote actor is passed to its local proxy. A proxy is not an actor,
but transparently forwards the message to the middleman (MM) of the RE, which acts as
the application endpoint towards the network transport. The MM uses brokers to manage
connections between RE, serialize messages and send the packets. On the receiver side, the
steps are similar, but the proxy is not involved. Packets are received by the brokers of the MM,
deserialized into messages and enqueued into the mailbox of the receiving actor. Once the
actor is scheduled and the message reaches the front of the mailbox queue, it is dequeued and
processed.

(1) Local Operations Messages between local actors can be delivered directly and require
no additional processing by the runtime environment. Local delivery may fail either due to

1http://dotnet.github.io/orleans/Runtime-Implementation-Details/
Messaging-Delivery-Guarantees (Accessed February 2016)

17

http://dotnet.github.io/orleans/Runtime-Implementation-Details/Messaging-Delivery-Guarantees
http://dotnet.github.io/orleans/Runtime-Implementation-Details/Messaging-Delivery-Guarantees

4 Core Aspects & Related Work

Network Layer

Node A

CAF Runtime

Middleman

Node B

CAF Runtime

Middleman
3

4

5 6

2

Local Send

Deserialized

Enqueued

Dequeued

Processed

1

3

4

5

6

2 TransmittedProxy

Proxy
1

Figure 4.2: Message delivery between distributed actors.

limited memory availability when creating a new message or because of a bounded and full
mailbox of the addressed actor.

In case the addressed actor is not local, the message is passed to a local proxy. Proxies do
not have mailboxes, but transparently forward messages to the middleman. Like in the local
delivery, an error occurs if no memory is available to create a new message. Bounded or full
mailboxes, however, cannot be checked as the proxy does no have the required information.

To enable similar checks for remote as for local cases actors, could inform their proxies of
the free space in their mailbox. Although this remote view is only an approximation and is
subject to the delay of the network transfer, proxies could provide feedback earlier and provide
similar errors for remote as for local messages.

Out of memory errors, on the other hand, are hard to foresee and heavily depend on the
application code. Precautions include a slim framework design without memory leaks.

(2) Message Sent Sending the message is the next step. The application endpoint is the
interface to the network transport, e.g., the socket API. To sent a message, the middleman
has to identify the host of the receiving actor, serialize the message and sent the packets to
the destination address. For this purpose, the middleman tracks handles for its connections
to remote nodes and stores a mapping from host ids to these handles. When forwarding a
message to the middleman, a proxy adds its host id to the message to identify the right handle.

18

4 Core Aspects & Related Work

Establishing a connection to a remote host and acquiring a proxy requires a call to the IO
module of the framework. In addition to explicitly creating connections via published actors
on remote nodes, the RE can learn of new actors via messages. Upon receiving an actor handle
with an unknown host id in a message, the RE maps the new host id to the connection handle
of the sender which can forward the message accordingly. Either way, once a proxy is created,
the remote actor can be addressed with a message.

Attempting to look up the connection handle to a host that is no longer reachable or �nding
no mapping at all could be signaled using links and monitors, which are traditionally used
to observe liveliness in actor systems. In addition, when loosing a connection because an
intermediate node is no longer reachable, the RE could try to �nd a new route, via another
node or through a direct connection, before signaling an error.

(3) Message Received Before a message is received, it is transported over the network,
which bares several sources of errors. First of all, connectivity may be interrupted. For the
sender, determining whether the problem originates from the network or from the receiver
may not be possible. The actor model includes links and monitors to observe the liveliness of
actors. Since this is a complex topic on its own, it will be discussed separately in Section 4.2.3.
Next, even with continues connectivity, packets may be lost during transport or arrive more
than once due to retransmits or errors. Although several transport protocols can provide some
guarantees, we want to avoid relying on a speci�c one as we aim for an exchangeable transport
layer. Finally, even if the packets arrive exactly once, local problems at the receiver side can
prevent messages delivery. For example, full bu�ers in the network stack lead to message loss.

Many protocols o�er ways to ensure packet delivery through retransmits based on timeouts
with varying complexity. To guarantee delivery over the network, but stay independent of
a speci�c transport protocol, we could use an application layer protocol that provides the
desirable guarantees or implement a basic solution as part of the framework. In any case,
the functionality should not enforce redundancy and operational overhead. In cases where
connectivity cannot be recovered or delivery takes an exceedingly high amount of time, the
RE should be able to notify the sender to satisfy the functionality of links and monitors.

Duplicate packet detection is also o�ered by some protocols. In addition, the runtime
environment has the opportunity to detect duplicate messages after receiving messages but
before enqueueing them into mailboxes.

(4) Message Enqueued After the packets reach the application endpoint, a broker in the
middleman reads the bu�er before deserializing it into a message. Limited memory may lead

19

4 Core Aspects & Related Work

to a problem when the bu�er is copied to user space. Additionally, to deserialize the bu�er
into a message the content has to have the right format and consist of known types or it is
dropped. Besides memory limitations, actor mailboxes may be bounded to a �xed number of
messages. Thus enqueueing a message into the receiver mailbox may fail.

The runtime environment has many opportunities to handle these challenges. Limited
memory availability could be handled by bu�ering messages at the sender side and resending
them regularly until enqueuing succeeds. This shifts part of the problem to the sender, which
has to manage its own resources and cannot simply bu�er messages inde�nitely. Various �ow
control mechanisms o�er more complex protocols that signal available resources to senders
and enable the adjustment of the data �ow as well as local computations to the capabilities of
the receiver.

Problems that cannot be handled in a determinable time frame or at times not at all, such
as unknown types, could be communicated back to the sender side and extend the existing
capabilities of links and monitors. In many cases, detection is preferable to silent errors or
endless retries. Even for memory errors, these messages could be preallocated to enable sending
them with a copy operation to the network layer.

Enqueueing a message into the receiver mailbox, is the last step with an assessable duration
and should not take much longer than the transport over the network. However, the next time
the message is handled depends on scheduling, the processing time of previous messages and
the behavior of the receiving actor.

(5) Message Dequeued Dequeueing a message is the last step before handing control to
the application logic. This happens once the receiving actor is scheduled and it has processed
all messages that arrived previously or have a higher priority. Since the processing time
is implementation dependent and not limited, this may happen at any point in time after
the message has arrived or, in the worst case, not at all. Consequently, the sender cannot
distinguish between a delayed and a lost message.

After dequeueing a message, the actor matches it against its behavior and processes it
according to the matching message handler. If no handler matches, the executed action
depends on the default handler of the actor: either it skips the message, i.e., moves it to the
back of its mailbox, or simply drops it.

While the dropped messages could be communicated back to the sender, handling long
delays until a message is dequeued requires more e�ort. Defaults or timeouts based on network
characteristics are not a viable estimate here as the time a message spends in the mailbox
varies greatly for various use cases. User-de�ned timeouts are one possibility to eventually

20

4 Core Aspects & Related Work

force errors—presuming that developers have enough information to provide valid estimates.
These timeouts do, however, not prevent dequeueing and processing of the original message at
a later point in time.

(6) Message Processed Acknowledging message processing crosses the line from the frame-
work implementation to the application logic. When considering end-to-end communication,
knowing that a message was processed is more valuable than knowing that it was delivered [26]
as delivery does not guarantee processing.

Estimating the time until a message has been processed faces similar challenges to estimating
the time an actor starts to process it. Once again, user-de�ned timeouts are an approach to
force an error at some point or simply when processing of a message is required within a
de�nable interval. Cases where eventual processing is of importance could be split into two
steps and shift part of the responsibility away from the sender. In a �rst step the message
is delivered to the mailbox of the receiver, which is ensured by the sender. The second step
is handled locally by the receiving RE and ensures that the message is processed eventually.
The sender would still be required to observe liveliness of the receiver between delivery and
processing to signal errors to local actors.

Another challenge occurs when an actor forwards—or delegates—a message. Since this
happens during its behavior the message would be handled by an actor, but not processed
completely. This breaks end-to-end message passing between actors and prevents the sender
from tracking the message further as it might not even know the new receiver. To handle such
cases, the delegator could be used as an intermediate node for communication or even assume
responsibility for further delivery.

Discussion

Providing reliable transfer including all the steps in Figure 4.2 results in six steps. We examine
the gain and costs to guarantee delivery for each one. The baseline is local delivery which
works reliably. As CAF does currently not support bounded mailboxes, this step will fail if no
memory is available to create a new message. Memory management of the overall application,
however, is a responsibility of the user and cannot be handled by the framework besides
providing a slim implementation without memory leaks.

There are several ways to handle a bounded and full mailbox. Messages could be bu�ered
at the sender and be resent after a short timeout, which is easy to implement for local cases.
While this is not a problem if it happens on rare occasions, bu�ering many messages at many
senders which target a single source can get out of hand easily. Especially if the processing

21

4 Core Aspects & Related Work

time is longer than the timeout, this behavior does not help to reduce the overload. Next,
the failure to enqueue a message into a mailbox can be answered with an error messages
that are dropped by default, but can be trapped and handled like error messages from links
and monitors. To prevent the need to bu�er messages at the sender, the original message
could be included in the error. While this does not entail additional copy operations, passing
these messages around introduces another form of bu�ering. Finally, �ow control mechanisms
prevent bu�er over�ows with di�erent strategies, generally implementing a feedback channel
between sender and receiver to agree on transmission rate.

Failures to send messages due to unreachable destinations are caught and propagated by
links and monitors. Before raising errors the runtime environment may try to �x the error itself.
Messages sent during this recovery process need to be bu�ered locally. In case the failure cannot
be corrected, the bu�ered messages are either lost as well or require an additional recovery
process. Raising an error early reduces the amount of bu�ered messages and minimizes the
necessary recovery.

Message delivery on the network layer is a signi�cant step as the network is one of the
more likely sources of errors. A transport protocol that acknowledges delivery such as TCP
only propagates failures for delivery to the network bu�ers. Thus, it falls short of end-to-end
transport. In contrast, acknowledging delivery on the application layer informs the runtime
environment exactly which messages were delivered and acknowledges that the delivery
did not fail due to memory limitations as the message was already copied from the network
bu�er into user space. In the case of CAF, a received and acknowledged message would be a
deserialized BASP message.

Enqueuing messages into remote mailboxes faces similar challenges as delivering to local
mailboxes, i.e., available memory and mailbox space. In case delivery was not acknowledged on
the application layer, additional steps are required to copy the message from the network bu�er
to the user space and deserialize the message thereafter, both of which may potentially fail.
This is the �rst step that ensures receipt by the runtime independent of the acknowledgement
mechanism of the network transport. While processing is not ensured, this is guaranteeing
delivery up to this step is the remote equivalent of a local send operation.

After a message is enqueue into a mailbox, its dequeueing does not provide much additional
information. In the worst case, processing the message leads to failure of the processing actor
or it only enqueues the message in its own or another mailbox. The absence of a time frame for
this operation to happen results in an unattractive point for a delivery guarantee. Applications
that require this information can achieve similar behavior by sending a message as the �rst
operation of a message handler.

22

4 Core Aspects & Related Work

Acknowledging message processing provides the most interesting information considering
end-to-end message passing. At the same time, addressing a generalized use-case is a very
complex task, as the application logic dictates much of the necessary context. Processing time
per message, average delay in the mailbox, current load and the messaging interface of the
receiver all in�uence whether a message is processed and how long it takes to process the
message after if was received. As a result, a reasonable failure case cannot be de�ned for all
scenarios.

4.2.2 Message Ordering

All communication in actor systems works by exchanging asynchronous messages. Message
ordering describes relations among messages exchanged in the system. Since we don’t want to
require a transport protocol that maintains order, either an application layer protocol or the
runtime environment can restore the order of received messages. In this context, the order
only determines how messages are enqueued into mailboxes as it may be changed afterwards.
Mailboxes could sort messages by priority or actors could process messages out-of-order. There
are four orderings with increasingly strong assurances that we consider here: non-deterministic,
�rst in - �rst out, causal and total.

Without the order requirements, messages can be received in a di�erent order than they
were sent in. While the order may be the same, the system does not take any action to restore
or enforce order after it was broken.

First in, �rst out ordering (FIFO) means that messages that are sent �rst arrive �rst. This
guarantee only creates a relation between messages from a single sender and is not transitive.
Transitivity would maintain order even if a message is received and forwarded by an inter-
mediate node. Figure 4.3 shows an example for non-transitive message ordering as message
c is received before message a. Before enqueueing messages into mailboxes, the RE could
bu�er them for a short time to restore order determined by sequence numbers in the messages.
Con�guration parameters include the time frame during which messages are bu�ered and
out-of-order messages can arrive before they are considered lost as well as bu�er sizes.

The “happens before” relation [27, 28] describes the logic of causal message ordering. Unre-
lated messages are determined to be “concurrent” or “independent”. Hence, causal ordering
is not restricted to messages exchanged by a pair of actors, but can establish a relationship
between messages in the whole system. The message exchange in Figure 4.3 breaks causal
ordering as message a happened before messages b and c and should thus be delivered previ-
ously. In this case, the order could be restored by bu�ering message c until the earlier message
a is received. There are various algorithms to establish a causal message order in a distributed

23

4 Core Aspects & Related Work

Process 1

Process 2

Process 3

a sent b sent

c sent

a received

b received

c received

Figure 4.3: FIFO ordered messaging that violate causal order.

system, e.g., the Birman-Schiper-Stephenson Protocol [29] or the Schiper-Eggli-Sandoz Pro-
tocol [30]. While both algorithms use a form of vector timestamps to determine if causally
preceding messages have been delivered, the �rst one additionally requires messages to be
exchanged via broadcast. Note that an event e1 which “happens before” another event e2 does
not necessarily have caused the latter, but both are still in a relationship as per causal ordering.

A total order extends causal order and gives order to all messages in the system and not
only for the causally linked. Hence, all messages arrive in the same order at all receivers.
Introducing a total order requires the synchronization of all participants. To achieve this,
the totem protocol [31] passes a token around in a logical ring, which allows the owner to
broadcast messages. Until the token is acquired, messages are bu�ered locally. An alternative
approach could be a central sequencer that provides sequence numbers for all messages and
advances the time.

Related Work

The actor system Orleans [24] is an example of a framework that does not enforce ordering. It
wants to avoid the related impact on scalability as well as the overhead in processing power
and state that is required to restore the order of received messages. CAF follows a similar
approach and currently does not maintain the order of messages actively.

Erlang and Akka both enforce FIFO ordering. Although Erlang de�nes this ordering as part
of their basic rules of message passing [see 22, page 25], the decision is not further explained
besides stating that it eases application development. Akka stresses that this is only true for
the order in which messages are enqueued into the mailbox [21] as the mailbox itself may
change the order, e.g., by prioritizing certain messages. In particular, system messages such as
errors use special mailboxes and may be delivered out-of-order. Akka implements ordering on

24

4 Core Aspects & Related Work

top of TCP 2, but utilizes additional per-connection queues to sort messages and handle errors
such as TCP reconnects and full bu�ers.

Long et al. [32] explore what causes ordering problems in message passing systems. The three
main semantics they identi�es are (1) synchronization, split into asynchronous and synchronous
messaging, (2) processing, i.e., non-deterministic vs. in-order delivery and processing, as well as
(3) sharing in the form of data sharing or data isolation. For example, code that looks sequential
but depends on asynchronous unordered messages may lead to unde�ned behavior. They build
message passing model by combining di�erent aspects of these semantics. Their base model
uses asynchronous message passing, with non-deterministic message delivery and processing
as well as data sharing semantics. The other model are build on base by exchanging di�erent
aspects as well as adding transitive in-order delivery. A static analysis is used to evaluate how
programs are a�ected by ordering problems when exchanging messages with these models.
For framework designers, they see in-order delivery and data isolation as the most critical
semantics.

The Pony language ensured causal message ordering in an earlier approach to distribution. In
addition to easier debugging in and reasoning about distributed systems, the garbage collection
of the language depended on the this property. An informal view as well as a formal argument
were discussed [see 33, Chapter 4]. The idea is based on organizing nodes in a tree structure
and route messages along the (unique) shortest path from one node to another. Combined with
a TCP-based ordered message exchange between nodes, messages are guaranteed to arrive in
causal order.

Ordering for Messages in Actor Systems

Easiest to implement is non-deterministic ordering, which leaves developers with FIFO ordering
for local delivery and transport layer dependent guarantees for remote delivery.

FIFO ordering can be implemented with di�erent granularities. It requires a consecutive
sequence number to determine order as well as a bu�er to restore it. Implementing both for
each actor pair requires a lot of state for bu�ers and to track sequence numbers. Moreover,
cleaning up bu�ers when actors exit requires synchronization. These requirements could be
reduced by sorting messages not on an actor to actor basis, but per connected node. Although
this applies order to potentially unordered messages, the management is no longer part of each
actor and can be handled by the runtime environment. In the presence of unreliable messaging

2https://groups.google.com/forum/#!topic/akka-user/w2iFDpxiF6U (Accessed February
2016)

25

https://groups.google.com/forum/#!topic/akka-user/w2iFDpxiF6U

4 Core Aspects & Related Work

a timeout or maximum bu�er size is required to deliver messages even if one is lost. These
constrains may delay all messages and need to be carefully considered.

An overview and categorization of algorithms that provide causal order can be found in
[34]. The author identi�es two categories among generalized algorithms, those that have non-
causal latency and those have no non-causal latency. The trade-o� between these categories
is delay in the former in contrast to increased message sizes in the latter. Delay is created
by synchronizing processes, e.g., by using synchronous messages or exchanging Lamport
timestamps. The lower bound for the increase in message size can be calculated. The additional
information that need to be exchanged are time vectors in the system with a size equal to
the number of processes n [35]. Moreover, to determine causal dependencies for transitive
message passing with more than one intermediate node at least n vectors are necessary [36],
aggregated to time matrices by some algorithms. These constrains can be weakened for special
use cases such as adhering to �xed routing topologies such as rings or a tree topology as shown
by the Pony language. Still, in the worst case messages are routed from one leaf through the
root to another leaf which introduces latency. In addition the topology has to be maintained
when nodes join, leave or fail.

Implementation of a total order is straight forward. One node in the system is chosen as
a sequencer which receives the messages from all actors and broadcasts them in FIFO order.
Such an approach introduces a strong coupling in the system as even local messages would
have to pass through a possibly remote sequencer. This impacts scalability greatly.

Discussion

Local delivery in CAF leads to a causal ordering among messages enqueued into a mailbox.
This is a result of implementing mailboxes as lock-free FIFO queues which are accessed by
actors in a single non-blocking but synchronous call when sending messages. Although
the current implementation for remote messaging is strongly coupled with TCP, some cases
allow messages to arrive out-of-order. For example, nodes that are not connected directly
can exchange messages via di�erent intermediates which breaks the ordering guarantees of
TCP. In addition, errors such as dropped messages due to full bu�ers or TCP reconnects break
this assumption. Thus, developers cannot rely on it, i.e., there are no ordering guarantees for
messages sent to remote actors.

The main advantage of a de�ned message order is an easier development and testing process.
When messages that are sent by sequential statements will be delivered in the same order,
reading code and considering side e�ects gets easier. Relying on the same ordering for local as
for remote messages prevents deployment speci�c bugs and eases porting local applications to

26

4 Core Aspects & Related Work

distributed systems. In the same way, reproducing failures is easier to achieve if communication
is ordered and predictable.

Order is not established for free and introduces overhead such as delays, increased message
sizes or numbers, as well as required bu�ers. With stronger ordering guarantees the coupling
between actors and nodes is also strengthened. These constrains may impact performance and
scalability of the system, both of which are highly undesirable.

Restoring FIFO order among received messages comes at the cost of bu�ers and a potential
delay. The maximum delay until a message m is delivered is n times the timeout until a
message is considered lost where n is the number of messages in front of m. This should be
considered when choosing the bu�er size and the timeout. Ordering cannot be performed in a
single bu�er, but requires one bu�er per peer runtime environment.

Implementing causal order comes at signi�cant costs. Relying on synchronous communica-
tion introduces a strong coupling between actors and nodes. While synchronization on a local
machine may be fast compared to synchronization with remote machines, the framework is
highly optimized for e�cient message passing and scheduling. Alternatively, adding vector
timestamps to messages greatly increases the amount of data exchanged in the system. In
addition, hosts can schedule high amounts of actors, frequently spawning new ones that only
run for a limited time or task. A changing amount of participants is generally not handled well
by vector clocks. Neither relying on synchronous communication nor on broad- or multicast
is an option for the default communication in an actor system.

Total order is not a desirable property for the messages exchanged between actors. By
de�nition, actors are concurrent and isolated entities. Adding such a strong coupling, e.g., in
form of a central sequencer, to all their communication impacts scalability and performance.
While some use cases may justify the overhead to maintain a total order, the majority of cases
does not. As such it is not a good candidate for the default ordering.

While ordering eases software development, strong ordering guarantees are costly and
introduce the need for synchronization. FIFO ordering has a comparably low overhead and
provides part of the ordering characteristics of local messaging to remote messaging. As such
it is a tradeo� between desirable properties and overhead.

4.2.3 Reliable Monitoring of Remote Actors

Components in a distributed system can fail independently which leads to partial failure of the
system [37]. There is no central instance such as an operating system that can reliably detect
failures. Detecting failures and propagating knowledge about them through the system are

27

4 Core Aspects & Related Work

key aspects when building reliable and robust systems. Resilient systems additionally have to
recover from failures by correcting errors such as an inconsistent state among nodes.

The inability to distinguish between the failure of a remote node, a link failure and a very slow
link or node adds uncertainty to detecting crashed nodes. However, failure detection is a crucial
component for some algorithms such as reaching consensus. As shown by Fisher et al. [38],
this is not possible in a distributed asynchronous system if participants can crash without
reliable detection. This uncertainty is addressed by Chandra et al. [39] with the introduction
of unreliable failure detectors. The unreliability characteristic allows failure detectors to make
mistakes such as wrongfully suspecting a process to have crashed. In addition to a lack of
reliability, these detectors must satisfy the properties completeness and accuracy. Completeness
states that every failure is detected eventually while accuracy means that a detector eventually
drops wrongful suspicions, i.e., the failure detector converges to correctness. Since eventuality
is hard to pinpoint, practical applications usually rely on a trade-o� between fast detection
times and a higher probability that a failure is correctly detected. In conjunction with failure
detection the term “suspect” is often used to emphasize the uncertainty.

Bertier et al. [40] de�ne two basic strategies for detecting failure of remote nodes, heartbeats
and “pinging”. Heartbeats are sent regularly by each monitored node to its peers, implementing
a push approach. Each peer then tracks the arrival of such heartbeats to determine reachability.
The speed and reliability of this strategy are in�uenced by the interval between heartbeats
as well as the timeout or accepted number of lost messages before a peer suspects it. In
contrast, “pinging” is a pull approach that regularly requests a response. How often a request
is sent or how soon an answer is expected determine what is necessary to suspect a peer to be
unreachable. The advantage of these approaches is a relatively short detection time at the cost
of network load and processing power as caused by regular message exchanges.

Traditionally, failure detectors return a binary value that indicates the connectivity or
liveliness of the supervised entity. This value is calculated based on con�guration parameters
such as heartbeat intervals or a tolerated number of lost messages. However, developers can
only bind actions to the state change when the connection has already been lost. In contrast,
an accrual failure detector returns a (positive) suspicion value on a continuous scale and leaves
the interpretation to the developer. The higher the returned value, the more likely it is that
either the connection or the supervised node have failed. When plotted over time, the suspicion
value returned by an accrual failure detector has to satisfy four properties [41]:

(1) Asymptotic completeness states that on an in�nite timeline the suspicion value of a faulty
entity tends towards in�nity. (2) According to eventual monotony there is a point in time after
which the suspicion value of a faulty entity is rising monotonically. (3) A monitored entity

28

4 Core Aspects & Related Work

works only correct if an upper bound for its suspicion value exists for an in�nitely long run.
(4) The suspicion value of a correct entity always returns to 0, i.e., it always resets.

Actions can be bound to di�erent output values such as preparing for probable failure before
taking more decisive actions once a node has failed. Alternatively, the output can be used
directly, e.g., to compare the trust in workers and assign tasks accordingly.

Related Work

Chen et al. [42] discuss quality of service (QoS) measurements for failure detectors and introduce
a heartbeat based failure detector that can be customized to meet di�erent QoS requirements.
The con�guration parameters are: 1) the heartbeat period, i.e., interval between sending
heartbeats, and 2) the timeout delay, i.e., the time after the receipt of a heartbeat until the
sender is suspected. If a heartbeat is received from a suspect, the suspicions are dropped.
Instead of calculating the arrival time of the next heartbeat by adding the timeout delay to the
most recent arrival time, a sequence of expected arrival times is calculated in advanced, based
on the time σi the message mi is sent and adjusted by the timeout delay δ. This sequence
is called “freshness points” because only fresh heartbeats are accepted after such a point is
reached, while heartbeats that arrive late are ignored. This increases the accuracy of the
detector as heartbeats that do not arrive on time do not in�uence the expectations on future
arrival times. Chen et al. further show how to calculate the con�guration parameters to adjust
to quality of service requirements. To adjust to changing network connections, the author
suggest a dynamic recalculation of the parameters.

The sending time σ and the timeout delay δ are not reliable estimates in the presence of
unsynchronized clocks and unknown messaging behavior, which are both common. A variation
of the basic algorithm above estimates the arrival time by tracking the deviation between the
sending and the arrival time of recent heartbeats (as seen on the local clock) and adding the
average to sending time σ as basic estimate. To account for the uncertainty, a safety margin α
replaces δ. It can be calculated to meet a targeted upper bound on detection time.

Based on this model, Bertier et al. [40] propose an extended algorithm. In addition to
restructuring the arrival estimate to a recursive calculation, the calculation for the safety margin
α is adapted to use Jacobson’s estimation of the TCP delay for retransmits. An additional second
layer is introduced to adapt the �rst layer, i.e., the failure detector, to di�erent applications, for
example, by tracking statistics or collaborating with remote nodes.

Erlang introduced monitors and links to build fault-tolerant systems. A monitor is a one-
way connection between a pair of actors, where the monitoring actor is noti�ed in case the
monitored actor fails. Monitors send DOWN messages which are dropped by the receiver unless

29

4 Core Aspects & Related Work

its behavior explicitly provides a handle for them. Links provide a bidirectional connection
and, per default, crash the receiver of the EXIT message with the same reason. Links and
monitors are designed to work in local as well as remote cases. When observing remote actors,
failures are not limited to crashes of actors, but include link and node failure. The detection of
failures and liveliness in Erlang is discussed in [23]. The failures of remote nodes are detected
using heartbeats, also referred to as ticks 3. A node is considered down when a con�gurable
number of consecutive ticks sent by it do not arrive.

Akka uses heartbeats as well [21], but implements an accrual failure detector. Speci�cally,
Akka uses the “φ Accrual Failure Detector” by Hayashibara et al. [41], which aims to be �exible
and adapt to shifting network conditions. The failure detector stores the arrival times of recent
heartbeats to extrapolate the probability that the next heartbeat message arrives in the future,
i.e., that it arrives more than t time units after the last heartbeat where t is the interval between
the receipt of the last heartbeat and the current point in time. The suspicion level φ is then
calculated as the negative logarithm of the probability that the heartbeat arrives at the current
point in time.

For the evaluation, Hayashibara et al. compare the φ failure detector to the failure detectors
of Chen et al. [42] and Bertier et al. [40]. The metrics for this evaluation are the average mistake
rate and the average detection time as proposed by Chen et al. in [42]. Data for the evaluation
was collected from nearly six billion messages sent over an transcontinental link via UDP. In
the scenario, the φ failure detector showed its strengths for fast detection time where it has a
lower mistake rate than the other detectors. However, it was outperformed by the Chen failure
detector for longer detection times. Still both failure detectors provide similar and much better
results than the Bertier failure detector.

A focus on minimizing resource consumption and messaging overhead leads to lazy failure
detectors. Fetzer et al. propose a strategy that requires every regular messages to be acknowl-
edged [43]. A monitored process can than be suspected depending on pending message receipts
and previous round-trip times. Satzger et al. aim to reduce the amount of explicit heartbeat
messages further [44]. Their detector only sends heartbeats if no message was exchanged
within a certain interval and thus avoids regular heartbeats as well as acknowledgments during
active communication. Although this approach increases the messages size because it depends
on piggy-bagging sequence numbers and a time stamp in regular communication, it can largely
reduce the number of total messages exchanged.

3http://erlang.org/doc/man/kernel_app.html, see net_ticktime (Accessed February 2016)

30

http://erlang.org/doc/man/kernel_app.html

4 Core Aspects & Related Work

Failure Detection for CAF

Following the concepts introduces by Erlang, failure propagation and its user interface are
based on links and monitors. The runtime environment propagates errors from local actors that
exit with an abnormal exit reason. The reliability for delivering these messages to remote actors
depends on the delivery guarantees discussed in Section 4.2.1. To detect link and node failures,
CAF depends on the strong coupling to TCP. It observes TCP connections 4 and propagates
their failures in the local system. Regular heartbeats can be enabled to detect failures faster
while no other tra�c is present.

Handling the detection of remote and local failures separately is necessary as both manifest
very di�erently. The failure detectors discussed here only concern remote failures. To allow for
an exchangeable transport layer, the coupling to TCP has to �t the transport and application
layer protocols in use. To o�er reasonable defaults, CAF could o�er exchangeable network
stack modules that bundle compositions of suitable components.

A properly de�ned API eases the implementation of these modules and gives developers
the opportunity to optimize the network stack for their applications. Considering the failure
detectors discussed here, an implementation requires the ability to send error messages and
heartbeats, to monitor incoming heartbeats and in case of a lazy approach append additional
information to exiting messages.

Discussion

Failure detection and propagation is an integral part of the actor model. There are several
components in an actor system that can fail: actors, runtime environments (REs), nodes, and
network links. As discussed, local and remote detection requires di�erent mechanisms.

For actors however, deployment should be transparent. Actors can move away from the host
they were spawned on and are not bound to the lifetime of a �xed node. While node failure may
be of interest to implement resilient systems and recover from failures, actors should not need
to know the mapping between hosts and actors. Moreover, to keep the deployment transparent
to the application developer, no new error types should be introduced. This requires the new
failure type to be mapped to deployment-independent errors, i.e., to propagate node and link
failure as the failures of individual actors hosted on the crashed node.

The di�erences between deployment in concurrent and distributed settings cannot be
completely hidden from developers. APIs often require speci�c information such as host and
port, for example when moving actors between nodes or spawning new ones remotely. Failures

4The TCP timeout di�ers by implementation. RFC 1122 recommends it to be at least 100 seconds [see 45, pp. 101].

31

4 Core Aspects & Related Work

associated with these actions have to carry the relevant information to be meaningful. A
trade-o� could be to throw distribution speci�c errors only when explicitly requested and o�er
a default mapping while the RE attempts to recover.

The links and monitors implemented in CAF map the binary output of traditional failure
detectors to the error messages. This binary interaction cannot make use of all capabilities of
an accrual failure detector, i.e., it could only react to a single con�gurable threshold. Extending
failure messages to allow for multiple thresholds leads to di�erent failure models for local and
remote scenarios, where some messages could only be received from remote actors. In contrast,
the traditional messages (DOWN and EXIT) are received independent of an actors deployment.

4.2.4 Discussing Reliability Guarantees for CAF

Actor frameworks like Akka and Erlang encourage developers to write applications with
distribution in mind. Considering the related error cases during development allows transparent
deployment in local as well as distributed systems.

While the actor model addresses concurrent as well as distributed scenarios, applications
build on top of it often require adjustments to move from a concurrent to a distributed system.
However, it might be favorable to allow all applications built built with an actors system to be
deployed in both contexts transparently. While this may include overhead in local cases, it
allows applications to scale much higher when deployed in a distributed system without the
need to rewrite parts of the application.

The guarantees made to developers are usually constrained by remote deployments. This
ensures that applications developed with these limitations in mind can run independent of
their deployment. An example is the documentation of Akka, which does speci�cally mentions
the di�erences, but encourages developers to develop applications that work in distributed
deployments—which usually requires extra work.

This section discussed various guarantees for delivery, ordering and failure detection and
examined the costs to provide the same guarantees in concurrent and distributed environments.
In a local concurrent context CAF provides reliable message passing—provided the node does
not fail—causal message ordering for messages enqueued into the mailboxes of actors and
reliable failure propagation ensured by the runtime environment. These guarantees hold for
a CAF node running actors concurrently in a process. Moving to distribution, CAF relies on
the TCP to provide guarantees for communication with neighbors. Since TCP failures are not
handled by the framework the limitations of the transport protocol a�ect the messaging of
CAF as well. Moreover, the ability to route messages over multiple CAF nodes weakens the

32

4 Core Aspects & Related Work

guarantees even further as changes in the routing topology and failures on intermediate nodes
weaken the messaging guarantees even further.

Moving forward, CAF should o�er the option for reliable message delivery, but provide
no guarantees per default—falling back to the guarantees of the transport protocol. Making
reliable delivery a default adds overhead to all deployments, which might be often undesirable.
Still, enough use-case require delivery guarantees to warrant an implementation as part of the
framework. Regarding ordering, the guarantees for distributed communication are weaker
compared to local communication. Since causal ordering comes at a high cost, the default
for actor messages will be FIFO ordering. While relatively cheap, it provides a signi�cantly
improvement over no ordering and eases reasoning about the systems behavior. Lastly, error
propagation exhibits the greatest di�erences between concurrency and distribution. For simple
applications, a mapping of node failures to their hosted actors may be enough to enable viable
error handling. However, more complex application depend on the ability to handle failures
that stem from distribution and require addressing network or node failures explicitly to
implement proper error handling.

4.3 Rendezvous and Reachability

Building distributed actor systems involves the management of participating nodes to allow
actors to interact with remote actors. Most notably, actors need to learn about the existence of
other actors and, in a second step, be able to establish contact.

While some developers might have enough knowledge about their applications to implement
statically con�gured rendezvous for their actors, the deployment environment is often unknown
during development. As can be seen when introducing new IoT devices into home environments
or when allowing elastic cloud services to scale over many nodes on demand. A rendezvous
mechanism describes how the meeting process works in a de�ned context. For this purpose,
shared knowledge such as a known rendezvous point, a multicast address or a name may be
required.

A known name can be used to look up contact information using a name service. This
requires knowledge how to contact the name service itself. Running a central instance ensures
that the most recent information is always acquired at the cost of robustness. Distributed
name services can be joined in a federation. This introduces synchronization requirements
to exchange information and to redirect requests to the responsible instance. The increase
in robustness introduces complexity to provide consistent information, detect failures and
recover from them. The domain name service (DNS) [46] is an example of a federated name

33

4 Core Aspects & Related Work

service. Names are translated to locators by delegation of the query to hierarchically structured
name servers.

Data can be delivered through a network to a denoted location by routing it accordingly. This
requires binding addresses to nodes in the system to specify the destination and determine the
routing path. Ideally, addresses are organized in a way that allows e�cient routing. Mobility
poses a challenge for routing as the location of addresses change dynamically. Either changes
to routing paths need to be propagated accordingly or the address binding is changed to re�ect
the current location. Commonly deployed networks are based on IP and thus o�er routing
based on IP addresses. Address can con�gured statically or be assigned dynamically, e.g., using
the dynamic host con�guration protocol (DHCP) or the IPv6 autocon�guration. Mobile IP
introduces a location-independent and stable home address in addition to the changing and
temporary care-of-address of the mobile node.

Names can be overloaded with location information which can then be used for routing
or simply used for routing directly. An e�ort to research name-based routing is done in the
context of information-centric networking (ICN) [47].

An overlay network builds a logical network on top of an existing network using a subset of
the existing nodes. The new topology does not necessarily re�ect the physical deployment.
The original network is still used for connectivity and routing. As such, a direct hop in the
overlay can consist of multiple links in the underlay. A common use case is the organization
of data in a decentralized system, for example in a distributed hash table (DHT). This data
structure distributes the space covered by a �tting hash function among its participants and
quick routes lookup requests to the responsible node through the overlay. Peer-to-peer systems
often deploy DHTs due to their resiliency and scalability.

As with nodes, actors need to be identi�able unambiguously in the system to exchange
network transparent messages. Depending on the implementation, names are assigned to
actors by the runtime environment or by developers when an actor is spawned. The lifetime
of actors is not necessarily bound to their initial node as some frameworks can move actors
between nodes at runtime. This change in context should not a�ect their communication and
requires considerations regarding names and reachability.

Relying on location-independent names, i.e., names that carry on information or identi�er
related to their location in their names, requires consensus among nodes to prevent name
collisions. Since nodes may join the system in the future this might not be possible, but at least
impacts performance and scalability.

It should be considered if names carry location-dependent information and if these informa-
tion are used for routing purposes. In case names are solely used to provide identity, including a

34

4 Core Aspects & Related Work

location-dependent part in the name is an easy way to prevent name collisions as the generated
names only need to be unique within the context of their original host—provided the node is
able to generate a unique identi�er. Migrating nodes named this way only invalidates their
location and not their identi�er.

Should the location-dependent part be used for routing, its identity is overloaded with
location information. As an example, each actor name could be pre�xed with the host name of
the node it is deployed on. While this might simplify message passing and the propagation of
actors because the name alone is su�cient to locate it, actor migration is complicated if the
individual part is not unique in the system. Migrating such an actor does not only invalidate
the location information, but also invalidates its name.

4.3.1 Related Work

Erlang utilizes location-dependent names for nodes and processes. A complete node name
includes the hostname and can be used to identify applications in the network and be used for
routing. In the same way, locally registered process names can be used remotely in combination
with a complete node name. The Erlang port mapper daemon (EPMD) is responsible for
managing node names and runs as a separate process on each host. The daemon acts as a
name server for applications and is tasked with tracking connections and names in the system.
When nodes connect, the local daemons proactively exchange contact information and, per
default, build a full mesh network between all known nodes. Once connected, processes can
be spawned on the remote node or RPC can be used to interact.

In a similar fashion, Akka encodes location into names, di�erentiating between actor refer-
ences and actor paths. The �rst one identi�es a speci�c actor instance and is only valid as long
as the actor is alive. In contrast, an actor path is a logical structure build from the name of the
actor system followed by the supervision hierarchy of the denoted actor, starting at the system
guardian actor and following the child nodes towards the actor. A path does not depend on
the existence of the actor and thus remains valid if an actor at the location dies or a new one
takes its place. Both can be either purely local or valid in a remote context. The latter variants
contain information about the transport protocol in use, the name of the host actors system as
well as host and port information. A path can be resolved to a reference by sending an actor at
the location an Identity message though the local actor system.

SALSA Lite [10] assigns names to actors to identify them in a distributed system. It di�eren-
tiates between purely local actors, actors that are addressable remotely and actors that can
move between SALSA nodes [48]. Mobile actors require registration at a name server that
can subsequently be used to acquire actor references by name. The name server itself is a

35

4 Core Aspects & Related Work

non-mobile remote actor that can be identi�ed via its name. Remote actors can be published at
a speci�ed port at the host under a unique name to allow lookup from remote node using their
these information. Separating actor types according to their functionality allows optimizing for
their use case by keeping the overhead of remote operations separate from purely local actors.
Once actors are created sending them messages works transparently without knowledge what
kind of actor is addressed.

4.3.2 Managing Distribution in CAF

Each CAF runtime environment (RE) generates a unique node id on startup to distinguish
nodes in a distributed system and on a local machines 5. Actors are assigned an increasing
integer value by the RE which is unambiguous when combined with the node id and does not
requires synchronization for its generation. Neither id encodes location information such as IP
addresses and thus requires an additional mechanism to be resolved to a location.

There are two ways to connect to remote runtime environments in CAF, creating explicit
connections and reactively learning about new nodes when their ids are received. The �rst
method requires explicit calls on both systems and can be used to bootstrap a connection
to a remote actor system. Using the function publish, a runtime environment listens on a
speci�ed local port for connection attempts to a given local actor. Remote nodes can create a
proxy of the published actor by using the function remote_actor, passing host and port as
arguments. Node ids are exchanged during a handshake and used for sending messages to the
right node.

Once a connection is established, references to actors can be exchanged in messages which
implicitly leads to the creation of new proxies. If an actor with an unknown node id is received
in a message this way, the RE creates a new entry in its own routing table to track which
node can forward messages to the new node. Alternatively, the RE can be con�gured to
establish a direct connection to newly encountered nodes. For this purpose, nodes share
contact information in form of host and port when asked.

The rendezvous mechanisms currently deployed in CAF is based on reactive accumulation
of knowledge. Given the initial information to connect to a remote node, CAF learns the
names of remote nodes only after the connection is established. In the same way, encountering
new actors results in new proxies and new routing entires in RE given their host nodes were
previously unknown. While this approach is not as resilient as a full mesh, it requires little
overhead as it does not maintain routes or connections that are not required.

5This id includes the hash of the MAC address of the �rst network device and the UUid of the root partition
coupled with the process id.

36

4 Core Aspects & Related Work

Features such as an option to proactively build a full mesh between nodes in the system and
providing actor lookup by name are not available yet, but planned for future releases. The �rst
can increase message passing performance in distributed systems and lessen the dependency
on intermediate nodes for routing messages, while the latter improves reachability as names
can be used to look up speci�c actors and can hint at their functionality.

4.3.3 Reachability & Rendezvous on the Internet

In a more general sense, reachability is not always a given in Internet-wide communication as
nodes may be hidden behind �rewalls or NATs. The Session Traversal Utilities (STUN)[49]
allows to detect the public IP address and port in use when located behind a NAT. This requires
a STUN server located on the outside that answers STUN requests with IP address and port as
seen from its location. Locating a STUN server is possible via a DNS query. This technique
can be used to enable direct communication among multiple nodes behind NATs by “punching
holes” [50]. Since this is not always possible, Traversal Using Relays around NAT (TURN) [51]
de�nes an extension to STUN to enable communication via a relay server.

The Interactive Connectivity Establishment (ICE) [52, 53] makes use of STUN and TURN
to establish connectivity for o�er-answer protocols. Nodes that want to connect using ICE
are required to communicate via another protocol, e.g., the Session Initiation Protocol (SIP)
[54] with allows the o�er-answer exchange using the Session Description Protocol (SDP) [55].
Both nodes collect their available address-port combinations, e.g., from their own interface,
the NAT and a TURN server. ICE proceeds to systematically try STUN requests for each pair
until it �nds a working combination to establish connectivity.

HTTP tunneling [56] is another technique to traverse NATs, �rewalls or proxy servers. It
encapsulate tra�c in HTTP requests and responses over port 80 to enable communication
that would be blocked due to protocol or port restrictions otherwise, for example through
deep packet inspection (DPI). The IPsec tunnel mode [57] can achieve similar tunneling while
providing authentication, integrity and con�dentiality during transport.

4.3.4 Discussion

The straight forward approach to initiate connections between nodes in actor systems is by
knowledge of contact information, commonly host and port. This is often used as an entry
point into the actor system. Thereafter, other participating nodes can be met in various,
implementation-dependent ways. For example, the proactive creation of a full mesh network
introduces nodes to each other node in the system. Alternative approaches such as routing or

37

4 Core Aspects & Related Work

the reactive establishment of communication channels reduce the number of open channels by
only contacting peers when necessary.

Actors are usually propagated by exchanging their references in messages. Depending on
the implementation, these references can includes only basic information such as the node
and actor id which require additional action by the RE or enough information to locate the
actor in the system without additional processing. An example for the latter would be a full
paths including a transport protocol, host and port as well as an identi�er on the local host.
Lookup by name is another common mechanism that usually requires a context such as host
information to avoid ambiguous references.

Besides identi�cation of communication partners, messages must be routed through the
network to reach the addressed actor. The functionality for this can be split across di�erent
layers. The overlay created by CAF nodes currently includes functionality to forward messages
based on node ids between nodes that do not have a direct communication channel. This
enables actors to reach each other via multiple hops at the cost of complexity. Since the IP layer
already provides routing on IP addresses, the RE could rely on its functionality completely
instead of introducing intermediate hops. Having a single node with multiple network interface
into di�erent separated networks is a case that is handled more easily by the hybrid solution
and would require explicit handling when routing is located completely in the underlay.

NAT and �rewall traversal have not been considered yet. Although some methods can be
used without modi�cation of the framework such as a separately con�gured HTTP tunnel,
providing framework support is a more desirable solution as it could be deployed dynamically
without need to for special knowledge by users. A lot of use cases do not require the use of
either. To avoid overhead such functionality should be optionally available at compile time.

Actor migration poses some challenges regarding reachability. Propagating a new locations
for an actor imposes a data race when a message addressed to it is already in transit. Returning
an error bundled with the new location would require the sender to bu�er all messages until
receipt is acknowledged or returning the full message with the error. Both solutions are
undesirable as the �rst leads unforeseeable bu�er requirements for all messages to non-local
actors and the second puts additional load on the network. Alternatively, the previous host
could forward messages and return an error to update the location information at the sender.
For this purpose, the new host has to bu�er messages until the migration process is complete.
Moreover, lazy propagation of location updates might lead to problems if the previous host
failed in the meantime which might lead to isolation of the migrated actor, i.e., its references
would be invalidated although still available.

38

4 Core Aspects & Related Work

Tasks that use actor migration could be implemented with remote actor creation at the cost
of additional work by the developer, e.g., by creating a remote actor, initializing it with the
state of the another actor and updating existing references to point to the actor.

4.4 Security

A selected few applications run in completely protected and controlled environments. Tightly
coupled clusters and some servers fall into this category. Their networks aren’t accessible
by the public but may have gateways with restricted access. However, deploying software in
such scenarios may also require special network stacks to work over specialized hardware
such as In�niBand. VPN tunnels between distributed and trusted locations provide a lighter
coupling. As they require de�ned endpoints they �t scenarios with low mobility, but allow for
distribution in contrast to clusters clusters. While these scenarios do not require security to
be build into the framework, many others do. Depending on the application, con�dentiality,
authentication and integrity are required when exchanging messages. The communication
layer of CAF is open to attacks in several ways.

First of all, communication between nodes defaults to unencrypted messages exchanged via
TCP / IP. Thus, when communicating via a public network such as the Internet or a wireless
network, attackers with access to the network also have access to the exchanged data. Even
on seemingly safe desktop computers communication between processes could be monitored
by users or a malicious application.

Closely related is the need to authenticated nodes and the origin of messages. Without
authentication any node can join a distributed actors system—provided it obtains the necessary
information. Once joined, it can capture information, use services o�ered by actors as well as
create new actors or kill existing ones. In the same way, authentication prevents other entities
in a network from sending forged messages.

Authenticating nodes is not enough to control access as nodes that are part of an actors
system are free to send control messages to other nodes. This enables them to spawn new
actors on remote nodes and to kill existing ones, which can easily be abused to shutdown
nodes. User clients, for example may not be trusted to have such an amount of control when
running in untrusted environments.

The deployment of cryptographic solutions is strongly dependent on the application scenario
and link characteristics. Determining the requirements to secure a speci�c application is the
responsibility of the developer. CAF can support this by providing an exchangeable transport
layer to adjust the framework accordingly. The access control of CAF messages does, however,

39

4 Core Aspects & Related Work

reach into the responsibility of the runtime environment. As such, CAF should enable the
deployment of interfaces to block harmful messages.

4.5 Scalability

Building a scalable system requires engineering every partial aspect of the system. There has
been extensive research to improve the scheduler of CAF to enable scalability up to many cores
[9] while retaining a small memory footprint. Distributed scenarios have also been considered
to examine how the high-level of abstraction o�ered by CAF impacts performance compared to
low-level APIs such MPI [see 7, sections 2.3] and how CAF compares to other implementations
of the actor model [see 7, sections 7.6] in a simple distributed calculation. These benchmarks
provide a quick look at the prior performance of the stack and can be considered during the
evaluation of this work.

Scalability addresses the adjustment of the system when adding or taking away resources.
CAF should scale up to many cores in a local system, up to many nodes in a distributed system
and down to embedded devices. There are several dimensions the framework has to handle to
scale well.

Actors & Nodes The number of nodes is an dominant factor when considering scalability of the network
layer. Each nodes host its own actors and naturally requires communication with other
nodes to manage work in the system. In the same way, spawning more actors leads to
more messaging and thus may increase demand of the network layer.

Resources Resource availability and the desired usage di�er heavily between scaling directions.
Scaling up to large system requires using the available nodes to full capacity with regard
to processing power and available memory. In addition, applications may be required to
extend dynamically depending on workload or demand by temporarily acquiring new
nodes. In contrast, scaling down requires applications to get by with limited memory,
slow CPUs and limited battery power. The fewer resources are required the cheaper
the hardware that can be used for production, which is often of major interest for mass
production.

Capacity The framework is also required to scale with the number of parallel connections multi-
plexed by a node, i.e., the number of its communication partners. While communication
does not necessitate an open connection, information about remote actors and runtime
environments are tracked locally. Managing these information e�ectively and without

40

4 Core Aspects & Related Work

performance impact even for a large number of peers is required. On a constrained node,
the available resources may be limiting factor as well.

In addition to application and deployment characteristics, the implementation of the network
layer a�ects its scalability. The transmission process itself introduces memory and operational
overhead depending on the guarantees of the transport protocol in use. For each connection it
might be necessary to restore the order of received messages, observe delivery to retransmit
lost messages or to manage various streams. Deploying a security protocol introduces further
overhead to encrypt and decrypt message, check their integrity or to validate signatures which
include the management of certi�cates. These operations do not only require local memory
and processing power, but a�ect message sizes as well.

On top of the transmission process, messages have to be constructed. Since CAF uses its own
application layer protocol, its messages needs to be (de)serialized from and to the encoding
format used for transmission. Moreover, the protocol headers have to be written and parsed.
Choosing an encoding format that �ts the task and carefully designing headers for the protocol
determines how much processing is need at each endpoint. Both decisions also a�ect the
message sizes during transport. Depending on the environment, di�erent characteristics might
be desirable; when scaling up throughput might be more important than message sizes, favoring
formats that are quick to parse, while constrained environments can prioritize reducing the
size messages.

Tracking routes to actors on non-neighbor nodes adds control plane overhead to message
passing. A local information base has to be organized to allow for e�cient routing. This
requires identifying routes to new nodes, resolving redundant information as well as removing
broken ones. Building a full mesh instead of keeping routing information shifts the overhead
to the automatic management of connections and synchronization with peers. Information
about nodes need to be shared build connections and maintain the network. While this
furthers resiliency, the runtime environment may be required to track information and manage
connections it never uses.

Finally, state is shared to manage actors and nodes. The resources required to tracking
remote entities grows with the number of peers in the system. This includes state for local actor
proxies as well as the resources required to monitor nodes to notice failures and propagate
them. Deploying name servers adds further overhead to ensure information are up-to-date
and provide e�cient access to the utility without resulting in a bottleneck for communication
in the system.

41

4 Core Aspects & Related Work

4.6 Transport Binding

Binding to a speci�c transport protocol a�ects messaging guarantees and may limit deploy-
ment. Choosing a protocol that has few guarantees might lead to a lot of work to implement
functionality granted by other protocols while using a protocol that has many guarantees
might impact performance and introduce operational overhead.

Decoupling the network layer from a speci�c transport protocol enables deployment in
many di�erent scenarios and allows optimization for speci�c use cases. This is not necessarily
as simple as exchanging the implementation because a set of behaviors should remain valid to
enable transparent deployment.

A suitable interface should abstract over the network layer to allow the exchange of transport
protocols as well as adding application layer protocols or module to ensure that the guarantees
are kept in place—and potentially allow implementation of stronger or weaker guarantees
when desired. Adjusting this way requires the network layer to handle datagram as well as
stream-based protocols transparently. The following list presents possible building blocks for
our network layer:

UDP Most bare-bones and with little guarantees, the User Datagram Protocol (UDP) [58] is a
connectionless and unreliable datagram protocol on the transport layer. As such, it does
neither guarantee delivery nor maintain order or detect duplicate packets. This simplicity
allows the protocol to work without keeping state at either endpoint. The header only
includes port information, the payload length and a checksum for integrity checks.
Typical deployments scenarios are environments that have strict timing requirements
and cannot wait for retransmits or error correction as well as constrained environments
where processing power is limited resource.

TCP The Transmission Control Protocol (TCP) [59] is a connection-oriented protocol with
strong reliability guarantees. Packets are delivered in FIFO order between two processes
with guaranteed delivery using acknowledgements and retransmits. Additionally, TCP
�lters duplicate packets. As a stream base protocol, TCP delivers data as a (continuous)
stream of bytes rather than in form of datagrams. Due to these guarantees, many
protocols are build on top of TCP, provided they can accept the complexity and timing
constraints. Examples include HTTP, SMTP, SSH and many more.

SCTP A datagram based protocol like UDP, the Stream Control Transmission Protocol (SCTP)
[60] provides stronger guarantees. Datagrams are delivered reliably and can be send
via di�erent message streams with guaranteed per-stream delivery order and thus no

42

4 Core Aspects & Related Work

head-of-line blocking between streams. Furthermore, SCTP provides congestion control
and supports multihoming.

Although it was developed with Public Switched Telephone Network (PSTN) messaging
in mind, arbitrary data can be delivered. In the absence of native support, SCTP can
transported via UDP [61].

QUIC Quick UDP Internet Connections (QUIC) [62] is a young protocol that has been sub-
mitted to the IETF, but has not been adopted as of the time of this writing (July 2016).
UDP is used as an underlying transport protocol to address compatibility and legacy
systems. Key features of the protocol are low latency version negotiation and connec-
tion establishments. Similar to SCTP, multiple streams can be multiplexed as part of a
single connection which allows the avoidance of head-of-line blocking between streams.
The congestion control and loss recovery mechanism aim to be improvements over the
mechanism used in TCP.

Security is integrated in the protocol to provide authentication, integrity and encryption.
While QUIC included its own cryptography in earlier versions, it currently depends on
TLS 1.3 [63]. The protocol also authenticates its headers and encrypts most of them to
ensure the protocol can evolve without regard to middleboxes. Although the transport of
HTTP/2 is seen as a major use case of QUIC [64], the protocol can be used to transport
arbitrary data.

TLS Security for reliable transport layer can be achieved by use of the Transport Layer
Security protocol (TLS) [19]. It o�ers encryption and integrity as well authentication of
peers during the handshake. As of now, TLS version 1.2 is standardized while TLS 1.3 is
an adopted draft [65] of the Transport Layer Security working group of the IETF.

DTLS Adopting TLS to unreliable datagram protocols requires handling message loss and
packet reordering during the handshake. This is achieved by the Datagram Transport
Layer Security protocol (DTLS) [66]. Similar to TLS, it provides encryption and integrity.
As such, it introduces state and operational overhead such as handshakes.

CoAP The Constrained Application Protocol (CoAP) [67] is an application layer protocol
designed for machine-to-machine (M2M) communication in IoT scenarios. It de�nes a
request-response model adapted from HTTP that is optimized for constrained networks.
Unlike HTTP it works asynchronously via datagram protocols, such as UDP.

CoAP de�nes its own messaging layer to deal with the unreliability and asynchronous
nature of datagrams. There are two message types to determine the delivery guarantees

43

4 Core Aspects & Related Work

of a messages. The Non-con�rmable (NON) message is simply a �re and forget message
while Con�rmable (CON) messages use retransmits and acknowledgements.

HTTP The Hypertext Transfer Protocol (HTTP) [68, 69] is a widely used stateless request-
response protocol used on a great scale in the Internet. The protocol is usually used over
TCP/IP on port 80 with TLS for security.

WebRTC Short for Web Real-Time Communication (WebRTC) [70], the protocol is intended to
enable browser-to-browser or browser-to-x communication not only for data, but also for
audio and video. The protocol is noteworthy as it transparently establishes end-to-end
communication between two endpoints that may be located behind NATs or �rewalls. A
variety of protocols is used for this purpose [71].

Data is serialized into a de�ned encoding format before it is transferred over the network.
This allows a receiver with knowledge of the encoding to deserialize the data and process it.
A general challenge for data formats is the encoding of types. Basic type such as integers,
booleans and strings as well as structures structures such as arrays or list are often supported,
but knowledge of the object types and structure is required at all endpoints. Some programming
languages provide their own object encodings and allow transfer of generic objects, as seen in
the Java object serialization. C++ does not include serialization functionality as part of the
standard library and requires the developer to handle the process.

The JavaScript Object Notation (JSON) [72] is a popular encoding that has replaced the
Extensible Markup Language (XML) in many places. It encodes data in a human readable text
format, structured in key-value pairs. Based on JSON, but optimized for size and processing
requirements, is the Concise Binary Object Representation (CBOR) [73], a binary encoding
format developed for constrained environments.

4.6.1 Discussion

Exchanging the transport layers provides the opportunity to rely on the guarantees provided
by the individual protocol. The strengths of each protocol should be examined carefully and
should be maintained during usage. For example, utilizing the stream multiplexing of SCTP or
QUIC could help to prevent head of line blocking for control and error messages or be used to
spread actor communication over multiple streams for similar reasons. WebRTC on the other
hand, is an interesting showcase for the transparent establishment of end-to-end connections
and should be viewed as an example how to achieve such functionality.

CAF cannot use the serialization of its programming language as it is written in C++, which
does not include those capabilities in the STL. Instead, the framework implements its own

44

4 Core Aspects & Related Work

serialization layer that encodes objects in a binary encoding prepended with type annotations.
While serialization of basic and CAF types is included in the framework, users that want
to transfer their own classes need implement functions to encode their types and register
them in runtime environment. This process limits message exchange to other nodes that run
CAF and “know” the type annotations and their types. Otherwise the deserialization process
will fail. Brokers give developers access to low-level I/O and enable implementation of other
encoding formats or interfaces, for example, to enable message exchange with other languages
via ProtoBuf [74].

Considering the focus on scalability, transport mediums with speci�c use-cases should be
considered. High-performance computing (HPC) usually requires clusters with thousands
of cores. The prevalent technology to connect those clusters is In�niBand which o�ers high
throughput at low latency. Although abstractions exist to run TCP/IP over In�niBand, achieving
full performance requires usage of the related API.

Scaling down to constrained environments, IPv6 over Low-power Wireless Personal Area
Networks (6LoWPAN) [75] enables Internet connectivity on constrained nodes by simplifying
IPv6 functionality and optimizing related protocols. It is often used in conjunction with IEEE
802.15.4 [76], which speci�es wireless embedded radio communication.

45

5 Designing a Network Stack for CAF

Location-transparent communication between actors entrails bridging the network, which is
inherently unreliable and provides weak messaging guarantees. The runtime environment
can rely on standardized transport protocols in addition to custom application layer protocols
to adjust to the characteristics of the network. However, transport protocols o�er more than
messaging guarantees. Instead of being selected by an application for its guarantees, a transport
protocol should be selected to suit the deployment environment. As a result, relying solely on
their guarantees is not enough to provide a consistent messaging model.

Establishing guarantees independent of the transport protocol leads to redundancies and
processing overhead. Instead, the runtime environment could o�er various modules that
address a speci�c guarantee each and deploy a suitable composition depending on the transport
protocol. This allows CAF to o�er a baseline of functionality and o�er a predictable behavior
to developers. Di�erent layers of the network stack can host such functionality, starting with
an application layer protocol on top of the network stack and going down to modules closely
coupled to individual transport protocols.

The routing capabilities of the CAF overlay network require reconsideration. The current
design allows forwarding of messages via multiple CAF nodes to reach the addressed actor
and thus provides basic routing capabilities. Transport protocols only provide guarantees to
single-hop communication between two nodes and extending their guarantees to multiple
hops is a complex task. This chapter starts with a discussion of the capabilities of the overlay in
section 5.1. Section 5.2 examines what data is passed between the components that make up the
network stack in CAF. Next, Section 5.3 proposes API changes to make the new functionality
accessible to developers and Section 5.4 discusses how to introduce exchangeable transport
protocols into the network stack. Section 5.5 then discusses how the design can be applied to
the software design of CAF. Finally, Section 5.6 discusses the achieved bene�ts, the performance
impact and open questions.

With the goal to enable use of arbitrary transport protocols, this section considers TCP and
UDP as examples for the discussion.

46

5 Designing a Network Stack for CAF

5.1 The CAF Overlay Network

The main responsibility of the CAF runtime environment is scheduling actors and enabling
them to communicate transparently via the network. The two scenarios depicted in Figure 5.1
represent the simple cases the RE has to handle to enable actor communication:

Node

Actor

Node 1

A B

Node 1

A

Node 2

B
Message

Sc
en

ar
io

 1
Sc

en
ar

io
 2

Figure 5.1: Two simple communication scenarios between CAF actors.

1. Actors A and B are located on the same node. Their communication works without
involvement of the network layer. Communication failure most likely means that either
one of the actors is no longer alive or that the node fails as well.

2. The actors are running on separate nodes with an established communication channel
which introduces the network as dependence for message exchange. Their communica-
tion is interrupted in case of a network failure and the actors will consider each other
failed. Within a limited time frame recovery of the connection might be possible.

The number of nodes participating in an actor system is not limited. Even small distributed
actor systems quickly exhibit complex communication topologies. Building a full mesh as a
precaution is an easy solution to reduce the management overhead at the cost of keeping state
per connection. However, many nodes may never use many of the channels they maintain.
Establishing communication channels only once necessary could reduce the required state
and keep the management overhead to a minimum. To retain part of the robustness gained
from a full mesh, CAF could keep a few additional communication channels to avoid splitting
the system if a single node fails. Such an architecture would require an e�cient creation of
communication channels to avoid delays at runtime.

Figure 5.2 shows a simpli�ed example for a scenario that does not build a full mesh, but
remains a single system when a node fails. It depicts four nodes running one actor each.

47

5 Designing a Network Stack for CAF

Node 1

A

Node 2

B

Node 3

C

Sc
en

ar
io

 3 Node 4

D

Figure 5.2: A distributed actors system that does not build a full mesh network.

Each node maintains communication channels to two of the remaining three nodes in the
system. These channels are part of the overlay, the physical architecture could have all nodes
connected via the same switch or distributed through the Internet. Communication between
actors on neighboring nodes is straight forward and works in the same way as in the previous
scenarios. A new situation is established when an actor learns of the existence of an actor
that is not located on a neighboring node, e.g., actor A could receive a message from actor
B that contains a reference to actor D. If actor A then addresses actor D in a message, the
RE is responsible to deliver the message transparently. Following, two approaches to routing
messages are discussed.

In the following discussion, hop refers to an intermediate CAF node that may forward
messages not addressed to local actors.

5.1.1 Routing in the Overlay

Message delivery to actors on non-neighboring nodes could be handled through routing in the
CAF overlay. Nodes forward received messages which do not address local actors according
to routing entries held in a local routing table. This table is build reactively when a node
receives a message that contains a reference to an actor hosted on an unknown node. Routing
entries consist of the new node id and the node id of the neighbor that delivered the message.
Messages addressed to actors on the new node are routed via said the neighbor subsequently.
This mechanism assumes that the neighbor which delivered the message in the �rst place
knows a valid route.

For example, actor A wants to send a message to actor D. The RE would send the message
to the node that propagated the existence of node 4 earlier, e.g., node 2. After the �rst hop, the

48

5 Designing a Network Stack for CAF

node 2 would �nd that the message does not address a local actor and forward the message
according to the node id in the message header. In this case, to node 4 which hosts actor D.

As part of the design, messages between a pair of actors can take multiple routes. A failure
of node 2 (see Figure 5.2) does not necessitate that nodes 1 and 4 cannot communicate any
longer. If nodes 1 and 4 are aware that the other node can be reached via node 3, they could
try to use that route before assuming failure. Maintaining a routing table and maintaining
connectivity in the presence of failures requires signi�cant maintenance by the RE.

Detecting node failure in such scenarios requires more than the observations of a single
node as the communication between nodes 1 and 2 might be interrupted while nodes 2 and 4

are still able to exchange messages. In such a scenario, node 2 could propagate the failure of
node 1, requiring the distributed actor system to form consensus and update routes to enable
communication between actors on the a�ected nodes. For this purpose, not only used routes
but available routes would have to be tracked. Managing such a network introduces a high
amount of complexity into the overlay.

In many scenarios, communication failure cannot be resolved by routing messages via
another node in the overlay as nodes may be connected via the same infrastructure, e.g., in
closely coupled environments. In other cases, such as the failure of single router in the Internet,
retransmission of the message can be enough to solve the failure as the routing is adjusted by
the IP layer without attention of the CAF runtime environment. Redundant routing paths can
also be handled on the transport layer by the Stream Control Transmission Protocol (SCTP)
[60] or Multipath TCP (MPTCP) [77] which extends regular TCP to utilize multiple paths
simultaneously.

5.1.2 Routing in the Underlay

Routing is an essential part of communication in the Internet and handled by layers below
the network stack in CAF. Instead of implementing routing capabilities in the overlay, CAF
could rely on the IP layer for delivery between nodes. This would remove message forwarding
from the responsibilities of the RE. Looking at Figure 5.2, communication between actor A
and D would be enabled by establishing a new communication channel using host and port
information of the destination node. When node 1 receives a message containing the actor id
of actor D, it would ask the sender for contact information such as host, port and a transport
protocol to exchange messages directly, in this case with node 4 which hosts actor D.

Nodes could exchange contact information of peers proactively to increase the robustness
of the distributed actor system. In case of node failure, this could prevent nodes from being
isolated. Instead the RE could use the cached information to contact other nodes and attempt

49

5 Designing a Network Stack for CAF

to recover from the failure. While unreachability of a node would still result in unreachability
of all of its hosted actors, the rest of the system could continue to function.

Technologies such as NATs and �rewalls may hinder the creation of a communication
channel. Con�guring the transport layer to use standards such as ICE directly or in the
form of a transport protocol, e.g., WebRTC, would provide a reasonable solution to enable
connection establishment for most scenarios. Propagating such failures could be clari�ed
by introducing a appropriate failure type and distinguish them from failures of nodes or
established communication channels.

Management of such an architecture is easier compared to the overlay routing approach
described previously. It does not require routing across multiple hops (i.e., intermediate CAF
nodes). Instead transport works end-to-end between CAF instances and the guarantees it
o�ers do not have to be extended but can be relied on instead. Special cases such as the
reestablishment of broken TCP connections still require management, although at a reduced
complexity.

5.1.3 Discussion

Routing messages via multiple CAF instances is currently implemented by CAF. The RE does
not extend the guarantees of the transport layer to multiple hops for this process and instead
introduces the risk that messages arrive out of order or get lost.

When introducing new transport protocols that do not provide guarantees on their own such
as UDP, reliable ordering and delivery have to be established by the RE. While this could easily
be implemented between any two nodes in the system, running these modules independent of
the transport layer introduces considerable overhead in cases where the transport protocol
already implements similar functionality.

Since routing is already implemented on the underlay, the bene�ts of dedicated routing
implementation in CAF does not provide much bene�ts. Considering the complexity that
changes or failures in the routing topology introduce, making a case for overlay routing
becomes even harder. In contrast, relying on the routing capabilities does not only simplify the
implementation, but enables CAF to fully bene�t from the guarantees of standardized transport
implementations such as the reliability guarantees of TCP or the connectivity establishment
of WebRTC. NAT traversal with TURN [51] requires a relay server that is reachable from all
nodes hidden behind NATs that want to communicate. To provide a seamless deployment,
CAF instances would have to work as TURN assistants in such scenarios.

As a result, the redesign of the network stack focuses on the establishment of node-to-node
communication while relying on routing in the underlay. While CAF will no longer require

50

5 Designing a Network Stack for CAF

routing tables for message forwarding, new components are required to dynamically exchange
and cache addressing information with neighbors to enable communication with remote nodes
when required.

5.2 Data Flow in the CAF Network Stack

The network extension in CAF consists of several components that manage network commu-
nication including the routing capabilities currently present in CAF. The middleman provides
an API to developers and manages the brokers. Figure 5.3 shows the data �ow between the
components BASP, broker, multiplexer and the socket API:

Socket API

Broker [stream handle]

Multiplexer

BASP

Broker [datagram handle]

BA
SP

 M
sg

BA
SP

 M
sg

M
es

sa
ge

w
ith

 b
uff

er
s

By
te

s

M
es

sa
ge

 w
ith

da
ta

gr
am

s

By
te

s
fo

r
da

ta
gr

am
s

I/O
 E

ve
nt

s

By
te

s

By
te

s

Figure 5.3: Data exchanged between CAF components in the network layer

BASP This application layer protocol is used to manage distributed CAF nodes. As such, it
encapsulates messages exchanged between actors, errors that are propagated in the

51

5 Designing a Network Stack for CAF

system and enables functionality such as remote actor creation. BASP messages are
processed by brokers.

Before the redesign, the BASP included the IDs of both the sender and receiver nodes.
These were used for routing based on forwarding messages not addressed at the local
node, thus allowing multi-hop transmission.

Brokers These components provide an abstraction for the upper layers by translating node IDs to
handles which identify via which protocol messages are sent. Brokers also (dis)assemble
BASP messages to and from bytes. Assembled BASP messages are passed upwards, while
bytes are exchanged with the multiplexer. Brokers call functions to directly write bytes
into bu�ers o�ered by the multiplexer and received actor messages containing byte
bu�ers in return.

For stream-based communication, a broker can pass a continues stream of bytes to
the multiplexer. When reading, brokers have to parse messages boundaries from the
incoming byte stream. An example is the previously existing implementation based on
TCP which uses these brokers.

Working with datagrams requires additional management of a broker as the data cannot
be sent as a stream but in packets. This requires slicing outgoing messages according to
size limitations before passing them on to the multiplexer as bytes �tting into a datagram.
As a consequence, incoming datagrams potentially have to be sorted and combined to
rebuild BASP messages.

Multiplexer Mapping handles to the associated protocol and socket, the multiplexer sends the bytes it
receives from brokers to the network. Additionally, I/O events received from the socket
API allow the multiplexer to observe multiple sockets in parallel and react on incoming
data. The bytes it reads this way are passed upwards to the brokers.

The multiplexer instantiates components called “doorman” and “scribe” per socket to
handle these tasks. As their functionality is speci�c to TCP, adding new protocols requires
a protocol speci�c components that can be used by the multiplexer subsequently.

Sockets This API is an interface o�ered by the OS to enable communication between processes,
locally and in the a network. It is used by the multiplexer for reading and writing bytes.

52

5 Designing a Network Stack for CAF

5.3 Application Programming Interface

The use of a speci�c transport protocol for one communication channel should not dictate
what protocol is used for all communication on the node. Instead, choosing a protocol should
be possible per individual peer and depending on the deployment. This requires developers to
be able to specify the protocol when publishing actors or contacting remote nodes. The related
API o�ered by the middleman expects the host as a string and a port as an integer. Exchanging
these parameters with a URI enables con�guration and allows for backwards compatibility by
mapping the existing functions to the new ones using the previous default transport protocol,
i.e., TCP. This introduces a new source of errors when an unsupported protocol is speci�ed as a
scheme. Listing 5.1 shows a simpli�ed API of the a�ected functions, which are available via the
middleman. For the functions publish, remote_actor and spawn_client these changes
are straightforward. The remaining two functions (unpublish and spawn_server) did not
have an argument for the host previously, but require one now as an URI cannot contain a
port without host information. Additionally, a scheme must be included in the URI. This is of
signi�cance as di�erent actors might be published on the same port with di�erent protocols.

1 /// Tries to publish actor at port and returns either an

2 /// error or the bound port. Passing no address sets the

3 /// IN_ADDRANY option. The last argument determins whether

4 /// the flag SO_REUSEADDR is set.

5 uint16_t publish(actor, port, address, reuse);

6 uint16_t publish(actor, uri, reuse);

7
8 /// Unpublishes the given actor by closing port or all assigned

9 /// ports if 0 is passed.

10 void unpublish(actor, port);

11 void unpublish(actor, uri);

12
13 /// Acquire a proxy of the actor at host on a given port.

14 actor remote_actor(host, port);

15 actor remote_actor(uri);

16
17 /// Returns a new functor-based broker as a client for the

18 /// server at a given host:port or an error.

19 broker spawn_client(functor, host, port, arguments);

20 broker spawn_client(functor, uri, arguments);

21
22 /// Spawns a new broker as server running on a given port.

53

5 Designing a Network Stack for CAF

23 broker spawn_server(functor, port, arguments);

24 broker spawn_server(functor, uri, arguments);

Listing 5.1: Using URIs instead of host and port arguments.

A wild-card scheme could be used to allow late binding to a transport protocol. For example,
when contacting a published actor on a remote node, the RE could try the available protocols in
a con�gurable order until either the contact was successful or all available transport protocols
were tried out. A challenge with such an approach is choosing timeouts that �ts the protocol,
e.g., when using connectionless protocol such as UDP, and the deployment. The schemes
any:// or simply a star (*://) could be used for this purpose in URIs.

Reliable message delivery is not only of interest for internal management messages such
as error propagation and the related link and monitor messages, but might be desirable in
various use-cases. Since the guarantee introduces overhead when using a transport protocol
that does not provide this guarantee per default, sending a reliable message should be explicitly
enabled through the messaging API. Duplicating each function and adding a post�x such
as _reliably does not only lead to a large number of functions, but additionally is not
extensible for future adjustments. An alternative approach would be a template argument.
Since CAF already allows passing priorities as template arguments, this is a viable solution
that extends a familiar con�guration method.

An example for sending a reliable message is shown in listing 5.2. First, a URI that addresses
a non local actor is created and passed to the function remote_actor to acquire a local
proxy of the addressed actor. A local actor called sender is created to send a message to the
remote actor, called receiver. Line 7 shows how to send a message with the guarantees
given by the transport protocol, in this case UDP as indicated in the URI. In contrast, the
message in line 8 is send reliably by passing the template argument guarantee::reliable
to the send function. Adjusting guarantees of other function that send messages (send_as,
delayed_send, anonymous_send and request.) works in the same way.

Reliability is one of the guarantees CAF aims to provide across transport protocols (discussed
in the following Section 5.4). Hence, every protocol that can match a wild-card URI either
o�ers reliable delivery or CAF deploys the functionality on top.

Unlike reliable delivery, ordering cannot be decided per message. When receiving a message
marked as ordered, a context would be necessary to determine other message that might not
have arrived yet, but belong into the order. Although additional �elds in message headers could
give these information, this adds overhead to all messages. As discussed in section 4.2.2, CAF
aims to provide FIFO ordering for all messages. This ordering will be applied to all messaging

54

5 Designing a Network Stack for CAF

1 auto u = uri::make("udp://mobi42:1337");
2 // acquire a local actor proxy of the remote actor addressed by u
3 auto receiver = remote_actor(*u);
4 scoped_actor sender;
5 // Send a message with the guarantees of the transport protocol
6 sender->send(receiver, my_atom::value, "Hello");
7 // Add reliable delivery, independent of the transport protocols
8 sender->send<guarantee::reliable>(receiver, my_atom::value,
9 "World");

Listing 5.2: Introducing a template argument to adjust messaging guarantees.

and does not require a speci�c �ag. In listing 5.2, this results in "Hello" being delivered
before "World" unless the �rst message is lost.

5.4 Designing the CAF Network Stack

Relying on the routing capabilities of the underlay (see section 5.1), CAF no longer needs to
handle message delivery via multiple hops. Instead, the framework relies on the guarantees
provided by transport protocols. The set of basic guarantees we want to provide consistently
are:

1. Reliable delivery (optional)

2. Ordering (FIFO)

3. Detecting failure of peers

As the network stack should be able to handle di�erent transport protocols, TCP and UDP
will be considered as examples during the design. Looking at TCP, the �rst two guarantees
are already part of the protocol and the third one can be achieved by observing its connection
state. Reliable delivery can be strengthened even further by adding a component that tries
to extend the guarantee over TCP reconnects. In contrast, using UDP requires the RE to add
the missing functionality. As noted in section 5.2, brokers require varying implementations
depending on the transport protocol to handle the protocol speci�c packet requirements, in
the case of TCP vs. UDP either using streams or handling bu�ers to satisfy transmission via
datagrams.

While not all functionality of transport protocols is covered by these two choices, they are
on the opposing ends when looking at the included functionality. While UDP is a bare-bones

55

5 Designing a Network Stack for CAF

protocol that provides connectionless transmission of datagrams with few guarantees, TCP
streams data with strong reliability and ordering guarantees, additionally handling congestion
control and data slicing. Thus, this protocol selection provides the opportunity to examine
how CAF can strengthen the guarantees of protocol as well as how to adapt to existing ones.

Multiplexer
Transport Interface

TCP

Congestion control

Slicing

Ordering

API

Middleman

BASP

Datagram Broker

Datagram (dis)assembly

OS

Transport Interface
UDP

Slicing

Delivery

TCP handshake

Ordering

Delivery

Overlay Management

Rendezvous process

Peer management

Node failure detector

Congestion control

Stream Broker

Stream (dis)assembly

Reconnect handler

Node failure detector

Figure 5.4: Composition of the CAF network stack deploying TCP and UDP.

The design of the network stack is shown in Figure 5.4. The middleman distributes is func-
tionality across three components: (1) the overlay management exchanges contact information
in form of protocol, host and port for remote nodes with neighbors to allow messaging remote
actors without routing in the overlay, (2) the application layer protocol BASP used to manage
the distributed CAF nodes and (3) a broker for each usable transport protocol. Brokers translate
between BASP messages and bytes. In addition, they instantiate additional components to
customize the guarantees of their respective protocols. The box colors determine their a�nity

56

5 Designing a Network Stack for CAF

to speci�c protocols. Yellow boxes represent general functionality that should be provided
independent of the transport protocol. Orange boxes are speci�c to TCP and blue boxes are
speci�c to UDP while purple boxes concern the overlay.

In the example case, the stream broker is responsible for TCP. It adds high level functionality
to handle failure detection and TCP reconnects in addition to a component to read and write
BASP message from and to a byte stream. The second broker handles UDP datagrams. Similar to
the stream broker it deploys a failure detector and a component to translate between datagrams
and BASP messages. Additionally, it requires a component to slice BASP messages into packets
and to order incoming messages, to be able to rebuild BASP messages that were sent in multiple
datagrams as well as to satisfy the FIFO ordering guarantee. The delivery component is enables
the requirement for reliable delivery, but is only used optionally depending on the user input.
A reconnect handler is not deployed as UDP messaging does not have connections.

The multiplexer is a low-level component that interfaces with the OS and uses the socket
API to receive and sent data. In Figure 5.4 it utilizes the transport protocols UDP and TCP
via a common transport interface. This interface uni�es protocol speci�cs to avoid adjusting
the multiplexer to each individual protocol. The TCP protocol provides general required
functionality (slicing, delivery, ordering and congestion control) as well as a TCP speci�c
handshake. In contrast, UDP includes no high-level functionality itself, pushing much more
responsibility into its broker.

5.4.1 Design Considerations

Overlay management This new component ensures node-to-node connectivity by exchang-
ing contact information such as host, port and protocol information with peers. Furthermore, a
handshake between CAF nodes could be handled by this component. Locating this functionality
above BASP in the stack allows the introduction of new BASP messages for these management
tasks. Operating solely on top of BASP also provides a separation from transport protocol
dependent functionality.

Brokers Extending protocol guarantees in the brokers is a straight forward solution as they
already require protocol dependent functionality to translate between the incoming data and
BASP. Bundling protocol speci�c functionality on this layer separates components upwards in
the stack from transport dependent logic. An alternative approach could be to use the same
guarantee-adjusting components for all protocols. While this would simplify the design, a large
overhead would be introduced to all protocols that already implement some of the guarantees.
While some components, e.g., ordering or delivery, can be reused for multiple protocols, even

57

5 Designing a Network Stack for CAF

components that provide general functionality such as a failure detector can bene�t from
protocol speci�c implementations. As an example, a TCP failure detector could monitor the
connection state to detect failures and avoid additional heartbeat messages. Protocol dependent
functionality is not only required, but can enables a more e�cient implementations. Brokers
are a �tting wrapper for this task.

Multiplexer As shown in Figure 5.3, the multiplexer exchanges data with brokers deployed
by the middleman. Even though the multiplexer uses protocols via a uni�ed interface, the data
passesed to the brokers is protocol dependent and requires di�erent processing.

Drawing functionality from brokers into the multiplexer and bundling guarantee-adjusting
components with the transport protocol they augment would allow gathering of all transport
protocol related functionality in one layer. For example, a UDP-based transport bundle could
include components for ordering and reliability guarantees through “pre-sending” and “after-
receiving” callbacks in the multiplexer. However, this would require the multiplexer to interpret
the received bytes in order to perform these operations and add complexity to the multiplexer.
Separating functionality of the transport protocols from framework-speci�c adjustments
separates the concerns and eases the extension of the individual components, e.g., to add new
transport protocols or exchange the ordering or reliability guarantees.

Transport Interface The uni�ed transport interface allows the multiplexer to handle various
protocols by wrapping them each in a thin layer. Developers that want to integrate a new
protocols only have to satisfy such an interface and provide a list of functionality o�ered by
the protocol to allow the broker to handle the missing functionality. The components listed in
Figure 5.4 might not be exhaustive, but allow adjusting guarantees to the set CAF wants to
provide for actor communication.

5.5 So�ware Design

Introducing the abstract design (see Figure 5.4) to CAF requires a few independent tasks. The
�rst one introduces URIs and extends the API of the multiplexer to accept URIs as arguments.
The second task decouples CAF from TCP and enables the use of other transport protocols.
Lastly, the runtime environment has to be stripped of its overlay routing capabilities and
instead be enabled to communicate with remote hosts directly.

Figure 5.5 shows the related API in the middleman. The top �ve functions existed previously
and received a new overloaded function that accepts a URI instead of host & port arguments.

58

5 Designing a Network Stack for CAF

system: actor_system
backend: multiplexer

middleman

publish(actor, port, host, reuse_addr): port
unpublish(actor, port): void
remote_actor(host, port): actor
spawn_client(functor, host, port, arguments): broker
spawn_server(functor, port, arguments): (broker, port)

publish(actor, uri, reuse_addr): port
unpublish(actor, uri): void
remote_actor(uri): actor
spawn_client(functor, uri, arguments): broker
spawn_server(functor, uri, arguments): (broker, port)

…

Figure 5.5: Introducing URIs to the middleman.

Existing functions create a URI object internally and call their overload to ease maintenance in
the future. Without introducing new transport protocols to CAF, the only accepted scheme is
tcp which maps to the existing TCP-based backend of CAF and is used as the default scheme.
Once multiple protocols are available, each function accepting a URI as input will dispatch
further functions calls depending on the scheme.

Introducing a new transport protocol is a more complex task. Protocols and their interfaces
di�er greatly, requiring a varying degree of integration into the runtime environment. Easy to
integrate are protocols that extend functionality or can be encapsulated in an available protocol.
HTTP tunneling between CAF nodes is an example for such a protocol as it only requires
altering the payload, but uses the same sockets and calls as TCP. contrast, protocols that di�er
greatly in their behavior and interface require integration into CAF, as will be discussed with
regard to UDP. Before discussion how protocols can be integrated into CAF, the following
paragraphs provide an overview over the implementation of TCP.

59

5 Designing a Network Stack for CAF

The management of TCP is divided into two high-level classes (doorman and scribe) and
two low-level classes (acceptor and stream). The high-level classes are located between the
broker and the low-level classes where they o�er an interface for sending data over connections
and provide incoming data wrapped in actor messages. In contrast, the low-level components
handle read and write events and interface with the socket API to send and receive. A doorman

awaits new TCP connections and interfaces with the acceptor component which waits for
and accepts incoming TCP connection attempts. The class scribe manages an established
TCP stream using the stream component. Figure 5.6 shows how the classes scribe and stream
are related and embedded between the broker and multiplexer. The Figure display inheritance
as vertical relationships and interactions as horizontal relationships. Abstract interfaces are
written in italic font.

The abstract class broker_servant de�nes a high level interfaces and ensures that derived
classes can manage their related low-level components. The derived class scribe implements
the interface used by brokers to sent messages. Each broker implementation is derived from
the abstract broker and keeps track of the broker_servants it manages. Derived from the
class scribe is the local class impl that adds the interaction with the low-level class stream.
Derived from an event_handler, a stream reads and writes data to and from the network. It
is executed by the multiplexer which implements an event loop to manage its components.

Data �ows from left to right when it is send and in the reverse direction when it is received.
For sending messages, a broker looks up the scribe responsible for the connection and passes
its data. In turn, the scribe passes the data to its stream which writes the data to the related
socket once socket bu�er has space available. On reception, the stream is noti�ed when data
has arrived on the socket. It accepts the data and passes it to the responsible scribe where the
data is wrapped into a local actor message and sent to the broker that manages the scribe.

stream

broker_servant

scribe

impl
1 1

multiplexer

1*
default_multiplexerabstract_broker

*
event_handler

broker

1

Figure 5.6: The relation between the high level scribe and the low-level stream.

60

5 Designing a Network Stack for CAF

Implementation of a protocol that uses an existing protocol for transport can be done via
protocol policies. A policy con�gures the behavior of a class and is implemented against an
implicit interface. Depending on the design a class that is con�gured by a policy either holds
the policy as a member or derives from it. Figure 5.7 depicts the relation between a class
and its policy, using the classes scribe and doorman as an example. To con�gure the TCP
implementation, a policy for both components would have to be implemented. Each policy
de�nes a set of functions that the con�gured component calls during processing.

The policies depicted in Figure 5.7 each require a function copy that initializes a new policy
object with a blank state or returns itself it no state is required for processing. Further, the
handshake_policy requires a function that returns a new communication_policy to
pass to the scribe that handles a the connection accepted by the doorman. This allows the
doorman to pass on details negotiated during the handshake. The remaining functions allow
pre- and post-processing of messaging data.

In this case, each component can be con�gured with up to one policy—no policy denotes use
of the raw protocol. In turn, a policy object can used by any number of components as long as
it does no hold state, and must be copied otherwise. In the presence of a policy, a component
calls the related policy functions as part of its regular procedure to allow additional processing
steps before sending and after receiving data.

multiplexer

scribe

doorman

protocol_state: state

communication_policy<scribe>

copy(): communication_policy
before_write(…): bool
after_read(…): void
shutdown(…): void

protocol_state: state

handshake_policy<doorman>

copy(): handshake_policy
create_communication_policy(): communication_policy
before_accept(…): bool
after_accept(…): bool
shutdown(…): void

* 0..1

* 0..1

Figure 5.7: Protocol policies extend the functionality of a “raw” transport protocol.

Protocols that do not map to an available “raw” transport protocol require integration into
the framework similarly to the TCP integration discussed above. This requires implementation
of a component to start communication with a remote endpoint and a component that provides

61

5 Designing a Network Stack for CAF

a local endpoint to allow remote nodes to initiate communication. The multiplexer uses the
classes already mentioned for TCP: the doorman and the scribe as a high-level abstraction
towards the broker and the acceptor and stream to handle the low-level events and perform
socket operations.

UDP is an example of a protocol that requires a deeper integration as it cannot be imple-
mented as a policy. It uses a di�erent socket type, packs data in datagrams and is connectionless.
However, its communication procedure can be separated into client-server roles, similar to
the TCP implementation. A local socket is open and awaits contact from a remote socket,
and then creates a dedicated socket for each remote endpoint. In CAF this maps the classes
dgram_doorman and dgram_acceptor which wait for contact from new remote endpoints
and instantiate a dgram_scribe and dgram_stream to handle the message exchange with
the remote endpoint subsequently. Additional management is required to manage addresses of
remote endpoints as well as sending and receiving datagrams as there are no connections these
components can rely on. For optimizations, the number of open sockets could be reduced as a
single socket can be used to send messages to multiple endpoints.

CAF brokers are a generic component that can be implemented by users of the framework.
They provide an actor-based interface for network I/O, e.g., the translation between actor
messages and HTTP requests and responses. A broker itself is an actor that reacts to a de�ned
set of messages which are sent by broker servants (e.g., active scribes). The BASP broker—the
class basp_broker inherits from the class broker in Figure 5.6—is the broker implementation
responsible for the message exchange between CAF nodes including error propagation, remote
spawn and general messages. In addition to messages from its servants, the BASP broker
accepts messages to publish actors or initiate contact with remote actors. These messages are
sent by the middleman as part of the related API calls.

The design in Figure 5.4 depicts two separate brokers, responsible for TCP and UDP. While
this matches the set of messages passed upwards from the servants, the BASP broker is
a single entity that takes on both roles—and might get additional functionality for future
protocols. This design allows easy sharing of guarantee-strengthening capabilities, once
ordering is implemented in the BASP broker for datagrams, other protocols can make use of
the functionality as well.

The overlay management is hooked into the BASP broker which maintains a routing table
that maps node IDs to handles of the responsible broker servants. As part of the redesign,
the routing table will be replaced with an address cache to manage information about peers
consisting of node IDs, addresses and local endpoints, should they exist. To exchange addresses
with neighboring nodes, the BASP protocol can be updated to include message types that �t

62

5 Designing a Network Stack for CAF

task. Addressing remote nodes reactively requires a small cache to store messages until the
application handshake is completed. In parallel to message exchanges, the RE can start to
share its address data with a new peer and update its local the address cache.

5.6 Discussion

The move away from overlay routing to a dynamic creation of communication channels
provides two major bene�ts. First, it simpli�es message delivery by stripping away routing
decisions and handling of associated failures. Second, by relying on the routing capabilities of
the underlay, guarantees provided by transport protocols can be adapted and—in contrast to
routing in the overlay—do not need to be extended to multiple hops.

A new component is responsible to enable communication with peers. This management
component can perform an application handshake that exchanges contact information with
neighbors to allow address other peers when necessary. Contact information include a transport
protocol in addition to host and port information. A single node may be reachable via di�erent
protocols and have multiple actors published on various ports. The address cache should
address this and allow con�guration of a preferred protocol. Upon receipt of a message that
includes an actor ID from an unknown node, the runtime environment tries to contact the
host node. In case it does not have address information cached, it requests information from
the sender. Encoding location information into actor IDs can be considered as CAF does not
allow actor mobility. Such a change should considered carefully and examined with regard to
e�ciency as actor handles are passed around and accessed frequently.

Brokers are decoupled from TCP and enabled to handle arbitrary transport protocols. For this
purpose, a broker can instantiate modules that strengthen the protocol guarantees. The modules
available to the runtime environment enable usage of TCP and UDP, but can be extended later
on, either for optimization to speci�c environments, or when adding new transport protocols
with di�erent requirements. Adding an abstract interface for transport protocols allows the
multiplexer to handle each protocol that is wrapped in the interface. This allows bundling
information with each protocol, such as a scheme to select it for communication and its features
to enable brokers to handle only the necessary guarantees.

Detecting failure of a single neighbor is often addressed and can be implemented with
varying complexity. A simple implementation for CAF would either monitor transport layer
connections or test liveliness more actively, e.g., by sending regular heartbeats. For larger
distributed systems determining node failures further requires consensus as nodes may observe
di�erent behavior. This requires further thoughts and a separate implementation.

63

5 Designing a Network Stack for CAF

The default protocol for communication will continue to be TCP, which provides strong
guarantees on the transport layer and requires CAF to add little. Since TCP connections can
break at times, the delivery guarantees provided by the protocol could be further strengthened
by implementing a mechanism that allows the RE to re-establish such broken connections.
However, this is an expensive process as it requires bu�ering messages in the meantime.

The software design is not as straightforward as the general design concept. A uni�ed
transport interface towards the multiplexer is not provided for arbitrary transport protocols.
Implementing UDP requires deep integration into the framework. The protocol uses its own
socket types and requires the BASP broker to handle datagrams. In contrast, implementation
of an HTTP tunnel requires an additional step to wrap messages into HTTP. This step can
be performed by broker servants while passing data between brokers and event handlers. A
protocol policies implements such functionality and con�gures a servant for the task.

64

6 Implementation

The implementation of the redesigned network stack consists of the following tasks (1) intro-
ducing URIs to the API, (2) adding support for UDP, (3) introducing transport protocol policies
and (4) replacing the routing table with an address cache.

This work contributes and addresses task (1) with an implementation of a new URI class and
its integration into the API of the middleman. Task (2) is addressed as well. Two new low-level
event handlers are implemented in the multiplexer to send datagrams, receive datagrams
and handle new endpoints. The event handlers are managed by new broker servants that
provide and interface to brokers. Lastly, the BASP broker was extended work with these new
component to enable UDP communication between CAF actors.

The remaining two tasks address an extensible transport layer and rework addressing in the
CAF overlay network. While the implementations of UDP already opens the the middleman
and brokers for the integration of new transport protocols, the implementation of protocol
policies is the main contribution for task (3). Removing the routing capabilities from the CAF in
favor or reactive addressing (4) reworks the capabilities of the overlay network. These changes
should mostly a�ect the BASP broker and the protocol. Although not yet implemented, both
tasks will be addressed in the future.

The code is hosted on GitHub 1 and open source under the BSD 3-clause license, o�ering
the MIT license 1.0 as an alternative. Building CAF requires a C++11 compliant compiler and
should work on Linux, macOS, FreeBSD and Windows.

6.1 URIs

CAF utilizes URIs to identify communication endpoints between processes. This requires
the scheme, host and port �elds of an URI. The implementation parses other �elds as well,
conforming to RFC 3986 [78]. While URIs are expressed as strings, the class uri provides a
wrapper that o�ers access to individual �elds. The factory function uri::make parses a string

1https://github.com/actor-framework

65

https://github.com/actor-framework

6 Implementation

1 auto u = uri::make("udp://mobi42:1337");
2 if (u)
3 auto a = remote_actor(*u);

Listing 6.1: URI creation in CAF.

of returns an object of class optional<uri> that either contains a valid uri or nothing. This
can be tested using a boolean expression as shown in Figure 6.1.

The listing �rst calls the factory function to create URI objects from strings. The keyword
auto provides type deduction in C++, in this case for type optional<uri>. Subsequently,
the if-statement tests the optional for its contents, before a call to remote_actor access the
uri in the optional to acquire an actor proxy. Optionals allow access to their wrapped object
using the * operator while functions of the object can be accessed via ->, similar to pointer
semantics.

The parser uses a single-pass algorithm to process the input string. Each �eld begins with a
special character speci�ed in the standard which makes parsing a straightforward task. Instead
of copying parts of the URI string, the class saves a pair of iterators as bounds for each �eld.
The data is not stored in the uri object itself, but inside a private object of type uri_private
that can be shared by any number of objects. This separates the data of the object from its
access handle to achieve O(1) copy semantics. Listing 6.2 shows the immutable interface of the
class uri. It consists of the factory function (make) and accessors for individual URI �elds. As
long as the interface does not o�er mutable access to the private members, each private URI
can be shared by any number of public objects.

Pairs of string iterators saves memory compared to copying each string component while
still allowing string comparisons and conversions. The API changes to the middleman are
straightforward as discussed in 5.3.

Going forward, C++17 will allow us to replace the iterator pairs with string_view [79]. A
standardized solution is preferable as it works well with the rest of the standard library and
provides a familiar interface to C++ developers.

6.2 Middleman Adaption

The middleman translates between actor and network messages and provides an interface for
network related operations such as publishing actors or acquiring proxies of remote actors.
Extending the middleman API to accept URIs as arguments was already discussed in Section 5.5
and implemented accordingly. The middleman deploys an actor of type middleman_actor

66

6 Implementation

1 using str_bounds = pair<string::iterator,string::iterator>;
2
3 class uri {
4 public:
5 const string& str() const;
6 const str_bounds& host() const;
7 const str_bounds& port() const;
8 const str_bounds& path() const;
9 const str_bounds& query() const;

10 const str_bounds& scheme() const;
11 const str_bounds& fragment() const;
12 const str_bounds& authority() const;
13 const str_bounds& user_information() const;
14 static optional<uri> make(const string& uri_str);
15 private:
16 uri(uri_private* d);
17 intrusive_ptr<uri_private> d_;
18 };

Listing 6.2: The public interface of the URI class.

for processing calls and communication with the BASP broker—which only o�ers a messaging
interface. Middleman functions that require interaction with the BASP broker send request
to the middleman actor and block until the actor processed the task and sends an answer.
Alternatively, messaging the middleman actor directly can avoid the blocking call through the
interface of the middleman.

With the addition of exchangeable transport protocols, the middleman has to parse the URI
scheme to handle the functionality of remote_actor or publish. Scheme dispatching was
implemented as a simple string comparison to enable UDP functionality. After dispatching, the
middleman creates a corresponding broker servant and sends its handle to the BASP broker,
which assigns itself as a managing broker. For publish, the middleman actor can return the
port of the doorman directly after forwarding the doorman handle to the broker. However,
acquiring a handle to a remote actor requires the broker to contact the remote host before
returning the handle, unless the remote handle is already cached.

6.3 Enable UDP Communication

Establishing communication via UDP is handled similarly to TCP (see Section 5.5). After
publishing an actor, a local component waits for communication request from other CAF
nodes. For each request, it creates a new component to handle the data exchange with the new

67

6 Implementation

Broker Servants Event Handlers
Task TCP UDP TCP UDP
Handle new endpoints doorman dgram_doorman acceptor dgram_acceptor

Exchange messages scribe dgram_scribe stream dgram_stream

Table 6.1: The components handling TCP and UDP communication in CAF.

endpoint. Acquiring a handle to a remote actor works by creating a local component to initiate
contact, create the local actor proxy and handle the subsequent data exchange.

Each communication between CAF nodes begins with an application layer handshake that
exchanges node identi�ers. The UDP implementation opens with the client handshake as a
�rst message and expects a server handshake message in return. The runtime can decide to
terminate the communication endpoints once the handshake is complete and it determines
that it already has a local endpoint to communicate with the same CAF node. This procedure
requires minimal changes to the handshake protocol—for TCP-based connections the server
opens with the handshake after accepting the connection—but uses the same message types.
All subsequent BASP messages are processed independent of the transport protocol.

Adding UDP capabilities to the underlying components requires: (1) low-level event handlers
responsible for reading and writing datagrams, (2) high-level broker servants that manage their
respective low-level component and exchange data with the multiplexer, and (3) BASP broker
support. The components that handle communication in the network stack are displayed in
Table 6.1. Due to their similarity, the UDP components use the same names with a “dgram_”
pre�x.

6.3.1 Datagram Event Handlers

Low-level event handlers abstract over socket operations. They receive data on local sockets
and sent data written into their bu�ers to the network. Callbacks into their managing brokers
servants propagate events and data. The two new event handlers listed for UDP in Table 6.1
were added to the default multiplexer to handle datagram operations.

A datagram acceptor is registered for read events of its assigned socket and keeps a byte
bu�er for incoming datagrams. When called by the event loop, the acceptor reads the datagram
into the bu�er and calls the new_endpoint function of its parent broker servant. The servant
accepts the receive bu�er and reads address information of the sender from the acceptor.

Listing 6.3 shows processing of a new read event by the datagram acceptor. The listing
omits error handling to focus on its functionality. Private member variables marked with the
su�x ‘_’. The function handle_event is implemented by each event handler. Its argument

68

6 Implementation

1 void dgram_acceptor::handle_event(operation op) {
2 if (mgr_ && op == operation::read) {
3 if (!receive_datagram(bytes_read_, fd(), rd_buf_.data(),
4 rd_buf_.size(), sa_, sa_len_))
5 // handle error
6 if (bytes_read_ > 0) {
7 std::tie(host_,port_) = sender_from_sockaddr(sa_, sa_len_);
8 if (!mgr_->new_endpoint(rd_buf_.data(), bytes_read_))
9 // handle error

10 }
11 prepare_next_read();
12 }
13 }

Listing 6.3: A datagram acceptor receives a datagram.

signi�es the operation to process the event. The datagram acceptor only handles read events
and ignores other types of events. First, the function checks if the acceptor has a manager
assigned (accessed through the mgr_ member) and was called to handle a read event (line 2).
Then, it calls the function receive_datagram which performs the call to recvfrom of the
socket API. The function accepts an integer per reference as a �rst argument which is �lled
with the amount of bytes read. The second argument is the socket �le descriptor for receiving,
followed by a receive bu�er and its size. The last two arguments are a sockaddr_storage
and its size which are used to store the address of the sender. If no error occurred and payload
was received—datagrams of size zero are valid but can be ignored here—the acceptor parses
host and port information from the sockaddr_storage before calling its manager to process
the new information (line 8). Finally, the acceptor prepares the next read event (line 11) which
ensures that the receive bu�er is sized correctly.

A datagram stream is registered for read as well as write events. Similar to the acceptor,
it keeps a byte bu�er for incoming datagrams. In addition, a queue with byte bu�ers holds
outgoing messages, each sent as a single datagram. Message bu�ers appended to queue should
adhere to network and datagram limits since the stream does not perform slicing.

The function handle_event of the datagram stream uses a switch statement to di�erent
between read and write operations. Listing 6.4 shows how read events are processed while
Listing 6.5 depicts the code for write events. Read events are processed similarly in acceptors
and streams. First, the stream calls the function receive_datagram to read the datagram
into a local bu�er. It passes a local variable to store the number of received bytes as a �rst
argument the socket �le descriptor as a second argument. Followed by the receive bu�er
and its size. The last two arguments are a sockaddr_storage and its length to accept the

69

6 Implementation

1 case operation::read: {
2 if (!receive_datagram(bytes_read_, fd(), rd_buf_.data(),
3 rd_buf_.size(), sa_, sa_len_))
4 // handle error
5 if (bytes_read_ > 0) {
6 std::tie(host_, port_) = sender_from_sockaddr(sa_, sa_len_);
7 if (!reader_->consume(&backend(), rd_buf_.data(), bytes_read_))
8 // handle error
9 }

10 prepare_next_read();
11 break;
12 }

Listing 6.4: A datagram stream received a datagram.

address information of the sender. If the datagram was received successfully and contained
payload, the stream parses the information of the sender (line 6) and propagate the event to its
managing broker servant (reader_) via the function consume (line 7). It expects a pointer to
the multiplexer, a pointer to the received data and the number of received bytes. Finally, the
stream prepares for the next operation (line 10) which prepares a the receive bu�er for the
next read event.

Listing 6.5 shows how read events are handled by a datagram stream. In addition to the
queue with outgoing messages, a stream keeps a send bu�er that contains the next outgoing
message (wr_buf_). The function send_datagram wraps the sendto call of the socket API
(line 3). It accepts a reference to an integer as a �rst arguments that will be assigned with the
number of written bytes. The second argument is the �le descriptor of the sending socket.
The next two arguments are the send bu�er the number of bytes it contains. The last two
arguments indicate the receiver stored in a sockaddr_stroage and its size. If the datagram
was sent successfully and the stream was con�gured to notify its manager (writer_) about
send events, it calls function datagram_sent. Finally, the stream prepares the next write
event (line 8). This operation moves the head of the queue into the send bu�er (wr_buf_) or
deregisters the datagram stream from receiving write events—until new data is appended to its
queue.

UDP event handlers require con�guration of the sizes of their receive bu�ers. A datagram is
received in single recvfrom call, discarding excess bytes that do not �t into the bu�er. They
o�er a member function configure_datagram_size to allow con�guration of the their
bu�ers.

70

6 Implementation

1 case operation::write: {
2 size_t wb; // written bytes
3 if (!send_datagram(wb, fd(), wr_buf_.data(), wr_buf_.size(),
4 remote_addr_, remote_addr_len_))
5 // handle error
6 if (ack_writes_)
7 writer_->datagram_sent(&backend(), wb);
8 prepare_next_write();
9 break;

10 }

Listing 6.5: A datagram stream sends a datagram.

6.3.2 Datagram Broker Servants

Brokers interact with the event handlers through broker servants. The servants implemented
for UDP are dgram_doorman and dgram_scribe listed in Table 6.1. In addition to callbacks
to propagate errors, the servants o�er the callbacks used by the datagram acceptor and stream
in the listings above.

While a doorman that accepted a TCP connection can initialize a new scribe with the
socket handle returned from accept, there is no similar function for UDP. Instead, a datagram
acceptor calls the function new_endpoint of its managing broker servant, depicted in Listing
6.6. The function creates a new datagram scribe responsible for communication with the new
endpoint before forwarding the event to the BASP broker. It accepts a pointer to a bu�er with
the received datagram and size of the bu�er as arguments. The acceptor_ member is the
datagram acceptor that called the function. It o�ers access to the address information of the
last sender through the function last_sender and access to the multiplexer via the function
backend which is used to create new broker servants.

1 bool new_endpoint(const void* buf, size_t num_bytes) {

2 auto& dm = acceptor_.backend();

3 auto endpoint_info = acceptor_.last_sender();

4 auto fd = new_dgram_scribe_impl(endpoint_info);

5 auto hdl = dm.add_dgram_scribe(parent(), fd, endpoint_info);

6 return dgram_doorman::new_endpoint(&dm, hdl, buf, num_bytes);

7 }

Listing 6.6: The new_endpoint callback of the datagram doorman.

First, a new socket is created via the function new_dgram_scribe_impl (line 4) which
creates a socket for a datagram scribe and binds it to an open port. The function accepts

71

6 Implementation

endpoint information to create a socket matching the protocol version. Next, a new datagram
scribe is created via the function add_dgram_scribe of the multiplexer (line 5). It accepts
a pointer to the managing broker (acquired by parent()), a socket and information of the
endpoint the scribe is responsible for. The function returns a handle to the newly created
datagram scribe. Lastly, the function new_endpoint of the base class is called. It packs the
arguments in a message and sends it to the parent broker.

The message sent to the broker is of type new_endpoint_msg, see the �rst struct in
Listing 6.7. In addition to a handle that identi�es the datagram doorman that sent the message
(source), the message contains the received datagram (buf), a handle to the scribe responsible
for the new endpoint (handle) as well as the port of the socket that received the datagram—
which is used to look up the published actor.

Datagram scribes o�er the function consume called by datagram streams after receiv-
ing a message. The consume function packs the received message in a message of type
new_datagram_msg, the second message type listed in Listing 6.7 and sends it to the broker.

1 /// Signalizes newly discovered remote endpoint to a broker.

2 struct new_endpoint_msg {

3 // Handle to the datagram endpoint that sent the message.

4 dgram_doorman_handle source;

5 // Buffer containing the received data.

6 std::vector<char> buf;

7 // Handle to new datagram scribe responsible for the communication

8 dgram_scribe_handle handle;

9 // Port of the addressed actor

10 uint16_t port;

11 };

12
13 /// Signalizes that a datagram with a certain size has been sent.

14 struct new_datagram_msg {

15 // Handle to the endpoint that received the data.

16 dgram_scribe_handle handle;

17 // Buffer containing received data.

18 std::vector<char> buf;

19 };

Listing 6.7: Datagram related message types handled by brokers.

72

6 Implementation

6.3.3 Datagram Processing in the BASP Broker

Brokers provide an actor-based abstraction over network I/O. Broker servants—such as the
doorman and scribe—notify their parent broker about received data and other network events
by sending messages. The BASP broker is a stateful actor, i.e., a function-based actor that keeps
an object of a speci�ed type as its state. The class basp_broker is derived from the class
broker which in turn inherits from the class abstract_broker (shortly discussed in 5.5).

In conjunction with new UDP-related event handlers and broker servants, the BASP bro-
ker was extended to work with these components. This includes processing of the new
message types shown in Listing 6.7 which require separate processing from the respective
TCP-related messages, new_connection_msg and new_data_msg, to address the di�erent
communication semantics. The introduction of new servant types required small changes to
the management structure of the BASP broker and its general processing steps which enable
management of di�erent types of servant handles.

When receiving data, the handlers have to di�erentiate between the continuous byte bu�er
o�ered by TCP and the datagrams for UDP. Listing 6.8 shows how both messages are handled
by the BASP broker. The �rst message handler (lines 2 to 16) processes a stream of bytes and
the second one (lines 18 to 24) processes a stream of datagrams. The signature of each lambda
is matched against types in incoming messages. Pattern matching stops on the �rst match. In
this case, both handlers match a message that contains a single object of type new_data_msg
or new_datagram_msg, respectively. Code comments in the listing signify omitted code to
focus on the message processing.

First, each message handler queries context information (lines 3 to 4 and 19 to 20) for
processing such as the header of the current BASP message or state to provide guarantees for
datagrams. Subsequently, both handlers call the function handle of the local BASP instance
(lines 5 and 21), passing the received message as well as the header saved in the context.

The receive bu�er o�ered by TCP contains a continuous stream of bytes that requires slicing
into individual messages. A complete BASP message is acquired by handling two data messages:
one for the BASP header to parse the size of the payload, and one for the payload. For this
purpose, the message handler is called twice, changing the size of the next data chuck (lines 10
to 12) either to the payload length (line 11) or the BASP header size (line 12). This information
is passed to the scribe (line 13) before saving the connection state for the next message. The
additional boolean passed to handle (line 6) signi�es what type of message is expected, header
or payload. In contrast, a new_datagram_msg (lines 18 to 24) always contains a complete
BASP messages that can be split into header and payload by during processing in the function
handle (line 21).

73

6 Implementation

1 // Handles received data from TCP-based scribes

2 [=](new_data_msg& msg) {

3 state.set_context(msg.handle);

4 auto& ctx = *state.this_context;

5 auto next = state.instance.handle(msg, ctx.hdr,

6 ctx.cstate == basp::await_payload);

7 if (next == basp::close_connection) {

8 // close connection

9 } else if (next != ctx.cstate) {

10 auto rd_size = next == basp::await_payload

11 ? ctx.hdr.payload_len

12 : basp::header_size;

13 configure_read(msg.handle, receive_policy::exactly(rd_size));

14 ctx.cstate = next;

15 }

16 },

17 // Handles received data from UDP-based scribes

18 [=](new_datagram_msg& msg) {

19 state.set_context(msg.handle);

20 auto& ctx = *state.this_context;

21 auto err = state.instance.handle(msg, ctx.hdr);

22 if (err)

23 // handle error

24 }

Listing 6.8: The BASP broker handles received data.

The BASP broker has to adhere to the MTU limitations for BASP messages it sends via
datagrams and slice messages accordingly. It packs each slice in a separate BASP messages,
marking and numbering them to allow assembly at the receiver side. Note, that slicing is not
implemented yet, but will be added before the code is merged into the stable code base.

Listing 6.9 shows the handlers for the new connection and new endpoint messages. The �rst
message handler (lines 2 to 9) handles a newly accepted TCP connection. It acquires a reference
to the local BASP instance (line 3) and sends a handshake to the new remote endpoint. This
is accomplished with the BASP function write_server_handshake (line 4), passing the
bu�er of the responsible scribe and the port of the doorman. The port information allows the
runtime environment to lookup information of an actor published on the port. The following
call to �ush (line 6) ensures that data passed to a scribe such as the handshake written into its

74

6 Implementation

bu�er is sent. Finally, the chunk size to deliver in the next new_data_msg is set to the BASP
header size (line 7).

1 // A new TCP connection

2 [=](const new_connection_msg& msg) {

3 auto& bi = state.instance;

4 bi.write_server_handshake(wr_buf(msg.handle),

5 local_port(msg.source));

6 flush(msg.handle);

7 configure_read(msg.handle,

8 receive_policy::exactly(basp::header_size));

9 },

10 // A new UDP endpoint

11 [=](new_endpoint_msg& msg) {

12 state.set_context(msg.handle);

13 auto& ctx = *state.this_context;

14 auto err = state.instance.handle(msg, ctx.hdr);

15 if (err)

16 // handle error

17 configure_datagram_size(msg.handle, dgram_buf_size);

18 }

Listing 6.9: The BASP broker handles contact from remote nodes.

Whenever a datagram doorman receives a message from an unknown endpoint, it sends a
new_enpoint_msg to the broker which includes the received datagram. The message handler
(lines 11 to 18) has to process the message similarly to a normal datagram. For this purpose, the
handler acquires a reference to the context for communication handled by the newly created
scribe (lines 12 to 13). Thereafter, it calls the function handle of the local BASP instance
(line 14). If the message contains the expected client handshake, the server handshake will be
written into the the bu�er of the datagram scribe as an answer. Finally, the message handler
con�gures the receive bu�er for the next datagram (line 17).

6.4 Discussion

The implementation presented here enables UDP communication between distributed CAF
nodes. It is strongly in�uenced by the existing TCP implementation and follows a similar
design. For this purpose, the application handshake between BASP brokers was adapted to work
without the TCP connection. Moreover, the BASP broker was extended to parse datagrams

75

6 Implementation

into BASP messages. Datagrams are processed at the multiplexer using datagram doormen
to accept requests from new endpoints and datagram scribes for regular communication. A
newly introduced URI class allows developers to specify host and port information using the
scheme �eld to choose the transport protocol. Supported schemes are currently tpc and udp.
With basic UDP support available, the next steps concern the following topics, discussed in
Section 5.5:

Generalization The implementation presented here works for communication between CAF nodes.
However, brokers should o�er a generalized abstraction over the network and give
developers the opportunity to implement network services that o�er an actor interface
internally. The behavior of the UDP communication may be unexpected for a generic
interface, e.g., the socket and port for datagram answers may di�er from the port that
accepted the request.

Guarantees Brokers can now exchange messages with remote nodes using raw UDP. For communica-
tion between BASP brokers messaging should satisfy the set of guarantees set in Section
5.4 as part of the design. Moreover, ordering is a key requirement to slice large messages
into smaller datagrams. State in form of message bu�ers and sequence numbers can
be kept in the endpoint speci�c context kept by the BASP broker, while processing is
handled in the protocol speci�c handle function before the message is evaluated as a
generic BASP message.

Ordering requires only local processing of sequence numbers included in each message.
Messages that arrive out of order are bu�ered until all messages with a smaller sequence
number are delivered. In the presence of unreliable messaging, the broker bu�ers
messages for a limited time and discards messages that arrive late. Timeouts are realized
as delayed the broker sends to itself. On receipt it delivers the message with the sequence
number from message if that did not happen in the meantime.

Reliable delivery is more complicated as it requires communication with remote nodes.
There are many protocols o�ering reliable message transfer for example TCP [80]
implementing cumulative and selective acknowledgements or CoAP [67] which addresses
constrained environments. A simple approach resends messages if it did not receive
an acknowledgement within a certain time frame. Acknowledgement can be bundled
instead of acknowledging each receipt individually. In any case, the algorithms should
be con�gurable to address di�erent deployment scenarios. After reliability is available,
the send API requires the option to �ag messages as reliable, as discussed in Section 5.3.

76

6 Implementation

Monitoring remote nodes is required for error detection and propagation. UDP does not
have a connection state that can be observed for such purposes. Hence, a general failure
detector implemented for UDP could monitor remote nodes independent of the protocol
in use. Suitable failure detectors were discussed in Section 4.2.3.

Routing Table The routing table keeps mappings between node ids and handles to use for the commu-
nication. Capabilities for multi-hop routing have already been remove from the table.
However, no replacement for dynamic addressing has been added yet. The routing func-
tionality is generally independent of datagram communication and can be implemented
orthogonally. Without message routing, the node id �eld can be removed from the
BASP header as messages are only exchange between neighbors and always address the
receiver.

Protocol Policies Policies were discussed as a concept in Section 5.5. Before starting the implementation,
the datagram speci�c components of the middleman and multiplexer should be stable.
Similar to routing changes, this implementation is a separate task—although partially
dependent on the datagram, it can be released separately.

After adding new features to the network stack, performance measurements should con�rm
that the additional features do not impact performance. With the introduction of a new trans-
port protocol, its performance should be compared to the previously existing implementation.
Especially, the in�uence of application layer guarantees on datagrams should be measured and
compared to TCP which already includes such functionality.

The �nal step before merging the code is an update to the manual explaining (1) the guaran-
tees CAF o�ers for message passing, (2) how UDP can be used as a transport protocol in CAF
and (3) what steps are required to implement additional transport protocols.

77

7 Evaluation

CAF implements unit tests for most of its functionality in order to provide a robust and
reliable framework. The library for testing is shipped with the framework itself and called
libcaf_test. The default build con�guration includes core, io and test libraries as well as
the unit test. After building the library, the command “make test” runs all unit tests.

Functionality was added to the BASP broker, middleman and multiplexer during the imple-
mentation. The existing unit tests ensure that previous functionality was not broken. Extending
the unit tests to include datagram related functionality ensures proper algorithm functionality.
This chapter shortly summarizes testing of the implementation and discusses the limits of unit
tests.

7.1 Unit Tests

Brokers depend on the multiplexer interface for network interactions. Per default, CAF deploys
a multiplexer of class default_multiplexer for this purpose. The multiplexer can be
exchanged with an implementation called test_multiplexer which o�ers a controlled
environment for testing. This multiplexer neither implements any network operations nor
does it have its own event loop. Instead, the test environment has control over processing in
the multiplexer and can examine its state in each step.

The test multiplexer includes broker servants that draw their data from state kept by the
multiplexer instead of from event handlers. Messages can be appended directly since servants
expose their bu�ers. A call to the related read function lets the servant process the message,
e.g., by forwarding the bu�er to its parent broker wrapped in the respective message. In the
same way, messages sent by the broker can be read from the bu�ers and tested for correctness.
For UDP related testing the test multiplexer was extended with the related servant classes
dgram_scribe and dgram_doorman.

CAF implements a test suit for the BASP broker that validates its messaging behavior such
as handshake or delegate messages and tests the interaction of the broker with its servants.
The cases related to the TCP related messages and servants were extended to test the UDP
functionality as well. Listing 7.1 depicts a test case that publishes an actor and established

78

7 Evaluation

communication with it. The CAF_TEST macro in the �rst line bundles a single test and provides
a fresh �xture which provides access to the test multiplexer using the function mpx, keeps a
local actor accessible through self, and o�ers a simulated remote node through the function
jupiter.

The test case publish_and_connect_udp �rst generates a datagram doorman handle
(line 2) and creates an associated doorman for the handle in the test multiplexer, using port
4242. Subsequently, the test creates a URI, passing 0.0.0.0 as an IP allows contact from any
remote address, to publish the self actor of the �xture. Publish asks the test multiplexer for
a doorman that handles the given URI, in this case acquiring the datagram doorman created
in line 3. The return value is the port of the published actor (4242). Due to the absence of
the event loop, the function flush_runnables moves processing in the broker forward,
causing the broker to process the publish message sent by the middleman. Finally, the function
connect_node accepts a simulated node (jupiter), a doorman handle (ax) and the id of a
published actor (self) to perform and verify the handshake process.

1 CAF_TEST(publish_and_connect_udp) {

2 auto ax = dgram_doorman_handle::from_int(4242);

3 mpx()->provide_dgram_doorman(4242, ax);

4 auto u = uri::make("udp://0.0.0.0:4242");

5 CAF_REQUIRE(u);

6 auto res = system.middleman().publish(self(), *u);

7 CAF_REQUIRE(res == 4242);

8 mpx()->flush_runnables(); // processing in the basp_broker

9 connect_node(jupiter(), ax, self()->id());

10 }

Listing 7.1: Testing UDP related functionality of the BASP broker.

Checks are performed with macro CAF_REQUIRE which accepts a boolean expression and
throws an exception if the expression does not evaluate to true. The macro CAF_CHECK is a
weaker guard that only reports expressions that evaluate to false, but does not interrupt the
test.

Testing the network capabilities of the default multiplexer requires separate testing. The
unit tests include tests for the remote actor functionality. CAF bundles components such as the
scheduler, BASP broker middleman and multiplexer in a class called actor_system. Creating
multiple actor systems in a single process allows communication using local sockets. Although
timing-dependent network characteristics such as delay or jitter cannot be tested in this way,
the general functionality of remote communication using actor messages can be evaluated.

79

7 Evaluation

Especially for performance and e�ciency, distributed measurements are necessary to con�rm
functionality and scalability.

7.2 Testing Functionality

In addition to the unit tests, a small application scenario was implemented to con�rm func-
tionality of the datagram implementation. It tests the capability of the multiplexer to multiplex
communication with multiple UDP and TCP endpoints.

The test application creates a single actor and publishes it on a UDP port and a TCP port. Since
the behavior for the actor is independent of the multiplexer logic and thus not important for
this test, it only performs a simple task and answers to incoming integers with the incremented
input. Client nodes accept a URI to acquire a proxy of the server actor and exchange an integer
with the server until a limit is reached. For the test setup, 20 clients sent requests to a single
server in parallel using a mix of TCP and UDP for communication. The clients were hosted
separately form the server relying on a wireless network for communication. As a result, the
server handled the communication without interruptions showing the expected behavior for
multiplexing socket communication.

A second test scenario provokes message loss, a behavior that is expected from pure UDP
communication and should be addressed in future work. The setup consists of two CAF nodes,
each in a separate process, that communicate via a local socket.

The server application creates an actor that accepts regular messages consisting of an integer
and a vector of con�gurable size. The integer works as a sequence number to check message
loss or out of order delivery. The vector simulates payload. In addition, it reacts to a quit
message by printing the number of received messages and exiting. The client application
acquires a handle of the published server actor and passes it to a local actor that sends a
con�gurable amount of messages containing a sequence number and a payload to the server
before sending a quit message. It accepts con�guration for the number of messages, the
payload size and the interval between each message in microseconds. Both applications accept
con�guration of the transport protocol.

Message loss can be observed on a local link, sending a total of 105 messages with a payload
of 1024 bytes every microsecond leads to message loss. The amount of message loss varies
between 0% and 2%. Using a wireless network for the communication raises message loss to
more than 90% for the same con�guration. Messages are lost because the bandwidth of the
link is exceeded and messages are dropped after bu�ers run full. As expected, using TCP for
the transport reduces message loss to 0% in both cases. Consistent with these observations, the

80

7 Evaluation

using UDP requires only two thirds of the time to send its messages over the wireless network
compared to TCP.

7.3 Discussion

The unit tests implemented in CAF allow testing the functionality of the BASP broker using
an alternative multiplexer implementation. This test multiplexer was extended to test the UDP
functionality of the BASP broker. After implementing changes to the overlay routing of CAF,
the BASP unit tests should be extended to test this functionality. In addition, timing in�uences,
sharing of address information and reactive establishment of communication between nodes
requires testing. A small test setup con�rmed functionality of socket multiplexing in a mixed
setup of UDP and TCP.

Operational functionality of messaging guarantees for datagram communication can be
tested only to limited extend in unit tests. For ordering and message loss, the multiplexer
can be extended with con�guration options to drop messages or deliver them out of order.
While this ensures that the related algorithms work correctly, local testing does not provide
information about performance or real world application. Even tests between local nodes
do not provide a representative scenario as Internet-wide communication or IoT scenarios
exhibit di�erent characteristics. Furthermore, monitoring guarantees depend on timing which
is inherently di�ers greatly between a local node and a distributed system. Networks can be
simulated to achieve a more realistic scenario.

In addition to viability in di�erent deployment environments, the e�ciency and performance
of individual guarantees are of interest. Throughput, message overhead and number of control
messages are relevant and should be compared to the raw protocol usage as well as TCP.
Moreover, general system load and resource consumption should be evaluated.

81

8 Conclusion & Outlook

The network layer used today by the C++ Actor Framework (CAF) for communication in
distributed systems largely grew with its challenges. It enables the management of distributed
CAF nodes and inherits its messaging guarantees from the TCP transport protocol. Similar to
other actor systems, the messaging guarantees between CAF actors di�er under distribution
from local concurrency. For example, message passing to remote actors is often unreliable
while messages are reliably delivered to local actors.

This thesis examined how to address these discrepancies and how to improve the CAF
distribution layer in the dimensions transparency, e�ciency and robustness. For this purpose,
the requirements for inter-actor communication were evaluated. Central considerations were
the reliability aspects of message passing with regard to message delivery, ordering and
monitoring. Each aspect was evaluated with respect to e�ciency, adaptive �exibility and state
requirements to assess its impact on runtime behavior and de�ne the guarantees for message
passing in CAF.

Although delivery is reliable on a local node, the new design de�nes message delivery to
be unreliable per default. This enables light-weight message passing with minimal overhead.
Complementary guarantees are still added by the underlying transport protocol. Optional
reliable delivery decouples delivery guarantees from the transport layer and addresses a
frequently desired use-case.

Messages are ordered causally on local nodes. This is a strong guarantee and expensive to
establish in a distributed system where it requires synchronization, additional information
in each message or a controlled topology. It impacts performance and scalability enough to
refrain from causal ordering for actor message passing and fall back to FIFO ordering.

Actors reliably receive error messages when a linked or monitored actor fails. The network
introduces new types of failures for unreachable nodes due to link or node failure. Complex
applications that manage highly distributed actor systems require knowledge of these failure
types to handle failure recovery. As a result, error handling di�ers for local and remote failures.

The tight coupling to a speci�c transport protocol was revisited in conjunction with the
reliability considerations. The choice of transport protocols is relevant in many dimensions

82

8 Conclusion & Outlook

and can provide environment-speci�c functionality such as connectivity in restricted networks
or reduced latency. O�ering an extensible network layer enables developers to integrate new
transport protocols and adapt to future deployment scenarios. Late binding of transport proto-
cols allows dynamic deployment and enables developers to write �exible software. Establishing
a consistent set of guarantees in the presence of exchangeable transport protocols enables
predictable behavior as the guarantees provided by di�erent protocols may di�er greatly.

The overlay network build between distributed CAF nodes allowed message routing to
establish transparent message passing. To reduce complexity and strengthen the guarantees
o�ered by transport protocols, the routing capabilities are removed from the overlay. Instead,
the runtime environment relies on the underlay to deliver messages between each pair of CAF
nodes.

With all these considerations in mind, a design for the network stack was proposed. It
introduces URIs as a meta-type to specify endpoints using the scheme �eld to specify the
transport protocol. Additional transport protocols can be added in one of two ways. First,
protocols that require deep integration require the implementation components to manage
protocol-speci�c socket and integration into CAF brokers to handle related transmission
characteristics. Second, a policy-based design allows the extension of integrated protocols in
an easier way. The BASP broker strengthens guarantees on the application layer for transport
protocols that do not provide them by design. Available protocols can be used simultaneously
for di�erent endpoints or be chosen to match the deployment needs. Finally, the overlay routing
functionality is removed from CAF in favor of reactively established direct communication
between nodes. Thus, transferring routing responsibilities from CAF to the underlay network.

An implementation that integrates UDP transport into the multiplexer, middleman and
BASP broker was presented. It enables raw datagram transmission without guarantees and
paves the way for additional features such as ordering, reliable delivery and message slicing.
A basic evaluation extended CAF unit tests to cover datagram functionality and ensured
continued functionality of the multiplexer and its capabilities to handle UDP and TCP endpoints
simultaneously.

While this thesis discussed conceptual work extensively, the implementation of the proposed
design is not yet �nished. The following list provides an overview over the next steps towards
a complete implementation:

Datagrams The multiplexer and BASP broker were adapted to handle datagram communication. For
now, CAF does not necessarily use the same socket and port for datagram exchange with
a remote endpoint. This might not be expected by remote endpoints which could use ad-

83

8 Conclusion & Outlook

dress and port information to identify endpoints. A generalization of the implementation
eases UDP-based communication between brokers and generic UDP endpoints.

Guarantees The guarantees for message passing were de�ned in the design goals. The BSAP broker is
responsible to uphold these guarantees for actor messages independent of the transport
protocol. The implementation presented in Chapter 6 only o�ers raw UDP. In the next
steps, ordering, reliability, slicing and monitoring guarantees will be added to the BASP
broker. The implementation should be general enough to allow future transport protocols
to adapt the guarantees easily. In conjunction with each guarantee, the capabilities of
the test multiplexer will be enhanced to allow proper unit testing.

Addressing Removing routing from the CAF overlay removes the routing table from the framework.
Instead nodes exchange addresses and reactively establish communication when they
encounter actors from remote nodes. In this context, the structure of actor identi�ers
should be reconsidered. A separation of locator and identi�er for nodes in actor systems
is not necessary since actors are �xed to a node. This allows encoding of location
into their identi�ers. Moreover, implications on performance and e�ciency should be
carefully considered since actor handles are accessed and shared frequently.

Protocol Policies The interface for protocol policies can be added to CAF once the datagram implementa-
tion is complete. The general concept was discussed in Section 5.5. An implementation of
transport protocols as policies is required for validation. HTTP tunneling is considered as
a �rst implementation for the TCP-based policies. CoAP is a candidate for a UDP-based
policies and was already considered for CAF messaging in IoT environments [15].

Benchmarking The tests discussed in Chapter 7 are a �st steps to evaluate the datagram communication
in CAF. With the addition of guarantees, addressing changes and protocol policies addi-
tional unit test will be added. Going a step further, the performance of each component
should be measured and assessed. For this purpose, each guarantee will be measured
and compared to the raw protocol as well as to TCP, which already implements each
one. Furthermore, the evaluation should examine how the reworked addressing a�ects
functionality and scalability in form of message exchanges and state size.

Documentation This work provided a de�nition for the messaging guarantees of actor messages in
CAF. Since this a�ects application development, the manual should communicate this
accordingly. The process to include new transport protocols—as a policy or deeply
integrated—requires explanation and documentation to ease the process for interested
developers.

84

Bibliography

[1] D. Charousset, T. C. Schmidt, R. Hiesgen, and M. Wählisch, “Native Actors – A Scalable
Software Platform for Distributed, Heterogeneous Environments,” in Proc. of the 4rd ACM

SIGPLAN Conference on Systems, Programming, and Applications (SPLASH ’13), Workshop

AGERE! New York, NY, USA: ACM, Oct. 2013, pp. 87–96.

[2] C. Hewitt, P. Bishop, and R. Steiger, “A Universal Modular ACTOR Formalism for Arti�cial
Intelligence,” in Proceedings of the 3rd IJCAI. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1973, pp. 235–245.

[3] G. Agha, “Actors: A Model of Concurrent Computation In Distributed Systems,” MIT,
Cambridge, MA, USA, Tech. Rep. 844, 1986.

[4] G. Agha, I. A. Mason, S. Smith, and C. Talcott, “Towards a Theory of Actor Computation,”
in Proceedings of CONCUR, ser. LNCS, vol. 630. Heidelberg: Springer-Verlag, 1992, pp.
565–579.

[5] J. Armstrong, “A History of Erlang,” in Proceedings of the third ACM SIGPLAN conference

on History of programming languages (HOPL III). New York, NY, USA: ACM, 2007, pp.
6–1–6–26.

[6] Typesafe Inc., “Akka Framework,” http://akka.io.

[7] D. Charousset, R. Hiesgen, and T. C. Schmidt, “Revisiting Actor Programming in C++,”
Computer Languages, Systems & Structures, vol. 45, pp. 105–131, April 2016. [Online].
Available: http://dx.doi.org/10.1016/j.cl.2016.01.002

[8] R. D. Blumofe and C. E. Leiserson, “Scheduling Multithreaded Computations by Work
Stealing,” J. ACM, vol. 46, no. 5, pp. 720–748, Sep. 1999.

[9] D. Charousset, R. Hiesgen, and T. C. Schmidt, “CAF - The C++ Actor Framework for
Scalable and Resource-e�cient Applications,” in Proc. of the 5th ACM SIGPLAN Conf. on

Systems, Programming, and Applications (SPLASH ’14), Workshop AGERE! New York,
NY, USA: ACM, Oct. 2014, pp. 15–28.

85

http://akka.io
http://dx.doi.org/10.1016/j.cl.2016.01.002

Bibliography

[10] T. Desell and C. A. Varela, “SALSA Lite: A Hash-Based Actor Runtime for E�cient Local
Concurrency,” in Concurrent Objects and Beyond, ser. Lecture Notes in Computer Science,
G. Agha, A. Igarashi, N. Kobayashi, H. Masuhara, S. Matsuoka, E. Shibayama, and K. Taura,
Eds., vol. 8665. Springer Berlin Heidelberg, 2014, pp. 144–166.

[11] S. Srinivasan and A. Mycroft, “Kilim: Isolation-Typed Actors for Java,” in Proceedings of

the 22nd ECOOP, ser. LNCS, vol. 5142. Berlin, Heidelberg: Springer-Verlag, 2008, pp.
104–128.

[12] L. V. Kale and S. Krishnan, “Charm++: Parallel programming with message-driven objects,”
Parallel Programming using C++, pp. 175–213, 1996.

[13] M. Vallentin, V. Paxson, and R. Sommer, “VAST: A Uni�ed Platform for Interactive Network
Forensics,” in Proceedings of the USENIX Symposium on Networked Systems Design and

Implementation (NSDI), March 2016.

[14] M. Vallentin, D. Charousset, T. C. Schmidt, V. Paxson, and M. Wählisch, “Native Actors:
How to Scale Network Forensics,” in Proc. of ACM SIGCOMM, Demo Session. New York:
ACM, August 2014, pp. 141–142.

[15] R. Hiesgen, D. Charousset, and T. C. Schmidt, “Embedded Actors – Towards Distributed
Programming in the IoT,” in Proc. of the 4th IEEE Int. Conf. on Consumer Electronics -

Berlin, ser. ICCE-Berlin’14. Piscataway, NJ, USA: IEEE Press, Sep. 2014, pp. 371–375.

[16] R. Hiesgen, D. Charousset, T. C. Schmidt, and M. Wählisch, “Programming Actors for the
Internet of Things,” Ercim News, vol. 101, pp. 25–26, April 2015. [Online]. Available: http:
//ercim-news.ercim.eu/en101/special/programming-actors-for-the-internet-of-things

[17] E. Baccelli, O. Hahm, M. Günes, M. Wählisch, and T. C. Schmidt, “RIOT OS: Towards an
OS for the Internet of Things,” in Proc. of the 32nd IEEE INFOCOM. Poster. Piscataway,
NJ, USA: IEEE Press, 2013.

[18] R. Hiesgen, D. Charousset, and T. C. Schmidt, “Manyfold Actors: Extending the C++ Actor
Framework to Heterogeneous Many-Core Machines using OpenCL,” in Proc. of the 6th

ACM SIGPLAN Conf. on Systems, Programming, and Applications (SPLASH ’15), Workshop

AGERE! New York, NY, USA: ACM, Oct. 2015, pp. 45–56.

[19] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,” IETF,
RFC 5246, August 2008.

86

http://ercim-news.ercim.eu/en101/special/programming-actors-for-the-internet-of-things
http://ercim-news.ercim.eu/en101/special/programming-actors-for-the-internet-of-things

Bibliography

[20] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security,” IETF, RFC 4347,
April 2006.

[21] Lightbend Inc., Akka Scala Documentation Release 2.4.1, Nov 2015, http://doc.akka.io/
docs/akka/current/AkkaScala.pdf, Accessed: 09-02-2016.

[22] J. Armstrong, “Making Reliable Distributed Systems in the Presence of Software Errors,”
Ph.D. dissertation, Department of Microelectronics and Information Technology, KTH,
Sweden, 2003.

[23] H. Svensson and L.-Å. Fredlund, “Programming Distributed Erlang Applications: Pitfalls
and Recipes,” in Proceedings of the 2007 SIGPLAN Workshop on ERLANG Workshop, ser.
ERLANG ’07. New York, NY, USA: ACM, 2007, pp. 37–42.

[24] P. A. Bernstein, S. Bykov, A. Geller, G. Kliot, and J. Thelin, “Orleans: Distributed Virtual
Actors for Programmability and Scalability,” Microsoft, Tech. Rep. MSR-TR-2014-41,
March 2014. [Online]. Available: http://research.microsoft.com/apps/pubs/default.aspx?
id=210931

[25] M. de Graauw, “Nobody Needs Reliable Messaging,” http://www.infoq.com/articles/
no-reliable-messaging, Jun 2010, accessed: 08-02-2016.

[26] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-End Arguments in System Design,” ACM
Trans. Comput. Syst., vol. 2, no. 4, pp. 277–288, Nov 1984.

[27] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed System,”
Commun. ACM, vol. 21, no. 7, pp. 558–565, Jul. 1978. [Online]. Available: http:
//doi.acm.org/10.1145/359545.359563

[28] F. Mattern, “Virtual Time and Global States of Distributed Systems,” in Parallel and

Distributed Algorithms. North-Holland, 1989, pp. 215–226.

[29] K. Birman, A. Schiper, and P. Stephenson, “Lightweight Causal and Atomic Group Multi-
cast,” ACM Trans. Comput. Syst., vol. 9, no. 3, pp. 272–314, Aug. 1991.

[30] A. Schiper, J. Eggli, and A. Sandoz, A new algorithm to implement causal ordering. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1989, pp. 219–232.

[31] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, and P. Ciarfella, “Fast Message
Ordering and Membership Using a Logical Token-passing Ring,” in 13th Int. Conf. on

87

http://doc.akka.io/docs/akka/current/AkkaScala.pdf
http://doc.akka.io/docs/akka/current/AkkaScala.pdf
http://research.microsoft.com/apps/pubs/default.aspx?id=210931
http://research.microsoft.com/apps/pubs/default.aspx?id=210931
http://www.infoq.com/articles/no-reliable-messaging
http://www.infoq.com/articles/no-reliable-messaging
http://doi.acm.org/10.1145/359545.359563
http://doi.acm.org/10.1145/359545.359563

Bibliography

Distributed Computing Systems, ser. ICDCS ’93. Washington, DC, USA: IEEE Computer
Society, 1993, pp. 551–560.

[32] Y. Long, M. Bagherzadeh, E. Lin, G. Upadhyaya, and H. Rajan, “On Ordering
Problems in Message Passing Software,” in Modularity’16: 15th International

Conference on Modularity, ser. Modularity’16, March 2016. [Online]. Available:
http://design.cs.iastate.edu/papers/MODULARITY16a

[33] S. Blessing, “A String of Ponies,” http://www.doc.ic.ac.uk/teaching/distinguished-projects/
2013/s.blessing.pdf, Imperial College London, MSc Thesis, Sep. 2013.

[34] P. A. S. Ward, “Algorithms for Causal Message Ordering in Distributed Systems.”
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.1137&
rep=rep1&type=pdf

[35] B. Charron-Bost, “Concerning the Size of Logical Clocks in Distributed Systems,”
Inf. Process. Lett., vol. 39, no. 1, pp. 11–16, Jul. 1991. [Online]. Available:
http://dx.doi.org/10.1016/0020-0190(91)90055-M

[36] F. Adelstein and M. Singhal, “Real-time Causal Message Ordering in Multimedia Systems,”
in Proceedings of the 15th International Conference on Distributed Computing Systems, ser.
ICDCS ’95. Washington, DC, USA: IEEE Computer Society, 1995, pp. 36–43. [Online].
Available: http://dl.acm.org/citation.cfm?id=876885.880042

[37] S. C. Kendall, J. Waldo, A. Wollrath, and G. Wyant, “A Note on Distributed
Computing,” Mountain View, CA, USA, Tech. Rep., 1994. [Online]. Available:
http://dl.acm.org/citation.cfm?id=974938

[38] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of Distributed Consensus
with One Faulty Process,” J. ACM, vol. 32, no. 2, pp. 374–382, Apr. 1985. [Online].
Available: http://doi.acm.org/10.1145/3149.214121

[39] T. D. Chandra and S. Toueg, “Unreliable Failure Detectors for Reliable Distributed
Systems,” J. ACM, vol. 43, no. 2, pp. 225–267, Mar. 1996. [Online]. Available:
http://doi.acm.org/10.1145/226643.226647

[40] M. Bertier, O. Marin, and P. Sens, “Implementation and Performance Evaluation of
an Adaptable Failure Detector,” in Proceedings of the 2002 International Conference on

Dependable Systems and Networks, ser. DSN ’02. Washington, DC, USA: IEEE Computer

88

http://design.cs.iastate.edu/papers/MODULARITY16a
http://www.doc.ic.ac.uk/teaching/distinguished-projects/2013/s.blessing.pdf
http://www.doc.ic.ac.uk/teaching/distinguished-projects/2013/s.blessing.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.1137&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.1137&rep=rep1&type=pdf
http://dx.doi.org/10.1016/0020-0190(91)90055-M
http://dl.acm.org/citation.cfm?id=876885.880042
http://dl.acm.org/citation.cfm?id=974938
http://doi.acm.org/10.1145/3149.214121
http://doi.acm.org/10.1145/226643.226647

Bibliography

Society, 2002, pp. 354–363. [Online]. Available: http://dl.acm.org/citation.cfm?id=647883.
738261

[41] N. Hayashibara, X. Defago, R. Yared, and T. Katayama, “The φ Accrual Failure Detector,”
in Proceedings of the 23rd IEEE International Symposium on Reliable Distributed Systems,
ser. SRDS ’04. Washington, DC, USA: IEEE Computer Society, 2004, pp. 66–78.

[42] W. Chen, S. Toueg, and M. K. Aguilera, “On the Quality of Service of Failure Detectors,”
IEEE Trans. Comput., vol. 51, no. 5, pp. 561–580, May 2002. [Online]. Available:
http://dx.doi.org/10.1109/TC.2002.1004595

[43] C. Fetzer, M. Raynal, and F. Tronel, “An Adaptive Failure Detection Protocol,” in Depend-

able Computing, 2001. Proceedings. 2001 Paci�c Rim International Symposium on, 2001, pp.
146–153.

[44] B. Satzger, A. Pietzowski, W. Trumler, and T. Ungerer, “A Lazy Monitoring Approach
for Heartbeat-Style Failure Detectors,” in Third Int. Conf. on Availability, Reliability and

Security, ser. ARES ’08. Washington, DC, USA: IEEE Computer Society, 2008, pp. 404–409.

[45] R. Braden, “Requirements for Internet Hosts - Communication Layers,” IETF, RFC 1122,
October 1989.

[46] P. Mockapetris, “Domain names - concepts and facilities,” IETF, RFC 1034, November
1987.

[47] K. Pentikousis, B. Ohlman, D. Corujo, G. Boggia, G. Tyson, E. Davies, A. Molinaro, and
S. Eum, “Information-Centric Networking: Baseline Scenarios,” IETF, RFC 7476, March
2015.

[48] T. Desell and C. A. Varela, “A Performance and Scalability Analysis of Actor Message
Passing and Migration in SALSA Lite,” Tech. Rep., Oct. 2015, presented at the 5th
International Workshop on Programming based on Actors, Agents, and Decentralized
Control (AGERE!), held in conjunction with ACM SIGPLAN SPLASH. [Online]. Available:
http://people.cs.und.edu/~tdesell/papers/2015_agere_salsa.pdf

[49] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing, “Session Traversal Utilities for NAT
(STUN),” IETF, RFC 5389, October 2008.

[50] P. Srisuresh, B. Ford, and D. Kegel, “State of Peer-to-Peer (P2P) Communication across
Network Address Translators (NATs),” IETF, RFC 5128, March 2008.

89

http://dl.acm.org/citation.cfm?id=647883.738261
http://dl.acm.org/citation.cfm?id=647883.738261
http://dx.doi.org/10.1109/TC.2002.1004595
http://people.cs.und.edu/~tdesell/papers/2015_agere_salsa.pdf

Bibliography

[51] R. Mahy, P. Matthews, and J. Rosenberg, “Traversal Using Relays around NAT (TURN):
Relay Extensions to Session Traversal Utilities for NAT (STUN),” IETF, RFC 5766, April
2010.

[52] J. Rosenberg, “Interactive Connectivity Establishment (ICE): A Protocol for Network
Address Translator (NAT) Traversal for O�er/Answer Protocols,” IETF, RFC 5245, April
2010.

[53] J. Rosenberg, A. Keranen, B. B. Lowekamp, and A. B. Roach, “TCP Candidates with
Interactive Connectivity Establishment (ICE),” IETF, RFC 6544, March 2012.

[54] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Handley,
and E. Schooler, “SIP: Session Initiation Protocol,” IETF, RFC 3261, June 2002.

[55] M. Handley and V. Jacobson, “SDP: Session Description Protocol,” IETF, RFC 2327, April
1998.

[56] J. Hill, “Bypassing Firewalls: Tools and Techniques,” in 12th Annual FIRST Conference,
2000.

[57] S. Kent and K. Seo, “Security Architecture for the Internet Protocol,” IETF, RFC 4301,
December 2005.

[58] J. Postel, “User Datagram Protocol,” IETF, RFC 768, August 1980.

[59] ——, “Transmission Control Protocol,” IETF, RFC 793, September 1981.

[60] R. Stewart, “Stream Control Transmission Protocol,” IETF, RFC 4960, September 2007.

[61] M. Tuexen and R. Stewart, “UDP Encapsulation of Stream Control Transmission Protocol
(SCTP) Packets for End-Host to End-Host Communication,” IETF, RFC 6951, May 2013.

[62] R. Hamilton, J. Iyengar, I. Swett, and A. Wilk, “QUIC: A UDP-Based Multiplexed and
Secure Transport,” IETF, Internet-Draft – work in progress 00, July 2016.

[63] M. Thomson and R. Hamilton, “Porting QUIC to Transport Layer Security (TLS),” IETF,
Internet-Draft – work in progress 00, March 2016.

[64] R. Shade and M. Warres, “HTTP/2 Semantics Using The QUIC Transport Protocol,” IETF,
Internet-Draft – work in progress 00, July 2016.

90

Bibliography

[65] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3,” IETF, Internet-
Draft – work in progress 14, July 2016.

[66] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security Version 1.2,” IETF,
RFC 6347, January 2012.

[67] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application Protocol (CoAP),”
IETF, RFC 7252, June 2014.

[68] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee,
“Hypertext Transfer Protocol – HTTP/1.1,” IETF, RFC 2616, June 1999.

[69] M. Belshe, R. Peon, and M. Thomson, “Hypertext Transfer Protocol Version 2 (HTTP/2),”
IETF, RFC 7540, May 2015.

[70] C. Holmberg, S. Hakansson, and G. Eriksson, “Web Real-Time Communication Use Cases
and Requirements,” IETF, RFC 7478, March 2015.

[71] H. T. Alvestrand, “Transports for WebRTC,” IETF, Internet-Draft – work in progress 15,
August 2016.

[72] T. Bray, “The JavaScript Object Notation (JSON) Data Interchange Format,” IETF, RFC
7159, March 2014.

[73] C. Bormann and P. Ho�man, “Concise Binary Object Representation (CBOR),” IETF, RFC
7049, October 2013.

[74] Google, “Protocol bu�ers,” https://developers.google.com/protocol-bu�ers/, accessed
August 2016.

[75] N. Kushalnagar, G. Montenegro, and C. Schumacher, “IPv6 over Low-Power Wireless
Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and
Goals,” IETF, RFC 4919, August 2007.

[76] J. Hui and P. Thubert, “Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based
Networks,” IETF, RFC 6282, September 2011.

[77] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP Extensions for Multipath
Operation with Multiple Addresses,” IETF, RFC 6824, January 2013.

[78] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform Resource Identi�er (URI): Generic
Syntax,” IETF, RFC 3986, January 2005.

91

https://developers.google.com/protocol-buffers/

Bibliography

[79] “Working Draft, Standard for Programming Language C++,” International Organization
for Standardization ISO/IEC, Geneva, CH, Working draft n4606, Jul 2016.

[80] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective Acknowledgment
Options,” IETF, RFC 2018, October 1996.

92

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig verfasst und

nur die angegebenen Hilfsmittel benutzt habe.

Hamburg, December 8, 2016 Raphael Hiesgen

	1 Introduction
	2 The Actor Model of Computation
	2.1 Actors for Concurrency and Distribution
	2.2 Native Actors in C++
	2.3 Application Domains

	3 Problem Space
	3.1 Access Control
	3.2 Efficiency
	3.3 Flow and Congestion Control
	3.4 Identifiers
	3.5 Routing and Forwarding
	3.6 Scalable Communication
	3.7 Message Transport
	3.8 Usability

	4 Core Aspects & Related Work
	4.1 Components
	4.2 Reliability
	4.2.1 Message Delivery Guarantees
	4.2.2 Message Ordering
	4.2.3 Reliable Monitoring of Remote Actors
	4.2.4 Discussing Reliability Guarantees for CAF

	4.3 Rendezvous and Reachability
	4.3.1 Related Work
	4.3.2 Managing Distribution in CAF
	4.3.3 Reachability & Rendezvous on the Internet
	4.3.4 Discussion

	4.4 Security
	4.5 Scalability
	4.6 Transport Binding
	4.6.1 Discussion

	5 Designing a Network Stack for CAF
	5.1 The CAF Overlay Network
	5.1.1 Routing in the Overlay
	5.1.2 Routing in the Underlay
	5.1.3 Discussion

	5.2 Data Flow in the CAF Network Stack
	5.3 Application Programming Interface
	5.4 Designing the CAF Network Stack
	5.4.1 Design Considerations

	5.5 Software Design
	5.6 Discussion

	6 Implementation
	6.1 URIs
	6.2 Middleman Adaption
	6.3 Enable UDP Communication
	6.3.1 Datagram Event Handlers
	6.3.2 Datagram Broker Servants
	6.3.3 Datagram Processing in the BASP Broker

	6.4 Discussion

	7 Evaluation
	7.1 Unit Tests
	7.2 Testing Functionality
	7.3 Discussion

	8 Conclusion & Outlook

