
Bachelor Thesis
Daniel Sarnow

SACK Handling for CMT-SCTP in the FreeBSD Kernel

Fakultät Technik und Informatik
Studiendepartment Informatik

Faculty of Engineering and Computer Science
Department of Computer Science

Daniel Sarnow

SACK Handling for CMT-SCTP in the FreeBSD Kernel

Bachelor Thesis eingereicht im Rahmen der Bachelorprüfung

im Studiengang Bachelor of Science Technische Informatik

am Department Informatik

der Fakultät Technik und Informatik

der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Martin Becke

Zweitgutachter: Prof. Dr. Franz-Josef Korf

Eingereicht am: 21. März 2017

Daniel Sarnow

Thema der Arbeit
SACK Handling for CMT-SCTP in the FreeBSD Kernel

Stichworte
Concurrent Multipath Transfer, Stream Control Transmission Protocol, SACK Handling, Un-

gleiche Pfade, Asymmetrische Pfade, Performance Analyse

Kurzzusammenfassung
In den letzten Jahren hat die Anzahl der mobilen Geräte, wie zum Beispiel Smartphones, die

über mehrere Netzwerkschnittstellen verfügen, drastisch zugenommen. Als Folge dieser En-

wicklungen hat der Wunsch zugenommen alle verfügbaren Netzwerkschnittstellen für die

Übertragung von Applikationsdaten zu nutzen. Die gleichzeitige Nutzung aller verfügbarer

Netzwerkschnittstellen für die Datenübertragung kann nicht nur den Durchsatz erhöhen,

sondern auch einen besseren Schutz gegen Netzwerkausfälle gewährleisten.

Concurrent Multipath Transfer (CMT) ist eine Erweiterung des Transportprotokolls SCTP,

welches die gleichzeitige Nutzung aller Netzwerkschnittstellen erlaubt.

Sollten sich die Eigenschaften eines Kommunikationspfades (wie zum Beispiel Bandbreite,

Delay oder Fehlerrate) jedoch ändern, kann der Durchsatz in einem ungleichen Multi-Path

Szenario stark abfallen. Es kann sogar so weit kommen, dass der Durchsatz nur noch einen

Bruchteil des möglichen Durchsatzes erreicht, als wenn nur der beste Pfad für die Applikati-

onsdatenübertragung genutzt werden würde.

Da mobile Geräte oft in einer Umgebung genutzt werden, in der ungleiche Kommunikations-

pfade nicht selten sind, ist die e�ziente Nutzung von CMT sehr entscheidend. Des Weiteren

wird die erste von drei Design Regeln, welche von [1] vorgeschlagen wurden, verletzt. Die

erste Design Regel besagt, dass ein Multi-Path Flow wenigstens einen so guten Durchsatz

erreichen soll, wie ein Single-Path Flow über den besten Pfad.

In dieser Bachelorarbeit werden die Herausforderungen, die durch Load-Sharing mit CMT-

SCTP über ungleiche Pfade entstehen, dargestellt. Die Gründe für die verminderte Leistung

werden diskutiert und Lösungskonzepte werden angeboten
1
.

Für die Untersuchung von CMT-SCTP wird ein Testbed genutzt, welches größtenteils eine

voll kontrollierbare Umgebung scha�t. Das Testbed erlaubt es den Datenverkehr zwischen

1

The Ergebnisse dieser Arbeit werden über folgendes GitHub Repository zur Verfügung gestellt:

https://github.com/DanSar/ba_sctp

https://github.com/DanSar/ba_sctp

den kommunizierenden Endpunkten bzgl. der Linkeigenschaften zu verändern. Des Weiteren

werden Router Statistiken, Mitschnitte von Netzwerkverkehr und Zeitmessungen von Kernel-

routinen zur Analyse genutzt.

Die Analyse der aktuellen Implementierung zeigt, dass die Herausforderungen nicht nur mit

der CPU Leistung zusammenhängen. Somit reicht es nicht nur Lösungskonzepte anzubieten,

die algorithmisch E�zeienzprobleme lösen ohne die SCTP Spezi�kation zu ändern.

Die Bachelorarbeit nutzt die bei der IETF als Referenzimplementierung genutzte SCTP Imple-

mentierung in FreeBSD.

Daniel Sarnow

Title of the paper
SACK Handling for CMT-SCTP in the FreeBSD Kernel

Keywords
Concurrent Multipath Transfer, Stream Control Transmission Protocol, SACK handling, Dis-

similar Paths, Asymmetric Paths, Performance Analysis

Abstract
Over the last few years the amount of mobile devices with multiple network interfaces, such

as smartphones, has increased dramatically. As a result of this development the urge to use all

available network interfaces has emerged. The simultaneous use of network interfaces allows

an increase in application data throughput and improves resilience to network failure.

Concurrent Multipath Transfer (CMT) is an extension to the transport protocol SCTP that

allows the simultaneous use of multiple network paths between two peers.

However, if the characteristics (i.e. bandwidth, delay and error rate) of these paths change

to be more dissimilar the overall throughput can su�er greatly. It can even reach the point

where the throughput plummets to only a fraction of the possible throughput that would be

achieved if only the best network path would be used to transfer user data.

Since mobile devices often operate in an dissimilar path environment an e�cient usage of

those paths by CMT is crucial. Moreover, it violates the �rst of three design goals proposed by

[1] which states that a multi-path �ow should perform at least as well as a single-path �ow on

the best path.

In this bachelor thesis, the challenges of load sharing with CMT-SCTP over dissimilar paths

focusing on bandwidth, as described in the previous paragraph, are demonstrated. The cause

for these issues is identi�ed and solutions are proposed
2
.

To demonstrate and identify this problem a testbed is used in order to have full control over

the test environment. The testbed allows to shape tra�c on two disjoint paths between two

peers. In addition router statistics, network traces and time measurements of internal SCTP

routines are utilized to identify the cause.

The analysis of the current implementation shows that the issues are not solely CPU related

and therefore cannot only be solved algorithmically without altering the SCTP speci�cation.

This thesis focuses on the implementation of SCTP in FreeBSD since it is used as the reference

implementation for standardization at the IETF.

2

The results of this thesis have also been made available on the following GitHub repository:

https://github.com/DanSar/ba_sctp

v

https://github.com/DanSar/ba_sctp

Contents

1. Introduction 1
1.1. Motivation . 1

1.2. Goals . 3

1.3. Organization . 3

2. Related Work 4

3. Basics 5
3.1. Stream Control Transmission Protocol (SCTP) 5

3.2. Concurrent Multipath Transfer (CMT-SCTP) 14

4. Test Environment 18
4.1. Testbed . 18

4.2. Analysis Tools . 20

4.3. Measurement Procedure . 23

5. Problem of E�iciency 26
5.1. Analysis . 26

5.1.1. Repetition of the Measurement on di�erent Hardware 26

5.1.2. Analysis of Network Tra�c with Wireshark 27

5.1.3. Analysis of SCTP Kernel Functions . 29

5.1.4. Analysis of SCTP Kernel Source Code 32

5.2. Approach . 34

5.3. Evaluation . 38

6. Problem of Protocol 48
6.1. Analysis . 48

6.1.1. Bu�er Blocking Issues . 49

6.1.2. Timer-based Retransmissions . 49

6.1.3. Non Renegable Selective Acknowledgment (NR-SACK) 51

6.2. Approach . 54

6.2.1. Flag no_fr_allowed in Fast Retransmission algorithm 55

6.2.2. SACK Window . 56

6.2.3. Chunk Rescheduling . 58

6.3. Evaluation . 59

6.3.1. Flag no_fr_allowed in Fast Retransmission algorithm 59

6.3.2. SACK Window . 61

vi

Contents

6.3.3. Chunk Rescheduling . 64

7. Conclusion 66

A. Appendix 68
A.1. Testbed . 68

A.2. Additional Measurements . 69

A.3. Additional Work . 70

vii

List of Tables

3.1. Comparison between SCTP and TCP . 6

3.2. Important SCTP System Controls . 17

5.1. SCTP Datagram Sent States . 35

viii

List of Figures

1.1. Throughput measurement of CMT-SCTP over dissimilar paths 2

3.1. SCTP in the IP Reference Model . 5

3.2. Example of an SCTP Association . 8

3.3. Structure of a SCTP Packet . 9

3.4. Structure of a SACK Chunk . 10

3.5. Example of a SACK Chunk . 12

3.6. Example of a shared bottleneck . 15

4.1. Testbed Setup . 19

5.1. Comparison of two testbeds with di�erent hardware 27

5.2. Histogram of the number of selectively acknowledged TSNs 28

5.3. DTrace hotkernel analysis . 30

5.4. Histogram of the time spent in the kernel-level fuction sctp_handle_sack . . . 31

5.5. Flow Chart of the kernel-level function sctp_handle_sack 32

5.6. Extract Flow Chart of the function sctp_check_for_revoked 36

5.7. Throughput measurement comparing the reference implementation with e�-

ciency modi�ed implementation . 38

5.8. CPU Time of sctp_handle_sack . 39

5.9. Throughput measurement using DAC and Bu�er Splitting 42

5.10. Throughput measurement using DAC and Bu�er Splitting varying the delay

on both paths . 43

5.11. Throughput measurement using DAC and Bu�er Splitting varying the PLR on

both paths . 45

5.12. Throughput measurement using DAC and Bu�er Splitting varying the queue

management algorithm on both paths . 46

6.1. Structure of a NR-SACK chunk . 52

6.2. Throughput Measurement using NR-SACKs with di�erent send bu�er sizes . . 53

6.3. Throughput Measurement using NR-SACKs with varying delay 54

6.4. Throughput measurement with no_fr_allowed modi�cation 60

6.5. Throughput measurement with no_fr_allowed mod. using DAC and Bu�er

Splitting . 61

6.6. Throughput measurement with varying SACK Windows 62

6.7. Alternate SACK Window approach . 63

6.8. Throughput measurement using the modi�ed Chunk Rescheduling algorithm 64

ix

List of Figures

A.1. Detailed Testbed Setup . 68

A.2. Throughput measurement using the e�ciency modi�ed implementation pro-

posed in section 5.2 with di�erent CMT Congestion Control algorithms 69

A.3. Extract from sctp_check_for_revoked : Inside the loop that iterates over all

DATA chunks from the sent_queue . 70

A.4. Extract from sctp_strike_gap_ack_blocks : Inside the loop that iterates over all

DATA chunks from the sent_queue (strongly simpli�ed) 71

x

Listings

4.1. NetPerfMeter: Sink (Server) . 21

4.2. NetPerfMeter: Source (Client), Simple Example 21

4.3. NetPerfMeter: Source (Client) . 21

5.1. Skipped TSNs from sent_queue in sctp_strike_gap_ack_blocks 37

6.1. Retransmitted TSN Skip . 50

6.2. Set no_fr_allowed in sctp_strike_gap_ack_blocks 56

6.3. Assembly of a SACK chunk – stop criterion for Gap-Ack Blocks 57

6.4. Assembly of a SACK chunk – modi�ed stop criterion 58

xi

1. Introduction

This chapter described the motivation of this thesis, shorty illustrates the challenges that come

with CMT-SCTP in a dissimilar path scenario, de�nes the goals of this work and �nally gives a

short overview of the thesis’ structure.

1.1. Motivation

At the beginning of the Internet age the Transmission Control Protocol (TCP) [2] was stan-

dardized at the Internet Engineering Task Force (IETF) [3]. Until this day it has been one of

the most important and widely used Tranport Protocols, but the Internet constantly changes

which also calls for further development of Transport Layer Protocols.

Especially over the last years the amount of mobile devices with multiple network interfaces,

such as smartphones, has increased dramatically. As a result of this development the urge to

use all available network interfaces has emerged. The simultaneous use of network interfaces

allows an increase in application data throughput and improves resilience to network failure.

As it is stated in "Towards the future Internet" by [4], the Stream Control Transmission Protocol

(SCTP) [5] could be a suitable successor of TCP, because it overcomes many TCP challenges

such as synchronization attacks and it provides a better resilience to network failure.

SCTP is a modern general-purpose, datagram-oriented and reliable Transport Layer Protocol.

It supports the use of multiple network interfaces per endpoint, denoted as Multi-Homing.

Additionally, the application is informed of message boundaries and can con�gure ordered

or unordered delivery for user messages individually. The extension Concurrent Multipath

Transfer (CMT) even allows the simultaneous use of multiple network paths between two

endpoints.

However, if the characteristics (i.e. bandwidth, delay and error rate) of these paths change to

be more dissimilar the overall throughput can su�er greatly. It can even reach the point where

1

1. Introduction

the throughput plummets to only a fraction of the possible throughput that would be achieved

if only the best network path would be used to transfer user data.

Since mobile devices often operate in a dissimilar path environment an e�cient usage of those

paths by CMT is crucial. Moreover, it violates the �rst of three design goals proposed by [1]

which states that a multi-path �ow should perform at least as well as a single-path �ow on the

best path.

Figure 1.1 illustrates the issue of reduced throughput in a dissimilar path scenario as it was

described in the previous paragraph. The measurement that is depicted in green shows the

application payload throughput in di�erent dissimilar scenarios. The measurement is per-

formed in a testbed environment with two endpoint that each have two network interfaces.

The endpoints can communicate with each other via two disjoint paths: The Northern Path

and the Southern Path. The Northern Path is �xed at 10 Mbit/s and the Southern Path varies.

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180

P
a
yl

o
a

d
 t
h
ro

u
g
h

p
u

t
[M

b
it/

s
]

Bandwidth of Southern Path [Mbit/s]

Northern Path const. at 10 Mbit/s

ideal min. throughput

Reference Implementation (ref)

Figure 1.1.: Throughput measurement of CMT-SCTP over dissimilar paths

The minimum throughput that is demanded by the �rst design rule in a multi-path �ow sce-

nario is depicted in purple. It can be observed that CMT-SCTP only safely manages to achieve

this goal if the Southern Path is set to less than 60 Mbit/s.

2

1. Introduction

The results presented in Figure 1.1 will be used in the following chapters to identify the is-

sues that lead to the reduced throughput and proposes based on these �nding possible solutions.

1.2. Goals

In this bachelor thesis, the challenges of load sharing with CMT-SCTP over dissimilar paths – fo-

cusing on bandwidth – are demonstrated. Furthermore, challenges that come with CMT-SCTP

in a dissimilar path scenario are identi�ed and solutions that might overcome the described

issues are provided, if possible.

1.3. Organization

The thesis is organized as follows:

Chapter 2 – Related Work – provides a short overview of the scienti�c work related to the

development of CMT-SCTP.

Chapter 3 – Basics – provides an overview of the Stream Control Transmission Protocol (SCTP)

by comparing it to its relative TCP. Furthermore, the mechanisms used for reliable data transfer

are discussed in more detail.

Chapter 4 – Test Environment – describes the test environment and procedures that are applied

to the measurements performed in this thesis. Furthermore, network measurement and analysis

tools are presented that were used to help identify the issues.

Chapter 5 – Problem of E�ciency – discusses the challenges of the SACK handling algorithm

with a focus on e�ciency issues. An approach is proposed and evaluated.

Chapter 6 – Problem of Protocol – discusses the challenges of CMT-SCTP in a dissimilar path

scenario focusing on protocol related issues. Ideas for approaches are presented and evaluated.

Chapter 7 – Conclusion – summarizes the �ndings of this thesis and provides an outlook for

future work.

3

2. Related Work

The Internet Draft [6] is a collection of scienti�c work and papers that are closely related

to the development of load sharing for the Stream Control Transmission Protocol (SCTP).

The name of SCTP’s load sharing extension is also denoted as Concurrent Multipath Transfer

for SCTP (CMT-SCTP). [7] �rst introduced the Concurrent Multipath Transfer (CMT) extension.

The CMT-SCTP approach seems to be rather straightforward at �rst, because SCTP already

o�ers services like Multi-Homing. With Multi-Homing multiple network interfaces can be

used in an association.

However, load sharing with CMT-SCTP leads to some non-trivial challenges. First scienti�c

work focused on CMT-SCTP in similar path environments, e.g. see [7]. Though it became soon

apparent that further issues arise in dissimilar environments, e.g. see [8] and [9].

These challenges will be further discusses in the chapters 3, 5 and 6.

4

3. Basics

This chapter provides a brief discussion of the Stream Control Transmission Protocol (SCTP) as

it is de�ned in [5]. In the following section 3.1 SCTP is compared it to its well-known relative

the Transmission Control Protocol (TCP) which is de�ned by [2]. Furthermore, the basic data

transfer mechanism – that is used between two communicating endpoints – as well as some

important protocol mechanisms are described.

After the brief discussion of SCTP the section 3.2 introduces the Concurrent Multipath Transfer

for SCTP (CMT-SCTP) extension as it is proposed by [6]. As the name implies this extension

enables SCTP to concurrently use all available network paths for data transmission.

3.1. Stream Control Transmission Protocol (SCTP)

The Stream Control Transmission Protocol (SCTP) [5] is like TCP [2], UDP [10] and DCCP

[11] a member of the Transport Layer Protocols (see [12], section 1.1.3.). The �gure 3.1 shows

the SCTP Protocol in the IP Reference Model as proposed by [12].

Internet Layer

Link Layer

Transport Layer

Application Layer
SCTP
TCP
UDP

DCCP

Figure 3.1.: SCTP in the IP Reference Model

5

3. Basics

Comparison to TCP

Transport protocols provide an end-to-end data transfer and the ability to address an applica-

tion via port numbers, enhanced by Flow and Congestion Control mechanisms.

Congestion Control mechanisms protect the network from network congestion. If no Conges-

tion Control mechanisms are applied, network congestion can lead to a Congestion Collapse.

Congestion Collapse limits or even prevents any useful throughput [13]. A Flow Control

mechanism protects the receiver’s bu�er from over�ows that can occur if too much data is

sent to the receiver [13].

Some common properties of transport protocols are listed in the table 3.1 in order to compare

the services of SCTP as de�ned in [5] and of TCP as de�ned in [2] and [14].

Property TCP SCTP

Connection-Oriented yes yes

Message-Oriented no yes

Flow-/Congestion Control yes yes

Reliable Transport yes con�g.

Ordered Transfer yes con�g.

Table 3.1.: Comparison between SCTP and TCP

Both protocols are connection-oriented and therefore have to go through a setup phase in

order to establish an end-to-end connection between the communicating endpoints. SCTP

uses a four-way handshake – and not a three-way handshake like TCP – to protect against

synchronization attacks (see [5], section 1.5.1.). Once a connection is established application

data can be exchanged. After all application data is transmitted the connection can be gracefully

shutdown by a tear-down procedure.

SCTP uses a message-oriented data transportation service. Therefore, it not only transmits the

message to the receiving endpoint, but also provides information about the message boundaries.

The transmission of message boundaries is also known as conversation of message boundaries

(see [15], section 1.2.).

TCP on the other hand will handle all data from the application as a stream of Bytes. Fur-

thermore, TCP ensures that the stream – that was pass down from the application – will reach

the receiver’s application in the same order of sequence. TCP does not preserve user message

boundaries, because TCP only receives a byte stream. Hence, the application has to manage

6

3. Basics

the message boundaries.

Both protocols have the same goals with the Congestion Control mechanisms. The goals of

Congestion Control are to protect the network from congestion – or even congestion collapse

– and to ensure fairness between both protocols and communication �ows. A communication

�ow – i.e. �ow – is a host-to-host communication path that can be identi�ed by a distinct

combination of source and destination address, port numbers and used transport protocol.

This combination is also denoted as a 5-tupel (see [16], section 14.1.). If �ow fairness is not

established network resources can not be distributed equally and the network can become

unstable.

Both Congestion Control mechanisms use mainly two algorithms to regulate the amount of

data that can be injected into the network. These algorithms are called slow start and congestion

avoidance. The congestion window cwnd de�nes the number of Bytes that can be in �ight at

any time. The cwnd therefore limits the amount of data the sender can inject into the network.

Both algorithms increase the cwnd, but using di�erent preconditions (for SCTP see [5], section

7.2.). The slow start threshold ssthresh is used to determine whether the slow start algorithm

or the congestion avoidance algorithm is used as it is de�ned in 3.1.

cc_algorithm =

slow_start, if cwnd <= ssthresh

congestion_avoidance, else

(3.1)

The often used underlying Internet Protocol (IP) as de�ned by [17] only supports best e�ort

delivery. In case of TCP, the protocol must ensure that all application data will be transferred to

the receiver’s application in ordered sequence and with no duplicates. In contrast to TCP, SCTP

is more �exible when it comes to reliable transport. In SCTP the service can be con�gured as

reliable or ordered.

Another advantage of SCTP is the support of Multi-Homing. If an endpoint holds multiple

IP addresses, which is normally the case when having multiple network interfaces (NICs),

Multi-Homing enables SCTP to use multiple IP addresses in order to increase reliability.

A possible SCTP setup is presented in �gure 3.2. The �gure shows two endpoints Node A and

Node B. Both endpoints have two network interfaces, and thus at least one IP address per

7

3. Basics

interface.

In this example each endpoint has two TCP-like connections. These TCP-like connections

are de�ned by a 4-tupel that consists of source address, destination address, source port and

destination port (see [16], section 14.1.). These TCP-like connections are denoted as communi-

cation paths and are unidirectional �ow.

From the application’s view the individual communication paths are not visible. The communi-

cation paths are abstracted by a bidirectional end-to-end connection that is called association.

The communication service is therefore handled by SCTP internally. This also includes the

scheduling of user messages to the communication paths.

Figure 3.2.: Example of an SCTP Association

The bold paths in �gure 3.2 are denoted as primary paths. Only primary paths are used to

transmit application data, all other paths are only fallbacks or can be used to retransmit data

in case of loss. Each SCTP endpoint has only one primary path per association. If data fails to

be transmitted over the primary path a new primary path will be chosen from the remaining

communication paths.

Another service of SCTP is the �exible TLV design, as exempli�ed in �gure 3.3. In [15] TLV

is described as a data structure format that is always composed of three �elds: Type, Length

and Value. The �gure 3.3 shows an IP packet with an IP header that is depicted in green. Its

payload, the SCTP packet consists of a common header, which is depicted in yellow, and a set

of chunks. The common header holds information like source and destination port.

8

3. Basics

Figure 3.3.: Structure of a SCTP Packet

An SCTP packet can consist of various control and DATA chunks. However, the transmission

of chunks that hold control information take precedence over the transmission of DATA chunks.

Each chunk consists of a chunk header and chunk data. The chunk header follows the Type

Length Value (TLV) format. A chunk that carries control information is e.g. a selective acknowl-

edgement (SACK chunk or simply SACK). A chunk that carries application data is denoted

as a DATA chunk. A DATA chunk has to carry exactly one user message or a fragment of a

user message (see [15], ch. 3.2.5.). A chunk can either be comprised of control information or

application data.

Data Transfer in SCTP

Once the association between two communicating endpoints is established the normal bidirec-

tional data transfer can start. This section describes the process of sending and receiving user

messages and will focus on a reliable transport scenario which is compatible to a TCP scenario.

In order to send application data the sending endpoint needs to encapsulate the user messages

in DATA chunks.

If the payload �ts in an IP packet (minus the SCTP common and DATA chunk header)

only a DATA chunk header is required. The DATA chunk header holds information like the

Transmission Sequence Number (TSN). The TSN is very similar to the sequence number used

in TCP. The TSN is assigned per DATA chunk (see [5], section 1.3.) and not per Byte like it is

done in TCP (see [2], section 3.3.). The payload needs to be fragmented and encapsulated in

multiple DATA chunks if it is larger than the allowed payload size of an IP packet (minus the

9

3. Basics

SCTP common and DATA chunk header).

In order to ensure that all payload has been transferred an acknowledgments is needed. An

acknowledgment is represented by a SACK chunk, i.e. SACK.

The SACK chunk holds the following information (compare [5], sec. 3.3.4.), as presented in

�gure 3.4:

Figure 3.4.: Structure of a SACK Chunk

• Cumulative TSN cumack

The cumulative TSN cumack acknowledges all TSNs that were received in order. It

is therefore the TSN of the last received DATA chunk that is part of the ordered se-

quence. The TSNs that are part of the cumack can be removed from the send bu�er,

because the receiver passed these DATA chunks to the application and will not request

a retransmission in the future.

• Advertised receiver window a_rwnd

The advertised receiver window a_rwnd is included in the SACK to inform the sender

about the remaining receive bu�er space. The sending endpoint is only allowed to

send new DATA chunks if there is enough bu�er space left in the receive bu�er. This

mechanism, denoted as Flow Control, protects the receiver from being �ooded by too

many DATA chunks. Nevertheless, the sender is allowed to retransmit DATA chunks

even if the receive bu�er is already used up.

• Gap-Ack Blocks

DATA chunks that were received out-of-order are also reported in a SACK. Each Gap-Ack

Block consists of a start and an end address. The addressing is relative to the cumack.

Each Gap-Ack Block therefore informs the sender of a range of TSNs that have been

received, but are not part of the cumack. These TSNs are selectively acknowledged.

10

3. Basics

In comparison to the cumack, these DATA chunks cannot be passed to the application

because there are still some DATA chunks missing that need to be received �rst in

order to complete the sequence. In some cases the receiver even needs to request a

retransmission of DATA chunks, that were already received once.

The reason for this is as follows: The receive bu�er can hold e.g. three DATA chunks.

The cumack is at TSN #38. The receive bu�er holds the TSNs #40 - #42. Once the TSN

#39 arrives the receiver needs to drop one of the queued TSNs, e.g. TSN #42, in order to

store TSN #39. The receiver wants to store the TSN #39 because this TSN will complete

the sequence of TSNs #39 to #41. The receiver can then pass all DATA chunks that are

in the receive bu�er to the application and send a SACK with an advanced cumack and

no Gap-Ack Blocks.

The TSN #42 is not selectively acknowledged in the current SACK, because it was dropped

from the receive bu�er. However, it was selectively acknowledged in a previous SACK

and therefore the sending endpoint knows that TSN #42 needs to be retransmitted.

• Duplicates

This �eld contains the number of TSNs that have been received more than once. A list

of duplicate TSNs is appended after the Gap-Ack Blocks. Duplicate TSNs do not need to

be processed by the sending endpoint as described in [5] section 6.2. and they are not as

of today.

A Data chunk, i.e. TSN, that has been sent to the receiving endpoint, but has not yet been

acknowledged is referred to as an outstanding TSN or one that is still in �ight.

An example of a SACK chunk, that needs to be processed by the sending endpoint, is presented

in �gure 3.5. Further examples and detailed explanations of the SACK handling are provided

by [15] in chapter 5.

11

3. Basics

Figure 3.5.: Example of a SACK Chunk

The sending endpoint can obtain the following information from the SACK (�g. 3.5):

• Cumulative TSN cumack

The cumulative TSN cumack has moved to TSN #7. The sender can therefore remove

the TSN #5 - 7 from the send bu�er (highlighted in blue) and make room for new DATA

chunks, e.g TSN #17 - 19 could be added to the send bu�er.

• Advertised Receiver Window (a_rwnd)

The a_rwnd tells the sender that the receiving endpoint has 900 bytes of free receive

bu�er space left.

• Gap-Ack Blocks

The SACK also contains three Gap-Ack Blocks. Through the Gap-Ack Blocks the sender

learns that the TSNs #10 - 12, #14 and #16 have been received by the receiving endpoint

(highlighted in yellow). Additionally, the sender is indirectly informed that the TSNs #8 -

9, #13 and #14 are still outstanding and might be possibly missing.

If a DATA chnuk got lost in the network, e.g. it was dropped by a router, it needs to be

retransmitted. There are two mechanisms available to detect missing DATA chunks:

• Retransmission Timeout

In SCTP retransmission timers (T3-rtx) are used to keep track of the lowest still out-

standing TSN. If a RTO (Retransmission Timeout) occurs all outstanding DATA chunks

12

3. Basics

on that path will be marked for retransmission. A retransmission timer is restarted if

the lowest outstanding TSN is cumulatively acknowledged and there are still DATA

chunks in �ight, otherwise it will be stopped. The slow start threshold ssthresh and the

congestion window cwnd are modi�ed as described in 3.2 (see [5], section 7.2.3.).

ssthresh = max(
cwnd

2
, 4 ∗MTU)

cwnd = 1 ∗MTU

(3.2)

• Fast Retransmission

Fast Retransmission is another mechanism to detect loss. Each time a SACK arrives a

miss indication counter is incremented for possibly missing TSNs. If a TSN is reported

as missing for the third time it is marked for retransmission and the slow start threshold

ssthresh and congestion window cwnd are modi�ed as described in 3.3 (see [5], section

7.2.3.).

ssthresh = max(
cwnd

2
, 4 ∗MTU)

cwnd = ssthresh

(3.3)

In both scenarios DATA chunks will be retransmitted in order to �ll the gaps in the sequence.

In addition, the congestion control variables ssthresh and cwnd will be reduced as described

in 3.2 and 3.3. In both scenarios the sender will enter the slow start phase again, because the

cwnd <= ssthresh.

In case of a Fast Retransmission the sender will only remain in the slow start phase until the

next SACK arrives that increases the cwnd. After a single increase of the cwnd the path will

enter the congestion avoidance phase again.

An RTO on the other hand will reset the cwnd to one MTU, which will cause the a�ected path

to go through the whole slow start phase again. An RTO is therefore more severe than a Fast

Retransmission.

13

3. Basics

3.2. Concurrent Multipath Transfer (CMT-SCTP)

Concurrent Multipath Transfer (CMT) is an extension to SCTP that allows to transmit appli-

cation data concurrently over all available paths in order to improve throughput by making

further use of SCTP’S Multi-Homing feature [6]. CMT-SCTP is not yet a standardized extension

of SCTP, but the Internet Draft [6] summarizes the work that already exists on CMT-SCTP.

As in section 3.1 described, each SCTP endpoint declares one path as the primary path and only

transmits application data over this path. This proceeding has the advantage that congestion

control mechanisms can be used that are based on a TCP Congestion Control mechanisms.

Furthermore they can be considered TCP-friendly as stated by [18].

The term TCP-friendly describes the goal of a fair competition for bandwidth with other TCP

�ows [19]. In [19] fairness is described as: "A �ow is ’reasonably fair’ if its sending rate is

generally within a factor of two of the sending rate of a TCP �ow under the same conditions".

Another more strict de�nition of TCP-friendly is provided by [20]: A TCP-friendly �ow is

responsive to congestion noti�cation and it uses no more bandwidth than a conforming TCP

connection running under comparable conditions.

The simplest implementation of a congestion control algorithm for CMT-SCTP (CMT-CC) is to

transfer application data over all available paths and to apply the congestion control algorithm

that is used by SCTP, independently on each path. This congestion control algorithm will be

denoted as cmt in this thesis.

The problem with this approach is that fairness towards other TCP �ows cannot be guaranteed

in any environment, especially not one like the Internet. The reason for this is due to the

possibility of shared bottlenecks. The �gure 3.6 illustrates this problem.

14

3. Basics

NIC 1

NIC 2

NIC 1

NIC 2
A

shared

bottleneck

NIC 1 NIC 1

R1 R2

B

C D

Figure 3.6.: Example of a shared bottleneck

In the example (�gure 3.6) the endpoints A and B use CMT-SCTP and the endpoints C and

D use TCP. A shared bottleneck exists between the routers R1 and R2. If A and B use the

congestion control cmt, as described above, they will get about 2/3 of the available bandwidth

where as the TCP �ow will only get 1/3. According to [19]’s de�nition of TCP-friendly this

would still be considered ’reasonably fair’, but not if [20]’s de�nition of TCP-friendliness is

applied. This could become even worse if more paths would use the same link between the

two routers R1 and R2.

Due to these complications the principle of Resource Pooling was proposed by [21] and a set of

design rules has been established in [1] for TCP-friendly CMT Congestion Control Algorithms.

The design rules are described in the following:

1. Improve Throughput

A multipath �ow should perform at least as well as a single-path �ow would on the best

of the paths available to it.

The rule Improve Throughput has already been discussed in section 1.1.

2. Do Not Harm

A multipath �ow should not take up any more capacity on any one of its paths than if

it was a single path �ow using only that route. This guarantees that it will not unduly

harm other �ows.

The rule Do Not Harm attacks the problem of shared bottlenecks as exempli�ed in �gure

3.6.

15

3. Basics

3. Balance Congestion

A multi-path �ow should move as much tra�c as possible o� its most-congested paths.

The rule Balance Congestion gives advice on packet scheduling with the goal to balance

network congestion.

Out-of-order delivery is not very uncommon in a CMT-SCTP scenario. Some user messages

may overtake others, because they are e.g. scheduled on a path with a "better" Quality of

Service (QoS). Therefore, the gaps in a SACK have not emerged due to loss, but because of

varying QoS on the paths.

This leads to the issue that Fast Retransmissions are continuously triggered even though no

DATA chunks were lost. Therefore, in CMT-SCTP the Fast Retransmission algorithms only

increments the miss indication counter if on the same path has been a higher TSN newly

acknowledged (HTNA). This adaption is known as Split Fast Retransmissions and is proposed

by [7].

Another issue emerges once DATA chunks are retransmitted. If a DATA chunk is marked for

retransmission it is rescheduled on the possibly best path. The newly chosen path may di�er

from the path the DATA chunk was originally transmitted on. This can become problematic

if the TSN range of the newly chosen path is smaller than the retransmitted TSN. Once the

retransmitted TSN is selectively acknowledged all DATA chunks with a lower TSN might be

marked for retransmission by the Fast Retransmission algorithm. In order to prevent bursts of

retransmissions Smart Fast Retransmissions are introduced by [8]. Smart Fast Retransmissions

exclude DATA chunks that were scheduled on a di�erent path by the Fast Retransmission

algorithm.

The described alterations to the Fast Retransmission algorithm are a �xed part of the CMT-

SCTP implementation in the FreeBSD kernel. Other features can be switched on and o� via

system controls (sysctl). The table 3.2 gives an overview of CMT-SCTP speci�c system controls

that are of interest for this thesis and will be introduced in more detail in chapter 5 and 6.

16

3. Basics

System Control Description

net.inet.sctp.cmt_on_o� Enables the CMT extension and selects the CMT-CC

net.inet.sctp.cmt_use_dac Enabled Delayed Acknowledgments for CMT (DAC) Algorithm

net.inet.sctp.bu�er_splitting Enables Send-/Receive-Bu�er Splitting

net.inet.sctp.nrsack_enable Enables the use of NR-SACKs

Table 3.2.: Important SCTP System Controls

17

4. Test Environment

In order to evaluate the performance of CMT-SCTP in various dissimilar scenarios a fully-

controllable environment is needed. This chapter describes the setup of this environment.

Furthermore, it introduces the network performance and analysis tools, that are used to perform

the measurements or analysis of the behavior of CMT-SCTP, such as NetPerfMeter, DTrace

and Wireshark.

4.1. Testbed

The testbed presented in �gure 4.1 consists of two computers and two tra�c shaping software

routers (soft-routers), which will be referred to as North, East, South and West in this thesis.

Two disjoint paths are con�gured: The Northern Path (depicted in blue) and the Southern Path

(depicted in red).

The computers and soft-routers are FreeBSD-based and use single-board computers of the

type PC Engines Alix apu2c4, more details on the computers can be found at [22]. A more

speci�c schematic of the testbed can be found in appendix A.1.

18

4. Test Environment

NIC 1

NIC 2

NIC 1

NIC 2

West East

South

North

Northern Path

Southern Path

Figure 4.1.: Testbed Setup

The computers East and West act as the communicating endpoints. Both endpoints use the

network performance tool NetPerfMeter to generate the tra�c and to measure the resulting

bandwidth and loss. The NetPerfMeter tool will be described in more detail in subsection 4.2.

The computers North and South act as tra�c-shaping routers. They use Dummynet in order

to apply certain Quality of Service (QoS) characteristics.

In [23] the IETF’s understanding of QoS is described as "a set of service requirements to

be met by the network while transporting a �ow". Since this thesis focuses on the services

provided by Transport Protocols the following QoS characteristics are of interest: Bit rate,

delay and packet loss.

Dummynet

Dummynet is an extension to the packet �ltering infrastructure IPFW (IP FireWall) [24] of the

FreeBSD kernel. It controls tra�c that goes through a network interface by applying certain

QoS characteristics such as bandwidth and queue size limitations, usage of di�erent queue

types, and the emulation of delays and losses [25]. IPFW will be automatically loaded to the

kernel, where as Dummynet must be explicitly loaded into the kernel. This can be achieved

via the shell command kldload dummynet or statically added to the kernel at the time

of kernel compilation.

19

4. Test Environment

There are mainly two queueing algorithms in dummynet that are of interest for this thesis.

One is called Tail Drop as described in [20] and the other is called Random Early Detection

(RED) as described in [26].

1. Tail Drop:

Packets are dropped if they cannot be bu�ered anymore, i.e. the queue limit (number

of slots) is reached – otherwise they are stored in the queue and forwarded when they

reach the head of the queue.

2. Random Early Detection (RED):

Packets are dropped or marked on statistical probabilities. If the routers bu�er is almost

empty the probability that packets are queued – and not dropped or marked – is very

high. As the queue grows, i.e. the bu�er �lls up, the probability that an incoming packet

is dropped or marked rises.

Queue scheduling algorithms are a second part of mechanisms used by routers to process

packets. Queue scheduling algorithms are used to manage the allocation of bandwidth among

�ows. They determine which packet is to be send out next and this is not necessarily the

packet that �rst arrived at the router as described by [20]. Since, they are no multiple �ows

per path in the measurement scenarios performed in this thesis queue scheduling algorithms

do not need to be taken into consideration.

4.2. Analysis Tools

NetPerfMeter

NetPerfMeter [27], i.e. Network Performance Meter, is an open source tool for network perfor-

mance evaluation for transport protocols such as TCP and SCTP over IPv4 and IPv6. It also

supports CMT-SCTP.

NetPerfMeter is one of a few tool-chains that support SCTP and especially the parametrisation

of CMT-SCTP. It has already been used in numerous scienti�c works, like [28] and [29], that

deal with the evaluation of CMT-SCTP related topics. Therefore, it is also used as a measuring

tool in this thesis.

In order to perform a network measurement with NetPerfMeter one endpoint, e.g. East, has to

act as the sink (server mode) and waits for a connection from a source (see listing 4.1).

20

4. Test Environment

1 $ netperfmeter <port>

Listing 4.1: NetPerfMeter: Sink (Server)

The other endpoint, eg. West, acts as the source (client mode) and speci�es the parameters for

the measurement.

A simple example would be to transmit data from source to sink using the transport protocol

SCTP. In order to measure the links capabilities a saturated �ow, ie. send as much data as

possible, is used. This can be done by calling the command from listing 4.2.

1 $ netperfmeter <passive side>:<port> \
2 -sctp const0:const1452:const0:const0

Listing 4.2: NetPerfMeter: Source (Client), Simple Example

In listing 4.2 the source connects to the sink by passing the IP address and port of the server

as a �rst argument to NetPerfMeter. The next argument speci�es that the transport protocol

SCTP will be used. The �ow is further speci�ed:

outgoing_frame_rate:outgoing_frame_size:incoming_frame_size:incoming_frame_rate:option

The outgoing frame rate is set to 0 Frames/s in order to con�gure the saturated �ow and the

outgoing frame rate is set to 1452 Bytes/Frame.

In order to change the scenario from listing 4.2 to a CMT-SCTP scenario with the congestion

control algorithm cmt only the �ow speci�cation has to be altered by appending the option

cmt (see listing 4.3).

1 $ netperfmeter <passive side>:<port> \
2 -local=<local addresses> -runtime=300 -scalar=title.sca \
3 -sctp const0:const1452:const0:const0:cmt=cmt

Listing 4.3: NetPerfMeter: Source (Client)

Besides the alteration to the �ow speci�cation, listing 4.3 shows some addition parameters:

• local: Specify local IP adresses that should be used.

This settings is important in order to prevent the use of the external interfaces (igb0),

see the more speci�c schematic of the testbed in appendix A.1.

• runtime: Specify the time for the measurement in seconds.

• scalar: Specify an output �le that store the results of the evaluation, such as total

amount of transmitted data, average bandwidth and lost packets.

21

4. Test Environment

DTrace

DTrace is short for Dynamic Tracing and is a performance analysis and troubleshooting tool

that can not only analyze user-land programs, but also the operating system kernel and device

drivers. DTrace is included and ready to use in the FreeBSD Operating System.

DTrace allows to modify the kernel and user processes dynamically to record additional data

through so called probes. Like stated in [30]: "A probe is a location or an activity to which

DTrace can bind a request to perform a set of actions, like recording a stack trace, a timestamp,

or the argument to a function. Probes are like programmable sensors scattered all over the

system".

DTrace is used for this thesis in three ways:

1. To get a global overview of the CPU usage at the time of a CMT-SCTP Measurement, e.g.

the hotkernel analysis [31]

2. Analysis of a certain kernel level function

3. Protocol-speci�c analysis

Wireshark

Wireshark [32] is an open source network packet analyzer tool that is used to examine the

tra�c between the communicating endpoints in order to analyze the behavior of CMT-SCTP.

With Wireshark network dumps can be analyzed that were captured by tools like TCPDump

[33]. In order to capture all packets that reach the network interface controller (NIC), and

not just the ones that are addressed to one of its own addresses, the NIC needs to support the

promiscuous mode.

In order to use a larger variety of features in Wireshark it is desirable that the whole network

tra�c is combined in one network dump. Wireshark is e.g. able to mark and count retransmis-

sions of a DATA chunk, especially if they were retransmitted over an alternate path. Therefore,

port mirroring is used to be able to record the whole tra�c from the Northern and Southern

Path in a single network dump.

22

4. Test Environment

Port mirroring is a mechanism that allows to record all packets for a given list of source ports.

Therefore, one port of the switch is con�gured as a mirror port (sometimes also referred to

as monitor port). Further information can be found at [34], section 4-5. In this thesis the

mirror port records all packets that are send or received from the endpoint West on both paths.

Detailed port mapping information are available in appendix A.1. The monitor system can

then connect to the con�gured mirror port and capture the arriving tra�c with TCPDump.

Furthermore, it is pro�table that the network dumps are already on the target PC, because the

size of the network dumps grows rather fast and can easily reach a couple GiB during a test

scenario.

However, the ability of Port Mirroring is limited if the amount of tra�c that is directed to the

mirror port is greater than the mirror port ability to process it. If e.g. a Gigabit-Interface is

con�gured to be a mirror port it can only process Gigabit tra�c. If more tra�c arrives only

part of it can be recorded. All measurements performed in this thesis are far from reaching

this border, hence port mirroring can be used without de�cits.

4.3. Measurement Procedure

All measurements that will be presented in this thesis comply with the following measurement

procedure:

• The measurement runtime for each measurement run is set to 300 seconds.

Numerous measurements have shown that 300 seconds are a su�cient time span so that

the resulting average throughput is not a�ected by any start-up time. Start-up time in

this context refers to the time span SCTP needs until it steadily reaches the maximum

throughput.

• A total of �ve measurement runs were conducted for one measurement point.

This should ensure that any outliers are captured and the amount of scatter per mea-

surement point can be identi�ed.

• The result of one measurement point is presented in the �gures as follows:

– The median is calculated out of the �ve measurement runs.

– The lowest and highest measurement result is also displayed as an vertical error

line.

23

4. Test Environment

• If a chart contains a line without points, the line resembles ideal calculated values.

• If a chart contains a line with data points, the line is the result of a measurement.

In order to calculate an ideal theoretical payload throughput, known sizes of payload and

overhead can be used:

• The size of the Ethernet frame is 1526 Bytes.

The standard MTU for Ethernet is 1500 Bytes as de�ned in [35]. Adding to the MTU the

preamble (8 Bytes), the source and destination MAC address (2x6 Bytes), the ethertype

(2 Bytes) and the CRC (4 Bytes) results in 1526 Bytes per Ethernet packet.

• Each SCTP packet has a payload of 1452 Bytes
1
.

A payload size of 1542 Bytes results from the MTU of 1500 Bytes minus the IP header

(20 Bytes) and SCTP common and data chunk headers (28 Bytes).

The ideal, i.e. theoretically possible, payload throughput for a multi-path scenario can be

calculated with the equation 4.1.

num_paths∑
i=1

bandwidthi ∗ protocol_efficiency (4.1)

The protocol e�ciency can be calculated with the equation 4.2.

protocol_efficiency =
payload_size

frame_size
=

1452B

1526B
≈ 95.15% (4.2)

1

Only if a single user message, i.e. DATA chunk, is included in the SCTP packet.

24

4. Test Environment

The following list describes the default con�guration for measurement runs:

• The bandwidth of the Northern Path is �xed at 10 Mbit/s. The bandwidth of the Southern

Path is variable.

• Both endpoint use the standard send- and receive bu�er spaces that are set by default in

FreeBSD to 1864135 Bytes.

• The delay of both paths is set to 1 ms.

• No Packet Loss Rate (PLR) is applied.

• The Tail Drop queuing algorithm is used. The queue is con�gured to have 100 slots,

which is the maximum setting.

• The size of a user message is set to 1452 Bytes, as described earlier.

• Only the system control net.inet.sctp.cmt_on_o� is con�gured to use the congestion

control cmt.

• All tra�c sent is ordered and reliable.

If it is not stated otherwise the default con�guration for measurement runs is applied.

The measurement con�guration described above was chosen to reduce the a�ects created by

other factors – like small router queues – and rather focus on the dissimilarity of bandwidth

and its e�ects �rst.

25

5. Problem of E�iciency

The reduced throughout of CMT-SCTP in a dissimilar scenarios – see �gure 1.1 – lead to the

question if the reduced throughput can be related to the e�ciency of the implementation.

Therefore the following discussion focuses on e�ciency problems in a dissimilar scenario that

could lead to a reduction in throughput. An approach is presented and evaluated.

5.1. Analysis

In order to determine if the measurement results from �gure 1.1 are caused by an e�ciency

problem the following steps are taken:

1. Repetition of the Measurement on di�erent Hardware

2. Analysis of Network Tra�c with Wireshark

3. Analysis of SCTP Kernel Functions with DTrace

4. Analysis of SCTP Kernel Source Code

Each step is discussed in detail the section 5.1.1 to 5.1.4.

5.1.1. Repetition of the Measurement on di�erent Hardware

During the measurement series for �gure 1.1 an increasing CPU load could be observed once

the Northern and Southern Paths became more dissimilar.

Therefore, a second series of measurements is done on another testbed environment that

follows the exact same setup as described in chapter 4, but uses di�erent hardware for the

endpoints. The endpoints from the primary testbed use a AMD Embedded G series GX-412TC

processor with a CPU frequency of 1 GHz [22]. The endpoints from the secondary testbed

on the other hand use a Intel quad core i5-4690 Processor with a CPU frequency of 3.5 GHz [36].

26

5. Problem of E�ciency

The results of the second measurement series are shown in �gure 5.1, too.

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180

P
a
yl

o
a
d

 t
h
ro

u
g
h
p
u
t
[M

b
it/

s
]

Bandwidth of southern path [Mbit/s]

Northern path const. at 10 Mbit/s

ideal, min. req.

Ref.Impl. (Primary Testbed)

Ref.Impl. (Secondary Testbed)

Figure 5.1.: Comparison of two testbeds with di�erent hardware

The measurements performed for �gure 5.1 and �gure 1.1 used the default measurement

con�guration like it is described in section 4.3.

The endpoints from secondary testbed show a higher payload throughput than the endpoints

from the primary testbed. Since the only alteration to the testbed environment is di�erent

hardware for the endpoints, the measurement results suggest that the reduced throughput

could be connected to a CPU limitation.

Therefore, it can be concluded that a more e�cient implementation that reduces the computa-

tion time will also increase the throughput on low performance hardware.

5.1.2. Analysis of Network Tra�ic with Wireshark

Network traces for two scenarios are recorded: One in a scenario where both paths are con�g-

ured to 50 Mbit/s and the other were the Northern Path is set to 10 Mbit/s and the Southern

27

5. Problem of E�ciency

Path is set to 100 Mbit/s.

The results show that the number of selectively acknowledged TSNs greatly increases in a

dissimilar scenario. Figure 5.2 shows a histogram of selectively acknowledged TSNs.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 250 500 750 1000

R
e
la

tiv
e
 F

re
q
u
e
n

cy

Number of TSNs selectively acknowledged in SACK

50 Mbit/s / 50 Mbit/s

10 Mbit/s / 100 Mbit/s

Figure 5.2.: Histogram of the number of selectively acknowledged TSNs

Wireshark triggers a warning every time the number of selectively acknowledged TSNs is

greater than 100. In the scenario with similar paths 90 % of SACKs reported less that 100

selectively acknowledged TSNs. In the dissimilar scenario only about 1.5 % did not trigger

this warning. Hence, about 98.5 % of SACKs reported had more than 100 TSNs in the Gap-Ack

Blocks.

Furthermore, the �gure 5.2 shows that close to 90 % of the SACK chunks selectively acknowl-

edged between 251 and 750 TSNs. Thus, about 90 % of SACKs exceed the trigger level of the

Wireshark warning by at least 2.5 times.

The network traces also revealed that the advertised receiver window a_rwnd never shrank

close to zero Bytes. Therefore, a receiver bu�er shortage on the receiver’s side did not forbid

28

5. Problem of E�ciency

the sender from sending new data chunks.

In summary, the growing number of selectively acknowledged TSNs can be identi�ed as a

reason for the reduced throughput, once the dissimilarity between the Northern and Southern

Path grows.

5.1.3. Analysis of SCTP Kernel Functions

The �ndings from the previous subsections indicate that the reduced throughput originates

from a great increase in the number of Gap-Ack Blocks. And thus also increases the computa-

tion time of processing a SACK chunk on the sender’s side.

In this subsection the performance analysis and troubleshooting framework DTrace is used to

analyze the kernel routines, using the same test setup as described in subsection 5.1.2.

Hotkernel Analysis

The hotkernel analysis samples over a speci�ed time period kernel-level functions and identi�es

the amount of CPU time each function used [31]. The so-called hottest function uses the most

CPU time during the time span of the measurement.

The �gure 5.3 shows the three hottest kernel-functions in two test scenarios. Idle routines

were not included in the column chart.

In order to get a reference for a test scenario with dissimilar paths (depicted in purple) the

analysis was �rst done in a CMT-SCTP scenario with similar paths (depicted in green).

29

5. Problem of E�ciency

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

sctp_handle_sack __mtx_lock_sleep acpi_cpu_c1

R
e
la

tiv
e
 F

re
q
u
e
n

cy

Kernel Functions

100 Mbit/s / 100 Mbit/s

10 Mbit/s / 100 Mbit/s

Figure 5.3.: DTrace hotkernel analysis

In both scenarios the kernel-level function sctp_handle_sack appears among the top three

(hottest) kernel-level functions.

In the scenario with similar paths (depicted in green) the kernel-level function sctp_handle_sack

used about 2.5 % of the CPU time during the test period. In the scenario with dissimilar paths

(depicted in pruple) the CPU time used by sctp_handle_sack increased from 2.5 % to about

12.5 %, which means that the function occupied the CPU �ve times more than in the scenario

with similar paths.

The hotkernel analysis reveals that a cause for the reduced throughput in a scenario with

dissimilar paths seems to be strongly connected to the kernel-level function sctp_handle_sack.

Kernel-level Function sctp_handle_sack

Figure 5.4 displays a histogram of the execution time of the kernel-level function sctp_handle_sack

in a scenario with similar paths (green columns) and one with dissimilar paths (purple columns).

30

5. Problem of E�ciency

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 2 4 8 16 32 65 131 262 524

R
e
la

tiv
e
 F

re
q
u
e
n

cy

Time [us]

Reference Implementation

Modification

Figure 5.4.: Histogram of the time spent in the kernel-level fuction sctp_handle_sack

As expected from the results of the DTrace hotkernel analysis the average execution time of

the function sctp_handle_sack in a scenario with similar paths is less than the execution time

of the same function in a scenario with dissimilar paths.

More interestingly, about 80 % of the function’s execution time in a scenario with similar

paths is greater 1 µs and less than 8 µs. The same clustering of about 80 % is also present in

the scenario with dissimilar paths, but with an execution time greater 32 µs and less than 131 µs.

This type of clustering suggests that the distribution of the execution time of the function

sctp_handle_sack simply shifts upwards. As expected the function sctp_handle_sack is respon-

sible for processing the incoming SACKs. Therefore, it further supports the thesis that the

increase in the number of TSNs that are reported in the Gap-Ack Blocks are responsible for

the reduced throughput, due to an increase in computation time.

31

5. Problem of E�ciency

5.1.4. Analysis of SCTP Kernel Source Code

In this subsection the kernel-level function sctp_handle_sack is examined in more detail and

as a result the Flow Chart (Figure 5.5) was created.

The Flow Chart (Figure 5.5) gives a brief overview of the function sctp_handle_sack that resides

in the module netinet/sctp_indata.

sctp_handle_sack(...)

Init. variables, lock assertion, etc.

Abort association

Update rwnd,
stop timers,

flight counters = 0 (3) Process consecutive data
(cum_ack moved on)

(5) Remove acked chunks
from sent_queue

(7) Update cwnd

Stop timers,
flight counters = 0

(8b) Handle shutdown issues

(10/11/12) Do PR-SCTP Procedures,
Apply FR penalties,

SACK if in shutdown_recv state

T

F

T

F

return

return

Hopeless Peer?
(acked TSN >= next TSN to send)

(1) Out of Order SACK?

(2) Nothing left on
send_queue / sent_queue?

(8a) Nothing left on
sent_queue?

T

T

F

F

(4) Process any SACK blocks
(sctp_handle_segments)

(6) Check for revoked
fragments and mark them
(sctp_check_for_revoked)

(9) Strike any non-acked things,
do Fast Recovery (FR) if needed
(sctp_strike_gap_ack_chunks)

Figure 5.5.: Flow Chart of the kernel-level function sctp_handle_sack

Each time a SACK with Gap-Ack Blocks is processed the routines 3 to 6 and 9 are called.

The sent_queue is a bu�er that holds DATA chunks that are sent to the receiving endpoint.

DATA chunks can either be removed from the sent_queue if they are part of the cumulative

acknowledgement or if they were NR-selectively acknowledged
1
. NR-selectively acknowledged

TSNs are also part of the Gap Report and are introduced in more detail in chapter 6.

1

PR-SCTP DATA chunks are out of focus in this thesis.

32

5. Problem of E�ciency

In the case of a dissimilar scenario the following static functions (colored process blocks) loop

through most of the elements from the sent_queue that were sent to the receiving endpoint:

• sctp_handle_segments (4),

• sctp_check_for_revoked (6) and

• sctp_strike_gap_ack_blocks (9)

All three functions loop through the sent_queue starting with the �rst element and continue

until they reach their stop criterion.

The function sctp_handle_segments processes the NR-/Gap-Ack Blocks. It marks DATA chunks

from the NR-/Gap-Ack Blocks as newly selectively acknowledged, decreases the �ightsize

counters and updates the congestion window if necessary.

The function sctp_handle_segments iterates through the send_queue until it has processed

the last NR-/Gap-Ack Block from the arrived SACK. For performance reasons it is very crucial

that the Gap Report should be sorted by the TSN in ascending order. If the gap report is not

sorted as described the function sctp_handle_segments will take even longer to process all

Gap-Ack Blocks, especially in a scenario of dissimilar paths. Every time the algorithm detects

a Gap-Ack Block that is not in-order it has to start the loop from the beginning again. The

worst performance can be observed if the Gap Report is sorted by TSN in descending order.

In a scenario of dissimilar paths the Gap Report can easily reach a couple of hundred TSNs

as the analysis of the network traces showed. With an increased amount of TSNs that are

reported in the Gap-Ack Blocks the function sctp_handle_segments has to iterate over more

elements from the sent_queue and thus needs more time for computation.

If a DATA chunk is not selectively acknowledged by the current SACK, but was selectively

acknowledged in a previous one, it is revoked by the receiving endpoint. The DATA chunk was

removed from the receiver’s bu�er. A DATA chunk that is revoked needs to be resend to the re-

ceiving endpoint. The function sctp_check_for_revoked iterates over the sent_queue and marks

every chunk for retransmission that was not marked by the function sctp_handle_segments as

newly acknowledged.

To mark all suitable chunks the function has to iterate over all elements in the sent_queue

as long as the element’s TSN is smaller than the highest TSN newly acknowledged (HTNA).

All TSN smaller the HTNA are possible candidates for revoked DATA chunks.

33

5. Problem of E�ciency

In a dissimilar scenario the cumulative acknowledgement advances only slowly. Thus, the

function sctp_check_for_revoked needs more time to mark all revoked data chunks, because

more DATA chunks are queued in the sent_queue.

If a SACK with a Gap Report is received a counter is incremented for the TSNs that are possibly

missing in order to determine if a DATA chunk needs to be retransmitted (Fast Retransmission

algorithm). Possibly missing DATA chunks are those that are not part of the SACK and are prior

to the higest TSN newly acknowledged. The function sctp_strike_gap_ack_blocks increments

the miss indication counter accordingly, marks the DATA chunks with three miss indications

for retransmission and also triggers Fast Recovery.

As described in the previous paragraph the stop criterion is the higest TSN newly acknowl-

edged (HTNA).

With an increased number of Gap-Ack Blocks, the function sctp_strike_gap_ack_blocks also

needs an increased time for computation, because it has to iterate over the sent_queue until it

reaches the HTNA.

5.2. Approach

The SACK handling procedure described in the previous section (sec. 5.1.4) is rather ine�ective,

because all three functions iterate over most of the sent DATA chunks from the sent_queue,

which is not necessary.

The functions sctp_check_for_revoked and sctp_strike_gap_ack_blocks are only interested in

DATA chunks, i.e. TSNs, that were not processed by the function sctp_handle_segments.

The DATA chunk’s sent status tracks if the DATA chunk was acknowledged, newly ac-

knowledged, revoked or is scheduled for resend. The most important sent status start with

«SCTP_DATAGRAM_», this pre�x will be omitted in this thesis for simplicity reasons. The

table 5.1 gives an overview of the most important sent status. It is important to notice that a

sent state that equals SENT can be incremented three times to equal RESEND. This mechanism

is used by the function sctp_strike_gap_ack_blocks to mark DATA chunks for retransmission.

34

5. Problem of E�ciency

Macro Value Description

UNSENT 0 Data chunk has not been sent yet

SENT 1 Data chunk has been sent, but not yet acknowledged

RESEND1 2 Used as a miss indication counter for Fast Retransmission

RESEND2 3 Used as a miss indication counter for Fast Retransmission

RESEND 4 Data chunk is scheduled for retransmission

ACKED 10010 Chunk was acknowledged

MARKED 20010 Chunk was newly acknowledged

NR_ACKED 40010 Chunk was nr-acknowledged

Table 5.1.: SCTP Datagram Sent States

The function sctp_handle_segments marks TSNs of the Gap Report by setting the sent status

to MARKED.

The function sctp_check_for_revoked changes all DATA chunks that are in the state MARKED to

the state ACKED. This switch is necessary in order to distinguish between newly acknowledged

TSNs and TSNs that were previously acknowledged but are not anymore, because they are

revoked.

TSNs who’s sent status equals ACKED are not part of the current SACK, because they were

not touched by the function sctp_handle_segments. Hence, they are revoked by the receiving

endpoint.

The described procedure of the function sctp_check_for_revoked is illustrated in the Flow Chart

5.6. For a more detailed Flow Chart see appendix A.3.

35

5. Problem of E�ciency

tp1->sent = SCTP_DATAGRAM_SENT

True

tp1->sent ==
SCTP_DATAGRAM_ACKED

increase flightsize counters

inflate cwnd

tp1->sent ==
SCTP_DATAGRAM_MARKED

tp1->sent = SCTP_DATAGRAM_ACKED

False

True

False

Figure 5.6.: Extract Flow Chart of the function sctp_check_for_revoked

The variable tp1 is a pointer to an element from the sent_queue. If the sent status sent is equal

to ACKED the data chunk was revoked and needs to be sent again.

As illustrated in �gure 5.6 the function sctp_check_for_revoked really only modi�es DATA

chunks that are marked ACKED. Therefore, in order to limit the number of elements an array

of pointers to DATA chunks is used. This array consists of TSNs that have not been modi�ed by

the function sctp_handle_segments and are lower than the highest TSN newly acknowledged.

Since the function sctp_handle_segments iterates over all DATA chunks less than the HTNA it

can build up the array.

The function sctp_strike_gap_ack_blocks not only processes TSNs who’s sent status is equal

to ACKED. The code listing 5.1 shows an extract of the functions code. The code extract is

located inside the loop that iterates over the sent_queue. For a simpli�ed Flow Chart of the

function sctp_strike_gap_ack_blocks see appendix A.4.

36

5. Problem of E�ciency

1 if (tp1->sent >= SCTP_DATAGRAM_RESEND) {
2 /* either a RESEND, ACKED, or MARKED */
3 /* skip */
4 if (tp1->sent == SCTP_FORWARD_TSN_SKIP) {
5 /* Continue strikin FWD-TSN chunks */
6 tp1->rec.data.fwd_tsn_cnt++;
7 }
8 continue;
9 }

Listing 5.1: Skipped TSNs from sent_queue in sctp_strike_gap_ack_blocks

The algorithm will not process a given element and continue with the next element of the

sent_queue if the sent status is greater or equal to RESEND. Therefore only elements are further

processed that have not been acknowledged or are already scheduled for retransmission.

So the function sctp_strike_gap_ack_blocks can also make use of the same array of pointers

that is prepared by the function sctp_handle_segments if it is extended by the data chunks that

are equal the sent status SCTP_FORWARD_TSN_SKIP.

In order to keep the evaluation process of the approach simple and �exible a system control

is created. The system control net.inet.sctp.cmt_e� allows to switch between the reference

and e�ciency modi�ed implementation. If net.inet.sctp.cmt_e� is set to zero the reference

implementation is used otherwise the modi�ed implementation is chosen. The use of a system

control switch allows to automate measurements. The boolean expressions that have to be

evaluated – each time the function sctp_handle_sack is called – to decide which implementation

to use do not a�ect the performance imperceptibly.

The array outstanding_tsn_arr is used as a data structure to store the outstanding TSNs that

might be processed by the functions sctp_check_for_revoked and sctp_strike_gap_ack_blocks.

At initialization of the SCTP association structure an initial amount of memory is allocated

for the array. As the number of outstanding TSNs grows the size of the array might also

have to be increased. In order to limit the maximum size of the array the system con-

trol net.inet.sctp.outstanding_arr_max_size is speci�ed. If the number of outstanding TSNs

is greater than the maximum speci�ed array size only the �rst TSNs that still �t in the array

will be store. Measurements have shown that a limitation of the array’s size does not reduce

the throughput if it is not too restricting. The following parameters proved suitable for the

measurement scope in this thesis: The initial array size is set to 256 TSNs and the default

37

5. Problem of E�ciency

maximum array size to 1024 TSNs. The additional memory space that is needed per association

amounts to a maximum of 1024 ∗ 8Byte, because each pointer to a DATA chunk is 8 Byte on

a 64-Bit architecture.

5.3. Evaluation

This section presents the results of the evaluation of the suggested alterations that were ap-

plied to the implementation of the SACK handling as described in the previous section (sec. 5.2).

The �gure 5.7 presents the results of the measurement comparing the modi�ed implementation

(mod_e�) to the reference implementation (ref). The measurement used the same test parameter

as described in section 4.3.

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180

P
a
yl

o
a
d

 t
h
ro

u
g
h
p
u
t
[M

b
it/

s]

Bandwidth of Southern Path [Mbit/s]

Northern Path const. at 10 Mbit/s

ideal min. throughput

ref

mod_eff

Figure 5.7.: Throughput measurement comparing the reference implementation with e�ciency

modi�ed implementation

The measurement results show that the modi�ed implementation increases the payload through-

put by up to 29 % in comparison to the reference implementation. However, the modi�ed

implementation performs worse than the reference implementation at around 80 Mbit/s. The

38

5. Problem of E�ciency

reason for this behavior will be discussed in subsection 6.1.2. With an increasing degree of

similarity of the Northern and Southern Path the performance of the two implementation

become nearly the same.

In Figure 5.8 the modi�ed implementation and the reference implementation are compared by

their average computation time using the DTrace hotkernel analysis.

The average computation time for both implementation are obtained in a scenario where both

paths are con�gured to 50 Mbit/s (green columns) and another were the Nothern Path is set to

10 Mbit/s and the Southern Path is set to 140 Mbit/s (purple colums).

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Reference Modification (Eff)

R
e
la

tiv
e
 F

re
q
u
e
n

cy

Implementation

50 Mbit/s / 50 Mbit/s

10 Mbit/s / 140 Mbit/s

Figure 5.8.: CPU Time of sctp_handle_sack

Through the improvements of e�ciency the CPU Usage of the function sctp_hanlde_sack could

be reduced to only 4.9%, which is about 2.5 times less than the function used in the reference

implementation.

Since the alterations proposed in section 5.1 are only e�ciency related and do not change the

speci�ed behavior, the modi�ed implementation performs as well as the reference implemen-

39

5. Problem of E�ciency

tation in a scenario of similar paths. In such a scenario the CPU usage time is about 50% less

that the reference implementation would need.

The performance of the of modi�ed implementation can be further improved by making use of

Bu�er Splitting [29] and the DAC algorithm [7].

It is stated in the SCTP speci�cation [5] section 6.2. that the receiver should use the delayed

acknowledgement algorithm as proposed by the TCP Congestion Control [37] in section

4.2. The timer for delayed acknowledgments is set for SCTP by the system control variable

net.inet.sctp.delayed_sack_time to 200 ms. This means that a SACK chunk is send at latest

after 200 ms if there is no other reason to send a SACK earlier. But once a gap in the TSN

sequence is discovered the receiver should send a SACK chunk immediately and continue

to send SACK chunks each time a new DATA chunk arrives until the gap is closed and the

cumulative acknowledgement has advanced. This increased rate of SACKs should ensure that

Fast Retransmissions are triggered and the gap is closed soon.

In a non-CMT SCTP scenario, where the majority of DATA chunks is only transmitted over a

single path such an approach, as described in the previous paragraph, is very crucial because a

gap in the TSN sequence can cause the continuous transmissions of user messages to stall. In

order to keep the cumulative acknowledgment moving the gaps need to be �lled fast.

In a scenario of dissimilar paths this approach can lead to a �ood of SACK chunks. The

receiver also notices gaps in the TSN sequence, but these gaps are not caused by DATA chunks

that actually possibly went missing, but by the way that DATA chunks are scheduled on the

communication paths. DATA chunks are scheduled in SCTP by the round-robin scheduling

algorithm as described in [38].

To prevent an increased amount of SACKs the Delayed Acknowledgment for CMT (DAC)

algorithm ignores the rule that a SACK should be send immediately once a out-of-order DATA

chunk is received as proposed by [7].

Another problem that arises in a scenario of dissimilar paths is the problem of Sender and

Receiver Bu�er Blocking. All DATA chunks who’s TSNs are greater than the cumulative TSN

have to reside in the send bu�er. They can only be removed from the send bu�er if they are

part of the cumulative acknowledgment. In a scenario of dissimilar paths the send bu�er can

�ll up quickly. This happens because of the way DATA chunks are scheduled on the paths.

40

5. Problem of E�ciency

The round-robin scheduling algorithm distributed the DATA chunks equally on the available

paths which leads to multiple gaps in the TSN sequence if the paths are dissimilar. These

gaps can prevent the cumulative acknowledgment to advance at a needed pace that would be

necessary to ful�ll the demands of the paths to use them to their full capacity. In other words:

Not enough DATA chunks can be removed from the send bu�er in order to add new DATA

chunks that can then be transmitted. The same problem also applies to the receiver side. There

it is possible that arriving DATA chunks cannot be stored in the receive bu�er and would have

to be dropped, because the receive bu�er is already �lled up by DATA chunks.

A solution for this problem is proposed by [29] and is called Bu�er Splitting. Bu�er Splitting is

a mechanism that tries to provide a metric for per-path usage of send bu�er space that should

prevent one path from using too much bu�er space and therefore limits other paths from

sending out new DATA chunks.

An improvement by the use of Bu�er Splitting and the DAC algorithm can especially be

observed when the Southern Path is con�gured in between 80 and 120 Mbit/s. Once the

dissimilarities of the paths further grow the positive e�ect of these two mechanism decreases

rapidly.

The Figure 5.9 displays the e�ect of Bu�er Splitting and the DAC algorithm on the two

implementations.

41

5. Problem of E�ciency

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180

DAC dac, Buffer Splitting bs

P
a
yl

o
a
d

 t
h
ro

u
g
h
p
u
t
[M

b
it/

s
]

Bandwidth of Southern Path [Mbit/s]

Northern Path const. at 10 Mbit/s

ideal min. throughput

ref

mod_eff

ref, dac, bs

mod_eff, dac, bs

Figure 5.9.: Throughput measurement using DAC and Bu�er Splitting

The results presented in the previous Figure 5.9 show that the modi�ed implementation in-

creases the payload throughput and can ful�ll the requirements of the �rst design rule Improve

Throughput up to a dissimilarity of 10 to almost 120 Mbit/s. But the desired theoretical payload

throughput for a CMT scenario is not reached.

The measurements performed so far only looked at a dissimilarity concerning bandwidth. The

delay on both paths was set to 1 ms and the packet loss rate (PLR) was set to zero.

In an environment like the Internet such a delay and packet loss rate is rather unlikely. The

results of a measurement would be more realistic, if a certain amount of delay and packet loss

would be applied to the paths.

If one or even both of these parameters are increased the payload throughput in a dissimilar

scenario will decrease even more. In such a case the requirement that is demanded by the �rst

design rule Improve Throughput cannot be met anymore.

42

5. Problem of E�ciency

In the following �gure (�gure 5.10) a greater delay of 10ms, 25 ms and 50 ms is evenly applied

to both paths.

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180

P
a
yl

o
a
d

 t
h
ro

u
g
h
p
u
t
[M

b
it
/s

]

Bandwidth of southern path [Mbit/s]

Northern path const. at 10 Mbit/s

ideal, min. req.

mod_eff, delay=1ms

mod_eff, delay=10ms

mod_eff, delay=25ms

mod_eff, delay=50ms

Figure 5.10.: Throughput measurement using DAC and Bu�er Splitting varying the delay on

both paths

The results presented in �gure 5.10 show that if the delay is increased on both paths the payload

throughput plummets to the ground.

If the delay on a path is increased the DATA chunks will take a longer time to reach the

receiver’s side and the acknowledgments will also take longer on the way back. In order to

fully utilize the link’s capacity the sender needs to inject a certain amount of data into the

network. If the sender is not able to do that it has to stop and wait for the corresponding

acknowledgment. Thus, the path can not be kept busy and it cannot be used to its full capacity

which leads to a reduced overall throughput.

43

5. Problem of E�ciency

The maximum amount of data that is in the network at any given time, i.e. data that has

been injected into the network but has not yet been acknowledged, can be calculated with the

bandwidth-delay-product (BDP, see equation 5.1) [39].

BDP = bandwidth ∗RTT (5.1)

If the delay increases on a path the BDP will also increase, which means that more data can

reside in the network circuit. An example is given in 5.2 and 5.3.

BDPN.2 = 10Mbit/s ∗ 2ms = 20, 000Bit = 2, 500Byte (5.2)

BDPN.50 = 10Mbit/s ∗ 50ms = 500, 000Bit = 62, 500Byte (5.3)

The sending endpoint therefore has to inject 25 times more data into the network in order to

keep the link busy if the delay is increased from 1 ms to 25 ms. The increased link’s capacity

becomes even more severe if the send bu�er is already used to its capacity. This results in the

sending endpoint being unable to satisfy the demands of the link due to send bu�er blocking,

which then results in a reduced throughput.

The following Figures 5.11 and 5.12 present the impact of packet losses and di�erent queuing

algorithms on the resulting payload throughput in a scenario of dissimilar paths.

44

5. Problem of E�ciency

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180

DAC dac, Buffer Splitting bs

P
a
yl

o
a
d

 T
h
ro

u
g
h
p
u
t
[M

b
it/

s]

Bandwidth of Southern Path [Mbit/s]

Northern Path const. at 10 Mbit/s

ideal min. throughput

mod_eff, dac, bs, plr=0.00%

mod_eff, dac, bs, plr=0.25%

mod_eff, dac, bs, plr=0.5%

Figure 5.11.: Throughput measurement using DAC and Bu�er Splitting varying the PLR on

both paths

It can be observed from Figure 5.11 that a packet loss rate (PLR) of 0.25 % has already a notice-

able impact on the resulting throughput.

The packets that regularly get lost – or in the test case were dropped by Dummynet – trigger

Fast Retransmissions. Fast Retransmissions get triggered because there are higher TSNs that

were newly acknowledged (HTNA) and therefore the miss indication counter is incremented

for the lost packets. Once a Fast Retransmission is triggered the congestion window cwnd is

also reduced. In the measurements the slow start threshold ssthresh and therefore also the cwnd

were always set to cwnd/2. If packet loss happens constantly the cwnd cannot grow linearly

until a certain limit is reached but it is constantly reduced by a factor of two. Since packet loss

is an indication for the Congestion Control mechanism to detect network congestion the PLR

arti�cially limits the link’s capacity.

The use of a di�erent queuing algorithm can increase the overall payload throughput. In

contrast to the Tail-Drop approach Active Queue Management (AQM) algorithms, as proposed

45

5. Problem of E�ciency

by [40], start dropping packets already before the queues capacity is reached. This results in a

smaller average queue size and therefore a greater capacity to cope with bursts. In Figure 5.12

the former used Tail Drop queuing algorithm is replaced by the RED queuing algorithm as it is

introduced by [26]. The RED queuing algorithm is an AQM algorithm. It can be con�gured by

four parameters: A lower threshold, an upper threshold and two relative parameters that are

used to calculate the probability to drop incoming packets. If the average queue size is less

than the lower threshold (e.g. 20) the packet is always queued. If it is greater than the upper

threshold the packet is always dropped. If it is in between the lower and upper threshold the

packet is dropped on calculated probability. The con�gurations used in �gure 5.12 are based

on suggestions made in [26].

It can be observed that a suitable con�guration can increase the overall payload throughput as

it is the case for RED queue #1. On the other hand, a less well con�gured RED queue, e.g. RED

queue #2, can decrease the overall payload throughput.

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180

DAC dac, Buffer Splitting bs, Queue Management Algorithm q

P
a
yl

o
a
d

 T
h
ro

u
g
h
p
u
t
[M

b
it/

s]

Bandwidth of Southern Path [Mbit/s]

Northern Path const. at 10 Mbit/s

ideal min. throughput

mod_eff, dac, bs, q=Tail Drop

mod_eff, dac, bs, q=RED #1 (0.002/20/80/0.02)

mod_eff, dac, bs, q=RED #2 (0.002/20/80/0.1)

Figure 5.12.: Throughput measurement using DAC and Bu�er Splitting varying the queue

management algorithm on both paths

46

5. Problem of E�ciency

The use of AQM algorithms is generally encouraged by [20], but not especially the use of

the RED queuing management algorithm as it was in the past. [20] states that the RED queu-

ing management algorithm can be rather e�cient with an appropriate con�guration, but to

predict the suitable set of parameters dynamically has been found di�cult. Therefore, [20]

recommends that AQM algorithms should be self-tuning and called for further research in this

direction in July 2015.

In conclusion: A more e�cient implementation alone cannot solve the problem of the reduced

throughput in a scenario of dissimilar paths. A more e�cient implementation alone cannot

ful�ll the requirements set by the �rst design rule Improve Throughput, especially not in case

of increasing delay and packet losses. A more e�cient implementation can only make it less

worse.

47

6. Problem of Protocol

The previous chapter 5 shows that the throughput issues that come with dissimilar paths

cannot be solved by a more e�cient implementation alone.

Summary of the �ndings from chapter 5:

It can be observed that the number of Gap-Ack Blocks greatly increases in a dissimilar scenario.

The increase of Gap-Ack Blocks is caused by the the DATA chunk’s scheduling algorithm and

the fact that the paths are dissimilar. The increase of Gap-Ack Blocks leads to an increase in the

CPU usage of the kernel-level function sctp_handle_sack and thus decreases the overall payload

throughput. The SACK handling algorithm was optimized. Though, the increased throughput

was not enough to meet the requirements of the �rst design rule for CMT-CC as proposed by [1].

However, the evaluation of the e�ciency optimized implementation already gives some indica-

tion towards further reasons for the reduced throughput that can be observed in a dissimilar

scenario.

The following sections will therefore focus on protocol related problems that might in�uence

the overall payload throughput.

6.1. Analysis

At �rst, this section will focus on the countermeasures that have already been taken (see [6],

[7], [8], [9], [41], [29]) in order to reduce the problems that arise if CMT-SCTP is used over

dissimilar paths. Starting with the DAC algorithm and Bu�er Splitting feature which have

already been introduced in section 5.3.

48

6. Problem of Protocol

6.1.1. Bu�er Blocking Issues

The measurement series from Figure 5.9 compares the e�ect of the features Bu�er Splitting and

Delayed Acknowledgment for CMT (DAC) to the reference and modi�ed implementation. The

results illustrate that the challenges that come with dissimilar paths are not only performance

related but also protocol related.

It can be observed that Bu�er Blocking issues are already visible once the Southern Path is

greater than 60 Mbit/s. From this point on the throughput increases and �nally outperforms

the reference implementation. However, the requirements of the �rst design rule Improve

Throughput cannot be met.

The features Bu�er Splitting and DAC further improve throughput – reaching the minimum

required throughput up to almost 120 Mbit/s – enabling the modi�ed implementation to barely

meet the �rst design rule’s requirements. The measurements further demonstrate that even if

Bu�er Splitting is enabled it cannot increase the payload throughput to the theoretical possible

level if the Southern Path is greater than 60 Mbit/s.

In order to reduce the issues that come with Bu�er Blocking the only possible solution is to

reduce the number of DATA chunk that are queued in the sent_queue. A reduction of queued

DATA chunks can be achieved in two ways:

One approach would be to reduce the number of queued DATA chunks by making sure that

the cumulative acknowledgment moves more regularly and thus frees up bu�er space that

can then be used for new DATA chunks. Furthermore, it would reduce the average number of

TSNs that are reported in the Gap Report.

An alternative approach would be to use a di�erent scheduling algorithm that minimizes the

probability of scheduling-induced gaps in the TSN sequence. DATA chunk scheduling will not

be further discussed here, because it is not a focus of this thesis.

6.1.2. Timer-based Retransmissions

Another issue arises when comparing network traces from the measurement series performed

in Figure 5.12. Figure 5.12 demonstrates that a properly con�gured RED queuing algorithm

49

6. Problem of Protocol

can increase throughput in comparison to the Tail Drop queuing algorithm.

In case of the Tail Drop measurements simultaneously occurring idle times on all paths can

be observed. This phenomenon is not present in case of the properly con�gured RED queue

measurements. The observed simultaneously occurring idle times are connected to timer-based

retransmission.

Normally, once a packet gets lost in the network, e.g is dropped by the router, the Fast Re-

transmission algorithm triggers. It schedules the lost packet for retransmission after it was

reported missing for three times. However, if a packet is scheduled for retransmission by the

Fast Retransmission algorithm it is excluded from being processed by the Fast Retransmission

algorithm again. In order to guarantee that those packets are skipped the �ag no_fr_allowed

from the DATA chunk’s management structure is set.

The next time a SACK is processed and the function sctp_stike_gap_ack_chunks is called all

DATA chunks that are marked by the �ag no_fr_allowed are skipped, as illustrated in listing

6.2. The code extract from listing 6.2 is part of the for loop that iterates over all DATA chunks.

The variable tp1 is a pointer to the current DATA chunk element in the sent_queue.

1 if (tp1->no_fr_allowed) {
2 /* this one had a timeout or something */
3 continue;
4 }

Listing 6.1: Retransmitted TSN Skip

If such a retransmitted DATA chunk is dropped by the router again the loss will not be noticed

by the Fast Retransmission algorithm, because the DATA chunk will be skipped. Therefore, the

sender has to wait until a timer-based retransmission is triggered. In the testbed environment

the timer is always set to the minimum retransmission timeout (RTO) as it is de�ned by the

system control net.inet.sctp.rto_min. In FreeBSD the system control net.inet.sctp.rto_min is set

to 1000 ms by default.

The described scenario also occurs if paths are rather similar. The di�erence in case of dissimilar

paths is that the send bu�er is already much more utilized than it is in a similar path scenario.

The reason for this is that the cumulative acknowledgment moves more slowly and thus more

50

6. Problem of Protocol

DATA chunks have to be queued over longer periods of time.

If a retransmitted DATA chunk is dropped by the router the resulting gap cannot be �lled until

this DATA chunk is resend by a timer-based retransmission which takes one second to trigger.

This results in a huge Send Bu�er Blocking issue because for about one second no new DATA

chunks can be send. The last SACK before the cumulative acknowledgment moves forward

only consists of one huge Gap-Ack Block with over 1000 selectively acknowledged TSNs.

To mark all DATA chunks that need to be excluded from the Fast Retransmission algorithm

is part of the SCTP speci�cation (see [5], subsection 7.2.4.). [5] states that all DATA chunks

being fast retransmitted should be marked and thus ineligible for a subsequent fast retransmis-

sion. Another reason for marking DATA chunks is the Smart Fast Retransmission algorithm

as proposed by [8]. The reason for Smart Fast Retransmissions is to prevent bursts of Fast

Retransmissions, if a DATA chunk is scheduled for retransmission on a path that di�ers from

its initial path.

However, the retransmitted TSNs that use the same path as they used initially can be processed

by the Fast Retransmission algorithm again, because Fast Retransmission bursts cannot occur.

In the current implementation the �ag no_fr_allowed is set regardless of whether a the path

changes.

6.1.3. Non Renegable Selective Acknowledgment (NR-SACK)

So far this thesis has only focused on ordered and reliable data transfer. As already described

in chapter 3, SCTP can also be con�gured to send unordered data. If only unordered transfer is

used the same challenges can be identi�ed as they have been discussed in the previous chapter

5 and sections 6.1.1 and 6.1.2.

It does not matter if the unordered or ordered data service is used as long as the tra�c is reliable

the receiving endpoint needs to acknowledge every single DATA chunk. As a consequence of

reliable transfer all DATA chunk that are not part of the cumulative acknowledgment need to

reside in the send bu�er until they are cumulatively acknowledged. All DATA chunks that

have been selectively acknowledged can be revoked by the receiving endpoint and then need

to be retransmitted. The discarding of previously selectively acknowledged DATA chunks is

51

6. Problem of Protocol

also denoted as reneging.

When it comes to unordered data tra�c it is not necessary to keep those DATA chunks in the

send bu�er once they have been delivered to the receiving endpoint. These DATA chunks can

be passed directly from the receiver to the application. The reason for this is that they are

unordered and therefore no sequence needs to be maintained.

Therefore, the SACK chunk is extended by another type of Gap-Ack Block. This extension is

denoted as Non Renegable Selective Acknowledgment (NR-SACK) and proposed by [41]. As

the name implies the NR-SACK chunk enables the receiving endpoint to report TSNs that are

selectively acknowledged but also not renegable. Thus, a nr-selectively acknowledged DATA

chunk can be removed from the sending endpoint’s bu�er, because the receiving endpoint has

already passed it to the application layer and will never revoked the DATA chunk.

The Figure 6.1 displays the structure of a NR-SACK chunk.

Figure 6.1.: Structure of a NR-SACK chunk

In comparison to a SACK chunk the NR-SACK carries the following additional information

(highlighted in green): A two byte �eld that holds the number of reported NR-Gap-Ack Blocks.

Furthermore, the actual NR-Gap-Ack Blocks are inserted after the Gap-Ack-Blocks and before

the report of duplicate TSNs.

Figure 6.2 presents a measurement using unordered transfer with NR-SACKs, Bu�er Splitting

and DAC enabled. It can be observed that the maximum ideal throughput can be achieved if

the send bu�er is con�gured between 200 KB and 400 KB.

52

6. Problem of Protocol

The DTrace probes for SCTP show that in the case of ideal send bu�er sizes no Fast Retrans-

missions or time-based retransmissions were triggered. However, if the send bu�er size grows

the number of Fast Retransmissions and time-based retransmissions also grows. In the test

environment Fast Retransmissions can only appear if packets get dropped by the soft routers

North or South. A retransmission of any kind always decreases the cwnd and ssthresh which

then can lead to a reduced utilization of the a�ected communication path.

Therefore, the range of ideal send bu�er size has to be large enough to almost fully utilize

the network paths at all time. On the other hand, if the bu�er is too small the paths cannot be

used to their full capacity. If the bu�er is too large it not only triggers retransmissions, but the

function sctp_handle_sack also need more time to compute the SACKs.

10

20

30

40

50

60

70

80

90

100

110

0 200 400 600 800 1000 1200 1400 1600 1800 2000

DAC dac, Buffer Splitting bs, NR-SACK nrs

P
a
yl

o
a
d

 t
h
ro

u
g
h
p
u
t
[M

b
it/

s]

Send/Receive Buffer Space [x1000]

ideal payload throughput for 100 Mbit/s

ideal payload throughput for 110 Mbit/s

mod_eff, dac, bs, nrs

Figure 6.2.: Throughput Measurement using NR-SACKs with di�erent send bu�er sizes

The following Figure 6.3 displays measurement series with varying send bu�er sizes and

di�erent delays on both paths. The �rst measurement (depicted in green) is performed with an

ideal bu�er size (compare Figure 6.2) and a delay of 1 ms. This con�guration is able to ful�ll

the requirements of the �rst design rule Improve Throughput up to 120 Mbit/s.

53

6. Problem of Protocol

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180

P
a
yl

o
a
d

 t
h
ro

u
g
h
p
u
t
[M

b
it/

s
]

Bandwidth of southern path [Mbit/s]

Northern path const. at 10 Mbit/s

ideal, min. req.

mod_eff, buf=250K, delay=1 ms

mod_eff, buf=250K, delay=10 ms

mod_eff, buf=1864K, delay=10 ms

Figure 6.3.: Throughput Measurement using NR-SACKs with varying delay

However, in the second measurement series (depicted in blue) the delay is increased to 10

ms. In this case the con�guration performs less well and the �rst design rule can only be met

in a rather similar case. It is probably possible to �nd a bu�er size that is suitable for such

a case, but in a more realistic environment – like the Internet – the characteristics of a path

can change. Moreover, as the third measurement (depicted in yellow) shows a di�erent bu�er

size (the FreeBSD default bu�er size) can show non-linear behavior. The other measurements

can be approximates by a linear function that at a certain point turns into a constant function.

The third measurement however shows a di�erent behavior. Therefore, it is less likely to �nd

a bu�er size that works for a vast range of dissimilar scenarios as they can appear in the Internet.

6.2. Approach

In the previous section 6.1 the challenges that come with a dissimilar path scenario were

discussed. Therefore the following approaches are presented:

54

6. Problem of Protocol

1. Flag no_fr_allowed in Fast Retransmission algorithm

2. SACK Window – limits the number of TSNs in Gap Reports

3. Chunk Rescheduling Algorithm – A modi�ed approach

Due to time regulations for this thesis the approaches 2 and 3 should rather be viewed as an

idea and not an approach that is discussed to its fullest.

6.2.1. Flag no_fr_allowed in Fast Retransmission algorithm

As described in the previous subsection 6.1.2, a setting of the �ag no_fr_allowed can cause all

communication paths to stall if such a DATA chunk gets lost in the network, e.g. is dropped by

a router.

There are two possible approaches for the described issue: The �rst would be to use a self-

tuning Active Queue Management (AQM) algorithm that reduces the risk of dropped packet

bursts. However, this approach is not discussed further because it is not a focus of this thesis.

The second approach would be to allow DATA chunks that are retransmitted over the same

path to be processed by the Fast Retransmission algorithm again. In the following the second

approach is discussed.

The �ag no_fr_allowed is set in the function sctp_strike_gap_ack_blocks , that schedules TSNs

for retransmission using the Fast Retransmission algorithm. In the current implementation

the �ag is set before the function sctp_�nd_alternate_net is called. This function selects the

currently best path and returns it to the caller. Only if the returned alternate path di�ers from

the original path the �ag no_fr_allowed needs to be set. Since, there is some additional work

to do if the path changes a suitable branch already exists.

The modi�cations that need to be taken are displayed in listing 6.2. After sctp_�nd_alternate_net

selects the best path it is stored in alt. The path that the DATA chunk tp1 was originally send

over is stored in tp1->whoTo. Therefore, the �ag no_fr_allowed can be set in line 3 of listing 6.2.

55

6. Problem of Protocol

1 if (alt != tp1->whoTo) {
2 /* set flag, because path has changed */
3 tp1->no_fr_allowed = 1;
4

5 /* yes, there is an alternate. */
6 sctp_free_remote_addr(tp1->whoTo);
7

8 /* sa_ignore FREED_MEMORY */
9 tp1->whoTo = alt;

10 atomic_add_int(&alt->ref_count, 1);
11 }

Listing 6.2: Set no_fr_allowed in sctp_strike_gap_ack_blocks

6.2.2. SACK Window

With the e�ciency modi�cations proposed in 5.3 the average CPU Usage time can be reduced

from 12.5 % to 5 %. However, in a similar path scenario the function sctp_handle_sack only has

a CPU usage time of 2.5 %. Therefore, in order to further decrease the computation time of

sctp_handle_sack the number of reported TSNs in the Gap-Ack Blocks will be limited. This

approach will be denoted as SACK Window swnd.

A maximum size for the Gap Report can guarantee that the CPU usage of the function

sctp_handle_sack also has an upper limit. Section 5.2 already shows that a maximum size

of the array outstanding_tsn_arr does not lead to a reduction of throughput if the con�gured

maximum size is not too small. Actually, an upper limit for the number of Gap-Ack Blocks –

not number of selectively acknowledged TSNs – already exists in the SCTP implementation.

Since, a SACK cannot be split into two SACK chunks the number of Gap-Ack Blocks is limited

by the allowed payload size. The allowed payload size is the MTU minus the SCTP common

and SACK chunk header. If the MTU is 1500 Bytes the allowed payload size is 1452 Bytes. Each

Gap-Ack Block has a size of 2 ∗ 2Bytes = 4Bytes. Therefore, a total of 363 Gap-Ack Blocks

can be reported in a SACK.

Simply limiting the number of Gap-Ack Blocks is not a solution, because each Gap-Ack Block

can report multiple TSNs. In the worst case a SACK consists of one Gap-Ack Block but

selectively acknowledges several hundred TSNs.

56

6. Problem of Protocol

An example for this issue is described in subsection 6.1.2: In the case a of a timer-based

retransmission, the TSN that was dropped again by the router caused a gap in the TSN se-

quence that could could not be �lled for about one second. This led to SACKs that over time

reported less Gap-Ack Blocks but more selectively acknowledged TSNs. The last SACK that

was processed before the cumulative acknowledgment moved forward only consisted of one

Gap-Ack Block but reported over 1000 TSNs.

Therefore, the number of selectively acknowledged TSNs need to be limited and not the number

of Gap-Ack Blocks. The SACK window swnd is de�ned as follows in equation 6.1:

last_reported_tsn = cumack + swnd (6.1)

This approach can guarantee that the function sctp_handle_sack only has to iterate over a

prede�ned amount of DATA chunks. If the number of selectively acknowledged TSNs would

be counted with swnd the resulting computation time of sctp_handle_sack could di�er, because

possibly missing TSNs are not included. For this reason the swnd is de�ned as an o�set from

the cumulative acknowledgment cumack.

In order to limit the number of selectively acknowledged TSNs the mechanism that limits the

number of Gap-Ack Blocks can be used and modi�ed. The listing 6.3 displays the mentioned

code section. The SACK chunk is basically just a huge chunk of allocated memory that is

set step by step. The variable gap_descriptor points to the address of the next Gap-Ack Block

that can be �lled. The data structure struct sctp_gap_ack_block represents a Gap-Ack Block

and consists of two members: start and end. The variable limit is a pointer to the end of the

allocated memory for a SACK chunk.

1 if (((caddr_t)gap_descriptor + sizeof(struct sctp_gap_ack_block))
2 > limit) {
3 /* no more room */
4 limit_reached = 1;
5 break;
6 }

Listing 6.3: Assembly of a SACK chunk – stop criterion for Gap-Ack Blocks

In order to limit the number of selectively acknowledged TSNs the boolean expression dis-

played in listing 6.3 line 1 is modi�ed to also stop adding new Gap-Ack Blocks if a certain swnd

57

6. Problem of Protocol

threshold is exceeded.

Listing 6.4 displays the modi�cations. The system control net.inet.sctp.cmt_swnd de�nes if the

limitation should be enabled and how many selectively acknowledged TSNs are allowed to

be reported in a SACK. If the branch is executed the last Gap-Ack Block might need to be

modi�ed if more TSNs are reported than con�gured by the the SACK window swnd.

1 // swnd = SCTP_BASE_SYSCTL(sctp_cmt_swnd) &&
2 // num_tsn_in_gap_blocks >= SCTP_BASE_SYSCTL(sctp_cmt_swnd);
3 if ((((caddr_t)gap_descriptor + sizeof(struct sctp_gap_ack_block))
4 > limit) || swnd) {
5 if (num_tsn_in_gap_blocks > SCTP_BASE_SYSCTL(sctp_cmt_swnd)) {
6 // modify last Gap-Ack Block
7 gap_descriptor--;
8 gap_descriptor->end = htons(SCTP_BASE_SYSCTL(sctp_cmt_swnd));
9 gap_descriptor++;

10 }
11

12 /* no more room */
13 limit_reached = 1;
14 break;
15 }

Listing 6.4: Assembly of a SACK chunk – modi�ed stop criterion

6.2.3. Chunk Rescheduling

As already identi�ed in subsection 6.1.3 the di�erence between unordered and ordered transfer

is as follows: In case of ordered transfer an user message can only be passed to the application

if all previous user messages have been received. For unordered transfer user messages can be

passed to the application as soon as they arrive at the receiving endpoint.

NR-SACKs can only be successfully applied to unordered transfer. In a ordered scenario a

modi�ed NR-SACK algorithm could reduce the problem of Send Bu�er Blocking if the receiver

guarantees that it takes responsibility for received user messages. However, a modi�ed NR-

SACK approach could not reduce the Receive Bu�er Blocking issue, because the receiver has to

bu�er the received user messages until the user messages are in sequence. Thus, the blocking

58

6. Problem of Protocol

issue only shifts from the sending endpoint to the receiving endpoint.

A di�erent approach is Chunk Rescheduling as proposed by [8] and [29]. The Chunk Reschedul-

ing algorithms approximates the level of send or receive bu�er blocking and if a certain thresh-

old is exceeded a user message is resend in order to �ll a gap. The goal is to detect signs of

Bu�er Blocking early and react by retransmitting the TSN that causes the gap. As a result the

gap is �lled and the cumulative acknowledgment can advance.

In the original approach only the lowest possibly missing TSN is retransmitted. In the modi�ed

approach all possibly missing TSNs on the a�ected path prior to the �rst selectively acknowl-

edged TSN are retransmitted. This seemed to produce more stable results.

Furthermore, the a�ected path is not excluded from Chunk Rescheduling for one round trip

time (RTT). This part of the algorithm was not implemented because of a lack of time for the

implementation.

6.3. Evaluation

This chapter evaluates the proposed approaches from the previous section 6.2.

6.3.1. Flag no_fr_allowed in Fast Retransmission algorithm

Figure 6.4 displays three measurements: The �rst measurement (depicted in green) shows the

results of the reference implementation. The second measurement (depicted in blue) shows the

results of the e�ciency modi�ed implementation. The last measurement (depicted in yellow)

shows the results of the proposed modi�cation to the no_fr_allowed �ag.

59

6. Problem of Protocol

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180

P
a
yl

o
a
d

 t
h
ro

u
g
h
p
u
t
[M

b
it/

s
]

Bandwidth of southern path [Mbit/s]

Northern path const. at 10 Mbit/s

ideal, min. req.

reference impl.

mod_eff

mod_eff, no_fr_allowed mod.

Figure 6.4.: Throughput measurement with no_fr_allowed modi�cation

An increased throughput can be observed if the Southern Path is set between 40 Mbit/s and 80

Mbit/s. At 60 Mbit/s the no_fr_allowed modi�ed implementation reaches the maximum possible

throughput. The e�ciency modi�ed implementation increases the throughput over almost the

whole measurement range, only at 80 Mbit/s it performs worse. The no_fr_allowed modi�ed im-

plementation manages to perform at least as good as the reference implementation at 80 Mbit/s.

It is still possible that a timer-based retransmission can stall all communication paths. In such

a case the TSN is resend over a di�erent path, gets dropped by the router and can only be

resend once a retransmission timeout occurs. However, the results from Figure 6.4 show that

it is bene�cial to include retransmitted TSN in the Fast Retransmission algorithm if they are

resend over the same path.

Further improvements can be observed, as Figure 6.5 presents, if the DAC algorithm and Bu�er

Splitting is enabled for both implementations.

60

6. Problem of Protocol

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180

DAC dac, Buffer Splitting bs, no-fr-allowed mod. mod_nofr

P
a
yl

o
a
d

 t
h
ro

u
g
h
p
u
t
[M

b
it/

s
]

Bandwidth of Southern Path [Mbit/s]

Northern Path const. at 10 Mbit/s

ideal min. throughput

mod_eff, dac, bs, delay=1 ms

mod_eff, mod_nofr, dac, bs, delay=1 ms

mod_eff, mod_nofr, dac, bs=true, delay=10 ms

mod_eff, dac, bs, delay=10 ms

Figure 6.5.: Throughput measurement with no_fr_allowed mod. using DAC and Bu�er Splitting

With DAC and Bu�er Splitting enabled the no_fr_allowed modi�ed implementation manages

to further improve the throughput from 80 Mbit/s to 100 Mbit/s. Up to 80 Mbit/s the maximum

theoretically possible throughput is reached.

However, the no_fr_allowed modi�ed implementation is still greatly a�ected by an increase in

delay as illustrated by the yellow measurement series. To compare the yellow measurement

series to the e�ciency modi�ed implementation the red measurement is also added to Figure 6.5.

6.3.2. SACK Window

Figure 6.6 displays the results from the measurements using di�erent SACK Window swnd

sizes in comparison to the e�ciency modi�ed implementation. It can be observed that with an

increase in swnd the overall throughput also increases.

61

6. Problem of Protocol

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180

DAC dac, Buffer Splitting bs, SACK Window swnd

P
a
yl

o
a
d

 t
h
ro

u
g
h
p
u
t
[M

b
it/

s
]

Bandwidth of Southern Path [Mbit/s]

Northern Path const. at 10 Mbit/s

ideal min. throughput

mod_eff, dac, bs, swnd=0 (disabled)

mod_eff, dac, bs, swnd=200

mod_eff, dac, bs, swnd=400

mod_eff, dac, bs, swnd=600

Figure 6.6.: Throughput measurement with varying SACK Windows

If the swnd is set to 400 the CPU usage of about 2.5 % is about the same as in a similar path

scenario. However, only swnd sizes close too 1000 were able to reproduce results – in greater

dissimilar scenarios – that are close to the e�ciency modi�ed implementation. Therefore, just

limiting the number of selectively acknowledged TSNs by using the proposed swnd is not

su�cient.

The reason for this is that the �ightsize counter is only partly modi�ed. A �ighsize counter

keeps track of the amount of Bytes that are outstanding on a path. The sending endpoint is

only allowed to send out new DATA chunks if the �ightsize is less than the cwnd.

Measurements have shown that if the swnd is con�gured too small, e.g. 200, the sending

endpoint is not allowed to send new DATA chunks, because in about 90 % of the time the

�ightsize is greater than the cwnd.

If only the �rst 200 TSNs are reported in the Gap-Ack Blocks the function sctp_handle_segments

only processes these TSNs and decreases the �ighsize counter accordingly. To the sending

endpoint it appears as if some TSNs arrived at the receiving endpoint, but all TSNs greater the

62

6. Problem of Protocol

cumack + swnd are still in �ight. If these TSNs are still outstanding the �ightsize counter is

not decreased for those TSNs. This then results in an arti�cially higher �ightsize counter and

thus also decreases the ability to send out new DATA chunks.

Therefore, the idea emerged to process the sent_queue piecewise. In this extended approach

all Gap-Ack Blocks are reported in a SACK by the receiving endpoint, but the sending side

performs the limitations. This alternate approach always processes the TSNs, that are part of

the swnd and additionally process TSNs of a second window that constantly moves through the

rest of the sent_queue. An example is illustrated in Figure 6.7. Figure 6.7 displays a sent_queue

that is logically divided into two parts. The �rst part, the swnd, is processed every time

the function sctp_handle_sack is called. For the remaining part each window 1 to 4 is only

processed every fourth time the function sctp_handle_sack is called.

swnd 2 3 41

Figure 6.7.: Alternate SACK Window approach

The purpose of the second window – 1 to 4 in the example in Figure 6.7 – is only to decrease

the �ightsize counters and therefore provide a more accurate count of outstanding TSNs.

With this alteration it is possible to increase the overall throughput, but it was never able to

outperform the e�ciency modi�ed implementation. Furthermore, a maximum computation

time of the function sctp_handle_sack cannot be guaranteed any more because a �fth iteration

step would be needed if more DATA chunks would be queued.

Another possible solution for this issue would be to arti�cially decrease the �ightsize counter

for the TSNs that were not reported, but were received at the receiving endpoint. This could be

done by an additional �eld in the SACK chunk. However, arti�cially decreasing the �ightsize

counter has to be done carefully, because it is an important part of the Congestion Control

mechanism. If the receiving endpoint also reports the amount of Bytes received after the swnd

the sender has to be able to decide for which TSN it needs to decrease the �ightsize and for

which it was arti�cially decreased.

63

6. Problem of Protocol

6.3.3. Chunk Rescheduling

Figure 6.8 presents the results of the chunk rescheduling measurement: One measurement

(depicted in blue) is done with a delay of 1 ms and the other (depicted in yellow) at 10 ms.

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180

DAC dac, Buffer Splitting bs, Chunk Rescheduling cr

P
a
yl

o
a
d

 t
h
ro

u
g
h
p
u
t
[M

b
it/

s
]

Bandwidth of Southern Path [Mbit/s]

Northern Path const. at 10 Mbit/s

ideal min. throughput

mod_eff, dac, bs, delay=1 ms

mod_eff, dac, bs, cr, delay=1 ms

mod_eff, dac, bs, cr, delay=10 ms

mod_eff, dac, bs, delay=10 ms

Figure 6.8.: Throughput measurement using the modi�ed Chunk Rescheduling algorithm

In case of the 1 ms delay measurement the Chunk Rescheduling algorithm is able to outperform

the e�ciency modi�ed implementation, especially if the Southern path is set to 140 Mbit/s or

more.

If the delay on both paths is increased from 1 ms to 10 ms the measurement that uses Chunk

Rescheduling (depicted in yellow) is able to outperform the e�ciency modi�ed implementation

in the case of greater dissimilarity. At lower dissimilarity levels the Chunk Rescheduling

approach performs worse than the previous e�ciency optimized approach.

However, if the Southern Path is set to 100 Mbit/s 68.1 % of the SACKs selectively acknowledged

less than 100 TSNs. The remaining SACKs include no Gap-Ack Blocks at all. About 50 % more

TSNs are retransmitted due to the Chunk Rescheduling algorithm, but they only make up

64

6. Problem of Protocol

3.46 % of the total data transferred.

Therefore, Chunk Rescheduling helped to reduce the average number of selectively acknowl-

edged TSNs. Through the retransmission of TSNs, that might hold back the cumulative

acknowledgment, the Chunk Rescheduling algorithm was able to make the cumulative ac-

knowledgment move more often and thus it reduced the time that DATA chunk spent in the

sent_queue.

For future work it might be worth trying to combine the an improved SACK Window ap-

proach with Chunk Rescheduling. This could help to limit the CPU Usage of the function

sctp_handle_sack , but also make sure that the Bu�er Blocking issue is reduced by the Chunk

Rescheduling algorithm.

65

7. Conclusion

The goal of this thesis was to identify issues that arise if CMT-SCTP is used in a dissimilar

path environment and – if possible – propose solutions that help to reduce the issues with the

goal to ful�ll the requirements of the �rst desgin rule Improve Throughput as de�ned by [1].

With a more e�cient implementation of the SACK handling algorithm it is possible to increase

the throughput in a dissimilar multi-�ow scenario. Depending on the degree of dissimilarity

the throughput could be increased by up to 29 % in the test environment. However, it is not

enough to meet the �rst desgin rule’s requirements, especially not if a greater delay was added

to the Northern and Southern Path.

Therefore, it could be concluded that the issues of a reduced throughput in a dissimilar multi-

�ow scenario cannot be solely solved algorithmically.

The protocol related discussion revealed that a great issue is Send and Receive Bu�er Blocking

that is caused by the SCTP’s DATA chunk scheduling algorithm and the fact that the paths

are dissimilar. The Chunk Rescheduling algorithm tries to identify signs of Send and Receive

Bu�er Blocking and reduces it by resending DATA chunks that cause gaps. The approach tries

to ensure that the cumulative acknowledgment constantly moves and thus releases bu�er space

in order to send new DATA chunks. However, in case of greater dissimilarity and increased

delay all approaches struggle to ful�ll the �rst desgin rule’s requirements.

A di�erent approach to strike the Bu�er Blocking issues would be to implement a di�erent

DATA chunk scheduling algorithm that tries to schedule DATA chunks so that the possibility

of scheduling-induced gaps are minimized. Furthermore, the SACK window approach in

conjunction with Chunk Rescheduling might further improve the throughput, if the issues

with the arti�cially to high �ighsize counters can be solved.

66

7. Conclusion

The challenges can become even greater if other Congestion Control algorithms CMT-CCs

than cmt – that was used in this thesis – are used as it is illustrated in Figure A.2.

67

A. Appendix

A.1. Testbed

DHCP

10.0.0.231/24

fd8a:cad5:cad5::231/64

10.0.0.232/24

fd8a:cad5:cad5::232/64

10.0.1.232/24

fd8a:cad5:cad5:1::232/64

10.0.1.233/24

fd8a:cad5:cad5:1::233/64

10.0.2.233/24

fd8a:cad5:cad5:2::233/64

10.0.2.234/24

fd8a:cad5:cad5:2::234/64

10.0.3.234/24

fd8a:cad5:cad5:3::234/64

10.0.3.231/24

fd8a:cad5:cad5:3::231/64

10.0.3.0/24

fd8a:cad5:cad5:3::/64

10.0.0.0/24

fd8a:cad5:cad5::/64

10.0.2.0/24

fd8a:cad5:cad5:2::/64

10.0.1.0/24

fd8a:cad5:cad5:1::/64

Host Address IPv4

Legend

Netz Address IPv4

External Address IPv6

Host Address IPv6

External Address IPv4

Netz Address IPv6
eth2

eth0

eth1

eth0

eth1

eth2

eth0

eth1eth2

eth0

eth1

eth2

cads-2-north

SwitchPort:01

SwitchPort:02

SwitchPort:05

SwitchPort:06SwitchPort:09

SwitchPort:10

SwitchPort:13

SwitchPort:14

SwitchPort

DHCP

DHCP

DHCP

SwitchPort:17

SwitchPort:19

SwitchPort:20 SwitchPort:18

SwitchPort:21

SwitchPort:23

eth0DHCP

cads-2-south

cads-2-west cads-2-east

cads-2-pi

SwitchPort
Port Mirroring: Source, Tx/Rx

SwitchPort
Port Mirroring: Dest. Port

Figure A.1.: Detailed Testbed Setup

68

A. Appendix

A.2. Additional Measurements

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180

CMT Congestion Control algorithm: cmt-cc

P
a
yl

o
a

d
 t
h

ro
u

g
h

p
u

t
[M

b
it/

s]

Bandwidth of Southern pPath [Mbit/s]

Northern Path const. at 10 Mbit/s

ideal min. throughput

mod_eff, cmt-cc=cmt

mod_eff, cmt-cc=cmt/rpv2

mod_eff, cmt-cc=mptcp-like

Figure A.2.: Throughput measurement using the e�ciency modi�ed implementation proposed

in section 5.2 with di�erent CMT Congestion Control algorithms

69

A. Appendix

A.3. Additional Work

tp1->sent = SCTP_DATAGRAM_SENT

True

tp1->sent ==
SCTP_DATAGRAM_ACKED

increase flightsize counters

inflate cwnd

tp1->sent ==
SCTP_DATAGRAM_MARKED

tp1->sent = SCTP_DATAGRAM_ACKED

FalseFalse

True

tp1..TSN > cumack

tp1..TSN > biggest_tsn_acked

break

tp1->sent == SCTP_DATAGRAM_UNSENT break

True

True

False

False

True

False

Figure A.3.: Extract from sctp_check_for_revoked : Inside the loop that iterates over all DATA

chunks from the sent_queue

70

A. Appendix

Truetp1->sent >=
SCTP_DATAGRAM_RESEND

decrease flightsize counters

tp1->sent++
(under certain circumstances)

False

False

True

tp1->no_fr_allowed

tp1..TSN > this_sack_highest_gap
(TSN is beyond SACK)

tp1->sent == SCTP_DATAGRAM_RESEND
(Fast Retransmit TSN?)

True

True

False

False

True

False

continuebreak

tp1..TSN > this_sack_highest_newack
(HTNA algorithm)

tp1->whoTo->net_ack++
(used for Fast Recovery)

increase peers_rwnd

sctp_find_alternate_net for tp1

tp1->no_fr_allowed = 1

tp1..doing_fast_retrans = 1

Figure A.4.: Extract from sctp_strike_gap_ack_blocks : Inside the loop that iterates over all

DATA chunks from the sent_queue (strongly simpli�ed)

71

Bibliography

[1] Costin Raiciu, Damon Wischik, and Mark Handley. “Practical Congestion Control for

Multipath Transport Protocols”. In: University College London, London/United Kingdom,

Tech. Rep (2009).

[2] Jon Postel. Transmission Control Protocol. RFC 793. IETF, 1981. url: http://www.
rfc-editor.org/rfc/rfc793.txt (visited on 01/18/2017).

[3] IETF. Internet Engineering Task Force (IETF). 2016. url: https://www.ietf.org/
(visited on 02/28/2017).

[4] Thomas Dreibholz and Erwin P Rathgeb. “Towards the Future Internet–An Overview of

Challenges and Solutions in Research and Standardization”. In: Proceedings of the 2nd

GI/ITG KuVS Workshop on the Future Internet, Karlsruhe/Germany. 2008.

[5] R. Stewart. Stream Control Transmission Protocol. RFC 4960. IETF, 2007. url: http:
//www.rfc-editor.org/rfc/rfc4960.txt (visited on 01/18/2017).

[6] Paul Amer et al. Load Sharing for the StreamControl Transmission Protocol (SCTP). Internet-

Draft draft-tuexen-tsvwg-sctp-multipath-13. IETF Secretariat, 2016. url: http://
www.ietf.org/internet-drafts/draft-tuexen-tsvwg-sctp-
multipath-13.txt (visited on 01/18/2017).

[7] Janardhan R Iyengar, Paul D Amer, and Randall Stewart. “Concurrent Multipath Transfer

using SCTP multihoming over independent end-to-end Paths”. In: IEEE/ACM Transac-

tions on networking 14.5 (2006), pp. 951–964.

[8] Thomas Dreibholz et al. “On the use of Concurrent Multipath Transfer over Asymmetric

Paths”. In: Global Telecommunications Conference (GLOBECOM 2010), 2010 IEEE. IEEE.

2010, pp. 1–6.

[9] Hakim Adhari et al. “Evaluation of Concurrent Multipath Transfer over dissimilar Paths”.

In: Advanced Information Networking and Applications (WAINA), 2011 IEEE Workshops

of International Conference on. IEEE. 2011, pp. 708–714.

[10] J. Postel. User Datagram Protocol. RFC 768. IETF, 1980. url: http://www.rfc-
editor.org/rfc/rfc768.txt (visited on 02/23/2017).

72

http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
https://www.ietf.org/
http://www.rfc-editor.org/rfc/rfc4960.txt
http://www.rfc-editor.org/rfc/rfc4960.txt
http://www.ietf.org/internet-drafts/draft-tuexen-tsvwg-sctp-multipath-13.txt
http://www.ietf.org/internet-drafts/draft-tuexen-tsvwg-sctp-multipath-13.txt
http://www.ietf.org/internet-drafts/draft-tuexen-tsvwg-sctp-multipath-13.txt
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc768.txt

Bibliography

[11] E. Kohler, M. Handley, and S. Floyd. Datagram Congestion Control Protocol (DCCP). RFC

4340. IETF, 2006. url: http://www.rfc-editor.org/rfc/rfc4340.txt
(visited on 01/18/2017).

[12] Robert Braden. Requirements for Internet Hosts - Communication Layers. RFC 1122. IETF,

1989. url: http://www.rfc-editor.org/rfc/rfc1122.txt (visited on

01/18/2017).

[13] S. Floyd. Congestion Control Principles. RFC 2914. IETF, 2000. url: https://tools.
ietf.org/html/rfc2914 (visited on 01/18/2017).

[14] M. Allman, V. Paxson, and E. Blanton. TCP Congestion Control. RFC 5681. IETF, 2009.

url: http://www.rfc-editor.org/rfc/rfc5681.txt (visited on

01/18/2017).

[15] Randeall R. Stewart and Qiaobing Xie. Stream Control Transmission Protocol (SCTP) - A

Reference Guide. Addison-Wesley, 2002. isbn: 978-0-201-72186-7.

[16] Marshall Kirk McKusick, George V Neville-Neil, and Robert NM Watson. The Design

and Implementation of the FreeBSD Operating System. Pearson Education, 2015.

[17] Jon Postel. Internet Protocol. RFC 791. IETF, 1981. url: http://www.rfc-editor.
org/rfc/rfc791.txt (visited on 02/23/2017).

[18] Armando L Caro Jr et al. “Congestion control: SCTP vs TCP”. In: Protocol Engineering

Lab, Computer and Information Sciences, University of Delaware (2003).

[19] S. Floyd et al. TCP Friendly Rate Control (TFRC): Protocol Speci�cation. RFC 5348. IETF,

2008. url: http://www.rfc-editor.org/rfc/rfc5348.txt (visited on

01/18/2017).

[20] F. Baker and G. Fairhurst. IETF Recommendations Regarding Active Queue Management.

RFC 7567. IETF, 2015. url: https://tools.ietf.org/html/rfc7567
(visited on 02/28/2017).

[21] Damon Wischik, Mark Handley, and Marcelo Bagnulo Braun. “The Resource Pooling

Principle”. In: ACM SIGCOMM Computer Communication Review 38.5 (2008), pp. 47–52.

[22] PC Engines GmbH. APU Alix (APU3C4). 2016. url: http://www.pcengines.
ch/apu2c4.htm (visited on 01/20/2017).

[23] Janusz Gozdecki, Andrzej Jajszczyk, and Rafal Stankiewicz. “Quality of service terminol-

ogy in IP networks”. In: IEEE communications magazine 41.3 (2003), pp. 153–159.

73

http://www.rfc-editor.org/rfc/rfc4340.txt
http://www.rfc-editor.org/rfc/rfc1122.txt
https://tools.ietf.org/html/rfc2914
https://tools.ietf.org/html/rfc2914
http://www.rfc-editor.org/rfc/rfc5681.txt
http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc5348.txt
https://tools.ietf.org/html/rfc7567
http://www.pcengines.ch/apu2c4.htm
http://www.pcengines.ch/apu2c4.htm

Bibliography

[24] Ugen J. S. Antsilevich et al. ipfw(8). 2016. url: https://www.freebsd.org/
cgi/man.cgi?query=ipfw (visited on 01/18/2017).

[25] Luigi Rizzo. dummynet(4). 2016. url: https://www.freebsd.org/cgi/man.
cgi?query=dummynet (visited on 01/18/2017).

[26] Sally Floyd and Van Jacobson. “Random Early Detection Gateways for Congestion

Avoidance”. In: IEEE/ACM Transactions on Networking (ToN) 1.4 (1993), pp. 397–413.

[27] Thomas Dreibholz. NetPerfMeter. 2017. url: https://github.com/dreibh/
netperfmeter (visited on 01/18/2017).

[28] Thomas Dreibholz et al. “Evaluation of A New Multipath Congestion Control Scheme

using the NetPerfMeter Tool-Chain”. In: Proceedings of the 19th IEEE International Con-

ference on Software, Telecommunications and Computer Networks (SoftCOM). Sept. 2011,

pp. 1–6.

[29] Thomas Dreibholz. “Evaluation and Optimisation of Multi-Path Transport using the

Stream Control Transmission Protocol”. Habilitation Treatise. University of Duisburg-

Essen, Faculty of Economics, Institute for Computer Science and Business Information

Systems, Mar. 2012.

[30] Sun Microsystems and Joyent Inc. Dynamic Tracing Guide. 2017. url: http : / /
dtrace.org/guide/chp-intro.html (visited on 01/18/2017).

[31] Brendan Gregg. Hotkernel Analysis. 2016. url: http://www.brendangregg.
com/DTrace/hotkernel (visited on 01/18/2017).

[32] Wireshark Foundation. Wireshark - Network Protocol Analyzer. 2016. url: https://
www.wireshark.org/ (visited on 02/23/2017).

[33] Tcpdump. Tcpdump/Libpcap Public Repository. 2016. url: http://www.tcpdump.
org (visited on 01/18/2017).

[34] Hewlett Packard Enterprise. HP 1820 Switches – Management and Con�guration Guide.

2017. url: http://h20566.www2.hpe.com/hpsc/doc/public/
display?sp4ts.oid=7687976&docId=emr_na-c04622710 (visited on

02/27/2017).

[35] C. Hornig. A Standard for the Transmission of IP Datagrams over Ethernet Networks. RFC

894. IETF, 1984. url: https://tools.ietf.org/rfc/rfc894.txt (visited

on 01/18/2017).

74

https://www.freebsd.org/cgi/man.cgi?query=ipfw
https://www.freebsd.org/cgi/man.cgi?query=ipfw
https://www.freebsd.org/cgi/man.cgi?query=dummynet
https://www.freebsd.org/cgi/man.cgi?query=dummynet
https://github.com/dreibh/netperfmeter
https://github.com/dreibh/netperfmeter
http://dtrace.org/guide/chp-intro.html
http://dtrace.org/guide/chp-intro.html
http://www.brendangregg.com/DTrace/hotkernel
http://www.brendangregg.com/DTrace/hotkernel
https://www.wireshark.org/
https://www.wireshark.org/
http://www.tcpdump.org
http://www.tcpdump.org
http://h20566.www2.hpe.com/hpsc/doc/public/display?sp4ts.oid=7687976&docId=emr_na-c04622710
http://h20566.www2.hpe.com/hpsc/doc/public/display?sp4ts.oid=7687976&docId=emr_na-c04622710
https://tools.ietf.org/rfc/rfc894.txt

Bibliography

[36] Intel Corporation. Intel Core i5 4690 Speci�cation. 2016. url: http://ark.intel.
com/products/80810/Intel- Core- i5- 4690- Processor- 6M-
Cache-up-to-3_90-GHz (visited on 02/23/2017).

[37] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control. RFC 2581. IETF, 1999.

url: https://tools.ietf.org/html/rfc2581 (visited on 01/18/2017).

[38] Thomas Dreibholz et al. “Transmission Scheduling Optimizations for Concurrent Multi-

path Transfer”. In: Proceedings of the 8th International Workshop on Protocols for Future,

Large-Scale and Diverse Network Transports (PFLDNeT). Vol. 8. 2010.

[39] W. Richard Stevens. TCP/IP Illustrated (Vol. 1): The Protocols. Addison-Wesley Longman

Publishing Co., Inc., 1993. isbn: 0-201-63346-9.

[40] Bob Braden et al. Recommendations on Queue Management and Congestion Avoidance in

the Internet. RFC 2309. IETF, 1998. url: http://www.rfc-editor.org/rfc/
rfc2309.txt (visited on 01/18/2017).

[41] Preethi Natarajan et al. “Non-renegable selective acknowledgments (NR-SACKs) for

SCTP”. In: Network Protocols, 2008. ICNP 2008. IEEE International Conference on. IEEE.

2008, pp. 187–196.

75

http://ark.intel.com/products/80810/Intel-Core-i5-4690-Processor-6M-Cache-up-to-3_90-GHz
http://ark.intel.com/products/80810/Intel-Core-i5-4690-Processor-6M-Cache-up-to-3_90-GHz
http://ark.intel.com/products/80810/Intel-Core-i5-4690-Processor-6M-Cache-up-to-3_90-GHz
https://tools.ietf.org/html/rfc2581
http://www.rfc-editor.org/rfc/rfc2309.txt
http://www.rfc-editor.org/rfc/rfc2309.txt

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig verfasst und

nur die angegebenen Hilfsmittel benutzt habe.

Hamburg, 21. März 2017 Daniel Sarnow

	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Organization

	2 Related Work
	3 Basics
	3.1 Stream Control Transmission Protocol (SCTP)
	3.2 Concurrent Multipath Transfer (CMT-SCTP)

	4 Test Environment
	4.1 Testbed
	4.2 Analysis Tools
	4.3 Measurement Procedure

	5 Problem of Efficiency
	5.1 Analysis
	5.1.1 Repetition of the Measurement on different Hardware
	5.1.2 Analysis of Network Traffic with Wireshark
	5.1.3 Analysis of SCTP Kernel Functions
	5.1.4 Analysis of SCTP Kernel Source Code

	5.2 Approach
	5.3 Evaluation

	6 Problem of Protocol
	6.1 Analysis
	6.1.1 Buffer Blocking Issues
	6.1.2 Timer-based Retransmissions
	6.1.3 Non Renegable Selective Acknowledgment (NR-SACK)

	6.2 Approach
	6.2.1 Flag no_fr_allowed in Fast Retransmission algorithm
	6.2.2 SACK Window
	6.2.3 Chunk Rescheduling

	6.3 Evaluation
	6.3.1 Flag no_fr_allowed in Fast Retransmission algorithm
	6.3.2 SACK Window
	6.3.3 Chunk Rescheduling

	7 Conclusion
	A Appendix
	A.1 Testbed
	A.2 Additional Measurements
	A.3 Additional Work

