

Wedndah Asong

Camera Calibration for Tracking Mobile Robots with
Surveillance Cameras

Bachelor Thesis based on the examination and study regulations for
the Bachelor of Engineering degree programme
Information Engineering
at the Department of Information and Electrical Engineering
of the Faculty of Engineering and Computer Science
of the University of Applied Sciences Hamburg

Supervising examiner: Prof. Dr. Thomas Holzhüter
Second examiner: Prof. Dr. Dieter Müller-Wichards

Date of delivery: June 6th 2007

Wedndah Asong

Title of the Bachelor Thesis

Camera Calibration for Tracking Mobile Robots with Surveillance Cameras

Keywords

Camera calibration, radial and tangential distortions, projection transformation, MAT-
LAB, operation field, camera frame, thresholding, boundary tracing

Abstract

This report presents a step-by-step camera calibration procedure by investigation of
the possible distortions. The three main distortions minimised are radial, tangential
and projection distortions. Two cameras were calibrated in this project and used to
track robots. The camera model used and the calibration parameters estimated are
given and discussed. The extraction of calibration and control points from the images
taken by the camera is accomplished by some digital image processing techniques.
These techniques together with some data processing techniques used are also dis-
cussed in detail.

End of text

Wedndah Asong

Thema der Bachelorarbeit

Kalibrierung von Kameras für die Bahnverfolgung mobiler Roboter mit
Überwachungskameras

Stichworte

Kamera-Kalibrierung, radiale und tangentiale Verzerrungen, Projektions-
Transfomation, MATLAB, Operationsfeld, Sehfeld, Schwellenwert, Randverfolgung

Kurzzusammenfassung

Diese Arbeit beschreibt ein schrittweises Verfahren für die Kalibrierung einer Kame-
ra durch die Untersuchung möglicher Verzerrungen. Drei Verzerrungen werden hier
minimiert: radiale, tangentiale und Projektions-Verzerrungen. In dieser Arbeit wurden
zwei Kameras kalibriert und benutzt, um Roboter zu verfolgen. Das benutzte Kame-
ramodell und die geschätzten Kameraparameter werden vorgestellt und diskutiert. Das
Extrahieren von Punkten aus den Bildern der Kameras geschieht durch digitale Bild-
verarbeitung. Dies wird zusammen mit der benötigten Datenverarbeitung ebenfalls
diskutiert.

Ende des Textes

Contents

 Chapter 1: Introduction …………………………………………………………………… 1

1.1. Project Overview ………………………………………………….………….. 2
1.2. Thesis Outline ……………………………………….………………………... 4
1.3. Development Environment …………………………………….....…………... 5

Chapter 2: System Overview ………………………………………………………………. 7

2.1. Hardware Specifications ………………………………………....................... 7
2.1.1. Mobile Robot ……………………………………………………….... 7
2.1.2. Circular Reflex Marks …………………………………………….….. 7
2.1.3. Camera ……………………………………………..………….……... 8

2.2. Software Specifications ………………………………………………….….... 9
2.2.1. MATLAB …………………………………………………………….. 9
2.2.2. Image Acquisition Toolbox ……………………………………..…… 9
2.2.3. Image Processing Toolbox …………………………..……………… 10
2.2.4. Camera Calibration Toolbox ……………..…………………………. 11

Chapter 3: Image Acquisition …………………………………………………………..… 12

3.1. Camera Configuration ………………………………………….…………… 12
3.2. Image Acquisition Procedure ………………………………………….……. 13

Chapter 4: Digital Image Processing ……………………………………..………………. 16

4.1. Digital Image Representation …………………..…………………………… 16
4.2. Digital Image Types ………………………………………………..……….. 17

4.2.1. Intensity Images ………………………………………………..……. 17
4.2.2. Binary Images ……………………………………..………………… 17
4.2.3. RGB Images ……………………………………………………..….. 17

4.3. Thresholding …………………………………………………..…………….. 17
4.3.1. Global Thresholding ……………………………………………….... 18
4.3.2. Local Thresholding ………………………………………..………… 18
4.3.3. Ostu Thresholding Algorithm ……………………………………..… 19
4.3.4. Customized Adaptive Thresholding Algorithm ……………..………. 20

 4.4. Boundary Tracing ………………………………………………………….... 21

Chapter 5: Data Processing …………………………………………………………..…… 24

5.1. Sub-Pixel Accuracy ………………………………………….……………… 24
5.2. Least Squares Fit ………………………………………………………….… 24

5.2.1. Circle Fit …………………………………………………………..… 25
5.2.2. Ellipse Fit ……………………………………………………………. 26

5.3. Additional Plausibility Check Procedures ………………………………...… 29
5.4. Projection Correction ……………………………………………………...… 30

 i

Chapter 6: Camera Calibration ………………………………………………………...… 32
6.1 Extrinsic Parameters ……………………………………………………….... 32
6.2 Intrinsic Parameters …………………………………………………………. 32
6.3 Image Distortion ………………………………………………...................... 33
6.4 Linear Parameter Estimation ………………………………………………... 34
6.5 Nonlinear Parameter Estimation …………………………………………….. 35
6.6 Calibration Function go_calib_optim() ……………………………………... 36

6.6.1 Definition of the Intrinsic Parameters ………………………………. 36
6.6.2 Definition of the Extrinsic Parameters …………………………….... 38
6.6.3 First Calibration Attempt ……………………………………………. 39

Chapter 7: Customized Adaptive Camera Calibration …………………………………. 43

7.1 Extrinsic and Intrinsic Parameters ……………………………....................... 45
7.2 Radial Distortion ……………………………………………………………. 52
7.3 Tangential Distortion …………………………………………....................... 57
7.4 Mapping from Image to Operation Field ……………………………………. 61

Chapter 8: Conclusion ………………………………………………………...................... 64

Acknowledgement …………………………………………………………………………. 65

References ……………………………………………………………………...................... 66

Appendix A: Alphabetic Function List …………………………………………………... 67

Appendix B: Source Code ………………………………………………………………… 72

 ii

Chapter 1: Introduction

Cameras are widely used in many fields of application today, in mobile phones, webcams, for
video conferencing, just to name a few. They may be used simply for visual purposes or for
monitoring or tracking. Remote monitoring is now the state of the art. Here, equipments,
devices, some work area or even a location is remotely monitored over a local network or the
internet. Some monitoring systems also provide remote control of the camera. Cameras are
also used for surveillance or to supplement alarm systems. Some surveillance cameras are
used to automatically read the licence plate of moving vehicles. In an alarm system, they may
be triggered by infrared light used to detect moving objects in a given area. They may also be
used to track moving objects, in which case, there is need to calibrate the camera. This is
exactly the case in this project.

The aim of calibrating a camera is to determine and estimate a set of camera parameters that
describe the mapping of 3-D reference coordinates in the camera view to 2-D image
coordinates. There are various camera calibration procedures presented in the past. A camera
calibration procedure involves the extraction of control points from images, model fitting,
correction of the lens distortion of the camera and analysis of possible errors originating from
the previous stages. The most challenging task in camera calibration is to determine the
camera parameters which compensate for the lens distortions. This is due to the non-linear
nature of the distortions. The distortions of the control points in an image increase from the
centre of the image to its borders as can be seen in the following figure. The image in this
figure was taken using one of the cameras used for this project in the lab. The small circles in
this image actually form a rectangular pattern but the pattern does not appear rectangular in
the image. This is as a result of distortion.

Figure 1.1: An illustration of camera distortion

The most outstanding distortion caused by a camera lens is radial distortion. It can be of pin-
cushion type, barrel type or even a combination of both as described in [14]. In the pin-
cushion distortion, the distance of the object from the centre of the image over estimates the
real distance in the world coordinate system while that of the barrel type is underestimated.
Both types of distortions are nonlinear, i.e. the image of a rectangle in the world coordinates
does not appear as a rectangle in the image. Straight lines are transformed into curved lines
when radial distortion is present.

 1

Most simple lenses in use today are spherical. Spherical lenses are easy to grind and have
been in use for centuries. An image is properly transformed (i.e. without distortion) only when
its maximum distance from the optical centre of the lens is small (this implies small angles of
incidence of light rays) compared to the focal length of the lens. However, when the distance
is large the mapping object-to-image is not perfect anymore. The radial distortion of a
checkerboard pattern is illustrated in figure 1.2. A comparison of figure 1.1 and figure 1.2
clearly shows that the camera lens used in this project causes barrel distortions.

Figure 1.2: Illustration of radial distortions

The extraction of the control points from the image (figure 1.1) involves digital image and
data processing. Generally, solutions to problems in the field of digital image processing
require a lot of experimental work and testing with large sets of sample images. It should be
noted here that it is required to keep the image processing time as low as possible because the
position and orientation of the robots must be updated fast enough to have better control of it.
The problem that arises here is that the pixel intensities of the digital images obtained from
the camera vary with luminance. This makes it difficult to develop a general algorithm for
thresholding the image as discussed in chapter 4.

The task in this project is to determine the position and orientation of mobile robots with the
aid of surveillance cameras. Of course the draw back here is that the position of a robot can
not be determined if the robot is out of the cameras’ view. To accomplish this task, the robots
are equipped with two circular reflex marks at their top. The position and orientation of a
robot can then be obtained by determining the centres of these marks. Robot control is not
part of this project. There are previous projects carried out on these robots by Wang Q. & Ye
G. [8] and Chung J. [9]. Robot control was part of these projects.

 1.1 Project Overview

The work station of this project consists of two over head cameras mounted on the ceiling,
one or several robots in the operation field and a PC control station with Windows XP as
operating system. The cameras are connected to the PC by firewire cables and the robots by
wireless connections. An overview of the work station is presented in the following figure.

 2

Figure 1.3: Overview of project workstation

Two circular reflex marks are attached to the top of the robot, one larger than the other. The
larger mark has a radius of 70 mm and is placed just above the tyres and the smaller mark has
a radius of 50 mm and is placed in front of the larger mark. So the position of a robot
corresponds to the centre of the larger mark and the orientation can be obtained by computing
the angle between the x-axis and a line drawn from the centre of the larger reflex mark
through that of the smaller one as shown in the following figure.

Figure 1.4: Parameters used in determining the state of a robot

Consider that the actual coordinates of the centres of the reflex marks of a robot have been
calculated as depicted in the figure above. The coordinate axes show the positive x- and y-
direction. The coordinates of the centre of the larger reflex mark is given by (x1, y1) and that
of the smaller by (x2, y2). Then the position of the robot is given by the coordinates (x1, y1)
and its orientation by the angle θ measured anti-clockwise from the positive x-axis. The angle
θ is computed as follows;

 y2 – y1
θ = arctan(-----------)

 x2 – x1

 3

The task of this project involves the following stages:

● Camera calibration using appropriate calibration images.
● Determination of robot position which involves:

 - Acquiring image from camera.

- Segmenting the image with a suitable threshold to obtain a binary image in
which the reflex marks (objects) are white and the rest of the image
(background) is black.

 - Determining the boundaries of the white objects in the binary image.
 - Computing the coordinates of the centre of these objects.

- Calculating the actual reference coordinates on the operation field from the
 image coordinates using camera calibration.

Robot control is not discussed in this project.

1.2. Thesis Outline

Chapter 2 gives an overview of the system used in accomplishing the task of this project. The
specification and requirements of the hard- and software are discussed in this chapter. A brief
description of the robots and cameras and a short discussion of the MATLAB environment
are given. The MATLAB toolboxes used in this project are also introduced.

Chapter 3 is made up of two parts – camera configuration and image acquisition. Here a
description is given on how the camera is configured to obtain suitable images to enhance
their processing and how these images are loaded into the MATLAB workspace from the
cameras.

In chapter 4, the digital image processing techniques used in this project are discussed. Here a
brief discussion on digital image representation and image types is given. Some digital image
processing techniques like thresholding and boundary tracing techniques are also discussed in
this chapter.

Chapter 5 gives a complete discussion of the algorithm used in obtaining the coordinates of
the centres of the circular reflex marks. The algorithm chosen here was used to obtain sub-
pixel accuracy. Further mathematical details like the least square fit are also discussed here;
specifically circle and ellipse fit are discussed. Finally the projection correction of the robot
height is discussed.

Chapter 6 discusses the camera calibration procedure used in the MATLAB calibration
toolbox. Here a first attempt to calibrate the camera with this toolbox and an analysis of the
results are given.

Chapter 7 discusses the step-by-step camera calibration procedure adapted for this project.
Here a step-by-step camera calibration procedure is introduced. A discussion is first given on
the possible sources of distortions and their effects are demonstrated. In each calibration step,
a distortion is chosen and minimised. The outcome of the minimisation at each step is also
demonstrated and the overall error minimisation is also given for each step.

Chapter 8 gives a conclusion about the project and general observations and difficulties
encountered while carrying out the task of this project.

 4

1.3. Development Environment

Each camera has a view of about 3400 mm x 2400 mm on the plane of the operation field but
the operation field of the robots is just 2800 mm x 2000 mm in each camera view and
somewhat centralised in the camera view. This is because only this area of each camera view
is calibrated. Also, when the robot is too close to the edge of the camera view, the reflex
marks reflect too little light to make it possible to differentiate it from the background. The
following figure shows the dimensions of the operation field of the robots and that of the
camera view for each one camera.

Figure 1.5: Camera view and operation field

The centres of the part of the operation field in the view of both cameras are at a distance of
about 2000 mm away from each other. This makes the part of the operation field in the view
of both cameras overlap as depicted in the following figure. The coordinate axes of the
operation field are also depicted in this figure. To distinguish the two cameras, the one to the
right used to track the robots in the red frame will be referred to as camera 1 and the one to
the left with the green frame will be referred to as camera 2.

 5

Figure 1.6: Complete view of operation field from both cameras

 6

Chapter 2: System Overview

A description of the soft- and hardware used to accomplish the task in this project is
introduced and discussed in this chapter.

2.1 Hardware Specifications:

The hardware mainly used in this project is the mobile robot, reflex marks and the camera. A
brief discussion of these hardware components are given below;

2.1.1 Mobile Robot:

The AmigoBot mobile robot from MOBILEROBOTS ActivMedia Robotics is used in this
project. This robot is designed specifically for indoor use especially for classroom
applications. The following figure shows a picture of this robot viewed from the top.

Figure 2.1: AmigoBot

The AmigoBot has dimensions 280mm x 330mm x 165mm and weighs 3.6kg with battery. A
green plate with two circular reflex marks is mounted on top of the robot. The reflex marks
are described in section 2.1.2. The robot has a high-impact plastic shell which covers a
differential drive system with twin motors and two shaft encoders and the drive system is
encased with aluminium.

An AmigoBot can drive up to 300 feet away from its control PC. To run an AmigoBot, you
require the following;

- PC with 300 MHz or faster processor with one free serial port
- WIN 2000/XP or Linux operating system
- Hard drive with at least 11 Mb free space
- CD ROM drive
- IEEE 80211b Ethernet access point (on your hup) or peer-to-peer station adapter

Since this project does not involve robot control, the internal structure and functionality of the
robot will not be discussed here.

2.1.2 Circular Reflex Marks:

The reflex marks were used (as explained in section 1.1) to determine the position and
orientation of the robot. These reflex marks are highly reflexive to light. They reflect light
back to their source. Their main light source was from the LED rings around the camera. This
gave them high light intensities in the images taken by the camera.

 7

The reflex marks are made of Diamond GradeTM VIP (Visual Impact Performance) reflective
sheeting from 3M Corporation. There are several colours available for this product: white,
yellow, red, blue and green. In this project the white ones were used (product code: Series
3990). The reflexive sheeting has an interlocking diamond seal pattern. It is shown in the
following figure. For more information on the reflexive sheeting, visit the web document
given in [11].

Figure 2.2: Reflexive Sheeting

2.1.3 Camera:

The overhead CCD (Charged Coupled Device) cameras are the DMK 21F04 model from
Imaging Source. They take digital images with pixel dimension 640 x 480 at a frame rate of
up to 30 fps. The camera has an integrated 10 bit – ADC with an output of 8 bits. Each pixel
intensity is stored in 1 byte making the intensities range from 0 to 255.

Figure 2.3: CCD camera

The camera is mounted on the ceiling with four parallel connected LEDs and some resistances
as shown in the figure above. It is connected to the PC via a FireWire interface 1394. The PC
used in the project has a 6-pin FireWire socket which supports FireWire interface 1394. The
connection between PC and camera is shown in the following figure;

Figure 2.4: Connection between camera and PC

 8

2.2 Software Specifications:

The main software used in this project is MATLAB. In this section, the capabilities of
MATLAB is briefly discussed and a few of its toolboxes used in this project are also
introduced.

2.2.1 MATLAB:

The name MATLAB stands for MATrix LABoratory. MATLAB [12] is a high-performance
language for technical computing. It integrates computation, visualization, and programming
in an easy-to-use environment where problems and solutions are expressed in familiar
mathematical notation. Typical uses include the following fields;

• Math and computation.
• Algorithm development.
• Data and image acquisition.
• Modeling, simulation and prototyping.
• Data analysis, exploration and visualization.
• Scientific and engineering graphics.
• Application development, including graphical user interface building.

MATLAB is an interactive system whose basic data element is an array that does not require
dimensioning. This allows users to solve many technical computing problems, especially
those with matrix and vector formulations, in a fraction of the time it would take to write a
program in a scalar non-interactive language such as C or Fortran.

2.2.2 Image Acquisition Toolbox:

The Image Acquisition Toolbox is a collection of functions that extend the capability of the
MATLAB numeric computing environment. The toolbox supports a wide range of image
acquisition operations, including;

• Acquiring images through many types of image acquisition devices, from
professional grade frame grabbers to USB-based Webcams.

• Viewing a preview of the live video stream.
• Triggering acquisitions.
• Configuring callback functions that execute when certain events occur.
• Bringing the image data into the MATLAB workspace.

The toolbox uses components called hardware device adaptors to connect to devices through
their drivers. The toolbox includes adaptors that support devices produced by several vendors
of image acquisition equipment. In addition, the toolbox includes an adaptor for generic
Windows video acquisition devices. The following figure shows these components and their
relationship.

 9

Figure 2.5: Components of Image Acquisition Toolbox

This toolbox was used in this project to get images from the camera into the MATLAB
workspace and also to configure the camera. For more information on this toolbox, see [12].

2.2.3 Image Processing Toolbox:

The Image Processing Toolbox is a collection of functions that extend the capability of the
MATLAB numeric computing environment. The toolbox supports a wide range of image
processing operations, including;

• Spatial image transformations.
• Morphological operations.
• Neighborhood and block operations.
• Linear filtering and filter design.
• Transforms.
• Image analysis and enhancement image registration.
• Deblurring.
• Region of interest operations.

This toolbox is used in this project to process the images acquired from the camera in order to
determine the position and orientation of the robot. For more information on this toolbox, see
[12].

 10

2.2.4 Camera Calibration Toolbox:

This toolbox is not original part of the toolboxes in MATLAB. It is an open source available
on the web and can be downloaded for free. The toolbox provides functions for camera
calibration. The camera model used in this toolbox is explained in section 6.6. For more
information on downloading and using this toolbox, see the online web documentation at [5].

 11

Chapter 3: Image Acquisition

This is the first step done in determining the position and orientation of the robot. In this
chapter the image acquisition procedure used in MATLAB will be discussed together with the
camera configuration. The camera configuration is particularly important in order to obtain
good and easy to process images.

3.1 Camera Configuration:

Before acquiring an image, the camera is first configured. This is done with the help of a
camera object. The three main parameters of the camera object to be set are brightness,
contrast and exposure. Of most importance here is the exposure parameter which defines the
amount of time the camera shutter is kept open to receive light. It takes values in the range
from -11 to -5 and these correspond to 2-11s to 2-5s. The exposure time is also known as
shutter time. Varying the value of the exposure varies the intensity of each pixel.

When an image is taken, the sole interest rests on the reflex marks. The centre of the two
reflex marks of each robot is to be determined and used to calculate the position and
orientation of the robot. The exposure time of the camera is therefore set to achieve a
maximum object (reflex marks) to background light intensity ratio. Below are four images
taken from camera 1 with different exposure times.

(a) exposure = auto (b) exposure = -9

(c) exposure = -10 (d) exposure = -11

Figure 3.1: Variation of exposure time for camera 1

As can be seen from the above images, the light intensity ratio of the object to the background
varies with changes in the exposure time. However, in (d) the reflex marks can hardly be
identified. (c) with exposure = -10 was chosen for the images taken with camera 1 in this
project. The brightness and contrast of the images were set to 0 and 150 respectively. The
case was different for camera 2 as demonstrated in the following figure;

 12

(a) exposure = -7 (b) exposure = -8

(c) exposure = -9 (d) exposure = -10

Figure 3.2: Variation of exposure time for camera 2

As can be seen from the figure above, the image in (d) with exposure of -10 will be of little or
no help. An exposure of -8 as in (b) was chosen for camera 2. The brightness and contrast of
camera 2 was also set at 0 and 150 respectively.

For the calibration images of both cameras, an exposure of -5 was used. The calibration
images have a lot of reflex marks in them which tend to reflect a lot of light. Due to the
different angles of incidence of light on the operation field, the reflex marks at the centre of a
cameras view reflect much more light than those at the borders. A small exposure here leads
to a situation where some reflex marks at the borders can not be differentiated from their
background. Therefore, a higher exposure of -5 was used for this project to take the
calibration images.

3.2 Image Acquisition Procedure:

In this project, the camera driver is supported by the MATLAB image acquisition toolbox. So
it is easy to acquire an image. The procedure used in the S-function developed by Wang and
Ye [8] to perform the image initialization, image acquisition and image cleaning was used in
this project. The image acquisition procedure can be divided into the following four steps;

1. Create a video input object.

In this step the created video input object is used to describe the connection between
MATLAB and the image acquisition device. The properties of the acquisition device
can be changed by setting the properties of the video object. This step is done in the
initialization procedure of the S-function.

2. Configure the properties of the image acquisition object.

After creating a video input object, one can change the characteristics of an image or
other aspects of the acquisition process by setting the values of the image acquisition
object properties. This ensures that the device works in a desired way. There are two
types of objects to represent the connection with an image acquisition device:

 13

• Video input object.
• Video source object.

The properties supported by the video input object are the same for every acquisition
device. The video source object represents single entities that correspondent to the
physical device. At any one time, only one video source object can be active. The
video source object properties differ with the different video devices.

In this project the image processing time is much longer than the automatic frame
triggering time (30 frames/s). So the trigger time was manually set. A frame is gotten
with every triggering time. The triggering process is repeated infinitely.

3. Acquire image data.

After creating the video input object and configuring the properties of an image
acquisition object, the most important thing is to acquire the image data. This process
includes the following three steps;

• Start video input object.

This is a preparation procedure for the next step. It starts the acquisition by using
the function start() in MATLAB, and is carried out in the initialization part of the
S-function.

• Trigger the image acquisition.

This is the core procedure in acquiring image data. Because the trigger is manually
set in this project, the object waits for a call to the trigger function before it
initiates data acquisition. It is done in the output part of the S-function.

• Bringing data into the MATLAB workspace.

The image acquisition toolbox stores acquired data in a memory buffer. In
order to work with this data, it must be brought into the MATLAB workspace.
In MATLAB there is a getdata() function which brings multiple frames into
the workspace. It is called in the output part of the S-function.

4. Clean up the video input object.

After the image acquisition has been done, the acquisition process should be stopped
and the video object must be deleted, otherwise other applications cannot use the
device. This is done in the termination of the S-function.

The whole image acquisition procedure is illustrated in the following figure. The frame
numbers between two acquisitions depend on the step time and can vary. The acquired frames
are those frames from F6 to F10.

 14

Figure 3.3: Image acquisition procedure

The function get_image() (see appendix) implements this image acquisition procedure.

 15

Chapter 4: Digital Image Processing

Digital image processing is characterized by its significant level of testing and
experimentation in order to arrive at an acceptable solution. The main problem faced is the
reduction of time and cost taken up by digital image processing, i.e. developing algorithms
fast enough to accomplish their task in a required time.

The two main digital image processing techniques used in this project were thresholding and
boundary tracing. Thresholding was used to segment the grey images obtained from the
camera to get binary images, in which the objects (reflex marks) were white and the rest of
the image (background) is black. Boundary tracing was then applied to the computed binary
images to obtain the boundaries of the white reflex mark objects.

An image can be defined as a two dimensional function, f(x,y), where x and y are spatial
coordinates and the amplitude of f at any pair of coordinates (x,y) is called the intensity or
grey level at that point. The terms intensity and grey level are used interchangeably in this
project report. If x, y and the amplitude values of f are all finite and discrete, the image is
called a digital image. The field of digital image processing refers to processing a digital
image with a digital computer. Digital images are made up of a finite number of elements
with a particular location and value. These elements are referred to as picture elements, image
elements, pels or pixels. Pixel is the term most commonly used and is also used throughout
this project.

4.1 Digital Image Representation:

Consider an image f(x,y) as described in the introduction of this chapter. The amplitude values
of f and the spatial coordinates x and y may be continuous. The image may then be digitized to
obtain finite discrete values for the amplitude and spatial coordinates. The process of
digitizing the spatial coordinates is called sampling and the process of digitizing the amplitude
is called quantization. A digital camera is used in this project. So the processes of sampling
and quantization are done automatically by the camera and only digital images are obtained
from the camera.

A digital image is of a given height (H) and a given length (L). H is the number of pixels in
the y-direction and L is the number of pixels in the x-direction. x may take values from 0 to
L-1 or from 1 to L. Similarly, y may take values from 0 to H-1 or from 1 to H. In MATLAB,
images are simply represented as 2-dimensional matrices with M rows and N columns. Here
the rows (r) correspond to the y-coordinates and columns (c) to the x-coordinates. So an MxN
matrix is an image of height M and length N. In MATLAB, the rows always take values from
1 to M and columns from 1 to N as shown in the following figure.

Figure 4.1: Matrix representation of an image in MATLAB

 16

Note from figure 4.1 that the rows are denoted before the columns. So a pixel location of
f(x,y) in the real world representation corresponds to a matrix entry of f(y,x) in MATLAB.

4.2 Digital Image Types:

Most image processing operations are carried out on monochrome images (intensity and
binary images) and these are the images used throughout this project. The operations can be
extended to RGB images and applied to each component image but this will take a longer
time. For this reason, the cameras are manually set to take just grey images.

4.2.1 Intensity Images:

An intensity image is also called a grey image. Intensity images in MATLAB are represented
by a data matrix. The data may be of class uint8 (8-bit unsigned integer) or uint16 (16-bit
unsigned integer) having values in the ranges [0,255] or [0,65535] respectively. It may also
take scaled values in the range [0,1] if it belongs to the class double.

4.2.2 Binary Images:

The word binary says it all. A binary image has just two distinct intensities; 0 or 1. Pixels
labelled 0 are black and those labelled 1 are white. Therefore it is not strange that binary
images are commonly referred to as black and white images. In MATLAB, a binary image is
also a data matrix but of the class logical. Therefore an image of class, say uint8, with 0s and
1s is not a binary image in MATLAB.

4.2.3 RGB Images:

RGB (Red-Green-Blue) images are coloured images and are represented in MATLAB by an
M x N x 3 array. They can be viewed as a stack of three M x N matrices, each containing the
corresponding red, green and blue pixel component values of the RGB image at a specific
spatial location. Each M x N matrix can be viewed as an intensity image of a specific class,
having a specific range of values as explained above. The number of bits used to represent
one pixel is known as the depth of the RGB image. If the image is of class uint8, then it has a
depth of 24 bits. An image with a bit depth of b can have up to (2) different colours. This
corresponds to 16,777,216 colours for an RGB image of class uint8.

b 3

4.3 Thresholding:

Thresholding is an image process typically carried out on the image histogram. An image
histogram (figure 4.2) is a plot of the pixel count in an image against the pixel intensities. The
goal of thresholding is to separate light objects in an intensity image from a dark background
resulting in a binary image. Usually the objects and the background are divided into two
dominant modes as shown in the histogram of figure 4.2. Suppose an intensity image f(x,y) is
to be thresholded with a threshold T to produce a binary image g(x,y). Then g(x,y) is defined
as follows;

 17

In the binary image g(x,y), all pixels labelled 1 correspond to the objects and are white. On
the other hand, all pixels labelled 0 correspond to the background and are black.

Vertical axis: Number of pixels
Horizontal axis: Pixel intensity

Figure 4.2: Image histogram and possible threshold (T)

4.3.1 Global Thresholding:

When the threshold T is constant, it is said to be global. Global thresholding makes use of a
global threshold to segment the image. One way of choosing a global threshold is by visual
inspection of the image histogram as shown in figure 4.2. Here the object and background
pixels are clearly divided into two modes. Another way is by try and error where the user
changes the threshold by means of a slide or buttons to increment and decrement the threshold
or by simply entering different thresholds. Here an iterative algorithm is used and the user
sees the results of his actions immediately on the image.

In this project, it is of course not possible to select a threshold by user interaction. This is due
to the time constraints for updating the robot state in order to have better control of it.
Therefore there is need for a fast algorithm to automatically determine the threshold. The
algorithm used in this project will be discussed in section 4.3.3.

4.3.2 Local Thresholding:

Global thresholding can fail when the background of the image is uneven or when the pixel
count of the objects in the image is very small as compared to that of the background. This is
exactly the problem faced in this project. This problem is partly solved by choosing a suitable
exposure time for the camera shutter to obtain an optimal illumination as earlier explained in
section 3.1. A common practice is to preprocess the image to compensate for the illumination
and then apply a global threshold. This process is equivalent to thresholding an image f(x,y)
with a varying threshold T(x,y) defined as follows;

 18

where

T(x,y) = f0(x,y) + T0

The image f0(x,y) is the resulting image from pre-processing the image f and the constant T0
is the result of applying a global threshold to the image f0. Techniques for pre-processing an
image before thresholding are complicated and take a lot of time. Therefore these techniques
were not considered in this project. How then was this problem overcome in this project? That
will be discussed later in section 4.3.4.

4.3.3 Ostu Thresholding Algorithm:

The Ostu algorithm [13] is a histogram-based method and computes a global threshold for its
input image. The histogram is normalized and treated as a probability density function.

 nq
pr(rq) = ----- q = 0, 1, 2, … , L - 1

 n

where n is the total number of pixels in the image, nq is the number of pixels that have
intensity level rq and L is the total number of possible intensity levels in the image. A
threshold k is chosen such that C0 is the set of pixels with levels [0, 1, 2, … , k - 1] and C1 is
the set of pixels with levels [k, k +1, k + 2, … , L - 1]. Ostu’s method chooses the threshold
value k that maximizes the between-class variance σB2, which is defined as

σB
2 = ω0 (μ0 - μT)2 + ω1 (μ1 + μT)2

where

The MATLAB function graythresh implements this algorithm. It can be called in the
following way:

T = graythresh(f)

 19

Its input f is an intensity image and the output T is the normalized global threshold (in the
range [0,1]) computed using the Ostu algorithm. An intensity image with two robots (figure
4.3 (a)), one at the top-right of the camera view and the other at the bottom-left, was
thresholded using graythresh. The resulting binary image (figure 4.3 (b)) contains a lot of
noise. A boundary tracing algorithm can not be successfully applied to this image to obtain
the boundaries of the four reflex marks (two for each robot). Therefore a customized adaptive
thresholding algorithm applicable just to the images of this project is needed.

(a) Intensity image (b) Binary image

Figure 4.3: Thresholding using MATLAB function graythresh

4.3.4 Customized Adaptive Thresholding Algorithm:

The MATLAB function graythresh does not work globally as demonstrated in figure 4.3
because the object is much too small as compared to the background. This problem was
solved in this algorithm by applying graythresh locally and not globally. The image is divided
into twelve square sub-images of dimensions 160 pixels. The function graythresh is then
applied to each sub-image to calculate a local threshold for the region defined by the sub-
image. But what about the regions which do not contain any reflex mark? Applying
graythresh to these regions will result in exactly the situation in figure 4.3(b), which is to be
avoided.

This algorithm was developed in such a way that only regions which contain reflex marks are
thresholded. This was achieved by setting a lower bound for the maximum grey level in the
sub-image. The lower bound for each camera is gotten from the maximum grey level of the
image taken from the camera with no robots in view. The default value for camera 1 is 46 and
that for camera 2 is 47 as calculated in the lab. However, this will vary with luminance and
should be set before running the program to track robots. These T lower bounds are global
variables and the user is given the option to set them when the global variables are being
declared and initialised. The function set_Tmin() (see apendix) was used to initialise them.

Another difficulty encountered was with regions which cut off just a small part of a reflex
mark. This small part of the reflex mark takes the maximum grey level of that region above
the defined lower bound. As such graythresh will be applied to this region. Since the object
here is still very small relative to the background, one arrives back at the situation in figure
4.3(b). To solve this problem, the set lower bound was not only taken as a lower bound for the
maximum grey level, but also the lower bound for the threshold. Below is a result of applying
this algorithm to the image in figure 4.3(a).

 20

(a) Intensity image (b) Binary image

Figure 4.4: Thresholding using adaptive customised thresholding algorithm

The function imthresh() (see appendix) implements the thresholding algorithm just described.
This algorithm is summarised below;

 For each sub-image;
 1. Calculate maximum grey level.

2. If maximum grey level is less than defined lower bound, go to step 3 else go to
step 4.

3. Set corresponding region of sub-image in original image to black and continue
with step 1 for next sub-image.

 4. Compute local threshold with graythresh.
 5. If local threshold is less than lower bound, set it to lower bound
 6. Threshold sub-image with local threshold.
 7. Assign binary sub-image to corresponding region in original image.

4.4 Boundary Tracing:

This is the most time costly step in this project. Boundary tracing is carried out on binary
images. As already discussed, a binary image is made up of white objects on a black
background. Boundary tracing is used to trace the inner or outer boundaries of the objects in a
binary image. The inner boundary is made up of white pixels and is part of the object region
while the outer boundary constitutes black pixels and is not part of the object region. The
inner boundary tracing algorithm as described in [15] is as follows:

1. Search the image from top left until a pixel of a new region is found. This pixel P0
then has the minimum column value of all pixels of that region having the minimum
row value. Pixel P0 is the starting pixel of the region border. Define variable dir which
stores the direction of the previous move along the border from the previous border
pixel to the current border pixel. Assign

(a) dir = 0 if the border is detected in 4-connectivity (figure 4.5 (a))
(b) dir = 7 if the border is detected in 8-connectivity (figure 4.5 (b))

2. Search the 3x3 neighbourhood of the current pixel in an anti-clockwise direction,
beginning from the pixel position in the direction

(a) (dir + 3) mod 4 (figure 4.5 (c))
(b) (dir + 7) mod 8 if dir is even (figure 4.5 (d))

(dir + 6) mod 8 if dir is odd (figure 4.5 (e))

 The first pixel found with the same value as the current pixel is a new boundary

 21

pixel Pn. Update the dir value.

3. If the current boundary pixel Pn is equal to the second border pixel P1, and if the
previous border pixel Pn-1 is equal to P0, stop. Otherwise repeat step 2.

4. The detected inner border is represented by pixels P0 … Pn-2

Figure 4.5: Inner boundary tracing

The above algorithm works for all regions larger than one pixel. It is able to find region
borders but does not find borders of region holes. To search for hole borders as well, the
border must be traced starting in each region or hole border pixel if the pixel has never been a
member of any border previously traced. Objects of unit width may have border pixels
repeated twice.

Outer boundary tracing may be done using the above algorithm with 4-connectivity. In this
case, the outer boundary consists of all non-region pixels that were tested during the search
process. So pixels are listed as many times as they are tested. This results in a situation where
pixels may be repeated in the border up to three times as shown in the figure below.

 22

Figure 4.6: Outer boundary tracing

MATLAB provides a function bwboundaries() which computes the internal boundaries of the
objects in a binary image. The following figure shows the boundaries of the two reflex marks
of a robot traced by bwboundaries().

Figure 4.7: Boundary tracing by MATLAB function bwboundaries

 23

Chapter 5: Data Processing

The data acquired from the camera image after image processing (i.e. the coordinates of the
object boundaries in the binary image) have to be processed in some way to obtain the centres
of the reflex marks. Here sub-pixel accuracy comes into play. This will be achieved by
finding the best circle fit using the least squares method. The centre of the circle is then taken
to be the centre of the reflex mark. Due to different angles of incidence from different points
on the operation field, circular reflex marks far away from the centre of the image may be
projected as ellipses. For this reason, an ellipse fit still using the least squares method will
also be discussed in this chapter.

Performance and measurement analysis of the circle and ellipse fit methods was not done in
this project due to time constraints. The analyses results obtained in the Master thesis of
Wang & Ye [8] were assumed. There, three methods were compared; region properties and
circle and ellipse fit. Circle and ellipse fit were found to take mush less time than region
properties. The centre of reflex marks at the centre and at the corners of the operation field
were measured and compared. The measured centre points using ellipse and circle fit differed
with about 0.02 pixels at the corner of the operation field and 0.01 pixels at the centre.
Therefore a detailed analysis was made only for the circle fit because it is less complex and a
little faster. An overall accuracy of 0.1 pixel (sub-pixel accuracy) was obtained. This
corresponds to about 0.5mm in the operation field which is far better than pixel accuracy
which corresponds to about 5mm.

5.1 Sub-Pixel Accuracy:

This discussion on sub-pixel accuracy was taken from [16]. Sub-pixel accuracy in the case of
this project can roughly be defined as: “Only pixels whose centre points lie inside a reflex
mark appear in the image as part of the reflex mark.” Sub-pixel accuracy arises due to the
nature of digital (pixel) displays. Every camera has a fixed resolution (640x480 in this
project). Taking into consideration the plain projected onto the camera, a pixel corresponds to
about 5mm. Therefore to obtain accurate results, sup-pixel accuracy is inevitable in this
project. For certain applications with higher resolutions, say 1280x1024, sub-pixel accuracy
may be evitable, if the projected plane is not too far away from the camera as compared to its
focal length. Nevertheless, it could still be achieved.

5.2 Least Squares Method:

Least squares method describes a way to obtain the best approximation of a function f(x)
given a set of n experimentally measured data points (xi,yi), 1 ≤ i ≤ n, where x is the
independent variable and y the dependent variable. The best approximation of f(x) is gotten by
minimising the objective function F, defined as the sum of the squares of the deviations di of
each data point, where

di = yi – f(xi), 1 ≤ i ≤ n

and

 24

Since the reflex marks of the robots are cut in circular shapes which may be projected as
ellipses, circle and ellipse fit will be discussed next.

5.2.1 Circle Fit:

A circle in 2-dimensional space can be defined by its centre (x0,y0) and radius r as follows:

(x – x0)2 + (y – y0)2 = r2 (5.1)

Expanding the above equation yields an equation of the following form:

x2 + y2 + ax + by + c = 0 (5.2)

where

x0 = - a / 2

y0 = - b / 2 (5.3)

r =

With a set of N data points obtained from boundary tracing, the following over determined
system of N linear equations can be obtained from 5.2:

axi + byi + c = - xi
2 – y , 1 i

2 ≤ i ≤ N (5.4)

A matrix representation of the above system of linear equations can be written in the
following form:

where A is an Nx3 matrix, a 3-dimensional column vector and an N-dimensional
column vector defined as follows;

 (5.6)

 25

It is now left to determine the best approximation of the coefficients a, b and c, i.e. the vector

. This can be done by applying least squares method to 5.5 which will result in the
following matrix operations:

 = (ATA)-1(AT) (5.7)

The centre and radius of the circle can then be calculated from a, b and c using 5.3. The
function circle_fit() (see appendix) was developed to accomplish this task. The following
figure shows an example of circle fit.

Figure 5.1: Circle Fit

5.2.2 Ellipse Fit:

Consider an ellipse with centre (x0,y0) and tilt α measured anti-clockwise from the positive x-
axis as show in the following figure.

Figure 5.2: Ellipse

 26

The general equation of the above ellipse can be expressed as:

Ax2 + Bx2 + Cxy + Dx + Ey + 1 = 0 (5.8)

If the tilt α = 0, then C = 0. The ellipse above could be rotated clockwise about the origin by
an angle α to obtain an ellipse with coordinates (u,v) and centre (u0,v0) with a tilt of zero to
the u-axis. Then

x = cu – sv
y = sx + cv (5.9)

where c = cosα and s = sinα. The above equations could be substituted in 5.8 to obtain the
following general equation in terms of u and v;

Pu2 + Qv2 + Ruv + Su + Tv + 1 = 0 (5.10)

where

P = Ac2 + Bs2 + Ccs
Q = As2 + Bc2 – Ccs
R = (B - A)sin(2α) + Ccos(2α) (5.11)
S = Dc + Es
T = Es – Ds

Since the tilt of the ellipse in 5.10 is equal to zero, then R = 0. Therefore α can be computed
from 5.11 in the following way:

 1 C

α = --- arctan(---------) (5.12)
 2 A – B

The ellipse in 5.10 could also be expressed in terms of its centre (u0,v0) as follows:

 (u – u0)2 (v – v0)2

----------- + ----------- = 1 (5.13)
 a2 b2

The above equation could be expanded to give the general equation as in 5.10 and coefficients
compared. The centre (u0,v0) of the ellipse above and the length of its axes a and b could then
be computed from the coefficients in 5.10 as follows:

u0 = -0.5S / P
v0 = -0.5T / Q
a2 = (Pu0

2 + Qv0
2 – 1) / P (5.14)

b2 = Pa2 / Q

The centre (x0,y0) of the original ellipse in 5.8 can be computed from (u0,v0) using the
equations in 5.9. Its axes are of the same length with that given above. What is now left is to
determine an approximation of the coefficients in 5.8. This is of course accomplished using
the least square method. Given a set of N data points that describe the boundary of a reflex
mark, the following over determined system of N linear equations can be derived from 5.8.

 27

Axi

2 + Byi
2 + Cxiyi + Dxi + Eyi = -1, 1 ≤ i ≤ N (5.15)

A matrix representation of the above system of linear equations can be written similarly to 5.5
in the following form:

where H is an Nx5 matrix, a 5-dimensional column vector and an N-dimensional
column vector defined as follows:

 (5.17)

Least squares method can be applied similarly to 5.7 to obtain the best approximation of the
coefficients A, B, C, D and E, i.e. the vector , as follows:

 = (HTH)-1(HT) (5.18)

The above algorithm is implemented by the function ellipse_fit() (see appendix). The
following figure shows an example of ellipse fit.

 28

Figure 5.3: Ellipse fit

5.3 Additional Plausibility Checks:

For the circle fit, three coefficients are compute whereas for the ellipse fit, five are computed.
At least as many points as there are unknown coefficients are needed for the circle and ellipse
fit. If this condition is not satisfied, an underdetermined system of linear equations is
obtained. This will cause the least squares method to fail. So an additional check is done in
the functions which compute circle and ellipse fit. If there are not enough points, an error
message is issued.

Due to variations in luminance, certain background pixels may have the same intensity as a
reflex mark or close to it. This may produce a noisy binary image after thresholding as shown
in the figure below. When boundary tracing is applied to this image, the noise in the
background is also identified in addition to the reflex marks as objects and their boundaries
are also traced.

Figure 5.4: Noisy Image

Such noise as shown in the above figure could be eliminated by making sure that the length of
each set of boundaries corresponds to a range of values defined by the circumferences of the

 29

reflex marks. The circle fit is then applied only to sets which fall in the defined range. It may
nevertheless still occur that a set of boundaries describing a curve fits into the defined range.
Thus, an additional check is made after circle fit. This time, the radius of each circle must be
in a range defined by the radii of the reflex marks. Below is the complete algorithm used to
process the images in this project.

1. Threshold the image to obtain a binary image in which the objects are white
and the background is black.

 2. Trace the boundaries of the objects in the binary image.
 3. Loop through the set of boundaries and check the following;

(a) If a set of boundaries corresponds to a defined range, proceed to (b) else
ignore the set.

(b) Compute the centre and radius of the set of boundaries using circle fit.
(c) If the radius of the circle is in a defined range, then it corresponds to a

reflex mark else it does not and the circle is as well ignored.

The function get_reflex_marks() (see appendix) implements step 2 and 3 of the above
algorithm.

5.4 Projection Correction:

The reflex marks of the robot do not appear in the image at their right positions, even after
calibration. They are radially projected to the image plane as depicted in figure 5.4. H is the
height of the camera with reference to the operation field, h is the height of the robot, O is the
foot of the perpendicular from the camera to the operation field, P is the actual position of the
robot and Pc is the radial projection of the reflex mark on top of the robot, gotten from the
image after calibration.

Figure 5.5: Projection of robot reflex mark on operation field

From the geometrical properties of triangles, the following relationship can be deduced:

 h |PcP|
 ---- = --------
 H |PcO|

 30

Let Pc = (xc, yc), P = (x, y) and O = (x0, y0). Then a unit vector in the direction PcP can be
expressed as follows:

 1
u = -------- [(x0 - xc) i + (y0 - yc) j]

|PcO|

where i and j are unit vectors in the x and y directions respectively. PcP can be expressed in
terms of the above unit vector as follows;

PcP = [(x - xc) i + (y - yc) j] = |PcP| u

 |PcP|
 = --------- [(x0 - xc) i + (y0 - yc) j]
 |PcO|
 h
 = ---- [(x0 - xc) i + (y0 - yc) j]
 H

By comparing the coefficients of i and j in the above equation, the actual position of the robot
given by P with coordinates (x,y) can be computed as follows;

 h h
x = xc + ---- (x0 - xc) & y = yc + ---- (y0 - yc)

 H H

The robot height h is 165mm and the values of H and O measured for camera 1 and 2 are
given below;

Camera 1:
H = 2850mm
O = (3555, 945)

Camera 2:
H = 2840mm
O = (1300, 1000)

 31

Chapter 6: Camera Calibration

The camera calibration procedures discussed here are taken from an article by Heikkilä J. and
Silvén O. [1]. Camera calibration estimates a set of camera parameters. These parameters are
used to establish the relationship between 3-D reference coordinates in the camera plane and
2-D image coordinates in the image plane. The parameters are divided into two classes:
intrinsic and extrinsic parameters. Two methods for calibrating a camera will be discussed
here: direct linear transformation (DLT) and nonlinear parameter estimation. Image distortion
and possible calibration errors and how they can be corrected will also be discussed and taken
into account.

6.1 Extrinsic Parameters:

These parameters determine the 3-D position and orientation of the camera frame relative to a
chosen world coordinate system, i.e. they transform object coordinates to a camera centred
coordinate frame. The pinhole camera model is based on the principle of co-linearity, where
each point in the object space is projected by a straight line through the projection centre into
the image plane. The origin of the camera frame is at the projection centre (X0, Y0, Z0) with
respect to the object space and the z-axis is perpendicular to the image plane.

The transformation of the coordinates (Xi, Yi, Zi) in the image space to the coordinates (xi, yi,
zi) in the camera frame is given by a triple rotation and a translation. The rotation is performed
in the clockwise direction first about the x-axis by an angle ω, then about the y-axis by an
angle φ and finally about the z-axis by an angle κ. A matrix representation of this
transformation is given below.

6.2 Intrinsic Parameters:

Intrinsic parameters determine the internal camera geometric and optical characteristics.
These include the effective focal length ƒ, scale factors su and image centre (u0, v0), also
called principal point. As usual for digital images, the origin of the image space is at the top
left corner of the image array. The units of the image coordinates are pixels. Therefore
coefficients Du and Dv are needed to change the metric units to pixels. Their precise values are
not necessary because they are linearly dependent on the focal length and scale factors. By
using the pinhole model, the projection of the point (xi, yi, zi) on the image plane is expressed
in the following equation.

 32

The corresponding image coordinates (ui´, vi´) in pixels are obtained from the projection
coordinates given in the above equation by applying the transformation given below.

The pinhole model is a linear approximation of the real camera projection. It simply gives a
mathematical relationship between object and image coordinates. It is however invalid if high
accuracy is required as is the case in this project. Therefore a more accurate camera model
must be used which takes into consideration the distorted image coordinates.

6.3 Image Distortion:

The most common distortion taken into consideration is radial distortion which causes the
actual image points to be displaced radially in the image plane. The radial distortion can be
corrected using the expression as shown below.

where k1, k2, k3, … are coefficients for radial distortion and . Typically, one or
two coefficients are enough to compensate the radial distortion.

The centre of curvature of a lens is not always strictly co-linear because of imperfect lens
design and manufacturing. This gives rise to decentring distortion which has both a radial and
a tangential component. The expression for the tangential distortion is given below.

where p1 and p2 are coefficients for tangential distortion.

There are of course other types of distortions found in the literature which may be caused by
luminance, the medium in which light is propagated or when the image axes are not
perpendicular. These distortions are however so insignificant and will not be discussed here.
A proper camera model can now be derived from a combination of the pinhole model with the
correction for radial and tangential distortion components as shown in the equation below.

 33

In this model, the set of intrinsic parameters (ƒ, su, u0, v0) is augmented with the distortion
coefficients k1,…, kn, p1 and p2. These parameters are also collectively known as physical
camera parameters. Generally, the objective of camera calibration is to determine optimal
values for these parameters based on image observations of known 3-D targets.

6.4 Linear Parameter Estimation:

 The direct linear transformation (DLT) was originally developed by Abdel-Aziz and Karara
[2]. It was revised later in several publications as well.

The DLT method is based on the pinhole camera model (see 6.3), and it ignores the nonlinear
radial and tangential distortion components. The calibration procedure consists of two steps.
In the first step the linear transformation from the object coordinates (Xi, Yi, Zi) to image
coordinates (ui, vi) is solved. The 3x4 matrix A presented in the equation below describes this
transformation.

where wi is the axis perpendicular to the image plane. The parameters a11,…,a34 of the DLT
matrix A can be solved by eliminating wi. Let L and a be defined as follows:

A matrix equation with N control points can be obtained as given below;

La = 0 (6.8)

By replacing the correct image points (ui, vi) with observed values (Ui, Vi) parameters
a11,…,a34 can be estimated using the least squares method. In order to avoid a trivial solution
a11 = … = a34 = 0, a proper normalization must be applied. Abdel-Aziz and Karara [2] used
the normalization a34 = 1. A singularity is introduced here with this normalization if the actual
value of a34 is close to zero. Instead of a34 = 1, Faugeras and Toscani [3] suggested the
constraint a31

2 + a32
2 + a33

2 = 1 which is singularity free.

 34

The estimation of the parameters a11,…,a34 is the first calibration step. These parameters in
themselves have no physical meaning. There are several techniques for extracting the physical
camera parameters from the DLT matrix A. Melen [4] proposed a method where a set of
eleven physical camera parameters are extracted from the DLT matrix. The matrix equation
used by Melen is given in the following equation.

A = λV-1B-1FMT (6.9)

where λ is an overall scaling factor (Von-Bold constant) and the matrices M and T define the
rotation and translation from the object coordinate system to the camera coordinate system
(see 6.1). Matrices V, B and F contain the focal length ƒ, principal point (u0, v0) and the
coefficients for the linear distortion (b1, b2). V, B and F are defined as follows:

A five step algorithm for solving the parameters is given in [3] and would not be discussed
here. In this algorithm, the scale factors su and sv are assumed to be 1.

The problem with the linear parameter estimation is that it does not take any distortions into
consideration and therefore it is not accurate enough for this project. The nonlinear parameter
estimation discussed next comes closer to the target.

6.5 Nonlinear Parameter Estimation:

 Linear methods of parameter estimation are comparably faster than nonlinear methods
because they involve no iterations. They however have two great disadvantages. Firstly,
distortion effects are not taken into consideration and secondly, the actual constraints in the
intermediate parameters used to compute the actual parameters can not be fixed.
Consequently, the lens distortion can not be incorporated into the calibration procedure and in
the presence of noise, the intermediate solutions do not satisfy the constraints. This makes the
non iterative linear methods not accurate enough for this project.

In the real world, camera images are always contaminated by white noise (mostly caused by
improper illumination of electromagnetic interferance). There are also various error
components incorporated in the measurement process. If the systematic parts of the error
measurements are carefully minimised or compensated for, it is convenient to assume that the
error is white Gaussian noise. Then, the best estimate for the camera parameters can be
obtained by minimizing the residual between the model and N observations (Ui, Vi), where i =
1, 2,…, N. In the case of Gaussian noise, the objective function F is expressed as a sum of
squared residues as given in the equation below.

The least squares method can be used to minimise F. Due to a nonlinear nature of the camera
model, simultaneous parameter estimation has to be applied. This involves an iterative
algorithm. The Levenberg-Marquardt optimization method has been found to provide fastest

 35

convergence. Details of this method can be found in the internet [4]. However, this method
works only with proper initialization of the camera parameters. Without proper initialization,
the optimization may stick in a local minimum of F causing the calibration to fail. This
problem can be solved by using a DLT method to initialize the camera parameters. A global
minimum of F is usually achieved after a few iterations.

6.6 Calibration Function go_calib_optim():

This function is found in the MATLAB calibration toolbox. It computes the final intrinsic and
extrinsic calibration parameters of a camera by minimizing the re-projection error in the least
squares sense trough gradient descent. The following table shows the descriptions of its input
and output.

● M is the number of calibration images used.
● i = 1, 2, … , M is the i-th image.
● Ni is the number of control points in the i-th image.

 Parameter Type Description

x_1, x_2,…, x_M 3xNi matrix Feature locations on the images INPUT
X_1, X_2,…, X_M 3xNi matrix Corresponding grid coordinates
fc 2x1 vector Camera focal length
cc 2x1 vector Principal point coordinates
alpha_c double Skew coefficient

OUTPUT
(intrinsic
parameters)

kc 5x1 vector Distortion coefficients
KK 3x3 matrix The camera matrix (contains fc and cc)
Tc_1,Tc_2,…,Tc_M 3x1 matrix 3D translation vectors attached to the grid

points in space

OUTPUT
(extrinsic
parameters)

Rc_1,Rc_2,…,Rc_M 3x3 matrix 3D rotation matrices attached to the grid
points in space

Table 6.1: Description of parameters of function go_calib_optim()

6.6.1 Definition of the Intrinsic Parameters:

Let P be a point in space of coordinate vector XXc = [Xc;Yc;Zc] in the camera reference
frame. Let the point now be projected on the image plane according to the intrinsic parameters
(fc,cc,alpha_c,kc). Let xn be the normalized (pinhole) image projection:

Let r2 = x2 + y2. After including lens distortion, the new normalized point coordinate xd is
defined as follows:

where dx is the tangential distortion vector:

 36

Therefore, the vector kc of length 5 contains both radial and tangential distortion coefficients
(observe that the coefficient of 6th order radial distortion term is the fifth entry of the vector
kc). It is worth mentioning that this distortion model was first introduced by Brown in 1966
and called "Plumb Bob" model (radial polynomial + "thin prism"). The tangential distortion is
due to "decentring", or imperfect centring of the lens components and other manufacturing
defects in a compound lens. For more details, refer to Brown's original publications listed in
[7]. Once distortion is applied, the final pixel coordinates x_pixel = [xp;yp] of the projection
of P on the image plane is:

Therefore, the pixel coordinate vector x_pixel and the normalized (distorted) coordinate
vector xd are related to each other through the linear equation:

where KK is known as the camera matrix, and defined as follows:

In MATLAB, this matrix is stored in the variable KK after calibration. Observe that fc(1) and
fc(2) are the focal distance (a unique value in mm) expressed in units of horizontal and
vertical pixels. Both components of the vector fc are usually very similar. The ratio
fc(2)/fc(1), often called "aspect ratio", is different from 1 if the pixel in the CCD array are not
square. Therefore, the camera model naturally handles non-square pixels. In addition, the
coefficient alpha_c encodes the angle between the x and y sensor axes. Consequently, pixels
are even allowed to be non-rectangular. Some authors refer to that type of model as "affine
distortion" model.

In addition to computing estimates for the intrinsic parameters fc, cc, kc and alpha_c, the
toolbox also returns estimates of the uncertainties on those parameters. The MATLAB
variables containing those uncertainties are fc_error, cc_error, kc_error, alpha_c_error.
For information, those vectors are approximately three times the standard deviations of the
errors of estimation.

Pixel coordinates are defined such that [0;0] is the center of the upper left pixel of the image.
As a result, [nx-1;0] is center of the upper right corner pixel, [0;ny-1] is the center of the
lower left corner pixel and [nx-1;ny-1] is the center of the lower right corner pixel where nx
and ny are the width and height of the image (for this project, nx=640 and ny=480).

 37

In the first three sections of this chapter, the camera model according to Heikkilä [1] was
introduced. There the skew factor (alpha_c) was not estimated but assumed to be zero, i.e. the
model is only for cameras with square pixels. The radial component of the distortion was
estimated up to the 4th order. Here, it is estimated till the 5th order. The model used here in
MATLAB is similar to that of Heikkilä. The table below shows the correspondence between
the camera parameters estimated here and those of Heikkilä.

Notations in
go_calib_optim()

Heikkil�'s
notation

fc(1) f . Du . su
fc(2) f . Dv
cc(1) u0
cc(2) v0

alpha_c 0
kc(1) f3 . k1
kc(2) f5 . k2
kc(3) f2 . p1
kc(4) f2 . p2
kc(5) 0

Table 6.2: Heikkilä Camera Model vs. MATLAB Camera Model

6.6.2 Definition of the Extrinsic Parameters:

Consider a calibration grid in the camera’s view as depicted in the following figure. The
reference frame (O,X,Y,Z) of this grid is as shown. It’s origin is at the top left corner of the
grid, the x- and y-axes lie on the plane of the grid while the z-axis is perpendicular to the
plane of the grid.

 38

Figure 6.1: Coordinate axes of reference frame for a calibration grid

Let P be a point space of coordinate vector XX = [X;Y;Z] in the grid reference frame
(reference frame shown in figure above). Let XXc = [Xc;Yc;Zc] be the coordinate vector of P
in the camera reference frame. Then XX and XXc are related to each other through the
following rigid motion equation:

XXc = Rc_i * XX + Tc_i where i = 1, 2,…, M

6.6.3 First Calibration Attempt:

For this project a 1400mm x 1000mm calibration sheet, with reflex marks spaced 200mm
form each other, was used. The figure below shows the different positions of the calibration
sheet in the view of the camera.

 39

Figure 6.2: Positions of calibration sheet in camera view

The centre points of the reflex marks were extracted (using the image and data processing
procedures as described in chapters 4 and 5) and used for calibrating the camera. The
following values for the intrinsic parameters of camera 1 and their respective errors were
obtained using the function go_calib_optim() from the MATLAB calibration toolbox.

Focal Length: fc = [861.72921 861.05362] ± [455.66248 455.54862]
Principal point: cc = [330.39080 240.89507] ± [6.44623 8.54029]
Skew: alpha_c = [0.00000] ± [0.00000]

=> angle of pixel axes = 90.00000 ± 0.00000 degrees
Distortion: kc = [-0.70114 0.69313 0.00091 -0.00104 0.00000] ± [0.74197 1.47280

0.00571 0.00419 0.00000]
Pixel error: err = [0.13253 0.14211]

The focal lengths are given in mm and the principal point in pixels. Notice their high errors.
Coming to the distortion coefficients (kc), their errors are even higher than their actual values.
The pixel error calculated by the calibration function is approximately 0.1 which equals about
0.5mm which should actually be negligible for this project.

Given the pixel coordinates x_pixel of a robot from an image, the actual position of the robot
in the operation field can be calculated using the following steps:

- Compute the normalized coordinates xn (see section 6.6.1) using the MATLAB
function normalize() as follows:

xn = normalize(x_pixel, fc, cc, kc, alpha_c)

- Compute the coordinates of the camera frame XXc as follows:

 Zc can be computed from the extrinsic parameters.

 40

- Use the rotation matrix Rc and translation vector Tc (both extrinsic parameters) of the
reference frame of a calibration sheet in which the robot lies and compute the
coordinates XX of this reference frame as follows:

XX = Rc-1 * (XXc - Tc)

The actual coordinates in the operation field can then be calculated from XX since the
location of the calibration sheet in the operation field is known.

The following figure shows the actual points of the calibration sheets (in mm) for camera 1
with red crosses and the calibrated points obtained from the images with green circles. The
radial error is drawn with a blue line.

Vertical axes: y-coordinates in mm

Horizontal axes: x-coordinates in mm
Figure 6.3: Actual and calibrated points for the calibration sheets of camera 1

The following figure shows a plot of only the x and y errors (also in mm) of the above
calibration. Here the x and y errors are the differences between the corresponding coordinates
of the actual and calibrated points.

 41

Vertical axes: y-errors in mm

Horizontal axes: x-errors in mm
Figure 6.4: x and y calibration errors for the different calibration sheets of camera 1

The above errors show a maximum distortion of about 14mm on the operation field which
actually does not correspond to 0.1 pixels as calculated by the calibration function. Another
sad news is that the calibration of camera 2 with the MATLAB calibration function failed.
The reason for this failure is that a singularity was introduced in the estimation of direct linear
transformation matrix as described in section 6.4.

The calibration procedure used in the MATLAB calibration toolbox is a somewhat general
case and much too complex for this project. The estimation of the intrinsic camera parameters
is strongly dependent on the z-coordinate of the camera frame. This is no surprise because a
line in the camera frame is mapped onto a single point in the image. As such a proper
excitation of the z-coordinate in the camera frame is needed. This requires calibration points
in different planes with different orientations in space. This is actually the contrary in this
project. All calibration points lie in a single plane of interest, i.e. the plane in which the
operation field lies. As such, a customized adaptive camera calibration procedure was
developed for this project.

 42

Chapter 7: Customized Adaptive Camera Calibration

The first attempt to calibrate the cameras with the MATLAB calibration toolbox was
unsuccessful. As such, a customised adaptive camera calibration procedure was developed for
this project to calibrate the cameras. This chapter explains in detail all the assumptions,
considerations and steps used in calibrating the cameras for this project.

The camera model assumed here is similar to the pinhole camera model. The possible sources
of error and their effects will first be discussed before introducing the calibration parameters.
The calibration parameters considered depended on the errors investigated. The same
calibration procedure was used for both camera 1 and 2. Below is a summary of the possible
error sources and their effects:

1. Improper mounting of the camera chip behind the lens will cause a deviation of
the principal point from the centre of the image. This occurs when the camera
chip is not parallel to the lens axis.

2. The camera lens introduces radial distortions. These are distortions along the
radial distance with reference to the principal point of the lens.

3. If the x- and y-axes of the operation field are not aligned with that of the
camera, this will give rise to tangential distortions. These distortions are
tangential to circles drawn with their centres at the principal point and are
perpendicular to the radial distortions.

4. If the z-axis of the camera frame is not perpendicular to the plane in which the
operation field lies, a projection distortion will be noticed.

The following figures show the distortions described above.

(a) Radial and tangential distortions

(b) Projection distortion

Figure 7.1: Sources of image distortions

 43

The calibration images from figure 6.2 were added up to form one image. In order to reduce
the background noise in the resulting image, the pixels which do not lie in the area of the
image covered by the calibration sheet were set to zero before the images were added. Below
are the resulting images for camera 1 and 2 from the addition and their corresponding binary
images after thresholding. The centres of the white circles in the binary images were extracted
by the boundary tracing and circle fit algorithms described earlier. The centres of the circles
are also plotted with blue crosses on the binary image.

(a) Gray image of camera 1 (b) Gray image of camera 2

(c) Binary image of camera 1

 44

(d) Binary image of camera 2

Figure 7.2: Calibration images

The above reflex marks actually form a rectangular grid on the operation field. For camera 1,
the top left reflex mark is at the point (2000,0) of the operation field while the bottom right
reflex mark is at the point (4800,2000) of the operation field forming a rectangular grid of
dimensions 2800x2000. The reflex marks of camera 2 also form a rectangular grid of
dimensions 2800x2000, but its top left reflex mark is at the point (0,0) of the operation field
while the bottom right is at the point (2800,2000). So there is an overlap of the view of both
cameras as depicted in figure 1.6. The coordinates and dimensions of the operation field are
given in mm. The reflex marks are spaced at distances of 200mm from each other. So the
actual coordinates of the reflex mark centres in the operation field are known and shall be
denoted by (xi,yi), 1 ≤ i ≤ N, while their corresponding image points shall be denoted by
(ui,vi), 1 ≤ i ≤ N, where N is the number of calibration points and equals 165 for both cameras.

The calibration procedure presented here is non-linear. It minimises the objective function as
defined in 6.10. A step-by-step calibration procedure shall be presented in this chapter. The
distortions discussed above shall be minimised one after the other at each step of the
calibration procedure. An overall investigation of the radial and tangential distortions for both
cameras shall also be presented at each step, as well as the minimised value of the objective
function.

7.1 Extrinsic and Intrinsic Parameters:

In this section, the mapping of points from the operation field to their corresponding
undistorted points in the image will be described. The extrinsic parameters describe the
transformation from the operation field to the camera frame while the intrinsic parameters
describe the mapping from the camera frame to the image. The calibration points in the
operation field will be denoted by (xi,yi) and are given in mm while their corresponding image
points in pixels will be denoted by (ui,vi).

Let (u0,v0) be the principal point of the lens in pixels and (x0,y0) its corresponding point in the
camera frame in mm. The following mappings from image points to their corresponding
points in the camera frame were used for this project.

 45

xi’’– x0 = su (ui – u0 + dui), 1 ≤ i ≤ N
yi’’– y0 = sv (vi – v0 + dvi), 1 ≤ i ≤ N (7.1)

where su and sv are scale factors in the u- and v-directions respectively, dui and dvi are the
pixel distortions in the u- and v-directions respectively, (xi’’,yi’’) are points in the camera
frame in mm and (ui,vi) are their corresponding distorted image points in pixels. The intrinsic
parameters used in this calibration are the principal point (u0,v0) in pixels, its mapping in the
operation field (x0, y0) in mm and the scale factors su and sv.

In this project, it was assumed that the camera chips were mounted correctly, i.e. the principal
point (u0,v0) is at the centre (320,240) of the image. The corresponding principal point in the
operation field and the scale factors are calculated from the three calibration points closest to
it, since the calibration points at the centre of the image are least distorted. It was also
assumed that the camera has rectangular pixels. That is why different values were calculated
for the scale factors in the u- and v-directions. As will be seen later, the scale factors in both
directions are approximately the same for a given camera, which simply means the camera
has square pixels.

The projection distortion is caused by a tilt of the camera with respect to the operation field as
depicted in figure 7.1(b). As such the points on the operation field have to be transformed into
the camera frame before being scaled to pixels in the image. The radial distance from the
principal point to some given point in the camera frame may be longer or shorter than its
corresponding radial distance in the operation field, depending on the location of this point.
This is because a point may be projected closer or further away from the camera as depicted
in figure 7.1(b).

Two perpendicular lines in the operation field may not appear perpendicular in the camera
frame. This is a draw back because the mappings of the axes of the operation field in the
camera frame have to be used to describe the points in the camera frame. This can not be done
if the axes of the operation field are no more perpendicular when projected into the camera
frame. Therefore, two perpendicular axes have to be chosen which satisfy the condition that
they remain perpendicular when projected into the camera frame. The two axes chosen in this
project were the line of intersection of the operation field and the plane in the camera frame
onto which it is projected and the line perpendicular to it passing through the foot of the
perpendicular from the camera to the operation field. Their point of intersection is then the
origin. Notice that the origin here corresponds to the mapping of the principal point (x0,y0) on
the operation field. Before projecting points from the operation field to the camera frame, they
have to be translated and rotated to get the points (xi’,yi’) as shown in the figure below;

Figure 7.3: Translation and rotation of points in operation field before projection

The red axes are the translated coordinate axes of the operation field with points (xi-x0,yi-y0)
and origin at the point (x0,y0). The point (xc,yc) is the foot of the perpendicular from the
camera to the operation field and was measured in the lab. The angle φ is the angle of the line

 46

from (x0,y0) through (xc,yc) measured anti-clockwise from the positive x-axis of the operation
field. When the axes of the operation field are projected into the camera frame, they no more
appear perpendicular. But the axes described by the green lines do appear perpendicular when
projected into the camera frame. As such, an arbitrary point P in the operation field is
calculated with reference to the green axes before being projected into the camera frame. This
corresponds to translating and rotating the points (xi,yi) by an angle φ clockwise about the
point (x0,y0) to obtain the points (xi’,yi’) as follows;

 (7.2)

In figure 7.1(b), the demonstration of the projection distortion is in 2-dimensions, i.e. the
projection of the line vertically below the camera passing through the point (x0,y0). This
figure is not appropriate to use in calculating the projection distortion since a 3-dimensional
space has to be taken into consideration. As such, the following figure was used. Here, there
is a somewhat better visualisation of the parameters used.

Figure 7.4: 3-dimensional visualisation of projection distortion

In the above figure, the green lines lie in the plane of the operation field and the red ones in
the projection plane of the camera frame. The point (0,0) is the mapping of the principal point
on the operation field and corresponds to (x0,y0) since (xi’,yi’) now assumes negative values.
The point (rc,0) is the foot of the perpendicular projection from the operation field to the
camera and corresponds to the point (xc,yc). rc is the radial distance from (x0,y0) to (xc,yc). H is
the perpendicular distance from the operation field to the camera and was measured in the lab.
The point (Xi’’,Yi’’) is the projection of the point (xi’,yi’) in the camera frame.

In figure 7.4, the x-axis of the operation field now lies along the radial distance rc and the y-
axis lies on the line of intersection of the camera plane and the operation field. As can also be
noticed, the chosen axes of the operation field remain perpendicular after projection. This was

 47

the reason for the initial rotation and this also eases the computation of the projected points.
Also notice that lines parallel to the line of intersection of both fields still remain parallel to
the line of intersection after projection. From the above observations, one could compute the
values of Xi’’ as shown in the following equations. The parameters used here are as shown in
figure 7.4.

rc
2 = (xc – x0)2 + (yc – y0)2

 Hc
2 = H2 + rc

2
hi’2 = (rc - xi’)2 + H2

 hi’2 + Hc

2 - xi’2

βi = arccos (------------------) (7.3)
 2 * hi * Hc

 Xi’’ = Hc * tan(βi) * xi’ / |xi’|

Note from the above computation of Xi’’ that if xi’ is negative, then the value obtained above
is also negative. Yi’’ could now be computed from Xi’’. The triangle described by the camera
and the points A and (xi’,yi’) is equivalent to that described by the camera and the points B
and (Xi’’,Yi’’). From this observation, Yi’’ is computed as follows;

Hi’’2 = Xi’’2 + Hc
2

Yi’’ = yi’ * Hi’’ / hi’ (7.4)

The projected points (Xi’’,Yi’’) were then rotated by an angle φ anti-clockwise about their
origin and translated to obtain the points (xi’’,yi’’) which were then used to estimate the scale
factors as described by 7.1. The following equation describes this transformation;

 (7.5)

The points (xi’’,yi’’) were then scaled to pixels to get (Ui’’,Vi’’). These scaled points are
plotted with the image points (ui,vi) as shown below. The scaled points are plotted with green
circles and the image points with red crosses. The extra blue cross in each image denotes the
principal point of the camera (which is the centre of the image in this calibration). The red
lines in the images connect the points closest to the principal points, which were used to
estimate the intrinsic parameters. The lines in blue show the radial, tangential and effective
distortions.

 48

Vertical axis: v-coordinates in pixels

Horizontal axis: u-coordinates in pixels
(a) Camera 1

Vertical axis: v-coordinates in pixels

Horizontal axis: u-coordinates in pixels
(b) Camera 2

Figure 7.5: Initial distortions

The projected scaled points (Ui’’,Vi’’) are undistorted and therefore equal to the distorted
image points plus their corresponding distortions as shown below.

Ui’’= ui + dui and Vi’’= vi + dvi (7.6)

 49

Since dui and dvi had not been known at this point, Ui’’ and Vi’’ were calculated from 7.1 as
follows;

Ui’’ = u0 + (xi’’ – x0) / su and Vi’’= v0 + (yi’’– y0) / sv (7.7)

As expected from the images in figure 7.3 above, there are little or no distortions at the centre
of the images. The distortions increase from the centre of the images towards their borders.
The scale factors were calculated from the division of the distance between the mappings of
the points connected by the red lines in the camera frame by their image distances. Below is a
plot of the initial radial and tangential distortions. They are both plotted against the radial
distance from the principal point. The unit of both axes is pixel. The radial distortion is
plotted in green and the tangential in red.

Vertical axis: Pixel distortion

Horizontal axis: Radial pixel distance
(a) Camera 1

 50

Vertical axis: Pixel distortion

Horizontal axis: Radial pixel distance
(b) Camera 2

Figure 7.6: Initial radial and tangential distortions

The initial value of the objective function for camera 1 was 33440 square pixels and that of
camera 2 was 35846 square pixels. The following values were obtained for the extrinsic and
intrinsic parameters of camera 1 and 2;

 Intrinsic parameters:

Camera 1:
 Principal point in pixels (u0,v0): (320,240)
 Mapping of principal point in mm (x0,y0): (3469,971.45)
 Scale factor along the x-axis, su: 4.8258 mm/pixel
 Scale factor along the y-axis, sv: 4.8146 mm/pixel

Camera 2:
 Principal point in pixels (u0,v0): (320,240)
 Mapping of principal point in mm (x0,y0): (1432.2, 1020.6)
 Scale factor along the x-axis, su: 4.7188 mm/pixel
 Scale factor along the y-axis, sv: 4.7843 mm/pixel

Extrinsic Parameters:
 Camera 1:
 φ = -17.0941o
 Camera position in mm (xc,yc,H): (3555,945,2850)
 Camera 2:
 φ = -171.131o
 Camera position in mm (xc,yc,H): (1300,1000,2840)

 51

So far, just the extrinsic and intrinsic parameters have been estimated but no minimisation has
been carried out as yet. However, an initial investigation of the radial and tangential
distortions has been done and the initial values of the objective function given. The radial
distances are given by;

 , 1 ≤ i ≤ N (7.8)

7.2 Radial Distortions:

Radial distortions are also referred to as lens distortions. They are non-linear and increase
radially from the centre of the image to its borders. These distortions were estimated and
minimised by using the least squares method to fit a curve into the plot of the radial
distortions in figure 7.6. Here, a third degree polynomial was used. The radial distortion was
estimated as follows;

dri = k1ri + k2ri
2 + k3ri

3, 1 ≤ i ≤ N (7.9)

where k1, k2 and k3 are coefficients of radial distortion and ri is the radial distance as defined
in 7.8. As no distortions are expected at the principal point of the lens (i.e. the centre of the
image in this case), there is no term independent of ri. The above equation can be expressed in
matrix form as follows;

where A is an Nx3-matrix, a 3-dimensional column vector and an N-dimensional
column vector, all defined as follows;

 (7.11)

 52

The least squares method can be applied to 7.10 to get the best estimate of the coefficients of
radial distortions, i.e. the vector . This is done in the following equation;

 = (ATA)-1(AT) (7.12)

The estimation of the radial distortions obtained from the least squares method by a
polynomial fit is plotted with blue in the following figure. The actual radial distortions are
also plotted with green crosses.

Vertical axis: Pixel distortion

Horizontal axis: Radial pixel distance
(a) Camera 1

 53

Vertical axis: Pixel distortion

Horizontal axis: Radial pixel distance
(b) Camera 2

Figure 7.7: Polynomial fit for radial distortions

In the estimation of the extrinsic and intrinsic parameters, transformations were carried out
only on the actual points of the operation field. These parameters are used to transform points
from the operation field into the camera frame and further scale them to get the undistorted
image coordinates. Minimisation of the radial distortion is carried out on the image points.
Here, the polynomial obtained above from the least squares method is used to estimate the
scaled points (Ui’’,Vi’’). The resulting u- and v- component distortions caused by the radial
distortions were calculated according to [14] as follows;

dui = (ui – u0) * dri / ri , 1 ≤ i ≤ N
dvi = (vi – u0) * dri / ri , 1 ≤ i ≤ N (7.13)

The values of dri used in the equations above were the estimated values calculated from the
polynomial in 7.9 and not the actual values. The values of dui and dvi estimated above were
used to estimate (Ui’’,Vi’’) as given by 7.6. The estimated and actual values of (Ui’’,Vi’’) are
plotted in the following figure with red crosses and green circles respectively;

 54

Vertical axis: v-coordinates in pixels

Horizontal axis: u-coordinates in pixels
(a) Camera 1

Vertical axis: v-coordinates in pixels

Horizontal axis: u-coordinates in pixels
(b) Camera 2

Figure 7.8: Distortions after minimisation of radial distortions

The resulting radial and tangential distortions are as shown below;

 55

Vertical axis: Pixel distortion

Horizontal axis: Radial pixel distance
(a) Camera 1

Vertical axis: Pixel distortion

Horizontal axis: Radial pixel distance
(b) Camera 2

Figure 7.9: Radial and tangential distortions after minimisation of radial distortions

The value of the objective function here was 1075 square pixels for camera 1 which
corresponds to an overall reduction of 32365 square pixels from its initial value. That of
camera 2 reduced to 1347.6 square pixels, corresponding to an overall decrease of 34498

 56

square pixels from its initial value. Below are the values obtained for the coefficients of radial
distortions for camera 1 and 2.

 Camera 1:

k1 = 0.0070026
k2 = -0.000087083
k3 = 0.0000012575

 Camera 2:
k1 = 0.0011844
k2 = -0.000071939
k3 = 0.0000012518

7.2 Tangential Distortion:

As discussed in the introduction of this chapter, tangential distortions result from the fact that
the axes of the operation field may not be aligned with that of the camera. But in the
discussions so far, this was assumed. So in order to minimise the tangential distortions, the
angle between the axes of the operation field and that on the camera have to be estimated and
the coordinates of the operation field rotated appropriately about the mapping of the principal
point (x0,y0) on the operation field. This is equivalent to rotating the scaled undistorted points
(Ui’’,Vi’’) by an angle α0 clockwise about the principal point (u0,v0) in the image. The
estimation was achieved by minimising the objective function F with respect to α0. Consider
three values of the objective function F0, F1 and F2 as plotted in the graph below. They are
calculated by rotating (Ui’’,Vi’’) anti-clockwise about the principal point at angles α0, α1 and
α2 respectively where α1 = α0 - ∆α and α2 = α0 + ∆α for some given ∆α.

Figure 7.10: Objective function

The following flow chart describes the iterative algorithm used to minimise F.

 57

Figure 7.11: Flow chart for minimisation of tangential distortion

When the loop in the algorithm above terminates, then the objective function F assumes its
minimum at α0. So the scaled points (Ui’’,Vi’’) were rotated anti-clockwise about the
principal point by the angle α0 to obtain the points (Ui’,Vi’) as follows;

Ui’ = u0 + (Ui’’ - u0) * cos(α0) – (Vi’’ - v0) * sin(α0)
Vi’ = v0 + (Ui’’ - u0) * sin(α0) + (Vi’’ - v0) * cos(α0) (7.14)

The angle α0 was then negated for use in the mapping from the image to the operation field, in
which case, (Ui’,Vi’) will be rotated in the opposite direction to go get (Ui’’,Vi’’). The newly
obtained scaled points (Ui’,Vi’), from the above equations, were then plotted with the image
points as shown in the following images for camera 1 and 2. Notice the considerable decrease
in the tangential distortions in comparison to those in figure 7.8.

 58

Vertical axis: v-coordinates in pixels

Horizontal axis: u-coordinates in pixels
(a) Camera 1

Vertical axis: v-coordinates in pixels

Horizontal axis: u-coordinates in pixels
(b) Camera 2

Figure 7.12: Distortions after minimisation of tangential distortions

The residual distortions which were not removed are as shown in the following plots;

 59

Vertical axis: Pixel distortion

Horizontal axis: Radial pixel distance
(a) Camera 1

Vertical axis: Pixel distortion

Horizontal axis: Radial pixel distance
(b) Camera 2

Figure 7.13: Residual radial and tangential distortions after
minimisation of tangential distortions

As can be observed from the figure above, the residual tangential and radial distortions attain
a maximum of about 0.6 pixels at the centre of the image and vary up to a maximum of about

 60

1.8 pixels at the borders for camera 1. These correspond to about 2.8mm and 8.6mm
respectively in the operation field. For camera 2, the residual tangential error is more than
double that for camera 1. The distortions for camera 2 attain a maximum of about 1 pixel at
the centre and about 5 pixels at the borders. These correspond to about 4.7mm and 23.5mm
respectively in the operation field. As can be observed from the above figure, the tangential
istortions were considerably reduced when compared to their values in figure 7.9. d

The new value of the objective function for camera 1 was reduced to 111.17 square pixels.
This corresponds to a reduction of 33329 square pixels from its initial value. That of camera 2
on the other hand was reduced to 515.86 square pixels, which corresponds to a reduction of
35330 s

T

quare pixels from its initial value. The following angles were computed for camera 1
nd 2;

Camera 2: α0 = -0.0099246 rad

n procedure. Below is a
ummary of the three main steps used in this calibration procedure;

1.

ts (xi’’,yi’’). These points were then used to estimate the scale factors su

2.
ast squares method was used to

3. e
image points (u ,v) by an angle α clockwise about the principal point (u0,v0).

.4 Mapping from Image to Operation Field:

 the transformation from the operation field to the camera frame will simply
e walked back.

uired to compute its mapping (x,y) in the operation
eld. This is done in the following steps;

1. ial distortion dr with the help of the coefficients of radial distortion

2. d dv respectively, from the

3. ixels to mm to obtain their mappings (x’’,y’’) in the
camera frame as given by 7.1.

a

 Camera 1: α0 = 0.010879 rad

The function calibrate() (see appendix) implements this calibratio
s

In the first step, the extrinsic and intrinsic camera parameters were estimated.
This involved the minimisation of the projection distortion. The calibration
points (xi,yi) on the operation field were translated and rotated by the angle φ
clockwise about the mapping of the principal point (x0,y0) on the operation
field to obtain the points (xi’,yi’) as given in 7.2. The points (xi’,yi’) were then
projected into the camera frame to obtain the points (Xi’’,Yi’’) which were
further rotated by the angle φ anti-clockwise about (x0,y0) and translated to get
the poin
and sv.
In the second step, the radial distortion was estimated with a polynomial of
third degree as shown in 7.9. Here the le
estimate the coefficients of this polynomial.
In the third and final step, the tangential error was minimised by rotating th

i i 0

7

So far the transformation from the operation field into the camera frame has been discussed.
However, in this project one is interested in the mapping from the image to the operation
field. This involves a transformation from the camera frame to the operation field. So the
procedure used in
b

Given the image coordinates (u,v), it is req
fi

Estimate the rad
as given in 7.9.
Calculate the u- and v-component distortions, du an
radial distortion estimated in the first step using 7.13.
Scale u + du and v + dv from p

 61

4. Rotate (x’’,y’’) about (x0,y0) by an angle φ - α0 clockwise to get the point
(X’’,Y’’). Remember α0 was used to minimise the tangential error.

5. Project the points (X’’,Y’’) onto the operation field to obtain the points (x’,y’).
6. Finally, rotate the points (x’,y’) by an angle of φ anti-clockwise about the point

(x0,y0) to obtain (x,y).

All the formulas used in the steps above have been given except for step 5, the projection
transformation from the camera frame to the field. Consider the following figure which
demonstrates a projection from the camera frame to the operation field. It is the same with
that in figure 7.4. Only some additional parameters are indicated to describe this projection.

Figure 7.14: 3-dimensional visualisation of projection transformation

In this case, (X’’,Y’’) is known and it is required to calculate (x’,y’). Hc and rc have already
been calculated in 7.3. The procedure used in the projection from the operation field to the
camera frame is similar to that here. The coodinate x’ will first be calculated and then used to
calculate y’. The observations made in section 7.1 still hold here of course, and will not be
repeated. The calculation of (x’,y’) from (X’’,Y’’) is as follows;

β = tan(X’’ / Hc)
x’ = Hc * sin(β) / sin(θ+β)
Hi’’2 = Xi’’2 + Hc

2 (7.15)
hi’2 = (rc - xi’)2 + H2
yi’ = Yi’’ * hi’ / Hi’’

Remember that the calculations above are with the negative x-axis of the camera frame. This
would give β a negative value from the first equation above. This is why the angle used to
calculate x’ in the second equation above is θ+β and not θ-β as depicted in figure 7.14.

The point (x,y) calculated from step 6 above is the point on the operation field. Remember the
robot has a certain height from the operation field which gives rise to a projection error as
described in section 7.4. So in addition to the mapping described above, a projection

 62

correction has to be done in order to properly track the robot. The complete algorithm used in
tracking the robot is implemented in the function track_robot() (see appendix). The steps used
in this algorithm are as follows;

1. Configure and acquire the image from both cameras, one after the other as
described in chapter 3. Remember only one video object can exist at a time.

2. Extract the reflex marks from the images by using the thresholding and boundary
tracing algorithms described in chapter 4.

3. Calculate the centre and radius of each reflex mark using the circle fit method
described in chapter 5.

4. Map the centre of the reflex mark to its corresponding point in the operation field
with the help of the calibration parameters.

5. Correct the projection error resulting from the robots height.
6. Group the reflex marks into pairs. Each pair should have the minimum distance

between them.
7. Determine which mark in the pair is the larger one by comparing their radii. The

centre of the larger mark gives the robot position while the smaller one gives the
orientation of the robot as explained in section 1.1.

8. Reflex marks without any partner are ignored.

 63

Chapter 8: Conclusion

This work was all about calibrating cameras to track a mobile robot with two overhead video
cameras. The robots were equipped with reflex marks which are highly reflexive to light.
These reflex marks were placed at the top of the robot and used to deduce its position and
orientation. The cameras were manually set to take only grey images and the exposure time of
the shutter was further controlled to take images in which only the reflex marks can be seen.
This greatly helped reduce the effort invested in image processing to extract the reflex marks
from the images.

The cameras were positioned in such a way that their views on the operation field overlapped.
This made it possible for the robots to always be in view as long as they were in the operation
field and the robots could move from the view of one camera to the other without lose of
track. This project did not involve robot control anyway.

The main theme of this project was camera calibration. Some image and data processing
techniques were also presented. A step-by-step camera calibration procedure, which involved
a stepwise elimination of the distortions taken into consideration, was also presented. The
main difficulty encountered was the description of the projection transformation to and from
the camera frame and the operation field.

In previous works on robot control in the lab, the camera calibration was done by
interpolation. The disadvantage here was the large parameter set which had to be stored. All
the 165 points used for calibrating each camera and their image mappings had to be stored,
making a total of 1320 floating point values. The time used in computing the mapping of an
image point on the operation field was also location dependent as the algorithm had to search
for the three closest calibration points. As compared to the camera calibration procedure
presented here, there are only 14 calibration parameters stored for each camera and the
algorithm is location independent. It has a fixed time to compute the mapping for any point on
the operation field.

One thing which will be of great interest is a thorough investigation of the accuracy of the
camera calibration by interpolation and that presented here. One could definitely say for the
interpolation method that there is no error at the calibration points since all their mappings
were stored. But the errors in between the calibration points will be of interest. A further
investigation of the possible sources of distortions and their minimisations in order to reduce
the residual error in this calibration procedure could also be done. These were not done in this
project due to time constraints.

 64

References

[1] Heikkilä, J. & Silvén, O. (1997) A four-step camera calibration procedure with

implicit image correction. Infotech Oulu and Department of Electrical Engineering,
University of Oulu, FIN-90570 Oulu, Finland

[2] Abdel-Aziz, Y. I. & Karara, H. M. (1997) Direct linear transformation into object
space coordinates in close-range photogrammetry. Proc. Symposium on Close-Range
Photogrammetry, Urbana, Illinois, p. 1-18

[3] Faugeras, O. D. & Toscani, G. (1987) Camera calibration for 3-D computer vision.
Proc. International Workshop on Industrial Applications of Machine Vision and
Machine Intelligence, Silken, Japan, p. 240-247

[4] Sam Roweis, Levenberg-Marquardt Optimization
http://www.cs.toronto.edu/~roweis/notes/lm.pdf

[5] Klaus Strobl, Wolfgang Sepp, Stefan Fuchs, Christian Paredes and Klaus Arbter
(2007) Camera Calibration Toolbox for Matlab
http://www.vision.caltech.edu/bouguetj/calib_doc/

[6] Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins (2004) Digital Image
Processing using MATLAB

[7] Brown D. C. (1971) Close Range Camera Calibration. DBA Systems, Inc. Melbourne,
Fla. 32901. http://www.vision.caltech.edu/bouguetj/calib_doc/papers/Brown71.pdf

[8] Wang Q. & Ye G. (2005) Observation Camera Based Navigation System for Mobile
Robots. Master thesis at Hamburg University of Applied Sciences.

[9] Chung J. (2006) Formation Control for Multiple Robots. Master thesis at Hamburg
University of Applied Sciences.

[10] AmigoBot website: http://www.activrobots.com/ROBOTS/amigobot.html
[11] 3M Diamond Grade TM VIP Reflexive Sheeting (2005) www.3M.com
[12] MATLAB User’s Guide (2003) The MathWorks, Inc.
[13] Ostu N. (1979) A Threshold Selection Method from Gray-Level Histograms. IEEE

Trans. System, Man and Cybernetics, vol. 79, no. 6, pp. 745-754
[14] Rojas Raul (2004) Calibrating an Overhead Video Camera. Freie Universität Berlin.

http://www.fu-fighters.de
[15] (Aug. 2005) Image Analysis and Understanding. Lecture notes, College of CSS

Engineering, University of Iowa
http://www.icaen.uiowa.edu/~dip/LECTURE/Segmentation2.html#tracing

[16] Nettle P. (1997) WWH1: Sup-Pixel Accuracy.
http://www.gamedev.net/reference/articles/article661.asp

 65

http://www.cs.toronto.edu/%7Eroweis/notes/lm.pdf
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/papers/Brown71.pdf
http://www.activrobots.com/ROBOTS/amigobot.html
http://www.3m.com/
http://www.fu-fighters.de/
http://www.icaen.uiowa.edu/~dip/LECTURE/Segmentation2.html#tracing
http://www.gamedev.net/reference/articles/article661.asp

APPENDIX A: Alphabetic Function List

calcF
Function F = calcF(U, V, u, v, u0, v0, alpha)
File calcF.m
Description Calculates the value of the objective function obtained by rotating (U,V) by

an angle alpha anti-clockwise about the point (u0,v0). U, V, u and v must
be vectors of same length.

Usage Estimation of the tangential distortion
Input U: x-coordinates of undistorted image points

V: y-coordinates of undistorted image points
u: x-coordinates of distorted image points
v: y-coordinates of distorted image points
u0: x-coordinate of principal point
v0: y-coordinate of principat point
alpha: angle of rotation in radians

Output F: value of objective function

calibrate
Function calibparam = calibrate(cpos, fpoints, impoints)
File calibrate.m
Description Specifically calibrates the cameras used in this project.
Usage Camera calibration (see chapter 7)
Input cpos: 3D coordinate of the camera position in the operation field

fpoints: 2x165 matrix of the calibration points on the operation field in
 mm. The 1st and 2nd rows are the x- and y-coodinates respectively.
 The coordinates must form a grid of dimensions 15 by 11 points
 spaced at 200mm from each other and arranged columnwise.
impoints: Corresponding image points of the calibration points.

Output calibparam: Structure containing all the calibration parameters.
 calibparam.pos: camera position given by cpos
 calibparam.pp: principal point and its mapping in operation field
 calibparam.angles: transformation and tagential distortion angles
 calibparam.s: scale factors
 calibparam.k: coefficients of radial distortion

Function calls project, calcF

 66

circle_fit
Function [circle, z] = circle_fit (x, y)
File circle_fit.m
Description Computes the best circle fitting using the least square's method. x and y

must be column vectors of same dimension greater than 2.
Usage Calculation of the centre and radius of a reflex mark (see section 5.2.1)
Input (x,y): approximate coordinates of circle
Output circle: Structure containing centre and radius of a circle

 circle.pos: centre of circle
 circle.r: radius of circle
z: coefficients of circle defined by x^2 + y^2 + z(1)x + z(2)y + z(3) = 0

ellipse_fit
Function [ellipse, z] = ellipse_fit(x, y)
File ellipse_fit.m
Description Computes the best ellipse fitting using the least square's method. x and y

must be column vectors of same dimension greater than 4.
Usage Calculation of the centre of a reflex mark (see section 5.2.2)
Input (x,y): approximate coordinates of ellipse
Output ellipse: Structure defining an ellipse

 ellipse.pos: centre of ellipse
 ellipse.a: length of x-axis of ellipse
 ellipse.b: length of y-axis of ellipse
 ellipse.angle: angle of rotation of ellipse measured anti-clockwise from
 positive x-axis
z: coefficients of ellipse defined by
 z(1)x^2 + z(2)y^2 + z(3)xy + z(4)x + z(5)y + 1 = 0.

get_image
Function img = get_image(c_config)
File get_image.m
Description Resets, configures and aquires image from camera.
Usage Camera configuration and image acquisition (see chapter 3)
Input c_config: Structure containing camera configuration parameters.

 c_config.num: Camera number. Must be 1 or 2.
 c_config.exposure: exposure time of camera shutter

Output img: gray image obtained from camera

 67

get_pos_mm
Function pos_mm = get_pos_mm(pos_px, calibparam)
File get_pos_mm.m
Description Calculates the mapping of an image point on the operation field in mm
Usage Caculation of robot position
Input pos_px: image coordinates

calibparam: Structure containing all the calibration parameters.
 calibparam.pos: camera position given by cpos
 calibparam.pp: principal point and its mapping in operation field
 calibparam.angles: transformation and tagential distortion angles
 calibparam.s: scale factors
 calibparam.k: coefficients of radial distortion

Output pos_mm: mapping of pos_px in mm on operation field
Function call reproject

get_reflex_marks
Function circles = get_reflex_marks(BW)
File get_reflex_marks.m
Description Computes the centre and radius of each reflex mark in an image.
Usage Boundary tracing and circle fit (see chapter 5)
Input BW: binary image
Output circles: Array of structures describing a circle.

 circles{i}.pos: centre of circle
 circles{i}.r: radius of circle

Function call circle_fit

imthresh
Function BW = imthresh(Img)
File imthresh.m
Description Segments a gray image to a binary image by local thresholding.
Usage Thresholding (see section 4.3.4)
Input Img: gray image
Output BW: binary image

plot_circle
Function plot_circle(circle, str)
File plot_circle.m
Description Plots a circle with its horizontal and vertical diameter.
Usage Visual verification
Input circle: Structure containing centre and radius of a circle

 circle.pos: centre of circle
 circle.r: radius of circle
str: string used to define mode of plot

 68

plot_ellipse
Function plot_ellipse(ellipse, z, str)
File plot_ellipse.m
Description Plots an ellipse with its axes.
Usage Visual verification
Input ellipse: Structure defining an ellipse

 ellipse.pos: centre of ellipse
 ellipse.a: length of x-axis of ellipse
 ellipse.b: length of y-axis of ellipse
 ellipse.angle: angle of rotation of ellipse measured anti-clockwise from
 positive x-axis
z: coefficients of ellipse defined by
 z(1)x^2 + z(2)y^2 + z(3)xy + z(4)x + z(5)y + 1 = 0.
str: string used to define mode of plot

project
Function W = project(w, fc, cpos)
File project.m
Description Projects points from operation field into camera frame.
Usage Projection transformation
Input w: points on operation field

fc: mapping of the principal point in the operation field
cpos: camera position in the operation field

Output W: projected points in camera frame

reorder
Function w = reorder(w)
File reorder.m
Description Reorders the image points to correspond to that of the operation field.
Usage Camera calibration.
Input w: unordered image points. Must be a 2x165 matrix with x- and

 y-coordintes in the 1st and 2nd rows respectively.
Output w: columnwise ordered image points

reproject
Function W = reproject(w, fc, cpos)
File reproject.m
Description Reprojects points from camera frame onto operation field
Usage Projection transformation
Input w: points in camera frame

fc: mapping of the principal point in the operation field
cpos: camera position in the operation field

Output W: reprojected points on operation field

 69

set_Tmin
Function set_Tmin()
File set_Tmin.m
Description Computes the maximum gray levels of the background images of both

cameras and uses them to initialize the minimum threshold levels for both
cameras.

Usage Thresholding (see section 4.3.4)

track_robots
Function robots = track_robots()
File track_robots.m
Description Gets images from both cameras and tracks all robots in view
Usage Robot tracking (see section 7.4)
Output robots: Array of structures containing robot position and orientation

 robots{i}.pos: position of robot
 robots{i}.angle: angle of orientation of robot measured
 anti-clockwise from the positive x-axis

Function calls get_image, imthresh, get_reflex_marks, get_pos_mm

 70

Appendix B: Source Code

The following MATLAB m-file is used to declare and initialize all global variables needed to
track the robot. This file must be executed before the function track_robot() (see Appendix A)
is used. At the end of this file, the user is prompted to set the minimum threshold levels. This
is done automatically by the function set_Tmin() (see Appendix A). It is advised to always
accept this option since the minimum threshold may vary with luminance.

% File: init.m
%
% Description:
% Defines and initializes all global parameters.

% minimum threshold levels
global Tmin;
Tmin = 47; % default value
global Tmin1; % minimum threshold for camera 1
Tmin1 = 46; % default value
global Tmin2; % minimum threshold for camera 1
Tmin2 = 47; % default value

% calibration parameters
global c1_calibparam;
global c2_calibparam;
load calibparam; % load calibration parameters

% camera configuration parameters
global c1_config;
c1_config.num = 1;
c1_config.exposure = -10;
global c2_config;
c2_config.num = 2;
c2_config.exposure = -8;

% compute minimum threshold levels
if 'y' == input('Do you want to compute the minimum threshold
levels?\nEnter y for yes: ', 's'),
 set_Tmin;
end

On the following page is the main calibration function used in this project. Its input variables
are stored in the MATLAB data-file calibdata.mat. These variables are prefixed with c1 and
c2 for camera 1 and camera 2 respectively. So the mat-file must be loaded into the workspace
and the function called appropriately to calibrate camera 1 or 2. Note that the version of this
function on the next page is summarized. The code used to automatically generate the images
as shown in chapter 7 and to compute the objective function after each minimisation has been
deleted. This code is of course not deleted in the CD delivered with this project.

 71

function calibparam = calibrate(cpos, fpoints, impoints)
% File: calibrate.m
%
% Description:
% Specifically calibrates the cameras used in this project.
%
% Inputs:
% cpos: 3D coordinate of the camera position in the operation field
% fpoints: 2x165 matrix of the calibration points on the operation field
% given in mm. The 1st and 2nd rows are the x- and y-coodinates
% respectively. The coordinates must form a grid of dimensions 15 by
% 11 points spaced at 200mm from each other and arranged columnwise.
% impoints: Corresponding image points of the calibration points.
% Output:
% calibparam: Structure containing all the calibration parameters.
% calibparam.pos: camera position given by cpos
% calibparam.pp: principal point and its mapping in operation field
% calibparam.angles: transformation and tagential distortion angles
% calibparam.s: scale factors
% calibparam.k: coefficients of radial distortion

%============= estimation of extrinsic & extrinsic parameters =============

u = impoints(1,:);
v = impoints(2,:);
x = fpoints(1,:);
y = fpoints(2,:);
t = cpos;
L = length(u);
u0 = 320;
v0 = 240;
Dx = 200;
Dy = 200;

r = ((u - u0).^2 + (v - v0).^2).^0.5;
[rmin, pos] = min(r); % calculate position of point closest to (u0,v0)

% calculate x0 and y0 from u0 and v0
if u(pos) < u0,
 x0 = x(pos) + Dx * (u0 - u(pos)) / (eps + u(pos+11) - u(pos));
 upos = pos + 11;
else
 x0 = x(pos-11) + Dx * (u0 - u(pos-11)) / (eps + u(pos) - u(pos-11));
 upos = pos - 11;
end
if v(pos) < v0,
 y0 = y(pos) + Dy * (v0 - v(pos)) / (eps + v(pos+1) - v(pos));
 vpos = pos + 1;
else
 y0 = y(pos-1) + Dy * (v0 - v(pos-1)) / (eps + v(pos) - v(pos-1));
 vpos = pos - 1;
end

% calculate transformation angle phi from camera position
phi = angle(j * (t(2) - y0) + (t(1) - x0));

% rotate (x,y) clockwise about (x0,y0) by phi
XY = [x0 * ones(1,L);y0 * ones(1,L)] + [cos(phi) sin(phi); -sin(phi)
cos(phi)] * [x - x0; y - y0];

 72

% project (X,Y) into camera frame
XY = project(XY, [x0;y0], t);
X = XY(1,:);
Y = XY(2,:);

% rotate (X,Y) anti-clockwise about (x0,y0) by phi
XY = [x0 * ones(1,L);y0 * ones(1,L)] + [cos(phi) -sin(phi); sin(phi)
cos(phi)] * [X - x0; Y - y0];
X = XY(1,:);
Y = XY(2,:);

% calculate scale factors
if u(pos) < u0,
 Su = ((X(pos+11) - X(pos))^2 + (Y(pos+11) - Y(pos))^2)^0.5 / (eps +
((u(pos+11) - u(pos))^2 + (v(pos+11) - v(pos))^2)^0.5);
else
 Su = ((X(pos) - X(pos-11))^2 + (Y(pos) - Y(pos-11))^2)^0.5 / (eps +
((u(pos) - u(pos-11))^2 + (v(pos) - v(pos-11))^2)^0.5);
end
if v(pos) < v0,
 Sv = ((X(pos+1) - X(pos))^2 + (Y(pos+1) - Y(pos))^2)^0.5 / (eps +
((u(pos+1) - u(pos))^2 + (v(pos+1) - v(pos))^2)^0.5);
else
 Sv = ((X(pos) - X(pos-1))^2 + (Y(pos) - Y(pos-1))^2)^0.5 / (eps +
((u(pos) - u(pos-1))^2 + (v(pos) - v(pos-1))^2)^0.5);
end

%================== estimation of radial distortion ===================

% scale (X,Y) to pixels
U = u0 + (X - x0) / (eps + Su);
V = v0 + (Y - y0) / (eps + Sv);

dU = U - u;
dV = V - v;
R = ((U - u0).^2 + (V - v0).^2).^0.5;
alpha = abs(atan((v-v0) ./ (u-u0+eps)) - atan((V-v0) ./ (U-u0+eps)));
d = (dU.^2 + dV.^2).^0.5;
dT = R .* sin(alpha);
dr = (d.^2 - dT.^2).^0.5;
r = r.';
k = [r r.^2 r.^3] \ dr.'; % estimate coefficients of radial distortion
r = r.';
dr = k(1) * r + k(2) * r.^2 + k(3) * r.^3; estimate radial distortion %
u = u0 + (u - u0) .* (1 + dr ./ (eps + r));
v = v0 + (v - v0) .* (1 + dr ./ (eps + r));

%============= estimation of tangential distortion ===================

alpha0 = 0;
step = pi/4;
F0 = calcF(U, V, u, v, u0, v0, 0);
F1 = calcF(U, V, u, v, u0, v0, alpha0 - step);
F2 = calcF(U, V, u, v, u0, v0, alpha0 + step);
while(step ~= 0)
 [F,p] = min([F0 F1 F2]);
 if p == 1
 step = step / 2;
 F1 = calcF(U, V, u, v, u0, v0, alpha0 - step);
 F2 = calcF(U, V, u, v, u0, v0, alpha0 + step);

 73

 elseif p == 2
 F2 = F0;
 F0 = F1;
 alpha0 = alpha0 - step;
 F1 = calcF(U, V, u, v, u0, v0, alpha0 - step);
 else
 F1 = F0;
 F0 = F2;
 alpha0 = alpha0 + step;
 F2 = calcF(U, V, u, v, u0, v0, alpha0 + step);
 end
end
alpha0 = -alpha0;

% create calibparam structure
calibparam.pos = cpos;
calibparam.pp = [u0 v0; x0 y0];
calibparam.angles = [phi alpha0];
calibparam.s = [Su Sv];
calibparam.k = k;

 74

Declaration

I declare within the meaning of section 25(4) of the Examination and Study Regulations
of the International Degree Course Information Engineering that: this Bachelor Thesis
has been completed by myself independently without outside help and only the defined
sources and study aids were used. Sections that reflect the thoughts or works of others
are made known through the definition of sources.

City, Date and Signature

	Bachelor1page.doc
	Bachelor2page.doc
	Contents.doc
	WedndahAsong_Thesis.doc
	Chapter 1: Introduction
	 1.1 Project Overview
	4.2.2 Binary Images:

	Declaration.doc

