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Abstract 

The work detailed in the present document builds on top of the software provided 

by Prof.Dr. Robert Heß and exposes the development of a Graphical User Interface 

application that supports the workflow of the whole simulation process of a CT 

system, to serve as a tool for further research into the optimization of the contrast 

in medical images with the aim of reducing patient radiation doses.
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1 Introduction 

The discovery of the X-rays by W.C Roentgen in the late XIX century led to a tremendous 

development in the field of medical imaging. The fact that non-invasive procedures can yield 

the present level of accurate description of the internal constitution of the human body is as 

impressive and major as it is the work of all the scientists and engineers that have developed 

the related technologies. Computed Tomography (CT) scanners are used worldwide to 

support medical assessment, their capability of delivering a high contrast three-dimensional 

(in some cases with motion) reconstruction model of the examined human body sections 

make them not only intuitive for medical practitioners but also far superior to the 2D 

radiographic techniques [1]. 

Unfortunately, the leverage of the benefits of all the X-ray based medical imaging 

technologies, comes at the cost of exposing the subjects of examination to an unnatural level 

of radiation that brings with itself an inherent risk of developing cancer.  This level of 

exposure, generally qualified as dose, can certainly be controlled. However, it is proportional 

to the accuracy of the results of CT implying that a lower dose yields an undesired lower level 

of certainty in the medical images. The latter comprises a critical point of concern for all the 

people developing and using the CT technologies. 

Due to the underlying requirement for medical practitioners to be able to distinguish the 

different structures and tissue composition of the human body, the accuracy of the resulting 

models (or images) that are produced by CT-scanners can be characterized with the help of 

Contrast to Noise analysis. This measure can be thought of a target function for optimization 

of the imaging system, in the spirit of subjecting the patients to the lowest radiation dose 

possible achieving the needed accuracy of results for sensible medical assessment. This is 

imaginable since there are many variables related not only to the patient’s body structure, 

the examined body parts, but also the CT-scanner itself that can be fine-tuned and alter the 

contrast behaviour in the resulting images.  

Experimentally the process of optimizing the contrast of an image produced by a CT system 

involves several measurements for different configurations. This is not a tractable endeavour 

considering the logistics required for such experiments as well as the multidimensional space 

of all the variables that need to be explored. Nevertheless, the mathematical description of 
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the physical phenomenon taking place in a CT-scanner is possible and the optimization of the 

contrast in the resulting medical images can be tackled by simulating the system with 

software. 

Prof. Dr. Robert Heß ,lecturer from the Hochschule für Angewandte Wissenschaften(HAW) 

Hamburg implemented such simulation software, namely a mathematical model describing 

the physical functioning of a CT-scanner for a single slice two-dimensional reconstructed 

image. This is materialized in a command line application developed using the C++ 

programming language. The accuracy of this model is validated to the extent of the work 

presented in [2]. 

The work detailed in the present document builds on top of the software provided by Prof.Dr. 

Robert Heß and exposes the development of a Graphical User Interface application that 

supports the workflow of the whole simulation process of a CT system, to serve as a tool for 

further research into the optimization of the contrast in medical images with the aim of 

reducing patient radiation doses. 
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2 Theoretical background 

2.1 Photon Interaction with matter 
X-rays are known to have a very high material-dependant capability of matter penetration. 

However, the number of photons i.e., the radiation intensity, decreases exponentially while 

running through an object along the incident direction. This attenuation is due to absorption 

and scattering. The main phenomena driving this attenuation for the energy levels of medical 

imaging CT scanners are the photoelectric absorption, the Compton and the Rayleigh 

scattering [3]. 

The transmission of a monoenergetic photon pencil-beam through a material is described by 

an exponential equation 

  

𝐼(𝑥) = 𝐼0𝑒−𝜇𝑙𝑥  
 ( 2.1 ) 

 

Where 𝐼(𝑥) is the beam intensity transmitted through a thickness 𝑥 of absorber, 𝐼(0) is the 

intensity recorded with no absorber present, and 𝜇𝑙  is the linear attenuation coefficient of 

the absorber at the photon energy of interest [4].This coefficient is an additive combination 

of both scattering and absorption coefficients which are material dependent [3]. 

If the attenuation coefficients are extended to vary spatially and depend on Energy (2.1) 

can be extended as follows: 

 

𝐼(𝑠) = ∫ 𝐼0(𝐸)𝑒− ∫ 𝜇(𝐸,𝑥)𝑑𝑥
𝑠

0 𝑑𝐸
𝐸𝑚𝑎𝑥

0

 

 ( 2.2 ) 
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Where the argument of the exponential function is the line integral summing up the 

attenuation coefficients for an energy level over a distance 𝑠 [3]. 

The physical processes that are modelled with (2.1), namely the photoelectric effect, the 

Compton and Rayleigh scattering are briefly described next. 

The photoelectric effect 

This effect is an atomic absorption process in which an atom absorbs totally the energy of an 

incident photon. The photon disappears and the energy absorbed is used to eject an orbital 

electron from the atom. The ejected electron is called photoelectron [4]. 

 

Figure 2.1 Schematic representation of the photoelectric effect [4] 

Compton scattering 

This effect is a collision between a photon and a loosely bound outer-shell orbital electron of 

an atom. Since the incident photon energy greatly exceeds the binding energy of the electron 

to the atom, the interaction looks like a collision between the photon and a free electron. 

The photon does not disappear, instead it is deflected through a scattering angle 𝜃.The 

energy of the scattered photon is related to the scattering angle 𝜃 as follows: 

𝐸𝑠𝑐 =
𝐸0

1 +
𝐸0

0.511
(1 − cos 𝜃)

 

 ( 2.3 ) 
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Where 𝐸0 and 𝐸𝑠𝑐 are the incident and scattered photon energies in 𝑀𝑒𝑉, respectively [4].

 

Figure 2.2   Schematic representation of Compton scattering [4] 

 

Rayleigh scattering 

This type of scattering interaction occurs between a photon and an atom as whole. Because 

of the considerable mass of the atom, very little recoil energy is absorbed by the atom and 

the incident photon is therefore deflected with essentially no loss of energy [4]. 

 

2.2 Computed Tomography 
 

The main purpose of Computed Tomography is to measure and compute the spatial 

distribution of the linear attenuation coefficients 𝜇(𝑥, 𝑦). This value also often referred to as 

CT value is normalized to the attenuation coefficient of water. For an arbitrary tissue 𝑇 with 

attenuation coefficient 𝜇𝑇 the CT value is defined as: 

𝐶𝑇 𝑣𝑎𝑙𝑢𝑒 =
(𝜇𝑇 − 𝜇𝑤𝑎𝑡𝑒𝑟)

𝜇𝑤𝑎𝑡𝑒𝑟
∗ 1000 𝐻𝑈 

 ( 2.4 ) 

Where 𝐻𝑈 stands for Hounsfield units in honour of the inventor of CT. The CT value scale is 

defined by the two fixed points “air = -1000HU” and “water = 0 HU”. For every CT scanning 

unit, these fixed points are set using phantom measurements for each tube voltage value 

and each x-ray filtration choice available [1]. 

Figure 2.3 illustrates a frontal view of a third-generation CT scanner with its main geometrical 

features. The fan angle is described by 𝜑 and ∆𝜑 stands for the thickness of a single detector. 
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In these systems, the X-ray source moves along a circle trajectory determined by the 

coordinates (−𝐹𝐶𝐷 sin 𝛾, 𝐹𝐶𝐷 cos 𝛾) if the rotation of the system is counter clockwise. 𝐹𝐶𝐷 

stands for the focus centre distance, and 𝛾 stands for the projection angle defined by the 

central beam [3]. 

  

 

Figure 2.3  Geometry of Fan-beam CT scanners of the third generation [3] 

Even though systems of the third generation are mainly used in practice, the geometry of 

parallel projections i.e. systems of the first generation of CT (pencil-beam), is more intuitive 

to follow the mathematics of image reconstruction. In these systems, the X-ray source moves 

in parallel to the array detectors. Figure 2.4 presents an illustration of such geometry here 

the rotation angle of the X-ray source is depicted as 𝛾. 
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Figure 2.4  Illustration of a first-generation pencil beam CT system [3] 

 

The detector array of the CT scanner measures an intensity projection (shadow) for each 

angle in the rotation of the X-ray source. When these projections are arranged as a function 

of the rotation angle 𝛾 and the detector 𝜉 a Sinogram is achieved. This process follows the 

mathematical description of the Radon transform which for a two-dimensional case would 

stand as follows: 

𝑅2{𝑓(𝑥, 𝑦)} = 𝑝(𝛾, 𝜉) = ∫ ∫ 𝑓(𝑥, 𝑦)𝛿(𝑥 cos 𝛾 + 𝑦 sin 𝛾 − 𝜉)𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞

 

 ( 2.5 ) 

 

 

Where 𝛿 is the Dirac delta function, 𝑥 cos 𝛾 + 𝑦 sin 𝛾 is the Hesse normal form of a line 𝐿 

with a normal vector pointing to the origin of magnitude 𝜉  spanning an angle 𝛾 (in the 

context of CT the path of an X-ray beam) and 𝑓(𝑥, 𝑦) is the function transformed [3] [1]. A 

simple interpretation of this equation is to focus on the inner integral and use the sifting 

(masking) property of the 𝛿 function over the parametrized line 𝐿 ,then the outer integral 

only denotes the summation of the values of 𝑓(𝑥, 𝑦) along this line. Intuitively what is 

measured by the detectors of CT scanner is the X-ray intensity and not directly the 

attenuation coefficients of the test object. However, from (2.2) the line integral of the 

attenuation coefficients equals the natural logarithm of the ratio of the incident intensity and 

the intensity measured by the detectors [3] [1]. 
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Figure 2.5 b shows the Radon transform of a simple object composed of two rectangles 

depicted in Figure 2.5 a. Here the Radon transform is plotted in a Cartesian scheme showing 

the angle of the rotation of the system 𝛾 and the detector position 𝜉. From this graphical 

perspective, it is clear how the Sinogram name became a synonym of the Radon transform 

in the context of CT. 

 

 

 

Figure 2.5 Cartesian Radon space, Sinogram of a synthetic image  [3] 

 

a) Synthetic 256x256 pixel image. The homogeneous attenuation values of two 

objects are simulated by gray values set to 1. b) Cartesian Radon space of synthetic 

image provided in a (Sinogram). c) Radon space of the synthetic image in polar 

coordinates 

 

2.3 Image Reconstruction and Filtered Back Projection  
 

Image reconstruction implies finding the inverse Radon transform. For this purpose, the 

Fourier-slice theorem is introduced. Computing the Fourier transform of 𝑝(𝛾, 𝜉)(2.5) with 
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respect to the variable 𝜉 and using the masking property of the 𝛿 function on the argument 

of the exponential function: 

𝑃(𝛾, 𝑢) = ∫ 𝑝(𝛾, 𝜉)
∞

−∞

𝑒−2𝜋𝑖𝑢𝜉 = ∫ ∫ 𝑓(𝑥, 𝑦)𝑒−2𝜋𝑖𝑢(𝑥 cos 𝛾+𝑦 sin 𝛾)𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞

 

 ( 2.6 ) 

 

Comparing this result to the two-dimensional Fourier transform of 𝑓(𝑥, 𝑦): 

𝐹(𝑢𝑥 , 𝑢𝑦) = ∫ ∫ 𝑓(𝑥, 𝑦)𝑒−2𝜋𝑖(𝑢𝑥𝑥+𝑢𝑦𝑦)𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞

 

 ( 2.7 ) 

 

 

The identity that is known as the Fourier slice theorem is shown: 

𝐹(𝑢 cos 𝛾, 𝑢 sin 𝛾) = 𝑃(𝛾, 𝑢) 

 ( 2.8 ) 

 

 

Which can be interpreted as the Fourier transform of the projections with respect to the 

distance parameter 𝜉 being equal to the Fourier transform of the object (𝑓(𝑥, 𝑦)) expressed 

in polar coordinates (𝑢𝑥, 𝑢𝑦) = (𝑢 cos 𝛾, 𝑢 sin 𝛾).  

Performing the inverse Fourier transform of equation (2.7) with respect to the 

parametrization of 𝑢𝑥 = 𝑢 cos 𝛾  and 𝑢𝑦 = 𝑢 sin 𝛾 with the substitution of the variables of 

integration to 𝑢 and 𝛾 with 𝑑𝑢𝑥𝑑𝑢𝑦 = 𝑢𝑑𝑢𝑑𝛾 the following result is achieved: 

𝑓(𝑥, 𝑦) = ∫ ∫ |𝑢|𝑃(𝛾, 𝑢)𝑒2𝜋𝑖𝑢(𝑥 cos 𝛾+𝑦 sin 𝛾)𝑑𝑢𝑑𝛾
∞

−∞

𝜋

0

 

 ( 2.9 ) 

 

The inner integral of the equation corresponds to the multiplication of the Fourier transform 

of a projection on an angle 𝛾 with a ramp function |𝑢| which corresponds to a convolution in 

the spatial domain or a filtering process, in this case a high-pass impulse response. Finally, 

the outer integral corresponds to the actual back-projection i.e. the integration of the filtered 

projection over a sinusoidal curve 𝜉 = 𝑥 cos 𝛾 + 𝑦 sin 𝛾.This analytical method of deriving 

𝑓(𝑥, 𝑦) from the Radon transform 𝑝(𝛾, 𝜉) is called Filtered Back-Projection (FBP) [3] [1].  
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2.4 Contrast to noise ratio 
 

One of the most important features of CT in comparison to radiography is the capability of 

producing images of higher contrast. Image contrast is defined by the difference in intensity 

of two neighbouring picture elements or regions [1]. Noise is an inherent component in a CT 

image and an important measure to characterize image quality is the signal to noise ratio 

SNR: 

𝑆𝑁𝑅 =
𝑠𝑖𝑔𝑛𝑎𝑙 𝑙𝑒𝑣𝑒𝑙

𝑛𝑜𝑖𝑠𝑒 𝑙𝑒𝑣𝑒𝑙
=

𝜇

𝜎
 

 ( 2.10 ) 

 

Where 𝜇 and 𝜎 denote the mean and standard deviation of a signal. Unfortunately, the SNR 

in the context of CT is proportional to the square root of the dose, hence it can not be 

arbitrarily increased [3]. When the ideas of image contrast and SNR are considered for 

assessing image quality the contrast-to-noise ratio CNR is introduced: 

𝐶𝑁𝑅 =
𝐶𝑇𝑁1
̅̅ ̅̅ ̅̅ ̅ − 𝐶𝑇𝑁2

̅̅ ̅̅ ̅̅ ̅

√𝜎1
2 − 𝜎2

2

2

 

 ( 2.11 ) 

Where 𝐶𝑇𝑁1
̅̅ ̅̅ ̅̅ ̅ , 𝐶𝑇𝑁2

̅̅ ̅̅ ̅̅ ̅ and 𝜎1 , 𝜎2 are the mean and standard deviation of the CT values of two 

regions of interest (ROI) defined on the CT image. This expression is of great interest when 

comparing results coming from CT images of different systems, the work in [2] uses this ratio 

to compare the resulting images of a CT scanner and a simulation. 

 

2.5 Simulation Workflow 
 

The simulation process can be subdivided into 4 main activities: 

• Setting the simulation parameters. 

• Simulating the X-Ray transmission through an object. 

• Reconstructing the raw transmission data into an image. 

• Analysing the reconstructed image. 

An activity diagram of the overall workflow of an uninterrupted simulation is shown in 

Figure 2.6. Each of the stages is dependent upon results of one or more previous stages.  
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Figure 2.6  Activity diagram of a simulation workflow 

Generally, the simulation parameters can be subdivided into the following categories: 

1. Materials. 

2. Geometry of the X-Ray system. 

3. Incident beam properties. 

4. Test object (Phantom) properties. 

5. Image reconstruction settings. 

6. Regions of interest for the analysis. 

The X-ray simulation stage uses as inputs the settings of: the materials, the geometry of the 

system, the incident beam and test object data, and yields as an output the Sinogram (or 

Radon transform) of both the X-ray transmission as well as the noise in the form of standard 

deviations. This implies that the image reconstruction and analysis settings are independent 

from this stage and modifying them will not cause any effect in its result. 

The image reconstruction stage only takes into consideration its settings and the Sinogram 

and noise results coming from the X-ray simulation. Thus, this stage produces an image 

resulting from the filtered back projection algorithm of both sinograms. 

Finally, the analysis stage uses the definition of the regions of interest as well as an already 

reconstructed image, and yields as outputs measured values, namely mean, standard 

deviation and pixel count per region of interest. 

 

 

2.6 Architecture design patterns 

2.6.1 Model view controller 
 

The model view controller MVC architecture considers three roles. The Model is an object 

that represents some information about the domain. It encapsulates the appropriate data, 

and exports application-specific processing procedures. Controllers call these procedures on 

behalf of the user. The Model also provides methods to access its data that are used by View 

components to acquire the information to be displayed. The View represents the display of 
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the Model in the user interface. The View only displays information, the actual changes to 

the information are handled by the Controller. The Controller takes the user input and 

manipulates the Model which causes the view to update appropriately. The change-

propagation mechanism maintains a registry of the dependent components within the 

Model. All the Views and selected Controllers register their need to be informed about 

changes. Changes to the state of the model trigger the change-propagation mechanism [5] 

[6]. 

 

 

Figure 2.7 MVC role description and interactions [7] 

 

 

2.6.2 Model view presenter 
 

Model view presenter leverages on the ideas of MVC and aims as well for the separation of 

the functionality among the different abstractions within an application with a GUI. The View 

in MVP holds the structure of the widgets that compose a GUI, it doesn’t contain a definition 
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of how these widgets should behave to user interaction. The handling of the actions started 

by the user take place in the Presenter. The fundamental handlers of user input exist in the 

widgets however, they are forwarded to the Presenter. The update of the View by the Model 

could happen in the same manner as in MVC shown in Figure 2.7, nevertheless one of the 

variations of this approach: Passive View involves a complete update of the View guided by 

the Presenter. This approach is highly beneficial for testing purposes [7] [8]. Figure 2.8 depicts 

the roles and interactions of MVP using a Passive View. 

 

Figure 2.8 Interactions between the roles of MVP [10] 

 

2.7 wxWidgets 
 

wxWidgets is an open source toolkit for writing desktop or mobile applications with graphical 

user interfaces (GUIs) in the C++ programming language. It is a framework in the sense that 

provides default application functionality and eases the software implementation. The 

wxWidgets library contains a large number of classes and methods for the programmer to 

use and customize, it is a cross-platform framework that besides providing GUI facilities also 

provides classes for files and streams, multiple threads, application settings, inter-process 

communication, online help, database access among others. 

A very distinguishing feature of wxWidgets is the fact that it provides native look and feel. 

wxWidgets uses the native widgets of the Operating System (OS) where it is deployed 

whenever it is possible. wxWidgets is a very mature project with a large and very active 

community [4].
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3 Requirement Specification 

In a general statement the main requirement of this work is to provide a graphical user 

interface application that fully encapsulates the workflow of the simulation of X-rays in the 

context of computed tomography images shown in 2.5.  

Target users of the solution are preferably engineering students or professionals with an 

affinity for software development and the X-ray field of studies. This means that the software 

delivered with this work is not intended for commercial purposes. All the concepts, 

parameters, views and layout assume from the final user a minimum degree of familiarization 

not only with X-rays but also technicalities such as the programing languages used, the 

frameworks, libraries and architecture of the software deliverable of this thesis. The latter 

implies that the spirit of the software presented in this document is to be a tool that can also 

be extended by the user. 

 

3.1 Previous work and existing code 
 

As a starting point for the development of the main deliverable of this work, a fully functional 

command line application was provided. It supports the whole simulation workflow 

described in 2.5. All the algorithms following the mathematical models that simulate the X-

ray transmission, the filtered back projection as well as the analysis on the regions of interest 

is readily available.  

A copy of this work is included within the digital material attached to this document. This 

application was developed fully using the C++ programming language and the Microsoft 

Visual Studio IDE. 
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Figure 3.1  Home screen of the command line application for simulation of CT 

3.2 Technical requirements 
 

The graphical user interface application delivered with this work must comply with the 

following technical specification: 

• It must be programmed using the C++ language and built with the MSVC 14 

compiler or more recent. 

• It is deployable under a Windows 10 environment. 

• It is as responsive timewise at least as the existent command line application. 

• It capitalizes on solid object orientation to provide further extensibility of the 

abstractions already in place, namely the test-object related classes.   

• It reuses the functionality already available in the implemented classes that are 

related to the mathematical models used for simulation. 

 

3.3 Functional Requirements 

3.3.1 Parameters 
 

In the spirit of enhancing the final user experience in the sense of conducting different 

scenarios of the whole process of simulation, the functionality of the graphical user interface 

implemented must support modifying all the parameters already in use by the algorithms 

provided for X-ray simulation, image reconstruction and analysis in the existing command 

line application. Furthermore, the outputs of each of these simulation stages must be 

presented at runtime within the working areas of the interface.  The parameters that must 

be configurable through the delivered application are listed next. All the required value 

ranges for the parameters already in place in the command line application provided are 

taken as a basis, nevertheless a couple of additional fields are introduced. 
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Materials 

The delivered software should support the management of an arbitrary number of materials, 

namely it must provide the functionality for adding, deleting and editing them. Every material 

consists of an arbitrary number of elements. Each element considers an atomic number and 

a fraction. Additionally, every material must have a name, a density and can be assigned a 

colour to be painted within the model of the test objects.   

The ranges of the mentioned parameters can be summarized as follows: 

 

 

Field Existing parameter 
representation 

Value range 

Material name Alphanumeric string N/A 

Density Number with 4 decimal 
places 

0.001,…,999 

Colour N/A 0,…,2^24 

Atomic number of 
Elements 

Integer number 1,..,100 

Fraction Number with 4 decimal 
places 

1,…,100 

 

Table 3.1  Material parameters 

Geometry 

The geometry of the CT system modelled by the software can be summarized by the 

following parameters and their respective value ranges: 

Field Existing parameter 
representation 

Value range 

Radius of focal spot Integer number 1,…,1000 

Fan angle in degrees Integer number 1,…,180 

Number of detectors Integer number 1,…,9999 

Detector thickness Integer number 0,…,99 

Number of projections Integer number 1,…,9999 

 

Table 3.2  Geometry prameters 

Incident beam 

The incident beam parameters are summarized as follows: 

Field Existing parameter 
representation 

Value range 

Tube voltage Integer number 80,100,120,140 
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Beam hardening material Integer number Representing an index of the 
existing materials 

Current-time product Number with 4 decimal 
places 

0.0001,…,1000000 

 

Table 3.3  Incident beam parameters 

Additionally, physical filters are simulated in the trajectory between the X-ray tube and the 

test object. Functionality for adding, editing and deleting these filters must be provided.  

Each of these filters has a name, material and thickness, and can be also defined by an 

arbitrary number of bowtie samples which are defined by an angle with respect to the focal 

point of the beam and a thickness in millimetres. 

Field Existing parameter 
representation 

Value range 

Filter name N/A Alphanumeric string 

Material Integer number Representing an index of 
the existing materials 

Thickness Number with 2 decimal 
places 

0,…,20 

Angle of bowtie sample Integer number 0,…,15 

Thickness at bowtie 
sample 

Integer number 0,…,200 

 

Table 3.4  Filter parameters 

Test object, (Phantom) 

Two existing two-dimensional test objects were provided with the command line application 

and the software delivered should provide basic functionality to manage them. These test 

objects and their respective configurable settings are presented next. 

Head phantom: composed of 6 cylinders – circles in the context of a single slice. These 

represent a cover, a filling and 4 details. Each of the details has a radius, a position defined 

by x and y coordinates and an index corresponding to a material in a list of all the available 

materials.  The parameters for a single detail and their corresponding value ranges are as 

follows: 

 

Field  Existing parameter 
representation 

Value range 

Radius  Number with 1 
decimal place 

0.1,…,1000 

X position  Integer number Representing an 
index of the existing 
materials 
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Y position  Integer number 0,…,20 

Material Index  Integer number 0,…,15 

 

Table 3.5  parameters of the cyllindrical geometry of head and cyllinder phantoms 

 

The parameters for the cover and the filling are only the radius and material index, the 

combination of the two radiuses defines the thickness of the cover and the extent of the 

filling. 

Cylinder phantom: described geometrically as a single cylinder. Just like the cover or filling 

it is only defined by the cylinder radius and a material index. 

An illustration of a possible 2-dimensional cross section of these test objects is shown in 

Figure 3.2. 

 

 

 

Figure 3.2 Illustration of the geometry of the existing test objects 

 

Image Settings 

The parameters of the image reconstruction can be summarized as follows: 

Field Existing parameter 
representation 

Value range 

Number of pixels in x 
direction 

Integer number 1,…,4096 

Number of pixels in y 
direction 

Integer number 1,…,4096 

Centre position in x 
direction 

Integer number -500,…,500 

Head phantom Cylinder phantom 

Cover 

Filling 

Details 

Filling 
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Centre position in y 
direction 

Integer number -500,…,500 

Pixel size Number with 4 decimal 
places 

0.001,…,100 

 

Table 3.6  parameters of the reconstructed image 

Regions of interest (ROIs) 

The software is meant to support an arbitrary number of regions of interest for the analysis 

of the reconstructed image. Each region of interest is defined by a shape, its size and 

coordinates, and can be added, edited or deleted. The parameters per ROI can be 

summarized as follows: 

Field Existing parameter 
representation 

Value range 

ROI type A discrete value Disc, rectangle 

Centre position in x 
direction in mm 

Integer number -999,…,999 

Centre position in y 
direction 

Integer number -999,…,999 

Size in x direction Number with 4 decimal 
places 

0.001,…,999 

Size in y direction Number with 4 decimal 
places 

0.001,…,999 

 

Table 3.7  parameters of regions of interest ROIs 

3.3.2  Client area and presentation of results 
 

As shown in section 2.5, the X-ray simulation, image reconstruction and image analysis yield 

results that are of interest for the user. The presentation of these must be undertaken within 

the application to be delivered, namely: 

• Two Sinogram images resulting from the x-ray transmission simulation, one for the 

noiseless transmission data and one for the noise. 

• The image resulting from the reconstruction. 

• The count of pixels, mean and standard deviation for each ROI defined for the 

analysis. 

Additionally, each one of these images and data could be exported to a file of their own. i.e. 

The images to a compatible image format, and the results of the analysis to a CSV (comma 

separated values) file. Furthermore, the results coming from different analysis runs within 

the same session are not discarded but also displayed and can be exported. 
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Finally, each of the modelled test objects currently existing (head and cylinder phantom) 

should support the means of providing an illustration of their geometry consistent with their 

respective settings as well as the material configuration. This illustration should be drawn as 

well in the client area. 

All the data that is presented as images in the client area needs to be drawn following the 

directions of the axes: horizontal (x-axis) pointing to the right, and vertical (y-axis) pointing 

down. 

3.3.3 Storage and data persistence 
 

It is of paramount importance to be able to reproduce simulation results, for this the settings 

of each individual simulation stage need to be persistent over time. To achieve this the 

implementation of the deliverable software must support loading and storing of the 

parameters so that the algorithms running the actual simulation can yield the same results 

over different sessions. 

This functionality must be implemented using the XML object description language in files of 

the same extension. The provided command line tool already supports this behaviour for 

some of the classes using the C++ libxml library, however a formal requirement is to re-

implement the existing functionality and extend it by the usage of the XML facilities provided 

with the wxWidgets framework. 

3.3.4  Behavioural aspects 
 

The command line application provided as basis for this work splits the simulation process 

into stages as per chapter 2.5. This incremental division of the simulation is also required for 

the GUI application involving as well the presentation of the intermediate results. Emphasis 

is placed in the fact that the application state, i.e. the results displayed and controls used 

must coherently follow the state of the simulation. 

 

3.4 Other Requirements 
 

Open source dependencies: As stated earlier the software deliverable is intended as a tool 

that ideally will be further developed and will serve mainly academic and research purposes. 

Building on top of open source libraries and finally delivering as an open source is an expected 

feature.  

wxWidgets is the framework to be used to build the graphical user interface, this is coherent 

with the open source perspective and encouraged by the first examiner of this work. A 
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modern graphic layout is expected, namely a ribbon top menu with a client area for 

presenting purposes. 

Intermediate result data persistence: Strictly speaking the overall input parameters of a 

complete simulation should be enough to reproduce the intermediate results of the 

composing simulation stages, i.e. the Sinograms, the reconstructed images and the 

corresponding metrics for each ROI. Nevertheless, providing storage of these intermediate 

results could be of use for future analysis, considering the time and computational cost of 

the simulation.  
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4 Design of the solution 

4.1 General layout of the user interface 
Following the requirements specified in the previous chapter, the navigation through the 

application must be implemented by using a top ribbon bar which supports the following 

functionality: 

• Management of the session data of the simulation: Storing and loading simulation 

files with their relevant settings. 

• Parameters modification: Access to all the parameters as per subsection 3.3.1 for 

the simulation process. 

• Control of the simulation workflow: The application provides access to the 

algorithms for X-ray simulation, reconstruction and analysis of regions of interest. 

Furthermore, the application follows a state behaviour coherent with the simulation 

workflow. 

• Visualisation of results: For each simulation that provides an output the application 

must be able to present it in a sensible manner for the user. 

Following this guideline, the main window’s application layout is subdivided as follows: 

• A ribbon bar with the following panels: 

o File: with the controls needed for loading and saving a file including the 

intermediate results available at current state of the simulation. 

o X-ray settings and materials: With the controls needed to add, delete and 

edit materials, as well as access to the parameters regarding the CT system 

geometry, incident beam and test object. 

o Reconstruction and analysis: consisting of the controls providing access to 

the image settings ad regions of interest (ROIs). 

o Simulation control and view: comprising the required controls to run each 

stage of the simulation as well as to set the displayed results in the client 

area. 

• A client area that presents the intermediate results of the simulation, i.e. Sinograms 

of x-ray transmission and noise, the reconstructed image and the metrics for each 

region of interest specified. 
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The grouping of the user interface controls in such ribbon pages is due to mainly the 

functionality previously detailed secondly: a coherence for the intermediate results that the 

parameters relate to and a less importantly: the space of the window (e.g. Reconstruction 

and analysis page) 

 

Figure 4.1  Layout of the main window of the application 

 

Some of the parameters specified in chapter 3 support an arbitrary number of instances. 

These are mainly the materials, the filters and the regions of interest. Instances of these 

abstractions can be added, deleted and modified. To accomplish this functionality separate 

dialogs are needed for adding and editing each of the instance’s parameters. Additionally, 

each of the test objects implements its own dialog to provide access to its parameters.  To 

summarize the additional dialogs needed are: 

• Material dialog 

• Filter dialog 

• ROI dialog 

• Head-phantom dialog 

• Cylinder dialog 

Each of them gives access to the corresponding parameters as per section 3.3.1. 

4.2 Simulation State Behaviour 
 

In the context of the simulation workflow detailed in section 2.5, the direct independence of 

some settings from different simulation stages leads to a more general categorization of the 

parameters. 

 

 

Ribbon panel area 

File X-ray settings and 

materials 

Reconstruction and 

analysis 

Simulation control and 

view 

 

 

 

Client area 
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•  X-ray simulation parameters 

• Reconstruction parameters 

• Analysis parameters 

The next table summarizes the preconditions and results yielded by each activity given this 

grouping of the parameters. 

Activity Preconditions Results 

X-ray simulation (Radon 
transform) 

X-ray Simulation 
parameters 

Sinogram of X-ray transmission 
and Noise 

Reconstruct Image 
(Filtered Back 
Projection) 

Reconstruction 
parameters, 
Available Sinogram data of 
X-ray transmission and 
Noise 

Reconstructed image 

Analysis Analysis parameters, 
available Reconstructed 
Image 

Pixel count, mean and standard 
deviation of regions of interest 
specified in the reconstructed 
image. 

 

Table 4.1  Preconditions and results  of the simulation stages 

Figure 4.2 presents an alternative activity diagram considering again an uninterrupted 

simulation, however this time the configuration of the parameters is split following the logic 

above, and hence happening before each corresponding simulation stage that produces an 

output. This new outline also introduces validation points after all the simulation stages that 

generate outputs, redirecting the flow to the corresponding parameter configuration. This 

different perspective of the workflow of the whole process is relevant since it illustrates the 

iterative nature of experimentally testing the outcomes of the mathematical model behind 

each simulation stage i.e.  how do the results vary with respect to changes in the 

corresponding settings. Even thought this perspective of the simulation process is slightly 

more complex, it depicts how the overal workflow can be further subdivided, and provided 

the results of all the intermediate stages can be stored, this alternative workflow shows  as 

well how the simulation could be possibly interrupted and resumed. 
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Figure 4.2  Activity diagram of the simulation with intermediate validation points 
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Following the conclusion that groups of parameters are exclusive for individual stages, the 

states of the simulation process with their transitions can be seen in figure 4.4.  Every 

transition forward in the states i.e. along the direction of the simulation workflow towards 

the analysis results, is achieved by running a specific algorithm. These specific transitions 

consume a subset of the overall simulation settings and yield their corresponding outputs. 

The following table details the results available at each state within the simulation. 

Simulation State Results Available 

Nothing run None 

 
X-ray simulation run 

• Transmission Sinogram 

• Sinogram of noise in standard 
deviations 

 
 

Reconstruction run 

• Transmission Sinogram 

• Sinogram of noise in standard 
deviations. 

• Reconstructed image 

 
 
 

Analysis run 

• Transmission Sinogram 

• Sinogram of noise in standard 
deviations. 

• Reconstructed image 

• Statistics of the regions of interest 
within the reconstructed image 

 

Table 4.2  Results availabe at each simulation state 

 

The cumulative nature of the results only highlights how every stage leverages upon the 

previous one, this conclusion is also evident in the state diagram, however the fact that the 

settings are split into groups that relate only to an individual simulation stage could be 

exploited to revert only to a state that might already include intermediate results. The latter 

is of relevance mainly for the X-ray simulation and reconstruction algorithms that are 

computationally expensive.   

The transitions; backwards in the context of the simulation workflow, are depicted in Figure 

4.3 with the modification of the parameters that would trigger them. 
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Figure 4.3  State diagram of the simulation considering parameter modifications 

 

If data persistence can be guaranteed by the delivered software for all the results and 

parameters at every state, the simulation can also be interrupted and resumed in different 

sessions, this is also a motivation for the state division of the simulation workflow. 

 

4.3 Architecture and separation of concerns 
 

One of the main aspects to consider to develop the application presented in this work is how 

the newly developed graphical user interface classes and code integrate with the underlying 

command line application facilities that are already implemented, namely the algorithms 

involving the radon transform, the filtered back projection and the analysis of the regions of 

interest. These algorithms constitute a big portion of the domain logic of the application. 

Consequently, the design of the software must mainly focus on the presentational logic and 

the complementary adaptations the existing code must be subject of. 

wxWidgets as a GUI framework not only provides access to the native controls of the 

operating system but also implements basic functionality such as method binding to user 

triggered events as well as extended functionality for common use cases (message dialog 
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display, file explorer integration among others) [7]. For a simple application, the domain and 

presentational logic can be well specified within the event handlers of each GUI control. 

The simulation state behaviour in the previous section exposes how the presentational 

aspects of the GUI must be dynamic and coherent. In a trivial case, when the application 

starts, since no simulation has been run, no result must be available and the GUI functionality 

related to results of stages that depend on intermediate outputs (image reconstruction or 

ROI analysis) must be disabled. Extending this idea further, when the simulation has reached 

an intermediate state, a change in a parameter that reverts this state should disable or alter 

the GUI controls accordingly. This dynamic aspect of the GUI hint the need for a more general 

design than just embedding all the functionality in event handlers. 

Two design approaches where evaluated for this purpose, these are the Model-view-

controller MVC and Model-view-presenter MVP design patterns. As stated per 2.6. the MVP 

pattern is a specialisation of the MVC.  Both approaches were considered since MVC (and 

consequently MVP) is a design pattern that mainly tackles the separation of the presentation 

layer and the domain models of the application [5] [8] [6]. 

In the context of this work the Model is the abstraction of the simulation: the staged 

transformation of input parameters into a set of results that holds a state. The View would 

mainly comprise the GUI controls directly related to the outputs of the simulation 

(Sinograms, image and ROI statistics) and the input parameters coherent with these results. 

The main question is what abstraction do the controls that drive the changes in the state of 

the simulation (parameter and button event handlers) should follow, and the answer resides 

with the decision between of what suits best among a controller or presenter to the 

application. This decision is mainly a matter of complexity of implementation and 

maintenance. The latter is a crucial point since this work is meant to be a development tool, 

i.e. it should readily provide further extensibility and more importantly it should not hinder 

the main purpose of the application delivered, which is to provide a framework to evaluate 

the dependence of the contrast to noise analysis on the parameters for CT simulation. 

The sequence diagram of Figure 4.4 depicts the call mechanism of a normal parameter 

change of a hypothetical implementation of MVC. The SimulationView would comprise any 

of the UI objects that present to the user the outputs of the simulation (bitmaps, tables) or a 

text control holding an input parameter coherent with the simulation state. The 

SimulationController would comprise the UI functionality that trigger the changes in the 

SimulationModel given a user command (mainly button and parameter event handlers). 

Finally, the SimulationModel encapsulates the simulation logic (the existing algorithms and 

their outputs) and updates the SimulationView whenever it state changes.  
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Figure 4.4 MVC user parameter change interaction 

 

In this architecture, the SimulationView is only updated by the SimulationModel and ideally 

the SimulationController and the SimulationView are completely isolated. A technical way to 

achieve the Model-View relationship could be by configuring the updating methods of the 

SimulationView to listen to events within the SimulationModel.  For example, a panel with a 

bitmap in the client area of the application will listen to a custom event dispatched by the 

simulation model every time the Filtered Back Projection algorithm is run so that the bitmap 

is loaded with the image resulting from the algorithm.  

Although this choice of architecture does achieve a separation of presentation and domain 

logic there are a few disadvantages: 

• The implementation of the Model-View interaction is not trivial, and in the spirit of 

further development of the application, it might only yield in hindering the simplicity 

of the source code. 

• The wxWidgets framework implicitly encourages combining both View and Controller 

objects when defining windows elements like dialogues or frames that serve as 

containers for both declaration of UI and event handling. Enforcing a division of these 

two concepts might as well just overcomplicate the final solution. 

 

An alternative design strategy is the Model-View-Presenter architecture, Figure 4.5 shows 

the sequence of calls of a user interacting with the application.  

The SimulationView represents any of the GUI controls related explicitly to the simulation 

(parameters, results) and their respective event handlers. The SimulationView outsources 

the handling of events to the SimulationPresenter which controls the changes in the 

SimulationModel and the corresponding synchronisation of SimulationView. 
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Figure 4.5  MVP user parameter change interaction 

 

The choice of this design pattern is preferred to the previously introduced MVC 

implementation since it presents the following advantages: 

• Reduces the View abstraction ideally to declarative programming, i.e. mainly the 

construction of the GUI and forwarding event handlers. This is desired in the sense 

that the entire GUI can be replaced with a different user interface and it enables a 

better setup for unit testing. 

• Delegates the synchronisation of the View and the Model to the Presenter in a way 

that doesn’t overly compromise complexity. 

The MVP design is therefore chosen for structuring the software classes, there are exceptions 

to the extent of the strictness of the implementation presented in this work. These 

relaxations have been made for the sake of simplicity. MVP was mainly used to control the 

state nature of the simulation model and the synchronization of the GUI. In cases where this 

was not necessary, the structure of forms and event handlers implicitly supported with 

wxWidgets is preferred. This is the case of exporting images and editing local data within the 

View. 

Figure 4.5 illustrates the architecture of the GUI application inspired in the MVP design 

pattern. The classes cInputData, cFBP and cCTRawData are provided in the command line 

application that served as a basis for this work. cInputData comprehends all parameters of 

all the simulation stages, cFBP implements the image reconstruction algorithm and 

cCTRawData implements the X-Ray simulation algorithm. cAnalysis implements the last stage 

of the simulation where statistics per each ROI are computed, this functionality was originally 

included in the cFBP class in the command line application but in the spirit of having 

abstractions for each one of the stages, the analysis is specified separately in its own class.  
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The four classes representing the four stages of the simulation are aggregated into a 

cSimulation class which is mean to hold the state of the simulation abstraction. It also 

provides the endpoint for storage in the filesystem. This class integrates the domain logic and 

stands in the context of MVP as the Model. 

ctMainFrame is the class that encompasses the GUI declaration and construction, it extends 

the corresponding wxWidgets classes to implement the main window, the ribbon bar and 

client area. This class would stand for the View in the context of MVP, it holds a local instance 

of cInputData to be later synchronized with the cInputData object of the Model by the 

Presenter. 

Finally, cSimulationPresenter is the intermediate class that holds a reference to a single 

ctMainFrame and cSimulation instances. This class mainly synchronizes the states of the 

ctMainFrame and cSimulation objects and implements the logic of the event handlers that 

drive the state of change in the cSimulation object.  

 

Figure 4.6  Class diagram with the main classes of MVP for the GUI application 



Implementation Details  32 

 

 

5 Implementation Details 

5.1 Graphical Layout 
 

The navigation through the application is achieved by the usage of a top ribbon bar that is 

subdivided in four pages: File, X-ray settings and materials, Reconstruction and analysis and 

Simulation control and view. The results of each individual simulation stage are presented in 

the client area under the ribbon bar.  Figure 5.1 shows the layout after a full run of a 

simulation with the client area displaying both the reconstructed image and a table with the 

results of the analysis for each region of interest. 
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Figure 5.1  Layout of the GUI application after a full succesful run of a simulation 

File page 

 

This page will manage the storage and loading of simulation files, it consists of three buttons 

for opening, saving and saving copies of simulation files, as well as three checkboxes that 

enable the storage of intermediate results of the simulation whenever available. The 

transmission data stands for the two sinograms of the X-ray simulation, the reconstruction 

image is self-explanatory and the “last analysis” refers to the fact that more than one analysis 

can be run and exported eventually from the client area, however the analysis stored in a 

simulation file is only the one that is consistent with the settings of the simulation, therefore 

the last one that is successfully run. 
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Figure 5.2 implemented layout of the file page of the ribbon bar 

X-ray settings & materials page 

This page is subdivided into 5 panels 

Manage materials 

Consisting of a button to add a new material, a combo-box to select an existing material, and 

two buttons for editing and deleting the selected material. 

 

Figure 5.3  Manage materials panel of X-ray settings and materials page 

Current phantom 

This panel includes a combo-box to select among the existing test objects: the head 

phantom and the cylinder phantom. Additionally, there is a button to configure the 

selected test object. 

 

Figure 5.4 Current phantom panel of X-ray settings and materials page 

Geometry 

As per sub section 3.3.1 of this document, the geometry of the CT system is specified in this 

panel. All the parameters are implemented as labelled text controls. 
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Figure 5.5 Geometry panel of X-ray settings and materials page 

Incident beam data 

In this panel, there are two combo boxes, one for selecting the tube voltage of the CT system 

and one for selecting the material for beam hardening correction. Additionally, there’s a 

labelled text control to specify the Current-time product.  

 

Figure 5.6  Incident beam data panel of X-ray settings and materials page 

Incident beam filters 

To complete the parameter specification of the sub section 3.3.1 of this document, this panel 

implements the functionality for managing filters, this is done by the means of a button to 

add a new filter, a combo-box to select among the existing filters and two buttons to edit or 

delete the selected filter. 

 

 

Figure 5.7 Incident beam filters data panel of X-ray settings and materials page 

 

Reconstruction & Analysis page 

This page is subdivided into two panels. 

Reconstruction data 

This panel consolidates the settings relevant for the image reconstruction as per sub section 

3.3.1 of this document. These parameters are implemented with labelled text controls. 
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Figure 5.8  Reconstruction data panel of Reconstruction and analysis page 

Regions of interest 

This panel consists of a button to add a new ROI, to select an existing one, and finally two 

buttons for editing or deleting the selected ROI. 

 

 

Figure 5.9  Regions of interest panel of Reconstruction and analysis page 

 

Simulation control & View page 

This page is subdivided into two panels 

Simulation control 

This panel consists of four buttons, three to run each of the individual simulation stages, and 

one that runs them sequentially one after the other. This panel is presented in Figure 5.10. 

 

Figure 5.10  Simulation control panel in Simulation control & View page 

View selection 

This panel encompasses the control of the results of the simulation that will be presented 

in the client area, namely: 

• Phantom radio button: to display the current geometry and material color of the 

active configuration of the test object of the simulation. 

• Sinogram radio button: to display the image representation of the Sinogram or 

Radon transform of the X-ray simulation. 
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• Sinogram StdDev radio button: to display the noise sinogram resulting as well from 

the X-ray simulation.  

• Reconstruction radio button: to display in the client area the resulting image of the 

reconstruction. 

• Export button: to save the two Sinograms and the reconstructed image in the file 

system. 

• Show ROIs checkbox: to display an overlay of the geometry of the regions of 

interest over the phantom illustration or the reconstruction image. 

• Show Analysis: To enable the table that accumulates the analysis results of all the 

analysis run over the session of the application. 

 

 

Figure 5.11  View selection panel in Simulation control & View page 

 

Client Area 

The client area mainly serves as a view port for the results of all the stages of the simulation, 

it is subdivided in two sections, the left part of the client area displays upon selection of the 

radio buttons of the “View selection” panel, either the geometry of the Phantom, any of the 

two sinograms or the reconstructed image. The right part of the client area whenever the 

“Show analysis” check-box is enabled will present a list with five columns: simulation run, 

meant for displaying an identifier for the analysis run, and the name, pixel count, mean and 

standard deviation of each ROI defined for the analysis. Figure 5.12 presents the client area 

showing the phantom geometry achieved after selecting the “Phantom” radio button of the 

View selection panel, and the analysis results displayed following the above mention 

checkbox interaction. 
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Figure 5.12  Client Area showing Head-phantom geometry and analysis results of a single 

run 

Dialogs 

Additionally, a set of dialogues where implemented to help with the management of the 

abstractions among the input parameters that involve an arbitrary number of instances. 

These are namely materials, elements, filters, bowtie samples and regions of interest. 

Furthermore, the dialogues for editing the parameters of the test objects were also 

implemented.  

Material Dialog 

This dialogue is invoked either by adding or editing a material, when adding a material 

intuitively the parameters contained within the dialogue are empty, when loading a material, 

the dialog is filled with the settings defining the material selected in the combo-box of the 

“Manage materials” panel. 

As per 3.3.1 the parameters required to define a material can be found in this dialogue, the 

name and density are configurable through labeled text controls, the color property was 

implemented with the usage of a color picker, finally the elements composing the material 

can be visualized in a list control with two columns, one for an atomic number and the second 

for the fraction. The management of the elements composing the material is done by the 

Add and Remove buttons. The first will invoke another modal dialogue request for the two 

fields describing the element, and the latter will simply remove the entry selected in the list 
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control. Intuitively the changes of a material or an element will be either stored or discarded 

depending on whether the user chooses to click the Save or Cancel buttons, both close the 

dialogue. Figure 5.13 illustrates the material dialogue as well as the dialogue invoked for 

adding an element. 

 

 

Figure 5.13 Sample material dialogue after while adding an element 

Filter Dialog 

This dialogue is triggered either by adding a new filter or modifying an existing one. The name 

and thickness parameters are implemented with labeled text controls, the material combo-

box enables the user to select among the existing materials the one used for the filter. Finally, 

the bowtie samples can be visualized in a list control with their respective angle and thickness 

displayed as separate columns. Modifying the bowtie samples is achieved by using the Add, 

Edit and Delete buttons. The first two will trigger a dialogue for the input of the angle and 

thickness of the sample, and the latter will simply delete the sample selected from the list. 

The dialogues are closed using the Save or Cancel buttons which intuitively keep or discard 

the changes made to the filter or bowtie sample. Figure 5.14 illustrate the filter and bowtie 

sample dialogues. 
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Figure 5.14 Filter and bowtie-sample dialogues 

 

ROI Dialog 

This dialog is invoked either by adding or editing an existing ROI from the Reconstruction & 

Analysis page of the main ribbon bar. This dialogue encapsulates the fields as per 3.3.1, 

namely the Name and geometry parameters are implemented with text controls and the ROI 

type can be selected from a combo-box defining either a disc or a rectangle. The changes to 

the ROI can be stored or discarded by the usage of the Save and Cancel buttons, these also 

yield in the closing of the dialog. Figure 5.15 shows the ROI dialog layout.  
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Figure 5.15  ROI dialog layout 

Phantom Dialogues 

These dialogues are invoked once the Configure button of the Current phantom panel in the 

X-ray settings & materials page is clicked.  

The cylinder phantom dialogue consists only of a labeled text controls corresponding to the 

cylinder radius as per 3.3.1, as well as the material of this cylinder which can be picked with 

the help of a combo-box listing all the available materials. The modifications done to the 

cylinder phantom can either be stored or discarded with the usage of the Save and Cancel 

buttons. 

 

Figure 5.16 Cylinder phantom dialog 

The head-phantom dialog is slightly more complex. As per section 3.3.1 the head phantom’s 

geometry is composed by a cover a filling and four cylinders. The cover and the filling have a 

radius that can be altered with the usage of a labeled text control. Also, their material is 

selected from a combo-box. The details implement the radius and material configuration in 

the same way as the cover and filling, additionally their position within the phantom 

geometry is specified by the two x and y coordinates which can be set with the help of two 

labeled text controls. The dialog is closed either by clicking the Save or Cancel buttons which 

store or discard the changes respectively. 



Implementation Details  42 

 

 

 

Figure 5.17 Head phantom dialog 

5.2 Extended functionality on previously existing classes 

5.2.1 Phantom related modifications 
 

The class cInputData encompasses the parameters for the simulation, part of these 

parameters are the classes that define the geometries of the test objects. In the command 

line application provided as the basis for this work the test object classes cHeadPhantom and 

cCylinderPhantom implement an interface cObject which is then accessed mainly by 

cCTRawData for running the X-ray simulation. cInputData was modified to support an 

arbitrary number of references of cObject to guarantee that further phantoms can be 

implemented with minimum modifications to cInputData.  

Furthemore, as stated the existing two classes cHeadPhantom and cCylinderPhantom and 

their cObject interface were modified to show a dialog that exposes their parameters. This 

dialogue is implemented in a single method with the signature: 

int showDialog(wxWindow*parent, wxArrayString materials) 
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The return value of this function is the id of the control that triggered the end of the display 

of the dialogue, the first argument is a reference to its parent and the last argument is an 

array with the available materials that the phantom object can use. 

An additional method implemented in the two test objects is the method that exposes their 

geometry by the means of a bitmap, this method’s signature is as follows: 

wxBitmap drawSelf(wxSize bitmapSize) 

Finally, auxiliary setters and setters as well as the whole XML input/output functionality were 

implemented. Furthermore, the operators “=” and “==” where overloaded. Listing 5.1 shows 

the header file declaring the interface cObject , every test object implements this interface 

so naturally cHeadPhantom and cCyllinderPhantom define this methods as well. The methods 

that were added to the class are highlighted. 

3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

#include <vector> 
#include "TotalCrossSection.h" 
#include "Material.h" 
#include "spectrum.h" 
#include <wx/xml/xml.h> 
#include <wx/wx.h> 
class cObject 
{ 
private: 
public: 
 cObject(void); 
 virtual ~cObject(void); 
 virtual int showDialog(wxWindow* parent, wxArrayString materials)=0; 
 virtual void writeWxXml(wxXmlNode* phantomNode) = 0; 
 virtual void readWxXml(wxXmlNode* phantomNode) = 0; 
 virtual void getMaterialIndices(std::vector<int> &index) = 0; 
 virtual void setMaterialIndices(std::vector<int> indices) = 0; 
 virtual void getLengths(double a, double b, double p,                
std::vector<double> &length) = 0; 
 virtual std::string getName() = 0; 
 virtual wxBitmap drawSelf(wxSize bitmapSize) = 0; 
 virtual double getZoomFactor(wxSize bitmapSize) = 0; 
 virtual void setMaterials(std::vector<cMaterial> *materials) = 0; 
 virtual cObject& operator=(const cObject &x)=0; 
 virtual bool operator==(const cObject&x) = 0; 
}; 

 

Listing  5.1  cObject.h file declaring the cObject interface. 

5.2.2 cInputData modifications 
 

This class groups the settings of all the simulation stages, the main changes done to this class 

are mainly the setters and getters needed to interact with the abstractions of materials, 

filters and ROIs as well as the XML reading and writing of the class. Additionally, the operators 

“=” and “==” were overloaded. This overload is necessary since within a session of the 

application there are two instances of cInputData available, one resides within the class 
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cCTMainFrame and the other within the cSimulation class. The purpose of the first is to 

receive the validated parameters coming from the user interface (view classes), the latter is 

connected to the actual simulation and its inherent state. Once the cSimulationPresenter 

instance is notified of a change in the parameters, it will compare these two instances of 

cInputData (hence using the “==” operator) and synchronize the changes in the GUI state 

and/or the cSimulation instance. Figure 5.18 depicts the sequence of method calls between 

View and Presenter when the user triggers a command that might rollback the state of the 

simulation, namely when a text control of the mainFrame object is altered. As an ilustrative 

example changing the image reconstruction dimensions after the simulation has fully run 

should involve an update of the GUI such that it requires from the user to run the 

reconstruction again. In this context, the presenter object will implement the event handler 

of the command triggered by the user changing a parameter, lookup in a map linking user 

interface identifiers to simulation states and disable the corresponding views that are not 

expected to be available after the parameter change. This is achievable only if the two 

cInputData holding the parameters can be compared, in this case with the “==” operator. 

Since cInputData aggregates the parameters coming from other classes such as the test 

objects or materials, the “==” operator is also implemented in the classes cMaterial, 

cCyllinderPhantom and cHeadPhantom. Consequently, this mechanism also enables the 

forward stage transitions of the simulation in the case when the changes to the parameters 

are reverted without having altered the Model state. i.e. without having run any of the 

algorithms. 
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Figure 5.18  Rollback of the simulation state in the GUI 
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Another important operator overload of this class is the “=” or assignment operator. This is 

crucial for synchronizing the Model (cSimulation) cInputData instance right after the user 

has triggered a simulation stage run, namely clicked the “Run X-ray Simulation”, “Run 

reconstruction”, “Run analysis” and “Run all” buttons. Just as in the case of the “==” 

operator this change must also be implemented within the classes that are contained as 

parameters within cInputData. 

 

5.2.3 Other modifications 
 

The integration of the existing parameter classes with GUI controls needed some additional 

exposure of properties to be implemented by the means of getter and setter functions. 

Additionally, the potential parallelism of the mathematical model and the implementation of 

the simulation algorithms provided made them able to exploit multithreading. Specifically, 

the X-ray simulation implemented in cCTRawData and the filtered back projection 

implemented in cFBP were modified. This was conveniently achieved using the OpenMP 2.0 

pre-processor instructions that are supported by the VisualStudio compiler, mainly since the 

modifications to the source code are minimal and preserve the already intuitive definition. 

 

5.3 Additional classes 

5.3.1 Model Classes 
 

As illustrated in Figure 4.6 the domain Model is comprised by a single cSimulation class that 

aggregates the cCTRawData, cFBP and cAnalysis class. The cSimulation class was 

implemented as a general abstraction of the whole process that offers state handling as well 

as the methods enabling the transitions between the states. The functionality of the 

cAnalysis class was originally included in the cFBP class, however following the notion of 

separating the simulation stages into different classes, this was also implemented. Figure 

5.19 presents the definition of both class and their interdependence with the previously 

existing classes. 
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Figure 5.19  Specification of the Model classes detailing the additionally implemented 

5.3.2 View Classes 
 

Following the MVP approach the View classes follow mainly a declarative logic, the event 

handlers that were implemented within these were simply to update the cInputData 

instance that lives within the ctMainFrame object of the application (the main window). This 

decoupling is desired since it provides the convenience of validation of the parameters 

before they are used as input for the simulation stages. 

ctMainFrame stands as the parent view of the application it includes the ribbon bar and the 

client area, instances of the dialogues are created and destroyed within handling of events 

of this class. E.g. creating a material, filter, ROI etc. This behaviour is convenient from the 

memory handling perspective since dialogues are used as stack variables hindering the 

likelihood of memory leaks. The only persistent views within a session are the ctMainFrame 

instance and a constituent cViewPanel object. The latter handles the display, zooming, and 

panning of the selected view within the ribbon bar, namely the phantom’s geometry, the 

Sinogram bitmaps, the reconstructed image and an overlay of the geometries of the ROIs 

defined on top of either the phantom illustration or the reconstructed image. Figure 5.20 

illustrates the structure of the View classes of the GUI, showing as well the extension of the 

wxWidgets framework classes. 
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Figure 5.20 Class diagram with new classes and their generalized wxWidgets super classes 

5.3.3 Presenter Classes 
 

The cSimulationPresenter implements the presentation layer of the application and 

synchronizes the state of the cSimulation and the ctMainFrame classes. This class includes 

the event handlers of the GUI controls that directly trigger the state transition in the 

cSimulation object and the ones that would roll back the simulation state shown by the GUI 

whenever the input parameters are updated. This is consistent in the way that no result that 

is not coherent with the settings on the GUI at a given moment should be displayed. Figure 

5.21 illustrates the way the cSimulationPresenter is implemented and how it relates to the 

view and model objects. 
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Figure 5.21 Presenter class cSimulationPresenter 

 



Test and validation  50 

 

 

6 Test and validation 

The methodology used for testing the correct functionality of the application involves mainly 

a set of scenarios and verifications that are conducted manually. The verifications are 

specified depending on the features tested, these involve evaluating visually the GUI controls 

at runtime, the eventual output files and in some cases inspecting the state of critical 

variables while debugging the application. 

6.1 Data persistence tests 
 

This tests are designed to verify requirements from section 3.3.3. 

Simulation file can be saved 

 The application is started in a default state; arbitrary settings are modified and a simulation 

file is saved, this file is later examined in a text editor to prove that the settings that were 

modified are consistent. 

Simulation file can be open 

 The application is started and a simulation file with settings differing from the default state 

is loaded, the settings are checked to be consistent to the xml description of the loaded file. 

Storage of intermediate state of the application 

This scenario tests the functionality of the checkboxes "store transmission data”, “store 

reconstruction image" and "store analysis" of the file page. For this purpose, the application 

is started, each of the simulation stages are run so that the required state of the simulation 

is achieved, subsequently a simulation file is saved by enabling all the combinations of the 

checkboxes. Finally, the application is restarted, the relevant files are loaded and the state of 

the application is verified to be consistent with these files, furthermore these three 

checkboxes are enabled automatically after loading the custom files. The state is verified 

successfully if the intermediate results are available, and the GUI state is coherent with these 

results. 
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Results can be exported 

After a full run with the default settings of the application, all the results are exported namely 

three image files consisting of the transmission and noise sinograms as well as the 

reconstructed image displayed in the client area of the application. Lastly the analysis results 

are exported into a CSV file consistent with the data shown in the GUI. All the exported files 

are examined visually to be consistent with the selected view. 

6.2 Parameters tests 
 

This tests relate to requirements of section 3.3.1 and 3.3.2. 

Materials can be added, edited and deleted: 

For this test a material is added and its parameters are specified, subsequently this material 

is selected as part of the Head-phantom in any of the cylinders, then all the material settings 

are edited, the colour change triggers an update in the colour displayed for the phantom 

view of the relevant cylinder and when re-opening the material dialog the previously 

modified fields are persistent. Furthermore, this material is selected again and it is deleted, 

a dialogue is displayed prompting the fact that it can not be deleted because it is under use 

by the head-phantom, when this situation is changed and the material is successfully deleted. 

Phantoms can be modified: 

For this test both phantoms are configured, the geometry and material modifications are 

consistently updated in the phantom view in the client area and after running the X-ray 

simulation and reconstruction stages the specified geometry is verified to be consistent to 

the modifications. 

Geometry, incident beam data and reconstruction data parameters modify the simulation 

input data 

For this test the application is started and every setting from these panels is altered, 

subsequently a breakpoint is set within the event handler of the “Run X-ray simulation” 

button to inspect the application behaviour after this is pressed. The two instances of 

cInputData both in the mainframe and the simulation objects residing within 

simulationPresenter have the same modified values. 

Filters can be added, edited and deleted 

For the purpose of this test a filter with a single bowtie sample is created, a breakpoint is 

added to the “Run X-ray simulation “click handler and the state of the filter variables in the 

two cInputData instances of both the mainFrame and simulation objects of the 

simulationPresenter are consistent. The modification and deletion are evaluated in the same 

manner. The consistency of the values with the displayed controls is also verified. 

ROIS can be added, edited and deleted 

As in the case of the filters the creation, modification and deletion of the ROIs is verified with 

the usage of the debugger in the click handler of the “Run X-ray simulation” button.  
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Additionally, a full run of all the simulation stages is executed and the “Analysis results” from 

the client area are verified to be consistent with the definition of the size of the ROIs i.e. the 

geometry of the ROI and the pixel size matches the pixel count statistic. The number of ROIs 

and their respective names are also verified to be consistent with. 

Additionally, the functionality of the “show ROI” checkbox from the “View” when enabled 

displays the ROIs consistently with the modifications. 

6.3  GUI state behaviour tests 
 

This tests relate to the requirements of section 3.3.4. 

Default state 

When the application is started none of the results of each simulation stage are available, 

furthermore the controls related uniquely to an already run stage are disabled namely the 

checkboxes related to intermediate result storage in the “File” page and the relevant buttons 

and radio buttons of the “Simulation control and view” page. Figure 6.1 presents both pages 

in their default state, none of the views of results are available. 

 

 

Figure 6.1  Default state of File and Simulation control & View pages of the ribbon bar 

Run of x-ray simulation, Simulation control & View page behaviour 

After the ”Run X-ray simulation “button is pressed once the application has been freshly 

started , once the simulation is finished ; the radio buttons related to the transmission and 

noise Sinograms are enabled and toggling them presents the corresponding image in the 

client area. The “Export” and “Run reconstruction” buttons are enabled as well. 

Run of Reconstruction 

After having run the reconstruction the resulting image is presented in the client area, and 

the “Run analysis” button is enabled. 
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Run of analysis 

After running the analysis, the results are presented as a list in the client area alongside the 

reconstructed image is shown with the ROIs highlighted. 

Successive full runs with different settings and accumulation of results 

Results from the analysis stage of several runs are appended in the client area, Figure 6.2 

illustrate four consecutive runs with the default settings of the application, testing all the 

possible configurations of the tube voltage in the incident beam data parameters. 

 

Figure 6.2 Application state after four consecutive runs for different values of tube voltage 

Simulation state rollback after modification of parameters 

For this test, all the simulation stages are incrementally run, after every stage is successfully 

run a parameter is chosen so that it reverts the state of the simulation as in Figure 4.3 

disabling the corresponding GUI controls from the Simulation control & View ribbon page, as 

well as the related results from the client area. After the modification of the parameter is 

undone the results in the client area are available without the need to run the corresponding 

stage again. Figure 6.5 depicts the way the controls of the Simulation control & View page of 

the ribbon bar become enabled in coordination with the progress of the stages of the 

simulation.  
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Figure 6.3  Simulation control & View states a) Nothing has run, b) X-ray simulation has been 

run and c) Reconstruction or Analysis have been run 

 

6.4 Comparison test with command line application 
 

For the purpose of validating that bugs where not introduced in the simulation algorithms, 

the results yielded by independent simulations with the same input settings of the command 

line application and the application presented in this work were compared.  

After a full run of the simulation with the default settings of the GUI application with the ROIs 

placed as in Figure 6.3 the results of both analysis for every region of interest present 

significant differences. 

a) 

c) 

b) 
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Figure 6.4  ROI positions in head phantom 

 

 
 
ROI 
Name 

Command line application GUI Application 

Pixel 
count 

[-] 

Mean 
[HU] 

Standard 
deviation 

[HU] 

Pixel 
count 

[-] 

Mean 
[HU] 

Standard 
deviation 

[HU] 

ROI disc 1 1528 0.102947 15.8081 1528 0.363553 15.610926 

ROI disc 2 1528 144.957 15.057 1528 119.274743 15.620587 

ROI disc 3 1528 119.872 15.4141 1528 145.849480 15.133529 

ROI disc 4 1528 922.281 16.3024 1528 -43.679956 14.186940 

ROI disc 5 1528 -44.0027 14.9103 1528 922.341497 16.855591 

 

Table 6.1  Comparisson of results of analysis of command line application and GUI 

application 

 

The reconstructed images can be seen in Figure 6.4 they clearly depict differences in the 

details of the Head phantom, these differences come from the way these images are stored 

in each of the applications. The command line application stores the image following the axes 

directions: horizontal (x-axis) pointing to the right and vertical (y-axis) pointing up, conversely 

and following the requirements in section 3.3.2 the GUI application inverts the vertical axis 

to point down, furthermore an existing bug in the command line application reflects the 

horizontal axis in the X-ray simulation algorithm, this bug was corrected as part of this work.   
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Figure 6.5  Reconstructed images a) Command line application b) GUI application 

 

The difference in the definition of the vertical axis of both applications doesn’t bring any 

consequence to the analysis results since this is only altering the layout of the way the image 

is stored hence the geometries and positions of the ROIs keep being consistent (on the y 

axis). On the other hand, the reflection of the horizontal axis in the command line application 

is not consistent with the position settings of the ROIs since it comes from a bug in the X-ray 

simulation algorithm i.e. the reconstruction uses an inconsistent Sinogram as an input that 

ends up in yielding a different (reflected) geometry of the phantom .When this is taken into 

consideration the ROIs 5 and 4 as well as 2 and 3 of the command line application would 

swap accordingly, narrowing down significantly the differences between the results of both 

applications. The remaining difference comes mainly from two sources: a known bug that 

was corrected by Prof. Dr. Robert Heß in the FBP algorithm in the reconstruction phase but 

not captured in the application that served as basis for this work, and the intermediate 

storage of the transmission data (Sinograms) to a file that is used as input for the 

reconstruction in the command line application. This storage alters the data by firstly 

cropping negative values of the results (equalizing them to 0) and casting them from double 

to unsigned short int for storage purposes. 

Once these factors are taken into consideration and modified accordingly in the command 

line application the results of Table 6.2 are achieved, once again differences exist but are 

potentially negligible, nevertheless this is not further explored and remains as an open issue. 

 

 

a

) 
b

) 
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ROI 
Name 

Command line application GUI Application 

Pixel 
count 

[-] 

Mean 
[HU] 

Standard 
deviation 

[HU] 

Pixel 
count 

[-] 

Mean 
[HU] 

Standard 
deviation 

[HU] 

ROI disc 1 1528 0.364901 15.6086 1528 0.363553 15.610926 

ROI disc 2 1528 119.275 15.6206 1528 119.274743 15.620587 

ROI disc 3 1528 145.849 15.1335 1528 145.849480 15.133529 

ROI disc 4 1528 -43.68 14.1869 1528 -43.679956 14.186940 

ROI disc 5 1528 922.341 16.8556 1528 922.341497 16.855591 

 

Table 6.2  Comparison of results of analysis of adjusted command line application and GUI 

application 
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7 Summary 

This work presented the adaptation of the existing work for X-ray simulation provided by 

Prof. Robert Heß to use a modern graphical user interface developed in the C++ language 

with the help of wxWidgets. An application supporting the complete simulation workflow 

including the presentation of intermediate results was designed, implemented and tested. 

 The actual implementation of the application follows the spirit of an open source 

development framework for further extension. The ideas of MVP and object oriented 

programming were a central aspect to support this nature. 

 The necessary modifications on the original code took place to support the development of 

the GUI, as well as additional classes were put in place. 

Finally, in the process of building the GUI application the understanding of the mathematical 

concepts behind the X-ray simulation was reinforced, and modifications were made to 

resolve existing issues such as the reflection of the reconstructed image. Also, this 

understanding made it possible to improve the performance of the X-ray simulation and 

reconstruction algorithms by multithreading some of the workload with the OpenMP pre-

processor directives with very simple modifications. 

 

7.1 Further work  
In terms of the implementation of the application provided with this work, an incremental 

refactoring cycle would be of interest. The fact that some of the functionality was adopted 

from an already existing command line application signalled the necessity of a different 

handling of some of the abstractions. An illustrative example to this case is how the objects 

of the materials are handled across the application, these are accessed via their positional 

arrangement in an array. Since such objects are now accessed through a GUI a better way of 
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management could be to relocate them into different data structures such as maps, and 

access them by their names instead of indices. Additional situations like this might require 

further work to refactor and possibly restructure the existing parameter organisation within 

the cInputData class.  A more exhaustive exception handling can also be included within this 

refactoring cycle. 

An open issue remains the differences highlighted in the chapter 6 with the comparison of 

the results between the command line application provided by Prof. Robert Heß and the 

application developed in this work. 

In the sense of performance improvement, the iterative nature of the experimental process 

to investigate the relationship between the input parameters and the results of the 

simulation involves computational time that can not be disregarded. Both the Radon 

transform and the Filtered Back-Projection algorithm, can benefit from parallelisation. 

Current GPU and accelerator technologies might be exploited to reduce significantly the 

computation time of the whole simulation process.   
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Appendix A 

This appendix shows basic considerations to build the source-code within the digital material 

attached to this document.  

This procedure was tested in a Windows 10 installation using the Microsoft Visual Studio 

2017 IDE and its compiler. 

Building wxWidgets 

1. Download and install or unzip the wxWidgets 3.1.0 source code from 

www.wxidgets.org/downloads/ , this directory will contain the built dependencies 

which take considerable space. The software solution provided with this work 

assumes this path to be D:\wxWidgets-3.1.0 in case it is possible it is 

recommendable to use this path. 

2. Within the wxWidgets installation path [wxWidgets-3.1.0 path]\build\msw open 

the wx_vc14.sln solution file with Visual Studio 2017. 

3. From the main menu run Build->Batch Build…, select all build configurations and 

press Build. It might be needed to re-target the solution to use the corresponding 

Windows SDK version. 

Building the software from this work 

To build the software, the only steps needed are to modify the wxWidgets source path 

chosen above in the C++ and Linker properties of the solution for every build configuration:  

In the C/C++ properties under the field Additional Include Directories the D:\wxWidgets-

3.1.0 prefix of the two first values must be changed to the source installation of wxWidgets. 

In the same way under the Linker properties, the Additional Library Directories field must 

be updated. Figure 0.1 highlights the root path of wxWidgets that must be changed. 

 

http://www.wxidgets.org/downloads/
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Figure 0.1  Visual Studio project properties to modify 

 

 

The digital material attached with this document is delivered to Prof.Dr.Robert Heß and 

Prof.Dr. Marc Hensel. The volume is labelled Alexei_Figueroa_2169845_Bachelor_Thesis. 

 

Figure 0.2 Folder structure of the digital material provided with this work 

 

The contents are mainly 3 folders and a digital version of this work: 

•  CT-Simulation-CMD: with the original command line application provided by Prof.Dr.  

Robert Heß with 3 modifications as per section 6.4: 

o CTRawData.cpp line 405 to correct the reflection bug  

o CTRawData.cpp line 527 cropping negative and casting to short int when 

writing to intermediate file. 

o cFBP.cpp line 59 added factor *30/input.fanAngle ,fixed by Prof.Dr. Robert 

Hess. 

These original lines are kept commented in case the original results need to be 

reproduced. 
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• GUI Solution Source Code: With the Visual Studio project to build the software of this 

work. 

• Portable Binaries Last build: With a working latest version of an x86 release build of 

the software presented in this work. 
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