
Bachelorthesis
David Niederwestberg

Implementation of a Host-System for Communication with
Secure Elements by Dual-wire Protocol on an ARM-Cortex M3

Microcontroller

Fakultät Technik und Informatik
Studiendepartment Informatik

Faculty of Engineering and Computer Science
Department of Computer Science

David Niederwestberg

Implementation of a Host-System for Communication with
Secure Elements by Dual-wire Protocol on an ARM-Cortex M3

Microcontroller

Bachelorthesis eingereicht im Rahmen der Bachelorprüfung

im Studiengang Bachelor of Science Technische Informatik

am Department Informatik

der Fakultät Technik und Informatik

der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Bernd Schwarz

Zweitgutachter: Prof. Dr. Wolfgang Tobergte

Eingereicht am: 3. August 2017

David Niederwestberg

Thema der Arbeit
Entwicklung eines Host-Systems für die Kommunikation mit Secure Elements mittels eines

Dual-wire Protokolls auf einem ARM-Cortex M3 Microcontroller

Stichworte
Dual Wire Protocol (DWP), Single Wire Protocol (SWP), Chipkartenleser, Schlüsselwort 2

Kurzzusammenfassung
Dieses Dokument beschreibt die Implementierung des Dual Wire Protocol auf einem Cortex-

M3 µC. Die Implementierung ist für einen bestehenden Chipcartenleser konzipiert, der bei

der Validierung von Mikrochips für sichere Anwendungen eingesetzt wird. Nach einer Be-

schreibung der Protokollgrundlagen wird die Erweiterung entworfen und implementiert. Mit

verschiedenen Tests wird das System angepasst um die Spezi�kation zu erfüllen und seine

Funktionalität zu beweisen.

David Niederwestberg

Title of the paper
Implementation of a Host-System for Communication with Secure Elements by Dual-wire

Protocol on an ARM-Cortex M3 Microcontroller

Keywords
Dual Wire Protocol (DWP), Single Wire Protocol (SWP), smart card reader,keyword 2

Abstract
This document descries the implementation of the Dual Wire Protocol on a Cortex-M3 µC. This

implementation is designed for an existing reader platform, which is used in the validation of

microchips for secure applications. After a description of the protocol basics, the extension

is designed and implemented. With di�erent tests the system is than adjusted to meet the

speci�cation details, and to prove its functionality.

Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Ambition . 2

1.3 Concepts of realization . 2

1.4 Chapter overview . 4

2 Technical overview 5
2.1 DWP Protocol . 5

2.1.1 DWP Basics . 5

2.1.2 Timing constraints . 7

2.1.3 DWP-Frame structure . 8

2.1.4 Logical Link Control . 8

2.2 CRC calculation . 11

2.3 Target-system options . 12

2.3.1 FPGA . 12

2.3.2 Microcontroller . 13

2.4 Platform . 13

2.4.1 Spectro TP . 13

2.5 FreeRTOS . 14

3 Analyses of the current micro controller 15
3.1 Timer and PWM . 15

3.2 GPIO . 17

3.2.1 C / Assembler . 20

3.2.2 delay compensation . 20

4 Architectural Design 22
4.1 System structure . 22

4.2 Program �ow for the communication . 24

4.3 State machine design . 27

4.4 Test-pattern generator design . 28

5 Realization 30
5.1 Programming languages . 30

5.2 Code implementation . 30

5.2.1 GPIO solution . 31

5.2.2 PWM solution . 32

iv

Contents

5.2.3 DWP interface . 33

5.2.4 DWP waveform decoders . 33

5.3 integration into the SaReader �rmware . 34

5.4 test-pattern generator . 36

6 Testing 37
6.1 Test setup . 37

6.2 Test Pattern . 38

6.3 Timing Analyzes . 38

6.3.1 Problems with optimization in the GPIO solution 39

6.3.2 Slave resume time with PWM solution 41

6.4 Interrupt Latency with RTOS . 42

7 Timing driven Design Modifications 47
7.1 Changes to code positions . 47

7.2 Semaphores and Queues in RTOS . 48

8 Conclusions 50
8.1 Results . 50

8.2 Summery . 50

8.2.1 Prospect . 51

9 Appendix 53
9.1 Abbreviations & De�nitions . 53

9.2 Charts & Pictures . 54

9.3 Measurements . 55

9.4 Code . 59

9.4.1 Generation S1 with GPIO . 59

9.4.2 Generation S1 with PWM . 59

9.4.3 DWP interface . 59

v

List of Figures

1.1 System overview with di�erent communication protocol modules in the SaRe-

ader, that can be selected. 2

2.1 Bit encoding of signals S1, host to slave; The logical 1 is de�ned as a PWM

with a duty cycle of 75% the logical 0 with 25%, the clock is derived from the

period. [ETS12, p. 20] . 6

2.2 Bit encoding of signals S2, slave to host; The logical state of the S2 bit is

determined during the high state of S1, its state may thereby only be changed

while S1 is low. [ETS12, p. 22] . 6

2.3 DWP transition from a suspended state to active state after a slave request. . . 7

2.4 The structure of a DWP-frame with the area where bit stu�ng is applied.

The frame data consists of the (Logical Link Control) LLC-control �eld, the

LLC-Payload and the 16 bit CRC. Each frame always starts with an Start Of

Frame byte (SOF) and ends with the End Of Frame (EOF). 8

2.5 Program �ow for detection of SOF & EOF in a received �ow of data with a

bu�er.

The bu�er is initiated with 0, every received bit is than appended to the end,

the bu�er is than checked for a match of SOF or EOF. 9

3.1 PWM-Timing measurement of entering the ISR; C2(red): PWM, IR generated

on reset; C3(blue): GPIO pin output for measurement 16

3.2 Program �ow for testing �rst GPIO output with wait cycles 18

3.3 Timing compare of setting GPIO pins with register and dynamic set function

from the GPIO-library . 19

3.4 Program �ow for delay compensation in di�erent length timing paths in an

IF-statement . 21

4.1 System structure with the designated functions. The SaReader board includes

a socked for the LPC1769 and a DUT (cf. section 9.1). On the LPC the needed

segments for the communication can be seen. 22

4.2 Communication structure of the DWP module in the reader; green: communi-

cation section; blue (FSM): state machines . 23

4.3 Basic program �ow for generating one bit output on S1 (cf. �gure 2.1) with

GPIO pins. The �ow is implemented in the Com-module in �gure 4.2. 25

4.4 S2 input bu�er and program �ow for processing one bit of S2 (cf. section 2.1.3) 26

vi

List of Figures

4.5 ACT state machine for processing the activation sequence of the DWP (cf.

�gure 4.2)

blue: internal event; green: action; red: communication 27

4.6 SHDLC state machine for activation of the SHDLC protocol and processing

incoming frames during activation (cf. �gure 4.2); blue: internal event; green:

action; red: communication (w = window size) 28

4.7 Program �ow for S2 generator; left: ISR to synchronize the set value with

the S1 signal from the reader; right: function to activate the message sending

procedure . 29

5.1 Basic program �ow of the main tread of each communication module. Com-

mand (cmd) and data are included in the queue element 35

5.2 Section of the SaReader board circuit: The optocoupler is driving the S2 pin

(IO1<) of the LPC board, for connecting the test-pattern generator it needs to

be severed. 36

6.1 Test setup for testing timings and communication. S1 and S2 are recorded on

oscilloscope and analyzed by the PC. 37

6.2 To suspend the PWM MR1 is moved above the MR0 value, this results in a

continues high signal. To resume the PWM MR1 is moved back and the PWM

counter is set to below MR1(red dot). 41

6.3 Shifting PWM resume caused by not setting the PWM counter to a speci�c

value when resuming the PWM. Jitter: 4µs ≡ PWMperiod
(Persistent measurement without RTOS, measured on auxiliary signal as S1

could not be used for a precise measurement cf. �gure 9.3) 42

6.4 Interrupt latency measurement of the slave resume ∆t1 time with RTOS &

PWM counter reset . Setup time measurement with S2 and GPIO pulse in ISR.

Jitter: ∆t2max − ∆t2min ≈ 550ns ; slave resume time: ∆t1max ≈ 2.85µs;
number of measurements: 2017 . 43

6.5 Flow of critical section to visualize the e�ects of the ISR delay. The Interrupt

is delayed until after the critical section. This results in a longer pulse on the

GPIO pin. 43

6.6 Time measurement from PWM reset to read in of S2 with latency caused by

critical section. Wide pulses on C3 caused by interrupt during critical section.

C4, Z1(green, yellow): PWM signal (S1); C2, Z2(red): readin of S2 �nished;

C3(blue): critical section; light blue area: measured time 44

6.7 Received frame with disabled WDT-Feed during the communication.

C1(yellow): S2 (slave to host); C2(red): S1 (host to slave); C4(green): readin of

S2 �nished, cf. setup time left; C3(blue): critical section of the WDT-Feed . . . 46

7.1 Measurement with a Semaphore_ give in the ISR. Due to the long ISR one

Interrupt is lost (one spike on DGB1 is missing in the marked area).

DBG1: ISR �nished; DBG2: sem_ give duration 48

vii

List of Figures

7.2 Measurement with a software interrupt in the ISR. Here no Interrupt is lost, as

the SW-ISR has a lower priority. 49

9.1 LPC1769 connected to the SaReader board and a secure element in a CLCC68

socket . 54

9.2 Time measurement from PWM reset to read in of S2

Jitter: ∆t1max −∆t1min ≈ 480ns;
S2 worstcase: ∆t1max <

1
4T (940ns < 1µs) 55

9.3 Persistent measurement of the PWM-resume without setting counter 56

9.4 Persistent measurement of the PWM-resume with setting counter 56

9.5 Measurement of the execution duration of a Semaphore give function in the

ISR after a received frame.

Duration: 4,29µs . 57

9.6 Measurement of the execution duration of a Queue send function in the ISR

after a received frame.

Duration: 4,84µs . 58

viii

1 Introduction

1.1 Motivation

In the modern world encryption, is part of our daily life even if it is not always obvious for

us. For credit cards, access control, the encryption in cellphones (SIM card), trusted platform

modules (TPM) in notebooks, contactless car keys and many other devices secure platforms

are needed. We have to trust these devices not only to operate correct but also to be tamper-

resistant. These so called Secure Elements (SE) are under constant attack from criminals,

governments or other people. These attacks may not be limited to the Secure Element but

also to the communication, like attacks on Keyless Go [Rüs15] system, in the automotive

industry. Leaks like "Vault 7" [Bec17] show that even governmental organizations, in this

case the CIA, use security vulnerabilities. So analyzing is an essential part in every security

assessment process, as hardware cannot simply be updated unlike software. For these reasons

with a Secure Elements it is important to validate not only the functionality of the product, but

particularly the security. A new product has to withstand all sorts of penetration tests, during

these tests it is important to test not only within the speci�cation limits but also to be able

to test outside of these limits. This functionality is not possible with a standard of the shelf

Smart Card Reader that can be bought, because to control as many parameters as possible a

unique solution is thereby needed. Single Wire Protocol (SWP) and Dual Wire Protocol (DWP)

are widely used protocols for communication with Secure Elements. Both protocols where

developed for communication between Secure elements and a contactless frontend which

provides a wireless Interface. The DWP is derived from the SWP which is speci�ed by ETSI

(European Telecommunications Standards Institute) in TS 102 613 [ETS12]. Only the physical

transmission layer of the two protocols is di�erent, because the DWP uses two wires for the

communication instead of a single one in the SWP. If an interface is implemented in a Secure

Element it has to be tested.

1

1 Introduction

1.2 Ambition

To verify the secure devices only implementing the Dual Wire Protocol (DWP), an extension

for an existing Card Reader is needed. The current implementation of this reader, the SaReader

(picture of the SaReader cf. �gure 9.1), is not able to communicate over Dual Wire Protocol.

Standard micro controllers don’t provide SWP or DWP peripherals, as the protocols are almost

exclusively used in secure elements, therefore a custom solution is needed. The main focus

of this thesis is a basic implementation and the testing of the achievable performance on

the given hardware. Flexibility and control of as many parameters as possible are important

features of the implementation, as further extensions may for example need to be able to send

faulty information and other corrupt data like bit �ips or bit stu�ng errors. The results of

the performance tests will determine if a given microcontroller can be used, or if for example

an additional FPGA is required. The Timing is essential for the communication because

the implementation will work directly on the physical layer, OSI layer 1, and the Media

Access Control (MAC) sublayer of OSI layer 2. The focus lies hereby on the development and

implementation for this two layers .In �gure 1.1 the basic structure of the SaReader is displayed,

the extension has to be a compatible communication module like the T0/T1 or the ISO 14443

mobile.

USB Interface

p
r
o

c
e
s
s

c
o

m
m

a
n

d

T0,T1

DWP

ISO14443

COM to USB

driver

SaReader
PC

DUT

USB

DWP

Figure 1.1: System overview with di�erent communication protocol modules in the SaReader,

that can be selected.

1.3 Concepts of realization

The main goal is to realize the communication on the existing LPC1769 micro controller, based

on a Cortex M3-core. As the protocol needs to be implemented on the physical layer a solution

with a FPGA is also an option. There are two basic concepts for this implementation on the

microcontroller that will further be analyzed. As one signal of the Dual Wire Protocol is a

2

1 Introduction

Pulse-width modulation the use of the PWM module seems obvious. The second concept to

generate this signal is the use of standard GPIO pins and use wait cycles to generate the correct

period. Both concepts have its pros and cons and need to be further evaluated.

For the PWM solution these are:

+ A precise hardware generated timing

+ No CPU idle time

- Potentially slower due to the use of slower connected peripherals and use of an ISR

For the GPIO solution:

+ Faster as only the fast GPIO pins are needed

+ Simple to implement

- No tasks can run in the background

- More measurements to generate the correct timing

- Code changes cannot simply be implemented, as the entire timing changes

With an FPGA:

+ A precise hardware generated timing

+ A fast data transmission is possible

- Not all readers could use it

- Expensive as readers need a hardware upgraded

- Di�erent reader versions need to be supported

In the thesis these considerations are further evaluated to determine the best solution for the

given case of application.

To analyze the timings of both solution they will be tested with an oscilloscope. To test the

systems input and integrity a independent system has to be used. Here a Comprion Spectro

TP is available, it is a validation platform for smart card testing. For testing chips the SWP is

supported on this platform. With a separate translation module, that is available, it is possible

to translate it to DWP. If the Spectro does not support functionality of simulating a smart card,

the alternative is to use a second board LPC board, which will then simulate a secure element.

3

1 Introduction

1.4 Chapter overview

The thesis is divided in eight chapters, the �st part is an introduction and an overview of the

topic.

In the second chapter the basics of the protocol and the system are introduced. This is the

technical foundation for understanding the thesis. As the implementation is supposed to be an

extension to an existing system, the microcontroller is further analyzed in chapter three, on

bases of the two implementation options.

With the basics of the previous two chapters all necessary components are designed and

explained in chapter four. In the design also the existing system is taken into account, and

program �ows for the communication are developed. Also a test-pattern generator is described

here. The designs of these di�erent components are implemented, the implementation details

are discussed in chapter �ve.

The tests of the project realization are included in sixth chapter. Here the test setup is presented

and di�erent test techniques are discussed. Also the problems which accrued during these

tests and its solutions are included in this chapter. Changes that had an greater impact on the

design were moved to the next chapter, where also design changes are visualized, with which

the timing problems where solved.

The eights and last chapter includes a presentation of the results, a summary and a prospect of

the needed steps for a full integration of the DWP in the current reader system.

4

2 Technical overview

2.1 DWP Protocol

The Dual Wire Protocol (DWP) is derived from the Single Wire Protocol (SWP), which was

developed by Gemplus in 2007 for the use in integrated circuit cards on mobile phones [RE08,

p. 302]. On a SIM card with USB and T=0 protocol only one of the eight pins was available to be

used for this functionality. The main di�erence between Single and Dual Wire Protocol is the

use of two wires for communication instead of a single one. The digital data and frame structure

is hereby identical. Since an o�cial DWP speci�cation was not available and the protocols are

almost identical, an altered SWP spec was used instead for the preformed developments. The

close relation of these protocols can also be derived from a US patent 9350831 [Tro16], where

the DWP is descried as "a low-power alternative to the SWP".

2.1.1 DWP Basics

Single Wire Protocol communication on one wire works by the host modulating the voltage

and the slave modulating the current. The advantage is, that only a single wire is needed

for full duplex communication. This is also the reason for the name. A disadvantage is, that

there is additional hardware needed for the conversion of the current modulation to a voltage

modulation that can be processed with a microprocessor or other standard CMOS logic. With

the Dual Wire Protocol this is not necessary, as the slave communicates over a second wire

with the host by also modulating the voltage in synchronization with the host signal.

In both protocols the clock signal is integrated in the host to slave signal (S1) (cf. �gure 2.1).

The clock-integration in the data stream is achieved by the use of a pulse-width modulation

(PWM). The clock is derived from the period of the modulation, the bit-value by the duration

of the high state. One bit has to be thereby de�ned as having two rising edges, the duty-cycle

is 0,75 for the logical 1 and 0,25 for the logical 0.

The signal from the slave to the host (S2) is only valid during the high state of the S1 signal (cf.

�gure 2.2). This originated from the fact that with the SWP it is easier to measure a current if

there is a higher voltage. Consequently S2 may only be changed during the low state of S1, so

5

2 Technical overview

Figure 2.1: Bit encoding of signals S1, host to slave; The logical 1 is de�ned as a PWM with

a duty cycle of 75% the logical 0 with 25%, the clock is derived from the period.

[ETS12, p. 20]

Figure 2.2: Bit encoding of signals S2, slave to host; The logical state of the S2 bit is determined

during the high state of S1, its state may thereby only be changed while S1 is low.

[ETS12, p. 22]

6

2 Technical overview

there is a de�ned time frame to read the state of S2. If no data has to be send by either side

the host can suspend the communication. in this case the S1 signal is in high state and S2 in

low state. If the slave wants to send data while the communication is in suspended state it can

raise S2 to high to indicate to the host to resume the communication cf. �gure 2.3.

Data

S1

S2

• • •

• • •

t

DWP suspended DWP activ

transition

sequence

slave resume time

Figure 2.3: DWP transition from a suspended state to active state after a slave request.

2.1.2 Timing constraints

The most signi�cant timings for the S1 signal are listed in Table 2.1. In the speci�cation is also

stated, identical bit-duration’s are not required, as long as the high / low ratio is correct. "The

bit-duration may be di�erent for each transmitted bit." [ETS12, p. 20]. This can potentially be

used to increase the transmitting speed by reducing the duration of bits with a high idle time.

The second important timing is the "resume by slave time", the time in which reader has to

acknowledge the slave’s resume request, by setting S1 from high to low state cf. �gure 2.3. The

Parameter Minimum Nominal Maximum
Period T (bit duration) 1 µs - 5 µs

H state of S1 for logical 1 0,70 x T 0,75 x T 0,80 x T

H state of S1 for logical 0 0,20 x T 0,25 x T 0,30 x T

Resume by slave time - - 5 µs

Extended bit-duration’s 0,59 µs - 10 µs

Table 2.1: Timing speci�cation of the DWP for S1 signal; cf. �gure 2.1 for the slave resume

�gure 2.3

7

2 Technical overview

length of the transition sequence is not further speci�ed, thereby a maximum of 0,75 x T will

be used for this implementation.

2.1.3 DWP-Frame structure

The communication is based on frames for both the S1 and the S2 signal cf. �gure 2.4. Each

frame begins with a Start Of Frame byte (SOF) it has the value ’0x7E’ and an End Of Frame

byte (EOF) with the value ’0x7F’. A frame consists of a payload with a maximum length of

SOF

0x7E

LLC-cf

8 bit

LLC-Payload

max 29 Bytes

CRC

16 bit

EOF

0x7F

Bit Stu�ng

Figure 2.4: The structure of a DWP-frame with the area where bit stu�ng is applied. The frame

data consists of the (Logical Link Control) LLC-control �eld, the LLC-Payload and

the 16 bit CRC. Each frame always starts with an Start Of Frame byte (SOF) and

ends with the End Of Frame (EOF).

30 bytes and a 2 byte cyclic redundancy check (CRC) based on ISO/IEC 13239. During the

transmission of the payload and the CRC bit stu�ng is used to avoid an unintentional send of

SOF or EOF. Bit-stu�ng works by inserting a logical ’0’ following �ve consecutive ’1’ these

stu�ed bits have to be �ltered out later by the receiving side. An exception is after the last

bit of the CRC no stu�ng bit will be inserted here. Bit stu�ng is also implemented in other

communication protocols like Ethernet or USB, as implemented in the USB protocol it can also

be used for clock synchronization [RE08, p. 298].

As shown in �gure 2.5 to detect both SOF and EOF in the communication of S2, a software

shift register with a 2 Byte bu�er and a left shift for every incoming bit will be used. SOF or

EOF can then be detected by a match check of bits 7-0. Bit 8 will contain the bit that has to

be processed. To �lter out the SOF the processing must be delayed until the �rst bit of the

payload is in position 8. When detecting an EOF the last bit of the payload is in position 8.

After processing this last bit the receive process can be stopped until a SOF is detected again.

An example of this �ow can be seen in table 2.2.

2.1.4 Logical Link Control

Three Logical Link Control (LLC) layers are de�ned in the current SWP/DWP-speci�cation.

8

2 Technical overview

shift

bu�er &

add bit

Match SOF

set

receive

data

Match EOF

stop

receive

Data

return

yes

no

yes

no

Figure 2.5: Program �ow for detection of SOF & EOF in a received �ow of data with a bu�er.

The bu�er is initiated with 0, every received bit is than appended to the end, the

bu�er is than checked for a match of SOF or EOF.

step b8 b7 b6 b5 b4 b3 b2 b1 b0
init 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 1
3 0 0 0 0 0 0 0 1 1
7 0 0 0 1 1 1 1 1 1
8 0 0 1 1 1 1 1 1 0
r1 0 1 1 1 1 1 1 0 d0

r9 d0 d1 d2 d3 d4 d5 d6 d7 d8

rn dm 0 1 1 1 1 1 1 1

Table 2.2: Bu�er (8 bits) function example:

In the steps 1 to 8 the SOF is written to the bu�er and detected in step 8. The receive

is set and in r1 to rn the data bits d are shifted into the bu�er. In step r9 the �rst data

bit (d0) is processed, with the detection of the EOF in rn the last bit is processed and

the receive is stopped.

9

2 Technical overview

• SHDLC: SHDLC (Simpli�ed High Level Data Link Control) is the generic LLC used for

most communication in contactless transaction. It is a simpli�ed version of the HDLC

(High Level Data Link Control) protocol speci�ed in ISO 13239.

• CLT: CLT (ContactLess Tunnelling) is optional and used for protocol handling for

proprietary UICC communication it will not be implemented at this point.

• ACT: The ACT LLC (ACTivate) is used for the activation of the interface. The support it

is thereby mandatory.

The LLC-type and the frame speci�c settings are encoded in the LLC control �eld, the �rst

byte of the payload. All bytes starting with a leading ’1’ are SHDLC type frames, CLT frames

start with ’010’ and ACT with ’011’. The start combination ’00’ is reserved for future use.

ACT frame

At least the �rst three frames after power up are always of this type. The ACT-frame has the

basic structure described in Table 2.3.

LLC Control �eld (1 byte) ACT payload (0-3 byte)

Position 7 6 5 4 3 2 - 0 0-2 byte 0-1 byte

Value 0 1 1 FR INF ACT ctrl ACT data ACT information

Table 2.3: Structure of the ACT Frame

• The FR bit may only be send from the host to the slave. It indicates to the slave to repeat

the last ACT-frame. A FR bit is send, when no or a corrupt frame was received by the

host.

• The INF bit may only be send by the UICC. If it was set to ’1’ the last byte of the payload

contains an information �eld. In the information �eld the extended capabilities of the

SE (secure element) are encoded. These include an extended slave resume (cf �gure 2.3)

time, bit duration between 5 µs and 10 µs as well as bit duration below 1 µs to 0,590 µs

(cf. �gure 2.1).

• The ACT ctrl bits are for sending the ACT commands, size and information of the ACT

data �eld is de�ned by this command. In the current speci�cation only three commands

exist: ACT_READY, ACT_POWER_MODE, ACT_SYNC.

10

2 Technical overview

SHDLC frame

The Simpli�ed High-level Data Link Control (SHDLC) is the standard protocol for sending

upper-level information. It is responsible for the integrity of the received data. This means it is

ensured that all data is error free, it is in the right order and the data is complete after it was

processed by the protocol. SHDLC is also designed with a minimum overhead. To ensure the

data integrity of the carried information, the CRC is used to check for errors. A 3 bit sequence

number is used to determine the data order and completeness. SHDLC uses a window size

between 2 and 4 frames it is negotiated during the link setup. To manage the control and

transfer of data three frame types with di�erent tasks exist.

• I-Frame (Information Frame): I-frames are designed to carry the information of

upper-layer protocols. They are the only frames carrying send sequence numbers. The

receive sequence number is also included, this way it is possible to acknowledge a

received I-frame in the return frame without an extra frame for acknowledgement.

• S-frame (Supervisory Frame): S-frames carry commands and responses for the �ow

control of the LLC. They are also used to acknowledge I-frames because they carry a

�eld for a receive sequence number. There are 4 types of S-frames. RR Receive Ready

is usually used to acknowledge received I-frames. RNR Receive Not Ready indicates

to the other side that the receive-bu�er is full and further frames can currently not be

processed. REJ Reject is to reject a frame if it was not transmitted correctly or was

lost. All frames beginning with the rejected frame have to be resend. An optional SREJ
Selective Reject that can be implemented. It di�ers from the Reject, as only the indicated

frame has to be resend. All S-frames are not supposed to carry an information �eld.

• U-frame (Unnumbered Frame): U-frames are used to control the data link. They

carry a 5 bit modi�er allowing for 32 possible commands. In SHDLC only two commands

are used, RSET for the reset of the link and UA to acknowledge a received RSET. With

a reset of the link also the window size is negotiated between host and slave.

2.2 CRC calculation

A cyclic redundancy check (CRC) is a technique to detect bit errors in a block of data, a

correction of these errors is not possible. It is generally used in sequential transmitted data,

where the check value is added to the end of the message. CRC is commonly used because it

can easily be implemented in hardware and it is very good in detecting multiple bit �ips due to

11

2 Technical overview

noise errors that originate from outside sources. Many di�erent types of CRC-algorithms exist

but they all work on the same basic principal. To calculate the check value the message can be

seen as one big number, bits can also be added at the end and the begin of the message. This

number is than divided by a de�ned generator polynomial. The remainder of this division is

than divided over and over again, the quotient is not needed and discarded during this process.

The last remainder of this process is than added to the original message as the check value. This

process can be done during the transmission of a sequential data stream. After the message is

fully received the CRC is also �nished, it can then be processed without further delay. [RE08,

pp. 133-135]

The DWP uses a 16 bit CRC de�ned in ISO/IEC 13239 commonly known as "CRC-16/CCITT-

False", it uses the polynomial:

X16 +X12 +X5 + 1

2.3 Target-system options

To implement the protocol a Field Programmable Gate Array would be the obvious solution.

But for extending the existing SaReader other factors have to be considered too. The main goal

is to try to implement the protocol on the available microcontroller. In the following section

the di�erences and advantages of the two options are discussed.

2.3.1 FPGA

The advantage of a Field Programmable Gate Array (FPGA) is a very precise timing. The FPGA

would handle the communication while the µC handles the protocol, the µC is then free for

other tasks. On the FPGA several steps can be done in parallel during the one bit cycle to save

processing time. The S1 signal can be generated with a counter match combination just like in a

PWM module. The detection of S2 is done during the high phase of S1, it can then be written to

a shift register. For the detection of SOF/EOF the content of this register will just be compared

to the SOF/EOF values. A bene�t of the FPGA solution is, it is also possible to check the CRC

during the communication to relieve the µC further. A serial interface like a I2C or an other

interface included in the microcontroller peripherals can be used for communication between

µC and FPGA. In the FPGA a state machine controller would handle the communication with

the device and the microcontroller.

The disadvantage with this solution is that only readers with a FPGA extension would be able

12

2 Technical overview

to use the protocol. Extending all existing SaReader’s would be costly. Also the development

of a FPGA based implementation is more complex.

With this disadvantages a FPGA based solution is only practical in this use case, if a microcon-

troller solution is not possible.

2.3.2 Microcontroller

The preferred solution is the implementation on the available microcontroller LPC1769, an

ARM Cortex-M3. It is mounted on a small development board, the LPC1769 LPCXpresso board.

The board was designed and produced by Embedded Artists. There are two distinct areas on the

board. The �rst section is the target board with the microcontroller, the other is the program

board with an included JTAG debugger. The board can be separated into these two parts to

save space if the debugger and programming board is not needed. It can be reconnected by use

of a pin connector. The microcontroller has many common peripherals, these include GPIO,

UARTs and PWM, the µC provides also a Watchdog Timer and a USB 2 Interface. The clock

has a maximum frequency of 120 MHz.[NXP16]

The use of an existing setup avoids huge redesigns of the existing interface board and no extra

hardware is needed. This also prevents multiple versions with di�erent features and is thereby

cheaper and easier to maintain.

The downside of this solution is the timing of the transmission. All the signal processing has

to be done in the period of one transmitted bit. The consequence is that it is more di�cult to

achieve the fastest speci�ed transmitting speed (cf. 2.1). To generate a signal with the micro

controller there are two alternatives, the �rst is to use a PWM signal, this guarantees a precipice

timing for each transmitted bit. The other option is to generate the output with the standard

GPIO pins and inserting assembler code to instruct the CPU to idle and thereby generating a

correct timing. This solution includes many measurements, as the timing for S1 needs to be

adjusted manually in the code itself. Later extensions are not as easily implemented, as the

timing measurements and adjustments have to be repeated, to adjust for the timing changes in

the code.

2.4 Platform

2.4.1 Spectro TP

The Spectro TP is a validated conformance platform for testing potocols on smart cards. It has

prede�ned test cases for various protocols including SWP. According to the speci�cation it is

13

2 Technical overview

also possible to emulate a smart card with SWP [Com]. The bene�t of using this system are the

validated test cases, as they don’t need to be implemented and veri�ed again. The SaReader

DWP extension could be tested with these, for the translation from DWP to SWP an existing

interface board exists.

Further analyses and an information request to the support have revealed that it’s not possible

to use the Spectro TP for this kind of tests. As a consequence an own signal generator has to be

developed. The generator is based on the same system as the reader, to reduce the development

e�ort.[Com16]

2.5 FreeRTOS

On the micro controller a FreeRTOS (Free Real-Time Operating System) is running. The

operating system supports multiple threads or tasks, mutexes and semaphores for thread

synchronization, as well as software timers. The kernel schedules all running tasks, each task

is also given a priority for more e�cient scheduling. Each task can also suspend itself to wait

for resources or delay itself, during this time other tasks can use the processing time. Tasks

are switched by priority and a round-robin scheduling, for the interval a hardware timer is

used.[Ltd16]

FreeRTOS was chosen, because this system is supported on the chosen platform. A bene�t

is also, it is simple to use and also slim, this is especially important, as the debug limit of

LPCXpresso studio is only 256k (License Free Edition). FreeRTOS is distributed under a

modi�ed GPL, the modi�ed license permits to use FreeRTOS without the bound to open source

applications, this bene�ts commercial use.

On the current implementation version 6 of the RTOS is used. This version has not implemented

the software timers yet so an update to a newer version will be mandatory, if they shall be used

to generate the timeouts needed for the Dual Wire Protocol. As an alternative also hardware

timers can be used.

14

3 Analyses of the current micro controller

3.1 Timer and PWM

To generate the S1 signal a PWM with capture and compare can be used. The PWM signal rate

is equivalent with the transmission frequency of the S1 signal. For the bit transmission a match

register will have to be adjusted for every bit change. The �rst major question that has to be

answered with this solution is, whether it is possible to adjust the pulse width for every bit by

also maintaining the correct timing. The second problem that has to be solved is the analysis

of the S2 signal during the high period of the PWM. The issue with the generation of the S1

signal may be solved by using an ISR, the microcontroller supports loading the new PWM

match values with the PWM reset. For this shadow registers are used and the new values are

loaded when a match 0 accrues (cf. PWM1LER and PWM1MCR registers [NXP16, pp. 528,532].

This option is useful, because it helps to avoid accidentally setting a new match register value

and thereby accidentally changing a bit in the process.

For the PWM solution the speed for entering the ISR is essential, as the S2 signal needs to be

read in the ISR, if it is not fast enough the S2 signal may be read during the invalid state (cf.

�gure 2.2). Using the PWM ISR also has its bene�ts, there will be only insigni�cant jitter and

the timing of the signal is thereby very precise. To measure the timings a PWM-module is

con�gured to generate an interrupt when the PWM resets at the beginning of each period (cf.

PWM1MCR-register [NXP16, p. 528]; listing 3.1 line 14).

To analyze the response time and code duration of the di�erent options, test code was imple-

mented. A PWM was used to generate an interrupt. In �gure 3.1 it can be seen, that the ISR is

ready after approximately 400 ns, so with 100 MHz about 40 cycles (1 cycle =̂ 10 ns). This also

includes the clearing of the interrupt. Setting of a GPIO pin is �nished after 450 ns. The read

instruction for the S2 pin should lay in the �rst
1
8 of the period to always be in the high state

of the PWM output. The calculated minimal period T would be 8*450 ns = 3.6 µs with a max T

of 5 µs (cf. table 2.1) it is within the speci�cation limit.

Further analyses have shown that the delay is not caused by the ISR itself but with the commu-

nication of the PWM module and CPU. The CPU needs 120 ns to enter the ISR as speci�ed for

15

3 Analyses of the current micro controller

IR to set Bit duration

∆t ∼ 450 ns

ISR set bit high/low

PWM reset

& interrupt

C3

C2

Figure 3.1: PWM-Timing measurement of entering the ISR; C2(red): PWM, IR generated on

reset; C3(blue): GPIO pin output for measurement

the Cortex M3 [ARM]. The additional delay in �gure 3.1 is generated by clearing the interrupt

in the PWM module. The communication takes about 300 ns, this time also applies to the

setting of a new match register value. Conclusively minimal PWM-ISR needs at least 120 ns to

enter, 2*300 ns for clearing the interrupt and setting a new match value and additional 100 ns

to exit, in total 820 ns, this doesn’t include any signal processing.

The advantages of this solution is, there are no wait cycles needed so other processes can run

in the background during the communication after the processing of the bit has �nished. The

timing is very precise because the PWM signal is independent from the signal processing. The

drawback is that the communication with the PWM module is slow.

1 #include "lpc17xx_pwm.h"
2 #include "lpc17xx_gpio.h"
3

4 #define S2_PIN (1 << 25)
5 #define PWM_WAIT4 40 // 1/4 T for logical 0
6 #define PWM_WAIT3_4 (PWM_WAIT4*3) // 3/4 T for logical 1

16

3 Analyses of the current micro controller

7

8 void init_PWM() {
9 GPIO_SetDir(1, S2_PIN, 1); // set GPIO for IRQ measure

10 LPC_PINCON->PINSEL3 = (2 << 20); // Bits 21:20 to ’10’
11 // for PWM1.6 out
12 LPC_PWM1->TCR = (1 << 0) | (1 << 2);// Counter enable; PWM enable
13 LPC_PWM1->PR = 0x0; // No Prescalar
14 LPC_PWM1->MCR = (1 << 0) | (1 << 1);// IR on match R0;
15 // Reset on match R0
16 LPC_PWM1->MR0 = (PWM_WAIT4 << 2); // 4*PMW_WAIT for full cycle
17 LPC_PWM1->MR6 = PWM_WAIT4; // Set MR6 to 1/4 T PWM
18 LPC_PWM1->LER = 1 << 6; // enable load new value
19 // on reset for MR
20 LPC_PWM1->PCR = (1 << 14); // enable PWM output
21 NVIC_EnableIRQ(PWM1_IRQn); // enable IRQ in NVIC
22 }
23

24 void PWM1_IRQHandler(void) {
25 PWM_ClearIntPending(LPC_PWM1,PWM_INTSTAT_MR0); //CLR IRQ
26 LPC_PWM1->IR = 0xFF & PWM_IR_BITMASK; //CLR IR register
27 LPC_GPIO1->FIOSET = S2_PIN; //Set GPIO Pin
28 LPC_GPIO1->FIOCLR = S2_PIN; //CLR GPIO Pin
29 }

Listing 3.1: Code for �rst test measurements of the timing of the PWM ISR and to test di�erent

PWM settings.

3.2 GPIO

The second approach is to use the GPIO pins with static code and idle instructions to generate

the delays between the state changes of the S1 signal. In this con�guration it is important to

always have the same timing for every possible path in the code. Also clock speed is essential

for this solution to work, it has to be fast enough to do all the computing in one bit cycle.

With the clock running at max frequency of 120 MHz and a max signal period of 5 µs there is

a maximum of 600 clock cycles per period. With the current clock setting of 100 MHz only

500 cycles for instructions remain, a change of the clock is not preferred, as existing code is

balanced to 100 MHz. The timing is crucial for the transmitting to work so all interrupts have

to be disabled during the transmission process. A �rst implementation to measure the timing

17

3 Analyses of the current micro controller

the sequence in �gure 3.2 was used. Multiple code duration measurements on an oscilloscope

StartSet Pin H Wait 1/4 bit is 0 Set Pin L

Wait 1/2

bit is 1 Set Pin L

Wait 1/4

yes

no

yes

no

Figure 3.2: Program �ow for testing �rst GPIO output with wait cycles

show that it is probably possible to achieve the timing constraints with this solution. In this

rudimentary function the jitter between the di�erent bits was quite low. The measurement

in �gure 3.3 shows that there is potential to save processing time in the use of direct register

writes (line 1& 2) instead of the given functions (line 3& 4). A more accurate analysis of the

used bitSet-Functions show, that the �exible code for setting di�erent pins in this function is

not needed and can thereby be discarded to make the code as slim as possible. The increased

duration is a result of di�erent factors, the GPIO port is selected with a switch case, the function

call also takes processing time, as variables need to be stored on the stack.

1 LPC_GPIO1->FIOSET = S2_PIN;
2 LPC_GPIO1->FIOCLR = S2_PIN;
3 GPIO_SetValue(1, S2_PIN);
4 GPIO_ClearValue(1, S2_PIN);

Listing 3.2: Code for generating wave in �gure 3.3

The bene�t of this solution is that almost only the processing time for the signals is needed.

Besides the fast GPIO-pins no slow peripherals are needed, a higher transmission frequency is

18

3 Analyses of the current micro controller

direct Register write

∆t ∼ 50 ns
function call

∆t ∼ 850 ns

Figure 3.3: Timing compare of setting GPIO pins with register and dynamic set function from

the GPIO-library

19

3 Analyses of the current micro controller

possible. The downsides are the CPU has to idle to generate the signal. A second disadvantage

is, the timing has to be remeasured and adjusted for every code change.

3.2.1 C / Assembler

To understand the timing of the code it is helpful to have the C-code disassembly. It bene�ts

not only with the timing but also to check whether the compiler included the NOP’s (No

OPeration) correctly which are needed later. The disassembly of the C-code, with the compiler

option -o0 (no Optimization) for example only uses registers R0 to R3 and R7, other registers

are not used. By use of -o3 (most optimization) all of the Low Registers are used.

In �gure 3.3 it takes 50 ns to set a GPIO pin, this translates into 3 assembler instructions. When

adding up the cycles for each instruction LDR (2 cycles), MOV (1 cycle) and STR (2 cycles) it

corresponds exactly to the measured time[ARM15].

1 LPC_GPIO1->FIOSET = S2_PIN;

Listing 3.3: C-Code

1 35e: 4b10 ldr r3, [pc, #64] ; (3a0 <33c+0x64>)
2 360: f04f 7200 mov.w r2, #33554432 ; 0x2000000
3 364: 619a str r2, [r3, #24]
4 ...
5 3a0: 2009c020 .word 0x2009c020 //adr. GPIO

Listing 3.4: Disassemble of the C-Code section

3.2.2 delay compensation

As the timing is signi�cant for the implementation, every path of the GPIO solution’s com-

munication method has to be almost identical in length, the proportion between the high and

the low time in a bit has to stay within the speci�cation limits (cf. table 2.1). To achieve this,

special attention has to be given to IF-statements and other instructions that can have di�erent

timings depending on the input. For example as can be seen in �gure 3.4 for an IF-statement,

the Yes-path would be longer than the No-path, to keep the timing an idle time has to be

included in the shorter No-path. Di�erent bit duration’s are not a signi�cant problem, if the

duty-cycle and the duration are within the speci�cation limit (cf. table 2.1).

20

3 Analyses of the current micro controller

Start

if

do so-

mething

long

Idle

End

yes

no

Figure 3.4: Program �ow for delay compensation in di�erent length timing paths in an IF-

statement

21

4 Architectural Design

4.1 System structure

To communicate with a device the SaReader system is split in two parts, as the reader will

have to communicate with the secure element, as well as a PC if necessary at the same time.

The connected PC can set the con�guration, for example the selection of the protocol, on the

reader. For this communication side a driver on the PC is required. All the standard DWP

communication with the DUT will later be handled by the micro controller. For this a state

machine will analyze the received frames from the DUT and respond accordingly. Hereby the

CRC has to be checked and the frame type will be determined to be processed by the right

handler for the frame type. SHDLC I-Frames can carry upper-layer information, which might

not be handled by the SaReader but be passed on to the PC to be processed there.

USB Interface

p
r
o

c
e
s
s

c
o

m
m

a
n

d

T0,T1

DWP

ISO14443

driver

LPC1769

PC

DUT

SaReader

USB

DWP

I-Frame content

HCI-Protocol

Bit transmittion

ACT-Frame

SHDLC Frame

Figure 4.1: System structure with the designated functions. The SaReader board includes a

socked for the LPC1769 and a DUT (cf. section 9.1). On the LPC the needed segments

for the communication can be seen.

On the SaReader itself an operating system (FreeRTOS) handles the scheduling of di�erent tasks,

22

4 Architectural Design

and the loading of di�erent communication protocols modules. The DWP communication

will be one of the modules that can be selected. The DWP module will consist of two main

parts (cf. �gure 4.2). The state machines (blue) will handle the protocol and a communication

part (green) that handles the hardware interaction for the DWP. These 2 parts will further

Com-module:

• ISR

• Peripheral init

DWP Interface:

• In&Out bu�ers

ACT FSM

SHDLC FSM HCI FSM

DWP-Modul

Figure 4.2: Communication structure of the DWP module in the reader; green: communication

section; blue (FSM): state machines

be split to allow easier future extensions and testing. The communication section is split

into a com-module contains all code that is used for the signal generation with the micro

controller peripherals. This includes the necessary ISRs and also the initialization of all required

components. In between the com-module and the state machines an application programming

interface is included. It provides a bu�er for incoming and outgoing frames and code for the

CRC calculation. The bene�t of this split is, that the com-module can be tested stand alone.

Another bene�t is, the com-module can be replacement to send test data to the state machine

directly. This way the state machines can be tested without the use of the micro controller

hardware.

There will also be multiple state machines, each state machine has a speci�c task. Here the

split is done to keep the complexity as low as possible, but also to be able to easily add more

protocols later without having to change and test the one big state machines again. For a

basic communication there will be two state machines, one for each LLC (cf. 2.1.4). All high

level protocols like HCI or other protocols are handled over SHDLC, they will also use own

state machines. The ACT state machine is used for the activation of DWP and handles the

�rst frames. If the activation is �nished, the state machine for SHDLC initiates its protocol

and handles all further communication with the DUT. The content of the I-frames will not be

processed, but handed over to the protocol handler. These state machines are not required to

run directly on the reader itself but can run on a PC instead.

23

4 Architectural Design

4.2 Program flow for the communication

The communication is split into two �ows that have to cycle through for each transmitted

or received bit. The �rst cycle is the "timing" cycle to send a bit to the slave and generate a

valid S1 signal (�gure 4.3), the other is the "processing" cycle for the received bit from the slave

(�gure 4.4).

For the timing cycle(cf. �gure 4.3) to work, it may not be interrupted. The cycle has to either

run in an ISR with high priority or all ISRs have to be turned o� during the transmission.

a: In the "timing" loop the �rst task is to set S1 to high state for at least
1
4T . During this

period the state on S2 can be read and be written into a bu�er for later processing.

After this time it has to be determined whether a logical ’0’ or ’1’ has to be send this also

includes stu�ng bits after �ve consecutive ’1’.

b,d: If a logical ’0’ is sent S1 is set to low state and a wait cycle with
1
2T is entered.

c: For a logical ’1’ the wait cycle will be entered �rst and then the signal will be set to low.

If a Bit was sent in path c or d the next bit for transmitting is set. To complete the sequence a

1
4T low state is added at the end. The CPU doesn’t have to idle during all the wait cycles, it

makes sense to use the longest cycle for processing the received bit. With this solution the

minimum duration of each cycle is also dependent on the processing time for S2. It is either

two times the duration for S2 or the duration of S2 and S1 combined.

If a PWM is used for signal generation the �ow is almost identical. The di�erence is, there

is no need for the wait cycles and instead of setting a GPIO pin to low a new match value is

loaded. The PWM solution also sets the timing value for the next bit instead of the current bit

as in the GPIO solution.

When analyzing the S2 input (cf. �gure 4.4), �rst it has to be determent if data is transmitted.

For this the Start Of Frame (SOF) sequence has to be detected. If a SOF is detected, the input

is set true and a counter to -8 to dispose the �rst 8 bits containing the SOF. After these eight

cycles bit[8] contains the �rst bit of the payload. The input check is included to save time in the

longer cycles to skip the SOF check again after detection. If the input is true the bits[7-0] will

be checked for the End Of Frame (EOF) sequence, if found the input will be set to false again.

After an EOF detection the last bit of the message has not been processed yet, the processing

cycle will be run through a last time to include the last bit of the message.

As mentioned above the �rst 8 Bits will not be stored as they contain the SOF. After this

initialization bit 8 is checked each cycle to update the stu�ng counter, if the �ve consecutive

24

4 Architectural Design

Turn of ISR Set S1 H

Wait

1/8 T

write

S2 into

bu�er

Wait

1/8 T

Stu�ng? Bit is 0

Wait

1/2 T

Set S1 L

Wait

1/2 T

Set S1 L

Set S1 L

Wait

1/2 T

Wait

1/4 T

set

next bit

next bit?Turn on ISR

yes

no yes

no

no

Yes

a:

b: c: d:

Figure 4.3: Basic program �ow for generating one bit output on S1 (cf. �gure 2.1) with GPIO

pins. The �ow is implemented in the Com-module in �gure 4.2.

25

4 Architectural Design

Uint16_t Bu�er Bits 15-9 Bit 8 Bits 7-0

S2_bu�er unused process Bit SOF EOF detection

input match SOF

input=true

count=-8

NOP

match EOF input=falseNOP

count >=0 NOP

stf==5 out<- BitNOP

Bit?stf=0 stf++

count++

false

true

true

false

true

true

false

’0’

’1’

false

Figure 4.4: S2 input bu�er and program �ow for processing one bit of S2 (cf. section 2.1.3)

26

4 Architectural Design

’1’ are detected a stu�ng bit was inserted and this bit will not be stored. If a ’0’ is received the

counter is reset to 0, this also applies to the stu�ed bit as well, the inserted ’0’ will reset the

counter. When the bit isn’t a stu�ng bit it will be written to the output bu�er. To ignore the

�rst 8 bits the initialization counter is incremented by one.

The S2 signal �ow for the PWM and the GPIO concept has no di�erences in the program �ow,

with the exception that also no delay compensation is needed and is thereby not included.

4.3 State machine design

For the DWP protocol handling multiple state machines will handle the communication. For a

basic DWP implementation only the two state machines shown in �gure 4.2 are needed. The

HCI state machine is not part of the DWP implementation, as it is a di�erent protocol. As an

extension a CTL state machine could also be included.

wait for

Frame

wait for

Frame

activateddeactivated

activate DWP

set timer

⇓ ACT_Sync

⇑ ACT_PWR

set timer

timeout |

corrupt frame

⇑ ACT_PWR

⇓ ACT_Readytimeout

a
ft

e
r

3
x

A
C

T
_
P
W

R

Figure 4.5: ACT state machine for processing the activation sequence of the DWP (cf. �gure 4.2)

blue: internal event; green: action; red: communication

The state machine for activating the DWP interface is the �rst to be executed. On initialization

it resets all other state machines and sets all basic setting that are needed for communication.

Last it powers up the DUT and set the S1 pin to high. It then waits for the �rst frame sent by

the DUT. If a correct ACT-Sync frame is received the reader will reply with an ACT-Frame

containing the power mode. With a last ACT-Ready frame from the DUT, the DWP link is

established and the state machine is in the activated state. This is a typical three-way handshake

for a connection between two nodes. During this process also information about the capability

27

4 Architectural Design

of both devices is exchanged. After the activation the �st frame is always send from the host

to the slave. This way it is possible to establish a connection over the CLT LLC if it is needed.

Is this not the case and CTL is not needed a SHDLC link is established.

wait for

SE

wait for

Event

wait for

Event

⇑ RSET(w)

set timer

timeout |

corrupt frame

⇑ RSET(w)

⇓ UA

event

Figure 4.6: SHDLC state machine for activation of the SHDLC protocol and processing incoming

frames during activation (cf. �gure 4.2); blue: internal event; green: action; red:

communication (w = window size)

The state machine for the SHDLC LLC is very simple it has only 2 states for setting up the link

and determining the window size. After the link setup the state machine will only wait for

events to respond to.

The following events are speci�ed (cf. section 2.1.4 SHDLC) and can occur:

• send I-frame

• receive I-frame

• receive Ready-frame

• receive Reject-frame

• acknowledge timeout

• transmit timeout

The rejection of a selective frame will not be supported at this point.

4.4 Test-pa�ern generator design

For generating valid signals on the input (S2) of the com-module a second module for the

SaReader was implemented cf. �gure 4.7. The functionality is limited to sending messages, as

the received output of the reader can’t simply be interpreted with a micro controller and an

28

4 Architectural Design

IR: S1 ↓ edge set S2 bit

load next

S2 value

MSG trans-

mitted?

turn

o� IR

write

MSG to

bu�er

turn

on IR

Set S2 H

yes

ISR:

Send()

Figure 4.7: Program �ow for S2 generator; left: ISR to synchronize the set value with the S1

signal from the reader; right: function to activate the message sending procedure

oscilloscope is more suitable for this job. An oscilloscope has also the advantage that the signal

structure can be analyzed and checked for compliance of the speci�cation, a micro-controller

is not precise enough for this. The messages that are send can be provided by a PC. Thereby

for the full emulation of a secure element all three components are needed, the generator for

the emulated output, the oscilloscope for the input and a PC to operate both.

The generator simulates a secure element which requests to send a message to the reader. As

the DWP may be in the suspended state it raises S2 to make a resume request (cf. �gure 2.3).

To synchronize the S2 signal with the PWM provided by the reader an interrupt on the falling

Edge of S1 can be used. This ensures the state change of the S2 signal is in the speci�ed time

frame (cf. �gure 2.2).

29

5 Realization

5.1 Programming languages

For the project di�erent programming languages are used, depending on the purpose and the

platform the code is running. The code for LPCXpresso board has to be written in C, as the

current source code for the SaReader is also in C. The developed algorithms (cf. section 4.2) for

encoding and decoding the signals are partly tested �rst in Java for functionality, tools like

JUnit are helpful during this testing process. The reason for the use of Java is that no extra

hardware is needed for developing and testing the algorithms, especially during the debugging

process this is a bene�t. The algorithms are then translated to C for the micro controller.

Instead of using integer variables in Java for the bu�er, strings are used. The reason for using

strings is, while debugging the content of the bu�er does not have to be translated from

integer to a bit-string, the bu�er content can simply be read. The string class provides all

required functions that can easily be used. It is also simple to change a speci�c single bit while

debugging without calculating a new integer value. A last but signi�cant advantage of strings

is, that it is possible to insert other chars as placeholders for bits like a ’s’ for a stu�ng bit, this

makes manual analyses easier and helps to solve potential bugs.

For the analyses of S1 and automated measurements, it is required to control the oscilloscope

from a PC (cf. 5.2.4). A Java class for the communication via TCP/IP existed, and is already

used in other NXP projects. It is also possible to communicate with the SaReader OS from Java,

a package for the SaReader also exists. The use of the same language seems obvious, as both

functionalities can be combined if needed. The combination of these with other functionalities

of Java, like JUnit this test environment can be extended to a system for simulating and testing

a secure element and the DWP module.

5.2 Code implementation

To compare the considered DWP solutions, GPIO and PWM, a basic functionality for the

com-module(cf. �gure 4.2) was implemented. As both are based on the same algorithms (cf.

section 4.2), they will mostly di�er in the use of di�erent hardware components, this also

30

5 Realization

includes the use GPIO-pins and the PWM but also the delay compensation for the CPU. These

di�erences will be looked at in more detail below. The Test code for the GPIO solution is in

the Appendix section 9.4.1. The �nal code with the PWM solution can also be found in the

Appendix section 9.4.2.

The function of the S1 waveform analyses software is included in this section.

5.2.1 GPIO solution

To generate the S1 PWM-signal with GPIO-pins it is important to have an interrupt free

environment, otherwise CPU generated timing will be distorted when the CPU switches to

handle the interrupt. The interrupt free environment can be achieved in two di�erent ways,

the code can be executed in an ISR with the highest user priority itself or it has to be run in a

so called "critical section" where all interrupts are disabled. To implement �rst test-code this

was not necessary as there are no other applications running in parallel on the board.

For the �rst basic tests both program �ows in �gure 4.3 and 4.4 where implemented (Code

extraction for S1 cf. section 9.4.1). For the �rst tests to generate an input signal for S2 with

only one board, a debug-pin (designated GPIO-pin) was used and connected to the S2 input.

This debug pin was than adjusted at the end of the signal generating loop. The bene�t of

this integration of the input signal is, it always changes at the end of the bit-cycle, this

synchronization method is simple and e�ective for this use case. The disadvantage of this test

solution is, it can only be used during the �rst test phases, as it alters the timing characteristics

of the entire system, by adding additional processing time for setting the GPIO pin to the end

of the function.

To generate the timing compensation that is needed for the GPIO solution a macro with an

assembler No OPeration (NOP) command is used, for better code readability also a macro with

multiple NOPs was also used.

1 #define NOP1 asm("NOP");
2 #define NOP5 asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");

The use of delay compensation has the e�ect on the two �ows, that every IF-statement also

has an else path for the delay compensation (cf. 3.2.2). For visualization these NOP’s where

included into the �ow in �gure 4.4, as these are not needed for the PWM also the IF-path can

di�er from the GPIO.

31

5 Realization

5.2.2 PWM solution

The PWM is updated in an Interrupt Service Routine, the interrupt is generated by the PWM

module with the reset of the counter (cf. section 3.1). As the output signal is generated by

the PWM peripheral the timing is not as critical as in the GPIO solution. The only timing

constraint is, to read the S2 signal in time. As it has to be read-in during the high state of S1, it

has to be in the beginning of the ISR. As the ISR is periodically executed (PWM period) it is

e�ectively a loop that has to be broken when the communication is �nished. This is the case,

if no more bits have to be received or transmitted.(line 2 & 8) Also communication errors on

S2 have to be considered (line 9), a simple bit �ip in a received EOF could result in an in�nite

loop, the reader would interpret the faulty EOF as data and wait for a correct EOF sequence,

which cannot be received. If this error handling is not included this could potentially result

in a undesired bu�er over�ow. The loop in the PWM solution is stopped by disabling the

interrupt (line 10). During the shutdown sequence the MR1-register is set to a value higher

than MR0-register (line 11) for a continuous high signal. To detect a slave resume request the

interrupt on the S2 pin is turned on again (line 16).

1 //Break ISR Cycle if Communication is done
2 if (((S1_position) - (out_Frame->size_byte)) > 1) {
3 if (DWP_Bufferoutsize()) { // check for frame in out buffer;
4 out_Frame = DWP_getoutFrame();
5 S1_bufferout = 0;
6 S1_position = -2;
7 S1_buffermask = 0x01; // at least 1 Idle bit needed
8 } else if ((((S2_inbuffer & 0xFF) == 0) && (S2_input == 0))
9 || (S2_position > 32)) { //nothing to send

10 LPC_PWM1->MCR = (0 << 0) | (1 << 1); // IR disabled
11 LPC_PWM1->MR1 = (PWM_WAIT4 << 3); //MR1 disabled out of range
12 LPC_PWM1->LER = (1 << 1);
13 // -->Reseting all needed global variables not included here<--
14 g.rdr.wdtFeedUpdate=TRUE; //enable WDT
15 LPC_GPIOINT->IO0IntClr = S2_PIN; // CLR potential IR
16 LPC_GPIOINT->IO0IntEnR |= S2_PIN; // SET IR for slave request
17 }
18 }

Listing 5.1: Code section where the loop is stopped.

32

5 Realization

5.2.3 DWP interface

The DWP interface (cf. �gure 4.2; code cf. section 9.4.3) are two FIFO bu�ers, one for the

input and one for the output. They are designed to have a minimal timing delay on the timing

critical com-module side, as these are executed in the ISR. All time consuming activities, like

array copy, are on the state machine side. As the number of bu�er elements is written to by

the ISR and the FSM-tread it is needs to be protected by a critical section. In the interface are

also included the functions for appending and checking the CRC.

When a SOF is detected in the com-module, it gets a pointer from to the next empty in-bu�er

frame, the received data is then written to this frame. After detection of an EOF only the bu�er

counter is increased and a software interrupt is generated, the interrupt is needed for the time

consuming noti�cation of the state machines(cf. section 7.2).

5.2.4 DWP waveform decoders

For the analyses of a DWP communication sequence two waveform decoders were implemented

in Java. The �rst, more complex one is for the decoding of a waveform captured with a Picoscope

(USB powered oscilloscope), it was developed to decode the entire activation sequence between

an existing reader and a secure element. The data is �rst written into a csv-�le, this �le is then

loaded into the decoder. The decoder analyses both, the communication from and to the reader

(S1 and S2). The signal is decoded in steps:

1. The �le is read-in line by line and split into a string array containing the time and the

voltage of S1 and S2. The voltage is translated into a string with "1" or "0" representing

the high or low state of the signal. On a state change of S1 or S2 a new set of data

containing a time stamp and the S1 and S2 values is added to a list. When there is no

state change on the signals the data set is discarded, as it does not contain required

information. To determine the duty-cycle of S1, the time di�erence between two data

sets is analyzed.

2. In the second step the data in the list is translated into two strings, one for each signal,

of ’0’ and ’1’ representing the transmitted binary data. If the time di�erence between

two sets of data exceeds a predetermined value, it indicates that the communication

was suspended during this time. The two strings are than written to an output �le with

an indication for the end of a transmission sequence, for better readability the strings

are analyzed for SOF and EOF and converted to Hex values, potential stu�ng bits are

�ltered out during the conversion process.

33

5 Realization

A section of a decoded output of a communication sequence:

1 -----------Sequence---------
2 Host: 000
3 00000000000000000
4 Client: 0101010111111001101001100110110011010100000110001111000000101
5 101111111000000000000
6 Host:
7 Client: Bin: SOF 011010011001101100110101000001100011110000001011 EOF
8 Hex: SOF 699b35063c0b EOF

The second decoder was implemented to decode the content of a S1-signal with an oscil-

loscope. It was developed for an easier analyses and to have the capability in the test setup

(cf. section 6.1) to read-in the data send to the device. The oscilloscope has to be set up with

a speci�c con�guration, as the decoder makes use of its measurement capabilities. For this

a WaveScan [LeC] is used to analyze the duty cycle of the PWM. The "WaveScan" feature of

a LeCroy oscilloscope is designed to analyze a captured waveform, this makes it possible to

measure all displayed PWM-cycles simultaneously, each cycle is written to a table which can

be readout by the PC to be converted. The values are processed and can be displayed or further

analyzed. The processing in this decoder works with the same algorithm that is also used on

the S2 signal of the reader.

5.3 integration into the SaReader firmware

The SaReader �rmware running on the LPC1769 is based on FreeRTOS. Multiple threads for

di�erent tasks run simultaneously. For the communication with a secure element (SE), di�erent

communication modules can be loaded, each module implements a speci�c protocol. Already

included protocols are the contact based ISO 7816 and the contactless ISO 14443. If a module

is loaded on the SaReader a new task is created. The basic structure of this task is shown in

Figure 5.1.

1. On creation the task �rst initializes the module, for the DWP-module this includes the

input output bu�ers, the PWM, the ISRs and their priorities, semaphore for the input

bu�er, and all other needed variables. The output signals and the power for the device

under test are not set at this point.

34

5 Realization

init

Module

running

queue

receive

send

data seq.

start

module

kill

module

deinit

true

false
cmd: send

cmd: start

cmd: kill

timeout/ default

Figure 5.1: Basic program �ow of the main tread of each communication module. Command

(cmd) and data are included in the queue element

2. After initialization the tasks enters the modules main running loop, this loop can be

broken by di�erent termination conditions to exit the module. The xQueueReceive

command blocks and waits for user commands.

3. The �rst command to be sent has to be the activation of the device. With this step the

DUT is powered on and all signals are set to their required initial state, for the DWP

this is a rising the S1 signal to high.

4. After the activation the user can communicate with the DUT.

5. To deactivate the module the user sends a command to the queue, the local run variable

is set for the main loop to be stopped. During the deinitialization the used interrupts

have to be disabled, and all used memory needs to be cleaned up.

35

5 Realization

5.4 test-pa�ern generator

For generation of test signals for S2 a generator was implemented, it is also based on the

LPC1769, the �rst development version is not based on the RTOS and it can only send pre-

programmed messages. This very simple version is used for the �rst test, as well as sending

the same message multiple times without the need of a connection to a PC. The sending of

the message is triggered by an external signal, in combination with an function generator, the

message is sent periodically. Another bene�t is that the timing is always identical, as no other

tasks run in the background, this is especially important when balancing the timing of the

GPIO solution.

A second, more complex version is based on the SaReader �rmware it is integrated in the

�rmware as an independent module like the DWP-module. This requires the reader board

with a USB connection to a PC. The bene�t of this integration is, it can also be accessed the

same way as the SaReader, including access from di�erent programming languages. For the

input of S2 to the reader, the pin which is also connected to the DUT are used. This poses

a problem, as the pin is also driven by an optocoupler (cf. �gure 5.2). If the two sources try

to drive opposite voltage states, it can result in a voltage that cannot clearly be interpreted

by reading side. To avoid this interference, the connection between the reader-board and the

Figure 5.2: Section of the SaReader board circuit: The optocoupler is driving the S2 pin (IO1<)

of the LPC board, for connecting the test-pattern generator it needs to be severed.

LPC-board was severed for this pin, the boards are then connected to each other. A small board

with jumpers was developed and inserted between the LPC board and the SaReader board.

with the jumpers the input for LPC board can be selected.

36

6 Testing

6.1 Test setup

To test the implementations a basic test setup is needed. Some components like the Com-

module have to be tested on hardware. To test the timings and function on hardware, additional

equipment is required. The signal S1 has to be interpreted and evaluated to test the output.

For testing the input a S2 signal has to be generated. To merely test the output of the com

module it is not necessary to have an external source to generating a input signal S2 it can be

set to ground and no frames are received. But if both directions are tested, it is necessary to

generate a valid S2 frame. It is possible to generate the signal on the DWP board in the ISR,

but for an independent testing this is not a viable option, as the code has to be changed after

testing. Also the timing di�ers because of the included code in the ISR. To test independently

the setup in �gure 6.1 was used. This setup can be used for multiple hardware tests including

LPC-Pattern

generator
com Module

LPC-DWP

Main

Oscilloscope

PC

analyse SW

S1

S2

trigger

2 DBG pins

LAN

pattern

Figure 6.1: Test setup for testing timings and communication. S1 and S2 are recorded on

oscilloscope and analyzed by the PC.

37

6 Testing

timing tests of the output, but also simulating a device. For more �exibility and also to analyze

and debug the software on the LPC-DWP board additional GPIO pins are used (DBG pins).

For a simple input and output test the LPC-DWP board generates a trigger signal in its main

method. The pattern generator on the second LPC board starts transmitting a prede�ned

sequence. After the message is received by the DWP-board it is sent out on S1 to validate if the

message was received correct. The oscilloscope then analyses the waveform for the duration

of each PWM-cycle. The determined values can then be fetched by the PC, they are translated

to bytes again and then checked if they match the original message that was sent. If only the

output is tested, no trigger is sent and only the output function in the DWP module is used. S1

is analyzed the same way as before with the oscilloscope.

Even more complex tests like simulating a device are possible with this setup. To accomplish

this, a PC can send a pattern to the generator it is than processed and sent over the DWP

connection. A possible response can then be picked up by the oscilloscope and analyzed on the

PC. The bene�t is, this way it is possible to also partly test the state machines (cf. section 4.3)

on real hardware too. Possible problems are the timeouts of the state machines, due to the

increased processing and analysis time of the signals in the PC. To avoid this problem the

timeout values have to be increased or the timeout has to be turned o�.

6.2 Test Pa�ern

To test the implementation of the communication algorithm, de�ned in section 4.2, di�erent

test patterns are used. With these patterns it is possible to evaluate di�erent sections of the

code. Each pattern is designed for a speci�ed task. They can also be used to determine the

timing of code sections. All patterns can be used for both the S1 as well as the S2 signal. Each

pattern should begin with a SOF and end with EOF otherwise the bit steam may not be picked

up by the other side and is ignored. In table 6.1 some test patterns and their use cases are listed.

Of cause it is also possible to generate commands that trigger responses, the response can than

be checked whether it is valid.

6.3 Timing Analyzes

For the timing analyzes an oscilloscope is the optimal measurement tool. With the correct

settings it can analyze and prepare most of the data itself. The measured values can then

easily be analyzed. Each measurement should be run multiple times to also measure worst

38

6 Testing

Description Hex transmitted bit stream

default no data sent 0x00 00000000|00...

stu�ng test 0xFF 11111(0)111|11(0)11111(0)1|...

Stu�ed bit & bu�er reload

0x1F

0x0F 8

00011111|(0)1...

00001111|1(0)...

Toggle patterns

0xAA

0x55

10101010|10...

01010101|01...

Table 6.1: Selection of possible test patterns

case values in case of jitter or other timing e�ects. To verify the correct implementation of the

protocol the following timings have to be checked.

• Code duration:

To check the duration of a code fragment a GPIO-pin will be set to high state at the

beginning of the block and set to low at the end of this block. As a result a pulse is

generated, which can be measured. With the waveform analyses of an oscilloscope it is

possible to measure multiple pulses at the same time.

• the timing of S1:

The timing measurement includes the frequency and the duty cycle of the S1 signal.

These values have to be in the limit shown in table 2.1. For this measurement the

extended statistics of an oscilloscope can be used. The statistics include the minimum

and maximum values of all measurements which both have to be in the speci�cation

limit.

• Jitter during read-in of S2 in a ISR:

As speci�ed S2 has to be read during the high state of S1. This can be a problem with

the PWM solution as it uses a ISR. The duration to enter the interrupt service routine

can vary depending on other ISRs or critical sections running in parallel.

• Resume by slave time:

The host has to respond to a request by the slave in a max of 5µs. To resume the

communication di�erent steps have to be taken in this time frame, so measuring the

max resume time has to be veri�ed.

6.3.1 Problems with optimization in the GPIO solution

With compiler optimization set to -o3 the following problem emerged: The duration of the

C-code in listing 6.1 is static so it can be assumed, that the timing should always be identical

39

6 Testing

for each pass. An exception is the loading of a new value into the bu�er. In the table 6.2

an extraction of the timings for sending bytes with the value ’0xFF’ are listed. Stu�ng bits

where included but not measured, as they were generated outside of this code section. In this

extraction two e�ects can be pointed out. Further data shows that the default duration ∆t for

this code fragment is 5 cycles, if a new value is loaded into the bu�er a extend duration of 12

cycles is needed. The �rst e�ect that can be seen is, the duration for the �rst pass through is 2

cycles longer then for a normal pass. This e�ect was also seen in other measurements which

where analyzed.

The second more severe e�ect is, if a stu�ng bit was inserted the duration for the next processed

bit is 4 CPU-cycles longer. This type of e�ect can unfortunately not easily be countered in

the optimized C-code. A solution would be the use of no optimization, but in this case the

PWM solution with optimization has in the worst case almost the identical or even a better

transmissions speed. In the best case the ISR with the PWM is faster and the spare CPU time

can be used for processes in the background.

1 if (stf_count < 5) { //stuffing bits not included in measurement
2 LPC_GPIO1->FIOSET = S1_PIN; // for loading SET
3 LPC_GPIO1->FIOCLR = S1_PIN; // and CLR into register
4 NOP5 // WAIT
5 LPC_GPIO1->FIOSET = S1_PIN; //start of measurement
6

7 output = (output << 1); //shift bufffer
8 output += bit; //write bit to buffer
9 buffermask >>= 1;

10 if (buffermask == 0) { //to load new byte to buffer
11 buffermask = 0x80;
12 s->out_Buffer[position] = output;
13 output = 0;
14 position++;
15 } else { // reserved for NOP’s
16 }
17 LPC_GPIO1->FIOCLR = S1_PIN; // end of measurement
18 }

Listing 6.1: C-Code section of the measured timing.

40

6 Testing

Bit 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1

∆t 7 5 5 5 5 na 9 5 12 5 5 na 9 5 5 5 5 na 16 5

Table 6.2: Number of cycles needed for each iteration through the C-code after a stu�ng bit

was sent the number of cycles increases.

6.3.2 Slave resume time with PWM solution

To suspend the communication the PWM interrupt is turned o� and the second match register

value is moved out of range from the reset value. This way a second match event does not

occur and the signal stays in high state (cf. �gure 6.2). The PWM-MCR-register is set to disable

PWM period

MR0

MR1

t

counter

value

Figure 6.2: To suspend the PWM MR1 is moved above the MR0 value, this results in a continues

high signal. To resume the PWM MR1 is moved back and the PWM counter is set

to below MR1(red dot).

the interrupt, so the CPU does not enter the ISR and no processing time is lost. When the slave

signals the host to resume the communication, the match register and interrupt have to be

turned on again. The value of the PWM counter is between reset and max value. Dependent

on the counter the �rst match can occur somewhere in the period of the PWM. This e�ect

does not pose a problem, as long as the max value is within the limit. To visualize the e�ect

a persistent measurement is helpful. The oscilloscope measures multiple resumes and lays

them graphically on top of each other. Minimal and maximal resume time can then easily be

determined. This measurement can be seen in �gure 6.3. If the counter is not set to a speci�c

value the falling edge is somewhere in the time frame of the PWM. If the counter is set to a

�xed value, the PWM always resumes at the same position. The analyses of the slave resume

time also lead to another design change, in the �rst code version all variables where reset

before the resume of the PWM. This was changed and all variables are now reset when S1 is

41

6 Testing

without Counter set

Counter set to speci�c value

Counter match

Figure 6.3: Shifting PWM resume caused by not setting the PWM counter to a speci�c value

when resuming the PWM. Jitter: 4µs ≡ PWMperiod
(Persistent measurement without RTOS, measured on auxiliary signal as S1 could

not be used for a precise measurement cf. �gure 9.3)

put in suspended mode. Due to this change the resume time was cut by almost 4µs the time of

one PWM cycle.

6.4 Interrupt Latency with RTOS

On a comparison of �gure 6.3 where no RTOS was used and �gure 6.4 with a OS, it can be

observed that the OS generates jitter when entering an ISR. The latency applies to the slave

resume request, shown in �gure 6.4, as well as the PWM reset ISR, in �gure 6.6. For the slave

resume time the worst case, ∆t1max, with 2.85 µs is well below the speci�ed 5 µs(cf. table 2.1)

. The worst case latency for reading in S2 with 0.94 µs is barely within its limit of the 1µs

high phase set in the current PWM (measurement: cf. �gure 9.2). In both cases the ISRs have

the highest priority of all implemented ISRs. On the Cortex-M3 architecture lower priority

interrupts can be preempted by higher priority interrupts, the latency for a preempted interrupt

is 0. The delay can also be caused by a critical section in the Code, where all interrupts are

disabled. A precise analyses of the code revealed, that there is a critical section in the IDLE

thread running. To visualize and prove that this section is responsible, a GPIO pin is set and

cleared right before and after the critical section. If an interrupt occurs in the critical section it

is suspended until after this section but before the clear command of the GPIO pin. This results

42

6 Testing

∆t1min (S1)

S2

∆t2min

Figure 6.4: Interrupt latency measurement of the slave resume ∆t1 time with RTOS & PWM

counter reset . Setup time measurement with S2 and GPIO pulse in ISR.

Jitter: ∆t2max−∆t2min ≈ 550ns ; slave resume time: ∆t1max ≈ 2.85µs; number

of measurements: 2017

set GPIO critical section clr GPIO

Figure 6.5: Flow of critical section to visualize the e�ects of the ISR delay. The Interrupt is

delayed until after the critical section. This results in a longer pulse on the GPIO

pin.

43

6 Testing

C2

C3

C4

Z1

Z2

Figure 6.6: Time measurement from PWM reset to read in of S2 with latency caused by critical

section. Wide pulses on C3 caused by interrupt during critical section.

C4, Z1(green, yellow): PWM signal (S1); C2, Z2(red): readin of S2 �nished; C3(blue):

critical section; light blue area: measured time

44

6 Testing

in a longer pulse on this GPIO pin, as can be seen in �gure 6.6. The ISR latency correspond

exactly with an interrupt event that occurred during this critical section. Because the critical

section is passed through periodically roughly every 900 cycles it is very likely an interrupt

during this critical section occurs. The section is located in the idle thread of the SaReader

system and is caused by a watchdog feed. As this critical section poses a problem while the

PWM is running it has to be disabled. During the slave resume interrupt this is not a problem,

as the ISR does not require as strict timings as the PWM. Thereby the WDT-Feed can just be

disabled if the PWM is started and enabled when the communication is �nished. This can

be achieved with setting a �ag that is checked before the watchdog feed. If the �ag is set the

watchdog will not be feed and the critical section is not entered (cf. listing 6.2 line 14). This

�ag was added and the analyses in �gure 6.7 shows that with a disabled watchdog these timing

spikes don’t occur during the transmission. As the watchdog timer is set to 5 minutes, it does

not impact its functionality if the WDT is enabled when the communication is completed. Also

other timing sensitive interrupts could pro�t from this functionality of disabling this critical

section for a period of time.

1 //WDT_Feed function with a critical section
2 void WDT_Feed (void)
3 {
4 // Disable irq interrupt
5 __disable_irq();
6 LPC_WDT->WDFEED = 0xAA;
7 LPC_WDT->WDFEED = 0x55;
8 // Then enable irq interrupt
9 __enable_irq();

10 }
11

12 //...
13 //Code extraction of the IDLE-tread with WDT_Feed command and fix
14 if (g.rdr.wdtFeedUpdate) { //Flag To disable WDT_Feed
15 SET_DBG_Pin2 //Set GPIO H before critical
16 WDT_Feed();
17 CLR_DBG_Pin2 //Set GPIO L after critical
18 }
19 //...

Listing 6.2: Code extraction of the WDT-Feed function and the its call in the IDLE thread. With

the a global variable used in line 14 the WDT-Feed can be disabled.

45

6 Testing

C1

C2

C3

C4

Figure 6.7: Received frame with disabled WDT-Feed during the communication.

C1(yellow): S2 (slave to host); C2(red): S1 (host to slave); C4(green): readin of S2

�nished, cf. setup time left; C3(blue): critical section of the WDT-Feed

46

7 Timing driven Design Modifications

7.1 Changes to code positions

In a timing critical environment the position of the code can be signi�cant, as certain code secti-

ons need to be executed in speci�c time frame. Also a long execution time in the wrong position

can have impact, as timing requirements will then not be met. In the DWP implementation

this can be seen in multiple code changes.

• Variable initiation: In the �rst versions the initiation of the variables used for the

communication was done before the signal generation was started. This had of cause

impact on the length of the slave resume time, in a worst case scenario where the

interrupt from S2 was delayed due to a critical section it was possible to get timings

outside of the speci�cation limits. This problem was solved by resetting the required

variable during the shutdown sequence where the PWM-IR is disabled, here the increased

time consumption is less likely to impact the communication.

• Position of the slave resume in IRQ Handler: For the slave resume request the

EINT3_ IRQHandler is used. This handler is also used by other interrupt sources, UART

and other GPIO pins, the right positioning of the interrupt source check is essential, as

every check takes time. This becomes even more important if multiple interrupts occur

at the same time, they all are processed delaying the desired interrupt further. Sorting

the checks and execution by timing priority can minimize the risk of this problem.

• Interrupt acknowledge: The interrupt acknowledge can take around 300 ns (cf. read

measurements with the PWM in section 3.1), by not putting it in the beginning of the

ISR, as done for the readin of S2 it reduces the response time to the IR. As the Interrupt

occurs periodically it is ensured that the ISR is �nished before the next interrupt. For

this a period was chosen that is longer then the worst case execution time of the ISR.

47

7 Timing driven Design Modi�cations

7.2 Semaphores and �eues in RTOS

For the communication between threads, FreeRTOS provides semaphores and queues. Both

can block and wait for resources. The communication with the state machines is also based on

a loop with a blocking queue. For accessing a queue from an ISR, special macros are provided

in the FreeRTOS code. The timings of both semaphores and queues macros was tested as

they were to be used for communication with the state machines. As can be seen in the

measurements (cf. �gure 9.5 and 9.6) both durations are over 4 µs and thereby too long to be

used in the PWM-ISR, as the maximum duration of this ISR is equal to the PWM period with

4 µs.

In �gure 7.1 it can be observed that an interrupt is lost due to the long duration of the ISR. This

results in an unread S2 signal and potentially in a double sent bit on S1. As an alternative to

S2

S1

DBG1

DBG2

ISR duration

Figure 7.1: Measurement with a Semaphore_ give in the ISR. Due to the long ISR one Interrupt

is lost (one spike on DGB1 is missing in the marked area).

DBG1: ISR �nished; DBG2: sem_ give duration

the integration of the state machine noti�cation in the PWM-ISR the following concepts:

• Polling: To inform the state machines of a new received frame, polling could be used.

A counter with the number of frames would then be polled. The handicap of polling

is that CPU time is used that other tasks in the background could otherwise use, this

48

7 Timing driven Design Modi�cations

can result in an undesired delay in this tasks if they run in the background. Also the

watchdog needs to be fed to avoid a reset of the entire system.

• SW triggered interrupt: To not execute the queue send command in the main run-

time critical ISR a second lower priority ISR can be used. The advantage is, the time

demanding operations can be interrupted. To send to the queue only the faster software

interrupt is needed in timing critical ISR.

• Code positioning: The third solution is to move the queue send command to the end of

the communication where the PWM Interrupt is disabled. As no more data is transmitted

in this section a longer execution time has no impact on the communication. In this case

a separate counter would count the number of received frames. The drawback of this

solution is, the delay between the message arrival and the processing can be very long.

This problem particularly emerges if multiple frames are transmitted.

S2

S1

DBG1

DBG2

duration of SW-ISR

Figure 7.2: Measurement with a software interrupt in the ISR. Here no Interrupt is lost, as the

SW-ISR has a lower priority.

49

8 Conclusions

8.1 Results

The results of the measurements have shown that it is possible to achieve the required timing

speci�cation, on a pure microcontroller based system. But the thesis has also clearly shown

the limitations of the microcontroller, especially for faster communication speeds. In this

application type the communication between the CPU and the peripherals, especially the PWM

module, are the most time consuming operations due to the connection via APB. Also due

to the use of the required ISRs, valuable time is lost during the resulting context switches. A

second interesting aspect that was found is the problem of adjusting the processing length for

the GPIO solution, which is mentioned in section 6.3.1. As soon as the compiler optimization

is enabled it very di�cult to control the timing.

The measurement, with the persistent feature of the oscilloscope on the interrupt latency was

vital, as it revealed a critical section that was e�ecting all ISRs. It clearly shows the importance

of multiple measurements. In the case of the watch dog critical section, detection was rather

simple because of two factors:

• the ISR and the critical section were executed regularly.

• the interrupt also has a hardware generated signal, against which the delay of the IRQ

Handler could be measured.

8.2 Summery

The main goal of this thesis was, to analyze if it is possible to implement a Dual Wire Protocol

(DWP) communication with the required speci�ed timing parameters that are speci�ed by the

single wire protocol (SWP) speci�cation [ETS12], on an existing Cortex M3 microcontroller.

This µC is the base of an existing smart card reader, which is used for the validation of future

security devices. In the measurements of this thesis it turns out that the simplest solution to

achieve the needed timings is to implement a pulse width modulation (PWM) based solution.

In the beginning of this thesis the protocol basics, including the physical characteristics as

50

8 Conclusions

well as data structure of the protocol are presented. In addition the target-system options are

compared including the currently used microcontroller with the operating system .

On this base in chapter three the two possible microcontroller based solutions are further

analyzed, the �rst solution is a PWM with an periodic interrupt for the signal update, the

second is dependent on GPIO pins with idle instruction in the CPU to generate the required

timings. For this, di�erent timings are measured to evaluate if it is possible to accomplish the

required timings with the di�erent solutions.

After these analyses of the microcontroller the architecture for the system is developed (4.1).

For generating the correct transmission of the data on the physical layer two program �ows,

one for each direction, are designed. For the two required frame types of the DWP state

machines are designed for later protocol implementation For later testing and validation of the

system the base for a test-pattern generator is designed.

With these designs test code for both solutions of chapter three, as well as the interface

between the state machines and the communication module is implemented. Furthermore the

integration in the system of the SaReader is described. To test the system also the designed

pattern-generator and a waveform-analyzer for the DWP output are implemented.

In section 6.1 a setup for testing the functionality is shown. Di�erent analyses techniques are

discussed and problems presented that where found with these techniques. In the last chapter

design changes are demonstrated which result from timing issues that were exposed during

the testing of the entire system.

8.2.1 Prospect

During the thesis a full implementation of DWP-layers 1 and 2 on a µC of the given reader

system was developed. For a fully working solution of the DWP with real targets further steps

are required that are outside of the scope of this thesis:

• The implementation and testing of the DWP state machines, as they are required for the

activation and the communication with a secure element. A possible design is shown in

section 4.3.

• The implementation of the HCI state machine. The HCI protocol is used to send actual

APDUs (Application Protocol Data Unit) to the device.

• Testing with a physical device. In this step also problems can emerge that didn’t occur

before as only the simulation of a device was used.

51

8 Conclusions

• further optimization of the protocol. As the transmitting speed is based on the measured

worst-case-time, to increase it the duration of the ISR can to be reduced this could be

done for example by temporarily disabling the full duplex mode if only one side is

transmitting.

For future designs, the integration of an FPGA for a faster data transmission can still be

considered, this could probably also be a bene�t for other protocols. For the DWP the FPGA

could speed up the communication by the factor of 4 or even up to 8, if the secure element

supports faster transmission rates. Due to the design of the implemented software, for this

integration the com-module would simply have to be replaced. This can potentially make it

possible to also run di�erent reader designs. As the readers all should run the same �rmware,

to make them interchangeable, an identi�cation for the hardware con�guration would then be

required.

52

9 Appendix

9.1 Abbreviations & Definitions

ACT ACTivate LLC

CLT ContactLess Tunneling LLC

CRC Cyclic Cedundancy Check

EOF End of Frame

DWP Dual-Wire Protocol

FPGA Field Programmable Gate Array

GPIO General Purpose Input Output

ISR Interrupt Service Routine

LLC Logic Link Control

MAC Medium Access Control

PWM Pulse Width Modulation

SE Secure Element

SHDLC Simpli�ed High Level Data Link Control

SoC System on Chip

SOF Start of Frame

SWP Single-Wire Protocol

S1 signal from master to slave

S2 signal from slave to master

53

9 Appendix

9.2 Charts & Pictures

DUT / SE
LPC 1769

USB to PC

Figure 9.1: LPC1769 connected to the SaReader board and a secure element in a CLCC68 socket

54

9 Appendix

9.3 Measurements

Figure 9.2: Time measurement from PWM reset to read in of S2

Jitter: ∆t1max −∆t1min ≈ 480ns;
S2 worstcase: ∆t1max <

1
4T (940ns < 1µs)

55

9 Appendix

Figure 9.3: Persistent measurement of the PWM-resume without setting counter

Figure 9.4: Persistent measurement of the PWM-resume with setting counter

56

9 Appendix

Figure 9.5: Measurement of the execution duration of a Semaphore give function in the ISR

after a received frame.

Duration: 4,29µs

57

9 Appendix

Figure 9.6: Measurement of the execution duration of a Queue send function in the ISR after a

received frame.

Duration: 4,84µs

58

9 Appendix

9.4 Code

9.4.1 Generation S1 with GPIO

1 This code section is included on the CD.

Listing 9.1: Code extraction: Test code for the generating of S1 with GPIO pins, without needed

timing compensation.

9.4.2 Generation S1 with PWM

1 This code section is included on the CD.

Listing 9.2: Code for the generating of S1 with a PWM module.

9.4.3 DWP interface

1 This code section is included on the CD.

Listing 9.3: Code of the DWP interface with bu�ers.

59

Bibliography

[ARM] ARM. What is the true interrupt latency of Cortex-M3 and Cortex-M4 for interrupt

entry and exit? [Online; accessed May 2017]. url: http://infocenter.
arm.com/help/index.jsp?topic=/com.arm.doc.faqs/
ka16366.html.

[ARM15] ARM. ARM®Cortex®-M3 Processor. Technical Reference Manual. Rev r2p1. [Online;

accessed May 2017]. 2015. url: http://infocenter.arm.com/help/
topic/com.arm.doc.100165_0201_00_en/arm_cortexm3_
processor_trm_100165_0201_00_en.pdf.

[Bec17] Leo Becker. “Apple: Keine Verhandlungen mit Wikileaks über "Vault 7"”. In: C’t

(2017). [Online; accessed May 2017]. url: https://www.heise.de/
security/meldung/Apple-Keine-Verhandlungen-mit-Wikileaks-
ueber-Vault-7-3663486.html.

[Com] Comprion. Spectro TP. Fact Sheet. [Online; accessed May 2017]. url: https:
//www.comprion.com/fileadmin/user_upload/comprion/
Products/Spectro_TP/Spectro_TP_FS.pdf.

[Com16] Comprion. User Manual. Card Test Center. R2.6. 2016.

[ETS12] ETSI. ETSI TS 102 613. V11.0.0. 2012.

[Fin12] Klaus Finkenzeller. RFID Handbuch. 6. Au�age. Hanser, 2012.

[LeC] LeCroy. Feature:WaveScan. [Online; accessed May 2017].url:http://teledynelecroy.
com/features/featureoverview.aspx?modelid=2107&capid=
102&mid=556.

[Ltd16] Real Time Engineers Ltd. The FreeRTOS™Reference Manual. API Functions and Con-

�guration Options. Rev 9.0. 2016. url: http://www.freertos.org/
Documentation/RTOS_book.html.

[NXP16] NXP. UM10360. LPC176x/5x User manual. Rev 4.1 - 19 December 2016. 2016.

60

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka16366.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka16366.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka16366.html
http://infocenter.arm.com/help/topic/com.arm.doc.100165_0201_00_en/arm_cortexm3_processor_trm_100165_0201_00_en.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.100165_0201_00_en/arm_cortexm3_processor_trm_100165_0201_00_en.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.100165_0201_00_en/arm_cortexm3_processor_trm_100165_0201_00_en.pdf
https://www.heise.de/security/meldung/Apple-Keine-Verhandlungen-mit-Wikileaks-ueber-Vault-7-3663486.html
https://www.heise.de/security/meldung/Apple-Keine-Verhandlungen-mit-Wikileaks-ueber-Vault-7-3663486.html
https://www.heise.de/security/meldung/Apple-Keine-Verhandlungen-mit-Wikileaks-ueber-Vault-7-3663486.html
https://www.comprion.com/fileadmin/user_upload/comprion/Products/Spectro_TP/Spectro_TP_FS.pdf
https://www.comprion.com/fileadmin/user_upload/comprion/Products/Spectro_TP/Spectro_TP_FS.pdf
https://www.comprion.com/fileadmin/user_upload/comprion/Products/Spectro_TP/Spectro_TP_FS.pdf
http://teledynelecroy.com/features/featureoverview.aspx?modelid=2107&capid=102&mid=556
http://teledynelecroy.com/features/featureoverview.aspx?modelid=2107&capid=102&mid=556
http://teledynelecroy.com/features/featureoverview.aspx?modelid=2107&capid=102&mid=556
http://www.freertos.org/Documentation/RTOS_book.html
http://www.freertos.org/Documentation/RTOS_book.html

Bibliography

[RE08] Wolfgang Rankel and Wolfgang E�ng. Handbuch der Chikarten. 5. Au�age. Hanser,

2008.

[Rüs15] Kai Rüsberg. “Keyless gone”. In: C’t (2015). [Online; accessed May 2017]. url:

https://www.heise.de/ct/ausgabe/2015-26-Autodiebe-
tricksen-kontaktlose-Schliesssysteme-aus-3013915.html.

[Tro16] Theodore Albert Trost. “System and method for enabling a dual-wire protocol”.

US 9350831 B2. May 24, 2016. url: http://www.google.com/patents/
US9350831.

[Yiu14] Joseph Yiu. The De�nitive Guide to ARM®Cortex®-M3 and Cortex-M4 Processors.

Third Edition. Newnes, 2014.

61

https://www.heise.de/ct/ausgabe/2015-26-Autodiebe-tricksen-kontaktlose-Schliesssysteme-aus-3013915.html
https://www.heise.de/ct/ausgabe/2015-26-Autodiebe-tricksen-kontaktlose-Schliesssysteme-aus-3013915.html
http://www.google.com/patents/US9350831
http://www.google.com/patents/US9350831

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig verfasst und

nur die angegebenen Hilfsmittel benutzt habe.

Hamburg, 3. August 2017 David Niederwestberg

	1 Introduction
	1.1 Motivation
	1.2 Ambition
	1.3 Concepts of realization
	1.4 Chapter overview

	2 Technical overview
	2.1 DWP Protocol
	2.1.1 DWP Basics
	2.1.2 Timing constraints
	2.1.3 DWP-Frame structure
	2.1.4 Logical Link Control

	2.2 CRC calculation
	2.3 Target-system options
	2.3.1 FPGA
	2.3.2 Microcontroller

	2.4 Platform
	2.4.1 Spectro TP

	2.5 FreeRTOS

	3 Analyses of the current micro controller
	3.1 Timer and PWM
	3.2 GPIO
	3.2.1 C / Assembler
	3.2.2 delay compensation

	4 Architectural Design
	4.1 System structure
	4.2 Program flow for the communication
	4.3 State machine design
	4.4 Test-pattern generator design

	5 Realization
	5.1 Programming languages
	5.2 Code implementation
	5.2.1 GPIO solution
	5.2.2 PWM solution
	5.2.3 DWP interface
	5.2.4 DWP waveform decoders

	5.3 integration into the SaReader firmware
	5.4 test-pattern generator

	6 Testing
	6.1 Test setup
	6.2 Test Pattern
	6.3 Timing Analyzes
	6.3.1 Problems with optimization in the GPIO solution
	6.3.2 Slave resume time with PWM solution

	6.4 Interrupt Latency with RTOS

	7 Timing driven Design Modifications
	7.1 Changes to code positions
	7.2 Semaphores and Queues in RTOS

	8 Conclusions
	8.1 Results
	8.2 Summery
	8.2.1 Prospect

	9 Appendix
	9.1 Abbreviations & Definitions
	9.2 Charts & Pictures
	9.3 Measurements
	9.4 Code
	9.4.1 Generation S1 with GPIO
	9.4.2 Generation S1 with PWM
	9.4.3 DWP interface

