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Abstract
Diverse deep neural network (DNN) approaches have displayed high accuracy in the
fields of pattern recognition and image classification but their potential has not been
explored in the field of energy disaggregation. The aim of this thesis is to investigate
the accuracy with which two DNN approaches classify active household appliances for
energy disaggregation and compare the performance of DNN with other classification
methods used in the field.
The first approach used is the Multi-Layer Perceptron (MLP) approach which is one
of the simplest DNN methods and it displays baseline accuracy of any DNN. The
second approach is Convolutional Neural Networks (CNN), which is more advanced
and improves upon the baseline accuracy. Both approaches are tested with various
optimizers, activation functions and loss functions as performance measures. Open
source data (REDD dataset) is used to train and test the neural networks. The dataset
consists of 6 houses which are used for training and the testing 3 labelled appliances
common among the houses (dishwasher, lighting and washer dryer) with the additi-
on of unknown appliance data. When presented with real world data which included
unknown devices in addition to the three labelled devices, CNN achieved an accura-
cy of 90.00% and MLP achieved an accuracy of 77.14%. When the experiment was
repeated with data including only the known devices, CNN achieved an accuracy of
95.83% and MLP achieved 80.37%.
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1 Introduction

1.1 Motivation

With the rise in demand for sustainable energy sources, it becomes a priority to develop
a grid infrastructure which is reliable in providing energy consistently, flexible in handling
changing power demands and highly efficient in mitigating energy losses. Maximizing the
efficient usage of resources and available power enables the development of a sustainable
balance between supply and demand.

Much research [17] [19] [12] has been carried out to investigate the potential of saving house-
hold electricity when energy consumption is disaggregated per appliance. For the consumer,
being aware of the energy breakdown per appliance encourages change in usage patterns
of such appliances to reduce unnecessary costs. For public policy making bodies, such a
disaggregation allows the identification of appliances which consume needless amounts of
power and lead to avoidable negative impacts on the environment, and they can thereafter
make suitable policies. For the industry, this serves as motivation to modify and improve
appliance design [21]. Moreover, one such study Karen Ehrhardt-Martinez et al. [17] even
determined that if by 2030 well designed programs which disaggregated energy consump-
tion on appliance level are fully integrated throughout the residential sector, they can provide
the equivalent of 100 billion kilowatt-hours of electricity savings on an annual basis in the
USA alone. Thus, highlighting the enormous scale of financial advantage such programs
can yield. Finally, understanding the per appliance breakdown of energy consumption also
allows energy providers to make more accurate consumption forecasts.

However, disaggregating energy consumption to accurately classify appliances is challeng-
ing. Traditional approaches such as Hidden Markov Chain modeling and Signal Processing
are not able to accurately address situations where different appliances have similar power
consumption, similar appliances have different power consumption and when an appliance
has continuously varying power consumption.

The aim of this thesis is to accurately classify household appliances in a small interval (win-
dow) from the power consumption data of the household appliances. This is beneficial, as
a consumer can be notified of how their power is being consumed almost immediately. The
interested party could access an overview of their power consumption from previous weeks
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and adjust their usage accordingly to save more money while being environmentally friendly.
Furthermore, governments can use this information for adjusting their energy consumption
goals each year in a more efficient manner. The Paris Agreement, which has been signed by
195 countries aims to combat climate change by using new technology framework to reduce
their emissions [70]. Reducing these emissions can be achieved by making more efficient
usage of common appliances by citizens of the 195 countries.

In this thesis, Deep Neural Networks (DNN) are used to classify household appliances from
large amounts of energy profile data. The decision for using DNNs was influenced by its suc-
cess in ongoing research in the fields of image recognition and speech recognition, which
reflects the increased accuracy of using DNNs for pattern recognition. Implementing DNN
for image recognition resulted in 1st and 2nd place prizes in the ImageNet challenge [83]
for researchers from University of Oxford. Moreover, research done by Microsoft [30] in
speech recognition also used DNN for automatic speech recognition and emphasized that
three major speech research groups (Google voice, Youtube speech, English broadcast
news) achieved significant improvements in a variety of state-of-the art automatic speech
recognition systems by replacing Gaussian mixture models and Hidden Markov models with
DNNs.

1.2 Problem Statement

The aim of this thesis is to accurately and efficiently classify household appliances in small
time intervals (window) from the power consumption data of household appliances using
deep neural networks. The data which will be used for the household appliances to train the
neural network models is from the open source Reference Energy Disaggregation Dataset
(REDD). While this thesis focuses on REDD dataset, the implementation provided can be
replicated to other datasets for energy disaggregation as the approach remains the same.
This thesis aims to implement Multi-Layer Perceptron (MLP) to determine baseline accu-
racy and thereafter, through researching relevant literature, determine and implement an
approach which further optimizes the accuracy.

1.3 Thesis Overview

Chapter 2: Literature Survey explores literature relevant to Energy Disaggregation, Ma-
chine learning and Deep Learning.

Chapter 3: Concepts explores the concept of this thesis’s methodology by making the nec-
essary design decisions including the data pre-processing, test structure and design flow.
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Chapter 4: Implementation of Multi-layer Perceptron aims to describe the implementation
of MLP architecure and provides the results obtained from this approach.

Chapter 5: Implementation of Convolutional Neural Network aims to describe the imple-
mentation of CNN architecture and provides the results obtained from this approach.

Chapter 6: Evaluation includes the discussion for MLP and CNN results and the comparison
between both approaches.

Chapter 7: Conclusion and Future Work presents a conclusion to this thesis and proposes
relevant future research work.

Appendices: Appendix A and B include the supporting information in reference to work from
previous chapters. Appendix C includes information regarding the CD structure.



2 Literature Survey

2.1 Energy Disaggregation

Energy disaggregation is the act of identifying individual appliance signatures from a total
power consumption reading [27]. Alternatively, it is also called Non-Intrusive Load Monitoring
(NILM), Non-Intrusive Appliance Load Monitoring (NIALM) and Nonintrusive Appliance Load
Monitoring (NALM) in different papers. Figure 2.1 shows the recorded power consumption
of a sample house and implements the concept of energy disaggregation by identifying the
different signal signatures of common appliances.

Figure 2.1: Energy disaggregation overview [27]

Energy disaggregation can be used for a range of purposes and by many sectors including
residential, commercial and industrial. The approach taken in this paper can be replicated
for all the sectors. The majority of research for energy disaggregation uses open source res-
idential data for analysis as the findings can be published and discussed, while commercial
and industrial data remain to be confidential.
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This topic was initially envisioned at MIT by G.W Hart in 1980s [27]. In his paper he in-
troduces energy disaggregation and proposes an approach to collect and analyze appliance
data from households. He also suggests prospective applications and associated use cases.
This paper focuses on providing a different approach for analyzing the data. Nonetheless,
with ongoing research in the Internet of Things (IoT) [4] field, collection of data can be done
differently to be more efficient and resourceful. The European Commission has interest [98]
in promoting the usage of such devices and there is already a noticeable increase in the
number of smart appliances sold across Europe. These devices will make consumption en-
ergy data available to the consumers, thereby helping to make the collection of data simpler
and more efficient.

With an earlier approach for collecting data, G.W Hart created a device which was installed
at the revenue-meter socket of a residence which used signal analysis techniques on the
voltage and current waveforms to detect the usage characteristics of the individual appli-
ances within the home that constitute the load. The approach taken involved monitoring the
changes in the on/off state of an appliance within the residence so that changes in the total
power consumption could be seen. While this is successful for simple on/off appliances, it is
not applicable to complex appliances with many states such as dishwashers (as illustrated
in Figure 3.3) and washing machines. The author suggests 3 different appliance models
namely ON/OFF, Finite state machine and Continuously variable appliances but only tests
and implements the ON/OFF model.

Much of the research in this field continues to use signal processing to improve the accu-
racy of previous models. According to this paper [102] which reviews the methodology of
popular approaches for energy disaggregation, there is no complete solution suitable for all
types of household appliances. Also, no complete set of robust, widely accepted appliance
features has been identified. This thesis aims to tackle this issue and provide a more flexible
approach.

Figure 2.2 illustrates the increase in related research being done for energy disaggregation.
The number of publications are the number of published papers that cite [27]. These results
were obtained using the Google scholar search engine. After the year of 2014, around 200
publications are made each year. This helps to portray growing interest and potential for
energy disaggregation in the near future.



2 Literature Survey 15

Figure 2.2: Energy disaggregation popularity

The advantage of using Deep neural networks is that the state of the appliance does not
matter in the formulation of the model. DNNs are artificial neural networks (ANN) that have
multiple layers in their network. Deep learning introduces additional explicit and implicit learn-
ing priors in order to reduce the generalization error compared to traditional machine learning
techniques. Therefore, being very useful for pattern recognition as an unknown input or out-
put can be mapped to a corresponding known input or output. ANNs are useful because of
their adaptability and providing evidential response [75] by returning a decision with a mea-
sure of confidence. This allows the researcher to evaluate the reliability and accuracy of their
model.

Multi-layer perceptron (MLP) and convolutional nueral networks (CNN) are the types of DNN
that are being investigated. Both approaches are explained in detail in their respective chap-
ters.

2.2 Related Work

By being one of the earliest publicly available data sets REDD attracted many different re-
searchers and approaches. The majority of approaches use Signal processing, Machine
learning and Deep Learning. Signal processing techniques have traditionally been used,
while machine learning and Deep Learning are more recent approaches.

The authors of the REDD data in their study REDD: A Public Data Set for Energy Dis-
aggregation Research [51] set implemented Factorial Hidden Markov Model on their data.
FHMM[22] are a generalization of HMM in which the hidden state is factored into multiple
state variables and is therefore represented in a distributed manner. Using this approach,
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they attempted to predict the behaviour of an appliance and then compared their prediction
to the actual signature. The performance measure used in this study is the total energy cor-
rectly classified. The authors use individual appliance energy sequences to train the HMMs
using the standard Baum-Welch algorithm [67]. They use 4 states per device and typically
20 devices per home which results in 1x1012 different combinations of hidden states. To
evaluate their approach the authors use two weeks of data from 5 houses and sub-sampled
the data to 10 second intervals as a preprocessing step. The appliances used for the training
are provided in the appendix. The accuracy of their approach is illustrated in the Table 2.1.
The average accuracy of their approach for training is 64.5%, while when testing is 47.7%.

House
FHMM

Train Test

1 71.5% 46.6%

2 59.6% 50.8%

3 59.6% 33.3%

4 69.0% 52.0%

6 62.9% 55.7%

Total 64.5% 47.7%

Table 2.1: Percentage of total energy classified correctly in [51]

In the study Approximate Inference in Additive Factorial HMMs with Application to En-
ergy Disaggregation [50] one of the authors from REDD dataset proposes an Additive Fac-
torial Approximate MAP (AFAMAP) algorithm which is an unsupervised learning approach in
continuation the FHMM approach. For the training data the author observed power output,
and transitions probabilities set based upon the amount of time spent at each power level
for an appliance and looked at all pairwise probabilities between them using the k-nearest-
neighbor graph. This resulted in selecting 9 distinct appliances. For all methods, regulariza-
tion were fit using one day of the data. For testing they report precision and recall metrics at
the circuit level. Recall measures what portion of a given circuit’s energy is correctly classi-
fied, while precision measures, of the energy assigned to a circuit, how much truly belonged
to that circuit. The results of the approach are available in Table 2.2 where, performance is
reported as precision/recall and bold entries denote statically significant better performance
on both metrics in the table. These results are for two weeks of data. Comparatively it per-
forms much better than the previous study. However, the previous study tests all appliances
across 5 houses whereas this study tests only 7 appliances which can be part of the same
circuit/house. Comparatively, the first study has broader test scenarios, which increases the
reliability of the result. Nonetheless, the recall values of the study average to 60.3% which
makes it 23% higher than the previous studies tested approach.



2 Literature Survey 17

Circuit AFAMAP
1 Microwave 97.5% / 66.1%
2 Bath GFI 82.7% / 70.8%
3 Electronics 41.6% / 0.8%
4 Kitch. Out. 2 37.5% / 12.9%
5 Furnace 91.7% / 70.8%
6 Kitchen. Out. 2 45.2% / 16.0%
7 Wash/Dryer 2 98.8% / 73.6%
Total 87.2% / 60.3%

Table 2.2: Percentage of energy correctly classified in [50]

In the study Bayesian Nonparametric Hidden Semi-Markov Models [41] the authors use
an explicit-duration Hierarchical Dirichlet Process Hidden semi Markov Model (HDP-HSMM)
[40]. HDP-HSMM is a natural Bayesian non-parametric extension of the traditional HMM. The
methods introduced also provide new methods for sampling inference in the finite Bayesian
HSMM. The authors use the REDD dataset to test their approach. The authors chose the
top 5 power-drawing devices (refrigerator, lighting, dishwasher, microwave, furnace) across
several houses and identified 18 24-hour segments across 4 houses for which many (but
not always all) of the devices switched on at least once. To which they applied a 20-second
median filter which resulted in each sequence being approximately 5000 samples long. The
authors do not mention if they used the high frequency or low frequency data. However,
since there measurements are across 4 houses, this is only possible for the low freq data
and thus the 5000 samples corresponds to ≈ 4.16 hours. To measure performance the
same metrics are used as in [51]. The results of this approach are illustrated in Table 2.3.
The results display an average accuracy of 47.7% for the least accurate and 81.5% for the
most accurate approach respectively.

House EM-FHMM F-HDP-HMM F-HDP-HSMM
1 46.6% 69.0% 82.1%
2 50.8% 70.7% 84.8%
3 33.3% 67.3% 81.5%
6 55.7% 61.8% 77.7%

Mean 47.7% 67.2% 81.5%

Table 2.3: Percentage of energy correctly classified in [41]

According to the study Non-Intrusive Appliance Load Monitoring (NIALM): Review and
Outlook[102] most researchers agree that in order to reach high accuracy of detection of
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appliances the microscopic and macroscopic features of the electric signal should be used.
In order to capture the microscopic features a minimum rate of 1.2 kHz- 2 kHz is needed.
Comparatively, this paper uses sampled data at 1/3 Hz which illustrates that with a deep
neural network approach, less data can be used to make even more accurate predictions.

2.3 Machine Learning

Machine learning is the science of getting computers to act without being explicitly pro-
grammed. Machine learning consists of the following approaches: Supervised, Unsuper-
vised and Reinforcement learning. Supervised learning is the learning to infer a function
from labeled training data. Unsupervised learning is the learning to infer a function from
unlabeled training data and Reinforcement learning is the learning based based on feed-
back or reward. This thesis implements supervised learning as the REDD dataset includes
labeled appliance data. As the scope of the thesis is to detect appliances, the task of iden-
tifying appliances in houses naturally becomes a supervised classification task. However,
an unsupervised approach can also be taken for future work to predict an appliance’s power
consumption in the near future. In a usual use case unsupervised learning will be imple-
mented when a lot more data is available for unknown appliances, and the task is to try to
label the unknown appliances [58].

Common problem solving tasks where machine learning is used are anomaly detection,
classification, clustering, regression and rule extraction. This thesis treats the problem as a
classification problem as the goal is to predict an appliance in use. These appliances are
treated as classes.

2.3.1 Supervised Learning

The input variable is denoted as input features, while the output variable is denoted as
target. A pair of input features and target variable is called a training set. A validation
set can be taken out of the training set for testing as long as it not used while the model
is training. A validation set is usually 10-20% of the entire data-set. The aim of supervised
learning is to learn a function h : X 7→ Y for a given data-set so that h(x) is an accurate
predictor for the corresponding value of y . The function h is called a hypothesis [71].
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Figure 2.3: Supervised learning

2.3.2 Classification

Classification is a type of task, in which a learning algorithm is tasked to specify which of
the ’n’ categories some input belongs too. The learning algorithm produces a function f :
Rn → {1, ..., k}. The model assigns an input described by a vector x to a category identified
numerically as y , usually a ’1’ for positive identification else ’0’.

2.3.3 Deep Learning

Multiple definitions for Deep Learning can be found. Nonetheless, a holistic summary is that
Deep Learning is a class of machine learning techniques that exploit many layers of non-
linear information processing for supervised or unsupervised feature extraction and transfor-
mation, and for pattern analysis and classification [14]. Deep learning is in the intersections
among the research areas of neural networks, artificial intelligence, graphical modeling, op-
timization, pattern recognition, and signal processing. Deep learning differs from traditional
machine learning approaches such as decision tree [57], bayesian methods [56] etc by aim-
ing to learn feature hierarchies. Automatically learning features at multiple levels of abstrac-
tion allow a system to learn complex functions mapping the input to the output directly from
data, without depending completely on human-crafted features. This is especially important
for higher-level abstractions, which humans often do not know how to specify explicitly in
terms of raw sensory input [6]. The ability to automatically learn powerful features, especially
in the context of this thesis, will become increasingly important as the amount of data and
range of applications continues to grow. The following subsections provide the core concepts
in deep learning.
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Perceptron

Perceptrons were examples of statistical pattern recognition systems and the first artificial
neural networks. This concept was introduced by Rosenblatt [78]. He worked on the model
introduced by Warren McCulloch and Walter Pitts [65] in 1943 where they contended that
neurons with a binary threshold activation function were analogous to first order logic sen-
tences [91]. He was also inspired by the work of Donald Hebb which later became referred
to as Hebbs rule. Hebbs rule states that "When an axon of cell A is near enough to ex-
cite a cell B and repeatedly or persistently takes part in firing it, some growth process or
metabolic change takes place in one or both cells such that A’s efficiency, as one of the cells
firing B, is increased"[29] . Rosenbaltts model of a perceptron was learning in the "Hebbean"
sense, through the weighting of inputs. Figure 2.4 illustrates the mathematical model for the
perceptron and it’s biological inspiration.

Figure 2.4: Biological inspiration for perceptron [90]

In Keras the dense layer [44] implements the operation illustrated in Figure 2.4 where output
= activation(dot(input, kernel) + bias, here the kernel and bias are taken as
default values. The kernel(weights) default value is a tensors with a uniform distribution
from -0.05 to 0.05 [45]. This method of initialization is used in other neural network libraries
such as Tensorflow and Theano and is based on the findings of this research [23]. The
method ensures that weights in a network are neither too small or too large. If the weights
are too small the output signal can reduce further as it passes through each layer until it is
insignificant. If the weights in a network start too large, then the output signal grows as it
passes through each layer, becoming too large to be useful. The bias is an optional value
and is not implemented in the model for this thesis as the a bias unit is just appended to the
start/end of the input and each hidden layer, and isn’t influenced by the values in the previous
layer. The activation function is a parameter which is investigated and reported in the results
section.
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Feed forward

In feed forward networks information flows from the left to the right of the model as in Figure
2.6. The input features x are used to compute the responses of the first layer through an
activation function. These computed values are then fed in to the next hidden layer as inputs
and passed through another activation function till the output layer is reached.

Activation function

The activation function defines the output of a node given an input or set of inputs as illus-
trates in Figure 2.4. The activation function used by McCulloch and Pitts was the threshold
step function. Other activation functions that are widely used are the Sigmoid, Piecewise
Linear, ReLu and Softmax functions, etc. For the purpose of this thesis all activation func-
tions are tested which are provided in Keras. Among the activation functions ReLu and
Softmax are the most popular. ReLu is popular as the function is one of the most widely
used and it has proven to be faster and more efficient for large neural networks due to its
linear nature [83]. The following Table 2.4 illustrates a summary of some available activa-
tion functions in Keras. All the activation functions are available in the source library [46].
These activation functions can be grouped into 3 categories, namely threshold function, lin-
ear activation or non linear activation function. ReLu is an example for a linear activation
function and Sigmoid, Softsign are examples of non-linear activation functions. Non-Linear
activation functions are differentiable, continuous and monotonically increasing. Introducing
non-linearity extends the kinds of functions that we can represent with our neural network.
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Activation Function Equation Figure Range

Rectified linear unit (ReLU) f (x) = max(0, x) [0,1)

Sigmoid f (x) =
1

1 + exp(−x) (0,1)

Softsign f (x) =
x

1 + |x | (-1,1)

Softplus f (x) = ln(1 + exp(x)) (0,∞)

Tanh f (x) =
2

1 + exp(−2x) − 1 (-1,1)

Table 2.4: List of activation functions available in Keras

Loss functions

In neural network terminology an epoch is one forward pass and one backward pass of all
the training examples.

Loss functions, also known as cost functions, are used to measure the degree of fit in the
neural network. One way of measuring the performance of the model is to compute the
mean squared error (MSE) of the model on the test set. MSE is used for linear regression
algorithm [25]. In the case of linear regression the assumption is that the output y ∈ R is
a linear function of the input. The MSE is measured per sample of an epoch and is defined
as

MSE =
1

n

n∑
i=1

(Ŷi − Yi)2

where Ŷi is the prediction vector, Yi is the corresponding output vector and n is the total num-
ber of classes. As an example, in the case of 3 class classification one Ŷi vector will consist
of 3 values corresponding to the 3 classes. The implication of using MSE is that larger errors
are given more importance than smaller ones. There are some disadvantages to this simple
method. Firstly, MSE is sensitive to extreme values. Secondly, Chatfield [7] and Armstrong
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et al.[3] correctly identified that MSE calculates absolute measures and is scale dependent,
so it becomes difficult to make comparisons between different series. Nonetheless, MSE
produces a fast computation for the neural network[55].

Another loss function used for measuring performance in this thesis is the categorical cross-
entropy (CCE). It is the choice for multi-class classification problems and softmax activation
output units [2] [24]. It is used for multi-class classification problems such as for the MNIST
dataset and has been used and provided officially in the Keras examples [77]. MNIST dataset
consists of handwritten digits from 0-9 and the models use CCE for measuring the perfor-
mance of the network for predicting the 10 classes [62].

CCE is provided in the Lasagne library [88] which Keras uses in the backend [63] as:

CCEi = −
∑
j

ti ,j log(pi ,j)

where p is the prediction vector in the range (0,1) due to the softmax activation function used
in the last layer. t is the target vector which is in the same format as that of the p vector. The
index i represents each sample and j represents the number of classes. The CCE is also
sensitive to extreme values but to lesser extent than MSE [76].

Backpropogation

The learning procedure in a neural network determines the internal parameters of the hidden
units based on its knowledge of the inputs and desired outputs. This is achieved by having
a forward pass for each input-output case in the neural network, to compute the activity
levels of all neurons in the network. Then, a backward pass starting at the output neurons to
compute the error derivative, thereby repeatedly adjusting the weights of the connections in
the network so as to minimize a measure of the difference between the actual output vector of
the net and the desired output vector [100]. This concept is referred to as back-propagation
which is a form of gradient descent.

Optimization

Optimizers are used to minimize loss function. Optimization refers to the task of either mini-
mizing or maximizing some function f (x) by altering x . Gradient descent is one of the most
popular algorithms to perform optimization and by far the most common way to optimize
neural networks [79].
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Figure 2.5: Derivatives of function used to find minimum by gradient descent [25]

Keras contains implementations of various algorithms to optimize gradient descent. The
various optimizers available is found here [48]. An illustration of gradient descent is provided
in Figure 2.5.Taking the derivative is therefore useful for minimizing a function because it tells
us how to change x in order to make a small improvement in y.

In this thesis, the best suited optimizer is used for the neural network model. This is achieved
by testing all the optimizers provided in the Keras library and choosing the optimizer that
achieves the lowest error in 20 epochs. This is illustrated in the Appendix in Figure 9.1
where the left subplot illustrates the performance of all the optimizers while the right subplot
illustrates the Adadelta optimizer which reaches the lowest error and highest accuracy in 20
epochs. It is important to note that most optimizers achieved a similar accuracy at the 20th
epoch, however Adadelta performed better and was chosen to model the neural networks.
The highest accuracy is illustrated in Appendix Figure 9.2. A detailed explanation of the
window size is provided in the next section where the problem statement is addressed.

2.4 Multi-Layer Perceptron

A multilayer perceptron (MLP) is a feedforward artificial neural network model that maps sets
of input data onto a set of appropriate outputs. An MLP consists of multiple layers of simple
two-state, sigmoid processing elements (nodes) that interact using weighted connections.
[73]. After an input layer, there are usually a number of intermediate (or hidden) layers
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followed by an output layer on top. All neurons in a layer are fully connected to neurons in
adjacent layers as illustrated in Figure 2.6 .

A standard MLP feedforward network with as few as a single hidden layer and arbitrary
bounded and non constant activation function are found to be universal approximation func-
tions for an arbitrary finite input environment measures, provided sufficiently many hidden
units are available [32]. As concluded in the study, the results do not mean that all activation
functions will perform equally well in specific learning problems. In applications, additional
issues for example, minimal redundancy or computational efficiency, have to be taken into
account.

Figure 2.6: Multilayer perceptron architecture [38]

Advantages

Neural networks do not make any assumption regarding the underlying probability density
functions or other probabilistic information about the pattern classes under consideration in
comparison to other probability based models [54]. Furthermore, a two layer backpropaga-
tion network with sufficient hidden nodes has been proven to be a universal approximator
[33]. Lastly, MLP are fast to implement and require lower CPU utilization when compared to
other Deep Learning approaches (CNN, RNN etc).

Challenges

There are two central challenges being faced when using MLP network. Overfitting and
underfitting. Underfitting occurs when a model is not able to obtain a sufficiently low error
value on the training set. While, overfitting occurs when the gap between the training error
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and test error is too large. In order to deal with these challenges, regularization is used in
the neural network. Regularization is any modification we make to a learning algorithm that
is intended to reduce its generalization error but not its training error.

It is not guaranteed that the training algorithm will be able to learn that function. Even if
the MLP is able to represent the function, learning can fail for a number of reasons.The
optimization algorithm used for training, may not be able to find the value of the parame-
ters that corresponds to the desired function. Another reason is that the training algorithm
might choose the wrong function due to overfitting. Feedforward networks provide a univer-
sal system for representing functions [25], in the sense that, given a function, there exists a
feedforward network that approximates the function. The no free lunch theorem [101] states
that there is no universal procedure for examining a training set of specific examples and
choosing a function that will generalize to points not in the training set. Hence, we approach
this problem by building a set of preferences into the learning algorithm. When these pref-
erences are aligned with the learning problems, it performs better. The end goal is to try to
reduce the training error and make minimize the gap between training and test error.

The ability to perform well on previously unobserved inputs is called generalization [25].
Steps taken to better generalization by reducing challenges of underfitting and overfitting are
dropout for MLP and CNN, maxpool for CNN.

2.5 Convolutional Neural Network

Convolution neural networks (CNNs) are a type of feed-forward artificial neural network
(ANN). Convolutional networks take inspiration from biological processes are directly in-
spired by the classic notions of simple cells and complex cells in visual neuroscience [60].
They have wide applications in image and video recognition, recommendation systems [97]
natural language processing [9].

Compared to MLP, CNN leverage three important ideas that can help to improve the machine
learning system. Namely, sparse interactions, parameter sharing and equivariant rep-
resentations [25]. Sparse interaction help to store fewer parameters which reduces the
memory requirements of the model and improves its statistical efficiency. This also means
that computing the output requires fewer operations. This is achieved by making the kernel
(matrix convolved with) smaller than the input. Parameter sharing is useful because rather
than learning a separate set of parameters for every location, only one set is learned. This
does not effect the run time but it further reduces the storage requirements of the model. And
equivarence is a form of parameter sharing, where if the input changes, the output changes
in the same way: f (g(x)) = g(f (x)). This is useful as for when it is known that that some
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function of a small number of readings in data is useful when applied to multiple input loca-
tions. For example, The same pattern or cycle of an appliance appears quite frequently in
the data series, so it is practical to share parameters across the entire dataset.

The convolution operation in 1D is defined as:

f (x) ∗ g(x) =
∫ ∞
−∞

f (τ) · g(x − τ)dτ

In essence, the convolution of f (x) with g(x) produces a third function. The operation con-
sists of one of the original functions, giving the integral of the pointwise multiplication of the
two functions as a function of the amount that one of the original functions is translated. The
forward pass of the convolutional layer can in each depth slice be computed as a convolution
of the neuron’s weights with the input volume. Hence the name: Convolutional Layer [1].

For this thesis, 2D convolution is applied as it is just extension of previous 1D convolution
by convolving both horizontal and vertical directions in 2 dimensional spatial domain. Su-
pervised learning is a high-dimensional interpolation problem [64]. Hence, representing the
data set in 2D is better suited for the convolutional neural architecture.

The key elements in the convolution neural architecture are the following: convolutional
layer, pooling layer, fully-Connected Layer. Figure 2.7 illustrates the components of a
typical convolutional neural network.

The convolutional layer will compute the output of neurons that are connected to local
regions in the input, each computing a dot product between their weights and a small region
they are connected to in the input volume. In Keras, the convolutional layer is referenced as
a Conv2D and this layer creates a convolution kernel that is convolved with the layer input to
produce a tensor of outputs [47].

The pooling layer layer will perform a down sampling operation along the spatial dimensions
(width, height). This allows to help with the problem of over-fitting by providing an abstracted
form of the representation and also reduces the computational cost by reducing the number
of parameters to learn.

The fully connected layer will compute the class scores. As with ordinary Neural Networks
and as the name implies, each neuron in this layer will be connected to all the numbers in
the previous volume

CNN are among the most popular neural network that have been implemented in the Deep
Learning field. Hence, significant work has been done related to advance the research in
CNN. The following papers have contributed to the ongoing development of CNN.

Gradient Based Learning Applied to Document Recognition [61]: One of the earliest
papers on CNN. The paper discovered that CNN were the most successful approach for
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Figure 2.7: Architecture of typical CNN [25]

identifying hand written digits at the time compared to Linear classifier, K-nearest neighbour,
Multi-layer perceptron, etc. The paper suggested that simultaneous automatic learning of
segmentation and recognition can be achieved with gradient based learning methods. The
paper states that CNN have been shown to eliminate the need for hand crafted feature ex-
traction. Thereby, providing a promising tool for improving the previous approaches of signal
processing to energy disaggregation. Most importantly, the paper introduced LeNet-5 archi-
tecture for CNN which is still widely used and is illustrated in Figure 2.8. Interestingly, the
paper successfully predicted in 1998 that as training data gets plentiful, and computers get
faster, our understanding of learning algorithms improve, recognition systems will rely more
and more on learning, and their performance will improve. With the advancement of cheaper
GPUs the trend of Deep Learning has significantly increase in the past years.

Imagenet classification with deep convolutional neural networks [52]: The paper uti-
lized CNN for an image classification task one of the most popular recognition contests [37].
ImageNet contains one of the largest visual databases (ten million URLs of images) as of
today. The authors classified 1.2 million images into 1000 different classes and achieved
top-1 and top-5 error rates of 37.5% and 17.0%.
Important discoveries from this paper include: Introduction of dropout layer as a means for
regularization in a neural network. Since its introduction dropout is widely used in the CNN
architecture and has been used in this thesis. Furthermore, the authors trained their network
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Figure 2.8: Architecture of CNN used in [61]

with cross-GPU parallelization. As of today cross-GPU parallelization is almost a standard
approach when handling Big Data. The architecture for the CNN is illustrated in Figure 2.9

Figure 2.9: Architecture of CNN used in [52]

Very deep convolutional networks for large-scale image recognition [84]: In this paper
the authors investigate the effect of the CNN depth on its accuracy in the large-scale image
recognition setting. They use an architecture with very small (3x3) convolution filters, which
illustrated a significant improvement on the prior-art configurations can be achieved by push-
ing the depth to 16-19 weight layers. This discovery helped in the decision of choosing 3x3
sized kernel size for the convolutional layer in this thesis. With this approach they secured
the first and the second places in the localization and classification tracks respectively in the
ImageNet Challenge 2014 submission.

As of today, CNN are under active development by major research organization for different
applications. A few important recent developments are the inception v-4 architecture by
Google [94] and Deep Residual Networks introduced by Microsoft research [28].
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Advantages

In a CNN, convolution layers play the role of feature extractor. Convolutional layers are able
to extract the local features because they restrict the receptive fields of the hidden layers
to be local. This allows the network to first create good representations of small parts of
the input, then assemble representations of larger areas from them [53]. The concepts of
sparse interactions, equivarant representations and parameter sharing as explained in the
introduction help to improve the accuracy of the model. Trying to get a similar result from
MLP would require a larger amount of training because the number of parameters will be
much higher as CNN [80], this will lead to a larger effort to regularize the network as the
network will be more prone to overfitt/underfitt.

Challenges

CNN face the same challenges of underfitting and overfitting as mentioned in the MLP chal-
lenge background. This is further discussed in the discussion chapter. CNN also require a
high computational cost as they are slower to train when compared to MLP. For reference
one MLP test for 8/16/8 neurons per layer architecture for 45 min window architecture took
≈15 min while the convolutional layer took ≈1 hr when trained on a 16 GB memory and 2.7
GHz Intel Core i7 processor computer. This can be an issue when training on more data in
the future. However, further systematic testing of various architectures for classification on
larger datasets can be done quickly by using Graphics Processing Units (GPUs) [8]. This will
significantly lower the training time.
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3.1 Dataset

As energy disaggregation is a relatively new research field, there is a scarcity of publicly
available data. An open source data set was chosen for this thesis as this would allow
for a comparison of the obtained results with the previous findings. Almost all of the data
sets have been made public from 2010 onwards. Among the more popular data sets are
Reference Energy Disaggregation Dataset (REDD) [51], UK-Dale [43] and GREEND [68].
As new data sets are being shared it is getting harder to track all of them. This collaborative
page helps to share information which is regularly updated [99].

3.1.1 Overview

The data set used for this thesis is the REDD data set and is selected for investigation as the
intended purpose for it is to develop disaggregation methods, which can predict, from only
the whole-home signal, which devices are being used. It is the most popular data set used
currently. The data contains power consumption from real homes, for the whole house as
well as for each individual circuit in the house.

The structure of the obtained data set is illustrated in Figure 3.1 and the overview of the data
set is illustrated in Table 3.1.
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Figure 3.1: REDD data set structure

The "REDD_high_freq" folder contains the voltage and current readings of the appliances
for 2 houses at a higher frequency of 15 kHz (≈ 66 µsec). The "REDD_low_freq" folder
contains the power readings of the appliances for all houses at a sampling rate of 3 sec.
"REDD_low_freq" is selected for training and testing as it contains more house and appli-
ance data.

The sub folders of "REDD_low_freq" represent the houses that the data was collected
from. Each house contains all the channels (appliances) measured for collecting data. The
"label.dat" file in each "House_x" folder maps the names of the "channel.dat" files
with their associated appliance name.

In this thesis only the power readings of the appliances are used due to the inconsistencies
in the raw data where there are multiple gaps in the time stamps. These inconsistencies are
addressed in the next section (Analysis). Another reason for not using time readings for the
model is that although time of day can help to indicate which appliance is being used, any
appliance can be used at non typical times for non typical durations.

Figure 3.2 illustrates the data of the power consumption of a dishwasher from House 1.
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House Appliance Circuits* Samples Appliances**

1 18 745,878
oven, refrigerator, dishwasher, kitchen outlets,

lighting, washer dryer, microwave, bathroom gfi,
electric heat, stove

2 9 318,759
kitchen outlets, lighting, stove, microwave,

refrigerator, dishwasher, disposal

3 20 404,107

outlets unknown, lighting, electronics, refrigerator,
disposal, dishwasher, furnace, washer dryer,

microwave, smoke alarms, bathroom gfi,
kitchen outlets

4 18 570,363

lighting, furnace, kitchen outlets, outlets unknown,
washer dryer, stove, air conditioning,

miscellaneous, smoke alarms, kitchen outlets,
dishwasher, bathroom gfi

5 24 80,417

microwave, lighting, outlets unknown, furnace,
washer dryer, subpanel, electric heat,

bathroom gfi, refrigerator, dishwasher, disposal,
electronics, kitchen outlets, outdoor outlets

6 15 376,968

kitchen outlets, washer dryer, stove,
electronics, bathroom gfi, refrigerator, dishwasher,

outlets unknown, electric heat, lighting,
air conditioning

* 2 circuits excluded for each house which measure mains supply (not appliances)
** Note that multiple appliance circuit measurements are taken for the same type of
appliance (e.g 3 lighting appliance are measured in house 1)

Table 3.1: REDD data description
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Figure 3.2: Power consumption of dishwasher from house 1

Figure 3.3 illustrates one cycle of dishwasher consumption from house 1. The period
stretches from 10,000 to 12,000 samples which corresponds to ≈ 1.67 hours.

Figure 3.3: A complete cycle of dishwasher consumption from house 1



3 Concepts 35

3.1.2 Analysis

Although the data set is claimed to be sampled every 3 sec for "REDD_low_freq", not all the
readings are sampled at equal intervals. As this has the potential to effect the accuracy of the
model, an analysis is done on the collected data for each house. Another study comparing
data sets found these gaps for the 3 houses that were investigated [5].

House
number

Mean sample
interval time [sec]

Standard deviation of
sample interval time

1 4.2 272.7
2 9.4 3168.3
3 9.6 2649.4
4 7.3 2307.6
5 47.1 9769.1
6 5.3 914.7

Table 3.2: Analysis of sampling period of 3s in "REDD_low_freq" data

Table 3.2 in Appendix-A includes the number of samples that are taken at greater than 3s
interval. These values are calculated for each appliance. Using these values the following
Table 3.2 was obtained.

Figure 3.4 illustrates the number of samples measured at greater intervals than 3 s in the 6
houses for a dishwasher. Appendix-A contains the figures for lighting in 8.1 and washer dryer
in 8.2 respectively. From these figures, it is illustrated that house 6 has the most accurate
sampling of data as it has the lowest number of measurement samples relative to the total
number of samples across the remaining houses.
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Figure 3.4: Measurement samples from dishwasher

There are evident inconsistencies in the data with the largest being for house 5, where there
are samples recorded after 6 days instead of the periodic 3 s. This inconsistency occurs at
UTC time stamp of 1306977625 where the next recorded sample is at 1307512396 corre-
sponding to the 6 day delay. Furthermore, the data for all the 6 houses is not recorded at
equal 3 s intervals. This is illustrated in Table 8.2 where the number of recorded samples is
given for each house with the corresponding number of readings that are sampled at an in-
terval greater than 3 s. Note that a house in the REDD data set can have multiple appliances
of the same type. For instance, House 1 has 3 measurements for lighting and 3 washer
dryers.

There is no discussion about this missing data from the authors. Nevertheless, a number
of reasons can cause the large standard deviation and higher mean value recordings. For
instance, in Figure 3.5 the hardware and software setup for the collection of the data is
provided. A fault in the recording device or in sending the data from the router to the server
could result in missing or faulty data.



3 Concepts 37

Figure 3.5: Hardware and software setup for REDD dataset [51]

The authors of REDD use commercial devices for recording the data developed by Enmetric.
However, they do not specify which device was used for monitoring the power consumption
of which appliance. It is important to declare the setup as certain devices are not suitable
for measuring certain appliances. As an example, a Power Port device from Enmetric [93]
can handle a maximum power load of 1800 W. Appliances in the REDD data set such as
refrigerators, lighting etc consume more power than this device can handle. In such cases
the data collected could be affected.

3.1.3 Windowing Data

This method of windowing data [15] allows the approach to become a classical supervised
learning problem. For neural networks, there are two main ways of incorporating context
into sequence processing tasks: collect the inputs into overlapping time-windows, and treat
the task as spatial; or use recurrent connections to model the flow of time directly [26]. In
this thesis recurrent networks are not implemented due to the limited time, but are promising
networks for future work. A discussion for the potential in using these networks is provided
in the conclusion chapter. Hence, by windowing one constructs a window classifier that
maps an input window of length x into an individual output value y . The window sizes
investigated in this thesis are 45 min, 2 hours, 1 day and 3 days as illustrated in Figure 3.6
for a lighting appliance from House 1. These values are empirically derived as window sizes
smaller than 45 min have to less data for each x input (<900 samples for each input). This
would lead to a case where the behaviour of the power consumption of an appliance will no
longer be learned as there are too few samples and lead to a rule based system [96]. The
disadvantage of a rule based system is that when introducing new knowledge to solve some
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specific problem (for example adding a new rule), one might introduce contradictions with the
previous rules [13]. Another reason for choosing the window sizes is, that the time windows
when represented as samples, are perfect squares and allow for equal dimension 2D matrix
representation N X N of the input data for the convolutional neural network. Hence, making
it easier to chose the filter size, kernel etc. As an example 45 min window corresponds to
900 samples (as each sample is 3 sec) and can be represented as a 30 X 30 input vector
for the convolutional layer. Hence, the raw appliance data is split into the 5 window intervals
as part of the data pre-processing step. These values correspond to the sample sizes of
the split data which are: 900 (45 min), 2500 (2 hour), 9604 (8 hours), 28900 (1 day) and
86436 (3 days) respectively. Furthermore, the interval from 45 min - 3 days offers a realistic
implementation of the approach for use cases which involve faster classification. This is
further addressed in the conclusion chapter.
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Figure 3.6: Window size visualization for lighting appliance from House 1

3.1.4 Data preprocessing

"REDD_low_freq" is used for the analysis in this thesis. An overview of "REDD_low_freq"
can be found in Figure 3.1. This subset was selected as "REDD_low_freq" only contains the
data of power mains for 2 houses (House 3 and 5), and therefore does not have appliance
level data. Hence, using "REDD_low_freq" enables access to 6 houses for training and
testing. Furthermore, using data sampled at a lower frequency illustrates the generalization
ability of using deep neural networks.
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The raw data from "REDD_low_freq" is illustrated in Figure 3.7.

Figure 3.7: Raw data from dishwasher from House 1

Each appliance file contains a UTC timestamps (as integers) and power readings which
are the recorded apparent power of the circuit. For training the neural network the power
readings are used as an input into a dense layer for MLP approach and convolutional layer
for the convolutional approach. The time readings are not used because of the missing
time stamps as discussed in the Dataset subsection 3.1. The following algorithm illustrates
how the data was processed to make new files which only contained power reading values
Algorithm:1.

Algorithm 1: Pre-Processing REDD raw data

for House 1 to 6 do
for Appliances 1 to 3 do

Open channel_x.dat file;
Select power reading column;
Save power reading column to new_channel_x.dat file;
Close channel_x.dat file;

end
end

Implementation Environment

Python is used for processing the raw data. A number of reasons led to using python for
processing the data. It is popular among data scientists as many popular machine learning



3 Concepts 41

libraries are written in Python e.g (Keras, Tensorflow, sckit-learn, Theano etc). It provides
easy data visualization and analysis framework. It is easy to setup (if you have a Linux
distribution it is already installed).

The libraries relevant for processing the data are Pandas [66] which is a data structure and
analyses tool, Matplotlib [36] which is used as a plotting library and Numpy [89] which pro-
vides powerful N-dimensional array objects to perform linear algebra.

The framework used in this thesis is Keras. Keras is an open source neural network library
written in Python. It is capable of running on top of Deeplearning4j, Tensorflow, CNTK or
Theano. It is designed to enable fast experimentation with deep neural networks [87]. Keras
was chosen as the framework in this thesis as it enables for faster implementation of models
and due to its higher abstraction better human readability.

In Keras a sequential model is used to create the architecture for MLP and CNN neural
networks. A sequential model is a linear stack of layers [49]. This model needs to know what
input shape it should expect. For this reason, the first layer in a sequential model needs to
receive information about its input shape. For MLP and CNN architectures the input data
into a Keras sequential model is a list of Numpy arrays. The difference is that input for MLP
model is 1D whereas input for a 2D convolutional layer is 2D. Keras also includes a 1D and
3D convolutional layer [47]. 1D convolutional layers have been used for audio signals and
2D convolutional layers have been used for image processing and speech processing [59],
while 3D convolutional layers have been used for real time object recognition [39].

The windowed approach splits the consumption profile of an appliance in to smaller parts as
input to the neural network. Splitting the data was achieved by creating a method that took a
defined size of samples for each file. The code for this method has been provided in the CD
as explained in the Appendix.

3.2 Appliances Detected

The appliances chosen for the training of the NN models are lighting, dishwasher, washer
dryer and unknown appliances. These appliances are chosen as they are the only common
appliances among all 6 houses in the REDD dataset. This allows for the neural network
to have more data to train and predict on, and thus increases the reliability of the results.
This also allows for a prediction of the mentioned 3 common appliances out of unknown
appliance. Hence, allowing for a more realistic portrayal of a real life scenario. An overview
of this data is provided in Table 3.5 and a list of all appliances is provided in the appendix.
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The unknown outlets are readings of appliances in the houses for which there is no label.
The signal characteristic differs for each house reading. This is illustrated in Figure 3.8 where
the signal of 4 channels is illustrated from the 9 total channels (3.5).

Figure 3.8: Outlets unknown appliance readings for 3 day window size

3.3 Test Structure

The classification accuracy of a model depends on the choice of model and its architecture.
The depth of the neural network and well as the number of neurons play a critical role in the
learning of the models. Hence these parameters are investigated in this thesis. It is difficult
to select the optimum number of layer for a nueral network. There are methods such as
Akaike’s Information Criterion to find the number of hidden layers in the NN architecture [69]
however it is specific to the data being used and could result in the model not training [74].
Furthermore, the REDD dataset consists of a smaller amount of data when compared to
traditional datasets, hence requiring fewer amounts of neurons and layers to train the neural
networks.
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The data consists of all the samples for each common appliance in all houses as illustrated
in the Table 3.3. In order to test the performance of the neural network this data is split into
training and testing sets. The test set is 10% of the respective windowed data as illustrates
in Table 3.4. Note that data cannot be split in the exact specified window size as there are
extra values. In order to keep the specified window size these extra values are discarded.
This becomes more evident as the window size increases, a larger proportion of extra values
is discarded.

A number of appliances of the same class are expected to have similar power consump-
tion. However, a large variance in power consumption characteristics is present in the
"REDD_low_freq" dataset. Figure 3.9 illustrates the differing characteristic in the power
consumption of 3 lighting and washer dryer appliances. Note that as there is only one dish-
washer appliance reading per house in Table 3.3. In Figure 3.9 the variation of peak power
consumption readings for lighting is 1200 W, 50 W and 400 W respectively. While, the vari-
ation of peak power consumption readings for washer dryer is 4900 W, 20 W and 3200 W
respectively. A typical dishwasher consumes 2790W of power [72]. Therefore, a variation of
1000 W is significant as the power consumption is no longer typical.

Hence, initial tests aimed to classify appliances without the inclusion of unknown appliances
in the training data in order to see how well the model can differentiate known appliances.
Consequently, unknown appliance data is added to the training data set and tested. This
approach allows for a realistic portrayal of classification.
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Figure 3.9: Differing Power Consumption of Lighting and Washer Dryer appliances

Table 3.3 provides an overview of the common appliance data for the initial test which do
not include unknown appliances. Table 3.4 provides an overview of the corresponding train-
ing/testing data generated from the total number of samples obtained from Table 3.3.

Common Appliances
in 6 Houses

Total no. of
Appliances

Total no. of
Samples

Dishwasher 6 2,496,492
Washer Dryer 10 4,472,772

Lighting 19 7,067,070
Total 35 14,036,334

Table 3.3: Overview of common Appliance Data
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Window size Training samples Testing samples
45 minutes 12,631,140 1,403,460

2 hours 12,629,250 1,403,250
8 hours 12,611,012 1,401,222
1 day 12,588,840 1,398,760
3 days 12,446,784 1,382,976

Table 3.4: Overview of Training and Testing Data for common Appliances

Table 3.5 provides an overview of the common appliance data with the inclusion of unknown
appliances. Table 3.6 provides an overview of the corresponding training/testing data gener-
ated from the total number of samples obtained from Table 3.5.

Common Appliances
in 6 Houses

Total no. of
Appliances

Total no. of
Samples

Dishwasher 6 2,496,492
Washer Dryer 10 4,472,772

Lighting 19 7,067,070
Unknown Outlets 9 2,777,871

Total 46 16,814,205

Table 3.5: Overview of common Appliance Data with unknown appliances

Window size Training samples Testing samples
45 minutes 15,130,800 1,681,200

2 hours 15,129,000 1,681,000
8 hours 15,109,012 1,678,779
1 day 15,085,800 1,676,200
3 days 14,936,140 1,659,571

Table 3.6: Overview of Training and Testing Data for common and unknown appliances

The data in each set is independent from each other, and is identically distributed, drawn
from the same probability distribution as each other. This is achieved using the method of
splitting the original data into a training and test data set provided in the sckit-learn [81]
library.
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3.4 Design Flow

This thesis will investigate the different types of Deep Learning neural networks which can
be used for modeling data and will determine two which fit best. The first is the Multi-Layer
Perceptron (MLP) and the second is Convolutional Neural Network (CNN). MLP provides a
baseline approach as it is the simplest of deep neural networks. CNN aims to increase the
accuracy of the baseline approach. The architectures, activation functions and optimizers
of both neural networks are investigated with the aim of improving accurate modeling and
providing optimal configuration for classification. The accuracy is measured using two loss
functions- Mean Squared Error and Categorical Cross-Entropy. The design flow of the the-
sis is illustrated in Figure 3.10. It illustrates the process of classifying and predicting the
appliances from the early stage of acquiring the data.

Figure 3.10: Overview of design flow



4 Implementation of Multi-Layer
Perceptron

The following chapter discusses the input, parameters and architecture required for imple-
mentation of MLP model.

4.1 Implementation Design

In the example provided in Figure 4.1 a representation of the flow of data into the model
is visualized. Note that the illustration is for known appliances tests case, for the unknown
appliances there will simply be another column added with the depiction of the windowed
signal. Additional appliances will also be added in a similar fashion. The windowed data
from Dishwasher, Lighting and Washer Dryer is fed into the MLP neural network model for
the baseline approach referring to Table 3.3 and Table 3.4. The figure demonstrates the
design flow for the configuration of a 32/64 neurons per layer architecture. There are 4
more architectures investigated. Namely, 8 neurons per layer, 8/16 neurons per layer, 16/32
neurons per layer and 8/16/8 neurons per layer. The data windowed data of size n which can
be 45 min, 2 hours, 8 hours, 1 day or 3 days, is inputted into an Numpy array. In the simplest
case (when size of window = no. of samples and there is only one reading per appliance)
This array is then an array of 3 arrays corresponding to dishwasher, lightning and washer
dryer. This array of arrays is then fed into the sequential model as depicted in the model
section of the illustration.

Tests are then run for different window sizes (45 min, 2 hr, 8 hr, 1 day and 3 days) while using
one architecture, in the case of the illustration 32/64 neurons per layer. Dropout is used as
a method for regularization. The corresponding fraction (0.2) represents the input units to
drop. For each layer their is an activation function which is softsign for the hidden layers. The
activation function was empirically tested out of the available activation function in the Keras
library as it reduced the error function most compared to the others. In the last layer (output
layer) a softmax activation function is used. This was chosen as it will output a separate
probability for each of the appliance classes, and the probabilities will all add up to 1 [95].



4 Implementation of Multi-Layer Perceptron 48

Figure 4.1: Basic design architecture for MLP
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Two loss functions (MSE and CE) are used to compare the validation accuracy for better
reliability of the obtained result. The model as implemented in Keras is provided in the
attached code.

4.2 Results

Neurons per
Layer

45 min V.A [%] 2 hr V.A [%] 8 hr V.A [%] 1 day V.A [%] 3 days V.A [%]

MSE CE MSE CE MSE CE MSE CE MSE CE

8 75.11 75.66 77.22 77.58 76.48 76.03 73.47 70.07 70.83 64.58

8/16 76.15 75.90 78.71 76.75 73.97 70.32 67.35 71.43 66.67 68.75

16/32 76.11 76.39 77.46 78.83 73.97 73.74 71.43 70.75 68.75 60.42

32/64 76.43 76.03 77.64 76.16 74.89 71.00 70.75 71.43 68.75 68.75

8/16/8 76.05 75.38 77.94 76.99 78.54 80.37 75.51 75.51 68.75 68.75

Table 4.1: The effect of window size and loss function on validation accuracy for MLP
architecture

The effect window size has on the validation accuracy is quite evident across the different
architectures. The accuracy peaks at the 2 hr window and drops for the following window
sizes. It is important to note that the model architecture across the neurons per layer remains
the same for the different window sizes. Hence the difference is the amount of data the
model takes for each input array. A 3 day time window will result in the input having 86,436
samples, while a 45 window will have 900 samples for each input. Hence, in such a case
8 neurons are note sufficient to model the amount of data as illustrated by the reduced
validation accuracy.

The validation accuracy when MSE and CE error are used as loss functions has the smallest
difference for 45 min and 2 hr time windows. The largest difference in the validation accuracy
between MSE and CE for 45 min window size is 0.67%, 2 hr is 1.96%, 8 hr is 3.89%, 1 day is
4.08% and 3 day is 8.33%. Hence, both loss functions have a closer validation accuracy for
smaller window size, and higher discrepancy for larger window size. Thus, smaller window
size provide a more reliable result.

The higher validation accuracies are represented by the 8/16/8 neurons per layer architec-
ture. The highest accuracy achieved is 80.37% for 8/16/8 neurons per layer and 8 hr window
size, while the lowest accuracy is 60.42% for 16/32 neurons per layer and 3 days window
size. Furthermore, the highest accuracy for each neurons per layer configuration have been
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made bold in Table 4.1, which illustrate a trend of increasing accuracy with the depth of the
neural network.

Neurons per
Layer

45 min V.A [%] 2 hr V.A [%] 8 hr V.A [%] 1 day V.A [%] 3 days V.A [%]

MSE CE MSE CE MSE CE MSE CE MSE CE

8 75.48 75.30 76.37 76.03 72.95 76.76 72.41 77.01 65.00 60.00

8/16 76.46 75.37 76.28 69.84 64.19 72.38 74.71 70.11 60.00 58.33

16/32 75.50 74.80 75.78 75.88 75.05 70.29 72.99 67.24 61.67 58.33

32/64 76.55 74.88 75.98 75.19 76.38 69.14 74.14 75.29 60.00 56.67

8/16/8 76.28 74.82 76.13 76.37 77.14 74.48 71.84 75.86 68.33 65.00

Table 4.2: The effect of window size and loss function on validation accuracy for MLP archi-
tecture with unknown appliances

With the inclusion of unknown appliance data the higher accuracies are obtained for window
sizes smaller than 1 day.

The validation accuracy when MSE and CE error are used as loss functions has the smallest
difference for 45 min and 2 hr time windows. The largest difference in the validation accuracy
between MSE and CE for 45 min window size is 1.46%, 2 hr is 6.44%, 8 hr is 8.19%, 1 day is
5.75% and 3 day is 5.00%. Hence, both loss functions have a closer validation accuracy for
smallest window size, and higher discrepancy for larger window sizes. Thus, smaller window
size provides a more reliable result.

The highest accuracy achieved is 77.14% for 8/16/8 neurons per layer and 8 hr window
size, while the lowest accuracy is 60.00% for 8 neurons per layer and 3 days window size.
Furthermore, the highest accuracy for each neurons per layer configuration have been made
bold in Table 4.2.



5 Implementation of Convolutional
Neural Network

The following chapter discusses the input, parameters and architecture required for imple-
mentation of CNN model.

5.1 Implementation Design

In the example provided in Figure 5.1 a representation of the flow of data into the model
is visualized. Note that the illustration is for known appliances tests case, for the unknown
appliances there will simply be another column added with the depiction of the windowed
signal. Additional appliances will also be added in a similar fashion. The windowed data
from Dishwasher, Lighting and Washer Dryer is fed into the CNN neural network model for
the baseline approach referring to Table 3.5 and Table 3.6. The figure demonstrates the
design flow for the configuration of a 32/64 filters per layer architecture. There are 4 more
architectures investigated. Namely, 8 filters per layer, 8/16 filters per layer, 16/32 filters per
layer and 8/16/8 filters per layer. The data windowed data of size n which can be 45 min, 2
hours, 8 hours, 1 day or 3 days, is inputted into an Numpy array. In the simplest case (when
size of window = no. of samples and there is only one reading per appliance) This array
is then an array of 3 arrays corresponding to dishwasher, lightning and washer dryer. This
array of arrays is then fed into the sequential model as depicted in the model section of the
illustration.

Tests are then run for different window sizes (45 min, 2hr, 8 hr, 1 day and 3 days) while using
one architecture, in the case of the illustration 32/64 filters per layer. In the convolutional layer
the filters are the number of neurons[47] and are illustrated as 32 and 64 for the 2 layers.
Kernel size as explained in the introduction is 3X3. Using a small kernel size captures fine
details and is regularly used for convolutional models [77][52]. The pool size is 2X2 and is
max pooling is performed after each convolutional layer. Dropout is used as a method for
regularization. The corresponding fraction (0.2) represents the input units to drop. For each
layer their is an activation function which is softsign for the hidden layers. The activation
function was empirically tested out of the available activation function in the Keras library as
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Figure 5.1: Basic design architecture for CNN
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it reduced the error function most compared to the others. In the last layer (output layer) a
softmax activation function is used. This was chosen as it will output a separate probability
for each of the appliance classes, and the probabilities will all add up to 1 [95].

Two loss functions (MSE and CE) are used to compare the validation accuracy for better
reliability of the obtained result. The model as implemented in Keras is provided in the
attached code.

5.2 Results

Filters per
Layer

45 min V.A [%] 2 hr V.A [%] 8 hr V.A [%] 1 day V.A [%] 3 days V.A [%]

MSE CE MSE CE MSE CE MSE CE MSE CE

8 79.40 75.73 78.00 76.63 84.25 82.42 86.39 83.67 83.33 79.17

8/16 80.47 80.06 82.74 81.73 85.16 86.76 85.71 83.67 89.58 91.67

16/32 79.25 80.19 81.26 81.91 83.79 85.84 87.07 84.35 87.50 87.50

32/64 79.89 79.32 78.88 79.36 84.02 84.25 83.67 85.71 87.50 87.50

8/16/8 81.35 81.43 85.41 83.51 89.73 88.81 91.16 91.84 95.83 93.75

Table 5.1: The effect of window size and loss function on validation accuracy for CNN
architecture

The effect window size has on the validation accuracy is quite evident across the different
architectures. The accuracy peaks at the 3 day window and drops for the smaller window
sizes.

The validation accuracy when MSE and CE error are used as loss functions has the small-
est difference for 45 min and 2 hr time windows. The difference in the validation accuracy
between MSE and CE for 45 min window size is 3.67%, 2hr is 1.37%, 8hr is 2.05%, 1 day is
2.72% and 3 day is 4.16%. Hence, both loss functions have a closer validation accuracy for
2 hr and 8 hr window size, and higher discrepancy for 45min and 3 day window size.

The highest accuracy achieved is 95.83% for 8/16/8 filters per layer and 3 day window size,
while the lowest accuracy is 75.73% for 8 filters per layer and 45 min window size. Fur-
thermore, the highest accuracy for each filters per layer configuration have been made bold
in Table 5.1. As illustrated the validation accuracies for all the filters per layer architecture
increase for larger window sizes.
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Filters per
Layer

45 min V.A [%] 2 hr V.A [%] 8 hr V.A [%] 1 day V.A [%] 3 days V.A [%]

MSE CE MSE CE MSE CE MSE CE MSE CE

8 77.05 76.00 78.01 76.92 79.81 79.62 75.29 78.16 63.33 60.00

8/16 79.28 77.84 80.83 79.69 84.76 83.24 79.31 79.89 63.33 60.00

16/32 78.71 77.94 82.22 80.04 84.38 82.29 78.74 81.03 63.33 60.00

32/64 79.28 79.57 81.33 80.14 83.24 83.24 76.44 77.59 60.00 60.00

8/16/8 78.93 77.77 81.08 78.85 83.62 85.90 90.00 84.48 85.00 76.67

Table 5.2: The effect of window size and loss function on validation accuracy for CNN archi-
tecture with unknown appliances

With the inclusion of unknown appliance data the higher accuracies are obtained for 8 hr
window sizes.

The validation accuracy when MSE and CE error are used as loss functions has the smallest
difference for 45 min, 2 hr and 8 hr time windows. The largest difference in the validation
accuracy between MSE and CE for 45 min window size is 1.44%, 2 hr is 2.23%, 8 hr is 2.28%,
1 day is 5.52% and 3 day is 8.33%. Hence, both loss functions have a closer validation
accuracy for smaller window size, and higher discrepancy for larger window sizes.

The highest accuracy achieved is 90.00% for 8/16/8 filters per layer and 1 day window size,
while the lowest accuracy is 60.00% for 8 filters per layer and 3 days window size. Further-
more, the highest accuracy for each filters per layer configuration have been bolded in Table
5.2.



6 Evaluation

In this thesis MLP and CNN neural networks are used for energy disaggregation. This is
currently the first supervised classification approach used across all 6 houses on the REDD
dataset to the authors knowledge. The results reveal that both MLP and CNN neural network
are able to accurately classify household appliances. CNN network performed much better
than MLP network.

Window size impacts the accuracy of a Neural Network

Using time-windows has a major drawback. The optimal window size is task dependent.
When it is too small the neural network will neglect important information, and too large it will
overfit on the training data [26]. In order to solve this issue 5 window sizes were investigated
in this thesis which covered small to large window sizes for the REDD dataset. This method
allows for the availability of a wide range of window sizes from which the challenges of over-
fitting and underfitting can be resolved. This is visually illustrated in the Figure 6.1 where a
typical behaviour of an overfitt, underfitt and optimal fit is illustrated.

,

Figure 6.1: Behaviour of overfitt, underfitt and optimal capacity [25]
,

The behaviour of overfitting is noticed for the 3 days window size for both neural networks
for the tested architectures. This behaviour is illustrated when comparing the Figure 6.1 to
the obtained Figure 6.2 for 8 neurons per layer architecture and 3 day window size using
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MLP. Furthermore, this behaviour is also noticed, albeit less pronounced, in the CNN results
Figure 6.3. The gap between the training and test error increased over epochs for both
MLP and CNN, while the training error decreased. Hence, this has an effect on the results
(validation accuracy) for classification and is also reflected in the respective results tables for
MLP Table 4.2 and CNN Table 5.2 where 3 day window size performs worst for both neural
networks.

,

Figure 6.2: Validation loss (error) of MLP over epochs for 3 day window size and 8 neurons
per layer architecture

,

,

Figure 6.3: Validation loss (error) of CNN over epochs for 3 day window size and 8 neurons
per layer architecture

,

Referencing the results for both the MLP Table 4.2 and CNN Table 5.2 it is illustrated that
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MLP performs better for shorter window sizes (45 min and 2 hr) while CNN performs better
for larger window sizes (8 hr and 1 day). This is also noticed in the results table for the
appliances without unknown appliances in MLP 4.1 and CNN 4.1. The major difference
between the two neural networks is how they transform the data as input. When using a
2D convolutional layer the data is reshaped (e.g 900 samples to 30 X 30 samples). This
reduced the number of samples per dimension. According to this research findings [34]
obtaining a higher level representation (from 1D to 2D) of sentence structure allowed them
to capture the rich matching pattern in the structure, thus increasing the accuracy of their
model. Nevertheless, for future work 1D convolutional networks are a promising network for
investigation.

MLP highest accuracy of 77.14% was achieved for 8 hr window size while CNN highest accu-
racy of 90.00% was achieved for 1 day window size with the inclusion of unknown appliances
in the training and testing data. While, in the results obtained without unknown appliances
MLP achieved highest accuracy of 80.37% again for 8 hr window size and CNN achieved
highest accuracy of 95.83% for 3 day window size.

It is feasible to implement learning models for faster detection as the highest accuracies
for the 45 min window size for MLP is 76.43% for known appliances and 76.55% with the
inclusion unknown appliances, while results for CNN for 45 min window are 81.43% for known
appliances and 79.57% with the inclusion of unknown appliances. Do note that this thesis
provides a baseline approach for both MLP and CNN networks. The models provided have
a lot of margin for parameter tuning which can increase the accuracy further. With a larger
amount of data to train on, the accuracy for the classification of appliance is expected to
increase. A summary of which is provided in the section "More data improves Neural Network
Capability".

Neural Network architecture affects accuracy of prediction

The depth (number of layers) in a neural network has an effect on the accuracy of the models.
For both MLP and CNN networks the accuracy for an 8 neurons for one layer architecture
resulted in a performance of 77.58% and 86.39% respectively as illustrated in Table 6.1.
The performance increased significantly when compared to the 8/16/8 neurons per layer ar-
chitecture for MLP and CNN which resulted in 80.37% and 95.83% accuracy respectively.
Another interesting finding is that for the 2 layer architecture there is no significant increase
in the accuracy when increasing the number of neurons, as 8/16 architecture performs better
than 16/32 and 32/64 architecture for both MLP and CNN. Therefore leading to the obser-
vation that the number of layers had a greater effect on the accuracy than the number of
neurons when investigating the architecture. It is important to note that choosing the number
of neurons also depends on the size of the data, which has to be empirically determined for
best results. According to this study [18] which investigates the influence of neural network
training with respect to architecture depth, model capacity and number of training examples,
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increasing depth maximizes the probability of finding poor apparent local minima and thus
improving generalization capability of the neural network. In another study [82], the authors
show that deeper models were more efficient and effective than shallow models in speech
acoustic modeling.

Neurons per Layer Highest MLP V.A[%] Highest CNN V.A[%]
8 77.58 86.39

8/16 78.71 91.67
16/32 78.83 87.50
32/64 77.64 87.50
8/16/8 80.37 95.83

Table 6.1: Highest accuracy of each architecture for MLP and CNN networks from Table 4.1
and Table 5.1

Higher performance accuracy from CNN than MLP

This thesis is the only work currently (to the authors knowledge) which has used MLP neural
networks for energy disaggregation on the REDD dataset. Therefore, this approach aims
to be a baseline for the comparison of other neural networks. The findings of this thesis
illustrate that CNN performed significantly better than MLP. This behaviour of CNN achieving
a higher accuracy than MLP is also noticed in other works such as on the MNIST dataset.
The MNIST dataset is a popular dataset in the machine learning community which has been
made for handwritten digit classification [62]. In the best approach available from the Keras
examples, MLP[86] networks produce a lower accuracy than CNN[77] networks. Another
study concluded that when used in real-time CNN is significantly better than MLP when
classifying characters [92].

Comparing the MLP results to the related work, MLP achieves an accuracy of 77.14% com-
pared to the highest achieved overall accuracy of 81.5% [41]. While being a template for
Deep Learning approach MLP is also significantly faster at training than CNN. Thus, provid-
ing a quick feedback for the researcher/programmer for fine tuning the parameters in the NN
model, e.g number of neurons, number of layers, etc. The quick feedback can then be used
and applied to CNN architecture as reference.

Compared to MLP, CNN achieved an accuracy of 95.83% on known appliance data and
90.00% with the inclusion of unknown appliance data. The results obtained are more accu-
rate than the highest achieved accuracy of 81.5% in the related work section. This further
illustrates how promising neural networks as an approach to energy disaggregation.

More data improves Neural Network Capability
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The REDD dataset has a maximum of 12 days of data from only six houses. Comparatively
another dataset, mentioned earlier in the dataset section, the UK-Dale dataset has hundreds
of days of data available for 5 houses [43]. Thus, proving to be promising for using as a data
source.

A Machine/Deep Learning algorithm is able to generalize accurately if is has a variety in
the training set. This influenced the author’s decision for choosing dishwasher, lighting and
washer dryer as the tested appliances since these appliances are present in all 6 houses
and there is more data to capture the different power consumption trends for each appliance.
Using these three appliances this thesis tests on more data than in the previous approaches
where the maximum number of houses used for training and testing is 4 [16][51][50][41].

For neural networks to learn extremely well, training needs to be done on a large amount of
data as this will help the networks to generalize well on a wide variety of appliances. Accord-
ing to a study investigating the effect of dataset size on artificial neural network classification
[20] states that if training set size are important variable in artificial neural networks and found
that the validation accuracy of their artificial neural network increased significantly from 55%
to 77%. However, it is important to note that with the increase in the size of the data the
architecture of the neural network should change to adapt to the complexity of the newly
formed dataset.

Performance on REDD dataset compared to related work

The results of this thesis demonstrate the ability of neural networks to perform well on un-
known data. This is an advantage compared to HMM chain approach mentioned in the
related work as HMMs do not explicitly encode state duration [42]. Although they are well
suited to application domains like speech recognition where the duration of each state does
not vary much. Some appliance states might last one minute (e.g. a toaster) whilst other
states might last for hours (e.g. washing machine). Furthermore, HMMs typically require
that every appliance is modelled. In all the related work the authors don’t include unknown
appliances in their training data. Hence, their training is done on labelled data for a number
of appliances which doesn’t include unknown appliances. The table below compares the
accuracy of other approaches to this thesis.
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Research papers V.A[%]
J. Z. Kolter and M. J. Johnson [51] with known appliances 47.7%
J. Z. Kolter and T. S. Jaakkola [50] with known appliances 60.3%

M. J. Johnson and A. S. Willsky [41] with known appliances 81.5%
Thesis MLP approach with known appliances 80.37%

Thesis MLP approach with unknown appliances 77.14%
Thesis CNN approach with known appliances 95.83%

Thesis CNN approach with unknown appliances 90.00%

Table 6.2: Comparison of results with related work



7 Conclusion and Future Work

The aim of this thesis was to accurately classify household appliances in a short window
interval based on their power consumption data. The results illustrate that neural networks
can be used to accurately classify household appliances. This thesis is currently the first
supervised classification approach used across all 6 houses on the REDD dataset to the
authors knowledge. It was also of significant importance to use an open source dataset
(REDD) to allow a comparison of results to the related work of researchers.

Many MLPs and CNNs with different architectures, optimization algorithms, and activation
functions were tested in this thesis. A detailed description of the applied preprocessing steps
and used architectures enables others to reproduce these results and use this thesis as a
base for using deep neural networks for energy disaggregation.

Out of the two neural networks investigated CNN perform much better than MLP. It is also
observed that the depth of the neural network increased the accuracy for classification. The
highest achieved accuracy from MLP and CNN were for a 3 layer architecture. This thesis
is currently the only work which includes unknown data in the training data. Hence, the
results for both known and unknown appliances are included to compare to the related work
and investigate the ability of the NNs when predicted unseen data. With the inclusion of
unknown appliances in the training and testing data, MLP highest accuracy of 77.14% was
achieved for 8 hr window size for 8/16/8 neurons per layer architecture while CNN highest
accuracy of 90.00% was also achieved for 8/16/8 neurons per layer architecture for 1 day
window size. Without unknown appliances MLP achieved the highest accuracy of 80.37%
for 8/16/8 neurons per layer architecture again for the 8 hr window size and CNN achieved
highest accuracy of 95.83% for 8/16/8 neurons per layer architecture for the 3 day window
size. It is expected that the accuracy of an algorithm decreases when unknown appliances
are added in the data pool. Nonetheless, the result of CNN approach of 90.00% accuracy
for known appliances is higher than the top accuracy of 81.5% from the related work which
doesn’t include unknown appliances.

Another discovery was that MLP network performed best for window sizes smaller than 8
hr while CNN performed best for window sizes greater than 8 hr. CNN overall performed
better than MLP for all window sizes and neural network architectures. Since the conducted
experiments produced promising results for CNN, it is viable to focus future research on the
improvement of this CNN architecture to achieve higher accuracy.
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A limitation for this thesis is that despite the efforts to include as much data over 6 houses,
only 3 appliances are classified. Therefore, having access to more appliances which are
common among all houses will increase the classification ability of the NN models. Nonethe-
less, the model architecture for both MLP and CNN as detailed in the thesis allows for the
addition of new appliances.

In interest of adding more data to improve the models Lambda architecture can be used for
the deployment of Deep Learning models in a production setting. Lambda architecture is an
generic architectural pattern which can be used for a data processing architecture to handle
streams of data (Big Data) for a Deep Learning model. An overview of this architecture
is illustrated in Figure 7.1. The Lambda architecture provides a real time prediction/result
from the Deep Learning model. Furthermore, this architecture allows for the NN model
to be retrained to reflect the updated parameters over time e.g additional new appliances
in the house. The architecture consists of a batch layer which aims at achieving perfect
accuracy by being able to process all the available data. The best trained models of MLP
and CNN from this thesis can be trained in this layer. The speed layer processes data
streams in real time. The trained model in the batch layer is deployed to the speed layer for
real time prediction. The updated model in the batch layer can be redeployed at a regular
frequency (e.g every 2 days) to the speed layer. This frequency can be chosen to see if the
updated models accuracy is greater than the previous models. If it isn’t, then the speed layer
continues to use the older model. Finally, there is a serving layer which stores the results
from the batch and speed layer. These results can be obtained by querying the database.
Additional applications can be built for querying to the database and providing the user a
visual dashboard of the appliance usage.

Figure 7.1: Overview of Lambda architecture

The author of this thesis contacted the original authors of the REDD dataset to inquire about
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the missing values. However, they did not give an explanation for the missing values which
could help to fill the missing values. Hence, these missing values, as identified in the data
analysis section, can be filled using statistical methods, last observed value, moving window
average [35] etc as a preprocessing step in the future to have a complete dataset. In refer-
ence to the preprocessing steps, the data in this thesis was not processed for noise. This
can also dealt at the hardware level, where using proper grounding methods, shielded and
twisted wires, signal averaging methods, filters, and differential input voltage amplifiers can
control the noise in most measurements [10]. This can help to increase the accuracy of the
models. Nevertheless, as the power consumption data is not preprocessed, the obtained
results highlight the generalization ability of MLP and CNN.

Since the data used for training the neural network models in this thesis consists only of the
power consumption, a possibility for future work is to use a dataset which has complete time
stamped data corresponding to the power consumption values. This will add the feature of
time to determine if there is a correlation the between power consumption of an appliance
and the time of the day. If there is, this can help to increase the accuracy of the model.
However, more research will need to be done to determine the existence and extent of any
such correlation.

This thesis covers MLP and CNN networks. In the field of Deep Learning other promising
network include Recurrent Neural Network (RNN) and Long Short Term Memory (LSTM).
RNN are distinguished from feedforward networks by a feedback loop, ingesting their own
outputs moment after moment as input to the layers. Creating a sort of memory in the
network. This can be helpful for this dataset as the past sequence of an appliance can
be stored in the memory of network [85] and treat the data as time series as RNN are
extensively used for time series data [11]. LSTM is a variation are based on RNNs which
can store temporal information using recursive connections. They are designed to overcome
the vanishing and exploding gradient problem which are inherent to RNNs [31]. Thus, using
them could further increase the accuracy obtained from a simple RNN implementation.

The author hopes that his work will serve as a useful foundation for future research concern-
ing the use of artificial neural networks in energy disaggregation
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This appendix contains the analysis of the "REDD_low_freq" folder.

The table below contains the overview of data in the "REDD_low_freq" folder used for this
thesis

Channel
no.

House 1
appliance

House 2
appliance

House 3
appliance

House 4
appliance

House 5
appliance

House 6
appliance

1 mains mains mains mains mains mains
2 mains mains mains mains mains mains
3 oven kitchen_outlets outlets_unknown lighting microwave kitchen_outlets
4 oven lighting outlets_unknown furnace lighting washer_dryer
5 refrigerator stove lighting kitchen_outlets outlets_unknown stove
6 dishwasher microwave electronics outlets_unknown furnace electronics
7 kitchen_outlets washer_dryer refrigerator washer_dryer outlets_unknown bathroom_gfi
8 kitchen_outlets kitchen_outlets disposal stove washer_dryer refrigerator
9 lighting refrigerator dishwasher air_conditioning washer_dryer dishwasher
10 washer_dryer dishwater furnace air_conditioning subpanel outlets_unknown
11 microwave disposal lighting miscellaneous subpanel outlets_unknown
12 bathroom_gfi outlets_unknown smoke_alarms electric_heat electric_heat
13 electric_heat washer_dryer lighting electric_heat kitchen_outlets
14 stove washer_dryer kitchen_outlets lighting lighting
15 kitchen_outlets lighting dishwasher outlets_unknown air_conditioning
16 kitchen_outlets microwave bathroom_gfi bathroom_gfi air_conditioning
17 lighting lighting bathroom_gfi lighting air_conditioning
18 lighting smoke_alarms lighting refrigerator
19 washer_dryer lighting lighting lighting
20 washer_dryer bathroom_gfi air_conditioning dishwasher
21 kitchen_outlets disposal
22 kitchen_outlets electronics
23 lighting
24 kitchen_outlets
25 kitchen_outlets
26 outdoor_outlets

Table 8.1: Complete data description of REDD_low_freq folder

The table below contains the information used for the analysis of the "REDD_low_freq"
dataset.
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House
no.

Total no. of
recorded samples

Dishwasher samples
> 3s

Lighting samples
> 3s

Washer dryer
samples > 3s

1 745878 398038 398041, 397960, 398044 398046, 398050, 397960
2 318759 149979 149985 149976
3 404107 199498 199805, 199805, 199807, 199808, 199807 199498, 199498
4 570363 290547 290547, 290547, 290547, 290547 290547
5 80417 47035 47036, 47035, 47035, 47034, 47036 47036, 47035
6 376968 51809 51813 50209

Table 8.2: Number of samples that exceed 3 s interval for each house

The figure below illustrates the measured samples for lighting which exceed the 3 sec sam-
pling period.

Figure 8.1: Measurment samples from lighting

The figure below illustrates the measured samples for washer dryer which exceed the 3 sec
sampling period.
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Figure 8.2: Measurment samples from washer dryer



9 Appendix B

This appendix contains the experimental results for choosing Adadelta as the optimizer for
implementing the NN models.

The figure below illustrates the performance (loss) of various optimizers tested during the
compilation of the models, resulting in the choice of using Adadelta.

Figure 9.1: Optimizer effect on loss when window size is 2 hr for 20 epochs

The figure below illustrates the performance (accuracy) of various optimizers tested during
the compilation of the models, resulting in the choice of using Adadelta.
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Figure 9.2: Effect of Optimizer on test accuracy for MLP approach of window size 2 hr



10 Appendix C

This appendix contains information about the CD structure which contains an electronic ver-
sion of the thesis and the code implementation.

Figure 10.1: Folder structure in provided CD

The electronic version of the thesis is labelled "Amrit_Raj_2159114_Bachelor_Thesis".

The main folder "Thesis-Implementation" contains two subfolders "Data" and
"Models".

The "Data" folder consists two subfolders. The "X-Input" folder has the data for
dishwasher, lighting, washer dryer and unknown appliances across the 6 houses. The
"Y-Ouput" folder consists of the mapped Y values of each window size as csv files.

The "Models" folder consists of the CNN and MLP python implementation for known and
unknown appliances. To run the files the associated libraries need to be installed. These
libraries needed are listed as imports in the python files. The files consists of the 8/18/8
model architecture. To obtain the other 4 architectures simply remove the layer and change
the number of neurons to match the specifications. To run the python file, in the command
line run "python <window size> <optimizer no.> <loss value>" Where the value
of window size argument can be 900, 9604, 28900 and 86436. The values for the optimizer
no. argument can be 0,1,2,3,4 and 5 corresponding to Adagrad, RMSprop, Adadelta, Adam,
Adamax and SGD. The loss value argument can accept the arguments "mse" for mean
squared error and "categorical_crossentropy" for categorical crossentropy.
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